Science.gov

Sample records for cd133 gene expression

  1. Gene expression profiling of CD133-positive cells in coronary artery disease.

    PubMed

    Li, Jiayu; Zhou, Changyu; Li, Jiarui; Wan, Yingchun; Li, Tao; Ma, Piyong; Wang, Yingjian; Sang, Haiyan

    2015-11-01

    Gene expression profiles of CD133-positive cells from patients with coronary artery disease (CAD) were analyzed to identify key genes associated with cardiac therapy. Furthermore, the effect of exercise on gene expression was also investigated. Gene expression data set (accession number: GSE18608) was downloaded from the Gene Expression Omnibus, including blood samples from four healthy subjects (H), and from 10 patients with coronary artery disease at baseline (B) and after 3 months (3M) of exercise. Differential analysis was performed for H vs. B and H vs. 3M using limma package of R. Two‑way cluster analysis was performed using the expression levels of the differentially expressed genes (DEGs) by package pheatmap of R. Functional enrichment analysis was applied on the DEGs using the Database for Annotation, Visualization and Integrated Discovery. Relevant small molecules were predicted using the Connectivity map database (cMap). A total of 131 and 71 DEGs were identified in patients with CAD prior to and following 3 months of exercise. The two groups of DEGs were compared and 44 genes overlapped. In cluster analysis with the expression levels of the common DEGs, patients with CAD could be well separated from the healthy controls. Functional enrichment analysis showed that response to peptide hormone stimulus and anti‑apoptosis pathways were significantly enriched in the common DEGs. A total of 12 relevant small molecules were revealed by cMap based upon the expression levels of common DEGs, such as 5252917 and MG‑262. Three months of exercise in part normalized the gene expression in CAD patients. The genes not altered by exercise may be the targets of small molecules, such as 5252917 and MG-262. PMID:26458356

  2. Expression of CD133 in acute leukemia.

    PubMed

    Tolba, Fetnat M; Foda, Mona E; Kamal, Howyda M; Elshabrawy, Deena A

    2013-06-01

    There have been conflicting results regarding a correlation between CD133 expression and disease outcome. To assess CD133 expression in patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and to evaluate its correlation with the different clinical and laboratory data as well as its relation to disease outcome, the present study included 60 newly diagnosed acute leukemic patients; 30 ALL patients with a male to female ratio of 1.5:1 and their ages ranged from 9 months to 48 years, and 30 AML patients with a male to female ratio of 1:1 and their ages ranged from 17 to 66 years. Flow cytometric assessment of CD133 expression was performed on blast cells. In ALL, no correlations were elicited between CD133 expression and some monoclonal antibodies, but in AML group, there was a significant positive correlation between CD133 and HLA-DR, CD3, CD7 and TDT, CD13 and CD34. In ALL group, patients with negative CD133 expression achieved complete remission more than patients with positive CD133 expression. In AML group, there was no statistically significant association found between positive CD133 expression and treatment outcome. The Kaplan-Meier curve illustrated a high significant negative correlation between CD133 expression and the overall survival of the AML patients. CD133 expression is an independent prognostic factor in acute leukemia, especially ALL patients and its expression could characterize a group of acute leukemic patients with higher resistance to standard chemotherapy and relapse. CD133 expression was highly associated with poor prognosis in acute leukemic patients. PMID:23532815

  3. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia

    SciTech Connect

    Blazek, Ed R.

    2007-01-01

    Purpose: Primary medulloblastoma and glioblastoma multiforme tumor cells that express the surface marker CD133 are believed to be enriched for brain tumor stem cells because of their unique ability to initiate or reconstitute tumors in immunodeficient mice. This study sought to characterize the radiobiological properties and marker expression changes of CD133+ vs. CD133- cells of an established medulloblastoma cell line. Methods and Materials: Daoy and D283 Med cell lines were stained with fluorescently labeled anti-CD133 antibody and sorted into CD133+ and CD133- populations. The effect of oxygen (2% vs. 20%) on CD133 expression was measured. Both populations were analyzed for marker stability, cell cycle distribution, and radiosensitivity. Results: CD133+ Daoy cells restored nearly native CD133+ and CD133- populations within 18 days, whereas CD133- cells remained overwhelmingly CD133-. Culturing Daoy cells in 2% oxygen rather than the standard 20% oxygen increased their CD133 expression 1.6-fold. CD133+ Daoy cells were radioresistant via the {beta}-parameter of the linear-quadratic model relative to CD133- Daoy cells, although their {alpha}-parameters and cell cycle distributions were identical. Conclusions: Restoration of the original CD133+ and CD133- populations from CD133+ Daoy cells in serum is further evidence that CD133+ cells are functionally distinct from CD133- cells. The radioresistance of CD133+ compared with CD133- Daoy cells is consistent with better repair of sublethal damage. Enlargement of the CD133+ sector is a new feature of the hypoxic response.

  4. Chemoresistance of CD133{sup +} colon cancer may be related with increased survivin expression

    SciTech Connect

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133{sup +} colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133{sup −} cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133{sup +} and siRNA-induced CD133{sup −} cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133{sup +} cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133{sup +} cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133{sup +} cells at 96 h after siRNA transfection. From this study, we conclude that CD133{sup +} cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133{sup +} colon cancer. - Highlights: • We evaluate the role of CD133 in chemoresistance of colon cancer. • We compared the chemoresistance of CD133{sup +} cells and siRNA-induced CD133{sup −} cells. • CD133 had little to no effect on MDR1, ABCG2 and AKT1 expression. • Survivin expression and chemoresistance were increased in CD133{sup +} colon cancer cells.

  5. Isolation, identification and expression of specific human CD133 antibodies.

    PubMed

    Xia, Jing; Zhang, Ying; Qian, Jun; Zhu, Xiaojun; Zhang, Yafen; Zhang, Jianqiong; Zhao, Gang

    2013-01-01

    CD133, a 120 KDa glycoprotein is a transmembrane glycoprotein which has been recently used as a cancer stem cell (CSCs) marker in a variety of carcinomas. CD133(+) cells possess strong tumorigenicity, responsible for tumor initiation and maintenance. Therefore, the goal of our study was to develop a novel CD133 humanized antibody as a promising target for cancer therapy. CD133 purified proteins were used for panning the naive human-semi-synthetic Tomlinson I + J phagemid library. The second extracellular domain (loop1) and the third extracellular domain (loop2) of CD133 were expressed in E. coli. In this study, we adopted a novel five-round selection strategy based on moderate stringent selection during the first rounds. This unique strategy was aimed at avoiding the loss of rare phages with high affinity to target proteins. After the five rounds of specific panning, six phage-antibody clones which specifically recognized recombinant human CD133 protein were obtained. The desirable phage clone named CD133-scFv-1 was cloned into the expression vector, then induced and purified. We show that CD133-scFv-1 and commercial murine antibody 293C3 could compete with each other in the indirect competitive immunoassay. Our work may lay the groundwork for future studies involving biological functions and applications of the CD133 humanized antibody. PMID:24271022

  6. Expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocacinoma

    PubMed Central

    2010-01-01

    Background To study on expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocarcinoma (GC). Methods Expressions of CD133 protein by immunostaining (99 cases) and CD133 mRNA by semi-quantitative RT-PCR (31 cases) were detected in primary lesion and in noncancerous gastric mucosa tissue (NCGT). Correlations of CD133 protein expression with clinicopathological parameters and post-operative survival were analyzed. Relations of CD133 mRNA level with Ki-67 labeling index (LI), and lymphatic metastasis were assessed too. Results Brown particles indicating CD133 protein positivity occurred in some parts of tumor cells and epithelium. Expressive percentage of CD133 protein positivity was significantly higher in subgroups with >5 cm diameter (P = 0.041), later TNM stage (P = 0.044), severer lymph node metastasis (P = 0.017), occurrences of lymphatic invasion (P = 0.000) and vascular invasion (P = 0.000) respectively. Severer invasion depth (P = 0.011), lymph node metastasis occurrence (P = 0.043) and later TNM stage (P = 0.049) were the independent risk factors for CD133 protein expression. Average brightness scale value (BSV) of CD133 mRNA was significantly higher in subgroups with >5 cm diameter (P = 0.041), lymph node metastasis occurrence (P = 0.004) and in lower Ki-67 LI (P = 0.02). Relative analysis revealed that BSV of CD133 mRNA related positively to metastatic lymphatic nodes ratio (P = 0.008) and metastatic lymph node number (P = 0.009), but negatively to Ki-67 LI (P = 0.009). Survival of positive subgroup of CD 133 protein was significantly poorer (P = 0.047). Lymph node metastasis occurrence (P = 0.042), later TNM stage (P = 0.046) and CD 133 protein positive expression (P = 0.046) were respectively the independent risk factors to survival. Conclusion Higher expressive level of CD133 mRNA is associated to lower Ki-67 LI and severer lymphatic metastasis. Therefore, the expressive level of CD133 mRNA can play an

  7. CD133 Modulate HIF-1α Expression under Hypoxia in EMT Phenotype Pancreatic Cancer Stem-Like Cells

    PubMed Central

    Maeda, Koki; Ding, Qiang; Yoshimitsu, Makoto; Kuwahata, Taisaku; Miyazaki, Yumi; Tsukasa, Koichirou; Hayashi, Tomomi; Shinchi, Hiroyuki; Natsugoe, Shoji; Takao, Sonshin

    2016-01-01

    Although CD133 is a known representative cancer stem cell marker, its function in tumor aggressiveness under hypoxia is not fully known. The aim of this study is to demonstrate that CD133 regulates hypoxia inducible factor (HIF)-1α expression with tumor migration. The CD133+ pancreatic cancer cell line, Capan1M9, was compared with the CD133− cell line, shCD133M9, under hypoxia. HIF-1α expression levels were compared by Western blot, HIF-1α nucleus translocation assay and real-time (RT)-PCR. The hypoxia responsive element (HRE) was observed by luciferase assay. The migration ability was analyzed by migration and wound healing assays. Epithelial mesenchymal transition (EMT) related genes were analyzed by real-time RT-PCR. HIF-1α was highly expressed in Capan1M9 compared to shCD133M9 under hypoxia because of the high activation of HRE. Furthermore, the migration ability of Capan1M9 was higher than that of shCD133M9 under hypoxia, suggesting higher expression of EMT related genes in Capan1M9 compared to shCD133M9. Conclusion: HIF-1α expression under hypoxia in CD133+ pancreatic cancer cells correlated with tumor cell migration through EMT gene expression. Understanding the function of CD133 in cancer aggressiveness provides a novel therapeutic approach to eradicate pancreatic cancer stem cells. PMID:27367674

  8. Celecoxib downregulates CD133 expression through inhibition of the Wnt signaling pathway in colon cancer cells.

    PubMed

    Deng, Yanhong; Su, Qiao; Mo, Jianwen; Fu, Xinhui; Zhang, Yan; Lin, Edward H

    2013-02-01

    CD133-positive cancer stem cells in colon cancer are resistant to conventional chemotherapy. The aim of the present study was to investigate the effect of celecoxib, a COX-2 inhibitor, on CD133 expression in HT29 and DLD1 cells. HT29 and DLD1 cells were treated with celecoxib using different concentrations and duration. CD133 expression was detected by flow cytometry, Western blotting, immunofluorescence, and quantitative real-time PCR. Wnt signaling pathway activity was measured by luciferase assay and gene expression changes were monitored using microarray analysis. HT29 cells showed significantly decreasing levels of CD133 expression with increasing concentrations of or duration of exposure to celecoxib. CD133 mRNA relative expression in HT29 and DLD1 cells also decreased with drug exposure. Furthermore, Wnt activation in HT29 and DLD1 cells decreased with celecoxib treatment. Gene expression microarray showed stemness genes, including Lgr5, Oct4, Prominin-1, Prominin-2, CXCR4, E2F8, CDK-2, were downregulated and differentiation genes, including CEACAM5, GDF, ADFP, ICAM1, were upregulated. Our results show that CD133 expression was downregulated by celecoxib through inhibition of the Wnt signaling pathway, which may be lead to cell differentiation. PMID:23245395

  9. TR4 Nuclear Receptor Alters the Prostate Cancer CD133+ Stem/Progenitor Cell Invasion via Modulating the EZH2-Related Metastasis Gene Expression.

    PubMed

    Zhu, Jin; Yang, Dong-Rong; Sun, Yin; Qiu, Xiaofu; Chang, Hong-Chiang; Li, Gonghui; Shan, Yuxi; Chang, Chawnshang

    2015-06-01

    The testicular nuclear receptor 4 (TR4) is a member of the nuclear receptor superfamily that mediates various biologic functions with key impacts on metabolic disorders and tumor progression. Here, we demonstrate that TR4 may play a positive role in prostate cancer CD133(+) stem/progenitor (S/P) cell invasion. Targeting TR4 with lentiviral silencing RNA significantly suppressed prostate cancer CD133(+) S/P cell invasion both in vitro and in vivo. Mechanism dissection found that TR4 transcriptionally regulates the oncogene EZH2 via binding to its 5' promoter region. The consequences of targeting TR4 to suppress EZH2 expression may then suppress the expression of its downstream key metastasis-related genes, including NOTCH1, TGFβ1, SLUG, and MMP9. Rescue approaches via adding the EZH2 reversed the TR4-mediated prostate cancer S/P cell invasion. Together, these results suggest that the TR4→EZH2 signaling may play a critical role in the prostate cancer S/P cell invasion and may allow us to develop a better therapy to battle the prostate cancer metastasis. PMID:25833838

  10. High expression of miR-9 in CD133+ glioblastoma cells in chemoresistance to temozolomide

    PubMed Central

    Munoz, Jessian L.; Rodriguez-Cruz, Vivian; Rameshwar, Pranela

    2016-01-01

    Glioblastoma Multiforme (GBM), a uniformly lethal stage IV astrocytoma, is currently treated with a combination of surgical and radiation therapy as well as Temozolomide (TMZ) chemotherapy. Resistance to TMZ is rapidly acquired by GBM cells and overcoming this resistance has been an area of signi?cant research. GBM 'cancer stem cells' (CSC) also known as 'cancer initiating cells' are often positively selected by CD133 expression and TMZ resistance. In this project, we selected GBM CSC from two cell lines based on CD133 expression. CD133+ and CD133− GBM cells showed comparable cell cycle status. The expression of genes within the Sonic Hedgehog Signaling pathway, PTCH1 (SHH receptor/basal signaling repressor) and Gli1 (effector transcription factor) were increased. The recent literature indicated a decreased in PTCH expression by miRNA and this was independent of SHH expression. We analyzed 5 potential PTCH-targeting miRNA and identi?ed an increase in miRNA-9-2. The CD133+ cells showed an increase in the Multiple Drug Resistance 1 gene (MDR1). Knockdown of Gli1 and MDR1 with siRNA enhanced TMZ induced cell death. Taken together, these studies show CD133+ GBM CSCs expressed greater levels of miR-9 and activation of the SHH/PTCH1/MDR1 axis. This axis has been shown to impart TMZ resistance. In the case of the CD133+ cells, the resistance is not acquires but seems to be inherent. Identi?cation of this pathway as well as the identi?cation of miR-9 may allow for the development of miRNA-targeted approach to Cancer Stem Cell therapy in GBM. PMID:27347493

  11. Enhanced cell growth and tumorigenicity of rat glioma cells by stable expression of human CD133 through multiple molecular actions.

    PubMed

    Fang, Kuan-Min; Lin, Tzu-Chien; Chan, Ti-Chun; Ma, Shi-Zhang; Tzou, Bo-Cheng; Chang, Wen-Ruei; Liu, Jun-Jen; Chiou, Shih-Hwa; Yang, Chung-Shi; Tzeng, Shun-Fen

    2013-09-01

    CD133 (Prominin-1/AC133) is generally treated as a cell surface marker found on multipotent stem cells and tumor stem-like cells, and its biological function remains debated. Genetically modified rat glioma cell lines were generated by lentiviral gene delivery of human CD133 into rat C6 glioma cells (hCD133(+) -C6) or by infection of C6 cells with control lentivirus (mock-C6). Stable hCD133 expression promoted the self-renewal ability of C6-formed spheres with an increase in the expression of the stemness markers, Bmi-1 and SOX2. Akt phosphorylation, Notch-1 activation, and Notch-1 target gene expression (Hes-1, Hey1 and Hey2) were increased in hCD133(+) -C6 when compared to mock-C6. The inhibition of Akt phosphorylation, Notch-1 activation, and Hes-1 in hCD133(+) -C6 cells effectively suppressed their clonogenic ability, indicating that these factors are involved in expanding the growth of hCD133(+) -C6. An elevated expression of GTPase-activating protein 27 (Arhgap27) was detected in hCD133(+) -C6. A decline in the invasion of hCD133(+) -C6 by knockdown of Arhgap27 expression indicated the critical role of Arhgap27 in promoting cell migration of hCD133(+) -C6. In vivo study further showed that hCD133(+) -C6 formed aggressive tumors in vivo compared to mock-C6. Exposure of hCD133(+) -C6 to arsenic trioxide not only reduced Akt phosphorylation, Notch-1 activation and Hes-1 expression in vitro, but also inhibited their tumorigenicity in vivo. The results show that C6 glioma cells with stable hCD133 expression enhanced their stemness properties with increased Notch-1/Hes-1 signaling, Akt activation, and Arhgap27 action, which contribute to increased cell proliferation and migration of hCD133(+) -C6 in vitro, as well as progressive tumor formation in vivo. PMID:23832679

  12. Role of ADAM17 in invasion and migration of CD133-expressing liver cancer stem cells after irradiation.

    PubMed

    Hong, Sung Woo; Hur, Wonhee; Choi, Jung Eun; Kim, Jung-Hee; Hwang, Daehee; Yoon, Seung Kew

    2016-04-26

    We investigated the biological role of CD133-expressing liver cancer stem cells (CSCs) enriched after irradiation of Huh7 cells in cell invasion and migration. We also explored whether a disintegrin and metalloproteinase-17 (ADAM17) influences the metastatic potential of CSC-enriched hepatocellular carcinoma (HCC) cells after irradiation. A CD133-expressing Huh7 cell subpopulation showed greater resistance to sublethal irradiation and specifically enhanced cell invasion and migration capabilities. We also demonstrated that the radiation-induced MMP-2 and MMP-9 enzyme activities as well as the secretion of vascular endothelial growth factor were increased more predominantly in Huh7CD133+ cell subpopulations than Huh7CD133- cell subpopulations. Furthermore, we showed that silencing ADAM17 significantly inhibited the migration and invasiveness of enriched Huh7CD133+ cells after irradiation; moreover, Notch signaling was significantly reduced in irradiated CD133-expressing liver CSCs following stable knockdown of the ADAM17 gene. In conclusion, our findings indicate that CD133-expressing liver CSCs have considerable metastatic capabilities after irradiation of HCC cells, and their metastatic capabilities might be maintained by ADAM17. Therefore, suppression of ADAM17 shows promise for improving the efficiency of current radiotherapies and reducing the metastatic potential of liver CSCs during HCC treatment. PMID:26993601

  13. Full-length dysferlin expression driven by engineered human dystrophic blood derived CD133+ stem cells.

    PubMed

    Meregalli, Mirella; Navarro, Claire; Sitzia, Clementina; Farini, Andrea; Montani, Erica; Wein, Nicolas; Razini, Paola; Beley, Cyriaque; Cassinelli, Letizia; Parolini, Daniele; Belicchi, Marzia; Parazzoli, Dario; Garcia, Luis; Torrente, Yvan

    2013-12-01

    The protein dysferlin is abundantly expressed in skeletal and cardiac muscles, where its main function is membrane repair. Mutations in the dysferlin gene are involved in two autosomal recessive muscular dystrophies: Miyoshi myopathy and limb-girdle muscular dystrophy type 2B. Development of effective therapies remains a great challenge. Strategies to repair the dysferlin gene by skipping mutated exons, using antisense oligonucleotides (AONs), may be suitable only for a subset of mutations, while cell and gene therapy can be extended to all mutations. AON-treated blood-derived CD133+ stem cells isolated from patients with Miyoshi myopathy led to partial dysferlin reconstitution in vitro but failed to express dysferlin after intramuscular transplantation into scid/blAJ dysferlin null mice. We thus extended these experiments producing the full-length dysferlin mediated by a lentiviral vector in blood-derived CD133+ stem cells isolated from the same patients. Transplantation of engineered blood-derived CD133+ stem cells into scid/blAJ mice resulted in sufficient dysferlin expression to correct functional deficits in skeletal muscle membrane repair. Our data suggest for the first time that lentivirus-mediated delivery of full-length dysferlin in stem cells isolated from Miyoshi myopathy patients could represent an alternative therapeutic approach for treatment of dysferlinopathies. PMID:24028392

  14. Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression

    SciTech Connect

    Chang, C.-J.; Hsu, C.-C.; Yung, M.-C.; Chen, K.-Y.; Tzao Ching; Wu, W.-F.; Chou, H.-Y.; Lee, Y.-Y.; Lu, K.-H.; Chiou, S.-H.; Ma, H.-I

    2009-03-06

    CD133-expressing glioma cells play a critical role in tumor recovery after treatment and are resistant to radiotherapy. Herein, we demonstrated that glioblastoma-derived CD133-positive cells (GBM-CD133{sup +}) are capable of self-renewal and express high levels of embryonic stem cell genes and SirT1 compared to GBM-CD133{sup -} cells. To evaluate the role of SirT1 in GBM-CD133{sup +}, we used a lentiviral vector expressing shRNA to knock-down SirT1 expression (sh-SirT1) in GBM-CD133{sup +}. Silencing of SirT1 significantly enhanced the sensitivity of GBM-CD133{sup +} to radiation and increased the level of radiation-mediated apoptosis. Importantly, knock-down of SirT1 increased the effectiveness of radiotherapy in the inhibition of tumor growth in nude mice transplanted with GBM-CD133{sup +}. Kaplan-Meier survival analysis indicated that the mean survival rate of GBM-CD133{sup +} mice treated with radiotherapy was significantly improved by Sh-SirT1 as well. In sum, these results suggest that SirT1 is a potential target for increasing the sensitivity of GBM and glioblastoma-associated cancer stem cells to radiotherapy.

  15. Expression of CD133 in neuroendocrine neoplasms of the digestive tract: a detailed immunohistochemical analysis.

    PubMed

    Mia-Jan, Khalilullah; Munkhdelger, Jijgee; Lee, Mi-Ra; Ji, Sun-Young; Kang, Tae Young; Choi, EunHee; Cho, Mee-Yon

    2013-01-01

    Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are potentially malignant with variable biologic behavior that originates from neuroendocrine cells of digestive tract. Recently, the existence of cancer stem cells (CSC) was demonstrated in tumors of gastrointestinal tract. CD133 is a transmembrane glycoprotein that serves as a CSC marker in various malignancies. However, the expression of CD133 in neuroendocrine neoplasms (NEN) of digestive tract has not been studied. We evaluated tissue expression of CD133 by immunohistochemistry in 90 NENs of digestive tract with their matched non-neoplastic mucosa including stomach (n=15), small intestine (n=7), appendix (n=3), colon (n=8), rectum (n=41), pancreas (n=2), gallbladder (n=4) and liver (n=10). Tumors were divided according to 2010 WHO classification. CD133 was expressed in 30.3% (17/56) of well-differentiated neuroendocrine tumors (NET), 26.1% (6/23) of poorly-differentiated neuroendocrine carcinomas (NEC) and 63.6% (7/11) of mixed adenoneuroendocrine carcinoma (MANECs). MANEC refers to existence of both adenocarcinoma and NEC together, each one comprising at least 30% of the tumor. CD133 was expressed in cytoplasm, luminal-side of cell membrane, or both and the staining pattern correlated with tumor growth pattern. CD133 expression was not significantly correlated with tumor grade, site, expression of neuroendocrine markers (chromogranin-A and synaptophysin) and patients' survival. Thus, CD133 expression may lack prognostic significance in GEP-NETs. Importantly, CD133 was not detectable in non-neoplastic neuroendocrine cells of digestive system including pancreatic islets. In conclusion, CD133 is expressed in poorly-differentiated NECs and well-differentiated NETs of the digestive tract. PMID:23615455

  16. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    PubMed

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells. PMID:25189742

  17. Subpopulation of small-cell lung cancer cells expressing CD133 and CD87 show resistance to chemotherapy.

    PubMed

    Kubo, Toshio; Takigawa, Nagio; Osawa, Masahiro; Harada, Daijiro; Ninomiya, Takashi; Ochi, Nobuaki; Ichihara, Eiki; Yamane, Hiromichi; Tanimoto, Mitsune; Kiura, Katsuyuki

    2013-01-01

    Tumors are presumed to contain a small population of cancer stem cells (CSCs) that initiate tumor growth and promote tumor spreading. Multidrug resistance in CSCs is thought to allow the tumor to evade conventional therapy. This study focused on expression of CD133 and CD87 because CD133 is a putative marker of CSCs in some cancers including lung, and CD87 is associated with a stem-cell-like property in small-cell lung cancer (SCLC). Six SCLC cell lines were used. The expression levels of CD133 and CD87 were analyzed by real-time quantitative reverse transcription-polymerase chain reaction and flow cytometry. CD133+/- and CD87+/- cells were isolated by flow cytometry. The drug sensitivities were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Non-obese diabetic/severe combined immunodeficiency mice were used for the tumor formation assay. SBC-7 cells showed the highest expression levels of both CD133 and CD87 among the cell lines. CD133-/CD87-, CD133+/CD87-, and CD133-/CD87+ cells were isolated from SBC-7 cells; however, CD133+/CD87+ cells could not be obtained. Both CD133+/CD87- and CD133-/CD87+ subpopulations showed a higher resistance to etoposide and paclitaxel and greater re-populating ability than the CD133-/CD87- subpopulation. CD133+/CD87- cells contained more G0 quiescent cells than CD133-/CD87- cells. By contrast, CD133-/CD87- cells showed the highest tumorigenic potential. In conclusion, both CD133 and CD87 proved to be inadequate markers for CSCs; however, they might be beneficial for predicting resistance to chemotherapy. PMID:23066953

  18. Prognostic impact of MGMT promoter methylation and MGMT and CD133 expression in colorectal adenocarcinoma

    PubMed Central

    2014-01-01

    Background New biomarkers are needed for the prognosis of advanced colorectal cancer, which remains incurable by conventional treatments. O6-methylguanine DNA methyltransferase (MGMT) methylation and protein expression have been related to colorectal cancer treatment failure and tumor progression. Moreover, the presence in these tumors of cancer stem cells, which are characterized by CD133 expression, has been associated with chemoresistance, radioresistance, metastasis, and local recurrence. The objective of this study was to determine the prognostic value of CD133 and MGMT and their possible interaction in colorectal cancer patients. Methods MGMT and CD133 expression was analyzed by immunohistochemistry in 123 paraffin-embedded colorectal adenocarcinoma samples, obtaining the percentage staining and intensity. MGMT promoter methylation status was obtained by using bisulfite modification and methylation-specific PCR (MSP). These values were correlated with clinical data, including overall survival (OS), disease-free survival (DFS), tumor stage, and differentiation grade. Results Low MGMT expression intensity was significantly correlated with shorter OS and was a prognostic factor independently of treatment and histopathological variables. High percentage of CD133 expression was significantly correlated with shorter DFS but was not an independent factor. Patients with low-intensity MGMT expression and ≥50% CD133 expression had the poorest DFS and OS outcomes. Conclusions Our results support the hypothesis that MGMT expression may be an OS biomarker as useful as tumor stage or differentiation grade and that CD133 expression may be a predictive biomarker of DFS. Thus, MGMT and CD133 may both be useful for determining the prognosis of colorectal cancer patients and to identify those requiring more aggressive adjuvant therapies. Future studies will be necessary to determine its clinical utility. PMID:25015560

  19. Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression.

    PubMed

    Pfenninger, Cosima V; Steinhoff, Christine; Hertwig, Falk; Nuber, Ulrike A

    2011-01-01

    In contrast to ependymal cells located above the subventricular zone (SVZ) of the adult lateral ventricle wall (LVW), adult spinal cord (SC) ependymal cells possess certain neural stem cell characteristics. The molecular basis of this difference is unknown. In this study, antibodies against multiple cell surface markers were applied to isolate pure populations of SC and LVW ependymal cells, which allowed a direct comparison of their in vitro behavior and in vivo gene expression profile. Isolated CD133(+)/CD24(+)/CD45(-)/CD34(-) ependymal cells from the SC displayed in vitro self-renewal and differentiation capacity, whereas those from the LVW did not. SC ependymal cells showed a higher expression of several genes involved in cell division, cell cycle regulation, and chromosome stability, which is consistent with a long-term self-renewal capacity, and shared certain transcripts with neural stem cells of the embryonic forebrain. They also expressed several retinoic acid (RA)-regulated genes and responded to RA exposure. LVW ependymal cells showed higher transcript levels of many genes regulated by transforming growth factor-β family members. Among them were Dlx2, Id2, Hey1, which together with Foxg1 could explain their potential to turn into neuroblasts under certain environmental conditions. PMID:21046556

  20. Characterization of a new human melanoma cell line with CD133 expression.

    PubMed

    Gil-Benso, Rosario; Monteagudo, Carlos; Cerdá-Nicolás, Miguel; Callaghan, Robert C; Pinto, Sandra; Martínez-Romero, Alicia; Pellín-Carcelén, Ana; San-Miguel, Teresa; Cigudosa, Juan C; López-Ginés, Concha

    2012-06-01

    A novel human malignant melanoma cell line, designated MEL-RC08, was established from a pericranial metastasis of a malignant melanoma of the skin. The cell line has been subcultured for more than 150 passages and is tumorigenic in nude mice. Growth kinetics, cytogenetics, flow cytometry, and molecular techniques for analysis of the genes implicated in cell cycle control; mutations in BRAF, NRAS, C-KiT, RB, and TP53 genes; and amplification of MDM2, CDK4, and cyclin D1 have been studied. Cytogenetically, the tumor and the cell line showed a hypertriploid karyotype with many clonal numeric and structural abnormalities. DNA flow cytometry showed an aneuploid peak with a DNA index value of 1.5. Mutations in TP53 and BRAF genes were demonstrated in both tumor and cell line. Furthermore, stem cell marker CD133 expression was detected in most cells, together with other stem cell markers, suggesting the presence of cells with tumor-initiating potential in this cell line. PMID:22529031

  1. Prognostic value of cancer stem cell marker CD133 expression in esophageal carcinoma: A meta-analysis

    PubMed Central

    SUI, YUN-PENG; JIAN, XUE-PING; MA, LI; XU, GUI-ZHEN; LIAO, HUAI-WEI; LIU, YAN-PING; WEN, HUI-CAI

    2016-01-01

    CD133 has been identified as a putative neoplastic stem cell marker in esophageal carcinoma. However, the prognostic value of CD133 overexpression in patients with esophageal carcinoma remains controversial. A meta-analysis of previous studies was performed, in order to assess the association of CD133 overexpression with the clinicopathological characteristics of esophageal carcinoma patients. A total of 7 studies, including 538 patients, were subjected to the final analysis. Our results indicated that a positive CD133 expression was significantly associated with lymph node metastasis [odds ratio (OR)=3.09, 95% confidence interval (CI): 1.93–4.95; P<0.00001], clinical stage (OR=4.26, 95% CI: 1.55–11.73; P=0.005) and histopathological grade (OR=2.40, 95% CI: 1.16–4.94; P=0.02). There was no statistically significant association of CD133 with depth of invasion (OR=1.89, 95% CI: 0.42–8.43; P=0.41). Based on the results of this study, we concluded that CD133 is an efficient prognostic factor in esophageal carcinoma. Higher CD133 expression is significantly associated with lymph node metastasis, clinical stage and histopathological grade. PMID:26870362

  2. Prominin-1/CD133 expression as potential tissue-resident vascular endothelial progenitor cells in the pulmonary circulation.

    PubMed

    Sekine, Ayumi; Nishiwaki, Tetsu; Nishimura, Rintaro; Kawasaki, Takeshi; Urushibara, Takashi; Suda, Rika; Suzuki, Toshio; Takayanagi, Shin; Terada, Jiro; Sakao, Seiichiro; Tada, Yuji; Iwama, Atsushi; Tatsumi, Koichiro

    2016-06-01

    Pulmonary vascular endothelial cells could contribute to maintain homeostasis in adult lung vasculature. "Tissue-resident" endothelial progenitor cells (EPCs) play pivotal roles in postnatal vasculogenesis, vascular repair, and tissue regeneration; however, their local pulmonary counterparts remain to be defined. To determine whether prominin-1/CD133 expression can be a marker of tissue-resident vascular EPCs in the pulmonary circulation, we examined the origin and characteristics of prominin-1/CD133-positive (Prom1(+)) PVECs considering cell cycle status, viability, histological distribution, and association with pulmonary vascular remodeling. Prom1(+) PVECs exhibited high steady-state transit through the cell cycle compared with Prom1(-) PVECs and exhibited homeostatic cell division as assessed using the label dilution method and mice expressing green fluorescent protein. In addition, Prom1(+) PVECs showed more marked expression of putative EPC markers and drug resistance genes as well as highly increased activation of aldehyde dehydrogenase compared with Prom1(-) PVECs. Bone marrow reconstitution demonstrated that tissue-resident cells were the source of >98% of Prom1(+) PVECs. Immunofluorescence analyses revealed that Prom1(+) PVECs preferentially resided in the arterial vasculature, including the resistant vessels of the lung. The number of Prom1(+) PVECs was higher in developing postnatal lungs. Sorted Prom1(+) PVECs gave rise to colonies and formed fine vascular networks compared with Prom1(-) PVECs. Moreover, Prom1(+) PVECs increased in the monocrotaline and the Su-5416 + hypoxia experimental models of pulmonary vascular remodeling. Our findings indicated that Prom1(+) PVECs exhibited the phenotype of tissue-resident EPCs. The unique biological characteristics of Prom1(+) PVECs predominantly contribute to neovasculogenesis and maintenance of homeostasis in pulmonary vascular tissues. PMID:27059286

  3. CD133⁺ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment.

    PubMed

    El-Khattouti, Abdelouahid; Sheehan, Natale T; Monico, Jesus; Drummond, Heather A; Haikel, Youssef; Brodell, Robert T; Megahed, Mosaad; Hassan, Mohamed

    2015-02-01

    According to the cancer stem-like cell (CSC) hypothesis, neoplastic clones are maintained by a small fraction of cells with stem cell properties. Also, melanoma resistance to chemo- and radiotherapy is thought to be attributed to melanoma stem-like cells (MSCs). Caffeic acid phenethyl ester (CAPE) is a bioactive molecule, whose antitumor activity is approved in different tumor types. CAPE induced both apoptosis and E2F1 expression in CD133(-), but not in CD133(+) melanoma subpopulations. The resistance of CD133(+) melanoma subpopulation is attributed to the enhanced drug efflux mediated by ATP-binding cassette sub-family B member 5 (ABCB5), since the knockdown of ABCB5 was found to sensitize CD133(+) cells to CAPE. CAPE-induced apoptosis is mediated by E2F1 as evidenced by the abrogation of apoptosis induced in response to the knockdown of E2F1. The functional analysis of E2F1 in CD133(+) melanoma subpopulation demonstrated the ability of E2F1 gene transfer to trigger apoptosis of CD133(+) cells and to enhance the activation of apoptosis signal-regulating kinase (ASK1), c-Jun N-terminal kinase and p38, and the DNA-binding activities of the transcription factors AP-1 and p53. Also, the induction of E2F1 expression was found to enhance the expression of the pro-apoptotic proteins Bax, Noxa and Puma, and to suppress the anti-apoptotic protein Mcl-1. Using specific pharmacological inhibitors we could demonstrate that E2F1 overcomes the chemo-resistance of MSCs/CD133(+) cells by a mechanism mediated by both mitochondrial dysregulation and ER-stress-dependent pathways. In conclusion, our data addresses the mechanisms of CAPE/E2F1-induced apoptosis of chemo-resistant CD133(+) melanoma subpopulation. PMID:25449786

  4. The Stem Cell Marker CD133 Associates with Enhanced Colony Formation and Cell Motility in Colorectal Cancer

    PubMed Central

    Elsaba, Tarek M. A.; Martinez-Pomares, Luisa; Robins, Adrian R.; Crook, Simon; Seth, Rashmi; Jackson, Darryl; McCart, Amy; Silver, Andrew R.; Tomlinson, Ian P. M.; Ilyas, Mohammad

    2010-01-01

    CD133 is a membrane molecule that has been, controversially, reported as a CSC marker in colorectal cancer (CRC). In this study, we sought to clarify the expression and role of CD133 in CRC. Initially the size of the CD133expressing (CD133+) population in eight well-described CRC cell lines was measured by flow cytometry and was found to range from 0% to >95%. The cell line HT29 has a CD133+ population of >95% and was chosen for functional evaluation of CD133 after gene knockdown by RNA interference. A time course assay showed that CD133 inhibition had no significant effect on cell proliferation or apoptosis. However, CD133 knockdown did result in greater susceptibility to staurosporine-induced apoptosis (p = 0.01) and reduction in cell motility (p<0.04). Since gene knockdown may cause “off-target” effects, the cell line SW480 (which has a CD133+ population of 40%) was sorted into pure CD133+ and CD133− populations to allow functional comparison of isogenic populations separated only by CD133 expression. In concordance with the knockdown experiments, a time course assay showed no significant proliferative differences between the CD133+/CD133− populations. Also greater resistance to staurosporine-induced apoptosis (p = 0.008), greater cell motility (p = 0.03) and greater colony forming efficiency was seen in the CD133+ population than the CD133− population in both 2D and 3D culture (p<0.0001 and p<0.003 respectively). Finally, the plasticity of CD133 expression in tumour cells was tested. Quantitative PCR analysis showed there was transcriptional repression in the CD133− population of SW480. Prolonged culture of a pure CD133− population resulted in re-emergence of CD133+ cells. We conclude that CD133 expression in CRCs is associated with some features attributable to stemness and that there is plasticity of CD133 expression. Further studies are necessary to delineate the mechanistic basis of these features. PMID:20502714

  5. Lovastatin Decreases the Expression of CD133 and Influences the Differentiation Potential of Human Embryonic Stem Cells

    PubMed Central

    Kallas-Kivi, Ade

    2016-01-01

    The lipophilic statin lovastatin decreases cholesterol synthesis and is a safe and effective treatment for the prevention of cardiovascular diseases. Growing evidence points at antitumor potential of lovastatin. Therefore, understanding the molecular mechanism of lovastatin function in different cell types is critical to effective therapy design. In this study, we investigated the effects of lovastatin on the differentiation potential of human embryonic stem (hES) cells (H9 cell line). Multiparameter flow cytometric assay was used to detect changes in the expression of transcription factors characteristic of hES cells. We found that lovastatin treatment delayed NANOG downregulation during ectodermal and endodermal differentiation. Likewise, expression of ectodermal (SOX1 and OTX2) and endodermal (GATA4 and FOXA2) markers was higher in treated cells. Exposure of hES cells to lovastatin led to a minor decrease in the expression of SSEA-3 and a significant reduction in CD133 expression. Treated cells also formed fewer embryoid bodies than control cells. By analyzing hES with and without CD133, we discovered that CD133 expression is required for proper formation of embryoid bodies. In conclusion, lovastatin reduced the heterogeneity of hES cells and impaired their differentiation potential. PMID:27247576

  6. The critical role of CD133+CD44+/high tumor cells in hematogenous metastasis of liver cancers

    PubMed Central

    Hou, Ying; Zou, Qifei; Ge, Ruiliang; Shen, Feng; Wang, Yizheng

    2012-01-01

    Metastatic hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. However, the cell population responsible for its metastasis remains largely unknown. Here, we reported that CD133+CD44+/high defined a subgroup of tumor cells that was responsible for hematogenous metastasis of liver cancers. Immunohistochemical investigation of human HCC specimens revealed that the number of CD133+ and CD44+ HCC cells was increased and was associated with portal vein invasion. Purified CD133+ or CD44high HCC cells were superior in clonogenic growth and vascular invasion, respectively. Thus, the combination of CD133 and CD44 was used to define a novel HCC sub-population. CD133+CD44high, but not CD133+CD44low/−, CD133−CD44high or CD133−CD44low/− xenografts, produced intrahepatic or lung metastasis in nude mice. Further analysis of human HCC samples by flow cytometry showed that the number of CD133+CD44+ tumor cells was associated with portal vein metastasis. The cDNA microarray analysis of CD133+CD44+ and CD133+CD44− tumor cells isolated from metastatic HCC patients revealed that these cells comprised of two different populations possessing distinct gene expression profiles. Our results suggest that CD133+CD44+ tumor cells are a particular population responsible for hematogenous metastasis in liver cancers and that these cells might be targets for treatment of HCC metastasis. PMID:21862973

  7. CD45+/CD133+ positive cells expanded from umbilical cord blood expressing PDX-1 and markers of pluripotency.

    PubMed

    Pessina, Augusto; Bonomi, Arianna; Sisto, Francesca; Baglio, Carolina; Cavicchini, Loredana; Ciusani, Emilio; Coccé, Valentina; Gribaldo, Laura

    2010-08-01

    UCB (human umbilical cord blood) contains cells able to differentiate into non-haematopoietic cell lineages. It also contains cells similar to primitive ESCs (embryonic stem cells) that can differentiate into pancreatic-like cells. However, few data have been reported regarding the possibility of expanding these cells or the differential gene expression occurring in vitro. In this study, we expanded formerly frozen UCB cells by treatment with SCF (stem cell factor) and GM-CSF (granulocyte-macrophage colony stimulating factor) in the presence of VPA (valproic acid). Gene expression profiles for beta cell differentiation and pluripotency (embryo stem cell phenotype) were analysed by RT-PCR and immunocytochemistry. The results show a dramatic expansion (>150-fold) of haematopoietic progenitors (CD45+/CD133+) which also expressed embryo markers of pluripotency (nanog, kfl-4, sox-2, oct-3/4 and c-myc), nestin, and pancreatic markers such as pax-4, ngn-3, pdx-1 and syt-1 (that is regulated by pdx-1 and provides the cells with a Ca++ regulation mechanism essential for insulin exocytosis). Our results show that UCB cells can be expanded to produce large numbers of cells of haematopoietic lineage that naturally (without the need of retroviral vectors or transposons) express a gene pattern compatible with endocrine pancreatic precursors and markers of pluripotency. Further investigations are necessary to clarify, first, whether in this context, the embryogenes expressed are functional or not, and secondly, since these cells are safer than cells transfected with retroviral vectors or transposons, whether they would represent a potential tool for clinical application. PMID:20397976

  8. Role of CD44high/CD133high HCT-116 cells in the tumorigenesis of colon cancer

    PubMed Central

    Wang, Xiaoxiao; Liu, Shen-Lin

    2016-01-01

    This study aimed to explore cell surface biomarkers related to cancer stem cells (CSCs) and their role in the tumorigenesis of colon cancer. Various colon cancer cell lines were screened for CD133 and CD44 expression. CD44high/CD133high and CD44low/CD133low cells were separately isolated by Fluorescence-Activated Cell Sorting (FACS). The cell proliferation, colony formation, cell cycle characteristics, and tumorigenic properties in CD44high/CD133high and CD44low/CD133low cells were investigated through in vitro experiments and in vivo tumor xenograft models. The expression profiles of stem cell-related genes were examined by RT-PCR. With HCT-116 cells, flow cytometry analysis revealed that CD44high/CD133high cells had higher proliferation potency than CD44low/CD133low cells. Compared to CD44low/CD133low cells, CD44high/CD133high cells had more stem cell-related genes, and displayed increased tumorigenic ability. In summary, CD44high/CD133high cells isolated from HCT-116 cells harbor CSC properties that may be related to the tumor growth of colon cancer. These results suggest that CD44 and CD133 could be strong markers of colorectal cancer stem cells. PMID:26840024

  9. Role of CD44high/CD133high HCT-116 cells in the tumorigenesis of colon cancer.

    PubMed

    Zhou, Jin-Yong; Chen, Min; Ma, Long; Wang, Xiaoxiao; Chen, Yu-Gen; Liu, Shen-Lin

    2016-02-16

    This study aimed to explore cell surface biomarkers related to cancer stem cells (CSCs) and their role in the tumorigenesis of colon cancer. Various colon cancer cell lines were screened for CD133 and CD44 expression. CD44high/CD133high and CD44low/CD133low cells were separately isolated by Fluorescence-Activated Cell Sorting (FACS). The cell proliferation, colony formation, cell cycle characteristics, and tumorigenic properties in CD44high/CD133high and CD44low/CD133low cells were investigated through in vitro experiments and in vivo tumor xenograft models. The expression profiles of stem cell-related genes were examined by RT-PCR. With HCT-116 cells, flow cytometry analysis revealed that CD44high/CD133high cells had higher proliferation potency than CD44low/CD133low cells. Compared to CD44low/CD133low cells, CD44high/CD133high cells had more stem cell-related genes, and displayed increased tumorigenic ability. In summary, CD44high/CD133high cells isolated from HCT-116 cells harbor CSC properties that may be related to the tumor growth of colon cancer. These results suggest that CD44 and CD133 could be strong markers of colorectal cancer stem cells. PMID:26840024

  10. Tumorigenic lung tumorospheres exhibit stem-like features with significantly increased expression of CD133 and ABCG2.

    PubMed

    Zhao, Wensi; Luo, Yi; Li, Boyi; Zhang, Tao

    2016-09-01

    Accumulating evidence supports the existence of cancer stem cells (CSCs) in human tumors, and the successful certification of CSCs may lead to the identification of therapeutic targets, which are more effective for the treatment of cancer. The use of spherical cancer models has increased in popularity in cancer stem cell investigations. Tumorospheres, which are used as a model of CSCs and are established in serum‑free medium supplemented with growth factors under non‑adherent conditions, are one of the most commonly used cancer spherical models and are a valuable method for enriching the CSC fraction. To investigate whether this model is applicable in lung cancer (LC), the identification of lung CSCs and their capacities is essential. In the present study, lung CSCs were enriched by sphere-forming culturing and their stem‑like properties were assessed. The results indicated that the lung tumorospheres had enhanced proliferation, clonality, invasion and cisplatin‑resistance, and showed significantly increased expression levels of CD133 and breast cancer resistance protein (ABCG2). These results, together with findings previously reported in literature, indicated that the sphere‑forming culturing of LC cells induced the enrichment of CSCs and that the tumorospheres exhibited stem cell characteristics. In addition, the higher expression levels of CD133 and ABCG2 in the tumorospheres may provide a rationale for therapeutic targets for LC. PMID:27432082

  11. Tumorigenic lung tumorospheres exhibit stem-like features with significantly increased expression of CD133 and ABCG2

    PubMed Central

    Zhao, Wensi; Luo, Yi; Li, Boyi; Zhang, Tao

    2016-01-01

    Accumulating evidence supports the existence of cancer stem cells (CSCs) in human tumors, and the successful certification of CSCs may lead to the identification of therapeutic targets, which are more effective for the treatment of cancer. The use of spherical cancer models has increased in popularity in cancer stem cell investigations. Tumorospheres, which are used as a model of CSCs and are established in serum-free medium supplemented with growth factors under non-adherent conditions, are one of the most commonly used cancer spherical models and are a valuable method for enriching the CSC fraction. To investigate whether this model is applicable in lung cancer (LC), the identification of lung CSCs and their capacities is essential. In the present study, lung CSCs were enriched by sphere-forming culturing and their stem-like properties were assessed. The results indicated that the lung tumorospheres had enhanced proliferation, clonality, invasion and cisplatin-resistance, and showed significantly increased expression levels of CD133 and breast cancer resistance protein (ABCG2). These results, together with findings previously reported in literature, indicated that the sphere-forming culturing of LC cells induced the enrichment of CSCs and that the tumorospheres exhibited stem cell characteristics. In addition, the higher expression levels of CD133 and ABCG2 in the tumorospheres may provide a rationale for therapeutic targets for LC. PMID:27432082

  12. CXCL3 contributes to CD133+ CSCs maintenance and forms a positive feedback regulation loop with CD133 in HCC via Erk1/2 phosphorylation

    PubMed Central

    Zhang, Lin; Zhang, Lixing; Li, Hong; Ge, Chao; Zhao, Fangyu; Tian, Hua; Chen, Taoyang; Jiang, Guoping; Xie, Haiyang; Cui, Ying; Yao, Ming; Li, Jinjun

    2016-01-01

    Although the chemotactic cytokine CXCL3 is thought to play an important role in tumor initiation and invasion, little is known about its function in hepatocellular carcinoma (HCC). In our previous study, we found that Ikaros inhibited CD133 expression via the MAPK pathway in HCC. Here, we showed that Ikaros may indirectly down-regulate CXCL3 expression in HCC cells, which leads to better outcomes in patients with CD133+ cancer stem cell (CSC) populations. CD133 overexpression induced CXCL3 expression, and silencing of CD133 down-regulated CXCL3 in HCC cells. Knockdown of CXCL3 inhibited CD133+ HCC CSCs’ self-renewal and tumorigenesis. The serum CXCL3 level was higher in HCC patients’ samples than that in healthy individual. HCC patients with higher CXCL3 expression displayed a poor prognosis, and a high level of CXCL3 was significantly associated with vascular invasion and tumor capsule formation. Exogenous CXCL3 induced Erk1/2 and ETS1 phosphorylation and promoted CD133 expression, indicating a positive feedback loop between CXCL3 and CD133 gene expression in HCC cells via Erk1/2 activation. Together, our findings indicated that CXCL3 might be a potent therapeutic target for HCC. PMID:27255419

  13. CD133 expression correlates with membrane beta-catenin and e-cadherin loss from human hair follicle placodes during morphogenesis

    PubMed Central

    Gay, Denise; Yang, Chao-Chun; Plikus, Maksim; Ito, Mayumi; Rivera, Charlotte; Treffeisen, Elsa; Doherty, Laura; Spata, Michelle; Millar, Sarah E.; Cotsarelis, George

    2014-01-01

    Genetic studies suggest that the major events of human hair follicle development are similar to those in mice, but detailed analyses of this process are lacking. In mice, hair follicle placode ‘budding’ is initiated by invagination of Wnt-induced epithelium into the underlying mesenchyme. Modification of adherens junctions is clearly required for budding. Snail-mediated downregulation of adherens junction component E-cadherin is important for placode budding in mice. Beta-catenin, another adherens junction component, has been more difficult to study due to its essential functions in Wnt signaling, a prerequisite for hair follicle placode induction. Here, we show that a subset of human invaginating hair placode cells expresses the stem cell marker CD133 during early morphogenesis. CD133 associates with membrane beta-catenin in early placodes and its continued expression correlates with loss of beta-catenin and E-cadherin from the cell membrane at a time when E-cadherin transcriptional repressors Snail and Slug are not implicated. Stabilization of CD133 via anti-CD133 antibody treatment of human fetal scalp explants depresses beta-catenin and E-cadherin membrane localization. We discuss this unique correlation and suggest a hypothetical model whereby CD133 promotes morphogenesis in early hair follicle placodes through the localized removal of membrane beta-catenin proteins and subsequent adherens junction dissolution. PMID:25010141

  14. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression

    PubMed Central

    Prados, Jose; Caba, Octavio; Cabeza, Laura; Berdasco, Maria; Gónzalez, Beatriz; Melguizo, Consolación

    2015-01-01

    Background The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated. Methods Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2’-deoxycytidine was used to demethylate the MGMT promoter and O(6)-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed. Results Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229) and high (SF268 and SK-N-SH) basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines. Conclusions These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma

  15. Effect of hepatitis B virus infection on trophoblast cell line (HTR-8/SVneo) and choriocarcinoma cell line (JEG3) is linked to CD133-2 (AC141) expression.

    PubMed

    Cui, Hong; Chen, Jing; Na, Quan

    2016-01-01

    Mother-to-infant transmission of hepatitis B virus (HBV) plays an important role in the chronic carrier state in China. In our studies, the response of trophoblast cell and choriocarcinoma cell to HBV infection regarding the expression of CD133-2 (AC141) was evaluated. Western blot and RT-PCR showed that a high level of CD133-2 protein and mRNA in HTR-8/SVneo cells, but a low level in JEG-3 cells. Lower proliferation and mobility, and higher apoptosis were observed in HTR-8/SVneo cells and JEG-3-CD133-2(+) cells after HBV infection than those in HTR-8-CD133-2(-) cells and JEG-3 cells. Our main finding is that CD133-negative cells (HTR-8-CD133-2(-) and JEG-3) are prone to HBV infection. In the last, our data indicated that the activation of Smad signaling pathway and the induction of epithelial-mesenchymal transition (EMT) in CD133-negative cells after HBV infection. In summary, our study demonstrated that CD133 is a key factor that mediated HBV infection to trophoblast cell and choriocarcinoma cell. PMID:27508045

  16. Effect of hepatitis B virus infection on trophoblast cell line (HTR-8/SVneo) and choriocarcinoma cell line (JEG3) is linked to CD133-2 (AC141) expression

    PubMed Central

    Cui, Hong; Chen, Jing; Na, Quan

    2016-01-01

    Mother-to-infant transmission of hepatitis B virus (HBV) plays an important role in the chronic carrier state in China. In our studies, the response of trophoblast cell and choriocarcinoma cell to HBV infection regarding the expression of CD133-2 (AC141) was evaluated. Western blot and RT-PCR showed that a high level of CD133-2 protein and mRNA in HTR-8/SVneo cells, but a low level in JEG-3 cells. Lower proliferation and mobility, and higher apoptosis were observed in HTR-8/SVneo cells and JEG-3-CD133-2+ cells after HBV infection than those in HTR-8-CD133-2- cells and JEG-3 cells. Our main finding is that CD133-negative cells (HTR-8-CD133-2- and JEG-3) are prone to HBV infection. In the last, our data indicated that the activation of Smad signaling pathway and the induction of epithelial-mesenchymal transition (EMT) in CD133-negative cells after HBV infection. In summary, our study demonstrated that CD133 is a key factor that mediated HBV infection to trophoblast cell and choriocarcinoma cell. PMID:27508045

  17. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line

    PubMed Central

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Objective Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. Materials and Methods In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133+, CD133- and spheroid cells. Significant differences of the two experimental groups were compared using student’s t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Results Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133+ cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Conclusion Although CD133+ derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells. PMID:27054115

  18. Resveratrol-Induced Apoptosis and Increased Radiosensitivity in CD133-Positive Cells Derived From Atypical Teratoid/Rhabdoid Tumor

    SciTech Connect

    Kao, C.-L.; Huang, P.-I; Tsai, P.-H.; Tsai, M.-L.; Lo, J.-F.; Lee, Y.-Y.; Chen, Y.-J.; Chen, Y.-W.; Chiou, S.-H.

    2009-05-01

    Purpose: CD133 has recently been proposed as a marker for cancer stem-like cells (CSC) in brain tumors. The aim of the present study was to investigate the possible role of resveratrol (RV) in radiosensitivity of CD133-positive/-negative cells derived from atypical teratoid/rhabdoid tumors (AT/RT-CD133{sup +/-}). Materials and Methods: AT/RT-CD133{sup +/-} were isolated and characterized by flow cytometry and quantitative real-time reverse transcription-polymerase chain reaction, and then treated with RV at different doses. Migratory ability, colony formation, apoptotic activity, and xenotransplantation were assessed for RV alone, ionizing radiation (IR) alone, and IR with RV conditions. Results: AT/RT-CD133{sup +} displayed enhanced self-renewal and highly coexpressed 'stem cell' genes and drug-resistant genes, in addition to showing significant resistance to chemotherapeutic agents and radiotherapy as compared with CD133{sup -} cells. After treatment with 200 {mu}M RV, the in vitro proliferation rates and in vivo tumor restoration abilities of ATRT-CD133{sup +} were dramatically inhibited. Importantly, treatment with 150 {mu}M RV can effectively inhibit the expression of drug-resistant genes in AT/RT-CD133{sup +}, and further facilitate to the differentiation of CD133{sup +} into CD133{sup -}. In addition, treatment with 150 {mu}M RV could significantly enhance the radiosensitivity and IR-mediated apoptosis in RV-treated ATRT-CD133{sup +/-}. Kaplan-Meier survival analysis indicated that the mean survival rate of mice with ATRT-CD133{sup +} that were treated with IR could be significantly improved when IR was combined with 150 {mu}M RV treatment. Conclusions: AT/RT-CD133{sup +} exhibit CSC properties and are refractory to IR treatment. Our results suggest that RV treatment plays crucial roles in antiproliferative, proapoptotic, and radiosensitizing effects on treated-CD133{sup +/-}; RV may therefore improve the clinical treatment of AT/RT.

  19. CD133 and CD44 are universally overexpressed in GIST and do not represent cancer stem cell markers

    PubMed Central

    Chen, Junwei; Guo, Tianhua; Zhang, Lei; Qin, Li-Xuan; Singer, Samuel; Maki, Robert G.; Taguchi, Takahiro; DeMatteo, Ronald; Besmer, Peter; Antonescu, Cristina R

    2012-01-01

    Although imatinib mesylate has been a major breakthrough in the treatment of advanced GIST, complete responses are rare and most patients eventually develop resistance to the drug. Thus the possibility of an imatinib-insensitive cell subpopulation within GIST tumors, harboring stem cell characteristics, may be responsible for the clinical failures. However, the existence of a cancer stem cell component in GIST has not been yet established. The present study was aimed to determine whether expression of commonly used stem cell markers in other malignancies, i.e. CD133 and CD44, might identify cells with characteristics of cancer stem/progenitor cells in human GIST. CD133 and CD44 expression in GIST explants was analyzed by flow cytometry, immunofluorescence, and gene expression. Their transcription levels were correlated with clinical and molecular factors in a large, well-annotated cohort of GIST patients. FACS sorted GIST cells based on CD133 and CD44 expression were isolated and used to assess phenotypic characteristics, ability to maintain their surface expression, sensitivity to imatinib, and expression signature. The enrichment in CD133/CD44 cells in the side population (SP) assay was also investigated. CD133 expression was consistently found in GIST. CD133− cells formed more colonies, were more invasive in a matrigel assay, and showed enrichment in the SP cells, compared to CD133+ cells. CD133 expression was also detected in the two imatinib-sensitive GIST cell lines, while was absent in the imatinib-resistant lines. Our results show that CD133 and CD44 are universally expressed in GIST, and may represent a lineage rather than a cancer stem cell marker. PMID:22076958

  20. Bmi-1 is essential for the oncogenic potential in CD133(+) human laryngeal cancer cells.

    PubMed

    Wei, Xudong; He, Jian; Wang, Jingyu; Yang, Xiaolong; Ma, Bingjuan

    2015-11-01

    It has been hypothesized that cancer stem cells (CSCs) are a principal culprit of tumor initiation, invasion, metastasis, and treatment resistance. Previous studies have confirmed that cancer stem cells can be detected in laryngeal carcinoma. This study aimed to evaluate whether population of CD133(+) cells that existed in primary human laryngeal carcinoma have characteristic of CSCs with enhanced capacity of proliferation and invasion, and to understand whether and how Bmi-1 implicated in self-renewal and tumorigenesis. We clarified the tumorigenic potential of CD133 sorted populations of cancer cells derived from primary human laryngeal tumor sample. After fluorescence activated cell sorting, real-time polymerase chain reaction (PCR) and western blot confirmed Bmi-1 was differentially expressed in CD133 sorted laryngeal tumor cells. Bmi-1 was knocked down, and proliferation, colony formation, invasion, cell cycle assay, and apoptosis assays were performed, and the impact on Bmi-1 pathway was evaluated. It was found that CD133(+) cells existed in primary human laryngeal tumor with enhanced capacity of proliferation and invasion. Bmi-1, implicated in self-renewal and tumorigenesis, was coexpressed with the CD133. Furthermore, knockdown of Bmi-1 expression in CD133(+) cells led to inhibition of cell growth, colony formation, cell invasion in vitro, and tumorigenesis in vivo, through up-regulation of p16(INK4A) and p14(ARF). Our data indicate that Bmi-1 expression is central to the tumorigenicity of CD133(+) cells, which functions as a pleiotropic regulator that maintains the viability and proliferative capacity of human laryngeal tumor. It negatively regulates the transcription of the downstream INK4a/ARF gene and inhibits expression of P16(ink4a)/P14(ARF), so as to maintain the high ability of proliferation and differentiation in laryngeal cancer stem cells. PMID:26081615

  1. Light/Dark Environmental Cycle Imposes a Daily Profile in the Expression of microRNAs in Rat CD133(+) Cells.

    PubMed

    Marçola, Marina; Lopes-Ramos, Camila M; Pereira, Eliana P; Cecon, Erika; Fernandes, Pedro A; Tamura, Eduardo K; Camargo, Anamaria A; Parmigiani, Raphael B; Markus, Regina P

    2016-09-01

    The phenotype of primary cells in culture varies according to the donor environmental condition. We recently showed that the time of the day imposes a molecular program linked to the inflammatory response that is heritable in culture. Here we investigated whether microRNAs (miRNAs) would show differential expression according to the time when cells were obtained, namely daytime or nighttime. Cells obtained from explants of cremaster muscle and cultivated until confluence (∼20 days) presented high CD133 expression. Global miRNA expression analysis was performed through deep sequencing in order to compare both cultured cells. A total of 504 mature miRNAs were identified, with a specific miRNA signature being associated to the light versus dark phase of a circadian cycle. miR-1249 and miR-129-2-3p were highly expressed in daytime cells, while miR-182, miR-96-5p, miR-146a-3p, miR-146a-5p, and miR-223-3p were highly expressed in nighttime cells. Nighttime cells are regulated for programs involved in cell processes and development, as well as in the inflammation, cell differentiation and maturation; while daytime cells express miRNAs that control stemness and cytoskeleton remodeling. In summary, the time of the day imposes a differential profile regarding to miRNA signature on CD133(+) cells in culture. Understanding this daily profile in the phenotype of cultured cells is highly relevant for clinical outputs, including cellular therapy approaches. J. Cell. Physiol. 231: 1953-1963, 2016. © 2016 Wiley Periodicals, Inc. PMID:26728119

  2. Endothelial progenitor cells, defined by the simultaneous surface expression of VEGFR2 and CD133, are not detectable in healthy peripheral and cord blood.

    PubMed

    Lanuti, Paola; Rotta, Gianluca; Almici, Camillo; Avvisati, Giuseppe; Budillon, Alfredo; Doretto, Paolo; Malara, Natalia; Marini, Mirella; Neva, Arabella; Simeone, Pasquale; Di Gennaro, Elena; Leone, Alessandra; Falda, Alessandra; Tozzoli, Renato; Gregorj, Chiara; Di Cerbo, Melania; Trunzo, Valentina; Mollace, Vincenzo; Marchisio, Marco; Miscia, Sebastiano

    2016-03-01

    Circulating endothelial cells (CEC) and their progenitors (EPC) are restricted subpopulations of peripheral blood (PB), cord blood (CB), and bone marrow (BM) cells, involved in the endothelial homeostasis maintenance. Both CEC and EPC are thought to represent potential biomarkers in several clinical conditions involving endothelial turnover/remodeling. Although different flow cytometry methods for CEC and EPC characterization have been published so far, none of them have reached consistent conclusions, therefore consensus guidelines with respect to CEC and EPC identification and quantification need to be established. Here, we have carried out an in depth investigation of CEC and EPC phenotypes in healthy PB, CB and BM samples, by optimizing a reliable polychromatic flow cytometry (PFC) panel. Results showed that the brightness of CD34 expression on healthy PB and CB circulating cells represents a key benchmark for the identification of CEC (CD45neg/CD34bright/CD146pos) respect to the hematopoietic stem cell (HSC) compartment (CD45dim/CD34pos/CD146neg). This approach, combined with a dual-platform counting technique, allowed a sharp CEC enumeration in healthy PB (n = 38), and resulting in consistent CEC counts with previously reported data (median = 11.7 cells/ml). In parallel, by using rigorous PFC conditions, CD34pos/CD45dim/CD133pos/VEGFR2pos EPC were not found in any healthy PB or CB sample, since VEGFR2 expression was never detectable on the surface of CD34pos/CD45dim/CD133pos cells. Notably, the putative EPC phenotype was observed in all analyzed BM samples (n = 12), and the expression of CD146 and VEGFR2, on BM cells, was not restricted to the CD34bright compartment, but also appeared on the HSC surface. Altogether, our findings suggest that the previously reported EPC antigen profile, defined by the simultaneous expression of VEGFR2 and CD133 on the surface of CD45dim/CD34pos cells, should be carefully re-evaluated and further studies should be conducted to

  3. Differential distribution of erbB receptors in human glioblastoma multiforme: expression of erbB3 in CD133-positive putative cancer stem cells

    PubMed Central

    Duhem-Tonnelle, Véronique; Bièche, Ivan; Vacher, Sophie; Loyens, Anne; Maurage, Claude-Alain; Collier, Francis; Baroncini, Marc; Blond, Serge; Prevot, Vincent; Sharif, Ariane

    2010-01-01

    Glioblastomas are the most common CNS tumors in adults, and they remain resistant to current treatments. ErbB1 signaling is frequently altered in these tumors, which indicates that the erbB receptor family is a promising target for molecular therapy. However, data on erbB signaling in glioblastomas are still sparse. Therefore, we undertook a comprehensive analysis of erbB receptor and ligand expression profiles in a panel of nine glioblastomas that were compared to non-neoplastic cerebral tissue containing neocortex and corresponding portions of subcortical convolutional white matter and we determined the distribution patterns of erbB receptors among the main neural cell types that are present in these tumors, particularly the putative tumoral stem cell population. Using quantitative RT-PCR and western blot analysis, we showed that erbB1 signaling and erbB2 receptors exhibited highly variable deregulation profiles among tumors, ranging from under- to overexpression, while erbB3 and erbB4 were down-regulated. Immunohistochemistry revealed an important inter- and intra-tumoral heterogeneity in all four erbB expression profiles. However, each receptor exhibited a distinct repartition pattern among the GFAP-, Olig2-, NeuN- and CD133-positive populations. Interestingly, while erbB1 immunoreactivity was only detected in small subsets of CD133-positive putative tumoral stem cells, erbB3 immunoreactivity was prominent in this cell population thus suggesting that erbB3 may represent a new potential target for molecular therapy. PMID:20467331

  4. Identification of a distinct population of CD133+CXCR4+ cancer stem cells in ovarian cancer

    PubMed Central

    Cioffi, Michele; D’Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-01-01

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4+CD133+ within ovarian cancer cell lines. The sorted population CD133+CXCR4+ demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133+CXCR4+ sorted OVCAR-5 cells. Most strikingly CXCR4+CD133+ sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133−CXCR4−, CD133+CXCR4−, CD133−CXCR4+ cells. CXCR4+CD133+ OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target. PMID:26020117

  5. Intragenic G-quadruplex structure formed in the human CD133 and its biological and translational relevance

    PubMed Central

    Zizza, Pasquale; Cingolani, Chiara; Artuso, Simona; Salvati, Erica; Rizzo, Angela; D'Angelo, Carmen; Porru, Manuela; Pagano, Bruno; Amato, Jussara; Randazzo, Antonio; Novellino, Ettore; Stoppacciaro, Antonella; Gilson, Eric; Stassi, Giorgio; Leonetti, Carlo; Biroccio, Annamaria

    2016-01-01

    Cancer stem cells (CSCs) have been identified in several solid malignancies and are now emerging as a plausible target for drug discovery. Beside the questionable existence of CSCs specific markers, the expression of CD133 was reported to be responsible for conferring CSC aggressiveness. Here, we identified two G-rich sequences localized within the introns 3 and 7 of the CD133 gene able to form G-quadruplex (G4) structures, bound and stabilized by small molecules. We further showed that treatment of patient-derived colon CSCs with G4-interacting agents triggers alternative splicing that dramatically impairs the expression of CD133. Interestingly, this is strongly associated with a loss of CSC properties, including self-renewing, motility, tumor initiation and metastases dissemination. Notably, the effects of G4 stabilization on some of these CSC properties are uncoupled from DNA damage response and are fully recapitulated by the selective interference of the CD133 expression. In conclusion, we provided the first proof of the existence of G4 structures within the CD133 gene that can be pharmacologically targeted to impair CSC aggressiveness. This discloses a class of potential antitumoral agents capable of targeting the CSC subpopulation within the tumoral bulk. PMID:26511095

  6. CD133+ and Nestin+ Glioma Stem-Like Cells Reside Around CD31+ Arterioles in Niches that Express SDF-1α, CXCR4, Osteopontin and Cathepsin K.

    PubMed

    Hira, Vashendriya V V; Ploegmakers, Kimberley J; Grevers, Frederieke; Verbovšek, Urška; Silvestre-Roig, Carlos; Aronica, Eleonora; Tigchelaar, Wikky; Turnšek, Tamara Lah; Molenaar, Remco J; Van Noorden, Cornelis J F

    2015-07-01

    Poor survival of high-grade glioma is at least partly caused by glioma stem-like cells (GSLCs) that are resistant to therapy. GSLCs reside in niches in close vicinity of endothelium. The aim of the present study was to characterize proteins that may be functional in the GSLC niche by performing immunohistochemistry on serial cryostat sections of human high-grade glioma samples. We have found nine niches in five out of five high-grade glioma samples that were all surrounding arterioles with CD31+ endothelial cells and containing cellular structures that were CD133+ and nestin+. All nine niches expressed stromal-derived factor-1α (SDF-1α), its receptor C-X-C chemokine receptor type 4 (CXCR4), osteopontin and cathepsin K. SDF-1α plays a role in homing of CXCR4+ stem cells and leukocytes, whereas osteopontin and cathepsin K promote migration of cancer cells and leukocytes. Leukocyte-related markers, such as CD68, macrophage matrix metalloprotease-9, CD177 and neutrophil elastase were often but not always detected in the niches. We suggest that SDF-1α is involved in homing of CXCR4+ GSLCs and leukocytes and that cathepsin K and osteopontin are involved in the migration of GSLCs out of the niches. PMID:25809793

  7. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer

    PubMed Central

    Lee, Soo Ok; Yang, Xiaodong; Duan, Shanzhou; Tsai, Ying; Strojny, Laura R.; Keng, Peter; Chen, Yuhchyau

    2016-01-01

    We examined IL-6 effects on growth, epithelial-mesenchymal transition (EMT) process, and metastatic ability of CD133+ and CD133– cell subpopulations isolated from three non-small cell lung cancer (NSCLC) cell lines: A549, H157, and H1299. We developed IL-6 knocked-down and scramble (sc) control cells of A549 and H157 cell lines by lentiviral infection system, isolated CD133+ and CD133– sub-populations, and investigated the IL-6 role in self-renewal/growth of these cells. IL-6 showed either an inhibitory or lack of effect in modulating growth of CD133– cells depending on intracellular IL-6 levels, but there was higher self-renewal ability of IL-6 expressing CD133+ cells than IL-6 knocked down cells, confirming the promoter role of IL-6 in CD133+ cells growth. We then examined tumor growth of xenografts developed from CD133+ cells of A549IL-6si vs. A549sc cell lines. Consistently, there was retarded growth of tumors developed from A549IL-6si, CD133+ cells compared to tumors originating from A549sc, CD133+ cells. The effect of IL-6 in promoting CD133+ self-renewal was due to hedgehog (Hhg) and Erk signaling pathway activation and higher Bcl-2/Bcl-xL expression. We also investigated whether IL-6 regulates the EMT process of CD133− and CD133+ cells differently. Expression of the EMT/metastasis-associated molecules in IL-6 expressing cells was higher than in IL-6 knocked down cells. Together, we demonstrated dual roles of IL-6 in regulating growth of CD133– and CD133+ subpopulations of lung cancer cells and significant regulation of IL-6 on EMT/metastasis increase in CD133+ cells, not in CD133– cells. PMID:26675547

  8. CD133+ cells in pulmonary arterial hypertension.

    PubMed

    Foris, Vasile; Kovacs, Gabor; Marsh, Leigh M; Bálint, Zoltán; Tötsch, Martin; Avian, Alexander; Douschan, Philipp; Ghanim, Bahil; Klepetko, Walter; Olschewski, Andrea; Olschewski, Horst

    2016-08-01

    Circulating mononuclear cells may play an important role for the vascular remodelling in pulmonary arterial hypertension (PAH), but studies addressing multiple progenitor populations are rare and inconsistent.We used a comprehensive fluorescence-activated cell sorting analysis of circulating mononuclear cells in 20 PAH patients and 20 age- and sex-matched controls, and additionally analysed CD133(+) cells in the lung tissue of five PAH transplant recipients and five healthy controls (donor lungs).PAH patients were characterised by increased numbers of circulating CD133(+) cells and lymphopenia as compared with control. In PAH, CD133(+) subpopulations positive for CD117 or CD45 were significantly increased, whereas CD133(+)CD309(+), CD133(+)CXCR2(+) and CD133(+)CD31(+) cells were decreased. In CD133(+) cells, SOX2, Nanog, Ki67 and CXCR4 were not detected, but Oct3/4 mRNA was present in both PAH and controls. In the lung tissue, CD133(+) cells included three main populations: type 2 pneumocytes, monocytes and undifferentiated cells without significant differences between PAH and controls.In conclusion, circulating CD133(+) progenitor cells are elevated in PAH and consist of phenotypically different subpopulations that may be up- or downregulated. This may explain the inconsistent results in the literature. CD133(+) type 2 pneumocytes in the lung tissue are not associated with circulating CD133(+) mononuclear cells. PMID:27103380

  9. Characterization of CD133{sup +} hepatocellular carcinoma cells as cancer stem/progenitor cells

    SciTech Connect

    Suetsugu, Atsushi; Nagaki, Masahito . E-mail: mnagaki@cc.gifu-u.ac.jp; Aoki, Hitomi; Motohashi, Tsutomu; Kunisada, Takahiro; Moriwaki, Hisataka

    2006-12-29

    The CD133 antigen, identified as a hematopoietic stem cell marker, appears in various human embryonic epithelia including the neural tube, gut, and kidney. We herein investigated whether CD133{sup +} cells isolated from human hepatocellular carcinoma cell lines possess cancer stem/progenitor cell-like properties. Among the three cell lines studied, the CD133 antigen was found to be expressed only on the surface of Huh-7 cells. CD133{sup +} cells from Huh-7 performed a higher in vitro proliferative potential and lower mRNA expressions of mature hepatocyte markers, glutamine synthetase and cytochrome P450 3A4, than CD133{sup -} population of Huh-7 cells. When either CD133{sup +} or CD133{sup -} cells were subcutaneously injected into SCID mice, CD133{sup +} cells formed tumors, whereas CD133{sup -} cells induced either a very small number of tumors or none at all. Taken together, the identification of CD133{sup +} cells could thus be a potentially powerful tool to investigate the tumorigenic process in the hepatoma system and to also develop effective therapies targeted against hepatocellular carcinoma.

  10. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma.

    PubMed

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  11. CD133: to be or not to be, is this the real question?

    PubMed Central

    Irollo, Elena; Pirozzi, Giuseppe

    2013-01-01

    CD133 (prominin-1) is a member of the transmembrane glycoprotein family and was initially described as a specific marker to select human hematopoietic progenitor cells. Later it was recognised as an important marker to identify and isolate the specific cell subpopulation termed “cancer stem cells” (CSCs). Many studies showed that CD133+ cells have stemness properties such as self-renewal, differentiation ability, high proliferation and they are also able to form tumors in xenografts. Moreover it has been demonstrated that CD133+ cells are more resistant to radiation and standard chemotherapy than CD133- cells. Despite this other investigations demonstrated that also CD133- cells can show the same characteristics as those positive for CD133+. Hence, some inconsistencies among published data on CD133 function can be ascribed to different causes questioning the main role as specific marker of cancer stem cells. In fact, many authors indicate that CD133 is expressed both in differentiated and undifferentiated cells, and CD133- cancer cells can also initiate tumors. Indeed, it is still a matter of debate whether CD133+ cells truly represent the ultimate tumorigenic population. However, the belief that CD133 may act as a universal marker of CSCs has been met with a high degree of controversy in the research community. In this review there is an attempt to highlight: i) the role and function of CD133, with an overview of the current stage of knowledge regarding this molecule, ii) the difficulty often encountered in its identification iii) the utility of CD133 expression as a prognostic marker. PMID:24093054

  12. STAT3 is a key transcriptional regulator of cancer stem cell marker CD133 in HCC

    PubMed Central

    Ghoshal, Sarani; Fuchs, Bryan C.

    2016-01-01

    Cancer stem cell (CSC) marker CD133 was found to be upregulated in many cancers including hepatocellular carcinoma (HCC). However, the molecular mechanism of CD133 regulation in the liver tumor microenvironment has remained elusive. In this study Won and colleagues report that interleukin-6 (IL-6) mediated signal transducer and activator of transcription factor 3 (STAT3) signaling and hypoxia enhance the expression of CD133 and promote the progression of HCC. PMID:27275460

  13. Molecular analysis of CD133-positive circulating tumor cells from patients with metastatic castration-resistant prostate cancer

    PubMed Central

    Reyes, Edwin E; Gillard, Marc; Duggan, Ryan; Wroblewski, Kristen; Kregel, Steven; Isikbay, Masis; Kach, Jacob; Brechka, Hannah; Weele, David J Vander; Szmulewitz, Russell Z; Griend, Donald J Vander

    2015-01-01

    The function and clinical utility of stem cell markers in metastatic castration-resistant prostate cancer (mCRPC) remains unresolved, and their expression may confer important therapeutic opportunities for staging and therapy. In the adult human prostate, CD133 (PROM1) expression identifies infrequent prostate epithelial progenitor cells and putative cancer stem cells. Previous work demonstrated an association with CD133 and cancer cell proliferation using in vitro model systems. The primary objective here was to investigate the expression of CD133 in circulating tumor cells (CTCs) from patients with mCRPC and to test the hypothesis that patients with mCRPC had CD133-positive CTCs associated with increased cell proliferation, changes in the androgen receptor (AR) protein expression, or AR nuclear co-localization. We utilized ImageStreamX technology, which combines flow cytometry and fluorescence microscopy, to capture and analyze CD45-negative/EpCAM-positive CTCs for CD133, Ki-67, and AR. All patient samples (20/20) contained CD133-positive populations of CTCs, and on average 50.9 ± 28.2% (range of 18.2% to 100%) of CTCs were CD133-positive. CD133-positive CTCs have increased Ki-67 protein expression compared to CD133-negative CTCs, implying that CD133-positive CTCs may have greater proliferative potential when compared to their CD133-negative counterparts. CD133-positive and CD133-negative CTCs have similar levels of AR protein expression and cellular co-localization with nuclear markers, implying that CD133 expression is independent of AR pathway activity and an AR-independent marker of mCRPC proliferation. These studies demonstrate the presence of CD133-positive populations in CTCs from mCRPC with increased proliferative potential. PMID:26753099

  14. CD133 promotes gallbladder carcinoma cell migration through activating Akt phosphorylation

    PubMed Central

    Zhen, Jiaojiao; Ai, Zhilong

    2016-01-01

    Gallbladder carcinoma (GBC) is the fifth most common malignancy of gastrointestinal tract. The prognosis of gallbladder carcinoma is extremely terrible partially due to metastasis. However, the mechanisms underlying gallbladder carcinoma metastasis remain largely unknown. CD133 is a widely used cancer stem cell marker including in gallbladder carcinoma. Here, we found that CD133 was highly expressed in gallbladder carcinoma as compared to normal tissues. CD133 was located in the invasive areas in gallbladder carcinoma. Down-regulation expression of CD133 inhibited migration and invasion of gallbladder carcinoma cell without obviously reducing cell proliferation. Mechanism analysis revealed that down-regulation expression of CD133 inhibited Akt phosphorylation and increased PTEN protein level. The inhibitory effect of CD133 down-regulation on gallbladder carcinoma cell migration could be rescued by Akt activation. Consistent with this, addition of Akt inhibitor Wortmannin markedly inhibited the migration ability of CD133-overexpressing cells. Thus, down-regulation of CD133 inhibits migration of gallbladder carcinoma cells through reducing Akt phosphorylation. These findings explore the fundamental biological aspect of CD133 in gallbladder carcinoma progression, providing insights into gallbladder carcinoma cell migration. PMID:26910892

  15. Targeting Colorectal Cancer Stem-Like Cells with Anti-CD133 Antibody-Conjugated SN-38 Nanoparticles.

    PubMed

    Ning, Sin-Tzu; Lee, Shin-Yu; Wei, Ming-Feng; Peng, Cheng-Liang; Lin, Susan Yun-Fan; Tsai, Ming-Hsien; Lee, Pei-Chi; Shih, Ying-Hsia; Lin, Chun-Yen; Luo, Tsai-Yueh; Shieh, Ming-Jium

    2016-07-20

    Cancer stem-like cells play a key role in tumor development, and these cells are relevant to the failure of conventional chemotherapy. To achieve favorable therapy for colorectal cancer, PEG-PCL-based nanoparticles, which possess good biological compatibility, were fabricated as nanocarriers for the topoisomerase inhibitor, SN-38. For cancer stem cell therapy, CD133 (prominin-1) is a theoretical cancer stem-like cell (CSLC) marker for colorectal cancer and is a proposed therapeutic target. Cells with CD133 overexpression have demonstrated enhanced tumor-initiating ability and tumor relapse probability. To resolve the problem of chemotherapy failure, SN-38-loaded nanoparticles were conjugated with anti-CD133 antibody to target CD133-positive (CD133(+)) cells. In this study, anti-CD133 antibody-conjugated SN-38-loaded nanoparticles (CD133Ab-NPs-SN-38) efficiently bound to HCT116 cells, which overexpress CD133 glycoprotein. The cytotoxic effect of CD133Ab-NPs-SN-38 was greater than that of nontargeted nanoparticles (NPs-SN-38) in HCT116 cells. Furthermore, CD133Ab-NPs-SN-38 could target CD133(+) cells and inhibit colony formation compared with NPs-SN-38. In vivo studies in an HCT116 xenograft model revealed that CD133Ab-NPs-SN-38 suppressed tumor growth and retarded recurrence. A reduction in CD133 expression in HCT116 cells treated with CD133Ab-NPs-SN-38 was also observed in immunohistochemistry results. Therefore, this CD133-targeting nanoparticle delivery system could eliminate CD133-positive cells and is a potential cancer stem cell targeted therapy. PMID:27348241

  16. CD133, Selectively Targeting the Root of Cancer

    PubMed Central

    Schmohl, Jörg U.; Vallera, Daniel A.

    2016-01-01

    Cancer stem cells (CSC) are capable of promoting tumor initiation and self-renewal, two important hallmarks of carcinoma formation. This population comprises a small percentage of the tumor mass and is highly resistant to chemotherapy, causing the most difficult problem in the field of cancer research, drug refractory relapse. Many CSC markers have been reported. One of the most promising and perhaps least ubiquitous is CD133, a membrane-bound pentaspan glycoprotein that is frequently expressed on CSC. There is evidence that directly targeting CD133 with biological drugs might be the most effective way to eliminate CSC. We have investigated two entirely unrelated, but highly effective approaches for selectively targeting CD133. The first involves using a special anti-CD133 single chain variable fragment (scFv) to deliver a catalytic toxin. The second utilizes this same scFv to deliver components of the immune system. In this review, we discuss the development and current status of these CD133 associated biological agents. Together, they show exceptional promise by specific and efficient CSC elimination. PMID:27240402

  17. Clinicopathological significance of CD133 in lung cancer: A meta-analysis.

    PubMed

    Tan, Yaoxi; Chen, Bo; Xu, Wei; Zhao, Weihong; Wu, Jianqing

    2014-01-01

    CD133 is one of the most commonly used markers of lung cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. However, the clinical value and significance of CD133 in lung cancer remains controversial. Due to the limited size of the individual studies, the association between CD133 and the clinicopathological characteristics of lung cancer had not been fully elucidated. A meta-analysis based on published studies was performed with the aim of evaluating the effect of CD133 on the clinicopathological characteristics of lung cancer and to investigate the role of CSCs in the prognosis of lung cancer. A total of 15 eligible studies were included in this meta-analysis and our results indicated that a positive CD133 expression was significantly associated with poor differentiation and lymph node metastasis, although it was not associated with tumor stage or histological type. Therefore, CD133 may be considered as a prognostic maker of lung cancer. Further clinical studies, with larger patient samples, unified methods and cut-off levels to detect CD133 expression, classified by tumor stage, therapeutic schedule, follow-up time and survival events, are required to determine the role of CD133 in clinical application and the association between CD133 and the prognosis of lung cancer. PMID:24649317

  18. CD133-positive cells might be responsible for efficient proliferation of human meningioma cells.

    PubMed

    Tang, Hailiang; Gong, Ye; Mao, Ying; Xie, Qing; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Wang, Xuanchun; Chen, Hong; Chen, Xiancheng; Zhou, Liangfu

    2012-01-01

    Owing to lack of appropriate model systems, investigations of meningioma biology have come to a stop. In this study, we developed a comprehensive digestion method and defined a culture system. Using this method and system, primary meningioma cells in conditioned suspension medium and a hypoxic environment could be amplified in spheres and were passaged for more than ten generations. Meningioma sphere cells were positive for meningioma cell markers and negative for markers of neural cell types. Importantly, we found the cells expressed the stem cell marker, CD133, but not nestin. All of the tumor sphere cell populations showed a slower degree of cell proliferation than that of human glioma cells and fetal neural stem cells (NSCs). Further studies showed that the proliferative rate was positively correlated with CD133 expression. The higher the CD133 expression, the faster the cell proliferation. With the increase in cell generations, the cell proliferation rate gradually slowed down, and CD133 expression also decreased. Single CD133(+) cells rather than CD133(-) cells could form spheres. Thus, the results above indicated that those cells expressing CD133 in spheres might be stem-like cells, which may be responsible for efficient amplification of human meningioma cells. Decreased expression of CD133 may lead to the failure of long-term passaging. PMID:22754374

  19. Bilateral Administration of Autologous CD133+ Cells in Ambulatory Patients with Refractory Critical Limb Ischemia: Lessons Learned from a Pilot Randomized, Double blind, Placebo-controlled Trial

    PubMed Central

    Raval, Amish N.; Schmuck, Eric; Tefera, Girma; Leitzke, Cathlyn; Ark, Cassondra Vander; Hei, Derek; Centanni, John M.; de Silva, Ranil; Koch, Jill; Chappell, Richard; Hematti, Peiman

    2014-01-01

    Introduction CD133+ cells confer angiogenic potential and may be beneficial for the treatment of critical limb ischemia (CLI). However, patient selection, blinding methods and endpoints for clinical trials is challenging. We hypothesized that bilateral intramuscular administration of cytokine mobilized CD133+ cells in ambulatory patients with refractory CLI would be feasible and safe. Methods In this double-blind, randomized, sham-controlled trial, subjects received subcutaneous injections of granulocyte colony stimulating factor (10 mcg/kg/d) for 5 days, followed by leukapheresis, and intramuscular administration of 50-400 million sorted CD133+ cells delivered into both legs. Control subjects received normal saline injections, sham leukapheresis and intramuscular injection of placebo buffered solution. Subjects were followed for 1 year. An aliquot of CD133+ cells was collected from each subject to test for genes associated with cell senescence. Results 70 subjects were screened, of whom 10 were eligible. Subject enrollment was suspended due to a high rate of mobilization failure in subjects randomized to treatment. Of 10 subjects enrolled (7 randomized to treatment, 3 randomized to control), there were no differences in serious adverse events at 12 months and blinding was preserved. There were non-significant trends toward improved amputation free survival, 6 minute walk distance, walking impairment questionnaire and quality of life in subjects randomized to treatment. Successful CD133+ mobilizers expressed fewer senescence associated genes compared to poor mobilizers. Conclusion Bilateral administration of autologous CD133+ cell in ambulatory CLI subjects was safe and blinding was preserved. However, poor mobilization efficiency combined with high CD133+ senescence suggests futility in this approach. PMID:25239491

  20. Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53.

    PubMed

    Park, E K; Lee, J C; Park, J W; Bang, S Y; Yi, S A; Kim, B K; Park, J H; Kwon, S H; You, J S; Nam, S W; Cho, E J; Han, J W

    2015-01-01

    Novel therapeutic strategies are needed to overcome cancer recurrence, metastasis, and resistance to chemo- and radiotherapy. Cancer stem cells (CSCs) are major contributors to the malignant transformation of cells due to their capacity for self-renewal. Although various CSC markers have been identified in several types of tumors, they are primarily used as cancer-prediction markers and for the isolation of CSC populations. CD133, one of the best-characterized CSC markers in distinct solid tumor types, was shown to be correlated with CSC tumor-initiating capacity; however, the regulation of CD133 expression and its function in cancer are poorly understood. Here, we show that CD133 expression is negatively regulated by direct binding of the p53 tumor suppressor protein to a noncanonical p53-binding sequence in the CD133 promoter. Binding of p53 recruits Histone Deacetylase 1 (HDAC1) to the CD133 promoter and subsequently suppresses CD133 expression by reducing histone H3 acetylation. Furthermore, CD133 depletion suppresses tumor cell proliferation, colony formation, and the expression of core stemness transcription factors including NANOG, octamer-binding transcription factor 4 (OCT4), SOX2, and c-MYC. Critically, the anti-proliferative effects of p53 are antagonized by rescue of CD133 expression in a p53 overexpressing cell line, indicating that the tumor suppressive activity of p53 might be mediated by CD133 suppression. Taken together, our results suggest that p53-mediated transcriptional regulation of CD133 is a key underlying mechanism for controlling the growth and tumor-initiating capacity of CSCs and provide a novel perspective on targeting CSCs for cancer therapy. PMID:26539911

  1. Activation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth.

    PubMed

    Zhou, Linli; Xu, Mingang; Yang, Yongguang; Yang, Kun; Wickett, Randall R; Andl, Thomas; Millar, Sarah E; Zhang, Yuhang

    2016-01-01

    The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murine hair cycle (anagen), but is absent at anagen onset. However, how CD133+ DP cells interact with keratinocytes to induce hair regenerative growth remains unclear. Wnt/β-catenin has long been recognized as a major signaling pathway required for hair follicle morphogenesis, development, and regeneration. Nuclear Wnt/β-catenin activity is observed in the DP during the hair growth phase. Here we show that induced expression of a stabilized form of β-catenin in CD133+ DP cells significantly accelerates spontaneous and depilation-induced hair growth. However, hair follicle regression is not affected in these mutants. Further analysis indicates that CD133+ DP-expressed β-catenin increases proliferation and differentiation of epithelial matrix keratinocytes. Upregulated Wnt/β-catenin activity in CD133+ DP cells also increases the number of proliferating DP cells in each anagen follicle. Our data demonstrate that β-catenin signaling potentiates the capability of CD133+ DP cells to promote postnatal hair growth. PMID:27472062

  2. Activation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth

    PubMed Central

    Zhou, Linli; Xu, Mingang; Yang, Yongguang; Yang, Kun; Wickett, Randall R.; Andl, Thomas; Millar, Sarah E.

    2016-01-01

    The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murine hair cycle (anagen), but is absent at anagen onset. However, how CD133+ DP cells interact with keratinocytes to induce hair regenerative growth remains unclear. Wnt/β-catenin has long been recognized as a major signaling pathway required for hair follicle morphogenesis, development, and regeneration. Nuclear Wnt/β-catenin activity is observed in the DP during the hair growth phase. Here we show that induced expression of a stabilized form of β-catenin in CD133+ DP cells significantly accelerates spontaneous and depilation-induced hair growth. However, hair follicle regression is not affected in these mutants. Further analysis indicates that CD133+ DP-expressed β-catenin increases proliferation and differentiation of epithelial matrix keratinocytes. Upregulated Wnt/β-catenin activity in CD133+ DP cells also increases the number of proliferating DP cells in each anagen follicle. Our data demonstrate that β-catenin signaling potentiates the capability of CD133+ DP cells to promote postnatal hair growth. PMID:27472062

  3. Identification and Characterization of CD133pos Subpopulation Cells From a Human Laryngeal Cancer Cell Line

    PubMed Central

    Qiu, Hai-ou; Wang, Huifang; Che, Na; Li, Dong; Mao, Yong; Zeng, Qiao; Ge, Rongming

    2016-01-01

    Background Recent research indicates that CD133 are expressed in several kinds of stem cells, among which, its high expression in laryngeal carcinoma has caused wide concern. To further explore efficaciously targeting drugs to laryngeal carcinoma stem cells (CSCs), we transplanted a solid tumor from CSCs into abdominal subcutaneous tissue of nude mice, and then compared the biological characteristics of laryngeal solid tumors with or without cisplatin intervention. Material/Methods In this study, the expression of CD133 was detected in the Hep-2 cell line by flow cytometry. By applying magnetic cell sorting (MACS) technology, we reported the results of purifying CD133-positive cells from a Hep-2 cell line. Cell proliferation, colony formation, and tumor-forming ability were examined in vitro and in vivo to identify the marker of CSCs in Hep-2 cell line. Results Upon flow cytometry analysis, CD133 was expressed constantly on 40.12±1.32% in Hep-2 cell line. Cell proliferation and colony formation ability were higher in CD133-positive cells compared to CD133-negative cells, and the in vivo tumorigenesis experiment showed the same results as in vitro assay. The 2 subpopulations cells were both sensitive to DDP, among which, the effect of DPP on proliferation ability and tumor-forming ability of CD133-positive cells was obviously greater than that of CD133-negative cells. Conclusions Above all, our study revealed that CD133-positive cells have properties of higher proliferation, colony formation, and tumorigenesis in Hep-2 cell line, indicating that CD133 could be a marker to characterize laryngeal cancer stem cells. PMID:27049928

  4. 3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma.

    PubMed

    Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang

    2016-03-01

    The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively. PMID:26453119

  5. Culturing in serum-free culture medium on collagen type-I-coated plate increases expression of CD133 and retains original phenotype of HT-29 cancer stem cell

    PubMed Central

    Arab-Bafrani, Zahra; Shahbazi-Gahrouei, Daryoush; Abbasian, Mehdi; Saberi, Alihossein; Fesharaki, Mehrafarin; Hejazi, Seyed Hossein; Manshaee, Samira

    2016-01-01

    Background: A sub-population of tumor cells termed cancer stem cells (CSCs) has an important role in tumor initiation, progression, and recurrence. Selecting a suitable procedure for isolation and enrichment of CSCs is the biggest challenge in the study of CSCs. In the present study, the role of the combination of stem cell culture medium and collagen type-I was evaluated for successful isolation and enrichment of HT-29 CSCs. Materials and Methods: HT-29 cells were cultured in serum-containing medium (parental culture medium: Medium + 10% fetal bovine serum) and serum-free medium (stem cell culture medium); both on collagen-coated plates. Spheres forming ability and CD133 expression, as a potential marker of colorectal CSCs, were evaluated in two culture mediums. Results: The results show spheroids usually give rise completely within 15 days in the stem cell culture medium on the collagen-coated plate. CD133 expression in spheroid cells (84%) is extensively higher than in parental cells (25%). Moreover, relative to parental cells, spheroid cells were more radioresistance. Conclusion: Finding of this study suggested that CSCs derived from colon cancer cell line (HT-29) can be propagated and form colonospheres in serum-free culture medium on collagen type-I. According to maintenance of their original phenotype in these conditions, it seems serum-free culture medium on collagen type-I is a suitable way to drug screening of HT-29 CSCs. PMID:27135028

  6. Activating β-catenin signaling in CD133-positive dermal papilla cells increases hair inductivity.

    PubMed

    Zhou, Linli; Yang, Kun; Xu, Mingang; Andl, Thomas; Millar, Sarah E; Boyce, Steven; Zhang, Yuhang

    2016-08-01

    Bioengineering hair follicles using cells isolated from human tissue remains a difficult task. Dermal papilla (DP) cells are known to guide the growth and cycling activities of hair follicles by interacting with keratinocytes. However, DP cells quickly lose their inductivity during in vitro passaging. Rodent DP cell cultures need external addition of growth factors, including WNT and BMP molecules, to maintain the hair inductive property. CD133 is expressed by a subpopulation of DP cells that are capable of inducing hair follicle formation in vivo. We report here that expression of a stabilized form of β-catenin promoted clonal growth of CD133-positive (CD133+) DP cells in in vitro three-dimensional hydrogel culture while maintaining expression of DP markers, including alkaline phosphatase (AP), CD133, and integrin α8. After a 2-week in vitro culture, cultured CD133+ DP cells with up-regulated β-catenin activity led to an accelerated in vivo hair growth in reconstituted skin compared to control cells. Further analysis showed that matrix cell proliferation and differentiation were significantly promoted in hair follicles when β-catenin signaling was up-regulated in CD133+ DP cells. Our data highlight an important role for β-catenin signaling in promoting the inductive capability of CD133+ DP cells for in vitro expansion and in vivo hair follicle regeneration, which could potentially be applied to cultured human DP cells. PMID:27312243

  7. The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells

    PubMed Central

    Bidlingmaier, Scott; Zhu, Xiaodong; Liu, Bin

    2008-01-01

    Human CD133 (human prominin-1), a five transmembrane domain glycoprotein, was originally identified as a cell surface antigen present on CD34+ hematopoietic stem cells. Although the biological function of CD133 is not well understood, antibodies to CD133 epitopes have been widely used to purify hematopoietic stem and progenitor cells. The cancer stem cell (CSC) hypothesis postulates that a rare population of tumor cells possessing increased capacities for self-renewal and tumor initiation is responsible for maintaining the growth of neoplastic tissue. The expression of the CD133 epitopes, AC133 and AC141, has been shown to define a subpopulation of brain tumor cells with significantly increased capacity for tumor initiation in xenograft models. Following the discovery of the AC133/AC141+ population of brain tumor stem cells, the AC133 and AC141 epitopes have been extensively used as markers for purifying CSCs in other solid tumors. There are, however, several issues associated with the use of the AC133 and AC141 CD133 epitopes as markers for CSCs. The antibodies routinely used for purification of AC133 and AC141-positive cells target poorly characterized glycosylated epitopes of uncertain specificity. Discordant expression of the AC133 and AC141 epitopes has been observed, and the epitopes can be absent despite the presence of CD133 protein. In addition, CD133 expression has recently been shown to be modulated by oxygen levels. These factors, in combination with the uncertain biological role of CD133, suggest that the use of CD133 expression as a marker for CSCs should be critically evaluated in each new experimental system and highlight the need for additional CSC surface markers that are directly involved in maintaining CSC properties. PMID:18535813

  8. The frequency of multipotent CD133(+)CD45RA(-)CD34(+) hematopoietic stem cells is not increased in fetal liver compared with adult stem cell sources.

    PubMed

    Radtke, Stefan; Haworth, Kevin G; Kiem, Hans-Peter

    2016-06-01

    The cell surface marker CD133 has been used to describe a revised model of adult human hematopoiesis, with hematopoietic stem cells and multipotent progenitors (HSCs/MPPs: CD133(+)CD45RA(-)CD34(+)) giving rise to lymphomyeloid-primed progenitors (LMPPs: CD133(+)CD45RA(+)CD34(+)) and erythromyeloid progenitors (EMPs: CD133(low)CD45RA(-)CD34(+)). Because adult and fetal hematopoietic stem and progenitor cells (HSPCs) differ in their gene expression profile, differentiation capabilities, and cell surface marker expression, we were interested in whether the reported segregation of lineage potentials in adult human hematopoiesis would also apply to human fetal liver. CD133 expression was easily detected in human fetal liver cells, and the defined hematopoietic subpopulations were similar to those found for adult HSPCs. Fetal HSPCs were enriched for EMPs and HSCs/MPPs, which were primed toward erythromyeloid differentiation. However, the frequency of multipotent CD133(+)CD45RA(-)CD34(+) HSPCs was much lower than previously reported and comparable to that of umbilical cord blood. We noted that engraftment in NSG (NOD scid gamma [NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ]) mice was driven mostly by LMPPs, confirming recent findings that repopulation in mice is not a unique feature of multipotent HSCs/MPPs. Thus, our data challenge the general assumption that human fetal liver contains a greater percentage of multipotent HSCs/MPPs than any adult HSC source, and the mouse model may have to be re-evaluated with respect to the type of readout it provides. PMID:27016273

  9. CD133 expression may be useful as a prognostic indicator in colorectal cancer, a tool for optimizing therapy and supportive evidence for the cancer stem cell hypothesis: a meta-analysis

    PubMed Central

    Zhang, Enlong; Jiang, Ning; Li, Jiang; Zhang, Qi; Zhang, Xuening; Niu, Yuanjie

    2016-01-01

    We performed a meta-analysis of CD133-related clinical data to investigate the role of cancer stem cells (CSCs) in the clinical outcomes of colorectal cancer (CRC) patients, analyzing the effectiveness of various therapeutic strategies and examining the validity of the CSC hypothesis. For 28 studies (4546 patients), the relative risk (RR) to survival outcomes associated with CD133+ CRCs were calculated using STATA 12.0 software. Pooled results showed that CD133High patients had poor 5-year overall survival (RR 0.713, 95% CI 0·616–0·826) and 5-year disease free survival (RR 0·707, 95% CI 0·602–0·831). Both associations were consistently observed across different races, research techniques and therapeutic strategies. In a subgroup receiving adjuvant therapy, CD133Low patients achieved significantly better survival than CD133High patients. The findings suggest that CD133 could serve as a predictive marker of poor prognosis and treatment failure in CRC. CD133Low patients could benefit from adjuvant treatments, while CD133High patients should be given novel treatments besides adjuvant therapy. Our results also provide evidence in support of the CSC hypothesis. PMID:26840260

  10. A Fraction of CD133+ CNE2 Cells Is Made of Giant Cancer Cells with Morphological Evidence of Asymmetric Mitosis

    PubMed Central

    Jiang, Qingping; Zhang, Qianbing; Wang, Shuang; Xie, Siming; Fang, Weiyi; Liu, Zhen; Liu, Jinsong; Yao, Kaitai

    2015-01-01

    CD133 has been suggested as a broad-spectrum marker for cancer stem cells(CSCs). The present study investigated the expression of CD133 in biopsy tissues of nasopharyngeal carcinoma (NPC), NPC cell lines and the immortalized cell line NP69 by immunohistochemistry, flow cytometry and qRT-PCR. CD133+ cancer cells were isolated using magnetic-activated cell sorting technology. The study demonstrated that CD133+ cells are rare in NPC tissues and cell lines and that their self-renewal and proliferation abilities are stronger than those of CD133- cells and suggested that CD133+ NPC cells have characteristics of cancer stem cells. We further observed CD133+ cancer cells using a light microscope and scanning electron microscope. Generally, CD133+ cells are small, regular and round with small microvilli. On the other hand, CD133- cells are more polymorphic and larger with long micromicrovilli. Additionally, in some fields, several giant cancer cells (GCCs) in the CD133+ cell group were identified under the light microscope. Most of them were polynuclear cells. Under the scanning electron microscope, we found indefinite regular small bodies on the surface of or surrounding the giant cancer cells, some of which appeared to be creeping out the parental cells. This phenomenon was not observed in the CD133- cell groups. Through comparison with descriptions of apoptotic bodies in the literature and from the results of the acridine orange test, we propose that some of the small bodies are daughter cells of the GCCs. This phenomenon is a mode of division of cancer cells called neosis, or budding, which is a form of reproduction for simple organisms. Budding is satisfied with the rapid speed of tumor development. GCCs could be isolated by CD133 beads because the daughter cells have stem-cell characteristics and express stem-cell markers. PMID:26535065

  11. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    SciTech Connect

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were

  12. CD133 antisense suppresses cancer cell growth and increases sensitivity to cisplatin in vitro

    PubMed Central

    BLANCAS-MOSQUEDA, MARISOL; ZAPATA-BENAVIDES, PABLO; ZAMORA-ÁVILA, DIANA; SAAVEDRA-ALONSO, SANTIAGO; MANILLA-MUÑOZ, EDGAR; FRANCO-MOLINA, MOISÉS; DE LA PEÑA, CARMEN MONDRAGÓN; RODRÍGUEZ-PADILLA, CRISTINA

    2012-01-01

    The increased incidence of cancer in recent years is associated with a high rate of mortality. Numerous types of cancer have a low percentage of CD133+ cells, which have similar features to stem cells. The CD133 molecule is involved in apoptosis and cell proliferation. The aim of this study was to determine the biological effect of CD133 suppression and its role in the chemosensitization of cancer cell lines. RT-PCR and immunocytochemical analyses indicated that CD133 was expressed in the cancer cell lines B16F10, MCF7 and INER51. Downregulation of CD133 by transfection with an antisense sequence (As-CD133) resulted in a decrease in cancer cell viability of up to 52, 47 and 22% in B16F10, MCF-7 and INER51 cancer cell lines, respectively. This decreased viability appeared to be due to the induction of apoptosis. In addition, treatment with As-CD133 in combination with cisplatin had a synergic effect in all of the cancer cell lines analyzed, and in particular, significantly decreased the viability of B16F10 cancer cells compared with each treatment separately (3.1% viability for the combined treatment compared with 48% for 0.4 μg As-CD133 and 25% for 5 ng/μl cisplatin; P<0.05). The results indicate that the downregulation of CD133 by antisense is a potential therapeutic target for cancer and has a synergistic effect when administered with minimal doses of the chemotherapeutic drug cisplatin, suggesting that this combination strategy may be applied in cancer treatment. PMID:23226746

  13. CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer

    PubMed Central

    Nomura, Alice; Banerjee, Sulagna; Chugh, Rohit; Dudeja, Vikas; Yamamoto, Masato; Vickers, Selwyn M.; Saluja, Ashok K.

    2015-01-01

    CD133 has been implicated as a cancer stem cell (CSC) surface marker in several malignancies including pancreatic cancer. However, the functional role of this surface glycoprotein in the cancer stem cell remains elusive. In this study, we determined that CD133 overexpression induced “stemness” properties in MIA-PaCa2 cells along with increased tumorigenicity, tumor progression, and metastasis in vivo. Additionally, CD133 expression induced epithelial-mesenchymal transition (EMT) and increased in vitro invasion. EMT induction and increased invasiveness were mediated by NF-κB activation, as inhibition of NF-κB mitigated these effects. This study showed that CD133 expression contributes to pancreatic cancer “stemness,” tumorigenicity, EMT induction, invasion, and metastasis. PMID:25829252

  14. Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression

    PubMed Central

    Skubitz, Amy P.N.; Taras, Elizabeth P.; Boylan, Kristin L.M.; Waldron, Nate N.; Oh, Seunguk; Panoskaltsis-Mortari, Angela; Vallera, Daniel A.

    2013-01-01

    Objectives While most women with ovarian cancer will achieve complete remission after treatment, the majority will relapse within two years, highlighting the need for novel therapies. Cancer stem cells (CSC) have been identified in ovarian cancer and most other carcinomas as a small population of cells that can self-renew. CSC are more chemoresistant and radio-resistant than the bulk tumor cells; it is likely that CSC are responsible for relapse, the major problem in cancer treatment. CD133 has emerged as one of the most promising markers for CSC in ovarian cancer. The hypothesis driving this study is that despite their low numbers in ovarian cancer tumors, CSC can be eradicated using CD133 targeted therapy and tumor growth can be inhibited. Methods Ovarian cancer cell lines were evaluated using flow cytometry for expression of CD133. In vitro viability studies with an anti-CD133 targeted toxin were performed on one of the cell lines, NIH:OVCAR5. The drug was tested in vivo using a stably transfected luciferase-expressing NIH:OVCAR5 subline in nude mice, so that tumor growth could be monitored by digital imaging in real time. Results Ovarian cancer cell lines showed 5.6% to 16.0% CD133 expression. dCD133KDEL inhibited the in vitro growth of NIH:OVCAR5 cells. Despite low numbers of CD133-expressing cells in the tumor population, intraperitoneal drug therapy caused a selective decrease in tumor progression in intraperitoneal NIH: OVCAR5-luc tumors. Conclusions Directly targeting CSC that are a major cause of drug resistant tumor relapse with an anti-CD133 targeted toxin shows promise for ovarian cancer therapy. PMID:23721800

  15. Fibronectin Extra Domain A (EDA) Sustains CD133+/CD44+ Subpopulation of Colorectal Cancer Cells

    PubMed Central

    Ou, Juanjuan; Deng, Jia; Wei, Xing; Xie, Ganfeng; Zhou, Rongbin; Yu, Liqing; Liang, Houjie

    2013-01-01

    Fibronectin is a major extracellular matrix glycoprotein with several alternatively spliced variants, including extra domain A (EDA), which was demonstrated to promote tumorigenesis via stimulating angiogenesis and lymphangiogenesis. Given that CD133+/CD44+ cancer cells are critical in tumorigenesis of colorectal cancer (CRC), we hypothesize that fibronectin EDA may promote tumorigenesis by sustaining the properties of CD133+/CD44+ colon cancer cells. We found that tumor tissue and serum EDA levels are substantially higher in advanced versus early stage human CRC. Additionally we showed that tumor tissue EDA levels are positively correlated with differentiation status and chemoresistance, and correlated with a poor prognosis of CRC patients. We also showed that in colon cancer cells SW480, CD133+/CD44+ versus CD133−/CD44− cells express significantly elevated EDA receptor integrin α9β1. Silencing EDA in SW480 cells reduces spheroid formation and cells positive for CD133 or CD44, which is associated with reduced expressions of embryonic stem cell markers and increased expressions of differentiation markers. Blocking integrin α9β1 function strongly reversed the effect of EDA overexpression. We also provided evidence suggesting that EDA sustains Wnt/β-catenin signaling activity via activating integrin/FAK/ERK pathway. In xenograft models, EDA-silenced SW480 cells exhibit reduced tumorigenic and metastatic capacity. In conclusions, EDA is essential for the maintenance of the properties of CD133+/CD44+ colon cancer cells. PMID:23811539

  16. Fibronectin extra domain A (EDA) sustains CD133(+)/CD44(+) subpopulation of colorectal cancer cells.

    PubMed

    Ou, Juanjuan; Deng, Jia; Wei, Xing; Xie, Ganfeng; Zhou, Rongbin; Yu, Liqing; Liang, Houjie

    2013-09-01

    Fibronectin is a major extracellular matrix glycoprotein with several alternatively spliced variants, including extra domain A (EDA), which was demonstrated to promote tumorigenesis via stimulating angiogenesis and lymphangiogenesis. Given that CD133(+)/CD44(+) cancer cells are critical in tumorigenesis of colorectal cancer (CRC), we hypothesize that fibronectin EDA may promote tumorigenesis by sustaining the properties of CD133(+)/CD44(+) colon cancer cells. We found that tumor tissue and serum EDA levels are substantially higher in advanced versus early stage human CRC. Additionally we showed that tumor tissue EDA levels are positively correlated with differentiation status and chemoresistance, and correlated with a poor prognosis of CRC patients. We also showed that in colon cancer cells SW480, CD133(+)/CD44(+) versus CD133(-)/CD44(-) cells express significantly elevated EDA receptor integrin α9β1. Silencing EDA in SW480 cells reduces spheroid formation and cells positive for CD133 or CD44, which is associated with reduced expressions of embryonic stem cell markers and increased expressions of differentiation markers. Blocking integrin α9β1 function strongly reversed the effect of EDA overexpression. We also provided evidence suggesting that EDA sustains Wnt/β-catenin signaling activity via activating integrin/FAK/ERK pathway. In xenograft models, EDA-silenced SW480 cells exhibit reduced tumorigenic and metastatic capacity. In conclusion, EDA is essential for the maintenance of the properties of CD133(+)/CD44(+) colon cancer cells. PMID:23811539

  17. The Interaction between Cancer Stem Cell Marker CD133 and Src Protein Promotes Focal Adhesion Kinase (FAK) Phosphorylation and Cell Migration.

    PubMed

    Liu, Chanjuan; Li, Yinan; Xing, Yang; Cao, Benjin; Yang, Fan; Yang, Tianxiao; Ai, Zhilong; Wei, Yuanyan; Jiang, Jianhai

    2016-07-22

    CD133, a widely known cancer stem cell marker, has been proved to promote tumor metastasis. However, the mechanism by which CD133 regulates metastasis remains largely unknown. Here, we report that CD133 knockdown inhibits cancer cell migration, and CD133 overexpression promotes cell migration. CD133 expression is beneficial to activate the Src-focal adhesion kinase (FAK) signaling pathway. Further studies show that CD133 could interact with Src, and the region between amino acids 845 and 857 in the CD133 C-terminal domain is indispensable for its interaction with Src. The interaction activates Src to phosphorylate its substrate FAK and to promote cell migration. Likewise, a Src binding-deficient CD133 mutant loses the abilities to increase Src and FAK phosphorylation and to promote cell migration. Inhibition of Src activity by PP2, a known Src activity inhibitor, could block the activation of FAK phosphorylation and cell migration induced by CD133. In summary, our data suggest that activation of FAK by the interaction between CD133 and Src promotes cell migration, providing clues to understand the migratory mechanism of CD133(+) tumor cells. PMID:27226554

  18. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin.

    PubMed

    Bhatia, S; Reister, S; Mahotka, C; Meisel, R; Borkhardt, A; Grinstein, E

    2015-11-01

    AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis. PMID:26183533

  19. Regulatory role of hexosamine biosynthetic pathway on hepatic cancer stem cell marker CD133 under low glucose conditions

    NASA Astrophysics Data System (ADS)

    Lin, Shu-Hai; Liu, Tengfei; Ming, Xiaoyan; Tang, Zhi; Fu, Li; Schmitt-Kopplin, Philippe; Kanawati, Basem; Guan, Xin-Yuan; Cai, Zongwei

    2016-02-01

    Cancer was hypothesized to be driven by cancer stem cells (CSCs), but the metabolic determinants of CSC-like phenotype still remain elusive. Here, we present that hexosamine biosynthetic pathway (HBP) at least in part rescues cancer cell fate with inactivation of glycolysis. Firstly, metabolomic analysis profiled cellular metabolome in CSCs of hepatocellular carcinoma using CD133 cell-surface marker. The metabolic signatures of CD133-positive subpopulation compared to CD133-negative cells highlighted HBP as one of the distinct metabolic pathways, prompting us to uncover the role of HBP in maintenance of CSC-like phenotype. To address this, CSC-like phenotypes and cell survival were investigated in cancer cells under low glucose conditions. As a result, HBP inhibitor azaserine reduced CD133-positive subpopulation and CD133 expression under high glucose condition. Furthermore, treatment of N-Acetylglucosamine in part restores CD133-positive subpopulation when either 2.5 mM glucose in culture media or glycolytic inhibitor 2-deoxy-D-glucose in HCC cell lines was applied, enhancing CD133 expression as well as promoting cancer cell survival. Together, HBP might be a key metabolic determinant in the functions of hepatic CSC marker CD133.

  20. Effect of MUC1/β-catenin interaction on the tumorigenic capacity of pancreatic CD133+ cells

    PubMed Central

    Sousa, Andreia Mota; Rei, Margarida; Freitas, Rita; Ricardo, Sara; Caffrey, Thomas; David, Leonor; Almeida, Raquel; Hollingsworth, Michael Anthony; Santos-Silva, Filipe

    2016-01-01

    Despite the fact that the biological function of cluster of differentiation (CD)133 remains unclear, this glycoprotein is currently used in the identification and isolation of tumor-initiating cells from certain malignant tumors, including pancreatic cancer. In the present study, the involvement of mucin 1 (MUC1) in the signaling pathways of a highly tumorigenic CD133+ cellular subpopulation sorted from the pancreatic cancer cell line HPAF-II was evaluated. The expression of MUC1-cytoplasmic domain (MUC1-CD) and oncogenic signaling transducers (epidermal growth factor receptor, protein kinase C delta, glycogen synthase kinase 3 beta and growth factor receptor-bound protein 2), as well as the association between MUC1 and β-catenin, were characterized in HPAF-II CD133+ and CD133low cell subpopulations and in tumor xenografts generated from these cells. Compared with HPAF CD133low cells, HPAF-II CD133+ cancer cells exhibited increased tumorigenic potential in immunocompromised mice, which was associated with overexpression of MUC1 and with the accordingly altered expression profile of MUC1-associated signaling partners. Additionally, MUC1-CD/β-catenin interactions were increased both in the HPAF-II CD133+ cell subpopulation and derived tumor xenografts compared with HPAF CD133low cells. These results suggest that, in comparison with HPAF CD133low cells, CD133+ cells exhibit higher expression of MUC1, which contributes to their tumorigenic phenotype through increased interaction between MUC1-CD and β-catenin, which in turn modulates oncogenic signaling cascades. PMID:27602113

  1. Human CD34(lo)CD133(lo) fetal liver cells support the expansion of human CD34(hi)CD133(hi) hematopoietic stem cells.

    PubMed

    Yong, Kylie Su Mei; Keng, Choong Tat; Tan, Shu Qi; Loh, Eva; Chang, Kenneth Te; Tan, Thiam Chye; Hong, Wanjin; Chen, Qingfeng

    2016-09-01

    We have recently discovered a unique CD34(lo)CD133(lo) cell population in the human fetal liver (FL) that gives rise to cells in the hepatic lineage. In this study, we further characterized the biological functions of FL CD34(lo)CD133(lo) cells. Our findings show that these CD34(lo)CD133(lo) cells express markers of both endodermal and mesodermal lineages and have the capability to differentiate into hepatocyte and mesenchymal lineage cells by ex vivo differentiation assays. Furthermore, we show that CD34(lo)CD133(lo) cells express growth factors that are important for human hematopoietic stem cell (HSC) expansion: stem cell factor (SCF), insulin-like growth factor 2 (IGF2), C-X-C motif chemokine 12 (CXCL12), and factors in the angiopoietin-like protein family. Co-culture of autologous FL HSCs and allogenic HSCs derived from cord blood with CD34(lo)CD133(lo) cells supports and expands both types of HSCs.These findings are not only essential for extending our understanding of the HSC niche during the development of embryonic and fetal hematopoiesis but will also potentially benefit adult stem cell transplantations in clinics because expanded HSCs demonstrate the same capacity as primary cells to reconstitute the human immune system and mediate long-term hematopoiesis in vivo. Together, CD34(lo)CD133(lo) cells not only serve as stem/progenitor cells for liver development but are also an essential component of the HSC niche in the human FL. PMID:27593483

  2. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells.

    PubMed

    Pfenninger, Cosima V; Roschupkina, Teona; Hertwig, Falk; Kottwitz, Denise; Englund, Elisabet; Bengzon, Johan; Jacobsen, Sten Eirik; Nuber, Ulrike A

    2007-06-15

    Human brain tumor stem cells have been enriched using antibodies against the surface protein CD133. An antibody recognizing CD133 also served to isolate normal neural stem cells from fetal human brain, suggesting a possible lineage relationship between normal neural and brain tumor stem cells. Whether CD133-positive brain tumor stem cells can be derived from CD133-positive neural stem or progenitor cells still requires direct experimental evidence, and an important step toward such investigations is the identification and characterization of normal CD133-presenting cells in neurogenic regions of the embryonic and adult brain. Here, we present evidence that CD133 is a marker for embryonic neural stem cells, an intermediate radial glial/ependymal cell type in the early postnatal stage, and for ependymal cells in the adult brain, but not for neurogenic astrocytes in the adult subventricular zone. Our findings suggest two principal possibilities for the origin of brain tumor stem cells: a derivation from CD133-expressing cells, which are normally not present in the adult brain (embryonic neural stem cells and an early postnatal intermediate radial glial/ependymal cell type), or from CD133-positive ependymal cells in the adult brain, which are, however, generally regarded as postmitotic. Alternatively, brain tumor stem cells could be derived from proliferative but CD133-negative neurogenic astrocytes in the adult brain. In the latter case, brain tumor development would involve the production of CD133. PMID:17575139

  3. DNA Damage in CD133-Positive Cells in Barrett's Esophagus and Esophageal Adenocarcinoma

    PubMed Central

    Thanan, Raynoo; Ma, Ning; Hiraku, Yusuke; Iijima, Katsunori; Koike, Tomoyuki; Shimosegawa, Tooru

    2016-01-01

    Barrett's esophagus (BE) caused by gastroesophageal reflux is a major risk factor of Barrett's esophageal adenocarcinoma (BEA), an inflammation-related cancer. Chronic inflammation and following tissue damage may activate progenitor cells under reactive oxygen/nitrogen species-rich environment. We previously reported the formation of oxidative/nitrative stress-mediated mutagenic DNA lesions, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-nitroguanine, in columnar epithelial cells of BE tissues and cancer cells of BEA tissues. We investigated the mechanisms of BEA development in relation to oxidative/nitrative DNA damage and stem cell hypothesis. We examined 8-nitroguanine and 8-oxodG formation and the expression of stem cell marker (CD133) in biopsy specimens of patients with BE and BEA by immunohistochemical analysis in comparison with those of normal subjects. CD133 was detected at apical surface of columnar epithelial cells of BE and BEA tissues, and the cytoplasm and cell membrane of cancer cells in BEA tissues. DNA lesions and CD133 were colocalized in columnar epithelial cells and cancer cells. Their relative staining intensities in these tissues were significantly higher than those in normal subjects. Our results suggest that BE columnar epithelial cells with CD133 expression in apical surface undergo inflammation-mediated DNA damage, and mutated cells acquire the property of cancer stem cells with cytoplasmic CD133 expression. PMID:27069317

  4. DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers

    SciTech Connect

    Kim, Ki Hyung; Kang, Yun-Jeong; Jo, Jin-Ok; Ock, Mee Sun; Moon, Soo Hyun; Suh, Dong Soo; Yoon, Man Soo; Park, Eun-Sil; Jeong, Namkung; Eo, Wan-Kyu; Kim, Heung Yeol; Cha, Hee-Jae

    2014-05-02

    Highlights: • Germ cell marker DDX4 was significantly increased in ovarian cancer. • Ovarian cancer stem cell marker CD133 was significantly increased in ovarian cancer. • DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. • CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4. • Germ cell marker DDX4 has the potential of ovarian cancer stem cell marker. - Abstract: DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondary structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint. We investigated the relationship between DDX4 and ovarian cancer stem cells by analyzing the expression patterns of DDX4 and the cancer stem cell marker CD133 in ovarian cancers via tissue microarray. Both DDX4 and CD133 were significantly increased in ovarian cancer compared to benign tumors, and showed similar patterns of expression. In addition, DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. Furthermore, almost all CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4, suggesting a strong possibility that DDX4 plays an important role in cancer stem cells, and/or can be used as an ovarian cancer stem cell marker.

  5. Inhibition of Sonic Hedgehog and Notch Pathways Enhances Sensitivity of CD133+ Glioma Stem Cells to Temozolomide Therapy

    PubMed Central

    Ulasov, Ilya V; Nandi, Suvobroto; Dey, Mahua; Sonabend, Adam M; Lesniak, Maciej S

    2011-01-01

    Malignant gliomas are currently treated with temozolomide (TMZ), but often exhibit resistance to this agent. CD133+ cancer stem cells, a population believed to contribute to the tumor’s chemoresistance, bear the activation of Notch and Sonic hedgehog (SHH) pathways. In this study, we examined whether inhibition of both pathways enhances the efficacy of TMZ monotherapy in the context of glioma stem cells. Transcriptional analysis of Notch and SHH pathways in CD133+-enriched glioma cell populations showed the activity of these pathways. CD133+ cells were less susceptible to TMZ treatment than the unsorted glioma counterparts. Interestingly, Notch and SHH pathway transcriptional activity in CD133+ glioma cells was further enhanced by TMZ exposure, which led to NOTCH 1, NCOR2, and GLI1 upregulation (6.64-, 3.73-, and 2.79-fold, respectively) and CFLAR downregulation (4.22-fold). The therapeutic effect of TMZ was enhanced by Notch and SHH pathway pharmacological antagonism with GSI-1 and cyclopamine. More importantly, simultaneous treatment involving TMZ with both of these compounds led to a significant increase in CD133+ glioma cytotoxicity than treatment with any of these agents alone (P < 0.05). In conclusion, CD133+ glioma cells overexpress genes involved in Notch and SHH pathways. These pathways contribute to the chemoresistant phenotype of CD133+ glioma cells, as their antagonism leads to an additive effect when used in combination with TMZ. PMID:20957337

  6. Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy.

    PubMed

    Ulasov, Ilya V; Nandi, Suvobroto; Dey, Mahua; Sonabend, Adam M; Lesniak, Maciej S

    2011-01-01

    Malignant gliomas are currently treated with temozolomide (TMZ), but often exhibit resistance to this agent. CD133(+) cancer stem cells, a population believed to contribute to the tumor's chemoresistance, bear the activation of Notch and Sonic hedgehog (SHH) pathways. In this study, we examined whether inhibition of both pathways enhances the efficacy of TMZ monotherapy in the context of glioma stem cells. Transcriptional analysis of Notch and SHH pathways in CD133(+)-enriched glioma cell populations showed the activity of these pathways. CD133(+) cells were less susceptible to TMZ treatment than the unsorted glioma counterparts. Interestingly, Notch and SHH pathway transcriptional activity in CD133(+) glioma cells was further enhanced by TMZ exposure, which led to NOTCH 1, NCOR2, and GLI1 upregulation (6.64-, 3.73-, and 2.79-fold, respectively) and CFLAR downregulation (4.22-fold). The therapeutic effect of TMZ was enhanced by Notch and SHH pathway pharmacological antagonism with GSI-1 and cyclopamine. More importantly, simultaneous treatment involving TMZ with both of these compounds led to a significant increase in CD133(+) glioma cytotoxicity than treatment with any of these agents alone (P < 0.05). In conclusion, CD133(+) glioma cells overexpress genes involved in Notch and SHH pathways. These pathways contribute to the chemoresistant phenotype of CD133(+) glioma cells, as their antagonism leads to an additive effect when used in combination with TMZ. PMID:20957337

  7. Role of CD133+ cells in tongue squamous carcinomas: Characteristics of ‘stemness’ in vivo and in vitro

    PubMed Central

    Wang, Kai; Zhou, Xiao-Kang; Wu, Min; Kang, Fei-Wu; Wang, Zuo-Lin; Zhu, Yan

    2016-01-01

    The objective of the present study was to determine the ‘stemness’ characteristics of CD133+ cells (harvested from the squamous cell tongue carcinoma Tca-8113 cell line) in vitro and to observe the tumourigenicity of the CD133+ cells in the bodies of NOD/SCID mice. Single cells from the Tca-8113 cell line were observed for multiplication capacity in vitro. The suspending and pelletizing phenomena of Tca-8113 cells in vitro were also observed, and the expression of CD133 in squamous cell carcinoma of the tongue was measured. The CD133+ cells from the Tca-8113 cell line were purified, and their multiplication capacity and differentiation potency were observed. The NOD/SCID mouse model was established, and the tumourigenicity of the CD133+ cells was determined. The Tca-8113 cells were observed to emerge in the form of suspending tumour spheres in squamous cell carcinoma of the tongue. Monoplasts with sustainable multiplication capacity accounted for ~5.32% of the spheres, and 0.95% of the CD133+ cells were expressed in squamous cell carcinoma of the tongue, with stronger multiplication capacity and differentiation potency in vitro. Stronger tumourigenicity was also observed in the bodies of the NOD/SCID mice. CD133– cells exhibited a multiplication capacity to a certain extent. Overall, the CD133+ cells in squamous cell carcinoma of the tongue are characterised by relatively strong tumourigenicity capacity in vivo and in vitro. To a certain extent, these CD133+ cells demonstrate the characteristics of ‘stemness’. PMID:27446361

  8. Targeting CD133high Colorectal Cancer Cells In Vitro and In Vivo With an Asymmetric Bispecific Antibody.

    PubMed

    Zhao, Lei; Yang, Yudan; Zhou, Pengfei; Ma, Hong; Zhao, Xiaolai; He, Xin; Wang, Tao; Zhang, Jing; Liu, Yang; Zhang, Tao

    2015-01-01

    A critical obstacle in advanced colorectal cancer (CRC) treatment is the insufficient improvement on survival of conventional chemotherapy. Cancer stem cells are reported to be one of the crucial explanations. CD133 has been identified as a surface marker of CRC stem cells. Bispecific antibodies (BiAbs) targeting tumor-specific antigens are promising therapeutics for malignant diseases, yet that targeting CD133 produced by genetic engineering has not been published. In the current research, CD133 expression in primary CRC was detected by immunohistochemistry, and an asymmetric BiAb consisting of monomer of chimeric AC133 (mouse anti-human CD133 monoclonal antibody) and single chain of humanized OKT3 was developed to eradicate CD133-expressing tumor cells by arming activated T cells in vitro and in vivo. In immunohistochemical examination, CD133 overexpression (>50% of stained cells) frequency was significantly correlated with lymphatic invasion and clinical stage. The new molecular revealed dual-antigen-binding specificity to CD133 and CD3, its distinct structure not only facilitated the purification procedure but also conferred the antibody to ensure a longer and stronger cytotoxic activity. By arming activated T cells, the new antibody displayed impressive cytotoxicity toward CD133(high) but not CD133(low) CRC cells in vitro, produced amounts of cytokines (interferon-γ and granulocyte-macrophage colony-stimulating factor), and could inhibit tumor growth and retard tumor development in nonobese diabetic-severe combined immunodeficient mice without apparent toxicity. Taken together, the new BiAb possesses prosperities that support that the molecule has the potential of being a promising candidate of new therapeutics for CRC therapy. PMID:26049545

  9. Activation of the sonic hedgehog signaling pathway occurs in the CD133 positive cells of mouse liver cancer Hepa 1–6 cells

    PubMed Central

    Jeng, Kuo-Shyang; Sheen, I-Shyan; Jeng, Wen-Juei; Yu, Ming-Che; Hsiau, Hsin-I; Chang, Fang-Yu; Tsai, Hsin-Hua

    2013-01-01

    Background The important role of cancer stem cells in carcinogenesis has been emphasized in research. CD133+ cells have been mentioned as liver cancer stem cells in hepatocellular carcinoma (HCC). Some researchers have proposed that the sonic hedgehog (Shh) pathway contributes to hepatocarcinogenesis and that the pathway activation occurs mainly in cancer stem cells. We investigated whether the activation of the Shh pathway occurs in CD133+ cells from liver cancer. Materials and methods We used magnetic sorting to isolate CD133+ cells from mouse cancer Hepa 1–6 cells. To examine the clonogenicity, cell culture and soft agar colony formation assay were performed between CD133+ and CD133− cells. To study the activation of the Shh pathway, we examined the mRNA expressions of Shh, patched homolog 1 (Ptch-1), glioma-associated oncogene homolog 1 (Gli-1), and smoothened homolog (Smoh) by real-time polymerase chain reaction of both CD133+ and CD133− cells. Results The number (mean ± standard deviation) of colonies of CD133+ cells and CD133− cells was 1,031.0 ± 104.7 and 119.7 ± 17.6 respectively. This difference was statistically significant (P < 0.001). Their clonogenicity was 13.7% ± 1.4% and 1.6% ± 0.2% respectively with a statistically significant difference found (P < 0.001). CD133+ cells and CD133− cells were found to have statistically significant differences in Shh mRNA and Smoh mRNA (P = 0.005 and P = 0.043 respectively). Conclusion CD133+ Hepa 1–6 cells have a significantly higher colony proliferation and clonogenicity. The Shh pathway is activated in these cells that harbor stem cell features, with an underexpression of Shh mRNA and an overexpression of Smoh mRNA. Blockade of the Shh signaling pathway may be a potential therapeutic strategy for hepatocarcinogenesis. PMID:23950652

  10. Association between ALDH1+/CD133+ stem-like cells and tumor angiogenesis in invasive ductal breast carcinoma

    PubMed Central

    LV, XINQUAN; WANG, YINGZI; SONG, YIMIN; PANG, XIA; LI, HUIXIANG

    2016-01-01

    The growth and metastasis of tumors is dependent on angiogenesis; however, the association between tumor stem cells (TSCs) and tumor angiogenesis remains to be elucidated. The present study aimed to investigate the expression of the TSC markers aldehyde dehydrogenase 1 (ALDH1) and cluster of differentiation 133 (CD133) in invasive ductal breast carcinoma, and identify their correlation with tumor angiogenesis. Stem-like cells from the breast tissue of 120 patients, who were diagnosed with invasive ductal breast carcinoma at The First Affiliated Hospital of Zhengzhou University (Zhengzhou, Henan, China) between January 2009 and December 2010, were collected by surgical resection and analyzed using immunohistochemical double staining. The expression of the vascular markers CD34, CD105 and vascular endothelial growth factor (VEGF) were determined using single staining. Overall, 25.83% (31/120) of the specimens contained a large number of ALDH1+/CD133+ stem-like cells (ALDH1+/CD133+ tumor). ALDH1+/CD133+ expression is associated with microvessel density, VEGF-positive rate and estrogen receptor expression (P<0.05); however, ALDH1+/CD133+ expression was not associated with age, tumor diameter, lymph node metastasis, histological classification, progesterone receptor expression or human epidermal growth factor receptor 2 expression (P>0.05). The ALDH1+/CD133+ tumor phenotype and expression of VEGF were identified to be correlated in the present study (P=0.020). The present study revealed a close association between breast cancer TSC markers, including ALDH1 and CD133, and tumor angiogenesis. The results of the present study may provide a novel target and treatment strategy for future studies investigating tumor growth and metastasis. PMID:26998072

  11. CD133(+) human umbilical cord blood stem cells enhance angiogenesis in experimental chronic hepatic fibrosis.

    PubMed

    Elkhafif, Nagwa; El Baz, Hanan; Hammam, Olfat; Hassan, Salwa; Salah, Faten; Mansour, Wafaa; Mansy, Soheir; Yehia, Hoda; Zaki, Ahmed; Magdy, Ranya

    2011-01-01

    The in vivo angiogenic potential of transplanted human umbilical cord blood (UCB) CD133(+) stem cells in experimental chronic hepatic fibrosis induced by murine schistosomiasis was studied. Enriched cord blood-derived CD133(+) cells were cultured in primary medium for 3 weeks. Twenty-two weeks post-Schistosomiasis infection in mice, after reaching the chronic hepatic fibrotic stage, transplantation of stem cells was performed and mice were sacrificed 3 weeks later. Histopathology and electron microscopy showed an increase in newly formed blood vessels and a decrease in the fibrosis known for this stage of the disease. By immunohistochemical analysis the newly formed blood vessels showed positive expression of the human-specific angiogenic markers CD31, CD34 and von Willebrand factor. Few hepatocyte-like polygonal cells showed positive expression of human vascular endothelial growth factor and inducible nitric oxide synthase. The transplanted CD133(+) human stem cells primarily enhanced hepatic angiogenesis and neovascularization and contributed to repair in a paracrine manner by creating a permissive environment that enabled proliferation and survival of damaged cells rather than by direct differentiation to hepatocytes. A dual advantage of CD133(+) cell therapy in hepatic disease is suggested based on its capability of hematopoietic and endothelial differentiation. PMID:21143528

  12. Targeted Inhibition of CD133+ Cells in Oral Cancer Cell Lines

    PubMed Central

    Damek-Poprawa, M.; Volgina, A.; Korostoff, J.; Sollecito, T.P.; Brose, M.S.; O’Malley, B.W.; Akintoye, S.O.; DiRienzo, J.M.

    2011-01-01

    Resistance to treatment and the appearance of secondary tumors in head and neck squamous cell carcinomas (HNSCC) have been attributed to the presence of cells with stem-cell-like properties in the basal layer of the epithelium at the site of the lesion. In this study, we tested the hypothesis that these putative cancer stem cells (CSC) in HNSCC could be specifically targeted and inhibited. We found that 9 of 10 head and neck tumor biopsies contained a subpopulation of cells that expressed CD133, an unusual surface-exposed membrane-spanning glycoprotein associated with CSC. A genetically modified cytolethal distending toxin (Cdt), from the periodontal pathogen Aggregatibacter actinomycetemcomitans, was conjugated to an anti-human CD133 monoclonal antibody (MAb). The Cdt-MAb complex preferentially inhibited the proliferation of CD133+ cells in cultures of established cell lines derived from HNSCC. Inhibition of the CD133+ cells was rate- and dose-dependent. Saturation kinetics indicated that the response to the Cdt-MAb complex was specific. Healthy primary gingival epithelial cells that are native targets of the wild-type Cdt were not affected. Analysis of these data provides a foundation for the future development of new therapies to target CSC in the early treatment of HNSCC. Abbreviations: Cdt, cytolethal distending toxin; CSC, cancer stem cells; HNSCC, head and neck squamous cell carcinoma; MAb, monoclonal antibody. PMID:21220361

  13. miR-30 family promotes migratory and invasive abilities in CD133(+) pancreatic cancer stem-like cells.

    PubMed

    Tsukasa, Koichiro; Ding, Qiang; Miyazaki, Yumi; Matsubara, Shyuichiro; Natsugoe, Shoji; Takao, Sonshin

    2016-07-01

    Pancreatic cancer is a deadly disease with a poor prognosis. Recently, miRNAs have been reported to be abnormally expressed in several cancers and play a role in cancer development and progression. However, the role of miRNA in cancer stem cells remains unclear. Therefore, our aim was to investigate the role of miRNA in the CD133(+) pancreatic cancer cell line Capan-1M9 because CD133 is a putative marker of pancreatic cancer stem cells. Using miRNA microarray, we found that the expression level of the miR-30 family decreased in CD133 genetic knockdown shCD133 Capan-1M9 cells. We focused on miR-30a, -30b, and -30c in the miR-30 family and created pancreatic cancer cell sublines, each transfected with these miRNAs. High expression of miR-30a, -30b, or -30c had no effect on cell proliferation and sphere forming. In contrast, these sublines were resistant to gemcitabine, which is a standard anticancer drug for pancreatic cancer, and in addition, promoted migration and invasion. Moreover, mesenchymal markers were up-regulated by these miRNAs, suggesting that mesenchymal phenotype is associated with an increase in migration and invasion. Thus, our study demonstrated that high expression of the miR-30 family modulated by CD133 promotes migratory and invasive abilities in CD133(+) pancreatic cancer cells. These findings suggest that targeted therapies to the miR-30 family contribute to the development of novel therapies for CD133(+) pancreatic cancer stem cells. PMID:26965588

  14. The percentage of CD133+ cells in human colorectal cancer cell lines is influenced by Mycoplasma hyorhinis infection

    PubMed Central

    2010-01-01

    Background Mollicutes contamination is recognized to be a critical issue for the cultivation of continuous cell lines. In this work we characterized the effect of Mycoplasma hyorhinis contamination on CD133 expression in human colon cancer cell lines. Methods MycoAlert® and mycoplasma agar culture were used to detect mycoplasma contamination on GEO, SW480 and HT-29 cell lines. Restriction fragment length polymorphism assay was used to determine mycoplasma species. All cellular models were decontaminated by the use of a specific antibiotic panel (Enrofloxacin, Ciprofloxacin, BM Cyclin 1 and 2, Mycoplasma Removal Agent and MycoZap®). The percentage of CD133 positive cells was analyzed by flow cytometry on GEO, SW480 and HT-29 cell lines, before and after Mycoplasma hyorhinis eradication. Results Mycoplasma hyorhinis infected colon cancer cell lines showed an increased percentage of CD133+ cells as compared to the same cell lines rendered mycoplasma-free by effective exposure to antibiotic treatment. The percentage of CD133 positive cells increased again when mycoplasma negative cells were re-infected by Mycoplasma hyorhinis. Conclusions Mycoplasma hyorhinis infection has an important role on the quality of cultured human colon cancer cell lines giving a false positive increase of cancer stem cells fraction characterized by CD133 expression. Possible explanations are (i) the direct involvement of Mycoplasma on CD133 expression or (ii) the selective pressure on a subpopulation of cells characterized by constitutive CD133 expression. In keeping with United Kingdom Coordinating Committee on Cancer Research (UKCCCR) guidelines, the present data indicate the mandatory prerequisite, for investigators involved in human colon cancer research area, of employing mycoplasma-free cell lines in order to avoid the production of non-reproducible or even false data. PMID:20353562

  15. CD133+ tumor initiating cells (TIC) in a syngenic murine model of pancreatic cancer respond to Minnelide

    PubMed Central

    Banerjee, Sulagna; Nomura, Alice; Sangwan, Veena; Chugh, Rohit; Dudeja, Vikas; Vickers, Selwyn M; Saluja, Ashok

    2014-01-01

    Purpose Pancreatic adenocarcinoma is the fourth leading cause for cancer-related mortality with a survival rate of less than 5%. Late diagnosis and lack of effective chemotherapeutic regimen contribute to these grim survival statistics. Relapse of any tumor is largely attributed to the presence of tumor-initiating cells (TIC) or cancer stem cells (CSC). These cells are considered as hurdles to cancer therapy as no known chemotherapeutic compound is reported to target them. Thus, there is an urgent need to develop a TIC-targeted therapy for pancreatic cancer. Experimental design We isolated CD133+ cells from a spontaneous PDAC mouse model and studied both surface expression, molecular markers of pancreatic TICs. We also studied tumor initiation properties by implanting low numbers of CD133+ cells in immune competent mice. Effect of Minnelide, a drug currently under Phase I clinical trial, was studied on the tumors derived from the CD133+ cells. Results Our study showed for the first time that CD133+ population demonstrated all the molecular markers for pancreatic TIC. These cells initiated tumors in immunocompetent mouse models and showed increased expression of pro-survival and pro-invasive proteins compared to the CD133− non-TIC population. Our study further showed that Minnelide, was very efficient in downregulating both CD133− and CD133+ population in the tumors, resulting in a 60% decrease in tumor volume compared to the untreated ones. Conclusion As Minnelide is currently under Phase I clinical trial, its evaluation in reducing tumor burden by decreasing TIC as well as non-TIC population suggests its potential as an effective therapy. PMID:24634377

  16. Cancer stem cells CD133 and CD24 in colorectal cancers in Northern Iran

    PubMed Central

    Nosrati, Anahita; Naghshvar, Farshad; Maleki, Iradj; Salehi, Fatemeh

    2016-01-01

    Aim: We aimed to study the expression of CD24 and CD133 in colorectal cancer and normal adjacent tissues to assess a relationship between these markers and clinic-pathological characteristics and patient’s survival. Background: Cancer stem cells are a group of tumor cells that have regeneration and multi-order differentiation capabilities. Patients and methods: Expression of CD24 and CD133 was studied in a paraffin block of colorectal cancer and normal tissues near tumors with the immuneohistochemical method in patients who were referred to Imam Khomeini Hospital in Sari. Results: A total of 50 samples (25 males and 25 females) with a mean age of 67.57±13.9 years old with range 28-93 years, included 3 mucinous carcinoma and 47 adenocarcinoma. Expression of CD133 marker was negative in 29 cases and positive in 21 cases. Expression of CD24 in tissue near tumor cells was found in 30% of available samples. The relationship between expressing CD24 with treatment (surgery and chemotherapy) was significant and its relationship with patient’s survival was insignificant statistically. However, there was a clear difference as mean survival age of patients based on CD24 expression was 26.64±18.15 for negative cases and 41.75±28.76 months for positive cases. CD24 and CD133 expressions and their co-expression with other clinic-pathological factors were not significant. Conclusion: During this study, the relationship between CD24 and treatment type was significant. To confirm this result, various studies with high sample numbers and other stem cell markers are recommended. PMID:27099673

  17. Production of interleukin‑4 in CD133+ cervical cancer stem cells promotes resistance to apoptosis and initiates tumor growth.

    PubMed

    Liu, Chun-Tao; Xin, Ying; Tong, Chun-Yan; Li, Bing; Bao, Hong-Li; Zhang, Cai-Yun; Wang, Xue-Hui

    2016-06-01

    The cancer stem cell (CSC) theory suggests that cancer growth and invasion is dictated by the small population of CSCs within the heterogenous tumor. The aim of the present study was to elucidate the cause for chemotherapy failure and the resistance of CSCs to apoptosis. A total of ~2.3% cluster of differentiation (CD)133+ cancer stem‑like side population (SP) cells were identified in cases of uterine cervical cancer. These CD133+ SP cells were found to potently initiate tumor growth and invasion, as they exhibit transcriptional upregulation of stemness genes, including octamer‑binding transcription factor‑4, B‑cell‑specific Moloney murine leukemia virus insertion site‑1, epithelial cell adhesion molecule, (sex determining region Y)‑box 2, Nestin and anti‑apoptotic B cell lymphoma‑2. In addition, the CD133+ SP cells showed resistance to multi‑drug treatment and apoptosis. The present study further showed that the secretion of interleukin‑4 (IL‑4) in CD133+ cervical cancer SP cells promoted cell proliferation and prevented the SP cells from apoptosis. Following the neutralization of IL‑4 with anti‑IL‑4 antibody, the CD133+ SP cells were more sensitive to drug treatment and apoptosis. Therefore, the data obtained in the present study suggested that the autocrine secretion of IL‑4 promotes increased survival and resistance to cell death in CSCs. PMID:27121303

  18. Production of interleukin-4 in CD133+ cervical cancer stem cells promotes resistance to apoptosis and initiates tumor growth

    PubMed Central

    LIU, CHUN-TAO; XIN, YING; TONG, CHUN-YAN; LI, BING; BAO, HONG-LI; ZHANG, CAI-YUN; WANG, XUE-HUI

    2016-01-01

    The cancer stem cell (CSC) theory suggests that cancer growth and invasion is dictated by the small population of CSCs within the heterogenous tumor. The aim of the present study was to elucidate the cause for chemotherapy failure and the resistance of CSCs to apoptosis. A total of ~2.3% cluster of differentiation (CD)133+ cancer stem-like side population (SP) cells were identified in cases of uterine cervical cancer. These CD133+ SP cells were found to potently initiate tumor growth and invasion, as they exhibit transcriptional upregulation of stemness genes, including octamer-binding transcription factor-4, B-cell-specific Moloney murine leukemia virus insertion site-1, epithelial cell adhesion molecule, (sex determining region Y)-box 2, Nestin and anti-apoptotic B cell lymphoma-2. In addition, the CD133+ SP cells showed resistance to multi-drug treatment and apoptosis. The present study further showed that the secretion of interleukin-4 (IL-4) in CD133+ cervical cancer SP cells promoted cell proliferation and prevented the SP cells from apoptosis. Following the neutralization of IL-4 with anti-IL-4 antibody, the CD133+ SP cells were more sensitive to drug treatment and apoptosis. Therefore, the data obtained in the present study suggested that the autocrine secretion of IL-4 promotes increased survival and resistance to cell death in CSCs. PMID:27121303

  19. Full GMP-Compliant Validation of Bone Marrow-Derived Human CD133+ Cells as Advanced Therapy Medicinal Product for Refractory Ischemic Cardiomyopathy

    PubMed Central

    Belotti, Daniela; Gaipa, Giuseppe; Bassetti, Beatrice; Cabiati, Benedetta; Spaltro, Gabriella; Biagi, Ettore; Parma, Matteo; Biondi, Andrea; Cavallotti, Laura; Gambini, Elisa; Pompilio, Giulio

    2015-01-01

    According to the European Medicine Agency (EMA) regulatory frameworks, Advanced Therapy Medicinal Products (ATMP) represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133+ cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs). In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM), ATMP-CD133 manufacturing output yielded a median of 6.66 × 106 of CD133+ cells (range 2.85 × 106–30.84 × 106), with a viability ranged between 96,03% and 99,97% (median 99,87%) and a median purity of CD133+ cells of 90,60% (range 81,40%–96,20%). Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 106 cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial). PMID:26495296

  20. Tumour-initiating cells vs. cancer 'stem' cells and CD133: What's in the name?

    SciTech Connect

    Neuzil, Jiri; E-mail: j.neuzil@griffith.edu.au; Stantic, Marina; Zobalova, Renata; Chladova, Jaromira; Wang, Xiufang; Prochazka, Lubomir; Dong, Lanfeng; Andera, Ladislav; Ralph, Stephen J.

    2007-04-20

    Recent evidence suggests that a subset of cells within a tumour have 'stem-like' characteristics. These tumour-initiating cells, distinct from non-malignant stem cells, show low proliferative rates, high self-renewing capacity, propensity to differentiate into actively proliferating tumour cells, resistance to chemotherapy or radiation, and they are often characterised by elevated expression of the stem cell surface marker CD133. Understanding the molecular biology of the CD133{sup +} cancer cells is now essential for developing more effective cancer treatments. These may include drugs targeting organelles, such as mitochondria or lysosomes, using highly efficient and selective inducers of apoptosis. Alternatively, agents or treatment regimens that enhance sensitivity of these therapy-resistant 'tumour stem cells' to the current or emerging anti-tumour drugs would be of interest as well.

  1. Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma

    PubMed Central

    Choi, Dongho; Lee, Hyo Won; Hur, Kyung Yul; Kim, Jae Joon; Park, Gyeong-Sin; Jang, Si-Hyong; Song, Young Soo; Jang, Ki-Seok; Paik, Seung Sam

    2009-01-01

    AIM: To verify that CD markers are available for detecting cancer stem cell populations and to evaluate their clinical significance in colon cancer. METHODS: Immunohistochemistry for CD133, CD24 and CD44 was performed on the tissue microarray of 523 colorectal adenocarcinomas. Medical records were reviewed and clinicopathological analysis was performed. RESULTS: In colorectal adenocarcinoma, 128 of 523 cases (24.5%) were positive and 395 cases (75.5%) were negative for CD133 expression. Two hundred and sixty-four of 523 cases (50.5%) were positive and 259 cases (49.5%) were negative for CD24 expression. Five hundred and two of 523 cases (96%) were negative and 21 cases (4%) were positive for CD44 expression. Upon clinicopathological analysis, CD133 expression was present more in male patients (P = 0.002) and in advanced T stage cancer (P = 0.024). Correlation between CD24 expression and clinicopathological factors was seen in the degree of differentiation (P = 0.006). Correlation between CD44 expression and clinicopathological factors was seen in the tumor size (P = 0.001). Survival was not significantly related to CD133, CD24 and CD44 expression. CONCLUSION: CD markers were related to invasiveness and differentiation of colorectal adenocarcinoma. However, CD expression was not closely related to survival. PMID:19437567

  2. Distinct and Conserved Prominin-1/CD133–Positive Retinal Cell Populations Identified across Species

    PubMed Central

    Jászai, József; Fargeas, Christine A.; Graupner, Sylvi; Tanaka, Elly M.; Brand, Michael; Huttner, Wieland B.; Corbeil, Denis

    2011-01-01

    Besides being a marker of various somatic stem cells in mammals, prominin-1 (CD133) plays a role in maintaining the photoreceptor integrity since mutations in the PROM1 gene are linked with retinal degeneration. In spite of that, little information is available regarding its distribution in eyes of non-mammalian vertebrates endowed with high regenerative abilities. To address this subject, prominin-1 cognates were isolated from axolotl, zebrafish and chicken, and their retinal compartmentalization was investigated and compared to that of their mammalian orthologue. Interestingly, prominin-1 transcripts—except for the axolotl—were not strictly restricted to the outer nuclear layer (i.e., photoreceptor cells), but they also marked distinct subdivisions of the inner nuclear layer (INL). In zebrafish, where the prominin-1 gene is duplicated (i.e., prominin-1a and prominin-1b), a differential expression was noted for both paralogues within the INL being localized either to its vitreal or scleral subdivision, respectively. Interestingly, expression of prominin-1a within the former domain coincided with Pax-6–positive cells that are known to act as progenitors upon injury-induced retino-neurogenesis. A similar, but minute population of prominin-1–positive cells located at the vitreal side of the INL was also detected in developing and adult mice. In chicken, however, prominin-1–positive cells appeared to be aligned along the scleral side of the INL reminiscent of zebrafish prominin-1b. Taken together our data indicate that in addition to conserved expression of prominin-1 in photoreceptors, significant prominin-1–expressing non-photoreceptor retinal cell populations are present in the vertebrate eye that might represent potential sources of stem/progenitor cells for regenerative therapies. PMID:21407811

  3. Effect of CD133 overexpression on the epithelial-to-mesenchymal transition in oral cancer cell lines.

    PubMed

    Moon, YeonHee; Kim, Donghwi; Sohn, HongMoon; Lim, Wonbong

    2016-06-01

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers in the world. In OSCC, CD133 promotes tumor invasion and metastasis by inducing the epithelial-to-mesenchymal transition (EMT). A small subset of cancer cells known as cancer stem cells (CSCs) are thought to give rise to differentiated tumor cells and to predict tumor recurrence and metastases, i.e., CSCs may be metastatic precursors. In this study, we show that ectopic overexpression of CD133 in OSCC cell lines KB, YD9, and YD10B cells significantly promotes the EMT and acquisition of stemness properties. CSC properties were analyzed by colony-formation assay and measurement of OCT4, SOX2, and NANOG expression, and the EMT was monitored by cell migration, a cell invasion assay, and analysis of E-cadherin, N-cadherin, and vimentin expression. CD133 overexpression led to formation of irregular spheroid colonies consistent with a stem cell phenotype and increased the expression of OCT4, SOX2, NANOG, N-cadherin, and vimentin. Taken together, these findings show that elevated levels of CD133 lead to OSCC invasiveness and metastasis, associated with the upregulation of EMT and stemness markers. PMID:27137188

  4. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells.

    PubMed

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T; Johlfs, Mary G; Fiscus, Ronald R; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1-positive structures appeared in three sizes (small, ≤40 nm; intermediates ~40-80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1-containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. PMID:23318676

  5. Atypical nuclear localization of CD133 plasma membrane glycoprotein in rhabdomyosarcoma cell lines.

    PubMed

    Nunukova, Alena; Neradil, Jakub; Skoda, Jan; Jaros, Josef; Hampl, Ales; Sterba, Jaroslav; Veselska, Renata

    2015-07-01

    CD133 (also known as prominin-1) is a cell surface glycoprotein that is widely used for the identification of stem cells. Furthermore, its glycosylated epitope, AC133, has recently been discussed as a marker of cancer stem cells in various human malignancies. During our recent experiments on rhabdomyosarcomas (RMS), we unexpectedly identified an atypical nuclear localization of CD133 in a relatively stable subset of cells in five RMS cell lines established in our laboratory. To the best of our knowledge, this atypical localization of CD133 has not yet been proven or analyzed in detail in cancer cells. In the present study, we verified the nuclear localization of CD133 in RMS cells using three independent anti-CD133 antibodies, including both rabbit polyclonal and mouse monoclonal antibodies. Indirect immunofluorescence and confocal microscopy followed by software cross-section analysis, transmission electron microscopy and cell fractionation with immunoblotting were also employed, and all the results undeniably confirmed the presence of CD133 in the nuclei of stable minor subpopulations of all five RMS cell lines. The proportion of cells showing an exclusive nuclear localization of CD133 ranged from 3.4 to 7.5%, with only minor differences observed among the individual anti-CD133 antibodies. Although the role of CD133 in the cell nucleus remains unclear, these results clearly indicate that this atypical nuclear localization of CD133 in a minor subpopulation of cancer cells is a common phenomenon in RMS cell lines. PMID:25977066

  6. Id1 and NF-κB promote the generation of CD133+ and BMI-1+ keratinocytes and the growth of xenograft tumors in mice

    PubMed Central

    LAI, JINHUO; CAI, QIAN; BIEL, MERRILL A.; WANG, CHUAN; HU, XIAOHUA; WANG, SHAOYUAN; LIN, JIZHEN

    2014-01-01

    Id1 and NF-κB are highly expressed in oral squamous cell carcinoma (OSCC). Whether they have a synergistic role in the carcinogenesis of OSCC is unclear. The current study was designed to demonstrate the synergy of both Id1 and NF-κB in the underlying disease mechanisms of OSCC using in vitro and in vivo animal models. Id1 and NF-κB strengthened the expression of both CD133 and BMI-1 in OSCC cell cultures. CD133+ and BMI-1+ keratinocytes from OSCC tissues and cell cultures initiated the growth of xenograft tumors in SCID/Beige mice. Id1 and NF-κB regulate the expression of CD133 and BMI-1 in an additive or synergistic manner in OSCC, which is associated with the generation of naïve and self-renewable keratinocytes and initiate the growth of xenograft tumors in vivo. PMID:24572994

  7. CCL21/CCR7 Axis Contributed to CD133+ Pancreatic Cancer Stem-Like Cell Metastasis via EMT and Erk/NF-κB Pathway

    PubMed Central

    Zhang, Lirong; Wang, Dongqing; Li, Yumei; Liu, Yanfang; Xie, Xiaodong; Wu, Yingying; Zhou, Yuepeng; Ren, Jing; Zhang, Jianxin; Zhu, Haitao; Su, Zhaoliang

    2016-01-01

    Background Tumor metastasis is driven by malignant cells and stromal cell components of the tumor microenvironment. Cancer stem cells (CSCs) are thought to be responsible for metastasis by altering the tumor microenvironment. Epithelial-mesenchymal transition (EMT) processes contribute to specific stages of the metastatic cascade, promoted by cytokines and chemokines secreted by stromal cell components in the tumor microenvironment. C-C chemokine receptor 7 (CCR7) interacts with its ligand, chemokine ligand 21(CCL21), to mediate metastasis in some cancer cells lines. This study investigated the role of CCL21/CCR7 in promoting EMT and metastasis of cluster of differentiation 133+ (CD133+) pancreatic cancer stem-like cells. Methods Panc-1, AsPC-1, and MIA PaCa-2 pancreatic cancer cells were selected because of their aggressive invasive potentials. CCR7 expression levels were examined in total, CD133+ and CD133− cell fractions by Immunofluorescence analysis and real time-quantitative polymerase chain reaction (RT-qPCR). The role of CCL21/CCR7 in mediating metastasis and survival of CD133+ pancreatic cancer stem-like cells was detected by Transwell assays and flow cytometry, respectively. EMT and lymph node metastasis related markers (E-cadherin, N- cadherin, LYVE-1) were analyzed by western blot. CCR7 expression levels were analyzed by immunohistochemical staining and RT-qPCR in resected tumor tissues, metastatic lymph nodes, normal lymph nodes and adjacent normal tissues from patients with pancreatic carcinoma. Results CCR7 expression was significantly increased in CD133+ pancreatic cancer stem-like cells, resected pancreatic cancer tissues, and metastatic lymph nodes, compared with CD133− cancer cells, adjacent normal tissues and normal lymph nodes, respectively. CCL21/CCR7 promoted metastasis and survival of CD133+ pancreatic cancer stem-like cells and regulated CD133+ pancreatic cancer stem-like cells metastasis by modulating EMT and Erk/NF-κB pathway

  8. CD133 positive progenitor endothelial cell lines from human cord blood.

    PubMed

    Paprocka, Maria; Krawczenko, Agnieszka; Dus, Danuta; Kantor, Aneta; Carreau, Aude; Grillon, Catherine; Kieda, Claudine

    2011-08-01

    Endothelial progenitor cells (EPCs) modulate postnatal vascularization and contribute to vessel regeneration in adults. Stem cells and progenitor cells were found in umbilical cord blood, bone marrow, and mobilized peripheral blood cells, from where they were isolated and cultured. However, the yield of progenitor cells is usually not sufficient for clinical application and the quality of progenitor cells varies. The aim of the study was the immortalization of early progenitor cells with high proliferative potential, capable to differentiate to EPCs and, further, toward endothelial cells. Two cell lines, namely HEPC-CB.1 and HEPC-CB.2 (human endothelial progenitor cells-cord blood) were isolated. As assessed by specific antibody labeling and flow cytometric analysis, they express a panel of stem cell markers: CD133, CD13, CD271, CD90 and also endothelial cell markers: CD202b, CD309 (VEGFR2), CD146, CD105, and CD143 but they do not present markers of finally differentiated endothelial cells: CD31, vWf, nor CD45 which is a specific hematopoietic cell marker. Using the multiplex Cytometric Bead Assay, the simultaneous production of proangiogenic cytokines IL8, angiogenin, and VEGF was demonstrated in normoxia and was shown to be increased by hypoxia. Both cell lines, similarly as mature endothelial cells, underwent in vitro pre-angiogenic process, formed pseudovessel structures and present an accelerated angiogenesis in hypoxic conditions. To date, these are the first CD133 positive established cell lines from human cord blood cells. PMID:21710642

  9. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer.

    PubMed

    Sansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan; Chang, Qing; Rajasekhar, Vinagolu K; Perna, Fabiana; Bowman, Robert L; Vidone, Michele; Daly, Laura; Nnoli, Jennifer; Santini, Donatella; Taffurelli, Mario; Shih, Natalie N C; Feldman, Michael; Mao, Jun J; Colameco, Christopher; Chen, Jinbo; DeMichele, Angela; Fabbri, Nicola; Healey, John H; Cricca, Monica; Gasparre, Giuseppe; Lyden, David; Bonafé, Massimiliano; Bromberg, Jacqueline

    2016-01-01

    The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133(hi)/ER(lo) cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133(hi)/ER(lo)/IL6(hi) cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133(hi)/ER(lo)/OXPHOS(lo). These cells exit metabolic dormancy via an IL6-driven feed-forward ER(lo)-IL6(hi)-Notch(hi) loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133(hi) CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133(hi)/ER(lo) cells mediating metastatic progression, which is sensitive to dual targeted therapy. PMID:26858125

  10. Self-renewal of CD133hi cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer

    PubMed Central

    Sansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan; Chang, Qing; Rajasekhar, Vinagolu K.; Perna, Fabiana; Bowman, Robert L.; Vidone, Michele; Daly, Laura; Nnoli, Jennifer; Santini, Donatella; Taffurelli, Mario; Shih, Natalie N. C.; Feldman, Michael; Mao, Jun J.; Colameco , Christopher; Chen, Jinbo; DeMichele, Angela; Fabbri, Nicola; Healey, John H.; Cricca, Monica; Gasparre, Giuseppe; Lyden, David; Bonafé, Massimiliano; Bromberg, Jacqueline

    2016-01-01

    The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133hi/ERlo cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133hi/ERlo/IL6hi cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133hi/ERlo/OXPHOSlo. These cells exit metabolic dormancy via an IL6-driven feed-forward ERlo-IL6hi-Notchhi loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133hi CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133hi/ERlo cells mediating metastatic progression, which is sensitive to dual targeted therapy. PMID:26858125

  11. CD133 Is a Marker For Long-Term Repopulating Murine Epidermal Stem Cells

    PubMed Central

    Charruyer, A; Strachan, LR; Yue, L; Toth, AS; Mancianti, ML; Ghadially, R

    2012-01-01

    Maintenance, repair and renewal of the epidermis are thought to depend on a pool of dedicated epidermal stem cells. Like for many somatic tissues, isolation of a nearly pure population of stem cells is a primary goal in cutaneous biology. We used a quantitative transplantation assay, using injection of keratinocytes into subcutis combined with limiting dilution analysis, to assess the long-term repopulating ability of putative murine epidermal stem populations. Putative epidermal stem cell populations were isolated by FACS sorting. The CD133+ population and the subpopulation of CD133+ cells that exhibits high mitochondrial membrane potential (DΨmhi), were enriched for long-term repopulating epidermal stem cells vs. unfractionated cells (3.9 and 5.2-fold, respectively). Evidence for self-renewal capacity was obtained by serial transplantation of long-term epidermal repopulating units derived from CD133+ and CD133+ΔΨmhi keratinocytes. CD133+ keratinocytes were multipotent and produced significantly more hair follicles than CD133− cells. CD133+ cells were a subset of the previously described integrin α6+CD34+ bulge cell population and 28.9±8.6% were label retaining cells. Thus, murine keratinocytes within the CD133+ and CD133+ΔΨmhi populations contain epidermal stem cells that regenerate epidermis for the long-term, are self-renewing, multipotent, and label-retaining cells. PMID:22763787

  12. Overexpression of angiopoietin-1 increases CD133+/c-kit+ cells and reduces myocardial apoptosis in db/db mouse infarcted hearts.

    PubMed

    Zeng, Heng; Li, Lanfang; Chen, Jian-Xiong

    2012-01-01

    Hematopoietic progenitor CD133(+)/c-kit(+) cells have been shown to be involved in myocardial healing following myocardial infarction (MI). Previously we demonstrated that angiopoietin-1(Ang-1) is beneficial in the repair of diabetic infarcted hearts. We now investigate whether Ang-1 affects CD133(+)/c-kit(+) cell recruitment to the infarcted myocardium thereby mediating cardiac repair in type II (db/db) diabetic mice. db/db mice were administered either adenovirus Ang-1 (Ad-Ang-1) or Ad-β-gal systemically immediately after ligation of the left anterior descending coronary artery (LAD). Overexpression of Ang-1 resulted in a significant increase in CXCR-4/SDF-1α expression and promoted CD133(+)/c-kit(+), CD133(+)/CXCR-4(+) and CD133(+)/SDF-1α(+) cell recruitment into ischemic hearts. Overexpression of Ang-1 led to significant increases in number of CD31(+) and smooth muscle-like cells and VEGF expression in bone marrow (BM). This was accompanied by significant decreases in cardiac apoptosis and fibrosis and an increase in myocardial capillary density. Ang-1 also upregulated Jagged-1, Notch3 and apelin expression followed by increases in arteriole formation in the infarcted myocardium. Furthermore, overexpression of Ang-1 resulted in a significant improvement of cardiac functional recovery after 14 days of ischemia. Our data strongly suggest that Ang-1 attenuates cardiac apoptosis and promotes cardiac repair by a mechanism involving in promoting CD133(+)/c-kit(+) cells and angiogenesis in diabetic db/db mouse infarcted hearts. PMID:22558265

  13. CD133-Positive Cells from Non-Small Cell Lung Cancer Show Distinct Sensitivity to Cisplatin and Afatinib.

    PubMed

    Alama, Angela; Gangemi, Rosaria; Ferrini, Silvano; Barisione, Gaia; Orengo, Anna Maria; Truini, Mauro; Bello, Maria Giovanna Dal; Grossi, Francesco

    2015-06-01

    The standard of care for advanced non-small cell lung cancer (NSCLC) consists in cisplatin-combination chemotherapy. In patients bearing tumors with activating mutations of the epidermal growth factor receptor (EGFR), the inhibition of the EGFR intracellular tyrosine kinase can induce up to 80 % response rates. However, both therapeutic strategies will eventually lead to recurrent disease due to the development of drug resistance. The identification of rare cancer stem-like cells able to repopulate the tumor, after failure to standard treatment modalities, has led to characterize these cells as potential therapeutic targets. This article will address the role of the CD133/EpCAM stem cell-related markers and explore cell sensitivity to cisplatin and to the EGFR-tyrosine kinase inhibitor, afatinib. Three human NSCLC cell lines, one wild-type (A549) and two harboring EGFR mutations (H1650 and H1975), as well as 20 NSCLC primary cultures, were grown in non-differentiating culture conditions for stem cell enrichment. Flow-cytometry analyses of CD133 and EpCAM and cell sensitivity to cisplatin and afatinib were performed. Moreover, the expression of activated EGFR was assessed by Western blot. The cell lines and primary cultures grown in non-differentiating culture conditions were enriched with CD133/EpCAM-positive cells and were significantly more resistant to cisplatin and more sensitive to afatinib as compared to the differentiated counterpart. In addition, increased EGFR-phosphorylation in non-differentiated cultures was observed. The present findings suggest that afatinib might be beneficial for patients bearing tumors with constitutively activated EGFR, to target chemo-resistant CD133/EpCAM-positive cancer stem cells. PMID:25678473

  14. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    SciTech Connect

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; Johlfs, Mary G.; Fiscus, Ronald R.; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  15. Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery

    PubMed Central

    Fang, D D; Kim, Y J; Lee, C N; Aggarwal, S; McKinnon, K; Mesmer, D; Norton, J; Birse, C E; He, T; Ruben, S M; Moore, P A

    2010-01-01

    Background: Despite earlier studies demonstrating in vitro propagation of solid tumour cancer stem cells (CSCs) as non-adherent tumour spheres, it remains controversial as to whether CSCs can be maintained in vitro. Additional validation of the CSC properties of tumour spheres would support their use as CSC models and provide an opportunity to discover additional CSC cell surface markers to aid in CSC detection and potential elimination. Methods: Primary tumour cells isolated from 13 surgically resected colon tumour specimens were propagated using serum-free CSC-selective conditions. The CSC properties of long-term cultured tumour spheres were established and mass spectrometry-based proteomics performed. Results: Freshly isolated CD133+ colorectal cancer cells gave rise to long-term tumour sphere (or spheroids) cultures maintaining CD133 expression. These spheroid cells were able to self-renew and differentiate into adherent epithelial lineages and recapitulate the phenotype of the original tumour. Relative to their differentiated progeny, tumour spheroid cells were more resistant to the chemotherapeutic irinotecan. Finally, CD44, CD166, CD29, CEACAM5, cadherin 17, and biglycan were identified by mass spectrometry to be enriched in CD133+ tumour spheroid cells. Conclusion: Our data suggest that ex vivo-expanded colon CSCs isolated from clinical specimens can be maintained in culture enabling the identification of CSC cell surface-associated proteins. PMID:20332776

  16. Transcatheter Arterial Infusion of Autologous CD133+ Cells for Diabetic Peripheral Artery Disease

    PubMed Central

    Zhang, Xiaoping; Lian, Weishuai; Lou, Wensheng; Han, Shilong; Lu, Chenhui; Zuo, Keqiang; Su, Haobo; Xu, Jichong; Cao, Chuanwu; Tang, Tao; Jia, Zhongzhi; Jin, Tao; Uzan, Georges; Gu, Jianping; Li, Maoquan

    2016-01-01

    Microvascular lesion in diabetic peripheral arterial disease (PAD) still cannot be resolved by current surgical and interventional technique. Endothelial cells have the therapeutic potential to cure microvascular lesion. To evaluate the efficacy and immune-regulatory impact of intra-arterial infusion of autologous CD133+ cells, we recruited 53 patients with diabetic PAD (27 of CD133+ group and 26 of control group). CD133+ cells enriched from patients' PB-MNCs were reinfused intra-arterially. The ulcer healing followed up till 18 months was 100% (3/3) in CD133+ group and 60% (3/5) in control group. The amputation rate was 0 (0/27) in CD133+ group and 11.54% (3/26) in control group. Compared with the control group, TcPO2 and ABI showed obvious improvement at 18 months and significant increasing VEGF and decreasing IL-6 level in the CD133+ group within 4 weeks. A reducing trend of proangiogenesis and anti-inflammatory regulation function at 4 weeks after the cells infusion was also found. These results indicated that autologous CD133+ cell treatment can effectively improve the perfusion of morbid limb and exert proangiogenesis and anti-inflammatory immune-regulatory impacts by paracrine on tissue microenvironment. The CD133+ progenitor cell therapy may be repeated at a fixed interval according to cell life span and immune-regulatory function. PMID:26981134

  17. CD133: A cancer stem cells marker, is used in colorectal cancers

    PubMed Central

    Ren, Fei; Sheng, Wei-Qi; Du, Xiang

    2013-01-01

    Colorectal cancer is one of the most common malignant tumors worldwide. A model of cancer development involving cancer stem cells has been put forward because it provides a possible explanation of tumor hierarchy. Cancer stem cells are characterized by their proliferation, tumorigenesis, differentiation, and self-renewal capacities, and chemoradiotherapy resistance. Due to the role of cancer stem cells in tumor initiation and treatment failure, studies of cancer stem cell markers, such as CD133, have been of great interest. CD133, a five-transmembrane glycoprotein, is widely used as a marker to identify and isolate colorectal cancer stem cells. This marker has been investigated to better understand the characteristics and functions of cancer stem cells. Moreover, it can also be used to predict tumor progression, patient survival, chemoradiotherapy resistance and other clinical parameters. In this review, we discuss the use of CD133 in the identification of colorectal cancer stem cell, which is currently controversial. Although the function of CD133 is as yet unclear, we have discussed several possible functions and associated mechanisms that may partially explain the role of CD133 in colorectal cancers. In addition, we focus on the prognostic value of CD133 in colorectal cancers. Finally, we predict that CD133 may be used as a possible target for colorectal cancer treatment. PMID:23674867

  18. The Brain Microenvironment Preferentially Enhances the Radioresistance of CD133+ Glioblastoma Stem-like Cells

    PubMed Central

    Jamal, Muhammad; Rath, Barbara H; Tsang, Patricia S; Camphausen, Kevin; Tofilon, Philip J

    2012-01-01

    Brain tumor xenografts initiated from glioblastoma (GBM) CD133+ tumor stem-like cells (TSCs) are composed of TSC and non-TSC subpopulations, simulating the phenotypic heterogeneity of GBMs in situ. Given that the discrepancies between the radiosensitivity of GBM cells in vitro and the treatment response of patients suggest a role for the microenvironment in GBM radioresistance, we compared the response of TSCs and non-TSCs irradiated under in vitro and orthotopic conditions. As a measure of radioresponse determined at the individual cell level, γH2AX and 53BP1 foci were quantified in CD133+ cells and their differentiated (CD133-) progeny. Under in vitro conditions, no difference was detected between CD133+ and CD133- cells in foci induction or dispersal after irradiation. However, irradiation of orthotopic xenografts initiated from TSCs resulted in the induction of fewer γH2AX and 53BP1 foci in CD133+ cells compared to their CD133- counterparts within the same tumor. Xenograft irradiation resulted in a tumor growth delay of approximately 7 days with a corresponding increase in the percentage of CD133+ cells at 7 days after radiation, which persisted to the onset of neurologic symptoms. These results suggest that, although the radioresponse of TSCs and non-TSCs does not differ under in vitro growth conditions, CD133+ cells are relatively radioresistant under intracerebral growth conditions. Whereas these findings are consistent with the suspected role for TSCs as a determinant of GBM radioresistance, these data also illustrate the dependence of the cellular radioresistance on the brain microenvironment. PMID:22431923

  19. In Vitro Differentiation of Human Umbilical Cord Blood CD133+Cells into Insulin Producing Cells in Co-Culture with Rat Pancreatic Mesenchymal Stem Cells

    PubMed Central

    Sahraneshin Samani, Fazel; Ebrahimi, Marzieh; Zandieh, Tahereh; Khoshchehreh, Reyhaneh; Baghaban Eslaminejad, Mohamadreza; Aghdami, Nasser; Baharvand, Hossein

    2015-01-01

    Objective Pancreatic stroma plays an important role in the induction of pancreatic cells by the use of close range signaling. In this respect, we presume that pancreatic mesenchymal cells (PMCs) as a fundamental factor of the stromal niche may have an effective role in differentiation of umbilical cord blood cluster of differentiation 133+ (UCB-CD133+) cells into newly-formed β-cells in vitro. Materials and Methods This study is an experimental research. The UCB-CD133+cells were purified by magnetic activated cell sorting (MACS) and differentiated into insulin producing cells (IPCs) in co-culture, both directly and indirectly with rat PMCs. Immunocytochemistry and enzyme linked immune sorbent assay (ELISA) were used to determine expression and production of insulin and C-peptide at the protein level. Results Our results demonstrated that UCB-CD133+differentiated into IPCs. Cells in islet-like clusters with (out) co-cultured with rat pancreatic stromal cells produced insulin and C-peptide and released them into the culture medium at the end of the induction protocol. However they did not respond well to glucose challenges. Conclusion Rat PMCs possibly affect differentiation of UCB-CD133+cells into IPCs by increasing the number of immature β-cells. PMID:26199900

  20. An isocorydine derivative (d-ICD) inhibits drug resistance by downregulating IGF2BP3 expression in hepatocellular carcinoma

    PubMed Central

    Ge, Chao; Chen, Lijuan; Fang, Tao; Li, Hong; Tian, Hua; Liu, Junxi; Chen, Taoyang; Jiang, Guoping; Xie, Haiyang; Cui, Ying; Yao, Ming; Li, Jinjun

    2015-01-01

    In our previous studies, we reported that CD133+ cancer stem cells (CSCs) were chemoresistant in hepatocellular carcinoma (HCC) and that isocorydine treatment decreased the percentage of CD133+ CSCs. Here, we found that a derivative of isocorydine (d-ICD) inhibited HCC cell growth, particularly among the CD133+ subpopulation, and rendered HCC cells more sensitive to sorafenib treatment. d-ICD inhibited IGF2BP3 expression in a time-dependent manner, and IGF2BP3 expression negatively correlated with d-ICD-induced growth suppression. IGF2BP3 overexpression enriched the CD133+ CSC subpopulation in HCC, enhanced tumor sphere formation and suppressed the cytotoxic effects of sorafenib and doxorubicin. The expression of drug resistance-related genes, including ABCB1 and ABCG2, and the CSC marker CD133 expression was increased after IGF2BP3 overexpression. The significance of these observations was underscored by our findings that high IGF2BP3 expression predicted poor survival in a cohort of 236 patients with HCC and positively correlated with ABCG2 and CD133 expression in vivo. These results suggested that the d-ICD may inhibit HCC cells growth by IGF2BP3 decrease and that IGF2BP3 may serve as a therapeutic target for HCC. PMID:26327240

  1. The Effect of Baicalin as A PPAR Activator on Erythroid Differentiation of CD133+Hematopoietic Stem Cells in Umbilical Cord Blood

    PubMed Central

    Abbasi, Parvaneh; Shamsasenjan, Karim; Movassaghpour Akbari, Ali Akbar; Akbarzadehlaleh, Parvin; Dehdilani, Nima; Ejtehadifar, Mostafa

    2015-01-01

    Objective The peroxisome proliferator-activated receptors (PPARs) are a group of nu- clear receptor proteins whose functions as transcription factors regulate gene expres- sions. PPARs play essential roles in the regulation of cellular differentiation, development, and metabolism (carbohydrate, lipid, protein), and tumorigenesis of higher organisms. This study attempts to determine the effect of baicalin, a PPARγ activator, on erythroid differentiation of cluster of differentiation 133+(CD133+) cord blood hematopoietic stem cells (HSCs). Materials and Methods In this experimental study, in order to investigate the effects of the PPARγ agonists baicalin and troglitazone on erythropoiesis, we isolated CD133+ cells from human umbilical cord blood using the MACS method. Isolated cells were cultured in erythroid-inducing medium with or without various amounts of the two PPARγ activa- tors (baicalin and troglitazone). Erythroid differentiation of CD133+cord blood HSCs were assessed using microscopic morphology analysis, flow cytometric analysis of erythroid surface markers transferrin receptor (TfR) and glycophorin A (GPA) and bycolony forming assay. Results Microscopic and flow cytometric analysis revealed the erythroid differentiation of CD133+cord blood HSCs under applied erythroid inducing conditions. Our flow cytometric data showed that the TfR and GPA positive cell population diminished significantly in the presence of either troglitazone or baicalin. The suppression of erythroid differentiation in response to PPARγ agonists was dose-dependent. Erythroid colony-forming ability of HSC decreased significantly after treatment with both PPARγ agonists but troglitazone had a markedly greater effect. Conclusion Our results have demonstrated that PPARγ agonists modulate erythroid dif- ferentiation of CD133+HSCs, and therefore play an important role in regulation of normal erythropoiesis under physiologic conditions. Thus, considering the availability and applica

  2. CD133 marks a stem cell population that drives human primary myelofibrosis

    PubMed Central

    Triviai, Ioanna; Stübig, Thomas; Niebuhr, Birte; Hussein, Kais; Tsiftsoglou, Asterios; Fehse, Boris; Stocking, Carol; Kröger, Nicolaus

    2015-01-01

    Primary myelofibrosis is a myeloproliferative neoplasm characterized by bone marrow fibrosis, megakaryocyte atypia, extramedullary hematopoiesis, and transformation to acute myeloid leukemia. To date the stem cell that undergoes the spatial and temporal chain of events during the development of this disease has not been identified. Here we describe a CD133+ stem cell population that drives the pathogenesis of primary myelofibrosis. Patient-derived circulating CD133+ but not CD34+CD133− cells, with a variable burden for JAK2V617F mutation, had multipotent cloning capacity in vitro. CD133+ cells engrafted for up to 10 months in immunocompromised mice and differentiated into JAK2-V617F+ myeloid but not lymphoid progenitors. We observed the persistence of human, atypical JAK2-V617F+ megakaryocytes, the initiation of a prefibrotic state, bone marrow/splenic fibrosis and transition to acute myeloid leukemia. Leukemic cells arose from a subset of CD133+ cells harboring EZH2D265H but lacking a secondary JAK2V617F mutation, consistent with the hypothesis that deregulation of EZH2 activity drives clonal growth and increases the risk of acute myeloid leukemia. This is the first characterization of a patient-derived stem cell population that drives disease resembling both chronic and acute phases of primary myelofibrosis in mice. These results reveal the importance of the CD133 antigen in deciphering the neoplastic clone in primary myelofibrosis and indicate a new therapeutic target for myeloproliferative neoplasms. PMID:25724578

  3. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133+ Hematopoietic Stem Cells to Osteoclasts

    PubMed Central

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Results Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast. PMID:27602313

  4. Microenvironment-Modulated Metastatic CD133+/CXCR4+/EpCAM- Lung Cancer-Initiating Cells Sustain Tumor Dissemination and Correlate with Poor Prognosis.

    PubMed

    Bertolini, Giulia; D'Amico, Lucia; Moro, Massimo; Landoni, Elena; Perego, Paola; Miceli, Rosalba; Gatti, Laura; Andriani, Francesca; Wong, Donald; Caserini, Roberto; Tortoreto, Monica; Milione, Massimo; Ferracini, Riccardo; Mariani, Luigi; Pastorino, Ugo; Roato, Ilaria; Sozzi, Gabriella; Roz, Luca

    2015-09-01

    Metastasis is the main reason for lung cancer-related mortality, but little is known about specific determinants of successful dissemination from primary tumors and metastasis initiation. Here, we show that CD133(+)/CXCR4(+) cancer-initiating cells (CIC) directly isolated from patient-derived xenografts (PDX) of non-small cell lung cancer are endowed with superior ability to seed and initiate metastasis at distant organs. We additionally report that CXCR4 inhibition successfully prevents the increase of cisplatin-resistant CD133(+)/CXCR4(+) cells in residual tumors and their metastatization. Immunophenotypic analysis of lung tumor cells intravenously injected or spontaneously disseminated to murine lungs demonstrated the survival advantage and increased colonization ability of a specific subset of CD133(+)/CXCR4(+) with reduced expression of epithelial cell adhesion molecule (EpCAM(-)), which also shows the greatest in vitro invasive potential. We next prove that recovered disseminated cells from lungs of PDX-bearing mice enriched for CD133(+)/CXCR4(+)/EpCAM(-) CICs are highly tumorigenic and metastatic. Importantly, microenvironment stimuli eliciting epithelial-to-mesenchymal transition, including signals from cancer-associated fibroblasts, are able to increase the dissemination potential of lung cancer cells through the generation of the CD133(+)/CXCR4(+)/EpCAM(-) subset. These findings also have correlates in patient samples where disseminating CICs are enriched in metastatic lymph nodes (20-fold, P = 0.006) and their detection in primary tumors is correlated with poor clinical outcome (disease-free survival: P = 0.03; overall survival: P = 0.05). Overall, these results highlight the importance of specific cellular subsets in the metastatic process, the need for in-depth characterization of disseminating tumor cells, and the potential of therapeutic strategies targeting both primary tumor and tumor-microenvironment interactions. PMID:26141860

  5. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    SciTech Connect

    Lin, Li; Fuchs, James; Li, Chenglong; Olson, Veronica; Bekaii-Saab, Tanios; Lin, Jiayuh

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower

  6. Effect of adipocyte-secreted factors on EpCAM+/CD133+ hepatic stem cell population.

    PubMed

    Firtina Karagonlar, Zeynep; Koç, Doğukan; Şahin, Eren; Avci, Sanem Tercan; Yilmaz, Mustafa; Atabey, Neşe; Erdal, Esra

    2016-06-01

    Recent epidemiological studies have associated obesity with a variety of cancer types including HCC. However, the tumor initiating role of obesity in hepatocarcinogenesis is still unknown. The objective of this paper is to investigate the effect of adipocyte-secreted factors on EpCAM+/CD133+ cancer stem cells and to identify which factors play a role in modulating hepatic cancer stem cell behavior. Our results demonstrated that adipocyte-secreted factors affect motility and drug resistance of EpCAM+/CD133+ cells. When incubated with adipocyte conditioned media, EpCAM+/CD133+ cells exhibited augmented motility and reduced sorafenib-induced apoptosis. Using array-based system, we identified secretion of several cytokines such as IL6, IL8 and MCP1 by cultured adipocytes and activation of c-Met, STAT3 and ERK1/2 signaling pathways in EpCAM+/CD133+ cells incubated with adipocyte conditioned media. Treating EpCAM+/CD133+ cancer stem cells with IL6 receptor blocking antibody or c-Met inhibitor SU11274 both reduced the increase in motility; however SU11274 had greater effect on relieving protection from sorafenib-induced apoptosis. These results indicate that adipocyte-secreted factors might regulate cancer stem cell behavior through several signaling molecules including c-Met, STAT3 and ERK1/2 and inhibition of these signaling pathways offer novel strategies in targeting the effect of adipose-derived cytokines in cancer. PMID:27131739

  7. An alternatively spliced variant of CXCR3 mediates the metastasis of CD133+ liver cancer cells induced by CXCL9

    PubMed Central

    Ding, Qiang; Xia, Yujia; Ding, Shuping; Lu, Panpan; Sun, Liang; Liu, Mei

    2016-01-01

    Metastasis of liver cancer is closely linked to tumor microenvironment, in which chemokines and their receptors act in an important role. The CXCR3, the receptor of chemokine CXCL9, belongs to a superfamily of rhodopsin-like seven transmembrane GPCRs and CXCR subfamily. In HCC tissues, CXCR3 was frequently upregulated and correlated with tumor size, tumor differentiation, portal invasion and metastasis. In the study, CXCR3-A isoform that was bound by CXCL9 was found to cause significant change of ERK1/2 phosphorylation level in the MAPK signaling pathway, consequently upregulating the MMP2 and MMP9 expression and promoting invasion and metastasis of CD133+ liver cancer cells. Also, CXCR3-A suppressed the adhesion ability of CD133+ liver cancer cells that stimulated by CXCL9 for 24h. These findings suggest that CXCR3 and its ligand CXCL9 could promote the metastasis of liver cancer cells and might be a potential target for the intervention of liver cancer metastasis. PMID:26883105

  8. Lipopolysaccharide supports maintaining the stemness of CD133(+) hepatoma cells through activation of the NF-κB/HIF-1α pathway.

    PubMed

    Lai, Fo-Bao; Liu, Wen-Ting; Jing, Ying-Ying; Yu, Guo-Feng; Han, Zhi-Peng; Yang, Xue; Zeng, Jian-Xing; Zhang, Hang-Jie; Shi, Rong-Yu; Li, Xiao-Yong; Pan, Xiao-Rong; Li, Rong; Zhao, Qiu-Dong; Wu, Meng-Chao; Zhang, Ping; Liu, Jing-Feng; Wei, Li-Xin

    2016-08-10

    Due to the existence of cancer stem cells (CSCs), persistence and relapse of human hepatocellular carcinoma (HCC) are common after treatment with existing anti-cancer therapies. Emerging evidence indicates that lipopolysaccharide (LPS) plays a crucial role in aggravating HCC, but information about the effect of LPS on CSCs of HCC remains scant. Here, we report that the stemness of CD133(+) CSCs sorted from the human HCC cell line Huh7 was maintained well when cells were cultured with LPS. The reduction of CD133 expression was much lesser in cultured CSCs in the presence of LPS. In response to LPS stimulation, CSCs showed an increase in their activity of clonogenesis and tumorigenesis. LPS also supported maintaining CSC abilities of migration, invasion, and chemo-resistance. Treatment with HIF-1α-specific siRNA significantly reduced CD133 expression by CSCs at both mRNA and protein levels. Further, the expression of HIF-1α and CD133 was reduced in LPS-stimulated CSCs when the NF-κB inhibitor was added to the cell culture. HIF-1α-specific siRNA also effectively counteracted the effect of LPS on maintaining CSC abilities of migration and invasion. These data indicate that LPS, an important mediator in the liver tumor microenvironment, supports the maintenance of CSC stemness through signaling of the NF-κB/HIF-1α pathway. Our current study highlights LPS as a potential target for developing new therapeutic approaches to eliminate CSCs during the treatment of HCC. PMID:27208741

  9. Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma

    PubMed Central

    Hou, Ya-Chin; Chao, Ying-Jui; Tung, Hui-Ling; Wang, Hao-Chen; Shan, Yan-Shen

    2014-01-01

    BACKGROUND The interactions between cancer stem cells (CSCs) and tumor-associated macrophages (TAMs) can promote tumor progression, maintain the CSCs population, and reduce therapeutic effects. The objective of this study was to investigate the coexpression of CSCs and TAMs and its clinical significance in pancreatic ductal adenocarcinoma (PDAC). METHODS Ninety-six patients with PDAC were included in this study. Tissue microarrays were constructed for immunostaining of the CSCs markers CD44 and CD133 and the TAMs marker CD204. Correlations between the expression of CSCs and TAMs markers and clinicopathologic characteristics or disease progression were analyzed. RESULTS Expression levels of CD44/CD133 and CD204 were significantly higher in tumor tissues than in normal tissues (P < .0001). The variables associated with survival were high coexpression of CD44/CD133 (P = .000), high expression of CD204 (P = .011), and tumor grade (P = .014). There was a positive correlation between CD44/CD133 and CD204 expression (r = 0.294; P = .004). Survival analysis indicated that high coexpression of CD44/CD133 and CD204 was associated significantly with shorter overall survival (P = .000) and disease-free survival (P = .003). Multivariate analysis revealed that high CD44/CD133 expression was an independent prognostic factor for disease-free survival, whereas high CD204 expression was an independent predictor for both overall and disease-free survival. CONCLUSIONS Coexpression of CD44/CD133 and CD204 is a useful survival prediction marker for patients with PDAC. Cancer 2014;120:2766–2777. © The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. The clinical significance of pancreatic cancer stem cells and tumor-associated macrophages is explored in patients with pancreatic ductal adenocarcinoma. The results clearly demonstrate that coexpression of 2 cancer stem cell markers (CD44 and CD133) and a tumor

  10. Putative CD133+ melanoma cancer stem cells induce initial angiogenesis in vivo.

    PubMed

    Zimmerer, Rüdiger M; Matthiesen, Peter; Kreher, Fritjof; Kampmann, Andreas; Spalthoff, Simon; Jehn, Philipp; Bittermann, Gido; Gellrich, Nils-Claudius; Tavassol, Frank

    2016-03-01

    Tumor angiogenesis is essential for tumor growth and metastasis, and is regulated by a complex network of various types of cells, chemokines, and stimulating factors. In contrast to sprouting angiogenesis, tumor angiogenesis is also influenced by hypoxia, inflammation, and the attraction of bone-marrow-derived cells. Recently, cancer stem cells have been reported to mimic vascularization by differentiating into endothelial cells and inducing vessel formation. In this study, the influence of cancer stem cells on initial angiogenesis was evaluated for the metastatic melanoma cell line D10. Following flow cytometry, CD133+ and CD133- cells were isolated using magnetic cell separation and different cell fractions were transferred to porcine gelatin sponges, which were implanted into the dorsal skinfold chamber of immunocompromised mice. Angiogenesis was analyzed based on microvessel density over a 10-day period using in vivo fluorescence microscopy, and the results were verified using immunohistology. CD133+ D10 cells showed a significant induction of early angiogenesis in vivo, contrary to CD133- D10 cells, unsorted D10 cells, and negative control. Neovascularization was confirmed by visualizing endothelial cells by immunohistology using an anti-CD31 antibody. Because CD133+ cells are rare in clinical specimens and hardly amenable to functional assays, the D10 cell line provides a suitable model to study the angiogenic potential of putative cancer stem cells and the leukocyte-endothelial cell interaction in the dorsal skinfold chamber in vivo. This cancer stem cell model might be useful in the development and evaluation of therapeutic agents targeting tumors. PMID:26656667

  11. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH⁺/CD133⁺ stem cell-like human colon cancer cells.

    PubMed

    Lin, Li; Fuchs, James; Li, Chenglong; Olson, Veronica; Bekaii-Saab, Tanios; Lin, Jiayuh

    2011-12-16

    Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH(+)/CD133(+)). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower IC50 in colon cancer stem-like cells. In summary, our results indicate that STAT3 is a novel therapeutic target in colon cancer stem-like cells and inhibition of STAT3 in cancer stem-like cells may offer a potential treatment for colorectal cancer. PMID:22074823

  12. TGFBIp regulates differentiation of EPC (CD133(+) C-kit(+) Lin(-) cells) to EC through activation of the Notch signaling pathway.

    PubMed

    Maeng, Yong-Sun; Choi, Yeon Jeong; Kim, Eung Kweon

    2015-06-01

    Endothelial progenitor cells (EPCs) in the circulatory system have been suggested to maintain vascular homeostasis and contribute to adult vascular regeneration and repair. These processes require that EPCs recognize the extracellular matrix (ECM), migrate, differentiate, and undergo tube morphogenesis. The ECM plays a critical role by providing biochemical and biophysical cues that regulate cellular behavior. Here, we tested the importance of transforming growth factor-beta-induced protein (TGFBIp) in regulation of the differentiation and angiogenic potential of human cord blood-derived EPCs (CD133(+) C-kit(+) Lin(-) cells). EPCs displayed increased endothelial differentiation when plated on TGFBIp compared to fibronectin. EPCs also exhibited increased adhesion and migration upon TGFBIp stimulation. Moreover, TGFBIp induced phosphorylation of the intracellular signaling molecules SRC, FAK, AKT, JNK, and ERK in EPCs. Using integrin-neutralizing antibodies, we showed that the effects of TGFBIp on EPCs are mediated by integrins α4 and α5. Furthermore, TGFBIp increased the adhesion, migration, and tube formation of CD34(+) mouse bone marrow stem cells in vitro. Gene expression analysis of EPCs plated on TGFBIp revealed that EPCs stimulated by TGFBIp exhibit increased expression of Notch ligands, such as delta-like 1 (DLL1) and Jagged1 (JAG1), through nuclear factor-kappa B signaling activation. Collectively, our findings demonstrate, for the first time, that locally generated TGFBIp at either wounds or tumor sites may contribute to differentiation and angiogenic function of EPCs by augmenting the recruitment of EPCs and regulating the expression of endothelial genes DLL1 and JAG1. PMID:25786978

  13. Thalidomide is more efficient than sodium butyrate in enhancing GATA-1 and EKLF gene expression in erythroid progenitors derived from HSCs with β-globin gene mutation

    PubMed Central

    Jalali Far, Mohammad Ali; Dehghani Fard, Ali; Hajizamani, Saiedeh; Mossahebi-Mohammadi, Majid; Yaghooti, Hamid; Saki, Najmaldin

    2016-01-01

    Background: Efficient induction of fetal hemoglobin (HbF) is considered as an effective therapeutic approach in beta thalassemia. HbF inducer agents can induce the expression of γ-globin gene and produce high levels of HbF via different epigenetic and molecular mechanisms. Thalidomide and sodium butyrate are known as HbF inducer drugs. Material and methods: CD133+ stem cells were isolated from umbilical cord blood of a newborn with minor β-thalassemia in order to evaluate the effects of these two drugs on the in vitro expression of GATA-1 and EKLF genes as erythroid transcription factors. CD133+ stem cells were expanded and differentiated into erythroid lineage and then treated with thalidomide and sodium butyrate and finally analyzed by quantitative real-time PCR. Statistical analysis was performed using student’s t-test by SPSS software. Results: Thalidomide and sodium butyrate increased GATA-1 and EKLF gene expression, compared to the non-treated control (P<0.05). Conclusion: Thalidomide was more efficient than sodium butyrate in augmenting expression of GATA-1 and EKLF genes. It seems that GATA-1 and EKLF have crucial roles in the efficient induction of HbF by thalidomide. PMID:27047649

  14. Detection of CD133 (prominin-1) in a human hepatoblastoma cell line (HuH-6 clone 5)

    PubMed Central

    Akita, Masumi; Tanaka, Kayoko; Murai, Noriko; Matsumoto, Sachiko; Fujita, Keiko; Takaki, Takashi; Nishiyama, Hidetoshi

    2013-01-01

    We examined CD133 distribution in a human hepatoblastoma cell line (HuH-6 clone 5). We directly observed the cultured cells on a pressure-resistant thin film (silicon nitride thin film) in a buffer solution by using the newly developed atmospheric scanning electron microscope (ASEM), which features an open sample dish with a silicon nitride thin film window at its base, through which the scanning electron microscope beam scans samples in solution, from below. The ASEM enabled observation of the ventral cell surface, which could not be observed using standard SEM. However, observation of the dorsal cell surface was difficult with the ASEM. Therefore, we developed a new method to observe the dorsal side of cells by using Aclar® plastic film. In this method, cells are cultured on Aclar plastic film and the dorsal side of cells is in contact with the thin silicon nitride film of the ASEM dish. A preliminary study using the ASEM showed that CD133 was mainly localized in membrane ruffles in the peripheral regions of the cell. Standard transmission electron microscopy and scanning electron microscopy revealed that CD133 was preferentially concentrated in a complex structure comprising filopodia and the leading edge of lamellipodia. We also observed co-localization of CD133 with F-actin. An antibody against CD133 decreased cell migration. Methyl-β-cyclodextrin treatment decreased cell adhesion as well as lamellipodium and filopodium formation. A decrease in the cholesterol level may perturb CD133 membrane localization. The results suggest that CD133 membrane localization plays a role in tumor cell adhesion and migration. PMID:23712466

  15. Detection of CD133 (prominin-1) in a human hepatoblastoma cell line (HuH-6 clone 5).

    PubMed

    Akita, Masumi; Tanaka, Kayoko; Murai, Noriko; Matsumoto, Sachiko; Fujita, Keiko; Takaki, Takashi; Nishiyama, Hidetoshi

    2013-08-01

    We examined CD133 distribution in a human hepatoblastoma cell line (HuH-6 clone 5). We directly observed the cultured cells on a pressure-resistant thin film (silicon nitride thin film) in a buffer solution by using the newly developed atmospheric scanning electron microscope (ASEM), which features an open sample dish with a silicon nitride thin film window at its base, through which the scanning electron microscope beam scans samples in solution, from below. The ASEM enabled observation of the ventral cell surface, which could not be observed using standard SEM. However, observation of the dorsal cell surface was difficult with the ASEM. Therefore, we developed a new method to observe the dorsal side of cells by using Aclar® plastic film. In this method, cells are cultured on Aclar plastic film and the dorsal side of cells is in contact with the thin silicon nitride film of the ASEM dish. A preliminary study using the ASEM showed that CD133 was mainly localized in membrane ruffles in the peripheral regions of the cell. Standard transmission electron microscopy and scanning electron microscopy revealed that CD133 was preferentially concentrated in a complex structure comprising filopodia and the leading edge of lamellipodia. We also observed co-localization of CD133 with F-actin. An antibody against CD133 decreased cell migration. Methyl-β-cyclodextrin treatment decreased cell adhesion as well as lamellipodium and filopodium formation. A decrease in the cholesterol level may perturb CD133 membrane localization. The results suggest that CD133 membrane localization plays a role in tumor cell adhesion and migration. PMID:23712466

  16. Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood.

    PubMed

    Shaikh, A; Nagvenkar, P; Pethe, P; Hinduja, I; Bhartiya, D

    2015-09-01

    Very small embryonic-like stem cells (VSELs) are immature primitive cells residing in adult and fetal tissues. This study describes enrichment strategy and molecular and phenotypic characterization of human cord blood VSELs. Flow cytometry analysis revealed that a majority of VSELs (LIN(-)/CD45(-)/CD34(+)) were present in the red blood cell (RBC) pellet after Ficoll-Hypaque centrifugation in contrast to the hematopoietic stem cells (LIN(-)/CD45(+)/CD34(+)) in the interphase layer. Thus, after lyses of RBCs, VSELs were enriched using CD133 and SSEA4 antibodies. These enriched cells were small in size (4-6 μm), spherical, exhibited telomerase activity and expressed pluripotent stem cell (OCT4A, OCT4, SSEA4, NANOG, SOX2, REX1), primordial germ cell (STELLA, FRAGILIS) as well as primitive hematopoietic (CD133, CD34) markers at protein and transcript levels. Heterogeneity was noted among VSELs based on subtle differences in expression of various markers studied. DNA analysis and cell cycle studies revealed that a majority of enriched VSELs were diploid, non-apoptotic and in G0/G1 phase, reflecting their quiescent state. VSELs also survived 5-fluorouracil treatment in vitro and treated cells entered into cell cycle. This study provides further support for the existence of pluripotent, diploid and relatively quiescent VSELs in cord blood and suggests further exploration of the subpopulations among them. PMID:25882698

  17. Flow cytometry data analysis of CD34+/CD133+ stem cells in bone marrow and peripheral blood and T, B, and NK cells after hematopoietic grafting.

    PubMed

    Jaime-Pérez, José C; Villarreal-Villarreal, César D; Vázquez-Garza, Eduardo; Méndez-Ramírez, Nereida; Salazar-Riojas, Rosario; Gómez-Almaguer, David

    2016-06-01

    This article provides flow cytometry information regarding levels of expression for hematopoietic stem cell markers CD34 and CD133 obtained simultaneously of the bone marrow and peripheral blood from recipients of allogeneic and autologous transplants of PB hematoprogenitors for treating hematological malignancies and who were clinically healthy after ≥100 days following the procedure. CD34 and CD133 expression is compared regarding type of transplant (autologous vs. allogeneic) and sample cell source (bone marrow vs. peripheral blood). Patients were conditioned with a reduced-intensity conditioning regimen. Also shown is the flow cytometry analysis of mononuclear cell and lymphocyte populations in the peripheral blood of both types of recipients, as well as the characterization of immune cells, including T lymphocyte antigenic make up markers CD3, CD4 and CD8, B lymphocytes and NK cells, including total NK, bright and dim subtypes in the peripheral blood of both types of recipients. For further information and discussion regarding interpretation and meaning of post-transplant flow cytometry analysis, please refer to the article "Assessment of immune reconstitution status in recipients of a successful hematopoietic stem cell transplant from peripheral blood after reduced intensity conditioning" [1]. PMID:27115030

  18. Cell-Surface MMP-9 Protein Is a Novel Functional Marker to Identify and Separate Proangiogenic Cells from Early Endothelial Progenitor Cells Derived from CD133(+) Cells.

    PubMed

    Kanayasu-Toyoda, Toshie; Tanaka, Takeshi; Kikuchi, Yutaka; Uchida, Eriko; Matsuyama, Akifumi; Yamaguchi, Teruhide

    2016-05-01

    To develop cell therapies for ischemic diseases, endothelial progenitor cells (EPCs) have been expected to play a pivotal role in vascular regeneration. It is desirable to use a molecular marker that is related to the function of the cells. Here, a quantitative polymerase chain reaction array revealed that early EPCs derived from CD133(+) cells exhibited significant expression of MMP-9. Some populations of early EPCs expressed MMP-9 on the cell surface and others did not. We also attempted to separate the proangiogenic fraction from early EPCs derived from CD133(+) cells using a functional cell surface marker, and we then analyzed the MMP-9(+) and MMP-9(-) cell fractions. The MMP-9(+) cells not only revealed higher invasion ability but also produced a high amount of IL-8. Moreover, the stimulative effect of MMP-9(+) cells on angiogenesis in vitro and in vivo was prohibited by anti-IL-8 antibody. These data indicate that MMP-9 is one of the useful cell surface markers for the separation of angiogenic cells. Our treatment of early EPCs with hyaluronidase caused not only a downregulation of cell-surface MMP-9 but also a decrease in invasion ability, indicating that membrane-bound MMP-9, which is one of the useful markers for early EPCs, plays an important role in angiogenesis. Stem Cells 2016;34:1251-1262. PMID:26824798

  19. Imaging and Selective Elimination of Glioblastoma Stem Cells with Theranostic Near-Infrared-Labeled CD133-Specific Antibodies

    PubMed Central

    Jing, Hua; Weidensteiner, Claudia; Reichardt, Wilfried; Gaedicke, Simone; Zhu, Xuekai; Grosu, Anca-Ligia; Kobayashi, Hisataka; Niedermann, Gabriele

    2016-01-01

    Near-infrared photoimmunotherapy (NIR-PIT), which employs monoclonal antibody (mAb)-phototoxic phthalocyanine dye IR700 conjugates, permits the specific, image-guided and spatiotemporally controlled elimination of tumor cells. Here, we report the highly efficient NIR-PIT of human tumor xenografts initiated from patient-derived cancer stem cells (CSCs). Using glioblastoma stem cells (GBM-SCs) expressing the prototypic CSC marker AC133/CD133, we also demonstrate here for the first time that NIR-PIT is highly effective against brain tumors. The intravenously injected theranostic AC133 mAb conjugate enabled the non-invasive detection of orthotopic gliomas by NIR fluorescence imaging, and reached AC133+ GBM-SCs at the invasive tumor front. AC133-targeted NIR-PIT induced the rapid cell death of AC133+ GBM-SCs and thereby strong shrinkage of both subcutaneous and invasively growing brain tumors. A single round of NIR-PIT extended the overall survival of mice with established orthotopic gliomas by more than a factor of two, even though the harmless NIR light was applied through the intact skull. Humanised versions of this theranostic agent may facilitate intraoperative imaging and histopathological evaluation of tumor borders and enable the highly specific and efficient eradication of CSCs. PMID:27162556

  20. CD133+ ovarian cancer stem-like cells promote non-stem cancer cell metastasis via CCL5 induced epithelial-mesenchymal transition

    PubMed Central

    Qi, Wei; Huang, Jiani; Chen, Junying; He, Luhang; Liang, Zhiqing; Guo, Bo; Li, Yongsheng; Xie, Rongkai; Zhu, Bo

    2015-01-01

    Cancer stem cells (CSCs, also called cancer stem-like cells, CSLCs) can function as “seed cells” for tumor recurrence and metastasis. Here, we report that, in the presence of CD133+ ovarian CSLCs, CD133− non-CSLCs can undergo an epithelial-mesenchymal transition (EMT)-like process and display enhanced metastatic capacity in vitro and in vivo. Highly elevated expression of chemokine (C-C motif) ligand 5 (CCL5) and its receptors chemokine (C-C motif) receptor (CCR) 1/3/5 are observed in clinical and murine metastatic tumor tissues from epithelial ovarian carcinomas. Mechanistically, paracrine CCL5 from ovarian CSLCs activates the NF-κB signaling pathway in ovarian non-CSLCs via binding CCR1/3/5, thereby inducing EMT and tumor invasion. Taken together, our results redefine the metastatic potential of non-stem cancer cells and provide evidence that targeting the CCL5:CCR1/3/5-NF-κB pathway could be an effective strategy to prevent ovarian cancer metastasis. PMID:25788271

  1. Coencapsulation of epirubicin and metformin in PEGylated liposomes inhibits the recurrence of murine sarcoma S180 existing CD133+ cancer stem-like cells.

    PubMed

    Yang, Qiang; Zhang, Ting; Wang, Chunling; Jiao, Jiao; Li, Jing; Deng, Yihui

    2014-11-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, which constitute a subpopulation of tumor cells, are key drivers of tumorigenesis and potential recurrence of cancer. The CSC theory has brought new opportunities as well as challenges to the development of sophisticated drug delivery systems for treating cancer. In the present study, CD133+ cells were sorted from S180 cell lines by magnetic activated cell sorting and a fraction (approximately 1.01%) of CD133+ cells with higher proliferative potential and stronger tumorigenicity in vivo compared with CD133- cells was identified. Furthermore, a procedure for the coencapsulation of epirubicin (EPI) and metformin (MET) was developed with the primary goal of eradicating the bulk population of CD133- cells and the rare population of CD133+ cancer stem-like cells, thus ultimately preventing tumor relapse. The inhibitory effect of free MET was more potent in CD133+cells than in CD133- cells; in addition, EPI- and MET-coencapsulated liposomes exhibited increased cytotoxicity against CD133+ cells compared with liposomal EPI alone. Meanwhile, tumors in KM mice were completely eliminated upon multiple intravenous injections of liposomal EPI and MET, and tumors virtually eliminated in the experimental period, which could be attributed to the arrest of CD133+ cells in the G0/G1 phase. The coencapsulation of an anti-CSC agent with conventional chemotherapy drugs in liposomes may be a promising drug delivery strategy for fighting cancer and eradicating tumor stem cells. PMID:25460146

  2. Identification of Three Molecular and Functional Subtypes in Canine Hemangiosarcoma through Gene Expression Profiling and Progenitor Cell Characterization

    PubMed Central

    Gorden, Brandi H.; Kim, Jong-Hyuk; Sarver, Aaron L.; Frantz, Aric M.; Breen, Matthew; Lindblad-Toh, Kerstin; O'Brien, Timothy D.; Sharkey, Leslie C.; Modiano, Jaime F.; Dickerson, Erin B.

    2015-01-01

    Canine hemangiosarcomas have been ascribed to an endothelial origin based on histologic appearance; however, recent findings suggest that these tumors may arise instead from hematopoietic progenitor cells. To clarify this ontogenetic dilemma, we used genome-wide expression profiling of primary hemangiosarcomas and identified three distinct tumor subtypes associated with angiogenesis (group 1), inflammation (group 2), and adipogenesis (group 3). Based on these findings, we hypothesized that a common progenitor may differentiate into the three tumor subtypes observed in our gene profiling experiment. To investigate this possibility, we cultured hemangiosarcoma cell lines under normal and sphere-forming culture conditions to enrich for tumor cell progenitors. Cells from sphere-forming cultures displayed a robust self-renewal capacity and exhibited genotypic, phenotypic, and functional properties consistent with each of the three molecular subtypes seen in primary tumors, including expression of endothelial progenitor cell (CD133 and CD34) and endothelial cell (CD105, CD146, and αvβ3 integrin) markers, expression of early hematopoietic (CD133, CD117, and CD34) and myeloid (CD115 and CD14) differentiation markers in parallel with increased phagocytic capacity, and acquisition of adipogenic potential. Collectively, these results suggest that canine hemangiosarcomas arise from multipotent progenitors that differentiate into distinct subtypes. Improved understanding of the mechanisms that determine the molecular and phenotypic differentiation of tumor cells in vivo could change paradigms regarding the origin and progression of endothelial sarcomas. PMID:24525151

  3. Identification of three molecular and functional subtypes in canine hemangiosarcoma through gene expression profiling and progenitor cell characterization.

    PubMed

    Gorden, Brandi H; Kim, Jong-Hyuk; Sarver, Aaron L; Frantz, Aric M; Breen, Matthew; Lindblad-Toh, Kerstin; O'Brien, Timothy D; Sharkey, Leslie C; Modiano, Jaime F; Dickerson, Erin B

    2014-04-01

    Canine hemangiosarcomas have been ascribed to an endothelial origin based on histologic appearance; however, recent findings suggest that these tumors may arise instead from hematopoietic progenitor cells. To clarify this ontogenetic dilemma, we used genome-wide expression profiling of primary hemangiosarcomas and identified three distinct tumor subtypes associated with angiogenesis (group 1), inflammation (group 2), and adipogenesis (group 3). Based on these findings, we hypothesized that a common progenitor may differentiate into the three tumor subtypes observed in our gene profiling experiment. To investigate this possibility, we cultured hemangiosarcoma cell lines under normal and sphere-forming culture conditions to enrich for tumor cell progenitors. Cells from sphere-forming cultures displayed a robust self-renewal capacity and exhibited genotypic, phenotypic, and functional properties consistent with each of the three molecular subtypes seen in primary tumors, including expression of endothelial progenitor cell (CD133 and CD34) and endothelial cell (CD105, CD146, and αvβ3 integrin) markers, expression of early hematopoietic (CD133, CD117, and CD34) and myeloid (CD115 and CD14) differentiation markers in parallel with increased phagocytic capacity, and acquisition of adipogenic potential. Collectively, these results suggest that canine hemangiosarcomas arise from multipotent progenitors that differentiate into distinct subtypes. Improved understanding of the mechanisms that determine the molecular and phenotypic differentiation of tumor cells in vivo could change paradigms regarding the origin and progression of endothelial sarcomas. PMID:24525151

  4. Biology and clinical implications of CD133{sup +} liver cancer stem cells

    SciTech Connect

    Ma, Stephanie

    2013-01-15

    Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver, accounting for 80%–90% of all liver cancers. The disease ranks as the fifth most common cancer worldwide and is the third leading cause of all cancer-associated deaths. Although advances in HCC detection and treatment have increased the likelihood of a cure at early stages of the disease, HCC remains largely incurable because of late presentation and tumor recurrence. Only 25% of HCC patients are deemed suitable for curative treatment, with the overall survival at just a few months for inoperable patients. Apart from surgical resection, loco-regional ablation and liver transplantation, current treatment protocols include conventional cytotoxic chemotherapy. But due to the highly resistant nature of the disease, the efficacy of the latter regimen is limited. The recent emergence of the cancer stem cell (CSC) concept lends insight into the explanation of why treatment with chemotherapy often may seem to be initially successful but results in not only a failure to eradicate the tumor but also possibly tumor relapse. Commonly used anti-cancer drugs in HCC work by targeting the rapidly proliferating and differentiated liver cancer cells that constitute the bulk of the tumor. However, a subset of CSCs exists within the tumor, which are more resistant and are able to survive and maintain residence after treatment, thus, growing and self-renewing to generate the development and spread of recurrent tumors in HCC. In the past few years, compelling evidence has emerged in support of the hierarchic CSC model for solid tumors, including HCC. And in particular, CD133 has drawn significant attention as a critical liver CSC marker. Understanding the characteristics and function of CD133{sup +} liver CSCs has also shed light on HCC management and treatment, including the implications for prognosis, prediction and treatment resistance. In this review, a detailed summary of the recent progress

  5. Patient derived cell culture and isolation of CD133⁺ putative cancer stem cells from melanoma.

    PubMed

    Welte, Yvonne; Davies, Cathrin; Schäfer, Reinhold; Regenbrecht, Christian R A

    2013-01-01

    Despite improved treatments options for melanoma available today, patients with advanced malignant melanoma still have a poor prognosis for progression-free and overall survival. Therefore, translational research needs to provide further molecular evidence to improve targeted therapies for malignant melanomas. In the past, oncogenic mechanisms related to melanoma were extensively studied in established cell lines. On the way to more personalized treatment regimens based on individual genetic profiles, we propose to use patient-derived cell lines instead of generic cell lines. Together with high quality clinical data, especially on patient follow-up, these cells will be instrumental to better understand the molecular mechanisms behind melanoma progression. Here, we report the establishment of primary melanoma cultures from dissected fresh tumor tissue. This procedure includes mincing and dissociation of the tissue into single cells, removal of contaminations with erythrocytes and fibroblasts as well as primary culture and reliable verification of the cells' melanoma origin. Recent reports revealed that melanomas, like the majority of tumors, harbor a small subpopulation of cancer stem cells (CSCs), which seem to exclusively fuel tumor initiation and progression towards the metastatic state. One of the key markers for CSC identification and isolation in melanoma is CD133. To isolate CD133(+) CSCs from primary melanoma cultures, we have modified and optimized the Magnetic-Activated Cell Sorting (MACS) procedure from Miltenyi resulting in high sorting purity and viability of CD133(+) CSCs and CD133(-) bulk, which can be cultivated and functionally analyzed thereafter. PMID:23525090

  6. Spatial Distribution of Prominin-1 (CD133) – Positive Cells within Germinative Zones of the Vertebrate Brain

    PubMed Central

    Jászai, József; Graupner, Sylvi; Tanaka, Elly M.; Funk, Richard H. W.; Huttner, Wieland B.; Brand, Michael; Corbeil, Denis

    2013-01-01

    Background In mammals, embryonic neural progenitors as well as adult neural stem cells can be prospectively isolated based on the cell surface expression of prominin-1 (CD133), a plasma membrane glycoprotein. In contrast, characterization of neural progenitors in non-mammalian vertebrates endowed with significant constitutive neurogenesis and inherent self-repair ability is hampered by the lack of suitable cell surface markers. Here, we have investigated whether prominin-1–orthologues of the major non-mammalian vertebrate model organisms show any degree of conservation as for their association with neurogenic geminative zones within the central nervous system (CNS) as they do in mammals or associated with activated neural progenitors during provoked neurogenesis in the regenerating CNS. Methods We have recently identified prominin-1 orthologues from zebrafish, axolotl and chicken. The spatial distribution of prominin-1–positive cells – in comparison to those of mice – was mapped in the intact brain in these organisms by non-radioactive in situ hybridization combined with detection of proliferating neural progenitors, marked either by proliferating cell nuclear antigen or 5-bromo-deoxyuridine. Furthermore, distribution of prominin-1 transcripts was investigated in the regenerating spinal cord of injured axolotl. Results Remarkably, a conserved association of prominin-1 with germinative zones of the CNS was uncovered as manifested in a significant co-localization with cell proliferation markers during normal constitutive neurogenesis in all species investigated. Moreover, an enhanced expression of prominin-1 became evident associated with provoked, compensatory neurogenesis during the epimorphic regeneration of the axolotl spinal cord. Interestingly, significant prominin-1–expressing cell populations were also detected at distinct extraventricular (parenchymal) locations in the CNS of all vertebrate species being suggestive of further, non-neurogenic neural

  7. GENE EXPRESSION NETWORKS

    EPA Science Inventory

    "Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...

  8. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  9. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma

    PubMed Central

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers—CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin—by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  10. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma.

    PubMed

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers-CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin-by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  11. Gene expression networks.

    PubMed

    Thomas, Reuben; Portier, Christopher J

    2013-01-01

    With the advent of microarrays and next-generation biotechnologies, the use of gene expression data has become ubiquitous in biological research. One potential drawback of these data is that they are very rich in features or genes though cost considerations allow for the use of only relatively small sample sizes. A useful way of getting at biologically meaningful interpretations of the environmental or toxicological condition of interest would be to make inferences at the level of a priori defined biochemical pathways or networks of interacting genes or proteins that are known to perform certain biological functions. This chapter describes approaches taken in the literature to make such inferences at the biochemical pathway level. In addition this chapter describes approaches to create hypotheses on genes playing important roles in response to a treatment, using organism level gene coexpression or protein-protein interaction networks. Also, approaches to reverse engineer gene networks or methods that seek to identify novel interactions between genes are described. Given the relatively small sample numbers typically available, these reverse engineering approaches are generally useful in inferring interactions only among a relatively small or an order 10 number of genes. Finally, given the vast amounts of publicly available gene expression data from different sources, this chapter summarizes the important sources of these data and characteristics of these sources or databases. In line with the overall aims of this book of providing practical knowledge to a researcher interested in analyzing gene expression data from a network perspective, the chapter provides convenient publicly accessible tools for performing analyses described, and in addition describe three motivating examples taken from the published literature that illustrate some of the relevant analyses. PMID:23086841

  12. Intracoronary Infusion of Autologous CD133+ Cells in Myocardial Infarction and Tracing by Tc99m MIBI Scintigraphy of the Heart Areas Involved in Cell Homing

    PubMed Central

    Kurbonov, Ubaidullo; Dustov, Abdusamad; Barotov, Alisher; Khidirov, Murtazokul; Mirojov, Giesidin; Rahimov, Zikrie; Navjuvonov, Navjuvon; Rizoev, Eraj; Olimov, Nasim; Goibov, Alijon; Karim-Zade, Bakhtovar; Rakhmatov, Mukim; Muminjonov, Suhayli; Didari, Azadeh; Irgasheva, Jamila; Bobokhojaev, Oktam; Gulmuradov, Tashpulat; Therwath, Amu; Rakhmonov, Sohibnazar; Mirshahi, Massoud

    2013-01-01

    CD133 mesenchymal cells were enriched using magnetic microbead anti-CD133 antibody from bone marrow mononuclear cells (BMMNCs). Flow cytometry and immunocytochemistry analysis using specific antibodies revealed that these cells were essentially 89 ± 4% CD133+ and 8 ± 5% CD34+. CD133+/CD34+ BMMNCs secrete important bioactive proteins such as cardiotrophin-1, angiogenic and neurogenic factors, morphogenetic proteins, and proinflammatory and remodeling factors in vitro. Single intracoronary infusions of autologous CD133+/CD34+ BMMNCs are effective and reduce infarct size in patients as analyzed by Tc99m MIBI myocardial scintigraphy. The majority of patients were treated via left coronary artery. Nine months after cell therapy, 5 out of 8 patients showed a net positive response to therapy in different regions of the heart. Uptake of Tc99 isotope and revitalization of the heart area in inferoseptal region are more pronounced (P = 0.016) as compared to apex and anterosptal regions after intracoronary injection of the stem cells. The cells chosen here have the properties essential for their potential use in cell therapy and their homing can be followed without major difficulty by the scintigraphy. The cell therapy proposed here is safe and should be practiced, as we found, in conjunction with scintigraphic observation of areas of heart which respond optimally to the infusion of autologous CD133+/CD34+ BMMNCs. PMID:23983717

  13. OCT4 Remodels the Phenotype and Promotes Angiogenesis of HUVECs by Changing the Gene Expression Profile

    PubMed Central

    Mou, Yan; Yue, Zhen; Wang, Xiaotong; Li, Wenxue; Zhang, Haiying; Wang, Yang; Li, Ronggui; Sun, Xin

    2016-01-01

    It has been shown that forced expression of four mouse stem cell factors (OCT4, Sox2, Klf4, and c-Myc) changed the phenotype of rat endothelial cells to vascular progenitor cells. The present study aimed to explore whether the expression of OCT4 alone might change the phenotype of human umbilical vein endothelial cells (HUVECs) to endothelial progenitor cells and, if so, to examine the possible mechanism involved. A Matrigel-based in vitro angiogenesis assay was used to evaluate the angiogenesis of the cells; the gene expression profile was analyzed by an oligonucleotide probe-based gene array chip and validated by RT-QPCR. The cellular functions of the mRNAs altered by OCT4 were analyzed with Gene Ontology. We found that induced ectopic expression of mouse OCT4 in HUVECs significantly enhanced angiogenesis of the cells, broadly changed the gene expression profile and particularly increased the expression of CD133, CD34, and VEGFR2 (KDR) which are characteristic marker molecules for endothelial progenitor cells (EPCs). Furthermore by analyzing the cellular functions that were targeted by the mRNAs altered by OCT4 we found that stem cell maintenance and cell differentiation were among the top functional response targeted by up-regulated and down-regulated mRNAs upon forced expression of OCT4. These results support the argument that OCT4 remodels the phenotype of HUVECs from endothelial cells to EPCs by up-regulating the genes responsible for stem cell maintenance and down-regulating the genes for cell differentiation. PMID:27226779

  14. Human osteosarcoma CD49f−CD133+ cells: impaired in osteogenic fate while gain of tumorigenicity

    PubMed Central

    Ying, Meidan; Liu, Gang; Shimada, Hiroyuki; Ding, Wanjing; May, William A.; He, Qiaojun; Adams, Gregor B.; Wu, Lingtao

    2014-01-01

    The biological relationships among self-renewal, tumorigenicity, and lineage differentiation of human osteosarcoma-initiating cells (OSIC) remain elusive, making it difficult to identify and distinguish OSIC from osteosarcoma-forming cells (OSFC) for developing OSIC-targeted therapies. Using a new inverse lineage tracking strategy coupled with serial human-to-mouse xenotransplantation, we identified a subpopulation of osteosarcoma cells with OSIC-like properties and sought to distinguish them from their progeny, OSFC. We found that serial transplantation of cells from different osteosarcoma cell lines and primary osteosarcoma tissues progressively increased the CD49f+ subpopulation composing the bulk of the osteosarcoma mass. These CD49f+ cells displayed characteristics of OSFC: limited in vivo tumorigenicity, weak lineage differentiation, more differentiated osteogenic feature, and greater chemo-sensitivity. By contrast, their parental CD49f−CD133+ cells had an inhibited osteogenic fate, together with OSIC-like properties of self-renewal, strong tumorigenicity, and differentiation to CD49f+ progeny. Hence, the CD49f−CD133+ phenotype appears to identify OSIC-like cells that possess strong tumorigenicity correlated with an impaired osteogenic fate and the ability to initiate tumor growth through generation of CD49f+ progeny. These findings advance our understanding of OSIC-like properties and, for the first time, provide a much-needed distinction between OSIC and OSFC in this cancer. PMID:23045288

  15. CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer.

    PubMed

    Cui, Fei; Wang, Jian; Chen, Duan; Chen, Yi-Jiang

    2011-03-01

    Lung cancer is the most common cause of cancer-related death worldwide. Current investigations in the field of cancer research have intensively focused on the 'cancer stem cell' or 'tumor-initiating cell'. While CD133 was initially considered as a stem cell marker only in the hematopoietic system and the nervous system, the membrane antigen also identifies tumorigenic cells in certain solid tumors. In this study, we investigated the human lung cancer cell lines A549, H157, H226, Calu-1, H292 and H446. The results of real-time PCR analysis after chemotherapy drug selection and the fluorescence-activated cell sorting analysis showed that CD133 only functioned as a marker in the small cell lung cancer line H446. The sorted CD133+ subset presented stem cell-like features, including self-renewal, differentiation, proliferation and tumorigenic capacity in subsequent assays. Furthermore, a proportion of the CD133+ cells had a tendency to remain stable, which may explain the controversies arising from previous studies. Therefore, the CD133+ subset should provide an enriched source of tumor-initiating cells among H446 cells. Moreover, the antigen could be used as an investigative marker of the tumorigenic process and an effective treatment for small cell lung cancer. PMID:21174061

  16. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine. PMID:16886903

  17. Human Prominin-1 (CD133) Is Detected in Both Neoplastic and Non-Neoplastic Salivary Gland Diseases and Released into Saliva in a Ubiquitinated Form

    PubMed Central

    Karbanová, Jana; Laco, Jan; Marzesco, Anne-Marie; Janich, Peggy; Voborníková, Magda; Mokrý, Jaroslav; Fargeas, Christine A.; Huttner, Wieland B.; Corbeil, Denis

    2014-01-01

    Prominin-1 (CD133) is physiologically expressed at the apical membranes of secretory (serous and mucous) and duct cells of major salivary glands. We investigated its expression in various human salivary gland lesions using two distinct anti-prominin-1 monoclonal antibodies (80B258 and AC133) applied on paraffin-embedded sections and characterized its occurrence in saliva. The 80B258 epitope was extensively expressed in adenoid cystic carcinoma, in lesser extent in acinic cell carcinoma and pleomorphic adenoma, and rarely in mucoepidermoid carcinoma. The 80B258 immunoreactivity was predominately detected at the apical membrane of tumor cells showing acinar or intercalated duct cell differentiation, which lined duct- or cyst-like structures, and in luminal secretions. It was observed on the whole cell membrane in non-luminal structures present in the vicinity of thin-walled blood vessels and hemorrhagic areas in adenoid cystic carcinoma. Of note, AC133 labeled only a subset of 80B258–positive structures. In peritumoral salivary gland tissues as well as in obstructive sialadenitis, an up-regulation of prominin-1 (both 80B258 and AC133 immunoreactivities) was observed in intercalated duct cells. In most tissues, prominin-1 was partially co-expressed with two cancer markers: carcinoembryonic antigen (CEA) and mucin-1 (MUC1). Differential centrifugation of saliva followed by immunoblotting indicated that all three markers were released in association with small membrane vesicles. Immuno-isolated prominin-1–positive vesicles contained CEA and MUC1, but also exosome-related proteins CD63, flotillin-1, flotillin-2 and the adaptor protein syntenin-1. The latter protein was shown to interact with prominin-1 as demonstrated by its co-immunoisolation. A fraction of saliva-associated prominin-1 appeared to be ubiquitinated. Collectively, our findings bring new insights into the biochemistry and trafficking of prominin-1 as well as its immunohistochemical profile in certain

  18. Evolution of gene expression after gene amplification.

    PubMed

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-05-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  19. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  20. Serial analysis of gene expression.

    PubMed

    Velculescu, V E; Zhang, L; Vogelstein, B; Kinzler, K W

    1995-10-20

    The characteristics of an organism are determined by the genes expressed within it. A method was developed, called serial analysis of gene expression (SAGE), that allows the quantitative and simultaneous analysis of a large number of transcripts. To demonstrate this strategy, short diagnostic sequence tags were isolated from pancreas, concatenated, and cloned. Manual sequencing of 1000 tags revealed a gene expression pattern characteristic of pancreatic function. New pancreatic transcripts corresponding to novel tags were identified. SAGE should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states. PMID:7570003

  1. LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging.

    PubMed

    Roy, Kislay; Kanwar, Rupinder K; Kanwar, Jagat R

    2015-12-01

    This is the first ever attempt to combine anti-cancer therapeutic effects of emerging anticancer biodrug bovine lactoferrin (bLf), and multimodal imaging efficacy of Fe3O4 nanoparticles (NPs) together, as a saturated Fe3O4-bLf. For cancer stem cell specific uptake of nanocapsules/nanocarriers (NCs), Fe3O4-bLf was encapsulated in alginate enclosed chitosan coated calcium phosphate (AEC-CP) NCs targeted (Tar) with locked nucleic acid (LNA) modified aptamers against epithelial cell adhesion molecule (EpCAM) and nucleolin markers. The nanoformulation was fed orally to mice injected with triple positive (EpCAM, CD133, CD44) sorted colon cancer stem cells in the xenograft cancer stem cell mice model. The complete regression of tumor was observed in 70% of mice fed on non-targeted (NT) NCs, with 30% mice showing tumor recurrence after 30 days, while only 10% mice fed with Tar NCs showed tumor recurrence indicating a significantly higher survival rate. From tumor tissue analyses of 35 apoptotic markers, 55 angiogenesis markers, 40 cytokines, 15 stem cell markers and gene expression studies of important signaling molecules, it was revealed that the anti-cancer mechanism of Fe3O4-bLf was intervened through TRAIL, Fas, Fas-associated protein with death domain (FADD) mediated phosphorylation of p53, to induce activation of second mitochondria-derived activator of caspases (SMAC)/DIABLO (inhibiting survivin) and mitochondrial depolarization leading to release of cytochrome C. Induction of apoptosis was observed by inhibition of the Akt pathway and activation of cytokines released from monocytes/macrophages and dendritic cells (interleukin (IL) 27, keratinocyte chemoattractant (KC)). On the other hand, the recurrence of tumor in AEC-CP-Fe3O4-bLf NCs fed mice mainly occurred due to activation of alternative pathways such as mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK) and Wnt signaling leading to an increase in expression of survivin

  2. Cobblestone-Area Forming Cells Derived from Patients with Mantle Cell Lymphoma Are Enriched for CD133+ Tumor-Initiating Cells

    PubMed Central

    Medina, Daniel J.; Abass-Shereef, Jeneba; Walton, Kelly; Goodell, Lauri; Aviv, Hana; Strair, Roger K.; Budak-Alpdogan, Tulin

    2014-01-01

    Mantle cell lymphoma (MCL) is associated with a significant risk of therapeutic failure and disease relapse, but the biological origin of relapse is poorly understood. Here, we prospectively identify subpopulations of primary MCL cells with different biologic and immunophenotypic features. Using a simple culture system, we demonstrate that a subset of primary MCL cells co-cultured with either primary human mesenchymal stromal cells (hMSC) or murine MS-5 cells form in cobblestone-areas consisting of cells with a primitive immunophenotype (CD19−CD133+) containing the chromosomal translocation t (11;14)(q13;q32) characteristic of MCL. Limiting dilution serial transplantation experiments utilizing immunodeficient mice revealed that primary MCL engraftment was only observed when either unsorted or CD19−CD133+ cells were utilized. No engraftment was seen using the CD19+CD133− subpopulation. Our results establish that primary CD19−CD133+ MCL cells are a functionally distinct subpopulation of primary MCL cells enriched for MCL-initiating activity in immunodeficient mice. This rare subpopulation of MCL-initiating cells may play an important role in the pathogenesis of MCL. PMID:24722054

  3. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  4. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  5. Gene Expression in Oligodendroglial Tumors

    PubMed Central

    Shaw, Elisabeth J.; Haylock, Brian; Husband, David; du Plessis, Daniel; Sibson, D. Ross; Warnke, Peter C.; Walker, Carol

    2010-01-01

    Background: Oligodendroglial tumors with 1p/19q loss are more likely to be chemosensitive and have longer survival than those with intact 1p/19q, but not all respond to chemotherapy, warranting investigation of the biological basis of chemosensitivity. Methods: Gene expression profiling was performed using amplified antisense RNA from 28 oligodendroglial tumors treated with chemotherapy (26 serial stereotactic biopsy, 2 resection). Expression of differentially expressed genes was validated by real-time PCR. Results: Unsupervised hierarchical clustering showed clustering of multiple samples from the same case in 14/17 cases and identified subgroups associated with tumor grade and 1p/19q status. 176 genes were differentially expressed, 164 being associated with 1p/19q loss (86% not on 1p or 19q). 94 genes differed between responders and non-responders to chemotherapy; 12 were not associated with 1p/19q loss. Significant differential expression was confirmed in 11/13 selected genes. Novel genes associated with response to therapy included SSBP2, GFRA1, FAP and RASD1. IQGAP1, INA, TGIF1, NR2F2 and MYCBP were differentially expressed in oligodendroglial tumors with 1p/19q loss. Conclusion: Gene expression profiling using serial stereotactic biopsies indicated greater homogeneity within tumors than between tumors. Genes associated with 1p/19q status or response were identified warranting further elucidation of their role in oligodendroglial tumors. PMID:20966545

  6. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy.

    PubMed

    Bostad, Monica; Olsen, Cathrine Elisabeth; Peng, Qian; Berg, Kristian; Høgset, Anders; Selbo, Pål Kristian

    2015-05-28

    The cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs. Here we show that AC133-saporin co-localizes with the PCI-photosensitizer TPCS2a, which upon light exposure induces cytosolic release of AC133-saporin. PCI of picomolar levels of AC133-saporin in colorectal adenocarcinoma WiDr cells blocked cell proliferation and induced 100% inhibition of cell viability and colony forming ability at the highest light doses, whereas no cytotoxicity was obtained in the absence of light. Efficient PCI-based CD133-targeting was in addition demonstrated in the stem-cell-like, triple negative breast cancer cell line MDA-MB-231 and in the aggressive malignant melanoma cell line FEMX-1, whereas no enhanced targeting was obtained in the CD133-negative breast cancer cell line MCF-7. PCIAC133-saporin induced mainly necrosis and a minimal apoptotic response based on assessing cleavage of caspase-3 and PARP, and the TUNEL assay. PCIAC133-saporin resulted in S phase arrest and reduced LC3-II conversion compared to control treatments. Notably, co-treatment with Bafilomycin A1 and PCIAC133-saporin blocked LC3-II conversion, indicating a termination of the autophagic flux in WiDr cells. For the first time, we demonstrate laser-controlled targeting of CD133 in vivo. After only one systemic injection of AC133-saporin and TPCS2a, a strong anti-tumor response was observed after PCIAC133-saporin. The present PCI-based endosomal escape technology represents a minimally invasive strategy for spatio-temporal, light-controlled targeting of CD133+ cells in localized primary tumors or metastasis. PMID:25758331

  7. Biochemical and biological characterization of exosomes containing prominin-1/CD133

    PubMed Central

    2013-01-01

    Exosomes can be viewed as complex “messages” packaged to survive trips to other cells in the local microenvironment and, through body fluids, to distant sites. A large body of evidence indicates a pro-metastatic role for certain types of cancer exosomes. We previously reported that prominin-1 had a pro-metastatic role in melanoma cells and that microvesicles released from metastatic melanoma cells expressed high levels of prominin-1. With the goal to explore the mechanisms that govern proteo-lipidic-microRNA sorting in cancer exosomes and their potential contribution(s) to the metastatic phenotype, we here employed prominin-1-based immunomagnetic separation in combination with filtration and ultracentrifugation to purify prominin-1-expressing exosomes (prom1-exo) from melanoma and colon carcinoma cells. Prom1-exo contained 154 proteins, including all of the 14 proteins most frequently expressed in exosomes, and multiple pro-metastatic proteins, including CD44, MAPK4K, GTP-binding proteins, ADAM10 and Annexin A2. Their lipid composition resembled that of raft microdomains, with a great enrichment in lyso-phosphatidylcholine, lyso-phosphatidyl-ethanolamine and sphingomyelin. The abundance of tetraspanins and of tetraspanin-associated proteins, together with the high levels of sphingomyelin, suggests that proteolipidic assemblies, probably tetraspanin webs, might be the essential structural determinant in the release process of prominin-1 of stem and cancer stem cells. Micro-RNA profiling revealed 49 species of micro-RNA present at higher concentrations in prom1-exo than in parental cells, including 20 with cancer-related function. Extensive accumulation of prom1-exo was observed 3 h after their addition to cultures of melanoma and bone marrow-derived stromal cells (MSC). Short-term co-culture of melanoma cells and MSC resulted in heterologous prominin-1 transfer. Exposure of MSC to prom1-exo increased their invasiveness. Our study supports the concept that

  8. Quercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin

    PubMed Central

    Atashpour, Shekoufeh; Fouladdel, Shamileh; Movahhed, Tahereh Komeili; Barzegar, Elmira; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Azizi, Ebrahim

    2015-01-01

    Objective(s): The colorectal cancer stem cells (CSCs) with the CD133+ phenotype are a rare fraction of cancer cells with the ability of self-renewal, unlimited proliferation and resistance to treatment. Quercetin has anticancer effects with the advantage of exhibiting low side effects. Therefore, we evaluated the anticancer effects of quercetin and doxorubicin (Dox) in HT29 cancer cells and its isolated CD133+ CSCs. Materials and Methods: The CSCs from HT29 cells were isolated using CD133 antibody conjugated to magnetic beads by MACS. Anticancer effects of quercetin and Dox alone and in combination on HT29 cells and CSCs were evaluated using MTT cytotoxicity assay and flow cytometry analysis of cell cycle distribution and apoptosis induction. Results: The CD133+ CSCs comprised about 10% of HT29 cells. Quercetin and Dox alone and in combination inhibited cell proliferation and induced apoptosis in HT29 cells and to a lesser extent in CSCs. Quercetin enhanced cytotoxicity and apoptosis induction of Dox at low concentration in both cell populations. Quercetin and Dox and their combination induced G2/M arrest in the HT29 cells and to a lesser extent in CSCs. Conclusion: The CSCs were a minor population with a significantly high level of drug resistance within the HT29 cancer cells. Quercetin alone exhibited significant cytotoxic effects on HT29 cells and also increased cytoxicity of Dox in combination therapy. Altogether, our data showed that adding quercetin to Dox chemotherapy is an effective strategy for treatment of both CSCs and bulk tumor cells. PMID:26351552

  9. Long-term clinical results of autologous bone marrow CD 133+ cell transplantation in patients with ST-elevation myocardial infarction

    NASA Astrophysics Data System (ADS)

    Kirgizova, M. A.; Suslova, T. E.; Markov, V. A.; Karpov, R. S.; Ryabov, V. V.

    2015-11-01

    The aim of the study was investigate the long-term results of autologous bone marrow CD 133+ cell transplantation in patients with primary ST-Elevation Myocardial Infarction (STEMI). Methods and results: From 2006 to 2007, 26 patients with primary STEMI were included in an open randomized study. Patients were randomized to two groups: 1st - included patients underwent PCI and transplantation of autologous bone marrow CD 133+ cell (n = 10); 2nd - patients with only PCI (n = 16). Follow-up study was performed 7.70±0.42 years after STEMI and consisted in physical examination, 6-min walking test, Echo exam. Total and cardiovascular mortality in group 1 was lower (20% (n = 2) vs. 44% (n = 7), p = 0.1 and 22% (n = 2) vs. 25% (n = 4), (p=0.53), respectively). Analysis of cardiac volumetric parameters shows significant differences between groups: EDV of 100.7 ± 50.2 mL vs. 144.40±42.7 mL, ESV of 56.3 ± 37.8 mL vs. 89.7 ± 38.7 mL in 1st and 2nd groups, respectively. Data of the study showed positive effects of autologous bone marrow CD 133+ cell transplantation on the long-term survival of patients and structural status of the heart.

  10. Hematopoietic stem cell capture and directional differentiation into vascular endothelial cells for metal stent-coated chitosan/hyaluronic acid loading CD133 antibody.

    PubMed

    Zhang, Shixuan; Zhang, Fan; Feng, Bo; Fan, Qingyu; Yang, Feng; Shang, Debin; Sui, Jinghan; Zhao, Hong

    2015-03-01

    A series of metal stents coated with chitosan/hyaluronic acid (CS/HA) loading antibodies by electrostatic self-assembled method were prepared, and the types of cells captured by antibodies and their differentiation in vascular endothelial cells (ECs) evaluated by molecular biology and scanning electron microscope. The results showed that CD133 stent can selectively capture hematopoietic stem cells (HSC),which directionally differentiate into vascular ECs in peripheral blood by (CS/HA) induction, and simultaneously inhibit migration and proliferation of immune cells and vascular smooth muscle cells (MCs). CD34 stent can capture HSC, hematopoietic progenitor cells that differentiate into vascular ECs and immune cells, promoting smooth MCs growth, leading to thrombosis, inflammation, and rejection. CD133 stent can be implanted into miniature pig heart coronary and can repair vascular damage by capturing own HSC, thus contributing to the rapid natural vascular repair, avoiding inflammation and rejection, thrombosis and restenosis. These studies demonstrated that CD133 stent of HSC capture will be an ideal coated metal stent providing a new therapeutic approach for cardiovascular and cerebrovascular disease. PMID:25404533

  11. Hematopoietic Stem Cell Capture and Directional Differentiation into Vascular Endothelial Cells for Metal Stent-Coated Chitosan/Hyaluronic Acid Loading CD133 Antibody

    PubMed Central

    Zhang, Fan; Feng, Bo; Fan, Qingyu; Yang, Feng; Shang, Debin; Sui, Jinghan; Zhao, Hong

    2015-01-01

    A series of metal stents coated with chitosan/hyaluronic acid (CS/HA) loading antibodies by electrostatic self-assembled method were prepared, and the types of cells captured by antibodies and their differentiation in vascular endothelial cells (ECs) evaluated by molecular biology and scanning electron microscope. The results showed that CD133 stent can selectively capture hematopoietic stem cells (HSC),which directionally differentiate into vascular ECs in peripheral blood by (CS/HA) induction, and simultaneously inhibit migration and proliferation of immune cells and vascular smooth muscle cells (MCs). CD34 stent can capture HSC, hematopoietic progenitor cells that differentiate into vascular ECs and immune cells, promoting smooth MCs growth, leading to thrombosis, inflammation, and rejection. CD133 stent can be implanted into miniature pig heart coronary and can repair vascular damage by capturing own HSC, thus contributing to the rapid natural vascular repair, avoiding inflammation and rejection, thrombosis and restenosis. These studies demonstrated that CD133 stent of HSC capture will be an ideal coated metal stent providing a new therapeutic approach for cardiovascular and cerebrovascular disease. PMID:25404533

  12. Nuclear Neighborhoods and Gene Expression

    PubMed Central

    Zhao, Rui; Bodnar, Megan S.; Spector, David L.

    2009-01-01

    Summary The eukaryotic nucleus is a highly compartmentalized and dynamic environment. Chromosome territories are arranged non-randomly within the nucleus and numerous studies have indicated that a gene’s position in the nucleus can impact its transcriptional activity. Here, we focus on recent advances in our understanding of the influence of specific nuclear neighborhoods on gene expression or repression. Nuclear neighborhoods associated with transcriptional repression include the inner nuclear membrane/nuclear lamina and peri-nucleolar chromatin, whereas neighborhoods surrounding the nuclear pore complex, PML nuclear bodies, and nuclear speckles seem to be transcriptionally permissive. While nuclear position appears to play an important role in gene expression, it is likely to be only one piece of a flexible puzzle that incorporates numerous parameters. We are still at a very early, yet exciting stage in our journey toward deciphering the mechanism(s) that govern the permissiveness of gene expression/repression within different nuclear neighborhoods. PMID:19339170

  13. Differential Gene Expression in Glaucoma

    PubMed Central

    Jakobs, Tatjana C.

    2014-01-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell–matrix interactions and adhesion, the cell cycle, and the endothelin system. PMID:24985133

  14. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  15. Distinctive effects of CD34- and CD133-specific antibody-coated stents on re-endothelialization and in-stent restenosis at the early phase of vascular injury.

    PubMed

    Wu, Xue; Yin, Tieying; Tian, Jie; Tang, Chaojun; Huang, Junli; Zhao, Yinping; Zhang, Xiaojuan; Deng, Xiaoyan; Fan, Yubo; Yu, Donghong; Wang, Guixue

    2015-06-01

    It is not clear what effects of CD34- and CD133-specific antibody-coated stents have on re-endothelialization and in-stent restenosis (ISR) at the early phase of vascular injury. This study aims at determining the capabilities of different coatings on stents (e.g. gelatin, anti-CD133 and anti-CD34 antibodies) to promote adhesion and proliferation of endothelial progenitor cells (EPCs). The in vitro study revealed that the adhesion force enabled the EPCs coated on glass slides to withstand flow-induced shear stress, so that allowing for the growth of the cells on the slides for 48 h. The in vivo experiment using a rabbit model in which the coated stents with different substrates were implanted showed that anti-CD34 and anti-CD133 antibody-coated stents markedly reduced the intima area and restenosis than bare mental stents (BMS) and gelatin-coated stents. Compared with the anti-CD34 antibody-coated stents, the time of cells adhesion was longer and earlier present in the anti-CD133 antibody-coated stents and anti-CD133 antibody-coated stents have superiority in re-endothelialization and inhibition of ISR. In conclusion, this study demonstrated that anti-CD133 antibody as a stent coating for capturing EPCs is better than anti-CD34 antibody in promoting endothelialization and reducing ISR. PMID:26813006

  16. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  17. Gene expression during memory formation.

    PubMed

    Igaz, Lionel Muller; Bekinschtein, Pedro; Vianna, Monica M R; Izquierdo, Ivan; Medina, Jorge H

    2004-01-01

    For several decades, neuroscientists have provided many clues that point out the involvement of de novo gene expression during the formation of long-lasting forms of memory. However, information regarding the transcriptional response networks involved in memory formation has been scarce and fragmented. With the advent of genome-based technologies, combined with more classical approaches (i.e., pharmacology and biochemistry), it is now feasible to address those relevant questions--which gene products are modulated, and when that processes are necessary for the proper storage of memories--with unprecedented resolution and scale. Using one-trial inhibitory (passive) avoidance training of rats, one of the most studied tasks so far, we found two time windows of sensitivity to transcriptional and translational inhibitors infused into the hippocampus: around the time of training and 3-6 h after training. Remarkably, these periods perfectly overlap with the involvement of hippocampal cAMP/PKA (protein kinase A) signaling pathways in memory consolidation. Given the complexity of transcriptional responses in the brain, particularly those related to processing of behavioral information, it was clearly necessary to address this issue with a multi-variable, parallel-oriented approach. We used cDNA arrays to screen for candidate inhibitory avoidance learning-related genes and analyze the dynamic pattern of gene expression that emerges during memory consolidation. These include genes involved in intracellular kinase networks, synaptic function, DNA-binding and chromatin modification, transcriptional activation and repression, translation, membrane receptors, and oncogenes, among others. Our findings suggest that differential and orchestrated hippocampal gene expression is necessary in both early and late periods of long-term memory consolidation. Additionally, this kind of studies may lead to the identification and characterization of genes that are relevant for the pathogenesis

  18. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  19. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  20. Control of Renin Gene Expression

    PubMed Central

    Glenn, Sean T.; Jones, Craig A.; Gross, Kenneth W.; Pan, Li

    2015-01-01

    Renin, as part of the renin-angiotensin system, plays a critical role in the regulation of blood pressure, electrolyte homeostasis, mammalian renal development and progression of fibrotic/hypertrophic diseases. Renin gene transcription is subject to complex developmental and tissue-specific regulation. Initial studies using the mouse As4.1 cell line, which has many characteristics of the renin-expressing juxtaglomerular cells of the kidney, have identified a proximal promoter region (−197 to −50 bp) and an enhancer (−2866 to −2625 bp) upstream of the Ren-1c gene, which are critical for renin gene expression. The proximal promoter region contains several transcription factor-binding sites including a binding site for the products of the developmental control genes Hox. The enhancer consists of at least 11 transcription factor-binding sites and is responsive to various signal transduction pathways including cAMP, retinoic acid, endothelin-1, and cytokines, all of which are known to alter renin mRNA levels. Furthermore, in vivo models have validated several of these key components found within the proximal promoter region and the enhancer as well as other key sites necessary for renin gene transcription. PMID:22576577

  1. Laser-Supported CD133+ Cell Therapy in Patients with Ischemic Cardiomyopathy: Initial Results from a Prospective Phase I Multicenter Trial

    PubMed Central

    Kröpil, Patric; Ptok, Lena; Hafner, Dieter; Ohmann, Christian; Martens, Andreas; Karluß, Antje; Emmert, Maximilian Y.; Kutschka, Ingo; Sievers, Hans-Hinrich; Klein, Hans-Michael

    2014-01-01

    Objectives This study evaluates the safety, principal feasibility and restoration potential of laser-supported CD133+ intramyocardial cell transplantation in patients with ischemic cardiomyopathy. Methods Forty-two patients with severe ischemic cardiomyopathy (left ventricular ejection fraction (LVEF) >15% and <35%) were included in this prospective multicenter phase I trial. They underwent coronary artery bypass grafting (CABG) with subsequent transepicardial low-energy laser treatment and autologous CD133+ cell transplantation, and were followed up for 12 months. To evaluate segmental myocardial contractility as well as perfusion and to identify the areas of scar tissue, cardiac MRI was performed at 6 months and compared to the preoperative baseline. In addition, clinical assessment comprising of CCS scoring, blood and physical examination was performed at 3, 6 and 12 months, respectively. Results Intraoperative cell isolation resulted in a mean cell count of 9.7±1.2×106. Laser treatment and subsequent CD133+ cell therapy were successfully and safely carried out in all patients and no procedure-related complications occurred. At 6 months, the LVEF was significantly increased (29.7±1.9% versus 24.6±1.5% with p = 0.004). In addition, freedom from angina was achieved, and quality of life significantly improved after therapy (p<0.0001). Interestingly, an extended area of transmural delayed enhancement (>3 myocardial segments) determined in the preoperative MRI was inversely correlated with a LVEF increase after laser-supported cell therapy (p = 0.024). Conclusions This multicenter trial demonstrates that laser-supported CD133+ cell transplantation is safe and feasible in patients with ischemic cardiomyopathy undergoing CABG, and in most cases, it appears to significantly improve the myocardial function. Importantly, our data show that the beneficial effect was significantly related to the extent of transmural delayed enhancement, suggesting that MRI

  2. Gene expression throughout a vertebrate's embryogenesis

    PubMed Central

    2011-01-01

    Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development. PMID:21356103

  3. Gene Expression Studies in Mosquitoes

    PubMed Central

    Chen, Xlao-Guang; Mathur, Geetika; James, Anthony A.

    2009-01-01

    Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species. PMID:19161831

  4. The Gene Expression Omnibus database

    PubMed Central

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  5. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  6. Classification of genes based on gene expression analysis

    NASA Astrophysics Data System (ADS)

    Angelova, M.; Myers, C.; Faith, J.

    2008-05-01

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  7. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  8. Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-κB-mediated MMP-9 upregulation.

    PubMed

    Long, Haixia; Xie, Rongkai; Xiang, Tong; Zhao, Zhongquan; Lin, Sheng; Liang, Zhiqing; Chen, Zhengtang; Zhu, Bo

    2012-10-01

    The concept of cancer stem cells (CSCs) proposes that solely CSCs are capable of generating tumor metastases. However, how CSCs maintain their invasion and migration abilities, the most important properties of metastatic cells, still remains elusive. Here we used CD133 to mark a specific population from human ovarian cancer cell line and ovarian cancer tissue and determined its hyperactivity in migration and invasion. Therefore, we labeled this population as cancer stem-like cells (CSLCs). In comparison to CD133- non-CSLCs, chemokine CCL5 and its receptors, CCR1, CCR3, and CCR5, were consistently upregulated in CSLCs, and most importantly, blocking of CCL5, CCR1, or CCR3 effectively inhibits the invasive capacity of CSLCs. Mechanistically, we identified that this enhanced invasiveness is mediated through nuclear factor κB (NF-κB) activation and the consequently elevated MMP9 secretion. Our results suggested that the autocrine activation of CCR1 and CCR3 by CCL5 represents one of major mechanisms underlying the metastatic property of ovarian CSLCs. PMID:22887854

  9. Identification of four soybean reference genes for gene expression normalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  10. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    PubMed

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  11. Proliferation and enrichment of CD133+ glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds

    PubMed Central

    Kievit, Forrest M.; Florczyk, Stephen J.; Leung, Matthew C.; Wang, Kui; Wu, Jennifer D.; Silber, John R.; Ellenbogen, Richard G.; Lee, Jerry S.H.; Zhang, Miqin

    2014-01-01

    Emerging evidence implicates cancer stem cells (CSCs) as primary determinants of the clinical behavior of human cancers, representing an ideal target for next-generation anticancer therapies. However CSCs are difficult to propagate in vitro, severely limiting the study of CSC biology and drug development. Here we report that growing cells from glioblastoma (GBM) cell lines on three dimensional (3D) porous chitosan-alginate (CA) scaffolds dramatically promotes the proliferation and enrichment of cells possessing the hallmarks of CSCs. CA scaffold-grown cells were found more tumorigenic in nude mouse xenografts than cells grown from monolayers. Growing in CA scaffolds rapidly promoted expression of genes involved in the epithelial-to-mesenchymal transition that has been implicated in the genesis of CSCs. Our results indicate that CA scaffolds have utility as a simple and inexpensive means to cultivate CSCs in vitro in support of studies to understand CSC biology and develop more effective anti-cancer therapies. PMID:25109438

  12. Does inbreeding affect gene expression in birds?

    PubMed Central

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-01-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular. PMID:25232028

  13. Seasonal Effects on Gene Expression

    PubMed Central

    Goldinger, Anita; Shakhbazov, Konstantin; Henders, Anjali K.; McRae, Allan F.; Montgomery, Grant W.; Powell, Joseph E.

    2015-01-01

    Many health conditions, ranging from psychiatric disorders to cardiovascular disease, display notable seasonal variation in severity and onset. In order to understand the molecular processes underlying this phenomenon, we have examined seasonal variation in the transcriptome of 606 healthy individuals. We show that 74 transcripts associated with a 12-month seasonal cycle were enriched for processes involved in DNA repair and binding. An additional 94 transcripts demonstrated significant seasonal variability that was largely influenced by blood cell count levels. These transcripts were enriched for immune function, protein production, and specific cellular markers for lymphocytes. Accordingly, cell counts for erythrocytes, platelets, neutrophils, monocytes, and CD19 cells demonstrated significant association with a 12-month seasonal cycle. These results demonstrate that seasonal variation is an important environmental regulator of gene expression and blood cell composition. Notable changes in leukocyte counts and genes involved in immune function indicate that immune cell physiology varies throughout the year in healthy individuals. PMID:26023781

  14. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    PubMed Central

    Ichikawa, Tomotsugu; Högemanny, Dagmar; Saeki, Yoshinaga; Tyminski, Edyta; Terada, Kinya; Weissleder, Ralph; Chiocca, E Antonio; Basilion, James P

    2002-01-01

    Abstract Magnetic resonance imaging (MRI) can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR) whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1) ETR is a sensitive MR marker gene; 2) several transgenes can be efficiently expressed from a single amplicon; 3) expression of each transgene results in functional gene product; and 4) ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression. PMID:12407446

  15. Gene Expression: Sizing it all up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic architecture appears to be a largely unexplored component of gene expression. Although surely not the end of the story, we are learning that when it comes to gene expression, size is important. We have been surprised to find that certain patterns of expression, tissue-specific versus constit...

  16. Metformin Increases Sensitivity of Pancreatic Cancer Cells to Gemcitabine by Reducing CD133+ Cell Populations and Suppressing ERK/P70S6K Signaling.

    PubMed

    Chai, Xinqun; Chu, Hongpeng; Yang, Xuan; Meng, Yuanpu; Shi, Pengfei; Gou, Shanmiao

    2015-01-01

    The prognosis of pancreatic cancer remains dismal, with little advance in chemotherapy because of its high frequency of chemoresistance. Metformin is widely used to treat type II diabetes, and was shown recently to inhibit pancreatic cancer stem cell proliferation. In the present study, we investigated the role of metformin in chemoresistance of pancreatic cancer cells to gemcitabine, and its possible cellular and molecular mechanisms. Metformin increases sensitivity of pancreatic cancer cells to gemcitabine. The mechanism involves, at least in part, the inhibition of CD133(+) cells proliferation and suppression of P70S6K signaling activation via inhibition of ERK phosphorylation. Studies of primary tumor samples revealed a relationship between P70S6K signaling activation and the malignancy of pancreatic cancer. Analysis of clinical data revealed a trend of the benefit of metformin for pancreatic cancer patients with diabetes. The results suggested that metformin has a potential clinical use in overcoming chemoresistance of pancreatic cancer. PMID:26391180

  17. Control of RANKL Gene Expression

    PubMed Central

    O'Brien, Charles A.

    2009-01-01

    Osteoclasts are highly specialized cells capable of degrading mineralized tissue and form at different regions of bone to meet different physiological needs, such as mobilization of calcium, modeling of bone structure, and remodeling of bone matrix. Osteoclast production is elevated in a number of pathological conditions, many of which lead to loss of bone mass. Whether normal or pathological, osteoclastogenesis strictly depends upon support from accessory cells which supply cytokines required for osteoclast differentiation. Only one of these cytokines, receptor activator of NFκB ligand (RANKL), is absolutely essential for osteoclast formation throughout life and is thus expressed by all cell types that support osteoclast differentiation. The central role of RANKL in bone resorption is highlighted by the fact that it is the basis for a new therapy to inhibit bone loss. This review will discuss mechanisms that control RANKL gene expression in different osteoclast-support cells and how the study of such mechanisms may lead to a better understanding of the cellular interactions that drive normal and pathological bone resorption. PMID:19716455

  18. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  19. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  20. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  1. Gene expression in major depressive disorder.

    PubMed

    Jansen, R; Penninx, B W J H; Madar, V; Xia, K; Milaneschi, Y; Hottenga, J J; Hammerschlag, A R; Beekman, A; van der Wee, N; Smit, J H; Brooks, A I; Tischfield, J; Posthuma, D; Schoevers, R; van Grootheest, G; Willemsen, G; de Geus, E J; Boomsma, D I; Wright, F A; Zou, F; Sun, W; Sullivan, P F

    2016-03-01

    The search for genetic variants underlying major depressive disorder (MDD) has not yet provided firm leads to its underlying molecular biology. A complementary approach is to study gene expression in relation to MDD. We measured gene expression in peripheral blood from 1848 subjects from The Netherlands Study of Depression and Anxiety. Subjects were divided into current MDD (N=882), remitted MDD (N=635) and control (N=331) groups. MDD status and gene expression were measured again 2 years later in 414 subjects. The strongest gene expression differences were between the current MDD and control groups (129 genes at false-discovery rate, FDR<0.1). Gene expression differences across MDD status were largely unrelated to antidepressant use, inflammatory status and blood cell counts. Genes associated with MDD were enriched for interleukin-6 (IL-6)-signaling and natural killer (NK) cell pathways. We identified 13 gene expression clusters with specific clusters enriched for genes involved in NK cell activation (downregulated in current MDD, FDR=5.8 × 10(-5)) and IL-6 pathways (upregulated in current MDD, FDR=3.2 × 10(-3)). Longitudinal analyses largely confirmed results observed in the cross-sectional data. Comparisons of gene expression results to the Psychiatric Genomics Consortium (PGC) MDD genome-wide association study results revealed overlap with DVL3. In conclusion, multiple gene expression associations with MDD were identified and suggest a measurable impact of current MDD state on gene expression. Identified genes and gene clusters are enriched with immune pathways previously associated with the etiology of MDD, in line with the immune suppression and immune activation hypothesis of MDD. PMID:26008736

  2. Analysis of Gene Expression Patterns Using Biclustering.

    PubMed

    Roy, Swarup; Bhattacharyya, Dhruba K; Kalita, Jugal K

    2016-01-01

    Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological knowledge is an emerging area of research in computational biology. A group of functionally related genes may have similar expression patterns under a set of conditions or at some time points. Biclustering is an important data mining tool that has been successfully used to analyze gene expression data for biologically significant cluster discovery. The purpose of this chapter is to introduce interesting patterns that may be observed in expression data and discuss the role of biclustering techniques in detecting interesting functional gene groups with similar expression patterns. PMID:26350227

  3. Xenbase: gene expression and improved integration.

    PubMed

    Bowes, Jeff B; Snyder, Kevin A; Segerdell, Erik; Jarabek, Chris J; Azam, Kenan; Zorn, Aaron M; Vize, Peter D

    2010-01-01

    Xenbase (www.xenbase.org), the model organism database for Xenopus laevis and X. (Silurana) tropicalis, is the principal centralized resource of genomic, development data and community information for Xenopus research. Recent improvements include the addition of the literature and interaction tabs to gene catalog pages. New content has been added including a section on gene expression patterns that incorporates image data from the literature, large scale screens and community submissions. Gene expression data are integrated into the gene catalog via an expression tab and is also searchable by multiple criteria using an expression search interface. The gene catalog has grown to contain over 15,000 genes. Collaboration with the European Xenopus Research Center (EXRC) has resulted in a stock center section with data on frog lines supplied by the EXRC. Numerous improvements have also been made to search and navigation. Xenbase is also the source of the Xenopus Anatomical Ontology and the clearinghouse for Xenopus gene nomenclature. PMID:19884130

  4. (64)Cu-ATSM therapy targets regions with activated DNA repair and enrichment of CD133(+) cells in an HT-29 tumor model: Sensitization with a nucleic acid antimetabolite.

    PubMed

    Yoshii, Yukie; Furukawa, Takako; Matsumoto, Hiroki; Yoshimoto, Mitsuyoshi; Kiyono, Yasushi; Zhang, Ming-Rong; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2016-06-28

    (64)Cu-diacetyl-bis (N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) is a potential theranostic agent targeting the over-reduced state under hypoxia within tumors. Recent clinical Cu-ATSM positron emission tomography studies have revealed a correlation between uptake and poor prognosis; however, the reason is unclear. Here, using a human colon carcinoma HT-29 model, we demonstrated that the intratumoral (64)Cu-ATSM high-uptake regions exhibited malignant characteristics, such as upregulated DNA repair and elevated %CD133(+) cancer stem-like cells. Based on this evidence, we developed a strategy to enhance the efficacy of (64)Cu-ATSM internal radiotherapy (IRT) by inhibiting DNA repair with a nucleic acid (NA) antimetabolite. The results of the analyses showed upregulation of pathways related to DNA repair along with NA incorporation (bromodeoxyuridine uptake) and elevation of %CD133(+) cells in (64)Cu-ATSM high-uptake regions. In an in vivo(64)Cu-ATSM treatment study, co-administration of an NA antimetabolite and (64)Cu-ATSM synergistically inhibited tumor growth, with little toxicity, and effectively reduced %CD133(+) cells. (64)Cu-ATSM therapy targeted malignant tumor regions with activated DNA repair and high concentrations of CD133(+) cells in the HT-29 model. NA antimetabolite co-administration can be an effective approach to enhance the therapeutic effect of (64)Cu-ATSM IRT. PMID:26996296

  5. HOXB homeobox gene expression in cervical carcinoma.

    PubMed

    López, R; Garrido, E; Piña, P; Hidalgo, A; Lazos, M; Ochoa, R; Salcedo, M

    2006-01-01

    The homeobox (HOX) genes are a family of transcription factors that bind to specific DNA sequences in target genes regulating gene expression. Thirty-nine HOX genes have been mapped in four conserved clusters: A, B, C, and D; they act as master genes regulating the identity of body segments along the anteroposterior axis of the embryo. The role played by HOX genes in adult cell differentiation is unclear to date, but growing evidence suggests that they may play an important role in the development of cancer. To study the role played by HOX genes in cervical cancer, in the present work, we analyzed the expression of HOXB genes and the localization of their transcripts in human cervical tissues. Reverse transcription-polymerase chain reaction analysis and nonradioactive RNA in situ hybridization were used to detect HOXB expression in 11 normal cervical tissues and 17 cervical carcinomas. It was determined that HOXB1, B3, B5, B6, B7, B8, and B9 genes are expressed in normal adult cervical epithelium and squamous cervical carcinomas. Interestingly, HOXB2, HOXB4, and HOXB13 gene expression was found only in tumor tissues. Our findings suggest that the new expression of HOXB2, HOXB4, and B13 genes is involved in cervical cancer. PMID:16445654

  6. Gene Expression Profiling of Gastric Cancer

    PubMed Central

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  7. Gene expression profiling in developing human hippocampus.

    PubMed

    Zhang, Yan; Mei, Pinchao; Lou, Rong; Zhang, Michael Q; Wu, Guanyun; Qiang, Boqin; Zhang, Zhengguo; Shen, Yan

    2002-10-15

    The gene expression profile of developing human hippocampus is of particular interest and importance to neurobiologists devoted to development of the human brain and related diseases. To gain further molecular insight into the developmental and functional characteristics, we analyzed the expression profile of active genes in developing human hippocampus. Expressed sequence tags (ESTs) were selected by sequencing randomly selected clones from an original 3'-directed cDNA library of 150-day human fetal hippocampus, and a digital expression profile of 946 known genes that could be divided into 16 categories was generated. We also used for comparison 14 other expression profiles of related human neural cells/tissues, including human adult hippocampus. To yield more confidence regarding differential expression, a method was applied to attach normalized expression data to genes with a low false-positive rate (<0.05). Finally, hierarchical cluster analysis was used to exhibit related gene expression patterns. Our results are in accordance with anatomical and physiological observations made during the developmental process of the human hippocampus. Furthermore, some novel findings appeared to be unique to our results. The abundant expression of genes for cell surface components and disease-related genes drew our attention. Twenty-four genes are significantly different from adult, and 13 genes might be developing hippocampus-specific candidate genes, including wnt2b and some Alzheimer's disease-related genes. Our results could provide useful information on the ontogeny, development, and function of cells in the human hippocampus at the molecular level and underscore the utility of large-scale, parallel gene expression analyses in the study of complex biological phenomena. PMID:12271469

  8. High expression of HIF-2α and its anti-radiotherapy effect in lung cancer stem cells.

    PubMed

    Sun, J C; He, F; Yi, W; Wan, M H; Li, R; Wei, X; Wu, R; Niu, D L

    2015-01-01

    Hypoxia-inducible factor-2 alpha (HIF-2α) has been shown to regulate cell stemness, although the expression and effects of HIF-2α in lung cancer stem cells remained unclear. This study investigated HIF-2α expression in lung cancer stem cells, as well as the relationship between HIF-2α expression and radioresistance in lung cancer cells. Stem-like cells (CD133(+)) in the non-small-cell lung cancer cell line A549 were enriched by serum-free culture conditions, and CD133(+) cells were sorted via fluorescence-activated cell sorting. A549 cells were treated with middle-infrared radiation, and the level of HIF-2α expression was determined by a quantitative polymerase chain reaction assay and western blot analysis. The level of HIF-2α expression in tissue sections from 50 cases of clinically confirmed non-small-cell lung cancer was determined via immunohistochemical analysis, and its correlation with prognosis after radiotherapy was analyzed. HIF-2α levels in CD133(+) cells were significantly higher than those in CD133(-) cells (P = 0.032). However, after radiation treatment, these levels were significantly upregulated in both CD133(+) and CD133(-) cells (P = 0.031 and P = 0.023, respectively). After irradiation, the proportions of apoptotic, dead, and autophagic CD133(+) A549 cells were considerably lower than those of CD133(-) A549 cells (P < 0.05). Furthermore, the recovery of carcinoembryonic antigen to pre-radiation levels was more rapid in lung cancer patients with high levels of HIF-2α expression, and these patients had shorter survival times (P = 0.018). HIF-2α is highly expressed in lung cancer stem cells, which may lead to radioresistance. In conclusion, HIF-2α is a potential prognostic marker for lung cancer. PMID:26782458

  9. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  10. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  11. Gene Expression Studies in Lygus lineolaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes are expressed in insect cells, as in all living organisms, by transcription of DNA into RNA followed by translation of RNA into proteins. The intricate patterns of differential gene expression in time and space directly influence the development and function of every aspect of the organism. Wh...

  12. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  13. Gearbox gene expression and growth rate.

    PubMed

    Aldea, M; Garrido, T; Tormo, A

    1993-07-01

    Regulation of gene expression in prokaryotic cells usually takes place at the level of transcription initiation. Different forms of RNA polymerase recognizing specific promoters are engaged in the control of many prokaryotic regulons. This also seems to be the case for some Escherichia coli genes that are induced at low growth rates and by nutrient starvation. Their gene products are synthesized at levels inversely proportional to growth rate, and this mode of regulation has been termed gearbox gene expression. This kind of growth-rate modulation is exerted by specific transcriptional initiation signals, the gearbox promoters, and some of them depend on a putative new σ factor (RpoS). Gearbox promoters drive expression of morphogenetic and cell division genes at constant levels per cell and cycle to meet the demands of cell division and septum formation. A mechanism is proposed that could sense the growth rate of the cell to alter gene expression by the action of specific σ factors. PMID:24420108

  14. Quality Measures for Gene Expression Biclusters

    PubMed Central

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S.

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  15. Quality measures for gene expression biclusters.

    PubMed

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  16. Aplysia californica neurons express microinjected neuropeptide genes.

    PubMed Central

    DesGroseillers, L; Cowan, D; Miles, M; Sweet, A; Scheller, R H

    1987-01-01

    Neuropeptide genes are expressed in specific subsets of large polyploid neurons in Aplysia californica. We have defined the transcription initiation sites of three of these neuropeptide genes (the R14, L11, and ELH genes) and determined the nucleotide sequence of the promoter regions. The genes contain the usual eucaryotic promoter signals as well as other structures of potential regulatory importance, including inverted and direct repeats. The L11 and ELH genes, which are otherwise unrelated, have homology in the promoter regions, while the R14 promoter was distinct. When cloned plasmids were microinjected into Aplysia neurons in organ culture, transitions between supercoiled, relaxed circular, and linear DNAs occurred along with ligation into high-molecular-weight species. About 20% of the microinjected neurons expressed the genes. The promoter region of the R14 gene functioned in expression of the microinjected DNA in all cells studied. When both additional 5' and 3' sequences were included, the gene was specifically expressed only in R14, suggesting that the specificity of expression is generated by a multicomponent repression system. Finally, the R14 peptide could be expressed in L11, demonstrating that it is possible to alter the transmitter phenotype of these neurons by introduction of cloned genes. Images PMID:3670293

  17. Methodological Limitations in Determining Astrocytic Gene Expression

    PubMed Central

    Peng, Liang; Guo, Chuang; Wang, Tao; Li, Baoman; Gu, Li; Wang, Zhanyou

    2013-01-01

    Traditionally, astrocytic mRNA and protein expression are studied by in situ hybridization (ISH) and immunohistochemically. This led to the concept that astrocytes lack aralar, a component of the malate-aspartate-shuttle. At least similar aralar mRNA and protein expression in astrocytes and neurons isolated by fluorescence-assisted cell sorting (FACS) reversed this opinion. Demonstration of expression of other astrocytic genes may also be erroneous. Literature data based on morphological methods were therefore compared with mRNA expression in cells obtained by recently developed methods for determination of cell-specific gene expression. All Na,K-ATPase-α subunits were demonstrated by immunohistochemistry (IHC), but there are problems with the cotransporter NKCC1. Glutamate and GABA transporter gene expression was well determined immunohistochemically. The same applies to expression of many genes of glucose metabolism, whereas a single study based on findings in bacterial artificial chromosome (BAC) transgenic animals showed very low astrocytic expression of hexokinase. Gene expression of the equilibrative nucleoside transporters ENT1 and ENT2 was recognized by ISH, but ENT3 was not. The same applies to the concentrative transporters CNT2 and CNT3. All were clearly expressed in FACS-isolated cells, followed by biochemical analysis. ENT3 was enriched in astrocytes. Expression of many nucleoside transporter genes were shown by microarray analysis, whereas other important genes were not. Results in cultured astrocytes resembled those obtained by FACS. These findings call for reappraisal of cellular nucleoside transporter expression. FACS cell yield is small. Further development of cell separation methods to render methods more easily available and less animal and cost consuming and parallel studies of astrocytic mRNA and protein expression by ISH/IHC and other methods are necessary, but new methods also need to be thoroughly checked. PMID:24324456

  18. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  19. Magnetofection Based on Superparamagnetic Iron Oxide Nanoparticles Weakens Glioma Stem Cell Proliferation and Invasion by Mediating High Expression of MicroRNA-374a

    PubMed Central

    Pan, Zhiguang; Shi, Zhifeng; Wei, Hua; Sun, Fengyan; Song, Jianping; Huang, Yongyi; Liu, Te; Mao, Ying

    2016-01-01

    Glioma stem cells belong to a special subpopulation of glioma cells that are characterized by strong proliferation, invasion and drug resistance capabilities. Magnetic nanoparticles are nanoscale biological materials with magnetic properties. In this study, CD133+ primary glioma stem cells were isolated from patients and cultured. Then, magnetic nanoparticles were used to mediate the transfection and expression of a microRNA-374a overexpression plasmid in the glioma stem cells. Transmission electron microscopy detected the presence of significant magnetic nanoparticle substances within the CD133+ glioma stem cells after transfection. The qRT-PCR and Northern blot results showed that the magnetic nanoparticles could be used to achieve the transfection of the microRNA-374a overexpression plasmid into glioma stem cells and the efficient expression of mature microRNA-374a. The MTT and flow cytometry results showed that the proliferation inhibition rate was significantly higher in cells from the microRNA-374a transfection group than in cells from the microRNA-mut transfection group; additionally, the former cells presented significant cell cycle arrest. The Transwell experiments confirmed that the overexpression of microRNA-374a could significantly reduce the invasiveness of CD133+ glioma stem cells. Moreover, the high expression of microRNA-374a mediated by the magnetic nanoparticles effectively reduced the tumourigenicity of CD133+ glioma stem cells in nude mice. The luciferase assays revealed that mature microRNA-374a fragments could bind to the 3'UTR of Neuritin (NRN1), thereby interfering with Neuritin mRNA expression. The qRT-PCR and Western blotting results showed that the overexpression of microRNA-374a significantly reduced the expression of genes such as NRN1, CCND1, CDK4 and Ki67 in glioma stem cells. Thus, magnetic nanoparticles can efficiently mediate the transfection and expression of microRNA expression plasmids in mammalian cells. The overexpression of

  20. A comparative gene expression database for invertebrates

    PubMed Central

    2011-01-01

    Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN) projects. PMID:21861937

  1. Differential placental gene expression in severe preeclampsia.

    PubMed

    Sitras, V; Paulssen, R H; Grønaas, H; Leirvik, J; Hanssen, T A; Vårtun, A; Acharya, G

    2009-05-01

    We investigated the global placental gene expression profile in severe preeclampsia. Twenty-one women were randomly selected from 50 participants with uncomplicated pregnancies to match 21 patients with severe preeclampsia. A 30K Human Genome Survey Microarray v.2.0 (Applied Biosystems) was used to evaluate the gene expression profile. After RNA isolation, five preeclamptic placentas were excluded due to poor RNA quality. The series composed of 37 hybridizations in a one-channel detection system of chemiluminescence emitted by the microarrays. An empirical Bayes analysis was applied to find differentially expressed genes. In preeclamptic placentas 213 genes were significantly (fold-change>or=2 and pexpressed genes were associated with Alzheimer disease, angiogenesis, Notch-, TGFbeta- and VEGF-signalling pathways. Sixteen genes best discriminated preeclamptic from normal placentas. Comparison between early- (<34 weeks) and late-onset preeclampsia showed 168 differentially expressed genes with oxidative stress, inflammation, and endothelin signalling pathways mainly involved in early-onset disease. Validation of the microarray results was performed by RT-PCR, quantitative urine hCG measurement and placental histopathologic examination. In summary, placental gene expression is altered in preeclampsia and we provide a comprehensive list of the differentially expressed genes. Placental gene expression is different between early- and late-onset preeclampsia, suggesting differences in pathophysiology. PMID:19249095

  2. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions. PMID:26966245

  3. Transcriptional regulation of secretin gene expression.

    PubMed

    Nishitani, J; Rindi, G; Lopez, M J; Upchurch, B H; Leiter, A B

    1995-01-01

    Expression of the gene encoding the hormone secretin is restricted to a specific enteroendocrine cell type and to beta-cells in developing pancreatic islets. To characterize regulatory elements in the secretin gene responsible for its expression in secretin-producing cells, we used a series of reporter genes for transient expression assays in transfection studies carried out in secretin-producing islet cell lines. Analysis of the transcriptional activity of deletion mutants identified a positive cis regulatory domain between 174 and 53 base pairs upstream from the transcriptional initiation site which was required for secretin gene expression in secretin-producing HIT insulinoma cells. Within this enhancer were sequences resembling two binding sites for the transcription factor Sp1, as well as a consensus sequence for binding to helix-loop-helix proteins. Analysis of these three elements by site-directed mutagenesis suggests that each is important for full transcriptional activity. The role of proximal enhancer sequences in directing secretin gene expression to appropriate tissues is further supported by studies in transgenic mice revealing that 1.6 kilobases of the secretin gene 5' flanking sequence were sufficient to direct the expression of either human growth hormone or simian virus 40 large T-antigen reporter genes to all major secretin-producing tissues. PMID:8774991

  4. Sexual differences of imprinted genes' expression levels.

    PubMed

    Faisal, Mohammad; Kim, Hana; Kim, Joomyeong

    2014-01-01

    In mammals, genomic imprinting has evolved as a dosage-controlling mechanism for a subset of genes that play critical roles in their unusual reproduction scheme involving viviparity and placentation. As such, many imprinted genes are highly expressed in sex-specific reproductive organs. In the current study, we sought to test whether imprinted genes are differentially expressed between the two sexes. According to the results, the expression levels of the following genes differ between the two sexes of mice: Peg3, Zim1, Igf2, H19 and Zac1. The expression levels of these imprinted genes are usually greater in males than in females. This bias is most obvious in the developing brains of 14.5-dpc embryos, but also detected in the brains of postnatal-stage mice. However, this sexual bias is not obvious in 10.5-dpc embryos, a developmental stage before the sexual differentiation. Thus, the sexual bias observed in the imprinted genes is most likely attributable by gonadal hormones rather than by sex chromosome complement. Overall, the results indicate that several imprinted genes are sexually different in terms of their expression levels, and further suggest that the transcriptional regulation of these imprinted genes may be influenced by unknown mechanisms associated with sexual differentiation. PMID:24125951

  5. High expression hampers horizontal gene transfer.

    PubMed

    Park, Chungoo; Zhang, Jianzhi

    2012-01-01

    Horizontal gene transfer (HGT), the movement of genetic material from one species to another, is a common phenomenon in prokaryotic evolution. Although the rate of HGT is known to vary among genes, our understanding of the cause of this variation, currently summarized by two rules, is far from complete. The first rule states that informational genes, which are involved in DNA replication, transcription, and translation, have lower transferabilities than operational genes. The second rule asserts that protein interactivity negatively impacts gene transferability. Here, we hypothesize that high expression hampers HGT, because the fitness cost of an HGT to the recipient, arising from the 1) energy expenditure in transcription and translation, 2) cytotoxic protein misfolding, 3) reduction in cellular translational efficiency, 4) detrimental protein misinteraction, and 5) disturbance of the optimal protein concentration or cell physiology, increases with the expression level of the transferred gene. To test this hypothesis, we examined laboratory and natural HGTs to Escherichia coli. We observed lower transferabilities of more highly expressed genes, even after controlling the confounding factors from the two established rules and the genic GC content. Furthermore, expression level predicts gene transferability better than all other factors examined. We also confirmed the significant negative impact of gene expression on the rate of HGTs to 127 of 133 genomes of eubacteria and archaebacteria. Together, these findings establish the gene expression level as a major determinant of horizontal gene transferability. They also suggest that most successful HGTs are initially slightly deleterious, fixed because of their negligibly low costs rather than high benefits to the recipient. PMID:22436996

  6. Gene expression in periodontal tissues following treatment

    PubMed Central

    Beikler, Thomas; Peters, Ulrike; Prior, Karola; Eisenacher, Martin; Flemmig, Thomas F

    2008-01-01

    Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT) was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A), Versican (CSPG-2), Matrixmetalloproteinase-1 (MMP-1), Down syndrome critical region protein-1 (DSCR-1), Macrophage inflammatory protein-2β (Cxcl-3), Inhibitor of apoptosis protein-1 (BIRC-1), Cluster of differentiation antigen 38 (CD38), Regulator of G-protein signalling-1 (RGS-1), and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS); the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2), Complement component 3 (C3), Prostaglandin-endoperoxide synthase-2 (COX-2), Interleukin-8 (IL-8), Endothelin-1 (EDN-1), Plasminogen activator inhibitor type-2 (PAI-2), Matrix-metalloproteinase-14 (MMP-14), and Interferon regulating factor-7 (IRF-7). Conclusion Gene expression profiles found in periodontal tissues following therapy

  7. Gene expression homeostasis and chromosome architecture

    PubMed Central

    Seshasayee, Aswin Sai Narain

    2014-01-01

    In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth - such as those involved in protein synthesis - are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels.1 This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome.2 Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome,3 which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis.4 In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer. PMID:25997086

  8. Candidate reference genes for gene expression studies in water lily.

    PubMed

    Luo, Huolin; Chen, Sumei; Wan, Hongjian; Chen, Fadi; Gu, Chunsun; Liu, Zhaolei

    2010-09-01

    The selection of an appropriate reference gene(s) is a prerequisite for the proper interpretation of quantitative Real-Time polymerase chain reaction data. We report the evaluation of eight candidate reference genes across various tissues and treatments in the water lily by the two software packages geNorm and NormFinder. Across all samples, clathrin adaptor complexes medium subunit (AP47) and actin 11 (ACT11) emerged as the most suitable reference genes. Across different tissues, ACT11 and elongation factor 1-alpha (EF1alpha) exhibited a stable expression pattern. ACT11 and AP47 also stably expressed in roots subjected to various treatments, but in the leaves of the same plants the most stably expressed genes were ubiquitin-conjugating enzyme 16 (UBC16) and ACT11. PMID:20452325

  9. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  10. Dynamic modeling of gene expression data

    PubMed Central

    Holter, Neal S.; Maritan, Amos; Cieplak, Marek; Fedoroff, Nina V.; Banavar, Jayanth R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small. PMID:11172013

  11. Nucleosomal promoter variation generates gene expression noise

    PubMed Central

    Brown, Christopher R.; Boeger, Hinrich

    2014-01-01

    Gene product molecule numbers fluctuate over time and between cells, confounding deterministic expectations. The molecular origins of this noise of gene expression remain unknown. Recent EM analysis of single PHO5 gene molecules of yeast indicated that promoter molecules stochastically assume alternative nucleosome configurations at steady state, including the fully nucleosomal and nucleosome-free configuration. Given that distinct configurations are unequally conducive to transcription, the nucleosomal variation of promoter molecules may constitute a source of gene expression noise. This notion, however, implies an untested conjecture, namely that the nucleosomal variation arises de novo or intrinsically (i.e., that it cannot be explained as the result of the promoter’s deterministic response to variation in its molecular surroundings). Here, we show—by microscopically analyzing the nucleosome configurations of two juxtaposed physically linked PHO5 promoter copies—that the configurational variation, indeed, is intrinsically stochastic and thus, a cause of gene expression noise rather than its effect. PMID:25468975

  12. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  13. Efficient ectopic gene expression targeting chick mesoderm.

    PubMed

    Oberg, Kerby C; Pira, Charmaine U; Revelli, Jean-Pierre; Ratz, Beate; Aguilar-Cordova, Estuardo; Eichele, Gregor

    2002-07-01

    The chick model has been instrumental in illuminating genes that regulate early vertebrate development and pattern formation. Targeted ectopic gene expression is critical to dissect further the complicated gene interactions that are involved. In an effort to develop a consistent method to ectopically introduce and focally express genes in chick mesoderm, we evaluated and optimized several gene delivery methods, including implantation of 293 cells laden with viral vectors, direct adenoviral injection, and electroporation (EP). We targeted the mesoderm of chick wing buds between stages 19 and 21 (Hamburger and Hamilton stages) and used beta-galactosidase and green fluorescent protein (GFP) to document gene transfer. Expression constructs using the cytomegalovirus (CMV) promoter, the beta-actin promoter, and vectors with an internal ribosomal entry sequence linked to GFP (IRES-GFP) were also compared. After gene transfer, we monitored expression for up to 3 days. The functionality of ectopic expression was demonstrated with constructs containing the coding sequences for Shh, a secreted signaling protein, or Hoxb-8, a transcription factor, both of which can induce digit duplication when ectopically expressed in anterior limb mesoderm. We identified several factors that enhance mesodermal gene transfer. First, the use of a vector with the beta-actin promoter coupled to the 69% fragment of the bovine papilloma virus yielded superior mesodermal expression both by markers and functional results when compared with several CMV-driven vectors. Second, we found the use of mineral oil to be an important adjuvant for EP and direct viral injection to localize and contain vector within the mesoderm at the injection site. Lastly, although ectopic expression could be achieved with all three methods, we favored EP confined to the mesoderm with insulated microelectrodes (confined microelectroporation- CMEP), because vector construction is rapid, the method is efficient, and results

  14. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  15. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  16. Homeobox genes expressed during echinoderm arm regeneration.

    PubMed

    Ben Khadra, Yousra; Said, Khaled; Thorndyke, Michael; Martinez, Pedro

    2014-04-01

    Regeneration in echinoderms has proved to be more amenable to study in the laboratory than the more classical vertebrate models, since the smaller genome size and the absence of multiple orthologs for different genes in echinoderms simplify the analysis of gene function during regeneration. In order to understand the role of homeobox-containing genes during arm regeneration in echinoderms, we isolated the complement of genes belonging to the Hox class that are expressed during this process in two major echinoderm groups: asteroids (Echinaster sepositus and Asterias rubens) and ophiuroids (Amphiura filiformis), both of which show an extraordinary capacity for regeneration. By exploiting the sequence conservation of the homeobox, putative orthologs of several Hox genes belonging to the anterior, medial, and posterior groups were isolated. We also report the isolation of a few Hox-like genes expressed in the same systems. PMID:24309817

  17. The stem cell marker prominin-1/CD133 interacts with vascular endothelial growth factor and potentiates its action.

    PubMed

    Adini, Avner; Adini, Irit; Ghosh, Kaustabh; Benny, Ofra; Pravda, Elke; Hu, Ron; Luyindula, Dema; D'Amato, Robert J

    2013-04-01

    Prominin-1, a pentaspan transmembrane protein, is a unique cell surface marker commonly used to identify stem cells, including endothelial progenitor cells and cancer stem cells. However, recent studies have shown that prominin-1 expression is not restricted to stem cells but also occurs in modified forms in many mature adult human cells. Although prominin-1 has been studied extensively as a stem cell marker, its physiological function of the protein has not been elucidated. We investigated prominin-1 function in two cell lines, primary human endothelial cells and B16-F10 melanoma cells, both of which express high levels of prominin-1. We found that prominin-1 directly interacts with the angiogenic and tumor survival factor vascular endothelial growth factor (VEGF) in both the primary endothelial cells and the melanoma cells. Knocking down prominin-1 in the endothelial cells disrupted capillary formation in vitro and decreased angiogenesis in vivo. Similarly, tumors derived from prominin-1 knockdown melanoma cells had a reduced growth rate in vivo. Further, melanoma cells with knocked down prominin-1 had diminished ability to interact with VEGF, which was associated with decreased bcl-2 protein levels and increased apoptosis. In vitro studies with soluble prominin-1 showed that it stabilized dimer formation of VEGF164, but not VEGF121. Taken together, our findings support the notion that prominin-1 plays an active role in cell growth through its ability to interact and potentiate the anti-apoptotic and pro-angiogenic activities of VEGF. Additionally, prominin-1 promotes tumor growth by supporting angiogenesis and inhibiting tumor cell apoptosis. PMID:23150059

  18. Polyunsaturated fatty acids and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review. This review focuses on the effect(s) of n-3 polyunsaturated fatty acids (PUFA) on gene transcription as determined from data generated using cDNA microarrays. Introduced within the past decade, this methodology allows detection of the expression of thousands of genes simultaneo...

  19. Reading Genomes and Controlling Gene Expression

    NASA Astrophysics Data System (ADS)

    Libchaber, Albert

    2000-03-01

    Molecular recognition of DNA sequences is achieved by DNA hybridization of complementary sequences. We present various scenarios for optimization, leading to microarrays and global measurement. Gene expression can be controlled using gene constructs immobilized on a template with micron scale temperature heaters. We will discuss and present results on protein microarrays.

  20. Gene expression in rat brain.

    PubMed

    Milner, R J; Sutcliffe, J G

    1983-08-25

    191 randomly selected cDNA clones prepared from rat brain cytoplasmic poly (A)+ RNA were screened by Northern blot hybridization to rat brain, liver and kidney RNA to determine the tissue distribution, abundance and size of the corresponding brain mRNA. 18% hybridized to mRNAs each present equally in the three tissues, 26% to mRNAs differentially expressed in the tissues, and 30% to mRNAs present only in the brain. An additional 26% of the clones failed to detect mRNA in the three tissues at an abundance level of about 0.01%, but did contain rat cDNA as demonstrated by Southern blotting; this class probably represents rare mRNAs expressed in only some brain cells. Therefore, most mRNA expressed in brain is either specific to brain or otherwise displays regulation. Rarer mRNA species tend to be larger than the more abundant species, and tend to be brain specific; the rarest, specific mRNAs average 5000 nucleotides in length. Ten percent of the clones hybridize to multiple mRNAs, some of which are expressed from small multigenic families. From these data we estimate that there are probably at most 30,000 distinct mRNA species expressed in the rat brain, the majority of which are uniquely expressed in the brain. PMID:6193485

  1. CD34/CD133 enriched bone marrow progenitor cells promote neovascularization of tissue engineered constructs in vivo.

    PubMed

    Herrmann, Marietta; Binder, Andreas; Menzel, Ursula; Zeiter, Stephan; Alini, Mauro; Verrier, Sophie

    2014-11-01

    Vascularization is critical for 3D tissue engineered constructs. In large size implants the ingrowth of vessels often fails. The purpose of this study was to identify an easily accessible, clinically relevant cell source able to promote neovascularization in engineered implants in vivo and to establish an autologous culture method for these cells. MSCs (mesenchymal stem cells) and an endothelial progenitor containing cell (EPCC) population were obtained from human bone marrow aspirates. The expression of endothelial-markers, uptake of acetylated low density lipoprotein (acLDL) and tube-like structure formation capability of EPCCs were analyzed after expansion in endothelial growth medium or medium supplemented with autologous platelet lysate (PL). EPCCs were co-seeded with MSCs on hydroxyapatite-containing polyurethane scaffolds and then implanted subcutaneously in nude mice. Human EPCCs displayed typical characteristics of endothelial cells including uptake of acLDL and formation of tube-like structures on Matrigel™. In vivo, EPCCs cultured with PL triggered neovascularization. MSC/EPCC interactions promoted the maturation of newly formed luminal structures, which were detected deep within the scaffold and partly perfused, demonstrating a connection with the host vascular system. We demonstrate that this population of cells, isolated in a clinically relevant manner and cultured with autologous growth factors readily promoted neovascularization in tissue engineered constructs in vivo enabling a potential translation into the clinic. PMID:25460607

  2. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  3. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  4. Phytochrome-regulated Gene Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent compre...

  5. Regulation of immunoglobulin gene rearrangement and expression.

    PubMed

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching. PMID:2787158

  6. Heterelogous Expression of Plant Genes

    PubMed Central

    Yesilirmak, Filiz; Sayers, Zehra

    2009-01-01

    Heterologous expression allows the production of plant proteins in an organism which is simpler than the natural source. This technology is widely used for large-scale purification of plant proteins from microorganisms for biochemical and biophysical analyses. Additionally expression in well-defined model organisms provides insights into the functions of proteins in complex pathways. The present review gives an overview of recombinant plant protein production methods using bacteria, yeast, insect cells, and Xenopus laevis oocytes and discusses the advantages of each system for functional studies and protein characterization. PMID:19672459

  7. Introduction to the Gene Expression Analysis.

    PubMed

    Segundo-Val, Ignacio San; Sanz-Lozano, Catalina S

    2016-01-01

    In 1941, Beadle and Tatum published experiments that would explain the basis of the central dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA, results proteins that perform the functions in cells. Currently, biomedical research attempts to explain the mechanisms by which develops a particular disease, for this reason, gene expression studies have proven to be a great resource. Strictly, the term "gene expression" comprises from the gene activation until the mature protein is located in its corresponding compartment to perform its function and contribute to the expression of the phenotype of cell.The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of a specific gene. The development of the RNA-based gene expression studies began with the Northern Blot by Alwine et al. in 1977. In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization, but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of the techniques for quantification of RNA are deprecated because other new techniques provide more information. Currently the most widely used techniques are qPCR, expression microarrays, and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed. PMID:27300529

  8. Noise minimization in eukaryotic gene expression

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  9. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells

    PubMed Central

    Dou, Jun; Ni, Yaoyao; He, Xiangfeng; Wu, Di; Li, Miao; Wu, Songyan; Zhang, Rong; Guo, Mei; Zhao, Fengsu

    2016-01-01

    Research on the relationship between aberrant long non-coding RNA (lncRNA) and cancer stem cell (CSC) biology in cancer patients has been recently gaining attention. The goal of this study was to investigate whether the decreasing lncRNA HOTAIR expression would inhibit human colorectal cancer (CRC) stem cells. CD133+CSCs were isolated from human CRC LoVo cell line by using a magnetic-activated cell sorting system, and were transfected with the expression vector-based small hairpin RNA targeting HOTAIR (shHOTAIR). The ability of cellular proliferation, migration, invasion, colony-forming, and the epithelial-mesenchymal transition (EMT)-associated molecule expression as well as the tumorigenicity of CD133+-shHOTAIR were evaluated by the MTT, wound-healing, cellular invasion, colony formation and Western blot assays, respectively. This study found that, when compared with control cells in vitro, CD133+-shHOTAIR exhibited the decreased HOTAIR expression, suppressed cellular proliferation, migration, invasion, colony-forming, and inhibited the Vimentin expression with increased E-cadherin expression. In particular, the down-regulation of the HOTAIR expression in CD133+CSCs markedly attenuated the tumor growth and lung metastasis in xenograft nude mice. Taken together, this study found that down-regulating the HOTAIR expression in CD133+CSCs could serve as a potential anti-cancer regimen to inhibit the invasiveness and metastasis of CRC CSCs. PMID:27069543

  10. Crosstalk-eliminated quantitative determination of aflatoxin B1-induced hepatocellular cancer stem cells based on concurrent monitoring of CD133, CD44, and aldehyde dehydrogenase1.

    PubMed

    Ju, Hee; Shim, Yumi; Arumugam, Parthasarathy; Song, Joon Myong

    2016-01-22

    Cancer stem cells (CSCs), known as tumor initiating cells, have become a critically important issue for cancer therapy. Although much research has demonstrated the induction of hepato cellular carcinoma by aflatoxin B1, the formation of hepatocellular CSCs and their quantitative determination is hardly reported. In this work, it was found that hepatocellular CSCs were produced from HepG2 cells by aflatoxin B1-induced mutation, and their amount was quantitatively determined using crosstalk-eliminated multicolor cellular imaging based on quantum dot (Qdot) nanoprobes and an acousto-optical tunable filter (AOTF). Hepatocellular CSCs were acquired via magnetic bead-based sorting and observed using concurrent detection of three different markers: CD133, CD44, and aldehyde dehydrogenase1 (ALDH1). The DNA mutation of HepG2 cells caused by aflatoxin B1 was quantitatively observed via absorbance spectra of aflatoxin B1-8, 9-epoxide-DNA adducts. The percentages of hepatocellular CSCs formed in the entire HepG2 cells were determined to be 9.77±0.65%, 10.9±1.39%, 11.4±1.32%, and 12.8±0.7%, respectively, at 0 μM, 5 μM, 10 μM, and 20 μM of aflatoxin B1. The results matched well with those obtained utilizing flow cytometry. This study demonstrates that aflatoxin mediated mutation induced the conversion of hepatic cancer cell to hepatic CSCs by using a Qdot based constructed multicolor cellular imaging system. PMID:26739636