Sample records for cd133 gene expression

  1. CD133 expression in osteosarcoma and derivation of CD133⁺ cells.

    PubMed

    Li, Ji; Zhong, Xiao-Yan; Li, Zong-Yu; Cai, Jin-Fang; Zou, Lin; Li, Jian-Min; Yang, Tao; Liu, Wei

    2013-02-01

    Cluster of differentiation 133 (CD133) is recognized as a stem cell marker for normal and cancerous tissues. Using cell culture and real‑time fluorescent polymerase chain reaction, CD133 expression was analyzed in osteosarcoma tissue and Saos‑2 cell lines. In addition, cancer stem cell‑related gene expression in the Saos‑2 cell line was determined to explore the mechanisms underlying tumorigenesis and high drug resistance in osteosarcoma. CD133+ cells were found to be widely distributed in various types of osteosarcoma tissue. Following cell culture, cells entered the G2/M and S cell cycle stages from G0/G1. Levels of CD133+ cells decreased to normal levels rapidly over the course of cell culture. Colony forming efficiency was higher in the CD133+ compared with the CD133‑ subpopulation of Saos‑2 cells. Expression levels of stem cell‑related genes, including multidrug resistance protein 1 (MDR1) and sex determining region Y‑box 2 (Sox2) in the CD133+ subpopulation of cells were found to be significantly higher compared with the CD133‑ subpopulation. These observations indicate that CD133+ Saos‑2 cells exhibit stem cell characteristics, including low abundance, quiescence and a high potential to undergo differentiation, as well as expression of key stem cell regulatory and drug resistance genes, which may cause osteosarcoma and high drug resistance.

  2. A CD133-expressing murine liver oval cell population with bilineage potential.

    PubMed

    Rountree, C Bart; Barsky, Lora; Ge, Shundi; Zhu, Judy; Senadheera, Shantha; Crooks, Gay M

    2007-10-01

    Although oval cells are postulated to be adult liver stem cells, a well-defined phenotype of a bipotent liver stem cell remains elusive. The heterogeneity of cells within the oval cell fraction has hindered lineage potential studies. Our goal was to identify an enriched population of bipotent oval cells using a combination of flow cytometry and single cell gene expression in conjunction with lineage-specific liver injury models. Expression of cell surface markers on nonparenchymal, nonhematopoietic (CD45-) cells were characterized. Cell populations were isolated by flow cytometry for gene expression studies. 3,5-Diethoxycarbonyl-1,4-dihydrocollidine toxic injury induced cell cycling and expansion specifically in the subpopulation of oval cells in the periportal zone that express CD133. CD133+CD45- cells expressed hepatoblast and stem cell-associated genes, and single cells coexpressed both hepatocyte and cholangiocyte-associated genes, indicating bilineage potential. CD133+CD45- cells proliferated in response to liver injury. Following toxic hepatocyte damage, CD133+CD45- cells demonstrated upregulated expression of the hepatocyte gene Albumin. In contrast, toxic cholangiocyte injury resulted in upregulation of the cholangiocyte gene Ck19. After 21-28 days in culture, CD133+CD45- cells continued to generate cells of both hepatocyte and cholangiocyte lineages. Thus, CD133 expression identifies a population of oval cells in adult murine liver with the gene expression profile and function of primitive, bipotent liver stem cells. In response to lineage-specific injury, these cells demonstrate a lineage-appropriate genetic response. Disclosure of potential conflicts of interest is found at the end of this article.

  3. CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors

    PubMed Central

    Shmelkov, Sergey V.; Butler, Jason M.; Hooper, Andrea T.; Hormigo, Adilia; Kushner, Jared; Milde, Till; St. Clair, Ryan; Baljevic, Muhamed; White, Ian; Jin, David K.; Chadburn, Amy; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; D’Angelica, Michael; Kemeny, Nancy; Lyden, David; Rafii, Shahin

    2008-01-01

    Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10–/–CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133– population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133– metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133– cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24–), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic

  4. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blazek, Ed R.; Foutch, Jennifer L.; Maki, Guitta

    2007-01-01

    Purpose: Primary medulloblastoma and glioblastoma multiforme tumor cells that express the surface marker CD133 are believed to be enriched for brain tumor stem cells because of their unique ability to initiate or reconstitute tumors in immunodeficient mice. This study sought to characterize the radiobiological properties and marker expression changes of CD133+ vs. CD133- cells of an established medulloblastoma cell line. Methods and Materials: Daoy and D283 Med cell lines were stained with fluorescently labeled anti-CD133 antibody and sorted into CD133+ and CD133- populations. The effect of oxygen (2% vs. 20%) on CD133 expression was measured. Both populations were analyzed formore » marker stability, cell cycle distribution, and radiosensitivity. Results: CD133+ Daoy cells restored nearly native CD133+ and CD133- populations within 18 days, whereas CD133- cells remained overwhelmingly CD133-. Culturing Daoy cells in 2% oxygen rather than the standard 20% oxygen increased their CD133 expression 1.6-fold. CD133+ Daoy cells were radioresistant via the {beta}-parameter of the linear-quadratic model relative to CD133- Daoy cells, although their {alpha}-parameters and cell cycle distributions were identical. Conclusions: Restoration of the original CD133+ and CD133- populations from CD133+ Daoy cells in serum is further evidence that CD133+ cells are functionally distinct from CD133- cells. The radioresistance of CD133+ compared with CD133- Daoy cells is consistent with better repair of sublethal damage. Enlargement of the CD133+ sector is a new feature of the hypoxic response.« less

  5. Chemoresistance of CD133{sup +} colon cancer may be related with increased survivin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133{sup +} colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133{sup −} cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133{sup +}more » and siRNA-induced CD133{sup −} cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133{sup +} cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133{sup +} cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133{sup +} cells at 96 h after siRNA transfection. From this study, we conclude that CD133{sup +} cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133{sup +} colon cancer. - Highlights: • We evaluate the role of CD133 in chemoresistance of colon cancer. • We compared the chemoresistance of CD133{sup +} cells and siRNA-induced CD133{sup −} cells. • CD133 had little to no effect on MDR1, ABCG2 and AKT1 expression. • Survivin expression and chemoresistance were increased in CD133{sup +} colon

  6. Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations.

    PubMed

    Grasso, Carole; Anaka, Matthew; Hofmann, Oliver; Sompallae, Ramakrishna; Broadley, Kate; Hide, Winston; Berridge, Michael V; Cebon, Jonathan; Behren, Andreas; McConnell, Melanie J

    2016-09-09

    The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial. We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice. We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment. We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma.

  7. [The expression and significance of CD(276) and CD(133) in colorectal cancer and precancerous lesions].

    PubMed

    Lu, G F; Huang, L N; Ren, J L; Hu, G M; Zheng, Z H; Wu, J X; Zhu, Y P; Tang, F A

    2018-06-01

    In order to study the significance of CD(276) and CD(133) in the development and progression of colorectal cancer (CRC), the expression of CD(276) and CD(133) was detected by immunohistochemistry in CRC and precancerous lesions. The results showed that the intensity of CD(276) and CD(133) in CRC samples was higher than that in adenoma group and non-adenoma group. CD(276) and CD(133) single and double positive expression were significantly correlated with CRC lymph node metastasis, distant metastasis and survival. CD(276) and CD(133) are significantly correlated to the development and progression of CRC and associated with poor prognosis.

  8. Expression of CD133 confers malignant potential by regulating metalloproteinases in human hepatocellular carcinoma.

    PubMed

    Kohga, Keisuke; Tatsumi, Tomohide; Takehara, Tetsuo; Tsunematsu, Hinako; Shimizu, Satoshi; Yamamoto, Masashi; Sasakawa, Akira; Miyagi, Takuya; Hayashi, Norio

    2010-06-01

    Although CD133 expression is identified as a cancer stem cell marker of hepatocellular carcinoma (HCC), the detailed characteristics of HCC cells expressing CD133 remain unclear. We examined the malignant characteristics of CD133-expressing HCC cells. CD133-expressing cells could be detected with low frequency in 5 HCC tissues. We derived two different HCC cell lines by (1) transfection of CD133 siRNA in PLC/PRF/5 cells in (CD133si-PLC/PRF/5), and (2) by a magnetic cell sorting method that allowed to divide Huh7 cells into two CD133 positive (+) and negative (-) groups. CD133 knockdown in PLC/PRF/5 cells resulted in a decrease of the mRNA and protein expressions of matrix metalloproteinase (MMP)-2 and a disintegrin and metalloproteinase (ADAM)9. We next examined the malignant characteristics related to decreasing MMP-2 and ADAM9 in HCC cells. In CD133si-PLC/PRF/5 cells and CD133- Huh7 cells, invasiveness and vascular endothelial growth factor (VEGF) production, which are both related to the activity of MMP-2, were inhibited compared CD133-expressing HCC cells. We previously demonstrated that ADAM9 protease plays critical roles in the shedding of MHC class I-related chain A (MICA) which regulates the sensitivity of tumor cells to natural killer cells (NK). Decreasing ADAM9 expression in CD133si-PLC/PRF/5 cells and CD133- Huh7 cells resulted in an increase in membrane-bound MICA and a decrease in soluble MICA production. Both CD133si-PLC/PRF/5 cells and CD133- Huh7 cells were susceptible to NK activity, depending on the expression levels of membrane-bound MICA, but CD133-expressing HCC cells were not. These results demonstrate that CD133 expression in HCC cells confers malignant potential which may contribute to the survival of HCC cells. Copyright 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  9. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    PubMed

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells.

  10. Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.-J.; Hsu, C.-C.; Department of Surgery, Chi-Mei Medical Center, Taipei, Taiwan

    2009-03-06

    CD133-expressing glioma cells play a critical role in tumor recovery after treatment and are resistant to radiotherapy. Herein, we demonstrated that glioblastoma-derived CD133-positive cells (GBM-CD133{sup +}) are capable of self-renewal and express high levels of embryonic stem cell genes and SirT1 compared to GBM-CD133{sup -} cells. To evaluate the role of SirT1 in GBM-CD133{sup +}, we used a lentiviral vector expressing shRNA to knock-down SirT1 expression (sh-SirT1) in GBM-CD133{sup +}. Silencing of SirT1 significantly enhanced the sensitivity of GBM-CD133{sup +} to radiation and increased the level of radiation-mediated apoptosis. Importantly, knock-down of SirT1 increased the effectiveness of radiotherapy in themore » inhibition of tumor growth in nude mice transplanted with GBM-CD133{sup +}. Kaplan-Meier survival analysis indicated that the mean survival rate of GBM-CD133{sup +} mice treated with radiotherapy was significantly improved by Sh-SirT1 as well. In sum, these results suggest that SirT1 is a potential target for increasing the sensitivity of GBM and glioblastoma-associated cancer stem cells to radiotherapy.« less

  11. Co-Expression of Putative Cancer Stem Cell Markers CD44 and CD133 in Prostate Carcinomas.

    PubMed

    Kalantari, Elham; Asgari, Mojgan; Nikpanah, Seyedehmoozhan; Salarieh, Naghme; Asadi Lari, Mohammad Hossein; Madjd, Zahra

    2017-10-01

    Cancer stem cells (CSCs) are the main players of prostate tumorigenesis thus; characterization of CSCs can pave the way for understanding the early detection, drug resistance, metastasis and relapse. The current study was conducted to evaluate the expression level and clinical significance of the potential CSC markers CD44 and CD133 in a series of prostate tissues. One hundred and forty eight prostate tissues composed of prostate cancer (PCa), high-grade prostatic intraepithelial neoplasia (HGPIN), and benign prostate hyperplasia (BPH) were immunostained for the putative CSC markers CD44 and CD133. Subsequently, the correlation between the expression of these markers and the clinicopathological variables was examined. A higher level of CD44 expression was observed in 42% of PCa, 57% of HGPIN, and 42% BPH tissues. In the case of CD133 expression PCa, HGPIN, and BPH samples demonstrated high immunoreactivity in 46%, 43%, and 42% of cells, respectively. Statistical analysis showed an inverse significant correlation between CD44 expression with Gleason score of PCa (P = 0.02), while no significant correlation was observed between CD133 expression and clinicopathological parameters. A significant reciprocal correlation was observed between the expression of two putative CSC markers CD44 and CD133 in PCa specimens while not indicating clinical significance. Further clinical investigation is required to consider these markers as targets of new therapeutic strategies for PCa.

  12. VCAM-1 expression is upregulated by CD34+/CD133+-stem cells derived from septic patients

    PubMed Central

    Remmé, Christoph; Betzen, Christian; Tönshoff, Burkhard; Yard, Benito A.; Beck, Grietje; Rafat, Neysan

    2018-01-01

    CD34+/CD133+- cells are a bone marrow derived stem cell population, which presumably contain vascular progenitor cells and are associated with improved vascular repair. In this study, we investigated whether the adhesion molecules ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular adhesion molecule-1), E-selectin und L-selectin, which are involved in homing of vascular stem cells, are upregulated by CD34+/CD133+-stem cells from septic patients and would be associated with improved clinical outcome. Peripheral blood mononuclear cells from intensive care unit (ICU) patients with (n = 30) and without sepsis (n = 10), and healthy volunteers (n = 15) were isolated using Ficoll density gradient centrifugation. The expression of VCAM-1, ICAM-1, E-selectin and L-selectin was detected on CD34+/CD133+-stem cells by flow cytometry. The severity of disease was assessed by the Simplified Acute Physiology Score (SAPS) II. Serum concentrations of vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-2 were determined by Enzyme-linked immunosorbent assay. The expression of VCAM-1, ICAM-1, E-selectin and L-selectin by CD34+/CD133+-stem cells was significantly upregulated in septic patients, and correlated with sepsis severity. Furthermore, high expression of VCAM-1 by CD34+/CD133+-stem cells revealed a positive association with mortalitiy (p<0.05). Furthermore, significantly higher serum concentrations of VEGF and Ang-2 were found in septic patients, however none showed a strong association with survival. Our data suggest, that VCAM-1 upregulation on CD34+/CD133+-stem cells could play a crucial role in their homing in the course of sepsis. An increase in sepsis severity resulted in both and increase in CD34+/CD133+-stem cells and VCAM-1-expression by those cells, which might reflect an increase in need for vascular repair. PMID:29601599

  13. [Expression of AC133 vs. CD34 in acute childhood leukemias].

    PubMed

    Ebener, U; Brinkmann, A; Zotova, V; Niegemann, E; Wehner, S

    2000-01-01

    AC133, a newly discovered antigen on human progenitor cells, demonstrating 5-transmembranous domains is expressed by 30-60% out of all CD34+ cells. Our aim therefore was to investigate the extent of human stem-/progenitor cells expressing AC133 antigen in umbilical cord blood, peripheral blood without or following an application of granulocyte-colony stimulating factor (rhG-CSF). The main task was the investigation of bone marrow aspirates derived from children suffering from newly diagnosed acute leukemias, as well as from patients with a relapse or during a complete remission. The determination of antigen expression was done by application of flow cytometry (FACScan analysis) and the usage of newly developed monoclonal antibodies (AC133/1 and AC133/2; Miltenyi Biotec GmbH) in combination with monoclonal antibody directed against CD34-antigens (HPCA-2; BD). Our studies till now show average percentages in umbilical cord blood derived from 43 newborns about 0.294 +/- 0.165% AC133+ vs. 0.327 +/- 0.156% CD34+ hematopoietic stem-/progenitor cells (HSPC). In peripheral blood from 11 healthy donors we verified up to 0.15% CD34+ as well as AC133+ HSPC's. The concentration of progenitor cells was found to be obviously higher in peripheral blood from children with various diseases (neuroblastoma, rhabdomyosarcoma, ALL/AML) and undergoing application with rhG-CSF in order to be prepared for PBSC-transplantation. In those cases we found up to 3.51% AC133+ cells as well as slightly higher values (3.94%) for CD34 antigens. Additionally we quantified 128 bone marrow (BM) samples for AC133+ and CD34+ cells. In 10 BM samples, derived from patients without any neoplasia, the CD34+ cells were about 0.03% and 1.49%, whereas AC133 values were up to 0.64%. Bone marrow aspirates from 53 children with acute leukemias at time of diagnosis (ALL: n = 41/AML: n = 12) have been immunophenotyped and leukemic blast cells have been proved for AC133- and CD34 antigen expression. 32/41 (78%) of

  14. In vitro characterization of CD133lo cancer stem cells in Retinoblastoma Y79 cell line.

    PubMed

    Nair, Rohini M; Balla, Murali Ms; Khan, Imran; Kalathur, Ravi Kiran Reddy; Kondaiah, Paturu; Vemuganti, Geeta K

    2017-11-21

    Retinoblastoma (Rb), the most common childhood intraocular malignant tumor, is reported to have cancer stem cells (CSCs) similar to other tumors. Our previous investigation in primary tumors identified the small sized cells with low CD133 (Prominin-1) and high CD44 (Hyaluronic acid receptor) expression to be putative Rb CSCs using flow cytometry (FSC lo /SSC lo /CD133 lo /CD44 hi ). With this preliminary data, we have now utilized a comprehensive approach of in vitro characterization of Y79 Rb cell line following CSC enrichment using CD133 surface marker and subsequent validation to confirm the functional properties of CSCs. The cultured Rb Y79 cells were evaluated for surface markers by flow cytometry and CD133 sorted cells (CD133 lo /CD133 hi ) were compared for CSC characteristics by size/percentage, cell cycle assay, colony formation assay, differentiation, Matrigel transwell invasion assay, cytotoxicity assay, gene expression using microarray and validation by semi-quantitative PCR. Rb Y79 cell line shared the profile (CD133, CD90, CXCR4 and ABCB1) of primary tumors except for CD44 expression. The CD133 lo cells (16.1 ± 0.2%) were FSC lo /SSC lo , predominantly within the G0/G1 phase, formed larger and higher number of colonies with ability to differentiate to CD133 hi cells, exhibited increased invasive potential in a matrigel transwell assay (p < 0.05) and were resistant to Carboplatin treatment (p < 0.001) as compared to CD133 hi cells. The CD133 lo cells showed higher expression of several embryonic stem cell genes (HOXB2, HOXA9, SALL1, NANOG, OCT4, LEFTY), stem cells/progenitor genes (MSI2, BMI1, PROX1, ABCB1, ABCB5, ABCG2), and metastasis related gene- MACC1, when compared to the CD133 hi cells. This study validates the observation from our earlier primary tumor study that CSC properties in Rb Y79 cell line are endowed within the CD133 lo population, evident by their characteristics- i.e. small sized, dormant in nature, increased colony forming

  15. CD133 expression in well-differentiated pancreatic neuroendocrine tumors: a potential predictor of progressive clinical courses.

    PubMed

    Sakai, Yasuhiro; Hong, Seung-Mo; An, Soyeon; Kim, Joo Young; Corbeil, Denis; Karbanová, Jana; Otani, Kyoko; Fujikura, Kohei; Song, Ki-Byung; Kim, Song Cheol; Akita, Masayuki; Nanno, Yoshihide; Toyama, Hirochika; Fukumoto, Takumi; Ku, Yonson; Hirose, Takanori; Itoh, Tomoo; Zen, Yoh

    2017-03-01

    The present study aimed to elucidate whether the stemness molecule, CD133, is expressed in well-differentiated pancreatic neuroendocrine tumors (PanNETs; World Health Organization grades 1 and 2) and establish its clinical relevance using 2 separate cohorts. In the first series (n = 178) in which tissue microarrays were available, immunohistochemistry revealed that CD133 was expressed in 14 cases (8%). CD133+ PanNETs had higher TNM stages (P < .01), more frequent lymphovascular invasion (P = .01), and higher recurrence rates (P = .01). In the second cohort (n = 56), the expression of CD133 and CK19 was examined in whole tissue sections. CD133 and CK19 were positive in 10 (18%) and 36 (64%) cases, respectively. CD133 expression correlated with higher pT scores (P < .01), the presence of microscopic venous infiltration (P = .03), and shorter disease-free periods (P < .01). When cases were divided into grade 1 and 2 neoplasms, patients with CD133+ PanNET continued to have shorter disease-free periods than did those with CD133- tumors in both groups (P < .01 and P = .02, respectively). Although CK19+ cases had shorter disease-free periods than did CK19- cases in the whole cohort (P = .02), this difference was less apparent in subanalyses of grade 1 and 2 cases. CD133 expression also appeared to be an independent predictive factor for tumor recurrence in a multivariate analysis (P = .018). The CD133 phenotype was identical between primary and metastatic foci in 17 of 18 cases from which tissues of metastatic deposits were available. In conclusion, the combination of CD133 phenotyping and World Health Organization grading may assist in stratifying patients in terms of the risk of progressive clinical courses. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Prognostic role of CD133 expression in colorectal cancer: a meta-analysis.

    PubMed

    Wang, Ke; Xu, Jianjun; Zhang, Junshu; Huang, Jian

    2012-12-05

    CD133 has been identified as a putative cancer stem cell marker in colorectal cancer (CRC). However, the clinical and prognostic significance of CD133 in CRC remains controversial. Publications were identified which assessed the clinical or prognostic significance of CD133 in CRC up to October 2012. A meta-analysis was performed to clarify the association between CD133 expression and clinical outcomes. A total of 12 studies met the inclusion criteria, and comprised 3652 cases. Analysis of these data showed that CD133 was not significantly associated with the depth of CRC invasion (odds ratio [OR] = 1.44, 95% confidence interval [CI]: 0.77-2.68, Z = 1.15, P = 0.252) or tumor differentiation (OR = 0.63, 95% CI: 0.28-1.46, Z = -1.06, P = 0.286). Also, there was no statistically significant association of CD133 with lymph node metastasis (OR = 1.16, 95% CI: 0.87-1.54, Z = 1.05, P = 0.315) or lymphatic invasion (OR = 1.08, 95% CI: 0.81-1.43, Z = 0.53, P = 0.594). However, in identified studies, overexpression of CD133 was highly correlated with reduced overall survival (relative risk [RR] = 2.14, 95% CI: 1.45-3.17, Z = 3.81, P = 0.0001). CD133 may play an important role in the progression of CRC, and overexpression of CD133 is closely related with poorer patient survival. If these findings are confirmed by well-designed prospective studies, CD133 may be a useful maker for clinical applications.

  17. CD133 expression in oral lichen planus correlated with the risk for progression to oral squamous cell carcinoma.

    PubMed

    Sun, Lili; Feng, Jinqiu; Ma, Lihua; Liu, Wei; Zhou, Zengtong

    2013-12-01

    Oral lichen planus (OLP) is a potentially malignant disorder associated with an increased risk for progression to oral squamous cell carcinoma (OSCC). The objective of this study to determine protein expression of cancer stem cell marker CD133 in tissue samples of patients with OLP and evaluate the correlation between CD133 expression and the risk of progression to OSCC. In this longitudinal case-control study, a total of 110 patients with OLP who received a mean follow-up of 56 months were enrolled, including 100 patients who did not progress to OSCC and 10 patients who had progressed to OSCC. CD133 expression was determined using immunohistochemistry in samples from these patients. Analysis of 10 cases of normal oral mucosa and 6 cases of postmalignant OSCC form previously diagnosed OLP was also performed. The results showed that CD133 expression was observed in 29% cases of nonprogressing OLP and in 80% cases of progressing OLP (P = .002). CD133 was not expressed in normal oral mucosa, but it positively expressed in the 100% cases of OSCC. Logistic regression analysis revealed that the risk of malignant progression in the patients with CD133-positive expression was significantly higher than those with CD133 negativity (odds ratio, 9.79; 95% confidence interval, 1.96-48.92; P = .005). Collectively, CD133 expression was significantly associated with malignant progression in a longitudinal series of patients with OLP. Our findings suggested that CD133 may serve as a novel candidate biomarker for risk assessment of malignant potential of OLP. © 2013.

  18. [Lentivirus-mediated RNA interference of CD133 inhibits the proliferation of CD133(+) liver cancer stem cells and increases their cisplatin chemosensitivity].

    PubMed

    Lan, Xi; Wang, Yong; Cao, Shu; Zou, Dongling; Li, Fang; Li, Shaolin

    2012-12-01

    To study the effects of CD133 suppression by lentivirus-mediated RNA interference (RNAi) on the proliferation and chemosensitivity of CD133(+) cancer stem cells (CSCs) sorted from HepG2 cell line. CD133(+) and CD133- cells were sorted from HepG2 cell line by flow cytometry, and the expression of CD133 before and after cell sorting were detected. The stem cell property of sorted CD133(+) cells were validated by sphere-forming assay in vitro and xenograft experiments in vivo. Lentivirus-mediated short hairpin RNA (shRNA) targeting CD133 were transfected into CD133(+) cells, and CD133 mRNA and protein expressions of the transfected cells were detected by RT-PCR and Western blotting, respectively. Before and after the transfection, the proliferative ability of CD133(+) cells was evaluated by colony formation assay, and the cell growth inhibition rate and apoptosis following cisplatin exposure were detected using CCK-8 assay and flow cytometry. The sorted CD133(+) cells showed a high purity of (88.74∓3.19)%, as compared with the purity of (3.36∓1.80)% before cell sorting. CD133(+) cells showed a high tumor sphere formation ability and tumorigenesis capacity compared with CD133- cells. CD133 shRNA transfection significantly inhibited CD133 mRNA and protein expressions in CD133(+) cells (P<0.01), resulting also in a significantly lowered cell proliferative ability (P<0.01) and an increased growth inhibition rate (P<0.01) and obviously increased cell apoptosis (P<0.05) after cisplatin exposure. Lentivirus-mediated RNAi for CD133 suppression inhibits the proliferation of CD133(+) liver cancer stem cells and increases their chemosensitivity to cisplatin.

  19. Cytoplasmic expression of CD133 stemness marker is associated with tumor aggressiveness in clear cell renal cell carcinoma.

    PubMed

    Saeednejad Zanjani, Leili; Madjd, Zahra; Abolhasani, Maryam; Andersson, Yvonne; Rasti, Arezoo; Shariftabrizi, Ahmad; Asgari, Mojgan

    2017-10-01

    Prominin-1 (CD133) is one of the most commonly used markers for cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. However, the clinical and prognostic significance of CSCs in renal cell carcinoma (RCC) remains unclear. The aim of this study was to investigate the expression patterns and prognostic significance of the cancer stem cell marker CD133 in different histological subtypes of RCC. CD133 expression was evaluated using immunohistochemistry in 193 well-defined renal tumor samples on tissue microarrays, including 136 (70.5%) clear cell renal cell carcinomas (CCRCCs), 26 (13.5%) papillary RCCs, and 31 (16.1%) chromophobe RCCs. The association between CD133 expression and clinicopathological features as well as the survival outcomes was determined. There was a statistically significant difference between CD133 expression among the different RCC subtypes. In CCRCC, higher cytoplasmic expression of CD133 was significantly associated with increase in grade, stage, microvascular invasion (MVI) and lymph node invasion (LNI), while no association was found with the membranous expression. Moreover, on multivariate analysis, TNM stage and nuclear grade were independent prognostic factors for overall survival (OS) in cytoplasmic expression. We showed that higher cytoplasmic CD133 expression was associated with more aggressive tumor behavior and more advanced disease in CCRCC but not in the other examined subtypes. Our results demonstrated that higher cytoplasmic CD133 expression is clinically significant in CCRCC and is associated with increased tumor aggressiveness and is useful for predicting cancer progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Aberrant expression of cancer stem cell markers (CD44, CD90, and CD133) contributes to disease progression and reduced survival in hepatoblastoma patients: 4-year survival data.

    PubMed

    Bahnassy, Abeer A; Fawzy, Mohamed; El-Wakil, Mohamed; Zekri, Abdel-Rahman N; Abdel-Sayed, Ahmed; Sheta, Marwa

    2015-03-01

    Hepatoblastoma (HB) is an embryonal tumor of the liver in children. Prognosis and response to treatment in HB are highly variable. Cancer stem cells (CSCs) constitute a population of cells, which contribute to the development and progression of many tumors. However, their role in HB is not well defined yet. We assessed the prognostic and predictive values of some CSC markers in HB patients. Protein and messenger RNA expressions of the CSC markers CD133, CD90, and CD44 were assessed in 43 HB patients and 20 normal hepatic tissues using immunohistochemistry and quantitative real-time polymerase chain reaction. The expression levels of these markers were correlated to standard prognostic factors, patients' response to treatment, overall survival (OS), and disease-free survival (DFS). CD44, CD90, and CD133 proteins were detected in 48.8%, 32.6%, and 48.8% compared with 46.5%, 41.7%, and 58.1% RNA, respectively (concordance, 77.8%-96%). None of the normal tissue samples was positive for any of the markers. Significant correlations were reported between α-fetoprotein and both CD44 and CD133 (P = 0.02) as well as between tumor types CD90 and CD133 (P = 0.009). Reduced OS correlated with CD44, CD90, and CD133 expressions (P < 0.001), advanced stage (P < 0.001), response to treatment (P < 0.001), and total excision of the tumor. Reduced DFS correlated with CD44 and CD133 expressions (P < 0.001) only. In conclusion, CD133, CD44, and CD90 could be used as prognostic and predictive markers in HB. High expression of these markers is significantly associated with poor response to treatment and reduced survival. Moreover, complete surgical resection and systemic chemotherapy are essential to achieve good response and prolonged survival, especially in early stage patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. CD133: Beyond a Cancer Stem Cell Biomarker.

    PubMed

    Barzegar Behrooz, Amir; Syahir, Amir; Ahmad, Syahida

    2018-06-18

    CD133 (prominin-1), a pentaspan membrane glycoprotein, is one of the most well-characterized biomarkers used for the isolation of cancer stem cells (CSCs). The presence of CSCs is one of the main causes of tumor reversal and resilience. Accumulating evidence has shown that CD133 might be responsible for CSCs tumorigenesis, metastasis, and chemoresistance. It is now understood that CD133 interacts with the Wnt/β-catenin and PI3K-Akt signaling pathways. Moreover, CD133 can upregulate the expression of FLICE-like inhibitory protein (FLIP) in CD133-positive cells, inhibiting apoptosis. Additionally, CD133 can increase angiogenesis by activating the Wnt signaling pathway and increasing the expression of vascular endothelial growth factor-A (VEGF-A) and interleukin-8. Therefore, CD133 could be considered to be an "Achilles' heel" for CSCs, because by inhibiting this protein, the signaling pathways that are involved in cell proliferation will also be inhibited. By understanding the molecular biology of CD133, we can not only isolate stem cells, but can also utilize it as a therapeutic strategy. In this review, we summarize new insights into the fundamental cell biology of CD133 and discuss the involvement of CD133 in metastasis, metabolism, tumorigenesis, drug-resistance, apoptosis, and autophagy.

  2. Human CD34(lo)CD133(lo) fetal liver cells support the expansion of human CD34(hi)CD133(hi) hematopoietic stem cells.

    PubMed

    Yong, Kylie Su Mei; Keng, Choong Tat; Tan, Shu Qi; Loh, Eva; Chang, Kenneth Te; Tan, Thiam Chye; Hong, Wanjin; Chen, Qingfeng

    2016-09-01

    We have recently discovered a unique CD34(lo)CD133(lo) cell population in the human fetal liver (FL) that gives rise to cells in the hepatic lineage. In this study, we further characterized the biological functions of FL CD34(lo)CD133(lo) cells. Our findings show that these CD34(lo)CD133(lo) cells express markers of both endodermal and mesodermal lineages and have the capability to differentiate into hepatocyte and mesenchymal lineage cells by ex vivo differentiation assays. Furthermore, we show that CD34(lo)CD133(lo) cells express growth factors that are important for human hematopoietic stem cell (HSC) expansion: stem cell factor (SCF), insulin-like growth factor 2 (IGF2), C-X-C motif chemokine 12 (CXCL12), and factors in the angiopoietin-like protein family. Co-culture of autologous FL HSCs and allogenic HSCs derived from cord blood with CD34(lo)CD133(lo) cells supports and expands both types of HSCs.These findings are not only essential for extending our understanding of the HSC niche during the development of embryonic and fetal hematopoiesis but will also potentially benefit adult stem cell transplantations in clinics because expanded HSCs demonstrate the same capacity as primary cells to reconstitute the human immune system and mediate long-term hematopoiesis in vivo. Together, CD34(lo)CD133(lo) cells not only serve as stem/progenitor cells for liver development but are also an essential component of the HSC niche in the human FL.

  3. Targeting CD133 antigen in cancer.

    PubMed

    Ferrandina, Gabriella; Petrillo, Marco; Bonanno, Giuseppina; Scambia, Giovanni

    2009-07-01

    Much attention has been focused on CD133 as a marker of cancer cells with stem-cell-like ability. In the cancer stem cells (CSCs) model, only a small proportion of tumour cells are able to self-renew extensively, while the bulk of cells proceed to differentiate into committed heterogeneous clones. On the basis of the involvement of CSCs in tumourigenesis and treatment resistance, it is conceivable that only eradication of CSCs can lead to a cancer cure. To highlight the most recent evidence about the role of CD133 as a marker of CSCs in human tumours, and the therapeutic perspectives associated with its specific targeting. A literature search through Medline to locate published full articles using the following key words for selection: 'CD133 and cancer targeting', 'CD133 and chemo resistance', and 'CD133 and molecular pathways'. Only studies in English are considered. The role of CD133 as a marker of CSCs has been documented in several human neoplasms; its expression seems to predict unfavourable prognosis. Novel therapeutic strategies aimed at targeting molecular pathways critical for CD133+ CSCs survival are being examined.

  4. Visualization of CD44 and CD133 in Normal Pancreas and Pancreatic Ductal Adenocarcinomas

    PubMed Central

    Immervoll, Heike; Hoem, Dag; Steffensen, Ole Johnny; Miletic, Hrvoje; Molven, Anders

    2011-01-01

    Tumor-initiating cells of pancreatic ductal adenocarcinoma (PDAC) have been isolated based on expression of either CD133 or CD44. The authors aimed to visualize pancreatic cells simultaneously expressing both these cell surface markers by employing the same antibodies commonly used in cell-sorting studies. Normal and diseased pancreatic tissue, including 51 PDAC cases, were analyzed. CD44 and CD133 expression was determined by immunohistochemical double staining on formalin-fixed material and subcellular protein distribution evaluated by immunofluorescence/confocal microscopy. In the normal pancreas, CD44 and CD133 were coexpressed in the centroacinar regions but in non-overlapping subcellular compartments. As expected, CD44 was found mainly basolaterally, whereas CD133 was present on the apical/endoluminal membrane. This was also the case in chronically inflamed/atrophic pancreatic tissue and in PDAC. In some malignant ducts, CD44 was found at the apical cell membrane adjacent to but never overlapping with CD133 expression. CD44 level was significantly associated with the patient’s lymph node status. In conclusion, a CD44+/CD133+ cell population does exist in the normal and neoplastic pancreas. The preferentially centroacinar localization of the doubly positive cells in the normal parenchyma suggests that this population could be of particular interest in attempts to identify tumor-initiating cells in PDAC. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. PMID:21411814

  5. MPEG-CS/Bmi-1RNAi Nanoparticles Synthesis and Its Targeted Inhibition Effect on CD133+ Laryngeal Stem Cells.

    PubMed

    Wei, Xudong; He, Jian; Wang, Jingyu; Wang, Wei

    2018-03-01

    Previous studies have confirmed that CD133+ cells in laryngeal tumor tissue have the characteristics of cancer stem cells. Bmi-1 gene expression is central to the tumorigenicity of CD133+ cells. In this study, we tried to develop a new siRNA carrier system using chitosan-methoxypolyethylene nanoparticles (CS-mPEG-NPs) that exhibit higher tumor-targeting ability and enhanced gene silencing efficacy in CD133+ tumor stem cells. It is hoped to block the self-renewal and kill the stem cells of laryngeal carcinoma. The mPEG-CS-Bmi-1RNAi-NPs were synthesized and their characters were checked. The changes in invasion ability and sensitivity to radiotherapy and chemotherapy of CD133+Hep-2 tumor cells were observed after Bmi-1 gene silencing. The mPEG-CS-Bmi-1RNAi-NPs synthesized in this experiment have a regular spherical form, a mean size of 139.70 ±6.40 nm, an encapsulation efficiency of 85.21 ± 1.94%, with drug loading capacity of 18.47 ± 1.83%, as well as low cytotoxicity, providing good protection to the loaded gene, strong resistance to nuclease degradation and high gene transfection efficiency. After Bmi-1 gene silencing, the invasion ability of CD133+ cells was weakened. Co-cultured with paclitaxel, the survival rates of CD133+Bmi-1RNAi cells were lower. After radiotherapy, the mean growth inhibition rate of CD133+/Bmi-1RNAi cells was significantly lower than CD133+ cells. In conclusion, the mPEG-CS nano-carrier is an ideal vector in gene therapy, while silencing the Bmi-1 gene can enhance the sensitivity of CD133+ tumor stem cells to chemoradiotherapy and abate their invasion ability.

  6. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells.

    PubMed

    Long, Qifang; Yang, Ru; Lu, Weixian; Zhu, Weipei; Zhou, Jundong; Zheng, Cui; Zhou, Dongmei; Yu, Ling; Wu, Jinchang

    2017-01-01

    Cancer stem cells are a small subset of cancer cells that contribute to cancer progression, metastasis, chemoresistance and recurrence. CD133-positive (CD133+) ovarian cancer cells have been identified as ovarian cancer stem cells. Adenovirus-mediated gene therapy is an innovative therapeutic method for cancer treatment. In the present study, we aimed to develop a new gene therapy to specifically eliminate CD133+ ovarian cancer stem cells by targeting CD133. We used the Cre/LoxP system to augment the selective expression of the truncated Bid (tBid) gene as suicide gene therapy in CD133+ ovarian cancer stem cells. The adenovirus (Ad)-CD133-Cre expressing Cre recombinase under the control of the CD133 promoter and Ad-CMV-LoxP-Neo-LoxP-tBid expressing tBid under the control of the CMV promoter were successfully constructed using the Cre/LoxP switching system. The co-infection of Ad-CMV-LoxP-Neo-LoxP-tBid and Ad-CD133-Cre selectively induced tBid overexpression, which inhibited cell growth and triggered the cell apoptosis of CD133+ ovarian cancer stem cells. The Cre/LoxP system-mediated tBid overexpression activated the pro-apoptotic signaling pathway and augmented the cytotoxic effect of cisplatin in CD133+ ovarian cancer stem cells. Furthermore, in xenograft experiments, co-infection with the two recombinant adenoviruses markedly suppressed tumor growth in vivo and promoted cell apoptosis in tumor tissues. Taken together, the present study provides evidence that the adenovirus-mediated tBid overexpression induced by the Cre/LoxP system can effectively eliminate CD133+ ovarian cancer stem cells, representing a novel therapeutic strategy for the treatment of ovarian cancer.

  7. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro.

    PubMed

    McCord, Amy M; Jamal, Muhammad; Shankavaram, Uma T; Shankavarum, Uma T; Lang, Frederick F; Camphausen, Kevin; Tofilon, Philip J

    2009-04-01

    In vitro investigations of tumor stem-like cells (TSC) isolated from human glioblastoma (GB) surgical specimens have been done primarily at an atmospheric oxygen level of 20%. To determine whether an oxygen level more consistent with in situ conditions affects their stem cell-like characteristics, we compared GB TSCs grown under conditions of 20% and 7% oxygen. Growing CD133(+) cells sorted from three GB neurosphere cultures at 7% O(2) reduced their doubling time and increased the self-renewal potential as reflected by clonogenicity. Furthermore, at 7% oxygen, the cultures exhibited an enhanced capacity to differentiate along both the glial and neuronal pathways. As compared with 20%, growth at 7% oxygen resulted in an increase in the expression levels of the neural stem cell markers CD133 and nestin as well as the stem cell markers Oct4 and Sox2. In addition, whereas hypoxia inducible factor 1alpha was not affected in CD133(+) TSCs grown at 7% O(2), hypoxia-inducible factor 2alpha was expressed at higher levels as compared with 20% oxygen. Gene expression profiles generated by microarray analysis revealed that reducing oxygen level to 7% resulted in the up-regulation and down-regulation of a significant number of genes, with more than 140 being commonly affected among the three CD133(+) cultures. Furthermore, Gene Ontology categories up-regulated at 7% oxygen included those associated with stem cells or GB TSCs. Thus, the data presented indicate that growth at the more physiologically relevant oxygen level of 7% enhances the stem cell-like phenotype of CD133(+) GB cells.

  8. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

    PubMed Central

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2016-01-01

    Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897

  9. Characterization of CD133+ parenchymal cells in the liver: histology and culture.

    PubMed

    Yoshikawa, Seiichi; Zen, Yoh; Fujii, Takahiko; Sato, Yasunori; Ohta, Tetsuo; Aoyagi, Yutaka; Nakanuma, Yasuni

    2009-10-21

    To reveal the characteristics of CD133(+) cells in the liver. This study examined the histological characteristics of CD133(+) cells in non-neoplastic and neoplastic liver tissues by immunostaining, and also analyzed the biological characteristics of CD133(+) cells derived from human hepatocellular carcinoma (HCC) or cholangiocarcinoma cell lines. Immunostaining revealed constant expression of CD133 in non-neoplastic and neoplastic biliary epithelium, and these cells had the immunophenotype CD133(+)/CK19(+)/HepPar-1(-). A small number of CD133(+)/CK19(-)/HepPar-1(+) cells were also identified in HCC and combined hepatocellular and cholangiocarcinoma. In addition, small ductal structures, resembling the canal of Hering, partly surrounded by hepatocytes were positive for CD133. CD133 expression was observed in three HCC (HuH7, PLC5 and HepG2) and two cholangiocarcinoma cell lines (HuCCT1 and CCKS1). Fluorescence-activated cell sorting (FACS) revealed that CD133(+) and CD133(-) cells derived from HuH7 and HuCCT1 cells similarly produced CD133(+) and CD133(-) cells during subculture. To examine the relationship between CD133(+) cells and the side population (SP) phenotype, FACS was performed using Hoechst 33342 and a monoclonal antibody against CD133. The ratios of CD133(+)/CD133(-) cells were almost identical in the SP and non-SP in HuH7. In addition, four different cellular populations (SP/CD133(+), SP/CD133(-), non-SP/CD133(+), and non-SP/CD133(-)) could similarly produce CD133(+) and CD133(-) cells during subculture. This study revealed that CD133 could be a biliary and progenitor cell marker in vivo. However, CD133 alone is not sufficient to detect tumor-initiating cells in cell lines.

  10. Downregulation of DNA-PKcs suppresses P-gp expression via inhibition of the Akt/NF-κB pathway in CD133-positive osteosarcoma MG-63 cells.

    PubMed

    Li, Ka; Li, Xin; Tian, Jiguang; Wang, Hongliang; Pan, Jingbo; Li, Jianmin

    2016-10-01

    The development of chemoresistance is closely linked to the plateau of the survival rate in osteosarcoma (OS) patients. CD133-positive (CD133+) OS cells are known as cancer stem cells (CSCs) in OS and exhibit the characteristic of chemoresistance. In this study, CD133+ and CD133‑negative (CD133‑) MG‑63 cells were isolated by magnetic activated cell sorting (MACS). We verified that CD133+ MG‑63 cells were more resistant to cisplatin (CDDP) than CD133‑ MG‑63 cells. DNA‑dependent protein kinase catalytic subunit (DNA‑PKcs) and P‑glycoprotein (P‑gp) were expressed at higher levels in the CD133+ MG‑63 cells compared with those levels in the CD133‑ MG‑63 cells, whereas downregulation of DNA‑PKcs by small interfering RNA (siRNA) decreased chemoresistance to CDDP and P‑gp expression at the mRNA and protein levels in these cells. This indicated that DNA‑PKcs was correlated with P‑gp expression in the CD133+ MG‑63 cells. The Akt/NF‑κB pathway was hyperactivated in the CD133+ MG‑63 cells, whereas inhibition of the Akt/NF‑κB pathway downregulated P‑gp expression. In addition, downregulation of DNA‑PKcs suppressed the activity of the Akt/NF‑κB pathway. These results revealed that downregulation of DNA‑PKcs could decrease P‑gp expression via suppression of the Akt/NF‑κB pathway in CD133+ MG‑63 cells. Therefore, inhibition of DNA‑PKcs decreases P‑gp expression and sensitizes OS CSCs to chemotherapeutic agents in vitro, which needs to be further validated in vivo.

  11. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line.

    PubMed

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133(+), CD133(-) and spheroid cells. Significant differences of the two experimental groups were compared using student's t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133(+) cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Although CD133(+) derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells.

  12. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line

    PubMed Central

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Objective Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. Materials and Methods In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133+, CD133- and spheroid cells. Significant differences of the two experimental groups were compared using student’s t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Results Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133+ cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Conclusion Although CD133+ derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells. PMID:27054115

  13. Predictive and prognostic effect of CD133 and cancer-testis antigens in stage Ib-IIIA non-small cell lung cancer.

    PubMed

    Su, Chunxia; Xu, Ying; Li, Xuefei; Ren, Shengxiang; Zhao, Chao; Hou, Likun; Ye, Zhiwei; Zhou, Caicun

    2015-01-01

    CD133 and cancer-testis antigens (CTAs) may be potential predicted markers of adjuvant chemotherapy or immune therapy, and they may be the independent prognostic factor of NSCLC. Nowadays, there is still no predictive biomarker identified for the use of adjuvant chemotherapy in non-small cell lung cancer (NSCLC) patients. To clarify the role of CD133 and CTAs as a predictive marker for adjuvant chemotherapy or prognostic factors of overall survival, we performed a retrospective study in 159 stage Ib-IIIA NSCLC patients receiving adjuvant chemotherapy or observe from April 2003 to March 2004 in our institute. Clinical data and gene anaylisis results were collected, while CD133 and three CTAs (MAGE-A4, NY-ESO-1, MAGE-A10) were determined according to their monoclonal antibodies such as CD133, 57B, D8.38 and 3GA11 by immunohistochemistry. All CTAs were more frequently expressed in squamous cell carcinoma (SCC) (50.0%, 26.9%, 34.6%) than in adenocarcinoma (16.2%, 16.2%, 16.2%). CD133 was more frequently found in patients with adenocarcinoma (P=0.044). Negative expression of CD133 was associated with a significantly longer overall survival compared to positive expression of CD133 (62.5 vs. 48.5 months, P=0.035). When combined with MAGEA4, NY-ESO-1or MAGE-A10, patients' OS showed significantly difference among different combination. (CD133-MAGEA4-/CD133-MAGEA4+/CD133+MAGEA4-/CD133+MAGEA4+: 65.6 months vs.51.5 months vs.32.2 months vs.19.8 months, P=0.000, CD133-NY-ESO-1-/ CD133+NY-ESO-1-/CD133-NY-ESO-1+/ CD133+NY-ESO-1+: 57.8 months vs. 55.7 months vs. 44.6 months vs. 28.5 months, P=0.000, CD133-MAGEA10-/CD133+ MAGEA10-/CD133-MAGEA10-/CD133+MAGEA10+: 66.2 months vs. 57.2 months vs. 48.8 months vs. 41.4 months, P=0.001). There is no difference between patients received adjuvant chemotherapy or not, but subgroup analysis showed that the patients with CD133+NY-ESO-1+ expression who received chemotherapy will survive longer than not receive adjuvant chemotherapy (received vs

  14. miR-1915 and miR-1225-5p Regulate the Expression of CD133, PAX2 and TLR2 in Adult Renal Progenitor Cells

    PubMed Central

    Costantino, Vincenzo; Curci, Claudia; Cox, Sharon N.; De Palma, Giuseppe; Schena, Francesco P.

    2013-01-01

    Adult renal progenitor cells (ARPCs) were recently identified in the cortex of the renal parenchyma and it was demonstrated that they were positive for PAX2, CD133, CD24 and exhibited multipotent differentiation ability. Recent studies on stem cells indicated that microRNAs (miRNAs), a class of noncoding small RNAs that participate in the regulation of gene expression, may play a key role in stem cell self-renewal and differentiation. Distinct sets of miRNAs are specifically expressed in pluripotent stem cells but not in adult tissues, suggesting a role for miRNAs in stem cell self-renewal. We compared miRNA expression profiles of ARPCs with that of mesenchymal stem cells (MSCs) and renal proximal tubular cells (RPTECs) finding distinct sets of miRNAs that were specifically expressed in ARPCs. In particular, miR-1915 and miR-1225-5p regulated the expression of important markers of renal progenitors, such as CD133 and PAX2, and important genes involved in the repair mechanisms of ARPCs, such as TLR2. We demonstrated that the expression of both the renal stem cell markers CD133 and PAX2 depends on lower miR-1915 levels and that the increase of miR-1915 levels improved capacity of ARPCs to differentiate into adipocyte-like and epithelial-like cells. Finally, we found that the low levels of miR-1225-5p were responsible for high TLR2 expression in ARPCs. Therefore, together, miR-1915 and miR-1225-5p seem to regulate important traits of renal progenitors: the stemness and the repair capacity. PMID:23861881

  15. Identification of a distinct population of CD133+CXCR4+ cancer stem cells in ovarian cancer

    PubMed Central

    Cioffi, Michele; D’Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-01-01

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4+CD133+ within ovarian cancer cell lines. The sorted population CD133+CXCR4+ demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133+CXCR4+ sorted OVCAR-5 cells. Most strikingly CXCR4+CD133+ sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133−CXCR4−, CD133+CXCR4−, CD133−CXCR4+ cells. CXCR4+CD133+ OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target. PMID:26020117

  16. Sulfasalazine attenuates evading anticancer response of CD133-positive hepatocellular carcinoma cells.

    PubMed

    Song, Yeonhwa; Jang, Jaewoo; Shin, Tae-Hoon; Bae, Sang Mun; Kim, Jin-Sun; Kim, Kang Mo; Myung, Seung-Jae; Choi, Eun Kyung; Seo, Haeng Ran

    2017-03-03

    CD133-positive cells in hepatocellular carcinoma (HCC) exhibit cancer stem cell (CSC)-like properties as well as resistance to chemotherapeutic agents and ionizing radiation; however, their function remains unknown. In this paper, we identified a hitherto unknown mechanism to overcome CD133-induced resistance to anticancer therapy. We applied an alternative approach to enrich the CD133-positive HCC population by manipulating 3D culture conditions. Defense mechanisms against reactive oxygen species (ROS) in CSC spheroids were evaluated by fluorescence image-based phenotypic screening system. Further, we studied the effect of sulfasalazine on ROS defense system and synergistic therapeutic efficacy of anticancer therapies both in culture and in vivo HCC xenograft mouse model. Here, we found that oxidative stress increase CD133 expression in HCC and increased CD133 expression enhanced the capacity of the defense system against ROS, and thereby play a central role in resistance to liver cancer therapy. Moreover, ablation of CD133 attenuated not only the capacity for defense against ROS, but also chemoresistance, in HCC through decreasing glutathione (GSH) levels in vitro. Sulfasalazine, a potent xCT inhibitor that plays an important role in maintaining GSH levels, impaired the ROS defense system and increased the therapeutic efficacy of anticancer therapies in CD133-positive HCC but not CD133-negative HCC in vivo and in vitro. These results strongly indicate functional roles for CD133 in ROS defense and in evading anticancer therapies in HCC, and suggest that sulfasalazine, administered in combination with conventional chemotherapy, might be an effective strategy against CD133-positive HCC cells.

  17. Investigating the Link between Molecular Subtypes of Glioblastoma, Epithelial-Mesenchymal Transition, and CD133 Cell Surface Protein

    PubMed Central

    Zarkoob, Hadi; Taube, Joseph H.; Singh, Sheila K.; Mani, Sendurai A.; Kohandel, Mohammad

    2013-01-01

    In this manuscript, we use genetic data to provide a three-faceted analysis on the links between molecular subclasses of glioblastoma, epithelial-to-mesenchymal transition (EMT) and CD133 cell surface protein. The contribution of this paper is three-fold: First, we use a newly identified signature for epithelial-to-mesenchymal transition in human mammary epithelial cells, and demonstrate that genes in this signature have significant overlap with genes differentially expressed in all known GBM subtypes. However, the overlap between genes up regulated in the mesenchymal subtype of GBM and in the EMT signature was more significant than other GBM subtypes. Second, we provide evidence that there is a negative correlation between the genetic signature of EMT and that of CD133 cell surface protein, a putative marker for neural stem cells. Third, we study the correlation between GBM molecular subtypes and the genetic signature of CD133 cell surface protein. We demonstrate that the mesenchymal and neural subtypes of GBM have the strongest correlations with the CD133 genetic signature. While the mesenchymal subtype of GBM displays similarity with the signatures of both EMT and CD133, it also exhibits some differences with each of these signatures that are partly due to the fact that the signatures of EMT and CD133 are inversely related to each other. Taken together these data shed light on the role of the mesenchymal transition and neural stem cells, and their mutual interaction, in molecular subtypes of glioblastoma multiforme. PMID:23734191

  18. A rational approach for cancer stem-like cell isolation and characterization using CD44 and prominin-1(CD133) as selection markers

    PubMed Central

    Lee, Yi-Jen; Wu, Chang-Cheng; Li, Jhy-Wei; Ou, Chien-Chih; Hsu, Shih-Chung; Tseng, Hsiu-Hsueh; Kao, Ming-Ching; Liu, Jah-Yao

    2016-01-01

    The availability of adequate cancer stem cells or cancer stem-like cell (CSC) is important in cancer study. From ovarian cancer cell lines, SKOV3 and OVCAR3, we induced peritoneal ascites tumors in immunodeficient mice. Among the cells (SKOV3.PX1 and OVCAR3.PX1) from those tumors, we sorted both CD44 and CD133 positive cells (SKOV3.PX1_133+44+, OVCAR3.PX1_133+44+), which manifest the characteristics of self-renewal, multi-lineage differentiation, chemoresistance and tumorigenicity, those of cancer stem-like cells (CSLC). Intraperitoneal transplantation of these CD44 and CD133 positive cells resulted in poorer survival in the engrafted animals. Clinically, increased CD133 expression was found in moderately and poorly differentiated (grade II and III) ovarian serous cystadenocarcinomas. The ascites tumor cells from human ovarian cancers demonstrated more CD133 and CD44 expressions than those from primary ovarian or metastatic tumors and confer tumorigenicity in immunodeficient mice. Compared to their parental cells, the SKOV3.PX1_133+44+ and OVCAR3.PX1_133+44+ cells uniquely expressed 5 CD markers (CD97, CD104, CD107a, CD121a, and CD125). Among these markers, CD97, CD104, CD107a, and CD121a are significantly more expressed in the CD133+ and CD44+ double positive cells of human ovarian ascites tumor cells (Ascites_133+44+) than those from primary ovarian or metastatic tumors. The cancer stem-like cells were enriched from 3% to more than 70% after this manipulation. This intraperitoneal enrichment of cancer stem-like cells, from ovarian cancer cell lines or primary ovarian tumor, potentially provides an adequate amount of ovarian cancer stem-like cells for the ovarian cancer study and possibly benefits cancer therapy. PMID:27655682

  19. Whole-Transcriptome Analysis of CD133+CD144+ Cancer Stem Cells Derived from Human Laryngeal Squamous Cell Carcinoma Cells.

    PubMed

    Wu, Yongyan; Zhang, Yuliang; Niu, Min; Shi, Yong; Liu, Hongliang; Yang, Dongli; Li, Fei; Lu, Yan; Bo, Yunfeng; Zhang, Ruiping; Li, Zhenyu; Luo, Hongjie; Cui, Jiajia; Sang, Jiangwei; Xiang, Caixia; Gao, Wei; Wen, Shuxin

    2018-06-27

    CD133+CD44+ cancer stem cells previously isolated from laryngeal squamous cell carcinoma (LSCC) cell lines showed strong malignancy and tumorigenicity. However, the molecular mechanism underlying the enhanced malignancy remained unclear. Cell proliferation assay, spheroid-formation experiment, RNA sequencing (RNA-seq), miRNA-seq, bioinformatic analysis, quantitative real-time PCR, migration assay, invasion assay, and luciferase reporter assay were used to identify differentially expressed mRNAs, lncRNAs, circRNAs and miRNAs, construct transcription regulatory network, and investigate functional roles and mechanism of circRNA in CD133+CD44+ laryngeal cancer stem cells. Differentially expressed genes in TDP cells were mainly enriched in the biological processes of cell differentiation, regulation of autophagy, negative regulation of cell death, regulation of cell growth, response to hypoxia, telomere maintenance, cellular response to gamma radiation, and regulation of apoptotic signaling, which are closely related to the malignant features of tumor cells. We constructed the regulatory network of differentially expressed circRNAs, miRNAs and mRNAs. qPCR findings for the expression of key genes in the network were consistent with the sequencing data. Moreover, our data revealed that circRNA hg19_circ_0005033 promotes proliferation, migration, invasion, and chemotherapy resistance of laryngeal cancer stem cells. This study provides potential biomarkers and targets for LSCC diagnosis and therapy, and provide important evidences for the heterogeneity of LSCC cells at the transcription level. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): a systematic review and meta-analysis.

    PubMed

    Li, Xiaoping; Zhao, Haojie; Gu, Jianchun; Zheng, Leizhen

    2015-01-01

    CD133 is one of the most commonly used markers of pancreatic cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. Although the expression of CD133 has been reported to correlate with poor prognosis of PDAC in most literatures, some controversies still exist. In this study, we aimed to investigate the correlation between CD133 expression and prognosis and clinicopathological features in PDAC. A search in the Medline, EMBASE and Chinese CNKI (China National Knowledge Infrastructure) database (up to 1 March 2015) was performed using the following keywords pancreatic cancer, CD133, AC133, prominin-1 etc. Data from eligible studies were extracted and included into meta-analysis using a random effects model. Outcomes included overall survival and various clinicopathological features. We performed a final analysis of 723 patients from 11 evaluable studies for prognostic value and 687 patients from 12 evaluable studies for clinicopathological features. Our study shows that the pooled hazard ratio (HR) of overexpression CD133 for overall survival in PDAC was 0.58 (95% confidence interval (CI): 0.49-0.67) by univariate analysis and 0.73 (95% CI: 0.52-1.03) by multivariate analysis. With respect to clinicopathological features, CD133 overexpression by immunohistochemistry (IHC) method was closely correlated with clinical TNM stage (TNM stage III+IV, OR=0.32, 95% CI: 0.19-0.54), tumor differentiation (poor differentiation, OR=0.56, 95% CI: 0.37-0.83), and lymph node metastasis (N1, 3.15, 95% CI: 1.56-6.36) in patients with PDAC. Our meta-analysis results suggest that CD133 is an efficient prognostic factor in PDAC. Overexpression of CD133 was significantly associated with clinical TNM stage, tumor differentiation and lymph node metastasis.

  1. Clinical and biological significance of stem-like CD133(+)CXCR4(+) cells in esophageal squamous cell carcinoma.

    PubMed

    Lu, Chunlai; Xu, Fengkai; Gu, Jie; Yuan, Yunfeng; Zhao, Guangyin; Yu, Xiaofang; Ge, Di

    2015-08-01

    Esophageal squamous cell carcinoma is one of the most frequent malignant tumors. Cancer stem cells are considered to be responsible for tumor growth, metastasis, and recurrence. Cluster of differentiation 133 (CD133) and C-X-C chemokine receptor type 4 (CXCR4) are frequently applied markers for the identification and isolation of cancer stem cells. However, few studies have investigated the coexpression of CD133 and CXCR4 in esophageal squamous cell carcinoma. This study aims to explore the clinical and biological role of stem-like CD133(+)CXCR4(+) cells in esophageal squamous cell carcinoma. Immunohistochemical staining was performed to detect the expression of CD133 and CXCR4 in esophageal squamous cell carcinoma tissues of patients. Flow cytometry and fluorescence-activated cell sorting were applied to analyze and isolate each subgroup in esophageal squamous cell carcinoma cell line TE-1. The characteristic differences between each subgroup were assayed in vitro. The association between CD133/CXCR4 expression and patients' prognosis was analyzed by Kaplan-Meier and Cox regression. Among 154 patient tissues, concomitant high CD133-CXCR4 expression accounts for 20.78% (32/154). In vitro, CXCR4(+) cells (CD133(+)CXCR4(+) and CD133(-)CXCR4(+)) showed high invasive potential and CD133(+)CXCR4(+) cells showed high proliferative capacity. Clinically, patients with concomitant high CD133-CXCR4 expression had decreased disease-free survival and overall survival (P < .01). Esophageal squamous cell carcinoma cells coexpressing CD133 and CXCR4 possess the characteristics of cancer stem cells. The concomitant high CD133-CXCR4 expression might be a novel marker for predicting the poor prognosis of patients with esophageal squamous cell carcinoma, and CD133 and CXCR4 may serve as potential therapeutic targets. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  2. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.

    PubMed

    Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T

    2008-12-01

    Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.

  3. CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth

    PubMed Central

    Zhou, Linli; Yang, Kun; Carpenter, April; Lang, Richard A.; Andl, Thomas; Zhang, Yuhang

    2016-01-01

    Active Wnt/β-catenin signaling in the dermal papilla (DP) is required for postnatal hair cycling. In addition, maintenance of the hair-inducing ability of DP cells in vitro requires external addition of Wnt molecules. However, whether DP cells are a critical source of Wnt ligands and induce both autocrine and paracrine signaling cascades to promote adult hair follicle growth and regeneration remains elusive. To address this question, we generated an animal model that allows inducible ablation of Wntless (Wls), a transmembrane Wnt exporter protein, in CD133-positive (CD133+) DP cells. CD133+ cells have been shown to be a specific subpopulation of cells in the DP, which possesses the hair-inducing capability. Here, we show that ablation of Wls expression in CD133+ DP cells results in a shortened period of postnatal hair growth. Mutant hair follicles were unable to enter full anagen (hair growth stage) and progressed toward a rapid regression. Notably, reduced size of the DP and decreased expression of anagen DP marker, versican, were observed in hair follicles when CD133+ DP cells lost Wls expression. Further analysis showed that Wls-deficient CD133+ DP cells led to reduced proliferation and differentiation in matrix keratinocytes and melanocytes that are needed for the generation of the hair follicle structure and a pigmented hair shaft. These findings clearly demonstrate that Wnt ligands produced by CD133+ DP cells play an important role in postnatal hair growth by maintaining the inductivity of DP cells and mediating the signaling cross-talk between the mesenchyme and the epithelial compartment. PMID:27462123

  4. CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth.

    PubMed

    Zhou, Linli; Yang, Kun; Carpenter, April; Lang, Richard A; Andl, Thomas; Zhang, Yuhang

    2016-10-01

    Active Wnt/β-catenin signaling in the dermal papilla (DP) is required for postnatal hair cycling. In addition, maintenance of the hair-inducing ability of DP cells in vitro requires external addition of Wnt molecules. However, whether DP cells are a critical source of Wnt ligands and induce both autocrine and paracrine signaling cascades to promote adult hair follicle growth and regeneration remains elusive. To address this question, we generated an animal model that allows inducible ablation of Wntless (Wls), a transmembrane Wnt exporter protein, in CD133-positive (CD133+) DP cells. CD133+ cells have been shown to be a specific subpopulation of cells in the DP, which possesses the hair-inducing capability. Here, we show that ablation of Wls expression in CD133+ DP cells results in a shortened period of postnatal hair growth. Mutant hair follicles were unable to enter full anagen (hair growth stage) and progressed toward a rapid regression. Notably, reduced size of the DP and decreased expression of anagen DP marker, versican, were observed in hair follicles when CD133+ DP cells lost Wls expression. Further analysis showed that Wls-deficient CD133+ DP cells led to reduced proliferation and differentiation in matrix keratinocytes and melanocytes that are needed for the generation of the hair follicle structure and a pigmented hair shaft. These findings clearly demonstrate that Wnt ligands produced by CD133+ DP cells play an important role in postnatal hair growth by maintaining the inductivity of DP cells and mediating the signaling cross-talk between the mesenchyme and the epithelial compartment. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  5. Establishment of CMab-43, a Sensitive and Specific Anti-CD133 Monoclonal Antibody, for Immunohistochemistry.

    PubMed

    Itai, Shunsuke; Fujii, Yuki; Nakamura, Takuro; Chang, Yao-Wen; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Suzuki, Hiroyoshi; Harada, Hiroyuki; Yamada, Shinji; Kaneko, Mika K; Kato, Yukinari

    2017-10-01

    CD133, also known as prominin-1, was first described as a cell surface marker on early progenitor and hematopoietic stem cells. It is a five-domain transmembrane protein composed of an N-terminal extracellular tail, two small cytoplasmic loops, two large extracellular loops containing seven potential glycosylation sites, and a short C-terminal intracellular tail. CD133 has been used as a marker to identify cancer stem cells derived from primary solid tumors and as a prognostic marker of gliomas. Herein, we developed novel anti-CD133 monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. We expressed the full length of CD133 in LN229 glioblastoma cells, immunized mice with LN229/CD133 cells, and performed the first screening using flow cytometry. After limiting dilution, we established 100 anti-CD133 mAbs, reacting with LN229/CD133 cells but not with LN229 cells. Subsequently, we performed the second and third screening with Western blot and immunohistochemical analyses, respectively. Among 100 mAbs, 11 strongly reacted with CD133 in Western blot analysis. One of 11 clones, CMab-43 (IgG 2a , kappa), showed a sensitive and specific reaction against colon cancer cells, warranting the use of CMab-43 in detecting CD133 in pathological analyses of CD133-expressing cancers.

  6. Activating β-catenin signaling in CD133-positive dermal papilla cells increases hair inductivity

    PubMed Central

    Zhou, Linli; Yang, Kun; Xu, Mingang; Andl, Thomas; Millar, Sarah; Boyce, Steven; Zhang, Yuhang

    2016-01-01

    Bioengineering hair follicles using cells isolated from human tissue remains as a difficult task. Dermal papilla (DP) cells are known to guide the growth and cycling activities of hair follicles by interacting with keratinocytes. However, DP cells quickly lose their inductivity during in vitro passaging. Rodent DP cell cultures need external addition of chemical factors, including WNT and BMP molecules, to maintain the hair inductive property. CD133 is expressed by a small subpopulation of DP cells that are capable of inducing hair follicle formation in vivo. We report here that expression of a stabilized form of β-catenin promoted clonal growth of CD133-positive (CD133+) DP cells in in vitro three-dimensional hydrogel culture while maintaining expression of DP markers, including alkaline phosphatase (AP), CD133, and Integrin α8. After a two-week in vitro culture, cultured CD133+ DP cells with up-regulated β-catenin activity led to an accelerated in vivo hair growth in reconstituted skin than control cells. Further analysis showed that matrix cell proliferation and differentiation were significantly promoted in hair follicles when β-catenin signaling was upregulated in CD133+ DP cells. Our data highlight an important role for β-catenin signaling in promoting the inductive capability of CD133+ DP cells for in vitro expansion and in vivo hair follicle regeneration, which could potentially be applied to cultured human DP cells. PMID:27312243

  7. CD133+ cells derived from skeletal muscles of Duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability.

    PubMed

    Meng, Jinhong; Muntoni, Francesco; Morgan, Jennifer

    2018-05-12

    Cell-mediated gene therapy is a possible means to treat muscular dystrophies like Duchenne muscular dystrophy. Autologous patient stem cells can be genetically-corrected and transplanted back into the patient, without causing immunorejection problems. Regenerated muscle fibres derived from these cells will express the missing dystrophin protein, thus improving muscle function. CD133+ cells derived from normal human skeletal muscle contribute to regenerated muscle fibres and form muscle stem cells after their intra-muscular transplantation into an immunodeficient mouse model. But it is not known whether CD133+ cells derived from DMD patient muscles have compromised muscle regenerative function. To test this, we compared CD133+ cells derived from DMD and normal human muscles. DMD CD133+ cells had a reduced capacity to undergo myogenic differentiation in vitro compared with CD133+ cells derived from normal muscle. In contrast to CD133+ cells derived from normal human muscle, those derived from DMD muscle formed no satellite cells and gave rise to significantly fewer muscle fibres of donor origin, after their intra-muscular transplantation into an immunodeficient, non-dystrophic, mouse muscle. DMD CD133+ cells gave rise to more clones of smaller size and more clones that were less myogenic than did CD133+ cells derived from normal muscle. The heterogeneity of the progeny of CD133+ cells, combined with the reduced proliferation and myogenicity of DMD compared to normal CD133+ cells, may explain the reduced regenerative capacity of DMD CD133+ cells. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. CD133+CD54+CD44+ circulating tumor cells as a biomarker of treatment selection and liver metastasis in patients with colorectal cancer

    PubMed Central

    Wang, Cun; Huang, Qiaorong; Meng, Wentong; Yu, Yongyang; Yang, Lie; Peng, Zhihai; Hu, Jiankun; Li, Yuan; Mo, Xianming; Zhou, Zongguang

    2016-01-01

    Introduction Liver is the most common site of distant metastasis in colorectal cancer (CRC). Early diagnosis and appropriate treatment selection decides overall prognosis of patients. However, current diagnostic measures were basically imaging but not functional. Circulating tumor cells (CTCs) known as hold the key to understand the biology of metastatic mechanism provide a novel and auxiliary diagnostic strategy for CRC with liver metastasis (CRC-LM). Results The expression of CD133+ and CD133+CD54+CD44+ cellular subpopulations were higher in the peripheral blood of CRC-LM patients when compared with those without metastasis (P<0.001). Multivariate analysis proved the association between the expression of CD133+CD44+CD54+ cellular subpopulation and the existence of CRC-LM (P<0.001). The combination of abdominal CT/MRI, CEA and the CD133+CD44+CD54+ cellular subpopulation showed increased detection and discrimination rate for liver metastasis, with a sensitivity of 88.2% and a specificity of 92.4%. Meanwhile, it also show accurate predictive value for liver metastasis (OR=2.898, 95% C.I.1.374–6.110). Materials and Method Flow cytometry and multivariate analysis was performed to detect the expression of cancer initiating cells the correlation between cellular subpopulations and liver metastasis in patients with CRC. The receiver operating characteristic curves combined with the area under the curve were generated to compare the predictive ability of the cellular subpopulation for liver metastasis with current CT and MRI images. Conclusions The identification, expression and application of CTC subpopulations will provide an ideal cellular predictive marker for CRC liver metastasis and a potential marker for further investigation. PMID:27764803

  9. CD133 antibody conjugation to decellularized human heart valves intended for circulating cell capture.

    PubMed

    Vossler, John D; Min Ju, Young; Williams, J Koudy; Goldstein, Steven; Hamlin, James; Lee, Sang Jin; Yoo, James J; Atala, Anthony

    2015-09-03

    The long term efficacy of tissue based heart valve grafts may be limited by progressive degeneration characterized by immune mediated inflammation and calcification. To avoid this degeneration, decellularized heart valves with functionalized surfaces capable of rapid in vivo endothelialization have been developed. The aim of this study is to examine the capacity of CD133 antibody-conjugated valve tissue to capture circulating endothelial progenitor cells (EPCs). Decellularized human pulmonary valve tissue was conjugated with CD133 antibody at varying concentrations and exposed to CD133 expressing NTERA-2 cl.D1 (NT2) cells in a microflow chamber. The amount of CD133 antibody conjugated on the valve tissue surface and the number of NT2 cells captured in the presence of shear stress was measured. Both the amount of CD133 antibody conjugated to the valve leaflet surface and the number of adherent NT2 cells increased as the concentration of CD133 antibody present in the surface immobilization procedure increased. The data presented in this study support the hypothesis that the rate of CD133(+) cell adhesion in the presence of shear stress to decellularized heart valve tissue functionalized by CD133 antibody conjugation increases as the quantity of CD133 antibody conjugated to the tissue surface increases.

  10. Omega-3 Eicosapentaenoic Acid Decreases CD133 Colon Cancer Stem-Like Cell Marker Expression While Increasing Sensitivity to Chemotherapy

    PubMed Central

    De Carlo, Flavia; Witte, Theodore R.; Hardman, W. Elaine; Claudio, Pier Paolo

    2013-01-01

    Colorectal cancer is the third leading cause of cancer-related death in the western world. In vitro and in vivo experiments showed that omega-3 polyunsaturated fatty acids (n-3 PUFAs) can attenuate the proliferation of cancer cells, including colon cancer, and increase the efficacy of various anticancer drugs. However, these studies address the effects of n-3 PUFAs on the bulk of the tumor cells and not on the undifferentiated colon cancer stem-like cells (CSLCs) that are responsible for tumor formation and maintenance. CSLCs have also been linked to the acquisition of chemotherapy resistance and to tumor relapse. Colon CSLCs have been immunophenotyped using several antibodies against cellular markers including CD133, CD44, EpCAM, and ALDH. Anti-CD133 has been used to isolate a population of colon cancer cells that retains stem cells properties (CSLCs) from both established cell lines and primary cell cultures. We demonstrated that the n-3 PUFA, eicosapentaenoic acid (EPA), was actively incorporated into the membrane lipids of COLO 320 DM cells. 25 uM EPA decreased the cell number of the overall population of cancer cells, but not of the CD133 (+) CSLCs. Also, we observed that EPA induced down-regulation of CD133 expression and up-regulation of colonic epithelium differentiation markers, Cytokeratin 20 (CK20) and Mucin 2 (MUC2). Finally, we demonstrated that EPA increased the sensitivity of COLO 320 DM cells (total population) to both standard-of-care chemotherapies (5-Fluorouracil and oxaliplatin), whereas EPA increased the sensitivity of the CD133 (+) CSLCs to only 5-Fluorouracil. PMID:23874993

  11. DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki Hyung; Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan; Kang, Yun-Jeong

    Highlights: • Germ cell marker DDX4 was significantly increased in ovarian cancer. • Ovarian cancer stem cell marker CD133 was significantly increased in ovarian cancer. • DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. • CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4. • Germ cell marker DDX4 has the potential of ovarian cancer stem cell marker. - Abstract: DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondarymore » structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint. We investigated the relationship between DDX4 and ovarian cancer stem cells by analyzing the expression patterns of DDX4 and the cancer stem cell marker CD133 in ovarian cancers via tissue microarray. Both DDX4 and CD133 were significantly increased in ovarian cancer compared to benign tumors, and showed similar patterns of expression. In addition, DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. Furthermore, almost all CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4, suggesting a strong possibility that DDX4 plays an important role in cancer stem cells, and/or can be used as an ovarian cancer stem cell marker.« less

  12. Expression profiles of cancer stem cell markers: CD133, CD44, Musashi-1 and EpCAM in the cardiac mucosa-Barrett's esophagus-early esophageal adenocarcinoma-advanced esophageal adenocarcinoma sequence.

    PubMed

    Mokrowiecka, Anna; Veits, Lothar; Falkeis, Christina; Musial, Jacek; Kordek, Radzislaw; Lochowski, Mariusz; Kozak, Jozef; Wierzchniewska-Lawska, Agnieszka; Vieth, Michael; Malecka-Panas, Ewa

    2017-03-01

    Barrett's esophagus (BE), which develops as a result of gastroesophageal reflux disease, is a preneoplastic condition for esophageal adenocarcinoma (EAC). A new hypothesis suggests that cancer is a disease of stem cells, however, their expression and pathways in BE - EAC sequence are not fully elucidated yet. We used a panel of putative cancer stem cells markers to identify stem cells in consecutive steps of BE-related cancer progression. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded blocks from 58 patients with normal cardiac mucosa (n=5), BE (n=14), early EAC (pT1) from mucosal resection (n=17) and advanced EAC (pT1-T4) from postoperative specimens (n=22). Expression of the CD133, CD44, Musashi-1 and EpCAM was analyzed using respective monoclonal antibodies. All markers showed a heterogeneous expression pattern, mainly at the base of the crypts of Barrett's epithelium and EAC, with positive stromal cells in metaplastic and dysplastic lesions. Immuno-expression of EpCAM, CD44 and CD133 in cardiac mucosa was significantly lower (mean immunoreactivity score (IRS)=1.2; 0.0; 0.4; respectively) compared to their expression in Barrett's metaplasia (mean IRS=4.3; 0.14; 0.7; respectively), in early adenocarcinoma (mean IRS=4.4; 0.29; 1.3; respectively) and in advanced adenocarcinoma (mean IRS=6.6; 0.7; 2.7; respectively) (p<0.05). On the contrary, Musashi-1 expression was higher in BE and early ADC compared to GM and advanced ADC (NS). Our results suggest that the stem cells could be present in premalignant lesions. EpCAM, CD44 and CD133 expression could be candidate markers for BE progression, whereas Musashi-1 may be a marker of the small intestinal features of Barrett's mucosa. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells

    PubMed Central

    Hess, David A.; Wirthlin, Louisa; Craft, Timothy P.; Herrbrich, Phillip E.; Hohm, Sarah A.; Lahey, Ryan; Eades, William C.; Creer, Michael H.; Nolta, Jan A.

    2006-01-01

    The development of novel cell-based therapies requires understanding of distinct human hematopoietic stem and progenitor cell populations. We recently isolated reconstituting hematopoietic stem cells (HSCs) by lineage depletion and purification based on high aldehyde dehydrogenase activity (ALDHhiLin- cells). Here, we further dissected the ALDHhi-Lin- population by selection for CD133, a surface molecule expressed on progenitors from hematopoietic, endothelial, and neural lineages. ALDHhiCD133+Lin- cells were primarily CD34+, but also included CD34-CD38-CD133+ cells, a phenotype previously associated with repopulating function. Both ALDHhiCD133-Lin- and ALDHhiCD133+Lin- cells demonstrated distinct clonogenic progenitor function in vitro, whereas only the ALDHhiCD133+Lin- population seeded the murine bone marrow 48 hours after transplantation. Significant human cell repopulation was observed only in NOD/SCID and NOD/SCID β2M-null mice that received transplants of ALDHhiCD133+Lin- cells. Limiting dilution analysis demonstrated a 10-fold increase in the frequency of NOD/SCID repopulating cells compared with CD133+Lin- cells, suggesting that high ALDH activity further purified cells with repopulating function. Transplanted ALDHhiCD133+Lin- cells also maintained primitive hematopoietic phenotypes (CD34+CD38-) and demonstrated enhanced repopulating function in recipients of serial, secondary transplants. Cell selection based on ALDH activity and CD133 expression provides a novel purification of HSCs with long-term repopulating function and may be considered an alternative to CD34 cell selection for stem cell therapies. PMID:16269619

  14. Regulatory role of hexosamine biosynthetic pathway on hepatic cancer stem cell marker CD133 under low glucose conditions

    NASA Astrophysics Data System (ADS)

    Lin, Shu-Hai; Liu, Tengfei; Ming, Xiaoyan; Tang, Zhi; Fu, Li; Schmitt-Kopplin, Philippe; Kanawati, Basem; Guan, Xin-Yuan; Cai, Zongwei

    2016-02-01

    Cancer was hypothesized to be driven by cancer stem cells (CSCs), but the metabolic determinants of CSC-like phenotype still remain elusive. Here, we present that hexosamine biosynthetic pathway (HBP) at least in part rescues cancer cell fate with inactivation of glycolysis. Firstly, metabolomic analysis profiled cellular metabolome in CSCs of hepatocellular carcinoma using CD133 cell-surface marker. The metabolic signatures of CD133-positive subpopulation compared to CD133-negative cells highlighted HBP as one of the distinct metabolic pathways, prompting us to uncover the role of HBP in maintenance of CSC-like phenotype. To address this, CSC-like phenotypes and cell survival were investigated in cancer cells under low glucose conditions. As a result, HBP inhibitor azaserine reduced CD133-positive subpopulation and CD133 expression under high glucose condition. Furthermore, treatment of N-Acetylglucosamine in part restores CD133-positive subpopulation when either 2.5 mM glucose in culture media or glycolytic inhibitor 2-deoxy-D-glucose in HCC cell lines was applied, enhancing CD133 expression as well as promoting cancer cell survival. Together, HBP might be a key metabolic determinant in the functions of hepatic CSC marker CD133.

  15. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells

    PubMed Central

    Ni, Miaozhong; Xiong, Min; Zhang, Xinchao; Cai, Guoping; Chen, Huaiwen; Zeng, Qingmin; Yu, Zuochong

    2015-01-01

    Background Cancer stem cells (CSCs) possess the characteristics associated with normal stem cells and are responsible for cancer initiation, recurrence, and metastasis. CD133 is regarded as a CSCs marker of osteosarcoma, which is the most common primary bone malignancy in childhood and adolescence. Salinomycin, a polyether ionophore antibiotic, has been shown to kill various CSCs, including osteosarcoma CSCs. However, salinomycin displayed poor aqueous solubility that hinders its clinical application. The objective of this study was to develop salinomycin-loaded nanoparticles to eliminate CD133+ osteosarcoma CSCs. Methods The salinomycin-loaded PEGylated poly(lactic-co-glycolic acid) nanoparticles (SAL-NP) conjugated with CD133 aptamers (Ap-SAL-NP) were developed by an emulsion/solvent evaporation method, and the targeting and cytotoxicity of Ap-SAL-NP to CD133+ osteosarcoma CSCs were evaluated. Results The nanoparticles are of desired particle size (~150 nm), drug encapsulation efficiency (~50%), and drug release profile. After 48 hours treatment of the Saos-2 CD133+ osteosarcoma cells with drugs formulated in Ap-SAL-NP, SAL-NP, and salinomycin, the concentrations needed to kill 50% of the incubated cells were found to be 2.18, 10.72, and 5.07 μg/mL, respectively, suggesting that Ap-SAL-NP could be 4.92 or 2.33 fold more effective than SAL-NP or salinomycin, respectively. In contrast, Ap-SAL-NP was as effective as SAL-NP, and less effective than salinomycin in Saos-2 CD133− cells, suggesting that Ap-SAL-NP possess specific cytotoxicity toward Saos-2 CD133+ cells. Ap-SAL-NP showed the best therapeutic effect in Saos-2 osteosarcoma xenograft mice, compared with SAL-NP or salinomycin. Significantly, Ap-SAL-NP could selectively kill CD133+ osteosarcoma CSCs both in vitro and in vivo, as reflected by the tumorsphere formation and proportion of Saos-2 CD133+ cells. Conclusion Our results suggest that CD133 is a potential target for drug delivery to osteosarcoma CSCs

  16. 3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma.

    PubMed

    Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang

    2016-03-01

    The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively.

  17. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Juntao; Mao, Zhangfan; Huang, Jie

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatmentsmore » that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells

  18. Black TiO2-based nanoprobes for T1-weighted MRI-guided photothermal therapy in CD133 high expressed pancreatic cancer stem-like cells.

    PubMed

    Wang, Siqi; Ren, Wenzhi; Wang, Jianhua; Jiang, Zhenqi; Saeed, Madiha; Zhang, Lili; Li, Aiguo; Wu, Aiguo

    2018-06-27

    At present, transmembrane glycoprotein CD133 highly expressed pancreatic cancer stem cells (PCSCs), with the features of chemotherapeutic/radiotherapeutic resistance and exclusive tumorigenic potential, are considered as the primary cause of metastasis and recurrence in pancreatic cancer, and therefore are an effective target in the disease treatment. Furthermore, with the launch of precision medicine, multifunctional nanoprobes have been applied as an efficient strategy for the magnetic resonance imaging (MRI)-guided photothermal therapy (PTT) of pancreatic cancer. In this research, with the aim of achieving precise MRI-guided PTT in CD133 highly expressed PCSCs, novel bTiO2-Gd-CD133mAb nanoprobes were designed and successfully prepared by loading Gd-DOTA and CD133 monoclonal antibodies on black TiO2 nanoparticles. It was very interesting to find that the r1 relaxivity value of the nanoprobes was 34.394 mM-1 s-1, about 7.5 times that of commercial Magnevist (4.5624 mM-1 s-1), which indicates that the nanoprobes have good potential as MRI T1 contrast agents with excellent performance. Herein, CD133 highly expressed PANC-1 cells were selected and verified as PCSCs model. In vitro experiments demonstrated that the nanoprobes exhibited active-targeting ability in PANC-1 cells, and consequently could specially enhance T1-weighted MR imaging and 808 nm near-infrared (NIR)-triggered PTT efficiency in the PCSCs model. Our study not only provides a new strategy for the effective treatment of pancreatic cancer and its' stem cells, but also further broadens the application of black TiO2 in the field of cancer theranostics.

  19. Evaluation of CD44 and CD133 as markers of liver cancer stem cells in Egyptian patients with HCV-induced chronic liver diseases versus hepatocellular carcinoma

    PubMed Central

    Rozeik, Mohammed Saeed; Hammam, Olfat Ali; Ali, Ali Ibrahim; Magdy, Mona; Khalil, Heba; Anas, Amgad; Abo el Hassan, Ahmed Abdelaleem; Rahim, Ali Abdel; El-Shabasy, Ahmed Ibrahim

    2017-01-01

    Background Cancer stem cells (CSCs) play a critical role in tumor development, progression, metastasis and recurrence. Aim To evaluate hepatic expression of CD44 and CD133 in Egyptian patients with HCV-induced chronic liver diseases and hepatocellular carcinomas (HCCs), and to assess its correlation with inflammatory activity scores, stages of fibrosis (in chronic hepatitis with or without cirrhosis) and grades of HCC. Methods This prospective case-control study was conducted on eighty subjects who attended the Tropical Diseases Department, Al-Azhar University Hospital, and in collaboration with Theodor Bilharz Research Institute (2014–2016). They were divided as follows: A) Control healthy group: Ten individuals with serologically negative HCV-Ab and HBsAg, and histopathologically normal liver, B) Seventy patients subdivided into 3 groups; Twenty subjects each, as: HCV-Ab+ non-cirrhotic, HCV-Ab+ cirrhotic and HCC. Necroinflammatory activity and fibrosis in non-neoplastic liver biopsies were scored according to the METAVIR scoring system. CD44 and CD133 immunostaining was evaluated in all groups semi-quantitatively using H score. Statistical analysis was performed by SPSS version 22, using independent-samples t-test. Results Our study showed a significant increase of mean CD44 & CD133 expression values with disease progression among the groups (p<0.05). Their expressions increased significantly with the inflammatory activity scores and stages of fibrosis, reaching the highest values in A3F4 score compared to A1F1 (p<0.05). Moreover, there was a significant increase of their expressions across HCC grades (p<0.05), however with no significant correlation with focal lesions size. Conclusion CSCs clusters exhibiting CD133+ and/or CD44+ profiles were identified in chronic hepatitis, liver cirrhosis and HCC. CD133 and CD44 expressions significantly corresponded to the increased inflammatory activity, fibrosis stages and higher tumor grades. Therefore, evaluation of CD

  20. CD133 antisense suppresses cancer cell growth and increases sensitivity to cisplatin in vitro.

    PubMed

    Blancas-Mosqueda, Marisol; Zapata-Benavides, Pablo; Zamora-Ávila, Diana; Saavedra-Alonso, Santiago; Manilla-Muñoz, Edgar; Franco-Molina, Moisés; DE LA Peña, Carmen Mondragón; Rodríguez-Padilla, Cristina

    2012-11-01

    The increased incidence of cancer in recent years is associated with a high rate of mortality. Numerous types of cancer have a low percentage of CD133(+) cells, which have similar features to stem cells. The CD133 molecule is involved in apoptosis and cell proliferation. The aim of this study was to determine the biological effect of CD133 suppression and its role in the chemosensitization of cancer cell lines. RT-PCR and immunocytochemical analyses indicated that CD133 was expressed in the cancer cell lines B16F10, MCF7 and INER51. Downregulation of CD133 by transfection with an antisense sequence (As-CD133) resulted in a decrease in cancer cell viability of up to 52, 47 and 22% in B16F10, MCF-7 and INER51 cancer cell lines, respectively. This decreased viability appeared to be due to the induction of apoptosis. In addition, treatment with As-CD133 in combination with cisplatin had a synergic effect in all of the cancer cell lines analyzed, and in particular, significantly decreased the viability of B16F10 cancer cells compared with each treatment separately (3.1% viability for the combined treatment compared with 48% for 0.4 μg As-CD133 and 25% for 5 ng/μl cisplatin; P<0.05). The results indicate that the downregulation of CD133 by antisense is a potential therapeutic target for cancer and has a synergistic effect when administered with minimal doses of the chemotherapeutic drug cisplatin, suggesting that this combination strategy may be applied in cancer treatment.

  1. CD133 antisense suppresses cancer cell growth and increases sensitivity to cisplatin in vitro

    PubMed Central

    BLANCAS-MOSQUEDA, MARISOL; ZAPATA-BENAVIDES, PABLO; ZAMORA-ÁVILA, DIANA; SAAVEDRA-ALONSO, SANTIAGO; MANILLA-MUÑOZ, EDGAR; FRANCO-MOLINA, MOISÉS; DE LA PEÑA, CARMEN MONDRAGÓN; RODRÍGUEZ-PADILLA, CRISTINA

    2012-01-01

    The increased incidence of cancer in recent years is associated with a high rate of mortality. Numerous types of cancer have a low percentage of CD133+ cells, which have similar features to stem cells. The CD133 molecule is involved in apoptosis and cell proliferation. The aim of this study was to determine the biological effect of CD133 suppression and its role in the chemosensitization of cancer cell lines. RT-PCR and immunocytochemical analyses indicated that CD133 was expressed in the cancer cell lines B16F10, MCF7 and INER51. Downregulation of CD133 by transfection with an antisense sequence (As-CD133) resulted in a decrease in cancer cell viability of up to 52, 47 and 22% in B16F10, MCF-7 and INER51 cancer cell lines, respectively. This decreased viability appeared to be due to the induction of apoptosis. In addition, treatment with As-CD133 in combination with cisplatin had a synergic effect in all of the cancer cell lines analyzed, and in particular, significantly decreased the viability of B16F10 cancer cells compared with each treatment separately (3.1% viability for the combined treatment compared with 48% for 0.4 μg As-CD133 and 25% for 5 ng/μl cisplatin; P<0.05). The results indicate that the downregulation of CD133 by antisense is a potential therapeutic target for cancer and has a synergistic effect when administered with minimal doses of the chemotherapeutic drug cisplatin, suggesting that this combination strategy may be applied in cancer treatment. PMID:23226746

  2. Differences of Cd uptake and expression of OAS and IRT genes in two varieties of ryegrasses.

    PubMed

    Chi, Sunlin; Qin, Yuli; Xu, Weihong; Chai, Yourong; Feng, Deyu; Li, Yanhua; Li, Tao; Yang, Mei; He, Zhangmi

    2018-06-16

    Pot experiment was conducted to study the difference of cadmium uptake and OAS and IRT genes' expression between the two ryegrass varieties under cadmium stress. The results showed that with the increase of cadmium levels, the dry weights of roots of the two ryegrass varieties, and the dry weights of shoots and plants of Abbott first increased and then decreased. When exposed to 75 mg kg -1 Cd, the dry weights of shoot and plant of Abbott reached the maximum, which increased by 11.13 and 10.67% compared with the control. At 75 mg kg -1 Cd, cadmium concentrations in shoot of the two ryegrass varieties were higher than the critical value of Cd hyperaccumulator (100 mg kg -1 ), 111.19 mg kg -1 (Bond), and 133.69 mg kg -1 (Abbott), respectively. The OAS gene expression in the leaves of the two ryegrass varieties showed a unimodal curve, which was up to the highest at the cadmium level of 150 mg kg -1 , but fell back at high cadmium levels of 300 and 600 mg kg -1 . The OAS gene expression in Bond and Abbott roots showed a bimodal curve. The OAS gene expression in Bond root and Abbott stem mainly showed a unimodal curve. The expression of IRT genes family in the leaves of ryegrass varieties was basically in line with the characteristics of unimodal curve, which was up to the highest at cadmium level of 75 or 150 mg kg -1 , respectively. The IRT expression in the ryegrass stems showed characteristics of bimodal and unimodal curves, while that in the roots was mainly unimodal. The expression of OAS and IRT genes was higher in Bond than that in Abbott due to genotype difference between the two varieties. The expression of OAS and IRT was greater in leaves than that in roots and stems. Ryegrass tolerance to cadmium can be increased by increasing the expression of OAS and IRT genes in roots and stems, and transfer of cadmium from roots and stems to the leaves can be enhanced by increasing expression OAS and IRT in leaves.

  3. Photochemical internalization (PCI) of immunotoxins targeting CD133 is specific and highly potent at femtomolar levels in cells with cancer stem cell properties.

    PubMed

    Bostad, Monica; Berg, Kristian; Høgset, Anders; Skarpen, Ellen; Stenmark, Harald; Selbo, Pål K

    2013-06-28

    CD133 is a putative cancer stem cell (CSC) marker for a number of different cancers and is suggested to be a therapeutic target. Since also normal stem cells express CD133 it is of paramount importance that targeting strategies provide a specific and efficient delivery of cytotoxic drugs in only CD133-positive CSCs. In this study, we have employed photochemical internalization (PCI), a minimally invasive method for light-controlled, specific delivery of membrane-impermeable macromolecules from endocytic vesicles to the cytosol, to specifically target CD133-positive cancer cells. We demonstrate that PCI increases the cytotoxic effect of an immunotoxin (IT) targeting CD133-expressing cancer cells of colon (WiDr and HCT116) and pancreas (BxPC-3) origin. The IT consisted of the mAb CD133/1 (AC133) bound to the ribosome inactivating plant toxin saporin (anti-CD133/1-sap). We show that TPCS2a-PCI of anti-CD133/1-sap is specific, and highly cytotoxic at femto-molar concentrations. Specific binding and uptake of CD133/1, was shown by fluorescence microscopy and co-localization with TPCS2a in endosomes/lysosomes was determined by confocal microscopy. CD133(high) WiDr cells, isolated by fluorescence activated cell sorting, had a 7-fold higher capacity to initiate spheroids than CD133(low) cells (P<0.001) and were resistant to photodynamic therapy (PDT). However, PDT-resistance was bypassed by the PCI strategy. Tumor initiation and aggressive growth in athymic nude mice was obtained with only 10 CD133(high) cells in contrast to CD133(low) cells where substantially higher cell numbers were needed. The excellent high efficacy and selectivity of eliminating CD133-expressing cells by PCI warrant further pre-clinical evaluations of this novel therapeutic approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. CD133+ tumor initiating cells in a syngenic murine model of pancreatic cancer respond to Minnelide.

    PubMed

    Banerjee, Sulagna; Nomura, Alice; Sangwan, Veena; Chugh, Rohit; Dudeja, Vikas; Vickers, Selwyn M; Saluja, Ashok

    2014-05-01

    Pancreatic adenocarcinoma is the fourth leading cause for cancer-related mortality with a survival rate of less than 5%. Late diagnosis and lack of effective chemotherapeutic regimen contribute to these grim survival statistics. Relapse of any tumor is largely attributed to the presence of tumor-initiating cells (TIC) or cancer stem cells (CSC). These cells are considered as hurdles to cancer therapy as no known chemotherapeutic compound is reported to target them. Thus, there is an urgent need to develop a TIC-targeted therapy for pancreatic cancer. We isolated CD133(+) cells from a spontaneous pancreatic ductal adenocarcinoma mouse model and studied both surface expression, molecular markers of pancreatic TICs. We also studied tumor initiation properties by implanting low numbers of CD133(+) cells in immune competent mice. Effect of Minnelide, a drug currently under phase I clinical trial, was studied on the tumors derived from the CD133(+) cells. Our study showed for the first time that CD133(+) population demonstrated all the molecular markers for pancreatic TIC. These cells initiated tumors in immunocompetent mouse models and showed increased expression of prosurvival and proinvasive proteins compared to the CD133(-) non-TIC population. Our study further showed that Minnelide was very efficient in downregulating both CD133(-) and CD133(+) population in the tumors, resulting in a 60% decrease in tumor volume compared with the untreated ones. As Minnelide is currently under phase I clinical trial, its evaluation in reducing tumor burden by decreasing TIC as well as non-TIC population suggests its potential as an effective therapy. ©2014 AACR.

  5. Platelet released growth factors boost expansion of bone marrow derived CD34(+) and CD133(+) endothelial progenitor cells for autologous grafting.

    PubMed

    Lippross, Sebastian; Loibl, Markus; Hoppe, Sven; Meury, Thomas; Benneker, Lorin; Alini, Mauro; Verrier, Sophie

    2011-01-01

    Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell

  6. Critical assessment of the efficiency of CD34 and CD133 antibodies for enrichment of rabbit hematopoietic stem cells.

    PubMed

    Vašíček, Jaromír; Shehata, Medhat; Schnabl, Susanne; Hilgarth, Martin; Hubmann, Rainer; Jäger, Ulrich; Bauer, Miroslav; Chrenek, Peter

    2018-06-08

    Rabbits have many hereditary diseases common to humans and are therefore a valuable model for regenerative disease and hematopoietic stem cell (HSC) therapies. Currently, there is no substantial data on the isolation and/or enrichment of rabbit HSCs. This study was initiated to evaluate the efficiency of the commercially available anti-CD34 and anti-CD133 antibodies for the detection and potential enrichment of rabbit HSCs from peripheral blood. PBMCs from rabbit and human blood were labelled with different clones of anti-human CD34 monoclonal antibodies (AC136, 581 and 8G12) and rabbit polyclonal CD34 antibody (pCD34) and anti-human CD133 monoclonal antibodies (AC133 and 293C3). Flow cytometry showed a higher percentage of rabbit CD34 + cells labelled by AC136 in comparison to the clone 581 and pCD34 (P<0.01). A higher percentage of rabbit CD133 + cells were also detected by 293C3 compared to the AC133 clone (P<0.01). Therefore, AC136 clone was used for the indirect immunomagnetic enrichment of rabbit CD34 + cells using magnetic-activated cell sorting (MACS). The enrichment of the rabbit CD34 + cells after sorting was low in comparison to human samples (2.4% vs. 39.6%). PCR analyses confirmed the efficient enrichment of human CD34 + cells and the low expression of CD34 mRNA in rabbit positive fraction. In conclusion, the tested antibodies might be suitable for detection, but not for sorting the rabbit CD34 + HSCs and new specific anti-rabbit CD34 antibodies are needed for efficient enrichment of rabbit HSCs. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  7. Repopulating hematopoietic stem cells from steady-state blood before and after ex vivo culture are enriched in CD34+CD133+CXCR4low fraction.

    PubMed

    Lapostolle, Véronique; Chevaleyre, Jean; Duchez, Pascale; Rodriguez, Laura; Vlaski-Lafarge, Marija; Sandvig, Ioanna; Brunet de la Grange, Philippe; Ivanovic, Zoran

    2018-06-01

    Feasibility of ex vivo expansion allows us to consider the steady-state peripheral blood as an alternative source of hematopoietic stem progenitor cells for transplantation when growth factor-induced cell mobilization is contraindicated or inapplicable. Ex vivo expansion dramatically enhances the in vivo reconstituting cell population from steady-state blood. In order to investigate phenotype and the expression of homing molecules, CD34, CD133, CD90, CD45RA, CD26 and CD9 expression was determined on sorted CD34+ cells according to CXCR4 (neg, low, bright) and CD133 expression before and after ex vivo expansion. Hematopoietic stem cell activity was determined in vivo on the basis of hematopoietic repopulation of primary and secondary recipients - NSG immuno-deficient mice. In vivo reconstituting cells in steady-state blood CD34+ cell fraction before expansion belong to the CD133+ population and are CXCR4low or, to a lesser extent, CXCR4neg, while after ex vivo expansion they are contained in only the CD133+CXCR4low cells. The failure of CXCR4bright population to engraft is probably due to the exclusive expression of CD26 by these cells. The limiting-dilution analysis showed that both repopulating cell number and individual proliferative capacity were enhanced by ex vivo expansion. Thus, steady-state peripheral blood cells exhibit a different phenotype compared to mobilized and cord blood ones, as well as to those issued from the bone marrow. This data represent the first phenotypic characterization of steady-state blood cells exhibiting short and long term hematopoietic reconstituting potential, which can be expanded ex vivo, a sine qua non for their subsequent use for transplantation. Copyright © 2018, Ferrata Storti Foundation.

  8. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses.

    PubMed

    Friedman, Gregory K; Moore, Blake P; Nan, Li; Kelly, Virginia M; Etminan, Tina; Langford, Catherine P; Xu, Hui; Han, Xiaosi; Markert, James M; Beierle, Elizabeth A; Gillespie, G Yancey

    2016-02-01

    Childhood medulloblastoma is associated with significant morbidity and mortality that is compounded by neurotoxicity for the developing brain caused by current therapies, including surgery, craniospinal radiation, and chemotherapy. Innate therapeutic resistance of some aggressive pediatric medulloblastoma has been attributed to a subpopulation of cells, termed cancer-initiating cells or cancer stemlike cells (CSCs), marked by the surface protein CD133 or CD15. Brain tumors characteristically contain areas of pathophysiologic hypoxia, which has been shown to drive the CSC phenotype leading to heightened invasiveness, angiogenesis, and metastasis. Novel therapies that target medulloblastoma CSCs are needed to improve outcomes and decrease toxicity. We hypothesized that oncolytic engineered herpes simplex virus (oHSV) therapy could effectively infect and kill pediatric medulloblastoma cells, including CSCs marked by CD133 or CD15. Using 4 human pediatric medulloblastoma xenografts, including 3 molecular subgroup 3 tumors, which portend worse patient outcomes, we determined the expression of CD133, CD15, and the primary HSV-1 entry molecule nectin-1 (CD111) by fluorescence activated cell sorting (FACS) analysis. Infectability and cytotoxicity of clinically relevant oHSVs (G207 and M002) were determined in vitro and in vivo by FACS, immunofluorescent staining, cytotoxicity assays, and murine survival studies. We demonstrate that hypoxia increased the CD133+ cell fraction, while having the opposite effect on CD15 expression. We established that all 4 xenografts, including the CSCs, expressed CD111 and were highly sensitive to killing by G207 or M002. Pediatric medulloblastoma, including Group 3 tumors, may be an excellent target for oHSV virotherapy, and a clinical trial in medulloblastoma is warranted. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Fanconi anemia genes are highly expressed in primitive CD34+ hematopoietic cells

    PubMed Central

    Aubé, Michel; Lafrance, Matthieu; Brodeur, Isabelle; Delisle, Marie-Chantal; Carreau, Madeleine

    2003-01-01

    Background Fanconi anemia (FA) is a complex recessive genetic disease characterized by progressive bone marrow failure (BM) and a predisposition to cancer. We have previously shown using the Fancc mouse model that the progressive BM failure results from a hematopoietic stem cell defect suggesting that function of the FA genes may reside in primitive hematopoietic stem cells. Methods Since genes involved in stem cell differentiation and/or maintenance are usually regulated at the transcription level, we used a semiquantitative RT-PCR method to evaluate FA gene transcript levels in purified hematopoietic stem cells. Results We show that most FA genes are highly expressed in primitive CD34-positive and negative cells compared to lower levels in more differentiated cells. However, in CD34- stem cells the Fancc gene was found to be expressed at low levels while Fancg was undetectable in this population. Furthermore, Fancg expression is significantly decreased in Fancc -/- stem cells as compared to wild-type cells while the cancer susceptibility genes Brca1 and Fancd1/Brac2 are upregulated in Fancc-/- hematopoietic cells. Conclusions These results suggest that FA genes are regulated at the mRNA level, that increased Fancc expression in LTS-CD34+ cells correlates with a role at the CD34+ differentiation stage and that lack of Fancc affects the expression of other FA gene, more specifically Fancg and Fancd1/Brca2, through an unknown mechanism. PMID:12809565

  10. [Overexpressed miRNA-134b inhibits proliferation and invasion of CD133+ U87 glioma stem cells].

    PubMed

    Liu, Yifeng; Zhang, Baochao; Wen, Changming; Wen, Gongling; Zhou, Guoping; Zhang, Jingwei; He, Haifa; Wang, Ning; Li, Wei

    2017-05-01

    Objective To investigate the role of microRNA-134b (miR-134b) in the tumorigenesis of glioma stem cells (GSCs) and the possible molecular mechanism. Methods Real-time quantitative PCR (qRT-PCR) was used to evalate the expression of miR-134b in CD133 + and CD133 - U87 GSCs. A lentiviral vector overexpressing miR-134b in U87 GSCs was constructed, and the effect of miR-134b overexpression on matrix metalloproteinase-2 (MMP-2), MMP-9 and MMP-12 expressions at both mRNA and protein levels were detected by qRT-PCR and Western blotting, respectively. Transwell TM assay was performed to determine the effect of miR-134b overexpression on GSCs invasion ability. Tumor xenograft models in nude mice were established to evaluate the effect of miR-134b overexpression on tumorgenesis in vivo. Results The qRT-PCR showed that, compared with CD133 - cells, miR-134b was significantly down-regulated in CD133 + cells. Cell line over-expressing miR-134b was successfully established, and miR-134b was up-regulated significantly compared with empty vector control. Overexpression of miR-134b remarkably inhibited the invasion of U87 GSCs and the expression of MMP-12. However, overexpression of miR-134b did not affect MMP-2 and MMP-9 expressions. miR-134b also suppressed U87 GSCs xenograft growth in vivo. Tumor volume in tumor xenograft model group was significantly lower than that in control group, and tumor weight decreased by 42% in the former group. Conclusion Overexpression of miR-134b inhibits the growth and invasion of CD133 + GSCs.

  11. Lineage determination of CD7+ CD5- CD2- and CD7+ CD5+ CD2- lymphoblasts: studies on phenotype, genotype, and gene expression of myeloperoxidase, CD3 epsilon, and CD3 delta.

    PubMed

    Yoneda, N; Tatsumi, E; Teshigawara, K; Nagata, S; Nagano, T; Kishimoto, Y; Kimura, T; Yasunaga, K; Yamaguchi, N

    1994-04-01

    The gene expression of myeloperoxidase (MPO), CD3 epsilon, and CD3 delta molecules, the gene rearrangement of T-cell receptor (TCR) delta, gamma, and beta and immunoglobulin heavy (IgH) chain, and the expression of cell-surface antigens were investigated in seven cases of CD7+ CD5- CD2- and four cases of CD7+ CD5+ CD2- acute lymphoblastic leukemia or lymphoblastic lymphoma (ALL/LBL) blasts, which were negative for cytochemical myeloperoxidase (cyMPO). More mature T-lineage blasts were also investigated in a comparative manner. In conclusion, the CD7+ CD5- CD2- blasts included four categories: undifferentiated blasts without lineage commitment, T-lineage blasts, T-/myeloid lineage blasts, and cyMPO-negative myeloblasts. The CD7+ CD5+ CD2- blasts included two categories; T-lineage and T-/myeloid lineage blasts. The 11 cases were of the germ-line gene (G) for TCR beta and IgH. Four cases were G for TCR delta and TCR gamma. The others were of the monoclonally rearranged gene (R) for TCR delta and G for TCR gamma or R for both TCR delta and TCR gamma. The expression or in vitro induction of CD13 and/or CD33 antigens correlated with the immaturity of these neoplastic T cells, since it was observed in all 11 CD7+ CD5- CD2- and CD7+ CD5+ CD2-, and some CD7+ CD5+ CD2+ (CD3- CD4- CD8-) cases, but not in CD3 +/- CD4+ CD8+ or CD3+ CD4+ CD8- cases. CD3 epsilon mRNA, but not CD3 delta mRNA, was detected in two CD7+ CD5- CD2- cases, while mRNA of neither of the two CD3 molecules was detected in the other tested CD7+ CD5- CD2- cases. In contrast, mRNA of both CD3 epsilon and CD3 delta were detected in all CD7+ CD5+ CD2- cases, indicating that CD7+ CD5- CD2- blasts at least belong to T-lineage. The blasts of two CD7+ CD5- CD2- cases with entire germ-line genes and without mRNA of the three molecules (MPO, CD3 epsilon, and CD3 delta) were regarded as being at an undifferentiated stage prior to their commitment to either T- or myeloid-lineage. The co-expression of the genes of MPO

  12. Prominin‐1/CD133: Lipid Raft Association, Detergent Resistance, and Immunodetection

    PubMed Central

    Karbanová, Jana; Lorico, Aurelio; Bornhäuser, Martin; Fargeas, Christine A.

    2017-01-01

    Summary The cell surface antigen prominin‐1 (alias CD133) has gained enormous interest in the past 2 decades and given rise to debates as to its utility as a biological stem and cancer stem cell marker. Important and yet often overlooked knowledge that is pertinent to its physiological function has been generated in other systems given its more general expression beyond primitive cells. This article briefly discusses the importance of particular biochemical features of CD133 with relation to its association with membrane microdomains (lipid rafts) and proper immunodetection. It also draws attention toward the adequate use of detergents and caveats that may apply to the interpretation of the results generated. Stem Cells Translational Medicine 2018;7:155–160 PMID:29271118

  13. Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus.

    PubMed

    Bach, Patricia; Abel, Tobias; Hoffmann, Christopher; Gal, Zoltan; Braun, Gundula; Voelker, Iris; Ball, Claudia R; Johnston, Ian C D; Lauer, Ulrich M; Herold-Mende, Christel; Mühlebach, Michael D; Glimm, Hanno; Buchholz, Christian J

    2013-01-15

    Tumor-initiating cells (TIC) are critical yet evasive targets for the development of more effective antitumoral strategies. The cell surface marker CD133 is frequently used to identify TICs of various tumor entities, including hepatocellular cancer and glioblastoma. Here, we describe oncolytic measles viruses (MV) retargeted to CD133. The viruses, termed MV-141.7 and MV-AC133, infected and selectively lysed CD133(+) tumor cells. Both viruses exerted strong antitumoral effects on human hepatocellular carcinoma growing subcutaneously or multifocally in the peritoneal cavity of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Notably, the CD133-targeted viruses were more effective in prolonging survival than the parental MV-NSe, which is currently assessed as oncolytic agent in clinical trials. Interestingly, target receptor overexpression or increased spreading kinetics through tumor cells were excluded as being causative for the enhanced oncolytic activity of CD133-targeted viruses. MV-141.7 was also effective in mouse models of orthotopic glioma tumor spheres and primary colon cancer. Our results indicate that CD133-targeted measles viruses selectively eliminate CD133(+) cells from tumor tissue, offering a key tool for research in tumor biology and cancer therapy.

  14. [Inhibitory effect of ¹³¹I-CD133mAb combined with cisplatin on liver cancer cells in vitro and in a tumor-bearing mouse model].

    PubMed

    Chen, Xingyue; Hou, Yanli; Duan, Liqun; Tang, Min; Kang, Qiangqiang; Shu, Jin; Peng, Zhiping; Li, Shaolin

    2014-06-01

    To study the inhibitory effect of CD133 monoclonal antibody labeled with ¹³¹I (¹³¹I-CD133mAb) on Huh-7 human liver cancer cell line overexpressing CD133 antigen in vitro and in mouse models bearing the tumor cell xenograft. ¹³¹I-CD133mAb was prepared by chloramines-T method and evaluated for its stability. Flow cytometry and immunohistochemistry were used to detect the expression of CD133 in Huh-7 cells and in Huh-7 cell-derived tumors, respectively. Huh-7 cells treated with ¹³¹I-CD133mAb plus cisplatin (DDP), ¹³¹I -CD133mAb, DDP, or no treatment (blank control) were examined for cell proliferation suppression by MTT assay with the IC₅₀ calculated. BALB/c mice bearing subcutaneous Huh-7 cell xenograft in the right forelegs were treated with ¹³¹I -CD133mAb, DDP, or both every two days for two weeks. The tumor size and volume were measured twice a week, and pathological examination of the tumor was carried out after the treatments. The tumor inhibition rate was calculated and tumor cell apoptosis observed with HE staining. The labeling ratio of ¹³¹I-CD133mAb was 90.25% and the radiochemical purity was 97.78%. Huh-7 cells showed obviously higher CD133 expression than HepG2 cells. ¹³¹I-CD133mAb combined with DDP group resulted in a significantly higher tumor inhibition rate than other treatments in the tumor-bearing mice. ¹³¹I-CD133mAb can inhibit the growth of liver cancer cells with a high CD133 expression both in vivo and in vitro.

  15. microRNA-133: expression, function and therapeutic potential in muscle diseases and cancer.

    PubMed

    Yu, Hao; Lu, Yinhui; Li, Zhaofa; Wang, Qizhao

    2014-01-01

    microRNAs (miRNAs) are a class of small non-coding RNAs that are 18-25 nucleotides (nt) in length and negatively regulate gene expression post-transcriptionally. miRNAs are known to mediate myriad processes and pathways. While many miRNAs are expressed ubiquitously, some are expressed in a tissue specific manner. miR-133 is one of the most studied and best characterized miRNAs to date. Specifically expressed in muscles, it has been classified as myomiRNAs and is necessary for proper skeletal and cardiac muscle development and function. Genes encoding miR-133 (miR-133a-1, miR-133a-2 and miR-133b) are transcribed as bicistronic transcripts together with miR-1-2, miR-1-1, and miR-206, respectively. However, they exhibit opposing impacts on muscle development. miR-133 gets involved in muscle development by targeting a lot of genes, including SFR, HDAC4, cyclin D2 and so on. Its aberrant expression has been linked to many diseases in skeletal muscle and cardiac muscle such as cardiac hypertrophy, muscular dystrophy, heart failure, cardiac arrhythmia. Beyond the study in muscle, miR-133 has been implicated in cancer and identified as a key factor in cancer development, including bladder cancer, prostate cancer and so on. Much more attention has been drawn to the versatile molecular functions of miR-133, making it a truly valuable therapeutic gene in miRNA-based gene therapy. In this review, we identified and summarized the results of studies of miR-133 with emphasis on its function in human diseases in muscle and cancer, and highlighted its therapeutic value. It might provide researchers a new insight into the biological significance of miR-133.

  16. Isolation and identification of tumor-initiating cell properties in human gallbladder cancer cell lines using the marker cluster of differentiation 133.

    PubMed

    Yu, Jiwei; Tang, Zhaohui; Gong, Wei; Zhang, Mingdi; Quan, Zhiwei

    2017-12-01

    resistance to chemotherapeutic agents with expression of stem cell-associated genes. Therefore, in GBC-SD cells, the CXCR4/Akt/CD133 signaling pathways may be activated.

  17. Differentiation potential of human CD133 positive hematopoietic stem cells into motor neuron- like cells, in vitro.

    PubMed

    Moghaddam, Sepideh Alavi; Yousefi, Behnam; Sanooghi, Davood; Faghihi, Faezeh; Hayati Roodbari, Nasim; Bana, Nikoo; Joghataei, Mohammad Taghi; Pooyan, Paria; Arjmand, Babak

    2017-12-01

    Spinal cord injuries and motor neuron-related disorders impact on life of many patients around the world. Since pharmacotherapy and surgical approaches were not efficient to regenerate these types of defects; stem cell therapy as a good strategy to restore the lost cells has become the focus of interest among the scientists. Umbilical cord blood CD133 + hematopoietic stem cells (UCB- CD133 + HSCs) with self- renewal property and neural lineage differentiation capacity are ethically approved cell candidate for use in regenerative medicine. In this regard the aim of this study was to quantitatively evaluate the capability of these cells to differentiate into motor neuron-like cells (MNL), in vitro. CD133 + HSCs were isolated from human UCB using MACS system. After cell characterization using flow cytometry, the cells were treated with a combination of Retinoic acid, Sonic hedgehog, Brain derived neurotrophic factor, and B27 through a 2- step procedure for two weeks. The expression of MN-specific markers was examined using qRT- PCR, flow cytometry and immunocytochemistry. By the end of the two-week differentiation protocol, CD133 + cells acquired unipolar MNL morphology with thin and long neurites. The expression of Isl-1(62.15%), AChE (41.83%), SMI-32 (21.55%) and Nestin (17.46%) was detected using flow cytometry and immunocytochemistry. The analysis of the expression of PAX6, ISL-1, ACHE, CHAT and SMI-32 revealed that MNLs present these neural markers at levels comparable with undifferentiated cells. In Conclusion Human UCB- CD133 + HSCs are remarkably potent cell candidates to transdifferentiate into motor neuron-like cells, in vitro. Copyright © 2017. Published by Elsevier B.V.

  18. Effect of Bmi-1-mediated NF-κB signaling pathway on the stem-like properties of CD133+ human liver cancer cells.

    PubMed

    Ma, De-Qiang; Zhang, Yin-Hua; Ding, De-Ping; Li, Juan; Chen, Lin-Li; Tian, You-You; Ao, Kang-Jian

    2018-05-11

    To investigate the impact of Bmi-1-mediated NF-κB pathway on the biological characteristics of CD133+ liver cancer stem cells (LCSCs). Flow cytometry was used to isolate CD133+ LCSC cells from Huh7, Hep3B, SK-hep1, and PLC/PRF-5 cells. CD133+ Huh7 cells were divided into Control, Blank, Bmi-1 siRNA, JSH-23 (NF-κB pathway inhibitor), and Bmi-1 + JSH-23 groups. The properties of CD133+ Huh7 cells were detected by the colony-formation and sphere-forming assays. Besides, Transwell assay was applied for the measurement of cell invasion and migration, immunofluorescence staining for the detection of NF-κB p65 nuclear translocation, and qRT-PCR and Western blotting for the determination of SOX2, NANOG, OCT4, Bmi-1, and NF-κB p65 expression. CD133+ Huh-7 cells were chosen as the experiment subjects after flow cytometry. Compared with CD133- Huh-7 cells, the expression of CD133, OCT4, SOX2, NANOG, Bmi-1, and NF-κB p65, the nuclear translocation of NF-κB p65, the number of cell colonies and Sphere formation, as well as the abilities of invasion and migration were observed to be increased in CD133+ Huh-7 cells, which was inhibited after treated with Bmi-1 siRNA or JSH-23, meanwhile, the cell cycle was arrested at the G0/G1 and S phases with apparently enhanced cell apoptosis. Importantly, no significant differences in the biological characteristics of CD133 + Huh-7 cells were found between the Blank group and Bmi-1 + JSH-23 group. Down-regulating Bmi-1 may inhibit the biological properties of CD133+ LCSC by blocking NF-κB signaling pathway, which lays a scientific foundation for the clinical treatment of liver cancer.

  19. Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells

    PubMed Central

    JU, Schmohl; MK, Gleason; PR, Dougherty; JS, Miller; DA, Vallera

    2015-01-01

    Background Natural killer (NK) cells are potent cytotoxic lymphocytes that play a critical role in tumor immunosurveillance and control. Cancer stem cells (CSC) initiate and sustain tumor cell growth, mediate drug refractory cancer relapse and express the well-known surface marker CD133. Methods DNA fragments from two fully humanized single chain fragment variable (scFv) antibody recognizing CD16 on NK-cells and CD133 on CSC were genetically spliced forming a novel drug, 16 × 133 BiKE that simultaneously recognizes these antigen to facilitate an immunologic synapse. The anti-CD133 was created using a fusion protein prepared by fusing DNA fragments encoding the two extracellular domains of CD133. Immunization of mice with the resulting fusion protein generated an unique antibody that recognized the molecular framework and was species cross-reactive. Results In vitro 51chromium release cytotoxicity assays at both high and low effector:target ratios demonstrated the ability of the heterodimeric biological drug to greatly enhance NK-cell killing of human Caco-2 colorectal carcinoma cells known to overexpress CD133. The tumor associated antigen specificity of the drug for CD133 even enhanced NK-cell cytotoxicity against the NK-resistant human Burkitt's lymphoma Daudi cell line, which has less than 5% CD133 surface expression. Flow cytometry analysis revealed increases in NK-cell degranulation and Interferon-γ production upon co-culture with Caco-2 targets in the presence of the drug. Conclusion These studies demonstrate that the innate immune system can be effectively recruited to kill CSC using bispecific antibodies targeting CD133, and that this anti-CD133 scFv may be useful in this bispecific platform or, perhaps, in the design of more complex trispecific molecules for carcinoma therapy. PMID:26566946

  20. Decreased gene expression of CD2AP in Chinese patients with sporadic Alzheimer's disease.

    PubMed

    Tao, Qing-Qing; Liu, Zhi-Jun; Sun, Yi-Min; Li, Hong-Lei; Yang, Ping; Liu, De-Shan; Jiang, Bin; Li, Xiao-Yan; Xu, Jian-Feng; Wu, Zhi-Ying

    2017-08-01

    Many sporadic Alzheimer's disease (SAD) risk genes have been identified in the last decades, but most of them have not been consistently accepted. Here, we sought to identify SAD-associated genes and their potential mechanisms involved in SAD pathogenesis. A 2-stage design was employed. In stage 1, 95 variants in 75 genes that were previously reported as SAD-risk genes in Caucasian populations were evaluated in 1857 subjects (422 SAD patients and 1435 controls). In stage 2, a subset of promising variants found in stage 1 were further evaluated in an independent cohort of 1001 subjects (254 SAD and 747 controls). Variants in CD2AP were significantly associated with SAD risk in our subjects. Furthermore, CD2AP gene expression in peripheral blood lymphocytes (PBL) from 209 SAD patients and 213 controls was determined. CD2AP gene expression in PBL was significantly decreased in patients with SAD as compared with controls. Our study suggests that CD2AP is an SAD-risk gene in Chinese Han population and CD2AP gene expression is decreased in the PBL of patients with SAD, indicating its possible systemic involvement in SAD. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. CD133+ cell content correlates with tumour growth in melanomas from skin with chronic sun-induced damage.

    PubMed

    González-Herrero, I; Romero-Camarero, I; Cañueto, J; Cardeñoso-Álvarez, E; Fernández-López, E; Pérez-Losada, J; Sánchez-García, I; Román-Curto, C

    2013-10-01

    Melanoma is responsible for almost 80% of the deaths attributed to skin cancer. Stem cells, defined by CD133 expression, have been implicated in melanoma tumour growth, but their specific role is still uncertain. We hypothesized that the phenotypic heterogeneity of human cutaneous melanomas is related to their content of CD133+ cells. We compared the percentages of CD133+ cells in 29 tumours from four classic types of melanoma: lentigo maligna melanoma (LMM), superficial spreading melanoma, nodular melanoma and acral lentiginous melanoma (ALM). Also, we compared the percentages of CD133+ cells in melanomas with different degrees of exposure to ultraviolet radiation: 16 melanomas from skin with chronic sun-induced damage and 13 melanomas from skin without such damage. We found a statistically significant increase of CD133+ cells in three different contexts: in melanomas arising on skin with signs of chronic sun-induced damage vs. nonexposed skin, in melanomas in situ vs. invasive melanomas, and in LMM vs. ALM. The proportions of CD133+ cells did not differ among samples of normal skin with different degrees of sun exposure. A distinct subpopulation of CD133+CXCR4+ cancer stem cells (CSCs) was identified and shown to be related to the invasive phenotype of the tumours. Here, we provide evidence showing, for the first time, that an increase in the CD133+ cell content is associated both with melanomas arising on skin with signs of chronic sun-induced damage and in melanomas in situ with better prognosis. Moreover, our study further confirms the existence of a subpopulation of CD133+CXCR4+ CSCs in cutaneous melanomas with invasive phenotype and poor prognosis. © 2013 British Association of Dermatologists.

  2. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    PubMed Central

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  3. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    PubMed

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8(+) T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+) T-cells, however recently a subset of NKG2D(+) CD4(+) T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D(+) CD4(+) T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+) CD4(+) T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+) T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D(+) CD4(+) T-cells, generated from HCMV-primed CD4(+) T-cells. We show that the HCMV-primed NKG2D(+) CD4(+) T-cells possess a higher differentiated phenotype than the NKG2D(-) CD4(+) T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+) T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+) T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+) T-cells, whereas it is produced de novo in resting CD4(+) T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+) CD4(+) T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  4. The Gene Expression Profile of CD11c+CD8α− Dendritic Cells in the Pre-Diabetic Pancreas of the NOD Mouse

    PubMed Central

    Beumer, Wouter; Welzen-Coppens, Jojanneke M. C.; van Helden-Meeuwsen, Cornelia G.; Gibney, Sinead M.; Drexhage, Hemmo A.; Versnel, Marjan A.

    2014-01-01

    Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α− DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α− DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α− DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α− DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α− DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α− DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS. PMID:25166904

  5. Full GMP-Compliant Validation of Bone Marrow-Derived Human CD133+ Cells as Advanced Therapy Medicinal Product for Refractory Ischemic Cardiomyopathy

    PubMed Central

    Belotti, Daniela; Gaipa, Giuseppe; Bassetti, Beatrice; Cabiati, Benedetta; Spaltro, Gabriella; Biagi, Ettore; Parma, Matteo; Biondi, Andrea; Cavallotti, Laura; Gambini, Elisa; Pompilio, Giulio

    2015-01-01

    According to the European Medicine Agency (EMA) regulatory frameworks, Advanced Therapy Medicinal Products (ATMP) represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133+ cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs). In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM), ATMP-CD133 manufacturing output yielded a median of 6.66 × 106 of CD133+ cells (range 2.85 × 106–30.84 × 106), with a viability ranged between 96,03% and 99,97% (median 99,87%) and a median purity of CD133+ cells of 90,60% (range 81,40%–96,20%). Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 106 cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial). PMID:26495296

  6. Full GMP-compliant validation of bone marrow-derived human CD133(+) cells as advanced therapy medicinal product for refractory ischemic cardiomyopathy.

    PubMed

    Belotti, Daniela; Gaipa, Giuseppe; Bassetti, Beatrice; Cabiati, Benedetta; Spaltro, Gabriella; Biagi, Ettore; Parma, Matteo; Biondi, Andrea; Cavallotti, Laura; Gambini, Elisa; Pompilio, Giulio

    2015-01-01

    According to the European Medicine Agency (EMA) regulatory frameworks, Advanced Therapy Medicinal Products (ATMP) represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133(+) cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs). In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM), ATMP-CD133 manufacturing output yielded a median of 6.66 × 10(6) of CD133(+) cells (range 2.85 × 10(6)-30.84 × 10(6)), with a viability ranged between 96,03% and 99,97% (median 99,87%) and a median purity of CD133(+) cells of 90,60% (range 81,40%-96,20%). Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 10(6) cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial).

  7. Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248.

    PubMed

    Bagley, Rebecca G; Rouleau, Cecile; St Martin, Thia; Boutin, Paula; Weber, William; Ruzek, Melanie; Honma, Nakayuki; Nacht, Mariana; Shankara, Srinivas; Kataoka, Shiro; Ishida, Isao; Roberts, Bruce L; Teicher, Beverly A

    2008-08-01

    Angiogenesis occurs during normal physiologic processes as well as under pathologic conditions such as tumor growth. Serial analysis of gene expression profiling revealed genes [tumor endothelial markers (TEM)] that are overexpressed in tumor endothelial cells compared with normal adult endothelial cells. Because blood vessel development of malignant tumors under certain conditions may include endothelial precursor cells (EPC) recruited from bone marrow, we investigated TEM expression in EPC. The expression of TEM1 or endosialin (CD248) and other TEM has been discovered in a population of vascular endothelial growth factor receptor 2+/CD31+/CD45-/VE-cadherin+ EPC derived from human CD133+/CD34+ cells. EPC share some properties with fully differentiated endothelial cells from normal tissue, yet reverse transcription-PCR and flow cytometry reveal that EPC express higher levels of endosialin at the molecular and protein levels. The elevated expression of endosialin in EPC versus mature endothelial cells suggests that endosialin is involved in the earlier stages of tumor angiogenesis. Anti-endosialin antibodies inhibited EPC migration and tube formation in vitro. In vivo, immunohistochemistry indicated that human EPC continued to express endosialin protein in a Matrigel plug angiogenesis assay established in nude mice. Anti-endosialin antibodies delivered systemically at 25 mg/kg were also able to inhibit circulating murine EPC in nude mice bearing s.c. SKNAS tumors. EPC and bone marrow-derived cells have been shown previously to incorporate into malignant blood vessels in some instances, yet they remain controversial in the field. The data presented here on endothelial genes that are up-regulated in tumor vasculature and in EPC support the hypothesis that the angiogenesis process in cancer can involve EPC.

  8. [Cloning of human CD45 gene and its expression in Hela cells].

    PubMed

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  9. Genome-wide expression profiling analysis to identify key genes in the anti-HIV mechanism of CD4+ and CD8+ T cells.

    PubMed

    Gao, Lijie; Wang, Yunqi; Li, Yi; Dong, Ya; Yang, Aimin; Zhang, Jie; Li, Fengying; Zhang, Rongqiang

    2018-07-01

    Comprehensive bioinformatics analyses were performed to explore the key biomarkers in response to HIV infection of CD4 + and CD8 + T cells. The numbers of CD4 + and CD8 + T cells of HIV infected individuals were analyzed and the GEO database (GSE6740) was screened for differentially expressed genes (DEGs) in HIV infected CD4 + and CD8 + T cells. Gene Ontology enrichment, KEGG pathway analyses, and protein-protein interaction (PPI) network were performed to identify the key pathway and core proteins in anti-HIV virus process of CD4 + and CD8 + T cells. Finally, we analyzed the expressions of key proteins in HIV-infected T cells (GSE6740 dataset) and peripheral blood mononuclear cells(PBMCs) (GSE511 dataset). 1) CD4 + T cells counts and ratio of CD4 + /CD8 + T cells decreased while CD8 + T cells counts increased in HIV positive individuals; 2) 517 DEGs were found in HIV infected CD4 + and CD8 + T cells at acute and chronic stage with the criterial of P-value <0.05 and fold change (FC) ≥2; 3) In acute HIV infection, type 1 interferon (IFN-1) pathway might played a critical role in response to HIV infection of T cells. The main biological processes of the DEGs were response to virus and defense response to virus. At chronic stage, ISG15 protein, in conjunction with IFN-1 pathway might play key roles in anti-HIV responses of CD4 + T cells; and 4) The expression of ISG15 increased in both T cells and PBMCs after HIV infection. Gene expression profile of CD4 + and CD8 + T cells changed significantly in HIV infection, in which ISG15 gene may play a central role in activating the natural antiviral process of immune cells. © 2018 Wiley Periodicals, Inc.

  10. FOXP3, CBLB and ITCH gene expression and cytotoxic T lymphocyte antigen 4 expression on CD4+CD25high T cells in multiple sclerosis

    PubMed Central

    Sellebjerg, F; Krakauer, M; Khademi, M; Olsson, T; Sørensen, P S

    2012-01-01

    Expression of the forkhead box protein 3 (FoxP3) transcription factor is regulated by the E3 ubiquitin ligases Itch and Cbl-b and induces regulatory activity CD4+CD25high T cells. Treatment with interferon (IFN)-β enhances regulatory T cell activity in multiple sclerosis (MS). We studied the phenotype of CD4+CD25high T cells in MS by flow cytometry and its relationship with expression of the FOXP3, ITCH and CBLB genes. We found that untreated MS patients had lower cell surface expression of cytotoxic T lymphocyte antigen 4 (CTLA-4) on CD4+CD25high T cells and higher intracellular CTLA-4 expression than healthy controls. Cell surface expression of CTLA-4 on CD4+CD25high T cells correlated with expression of FOXP3 mRNA in untreated patients and increased significantly with time from most recent injection in patients treated with IFN-β. FOXP3 mRNA expression correlated with CBLB and ITCH and T helper type 2 cytokine mRNA expression in MS patients. These data link expression of FOXP3, CBLB and ITCH mRNA and CTLA-4 expression on the surface of CD4+CD25high T cell in MS. We hypothesize that this may reflect alterations in the inhibitory effect of CTLA-4 or in regulatory T cell function. PMID:23039885

  11. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer.

    PubMed

    Sansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan; Chang, Qing; Rajasekhar, Vinagolu K; Perna, Fabiana; Bowman, Robert L; Vidone, Michele; Daly, Laura; Nnoli, Jennifer; Santini, Donatella; Taffurelli, Mario; Shih, Natalie N C; Feldman, Michael; Mao, Jun J; Colameco, Christopher; Chen, Jinbo; DeMichele, Angela; Fabbri, Nicola; Healey, John H; Cricca, Monica; Gasparre, Giuseppe; Lyden, David; Bonafé, Massimiliano; Bromberg, Jacqueline

    2016-02-09

    The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133(hi)/ER(lo) cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133(hi)/ER(lo)/IL6(hi) cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133(hi)/ER(lo)/OXPHOS(lo). These cells exit metabolic dormancy via an IL6-driven feed-forward ER(lo)-IL6(hi)-Notch(hi) loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133(hi) CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133(hi)/ER(lo) cells mediating metastatic progression, which is sensitive to dual targeted therapy.

  12. The number and function of circulating CD34+CD133+ progenitor cells decreased in stable coronary artery disease but not in acute myocardial infarction

    PubMed Central

    Kondo, Takahisa; Shintani, Satoshi; Maeda, Kengo; Hayashi, Mutsuharu; Inden, Yasuya; Numaguchi, Yasushi; Sugiura, Kaichiro; Morita, Yasuhiro; Kitamura, Tomoya; Kamiya, Haruo; Sone, Takahito; Ohno, Miyoshi; Murohara, Toyoaki

    2010-01-01

    Objective Circulating CD34+CD133+ cells are one of the main sources of circulating endothelial progenitor cells (EPCs). Age is inversely related to the number and function of CD34+CD133+ progenitor cells in stable coronary artery disease (CAD), but the relationship remains unclear in acute myocardial infarction (AMI). The authors aimed to clarify how ageing affects the number and function of mobilised CD34+CD133+ progenitor cells in AMI. Design and results Circulating CD34+CD133+ progenitor cells were measured by flow cytometry. Measurements were made at admission for CAD, or on day 7 after the onset of AMI. In stable CAD (n=131), circulating CD34+CD133+ cells decreased with age (r=−0.344, p<0.0001). In AMI, circulating CD34+CD133+ cells did not correlate with age (n=50), and multivariate analysis revealed that the decreased number of circulating CD34+CD133+ cells was associated with male sex and higher peak creatinine kinase. The ability to give rise to functional EPCs, which show good migratory and tube-forming capabilities, deteriorated among stable CAD subjects (n=10) compared with AMI subjects (N=6). Conclusions In stable CAD, the number and function of circulating CD34+CD133+ progenitor cells decreased with age, whereas those mobilised and circulating in AMI did not. PMID:27325937

  13. Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties

    PubMed Central

    Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik

    2010-01-01

    Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify

  14. The PBX1 lupus susceptibility gene regulates CD44 expression.

    PubMed

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A; Choi, Seung-Chul; Morel, Laurence

    2017-05-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4 + T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and shows that the lupus-associated isoform PBX1-d has unique molecular functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The PBX1 lupus susceptibility gene regulates CD44 expression

    PubMed Central

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A.; Choi, Seung-Chul; Morel, Laurence

    2017-01-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4+ T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and show that the lupus-associated isoform PBX1-d has unique molecular functions. PMID:28257976

  16. Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial.

    PubMed

    Nasseri, Boris A; Ebell, Wolfram; Dandel, Michael; Kukucka, Marian; Gebker, Rolf; Doltra, Adelina; Knosalla, Christoph; Choi, Yeong-Hoon; Hetzer, Roland; Stamm, Christof

    2014-05-14

    Intra-myocardial transplantation of CD133(+) bone marrow stem cells (BMC) yielded promising results in clinical pilot trials. We now performed the double-blinded, randomized, placebo-controlled CARDIO133 trial to determine its impact on left ventricular (LV) function and clinical symptoms. Sixty patients with chronic ischaemic heart disease and impaired LV function (left ventricular ejection fraction, LVEF <35%) were randomized to undergo either coronary artery bypass grafting (CABG) and injection of CD133(+) BMC in the non-transmural, hypokinetic infarct border zone (CD133), or CABG and placebo injection (placebo). Pre-operative LVEF was 27 ± 6% in CD133 patients and 26 ± 6% in placebo patients. Outcome was assessed after 6 months, and the primary endpoint was LVEF measured by cardiac magnetic resonance imaging (MRI) at rest. The incidence of adverse events was similar in both groups. There was no difference in 6-min walking distance, Minnesota Living with Heart Failure score, or Canadian Cardiovascular Society (CCS) class between groups at follow-up, and New York Heart Association class improved more in the placebo group (P = 0.004). By cardiac MRI, LVEF at 6 months was 33 ± 8% in the placebo group and 31 ± 7% in verum patients (P = 0.3), with an average inter-group difference of -2.1% (95% CI -6.3 to 2.1). Systolic or diastolic LV dimensions at 6 months were not different, either. In the CD133 group, myocardial perfusion at rest recovered in more LV segments than in the placebo group (9 vs. 2%, P < 0.001). Scar mass decreased by 2.2 ± 5 g in CD133(+) patients (P = 0.05), but was unchanged in the placebo group (0.3 ± 4 g, P = 0.7; inter-group difference in change = 2 g (95% CI -1.1 to 5)). By speckle-tracking echocardiography, cell-treated patients showed a better recovery of regional wall motion when the target area was posterior. Although there may be some improvements in scar size and regional perfusion, intra-myocardial injection of CD133(+) BMC has no

  17. Nitric oxide synthase 2 is required for conversion of pro-fibrogenic inflammatory CD133(+) progenitors into F4/80(+) macrophages in experimental autoimmune myocarditis.

    PubMed

    Blyszczuk, Przemyslaw; Berthonneche, Corrine; Behnke, Silvia; Glönkler, Marcel; Moch, Holger; Pedrazzini, Thierry; Lüscher, Thomas F; Eriksson, Urs; Kania, Gabriela

    2013-02-01

    Experimental autoimmune myocarditis (EAM) model mirrors important mechanisms of inflammatory dilated cardiomyopathy (iDCM). In EAM, inflammatory CD133(+) progenitors are a major cellular source of cardiac myofibroblasts in the post-inflammatory myocardium. We hypothesized that exogenous delivery of macrophage-colony-stimulating factor (M-CSF) can stimulate macrophage lineage differentiation of inflammatory progenitors and, therefore, prevent their naturally occurring myofibroblast fate in EAM. EAM was induced in wild-type (BALB/c) and nitric oxide synthase 2-deficient (Nos2(-/-)) mice and CD133(+) progenitors were isolated from inflamed hearts. In vitro, M-CSF converted inflammatory CD133(+) progenitors into nitric oxide-producing F4/80(+) macrophages and prevented transforming growth factor-β-mediated myofibroblast differentiation. Importantly, only a subset of heart-infiltrating CD133(+) progenitors expresses macrophage-specific antigen F4/80 in EAM. These CD133(+)/F4/80(hi) cells show impaired myofibrogenic potential compared with CD133(+)/F4/80(-) cells. M-CSF treatment of wild-type mice with EAM at the peak of disease markedly increased CD133(+)/F4/80(hi) cells in the myocardium, and CD133(+) progenitors isolated from M-CSF-treated mice failed to differentiate into myofibroblasts. In contrast, M-CSF was not effective in converting CD133(+) progenitors from inflamed hearts of Nos2(-/-) mice into macrophages, and M-CSF treatment did not result in increased CD133(+)/F4/80(hi) cell population in hearts of Nos2(-/-) mice. Accordingly, M-CSF prevented post-inflammatory fibrosis and left ventricular dysfunction in wild-type but not in Nos2(-/-) mice. Active and NOS2-dependent induction of macrophage lineage differentiation abrogates the myofibrogenic potential of heart-infiltrating CD133(+) progenitors. Modulating the in vivo differentiation fate of specific progenitors might become a novel approach for the treatment of inflammatory heart diseases.

  18. Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea Schreb.) Growing under Pb and Cd

    PubMed Central

    Lou, Yanhong; Zhao, Peng; Wang, Deling; Amombo, Erick; Sun, Xin; Wang, Hui; Zhuge, Yuping

    2017-01-01

    Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted

  19. Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea Schreb.) Growing under Pb and Cd.

    PubMed

    Lou, Yanhong; Zhao, Peng; Wang, Deling; Amombo, Erick; Sun, Xin; Wang, Hui; Zhuge, Yuping

    2017-01-01

    Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted

  20. CD133 overexpression correlates with clinicopathological features of gastric cancer patients and its impact on survival: a systematic review and meta-analysis.

    PubMed

    Yiming, Li; Yunshan, Guo; Bo, Ma; Yu, Zang; Tao, Wei; Gengfang, Liang; Dexian, Fan; Shiqian, Cui; Jianli, Jiang; Juan, Tang; Zhinan, Chen

    2015-12-08

    CD133 is one of the most commonly used markers of cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. However, the clinical and prognostic significance of CD133 in gastric cancer remains controversial. To clarify a precise determinant of the clinical significance of CD133, we conducted a systematic review and meta-analysis to elucidate the correlation of CD133 overexpression with prognosis and clinicopathological features of GC patients. A search in the Cochrane Library, PubMed, Medline, Web of Knowledge and Chinese CNKI, CBM (up to Jun 30, 2015) was performed using the following keywords gastric cancer, CD133, AC133, prominin-1, etc. Electronic searches were supplemented by hand searching reference lists, abstracts and proceedings from meetings. Outcomes included overall survival and various clinicopathological features. Two reviewers independently screened the literature according to the inclusion and exclusion criteria, extracted the data, and assessed the methodological quality of the included studies, and then RevMan 5.2.0 software was used for meta-analysis. A total of 603 gastric cancer patients from 8 studies were included. The results of the meta-analyses showed that, there were significant differences of CD133 expression in the following comparisons: gastric cancer tissues vs. normal esophageal tissue (OR = 3.49, 95% CI [2.48, 490], P < 0.00001), lymph node metastasis vs. non-lymph node metastasis (OR = 2.75, 95% CI [1.99, 3.81], P < 0.00001), distant metastasis vs. non-distant metastasis (OR = 2.38, 95%CI [1.47, 3.85], P < 0.0004), clinical stages III~IV vs. clinical stages I~II (OR = 2.83, 95% CI [2.13, 3.76], P < 0.00001), as well as the accumulative 5-year overall survival rates of CD133-positive vs. CD133-negative patients (OR = 0.23, 95% CI [0.16, 0.33], P < 0.00001). Overexpression of CD133 is associated with lymph node metastasis, distant metastasis, poor TNM stage. Additionally, CD133-positive

  1. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy.

    PubMed

    Bostad, Monica; Olsen, Cathrine Elisabeth; Peng, Qian; Berg, Kristian; Høgset, Anders; Selbo, Pål Kristian

    2015-05-28

    The cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs. Here we show that AC133-saporin co-localizes with the PCI-photosensitizer TPCS2a, which upon light exposure induces cytosolic release of AC133-saporin. PCI of picomolar levels of AC133-saporin in colorectal adenocarcinoma WiDr cells blocked cell proliferation and induced 100% inhibition of cell viability and colony forming ability at the highest light doses, whereas no cytotoxicity was obtained in the absence of light. Efficient PCI-based CD133-targeting was in addition demonstrated in the stem-cell-like, triple negative breast cancer cell line MDA-MB-231 and in the aggressive malignant melanoma cell line FEMX-1, whereas no enhanced targeting was obtained in the CD133-negative breast cancer cell line MCF-7. PCIAC133-saporin induced mainly necrosis and a minimal apoptotic response based on assessing cleavage of caspase-3 and PARP, and the TUNEL assay. PCIAC133-saporin resulted in S phase arrest and reduced LC3-II conversion compared to control treatments. Notably, co-treatment with Bafilomycin A1 and PCIAC133-saporin blocked LC3-II conversion, indicating a termination of the autophagic flux in WiDr cells. For the first time, we demonstrate laser-controlled targeting of CD133 in vivo. After only one systemic injection of AC133-saporin and TPCS2a, a strong anti-tumor response was observed after PCIAC133-saporin. The present PCI-based endosomal escape technology represents a minimally invasive strategy for spatio-temporal, light-controlled targeting of CD133+ cells in localized primary tumors or metastasis. Copyright © 2015

  2. Enhancing the Oncolytic Activity of CD133-Targeted Measles Virus: Receptor Extension or Chimerism with Vesicular Stomatitis Virus Are Most Effective

    PubMed Central

    Kleinlützum, Dina; Hanauer, Julia D. S.; Muik, Alexander; Hanschmann, Kay-Martin; Kays, Sarah-Katharina; Ayala-Breton, Camilo; Peng, Kah-Whye; Mühlebach, Michael D.; Abel, Tobias; Buchholz, Christian J.

    2017-01-01

    Therapy resistance and tumor recurrence are often linked to a small refractory and highly tumorigenic subpopulation of neoplastic cells, known as cancer stem cells (CSCs). A putative marker of CSCs is CD133 (prominin-1). We have previously described a CD133-targeted oncolytic measles virus (MV-CD133) as a promising approach to specifically eliminate CD133-positive tumor cells. Selectivity was introduced at the level of cell entry by an engineered MV hemagglutinin (H). The H protein was blinded for its native receptors and displayed a CD133-specific single-chain antibody fragment (scFv) as targeting domain. Interestingly, MV-CD133 was more active in killing CD133-positive tumors than the unmodified MV-NSe despite being highly selective for its target cells. To further enhance the antitumoral activity of MV-CD133, we here pursued arming technologies, receptor extension, and chimeras between MV-CD133 and vesicular stomatitis virus (VSV). All newly generated viruses including VSV-CD133 were highly selective in eliminating CD133-positive cells. MV-CD46/CD133 killed in addition CD133-negative cells being positive for the MV receptors. In an orthotopic glioma model, MV-CD46/CD133 and MVSCD-CD133, which encodes the super cytosine deaminase, were most effective. Notably, VSV-CD133 caused fatal neurotoxicity in this tumor model. Use of CD133 as receptor could be excluded as being causative. In a subcutaneous tumor model of hepatocellular cancer, VSV-CD133 revealed the most potent oncolytic activity and also significantly prolonged survival of the mice when injected intravenously. Compared to MV-CD133, VSV-CD133 infected a more than 104-fold larger area of the tumor within the same time period. Our data not only suggest new concepts and approaches toward enhancing the oncolytic activity of CD133-targeted oncolytic viruses but also raise awareness about careful toxicity testing of novel virus types. PMID:28695108

  3. PPARγ agonists regulate the expression of stemness and differentiation genes in brain tumour stem cells

    PubMed Central

    Pestereva, E; Kanakasabai, S; Bright, J J

    2012-01-01

    Background: Brain tumour stem cells (BTSCs) are a small population of cancer cells that exhibit self-renewal, multi-drug resistance, and recurrence properties. We have shown earlier that peroxisome proliferator-activated receptor gamma (PPARγ) agonists inhibit the expansion of BTSCs in T98G and U87MG glioma. In this study, we analysed the influence of PPARγ agonists on the expression of stemness and differentiation genes in BTSCs. Methods: The BTSCs were isolated from T98G and DB29 glioma cells, and cultured in neurobasal medium with epidermal growth factor+basic fibroblast growth factor. Proliferation was measured by WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2 H-5-tetrazolio]-1,3-benzene disulphonate) and 3H thymidine uptake assays, and gene expression was analysed by quantitative reverse--transcription PCR and Taqman array. The expression of CD133, SRY box 2, and nanog homeobox (Nanog) was also evaluated by western blotting, immunostaining, and flow cytometry. Results: We found that PPARγ agonists, ciglitazone and 15-deoxy-Δ12,14-ProstaglandinJ2, inhibited cell viability and proliferation of T98G- and DB29-BTSCs. The PPARγ agonists reduced the expansion of CD133+ BTSCs and altered the expression of stemness and differentiation genes. They also inhibited Sox2 while enhancing Nanog expression in BTSCs. Conclusion: These findings highlight that PPARγ agonists inhibit BTSC proliferation in association with altered expression of Sox2, Nanog, and other stemness genes. Therefore, targeting stemness genes in BTSCs could be a novel strategy in the treatment of glioblastoma. PMID:22531638

  4. Differential Gene Expression Profiling of Functionally and Developmentally Distinct Human Prostate Epithelial Populations

    PubMed Central

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-01-01

    BACKGROUND Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam+CD44−CD49fHi basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. METHODS Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam+CD44− with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam+CD44−CD49fHi FC, adult Epcam+CD44−CD49fHi TIC, Epcam+CD44+CD49fHi basal cells (BC), and Epcam+CD44−CD49fLo luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. RESULTS Grafts retrieved from Epcam+CD44− fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC

  5. Differential gene expression profiling of functionally and developmentally distinct human prostate epithelial populations.

    PubMed

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-05-01

    Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam⁺ CD44⁻ CD49f(Hi) basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam⁺ CD44⁻ with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam⁺ CD44⁻ CD49f(Hi) FC, adult Epcam⁺ CD44⁻ CD49f(Hi) TIC, Epcam⁺ CD44⁺ CD49f(Hi) basal cells (BC), and Epcam⁺ CD44⁻ CD49f(Lo) luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. Grafts retrieved from Epcam⁺ CD44⁻ fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities

  6. 2-((Benzimidazol-2-yl)thio)-1-arylethan-1-ones: Synthesis, crystal study and cancer stem cells CD133 targeting potential.

    PubMed

    Abdel-Aziz, Hatem A; Ghabbour, Hazem A; Eldehna, Wagdy M; Al-Rashood, Sara T A; Al-Rashood, Khalid A; Fun, Hoong-Kun; Al-Tahhan, Mays; Al-Dhfyan, Abdullah

    2015-11-02

    In order to develop a potent anti-tumor agent that can target both cancer stem cells and the bulk of tumor cells, a series of 2-((benzimidazol-2-yl)thio)-1-arylethan-1-ones 5a-o was synthesized. All compounds were evaluated for their anti-proliferative activity towards colon HT-29 cancer cell line. In addition, their inhibitory effect against cell surface expression of CD133, a potent cancer stem cells (CSCs) marker, in the same cells was evaluated by flow cytometry at 10 μM. Compound 5l emerged as the most active anti-proliferative analog against HT-29 (IC50 = 18.83 ± 1.37 μM), that almost equipotent as 5-fluorouracil (IC50 = 15.83 ± 1.63 μM) with 50.11 ± 4.05% inhibition effect on CD133 expression, suggested dual targeted effect. Also, compounds 5h, 5j, 5k and 5m-o inhibited the expression of CD133 with more than 50%. The SAR study pointed out the significance of substitution of the pendent phenyl group with lipophilic electron-donating groups or replacing it by 2-thienyl or 2-furyl groups. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. A gene expression signature that correlates with CD8+T cell expansion in acute Epstein Barr virus infection1

    PubMed Central

    Greenough, Thomas C.; Straubhaar, Juerg R.; Kamga, Larisa; Weiss, Eric R.; Brody, Robin M.; McManus, Margaret M.; Lambrecht, Linda K.; Somasundaran, Mohan; Luzuriaga, Katherine F.

    2015-01-01

    Virus specific CD8+ T cells expand dramatically during acute Epstein Barr virus (EBV) infection, and their persistence is important for lifelong control of EBV-related disease. To better define the generation and maintenance of these effective CD8+ T cell responses, we used microarrays to characterize gene expression in total and EBV-specific CD8+ T cells isolated from the peripheral blood of ten individuals followed from acute infectious mononucleosis (AIM) into convalescence (CONV). In total CD8+ T cells, differential expression of genes in AIM and CONV was most pronounced among those encoding proteins important in T cell activation/differentiation, cell division/metabolism, chemokines/cytokines and receptors, signaling and transcription factors (TF), immune effector functions, and negative regulators. Within these categories, we identified 28 genes that correlated with CD8+ T cell expansion in response to an acute EBV infection. In EBV-specific CD8+ T cells, we identified 33 genes that were differentially expressed in AIM and CONV. Two important TF, T-bet and Eomesodermin (Eomes), were upregulated and maintained at similar levels in both AIM and CONV; by contrast, protein expression declined from AIM to CONV. Expression of these TF varied among cells with different epitope specificities. Altogether, gene and protein expression patterns suggest that a large proportion, if not a majority of CD8+ T cells in AIM are virus-specific, activated, dividing, and primed to exert effector activities. High expression of T-bet and Eomes may help to maintain effector mechanisms in activated cells, and to enable proliferation and transition to earlier differentiation states in CONV. PMID:26416268

  8. Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8+ T-cell response

    PubMed Central

    Fann, Monchou; Godlove, Jason M.; Catalfamo, Marta; Wood, William H.; Chrest, Francis J.; Chun, Nicholas; Granger, Larry; Wersto, Robert; Madara, Karen; Becker, Kevin; Henkart, Pierre A.; Weng, Nan-ping

    2006-01-01

    To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8+ T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8+ T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8+ T-cell response. PMID:16868257

  9. Impact of Blood Vessel Quantity and Vascular Expression of CD133 and ICAM-1 on Survival of Glioblastoma Patients

    PubMed Central

    Kase, Marju; Saretok, Mikk; Adamson-Raieste, Aidi; Kase, Sandra; Niinepuu, Kristi; Vardja, Markus; Asser, Toomas

    2017-01-01

    Glioblastoma (GB) is the most angiogenic tumor. Nevertheless, antiangiogenic therapy has not shown significant clinical efficacy. The aim of this study was to assess blood vessel characteristics on survival of GB patients. Surgically excised GB tissues were histologically examined for overall proportion of glomeruloid microvascular proliferation (MP) and the total number of blood vessels. Also, immunohistochemical vascular staining intensities of CD133 and ICAM-1 were determined. Vessel parameters were correlated with patients' overall survival. The survival time depended on the number of blood vessels (p = 0.03) but not on the proportion of MP. Median survival times for patients with low (expression level of CD133 were 9.0 months (95% CI: 8.0–10.1) and 12.0 months (95% CI: 10.3–13.7). In contrast, the staining intensity of vascular ICAM-1 did not affect survival. In multivariate analysis, the number of blood vessels emerged as an independent predictor for longer overall survival (HR: 2.4, 95% CI: 1.2–5.0, p = 0.02). For success in antiangiogenic therapy, better understanding about tumor vasculature biology is needed. PMID:29250531

  10. Gene expression profiling of immunomagnetically separated cells directly from stabilized whole blood for multicenter clinical trials

    PubMed Central

    2014-01-01

    Background Clinically useful biomarkers for patient stratification and monitoring of disease progression and drug response are in big demand in drug development and for addressing potential safety concerns. Many diseases influence the frequency and phenotype of cells found in the peripheral blood and the transcriptome of blood cells. Changes in cell type composition influence whole blood gene expression analysis results and thus the discovery of true transcript level changes remains a challenge. We propose a robust and reproducible procedure, which includes whole transcriptome gene expression profiling of major subsets of immune cell cells directly sorted from whole blood. Methods Target cells were enriched using magnetic microbeads and an autoMACS® Pro Separator (Miltenyi Biotec). Flow cytometric analysis for purity was performed before and after magnetic cell sorting. Total RNA was hybridized on HGU133 Plus 2.0 expression microarrays (Affymetrix, USA). CEL files signal intensity values were condensed using RMA and a custom CDF file (EntrezGene-based). Results Positive selection by use of MACS® Technology coupled to transcriptomics was assessed for eight different peripheral blood cell types, CD14+ monocytes, CD3+, CD4+, or CD8+ T cells, CD15+ granulocytes, CD19+ B cells, CD56+ NK cells, and CD45+ pan leukocytes. RNA quality from enriched cells was above a RIN of eight. GeneChip analysis confirmed cell type specific transcriptome profiles. Storing whole blood collected in an EDTA Vacutainer® tube at 4°C followed by MACS does not activate sorted cells. Gene expression analysis supports cell enrichment measurements by MACS. Conclusions The proposed workflow generates reproducible cell-type specific transcriptome data which can be translated to clinical settings and used to identify clinically relevant gene expression biomarkers from whole blood samples. This procedure enables the integration of transcriptomics of relevant immune cell subsets sorted directly from

  11. SC-12CD133 SURFACE EXPRESSION INDICATES ASYMMETRIC INHERITANCE OF SIGNALING RECEPTORS DURING GLIOBLASTOMA CANCER STEM CELL MITOSIS

    PubMed Central

    Hitomi, Masahiro; Jarvis, Stephanie; Yogeswaran, Vid; Pfaff, Kayla; Lathia, Justin

    2014-01-01

    Asymmetric cell division, the mechanism by which stem cells generate progeny undergoing tissue specific differentiation and a self-renewing stem cell population, enables organogenesis, maintenance of tissue homeostasis, and tissue regeneration without depleting stem cell pools. Cancer stem cells (CSCs) have been identified in malignant cancers including glioblastoma (GBM) by virtue of their enhanced self-renewal capacity and ability to reconstitute an entire tumor with all types of cells found in the original tumor. CSCs also play pivotal roles in therapeutic resistance and are the focus of recent therapeutic development efforts. CSC maintenance is regulated by intrinsic stem cell transcription factors, as well as by multiple extrinsic factors in the tumor microenvironment. In addition to these factors, the mode of cell division plays a critical role in CSC maintenance as exemplified by normal stem cells. Previously, we demonstrated that asymmetric segregation of a CSC marker, CD133, at the time of mitosis correlated with fate determination of CSCs derived from clinical GBM patient samples. Utilizing quantitative immunofluorecsence, we detected that receptors for key signaling molecules critical for CSC maintenance were co-segregated with CD133. Inhibition of downstream signaling induced asymmetric cell death in one of the daughter cells. These data indicate that CD133 marks daughter cells with higher inheritance of molecules that facilitate self-renewal and that asymmetric cell division may benefit CSC survival by concentrating essential receptors to one daughter cell in addition to its potential role in increasing cellular heterogeneity of the tumor.

  12. Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas.

    PubMed

    Lardon, Jessy; Corbeil, Denis; Huttner, Wieland B; Ling, Zhidong; Bouwens, Luc

    2008-01-01

    Many efforts are spent in identifying stem cells in adult pancreas because these could provide a source of beta cells for cell-based therapy of type 1 diabetes. Prominin-1, particularly its specific glycosylation-dependent AC133 epitope, is expressed on stem/progenitor cells of various human tissues and can be used to isolate them. We, therefore, examined its expression in adult human pancreas. To detect prominin-1 protein, monoclonal antibody CD133/1 (AC133 clone), which recognizes the AC133 epitope, and the alphahE2 antiserum, which is directed against the human prominin-1 polypeptide, were used. Prominin-1 RNA expression was analyzed by real-time polymerase chain reaction. We report that all duct-lining cells of the pancreas express prominin-1. Most notably, the cells that react with the alphahE2 antiserum also react with the AC133 antibody. After isolation and culture of human exocrine cells, we found a relative increase in prominin-1 expression both at protein and RNA expression level, which can be explained by an enrichment of cells with ductal phenotype in these cultures. Our data show that pancreatic duct cells express prominin-1 and surprisingly reveal that its particular AC133 epitope is not an exclusive stem and progenitor cell marker.

  13. GMP-conformant on-site manufacturing of a CD133+ stem cell product for cardiovascular regeneration.

    PubMed

    Skorska, Anna; Müller, Paula; Gaebel, Ralf; Große, Jana; Lemcke, Heiko; Lux, Cornelia A; Bastian, Manuela; Hausburg, Frauke; Zarniko, Nicole; Bubritzki, Sandra; Ruch, Ulrike; Tiedemann, Gudrun; David, Robert; Steinhoff, Gustav

    2017-02-10

    CD133 + stem cells represent a promising subpopulation for innovative cell-based therapies in cardiovascular regeneration. Several clinical trials have shown remarkable beneficial effects following their intramyocardial transplantation. Yet, the purification of CD133 + stem cells is typically performed in centralized clean room facilities using semi-automatic manufacturing processes based on magnetic cell sorting (MACS®). However, this requires time-consuming and cost-intensive logistics. CD133 + stem cells were purified from patient-derived sternal bone marrow using the recently developed automatic CliniMACS Prodigy® BM-133 System (Prodigy). The entire manufacturing process, as well as the subsequent quality control of the final cell product (CP), were realized on-site and in compliance with EU guidelines for Good Manufacturing Practice. The biological activity of automatically isolated CD133 + cells was evaluated and compared to manually isolated CD133 + cells via functional assays as well as immunofluorescence microscopy. In addition, the regenerative potential of purified stem cells was assessed 3 weeks after transplantation in immunodeficient mice which had been subjected to experimental myocardial infarction. We established for the first time an on-site manufacturing procedure for stem CPs intended for the treatment of ischemic heart diseases using an automatized system. On average, 0.88 × 10 6 viable CD133 + cells with a mean log 10 depletion of 3.23 ± 0.19 of non-target cells were isolated. Furthermore, we demonstrated that these automatically isolated cells bear proliferation and differentiation capacities comparable to manually isolated cells in vitro. Moreover, the automatically generated CP shows equal cardiac regeneration potential in vivo. Our results indicate that the Prodigy is a powerful system for automatic manufacturing of a CD133 + CP within few hours. Compared to conventional manufacturing processes, future clinical application of

  14. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation

    PubMed Central

    Huang, Lixing; Xi, Zhihui; Wang, Chonggang; Zhang, Youyu; Yang, Zhibing; Zhang, Shiqi; Chen, Yixin; Zuo, Zhenghong

    2016-01-01

    Growing evidence indicates that there is an emerging link between environmental pollution and cardiac hypertrophy, while the mechanism is unclear. The objective of this study was to examine whether phenanthrene (Phe) could cause cardiac hypertrophy, and elucidate the molecular mechanisms involved. We found that: 1) Phe exposure increased the heart weight and cardiomyocyte size of rats; 2) Phe exposure led to enlarged cell size, and increased protein synthesis in H9C2 cells; 3) Phe exposure induced important markers of cardiac hypertrophy, such as atrial natriuretic peptide, B-type natriuretic peptide, and c-Myc in H9C2 cells and rat hearts; 4) Phe exposure perturbed miR-133a, CdC42 and RhoA, which were key regulators of cardiac hypertrophy, in H9C2 cells and rat hearts; 5) Phe exposure induced DNA methyltransferases (DNMTs) in H9C2 cells and rat hearts; 6) Phe exposure led to methylation of CpG sites within the miR-133a locus and reduced miR-133a expression in H9C2 cells; 7) DNMT inhibition and miR-133a overexpression could both alleviate the enlargement of cell size and perturbation of CdC42 and RhoA caused by Phe exposure. These results indicated that Phe could induce cardiomyocyte hypertrophy in the rat and H9C2 cells. The mechanism might involve reducing miR-133a expression by DNA methylation. PMID:26830171

  15. Distinctive effects of CD34- and CD133-specific antibody-coated stents on re-endothelialization and in-stent restenosis at the early phase of vascular injury

    PubMed Central

    Wu, Xue; Yin, Tieying; Tian, Jie; Tang, Chaojun; Huang, Junli; Zhao, Yinping; Zhang, Xiaojuan; Deng, Xiaoyan; Fan, Yubo; Yu, Donghong; Wang, Guixue

    2015-01-01

    It is not clear what effects of CD34- and CD133-specific antibody-coated stents have on re-endothelialization and in-stent restenosis (ISR) at the early phase of vascular injury. This study aims at determining the capabilities of different coatings on stents (e.g. gelatin, anti-CD133 and anti-CD34 antibodies) to promote adhesion and proliferation of endothelial progenitor cells (EPCs). The in vitro study revealed that the adhesion force enabled the EPCs coated on glass slides to withstand flow-induced shear stress, so that allowing for the growth of the cells on the slides for 48 h. The in vivo experiment using a rabbit model in which the coated stents with different substrates were implanted showed that anti-CD34 and anti-CD133 antibody-coated stents markedly reduced the intima area and restenosis than bare mental stents (BMS) and gelatin-coated stents. Compared with the anti-CD34 antibody-coated stents, the time of cells adhesion was longer and earlier present in the anti-CD133 antibody-coated stents and anti-CD133 antibody-coated stents have superiority in re-endothelialization and inhibition of ISR. In conclusion, this study demonstrated that anti-CD133 antibody as a stent coating for capturing EPCs is better than anti-CD34 antibody in promoting endothelialization and reducing ISR. PMID:26813006

  16. Expression of CD44 and CD29 by PEComa cells suggests their possible origin of mesenchymal stem cells.

    PubMed

    Liu, Ruixue; Jia, Wei; Zou, Hong; Wang, Xinhua; Ren, Yan; Zhao, Jin; Wang, Lianghai; Li, Man; Qi, Yan; Shen, Yaoyuan; Liang, Weihua; Jiang, Jinfang; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell (PEC) co-expresses melanocytic and muscle markers. Since no normal counterpart to the PEC has ever been identified in any normal tissue, the cell origin of these tumors is still uncertain. Although, several hypotheses have recently been advanced to explain the histogenesis of PEComa, it remains unclear. The aim of this study was to discuss whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of PEComa. For this purpose, we detected the immunoexpression of 5 kinds of stem cell markers on PEComas, including CD29, CD44, CD133, ALDH1, and nestin. In addition to observed histopathologic morphology, we also performed PEComa relevant clinical diagnostic markers (HMB-45, SMA, melan-A, Desmin, Ki-67, S-100 and TFE3) to identify whether they belonged to PEComas. Our study included 13 PEComa samples, and we obtained positive immunoexpression results as follows: CD29 (13/13), CD44 (8/13), ALDH1 (10/13), nestin (1/13), and CD133 (0/13). Since CD44 and CD29 are surface proteins associated with MSCs, these results suggest that PEComa might arise from MSCs. However, whether MSCs are the origin of PEComa needs to be further explored in the future.

  17. Human T-lymphotropic virus type I-associated myelopathy and tax gene expression in CD4+ T lymphocytes.

    PubMed

    Moritoyo, T; Reinhart, T A; Moritoyo, H; Sato, E; Izumo, S; Osame, M; Haase, A T

    1996-07-01

    Infection by human T-lymphotropic virus type I (HTLV-I) is associated with adult T-cell leukemia and a slowly progressive disease of the central nervous system (CNS), HTLV-I-associated myelopathy/tropical spastic paraparesis, characterized pathologically by inflammation and white matter degeneration in the spinal cord. One of the explanations for the tissue destruction is that HTLV-I infects cells in the CNS, or HTLV-I-infected CD4+ T lymphocytes enter the CNS, and this drives local expansion of virus-specific CD8+ cytotoxic T lymphocytes, which along with cytokines cause the pathological changes. Because both in the circulation and in the cerebrospinal fluid, CD8+ cytotoxic T lymphocytes are primarily reactive to the product of the HTLV-I tax gene, we sought evidence of expression of this gene within cells in the inflammatory lesions. After using double-label in situ hybridization techniques, we now report definitive localization of HTLV-I tax gene expression in CD4+ T lymphocytes in areas of inflammation and white matter destruction. These findings lend support to a hypothetical scheme of neuropathogenesis in which HTLV-I tax gene expression provokes and sustains an immunopathological process that progressively destroys myelin and axons in the spinal cord.

  18. The Pluripotent Stem-Cell Marker Alkaline Phosphatase is Highly Expressed in Refractory Glioblastoma with DNA Hypomethylation.

    PubMed

    Iwadate, Yasuo; Suganami, Akiko; Tamura, Yutaka; Matsutani, Tomoo; Hirono, Seiichiro; Shinozaki, Natsuki; Hiwasa, Takaki; Takiguchi, Masaki; Saeki, Naokatsu

    2017-02-01

    Hypomethylation of genomic DNA induces stem-cell properties in cancer cells and contributes to the treatment resistance of various malignancies. To examine the correlation between the methylation status of stem-cell-related genes and the treatment outcomes in patients with glioblastoma (GBM). The genome-wide DNA methylation status was determined using HumanMethylation450 BeadChips, and the methylation status was compared between a group of patients with good prognosis (survival > 4 yr) and a group with poor prognosis (survival < 1 yr). Immunohistochemistry for proteins translated from hypomethylated genes, including alkaline phosphatase (ALPL), CD133, and CD44, was performed in 70 GBMs and 60 oligodendroglial tumors. The genomic DNA in refractory GBM was more hypomethylated than in GBM from patients with relatively long survival (P = .0111). Stem-cell-related genes including ALPL, CD133, and CD44 were also significantly hypomethylated. A validation study using immunohistochemistry showed that DNA hypomethylation was strongly correlated with high protein expression of ALPL, CD133, and CD44. GBM patients with short survival showed high expression of these stem-cell markers. Multivariate analysis confirmed that co-expression of ALPL + CD133 or ALPL + CD44 was a strong predictor of short survival. Anaplastic oligodendroglial tumors without isocitrate dehydrogenase 1 mutation were significantly correlated with high ALPL expression and poor survival. Accumulation of stem-cell properties due to aberrant DNA hypomethylation is associated with the refractory nature of GBM. Copyright © 2017 by the Congress of Neurological Surgeons

  19. GMP-based CD133+ cells isolation maintains progenitor angiogenic properties and enhances standardization in cardiovascular cell therapy

    PubMed Central

    Gaipa, Giuseppe; Tilenni, Manuela; Straino, Stefania; Burba, Ilaria; Zaccagnini, Germana; Belotti, Daniela; Biagi, Ettore; Valentini, Marco; Perseghin, Paolo; Parma, Matteo; Campli, Cristiana Di; Biondi, Andrea; Capogrossi, Maurizio C; Pompilio, Giulio; Pesce, Maurizio

    2010-01-01

    Abstract The aim of the present study was to develop and validate a good manufacturing practice (GMP) compliant procedure for the preparation of bone marrow (BM) derived CD133+ cells for cardiovascular repair. Starting from available laboratory protocols to purify CD133+ cells from human cord blood, we implemented these procedures in a GMP facility and applied quality control conditions defining purity, microbiological safety and vitality of CD133+ cells. Validation of CD133+ cells isolation and release process were performed according to a two-step experimental program comprising release quality checking (step 1) as well as ‘proofs of principle’ of their phenotypic integrity and biological function (step 2). This testing program was accomplished using in vitro culture assays and in vivo testing in an immunosuppressed mouse model of hindlimb ischemia. These criteria and procedures were successfully applied to GMP production of CD133+ cells from the BM for an ongoing clinical trial of autologous stem cells administration into patients with ischemic cardiomyopathy. Our results show that GMP implementation of currently available protocols for CD133+ cells selection is feasible and reproducible, and enables the production of cells having a full biological potential according to the most recent quality requirements by European Regulatory Agencies. PMID:19627397

  20. Expression of genes encoding IGFBPs, SNARK, CD36, and PECAM1 in the liver of mice treated with chromium disilicide and titanium nitride nanoparticles.

    PubMed

    Minchenko, Dmytro O; Tsymbal, D O; Yavorovsky, O P; Solokha, N V; Minchenko, O H

    2017-04-25

    The aim of the present study was to examine the effect of chromium disilicide and titanium nitride nanoparticles on the expression level of genes encoding important regulatory factors (IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK/NUAK2, CD36, and PECAM1/CD31) in mouse liver for evaluation of possible toxic effects of these nanoparticles. Male mice received 20 mg chromium disilicide nanoparticles (45 nm) and titanium nitride nanoparticles (20 nm) with food every working day for 2 months. The expression of IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver was studied by quantitative polymerase chain reaction. Treatment of mice with chromium disilicide nanoparticles led to down-regulation of the expression of IGFBP2, IGFBP5, PECAM1, and SNARK genes in the liver in comparison with control mice, with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3 and CD36 genes was increased in mouse liver upon treatment with chromium disilicide nanoparticles. We have also shown that treatment with titanium nitride nanoparticles resulted in down-regulation of the expression of IGFBP2 and SNARK genes in the liver with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3, IGFBP4, and CD36 genes was increased in the liver of mice treated with titanium nitride nanoparticles. Furthermore, the effect of chromium disilicide nanoparticles on IGFBP2 and CD36 genes expression was significantly stronger as compared to titanium nitride nanoparticles. The results of this study demonstrate that chromium disilicide and titanium nitride nanoparticles have variable effects on the expression of IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver, which may reflect the genotoxic activities of the studied nanoparticles.

  1. Identification of Three Molecular and Functional Subtypes in Canine Hemangiosarcoma through Gene Expression Profiling and Progenitor Cell Characterization

    PubMed Central

    Gorden, Brandi H.; Kim, Jong-Hyuk; Sarver, Aaron L.; Frantz, Aric M.; Breen, Matthew; Lindblad-Toh, Kerstin; O'Brien, Timothy D.; Sharkey, Leslie C.; Modiano, Jaime F.; Dickerson, Erin B.

    2015-01-01

    Canine hemangiosarcomas have been ascribed to an endothelial origin based on histologic appearance; however, recent findings suggest that these tumors may arise instead from hematopoietic progenitor cells. To clarify this ontogenetic dilemma, we used genome-wide expression profiling of primary hemangiosarcomas and identified three distinct tumor subtypes associated with angiogenesis (group 1), inflammation (group 2), and adipogenesis (group 3). Based on these findings, we hypothesized that a common progenitor may differentiate into the three tumor subtypes observed in our gene profiling experiment. To investigate this possibility, we cultured hemangiosarcoma cell lines under normal and sphere-forming culture conditions to enrich for tumor cell progenitors. Cells from sphere-forming cultures displayed a robust self-renewal capacity and exhibited genotypic, phenotypic, and functional properties consistent with each of the three molecular subtypes seen in primary tumors, including expression of endothelial progenitor cell (CD133 and CD34) and endothelial cell (CD105, CD146, and αvβ3 integrin) markers, expression of early hematopoietic (CD133, CD117, and CD34) and myeloid (CD115 and CD14) differentiation markers in parallel with increased phagocytic capacity, and acquisition of adipogenic potential. Collectively, these results suggest that canine hemangiosarcomas arise from multipotent progenitors that differentiate into distinct subtypes. Improved understanding of the mechanisms that determine the molecular and phenotypic differentiation of tumor cells in vivo could change paradigms regarding the origin and progression of endothelial sarcomas. PMID:24525151

  2. CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: a report from the International DLBCL Rituximab-CHOP Consortium Program Study

    PubMed Central

    Hu, Shimin; Xu-Monette, Zijun Y.; Balasubramanyam, Aarthi; Manyam, Ganiraju C.; Visco, Carlo; Tzankov, Alexander; Liu, Wei-min; Miranda, Roberto N.; Zhang, Li; Montes-Moreno, Santiago; Dybkær, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W. L.; Han van Krieken, J.; Huang, Qin; Huh, Jooryung; Ai, Weiyun; Ponzoni, Maurilio; Ferreri, Andrés J. M.; Zhao, Xiaoying; Winter, Jane N.; Zhang, Mingzhi; Li, Ling; Møller, Michael B.; Piris, Miguel A.; Li, Yong; Go, Ronald S.; Wu, Lin; Medeiros, L. Jeffrey; Young, Ken H.

    2013-01-01

    CD30, originally identified as a cell-surface marker of Reed-Sternberg and Hodgkin cells of classical Hodgkin lymphoma, is also expressed by several types of non-Hodgkin lymphoma, including a subset of diffuse large B-cell lymphoma (DLBCL). However, the prognostic and biological importance of CD30 expression in DLBCL is unknown. Here we report that CD30 expression is a favorable prognostic factor in a cohort of 903 de novo DLBCL patients. CD30 was expressed in ∼14% of DLBCL patients. Patients with CD30+ DLBCL had superior 5-year overall survival (CD30+, 79% vs CD30–, 59%; P = .001) and progression-free survival (P = .003). The favorable outcome of CD30 expression was maintained in both the germinal center B-cell and activated B-cell subtypes. Gene expression profiling revealed the upregulation of genes encoding negative regulators of nuclear factor κB activation and lymphocyte survival, and downregulation of genes encoding B-cell receptor signaling and proliferation, as well as prominent cytokine and stromal signatures in CD30+ DLBCL patients, suggesting a distinct molecular basis for its favorable outcome. Given the superior prognostic value, unique gene expression signature, and significant value of CD30 as a therapeutic target for brentuximab vedotin in ongoing successful clinical trials, it seems appropriate to consider CD30+ DLBCL as a distinct subgroup of DLBCL. PMID:23343832

  3. Genetic regulation of gene expression in the lung identifies CST3 and CD22 as potential causal genes for airflow obstruction.

    PubMed

    Lamontagne, Maxime; Timens, Wim; Hao, Ke; Bossé, Yohan; Laviolette, Michel; Steiling, Katrina; Campbell, Joshua D; Couture, Christian; Conti, Massimo; Sherwood, Karen; Hogg, James C; Brandsma, Corry-Anke; van den Berge, Maarten; Sandford, Andrew; Lam, Stephen; Lenburg, Marc E; Spira, Avrum; Paré, Peter D; Nickle, David; Sin, Don D; Postma, Dirkje S

    2014-11-01

    COPD is a complex chronic disease with poorly understood pathogenesis. Integrative genomic approaches have the potential to elucidate the biological networks underlying COPD and lung function. We recently combined genome-wide genotyping and gene expression in 1111 human lung specimens to map expression quantitative trait loci (eQTL). To determine causal associations between COPD and lung function-associated single nucleotide polymorphisms (SNPs) and lung tissue gene expression changes in our lung eQTL dataset. We evaluated causality between SNPs and gene expression for three COPD phenotypes: FEV(1)% predicted, FEV(1)/FVC and COPD as a categorical variable. Different models were assessed in the three cohorts independently and in a meta-analysis. SNPs associated with a COPD phenotype and gene expression were subjected to causal pathway modelling and manual curation. In silico analyses evaluated functional enrichment of biological pathways among newly identified causal genes. Biologically relevant causal genes were validated in two separate gene expression datasets of lung tissues and bronchial airway brushings. High reliability causal relations were found in SNP-mRNA-phenotype triplets for FEV(1)% predicted (n=169) and FEV(1)/FVC (n=80). Several genes of potential biological relevance for COPD were revealed. eQTL-SNPs upregulating cystatin C (CST3) and CD22 were associated with worse lung function. Signalling pathways enriched with causal genes included xenobiotic metabolism, apoptosis, protease-antiprotease and oxidant-antioxidant balance. By using integrative genomics and analysing the relationships of COPD phenotypes with SNPs and gene expression in lung tissue, we identified CST3 and CD22 as potential causal genes for airflow obstruction. This study also augmented the understanding of previously described COPD pathways. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Expression of CD44 and CD29 by PEComa cells suggests their possible origin of mesenchymal stem cells

    PubMed Central

    Liu, Ruixue; Jia, Wei; Zou, Hong; Wang, Xinhua; Ren, Yan; Zhao, Jin; Wang, Lianghai; Li, Man; Qi, Yan; Shen, Yaoyuan; Liang, Weihua; Jiang, Jinfang; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Background: Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell (PEC) co-expresses melanocytic and muscle markers. Since no normal counterpart to the PEC has ever been identified in any normal tissue, the cell origin of these tumors is still uncertain. Although, several hypotheses have recently been advanced to explain the histogenesis of PEComa, it remains unclear. Methods: The aim of this study was to discuss whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of PEComa. For this purpose, we detected the immunoexpression of 5 kinds of stem cell markers on PEComas, including CD29, CD44, CD133, ALDH1, and nestin. In addition to observed histopathologic morphology, we also performed PEComa relevant clinical diagnostic markers (HMB-45, SMA, melan-A, Desmin, Ki-67, S-100 and TFE3) to identify whether they belonged to PEComas. Results: Our study included 13 PEComa samples, and we obtained positive immunoexpression results as follows: CD29 (13/13), CD44 (8/13), ALDH1 (10/13), nestin (1/13), and CD133 (0/13). Conclusions: Since CD44 and CD29 are surface proteins associated with MSCs, these results suggest that PEComa might arise from MSCs. However, whether MSCs are the origin of PEComa needs to be further explored in the future. PMID:26722497

  5. Hematopoietic progenitors express neural genes

    PubMed Central

    Goolsby, James; Marty, Marie C.; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S.; Dhib-Jalbut, Suhayl; Bever, Christopher T.; Pessac, Bernard; Trisler, David

    2003-01-01

    Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2′,3′ cyclic nucleotide 3′-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211

  6. Exploring the clonal evolution of CD133/aldehyde-dehydrogenase-1 (ALDH1)-positive cancer stem-like cells from primary to recurrent high-grade serous ovarian cancer (HGSOC). A study of the Ovarian Cancer Therapy-Innovative Models Prolong Survival (OCTIPS) Consortium.

    PubMed

    Ruscito, Ilary; Cacsire Castillo-Tong, Dan; Vergote, Ignace; Ignat, Iulia; Stanske, Mandy; Vanderstichele, Adriaan; Ganapathi, Ram N; Glajzer, Jacek; Kulbe, Hagen; Trillsch, Fabian; Mustea, Alexander; Kreuzinger, Caroline; Benedetti Panici, Pierluigi; Gourley, Charlie; Gabra, Hani; Kessler, Mirjana; Sehouli, Jalid; Darb-Esfahani, Silvia; Braicu, Elena Ioana

    2017-07-01

    High-grade serous ovarian cancer (HGSOC) causes 80% of all ovarian cancer (OC) deaths. In this setting, the role of cancer stem-like cells (CSCs) is still unclear. In particular, the evolution of CSC biomarkers from primary (pOC) to recurrent (rOC) HGSOCs is unknown. Aim of this study was to investigate changes in CD133 and aldehyde dehydrogenase-1 (ALDH1) CSC biomarker expression in pOC and rOC HGSOCs. Two-hundred and twenty-four pOC and rOC intrapatient paired tissue samples derived from 112 HGSOC patients were evaluated for CD133 and ALDH1 expression using immunohistochemistry (IHC); pOCs and rOCs were compared for CD133 and/or ALDH1 levels. Expression profiles were also correlated with patients' clinicopathological and survival data. Some 49.1% of the patient population (55/112) and 37.5% (42/112) pOCs were CD133+ and ALDH1+ respectively. CD133+ and ALDH1+ samples were detected in 33.9% (38/112) and 36.6% (41/112) rOCs. CD133/ALDH1 coexpression was observed in 23.2% (26/112) and 15.2% (17/112) of pOCs and rOCs respectively. Pairwise analysis showed a significant shift of CD133 staining from higher (pOCs) to lower expression levels (rOCs) (p < 0.0001). Furthermore, all CD133 + pOC patients were International Federation of Gynaecology and Obstetrics (FIGO)-stage III/IV (p < 0.0001) and had significantly worse progression-free interval (PFI) (p = 0.04) and overall survival (OS) (p = 0.02). On multivariate analysis, CD133/ALDH1 coexpression in pOCs was identified as independent prognostic factor for PFI (HR: 1.64; 95% CI: 1.03-2.60; p = 0.036) and OS (HR: 1.71; 95% CI: 1.01-2.88; p = 0.045). Analysis on 52 pts patients with known somatic BRCA status revealed that BRCA mutations did not influence CSC biomarker expression. The study showed that CD133/ALDH1 expression impacts HGSOC patients' survival and first suggests that CSCs might undergo phenotypic change during the disease course similarly to non stem-like cancer cells, providing also a first

  7. Enhancement of expression of survivin promoter-driven CD/TK double suicide genes by the nuclear matrix attachment region in transgenic gastric cancer cells.

    PubMed

    Niu, Ying; Li, Jian-Sheng; Luo, Xian-Run

    2014-01-25

    This work aimed to study a novel transgenic expression system of the CD/TK double suicide genes enhanced by the nuclear matrix attachment region (MAR) for gene therapy. The recombinant vector pMS-CD/TK containing the MAR-survivin promoter-CD/TK cassette was developed and transfected into human gastric cancer SGC-7901 cells. Expression of the CD/TK genes was detected by quantitative real-time PCR (qPCR) and Western blot. Cell viability and apoptosis were measured using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry. When the MAR fragment was inserted into the upstream of the survivin promoter, the qPCR result showed that the expression of the CD/TK genes significantly increased 7.7-fold in the transgenic SGC-7901 cells with plasmid pMS-CD/TK compared with that without MAR. MTT and flow cytometry analyses indicated that treatment with the prodrugs (5-FC+GCV) significantly decreased the cellular survival rate and enhanced the cellular apoptosis in the SGC-7901 cells. The expression of the CD/TK double suicide genes driven by the survivin promoter can be enhanced by the MAR fragment in human gastric cancer cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Autocrine interleukin-23 promotes self-renewal of CD133+ ovarian cancer stem-like cells.

    PubMed

    Wang, Dan; Xiang, Tong; Zhao, Zhongquan; Lin, Kailong; Yin, Pin; Jiang, Lupin; Liang, Zhiqing; Zhu, Bo

    2016-11-15

    Cancer stem cells (CSCs) are a group of cells which possess the ability of self-renewing and unlimited proliferation. And these CSCs are thought to be the cause of metastasis, recurrence and resistance. Recent study has found that pro-inflammatory cytokine and chemotactic factor mediate the self-renewing and differentiation of most of CSCs. Thus we speculate that ovarian cancer stem cells (OCSCs) can also maintain the ability of self-renewing and differentiation by releasing inflammatory factor. This report we discuss the biological characteristics and the specific molecular mechanism mediated by interleukin-23 (IL-23) and its receptor on the self-renewing of OCSCs. We found that OCSCs had high expression of IL-23 and IL-23R. IL-23 could promote the self-renewal ability of OCSCs and played a very important role to maintain the stable expression of stem cell markers in vitro. Moreover, we verified that IL-23 could maintain the potential tumorigenic of OCSCs in vivo and mediate the self-renewal ability and the formation of tumor in OCSCs by activating the signal pathways of STAT3 and NF-κB. In addition, human low differentiation tissues showed overexpression of IL-23. And IL-23 positively correlated to the expression level of CD133, Nanog and Oct4. In conclusion, Our discoveries demonstrate that autocrine IL-23 contribute to ovarian cancer malignancy through promoting the self-renewal of CD133+ ovarian cancer stem-like cells, and this suggests that IL-23 and its signaling pathway might serve as therapeutic targets for the treatment of ovarian cancer.

  9. Identification of three molecular and functional subtypes in canine hemangiosarcoma through gene expression profiling and progenitor cell characterization.

    PubMed

    Gorden, Brandi H; Kim, Jong-Hyuk; Sarver, Aaron L; Frantz, Aric M; Breen, Matthew; Lindblad-Toh, Kerstin; O'Brien, Timothy D; Sharkey, Leslie C; Modiano, Jaime F; Dickerson, Erin B

    2014-04-01

    Canine hemangiosarcomas have been ascribed to an endothelial origin based on histologic appearance; however, recent findings suggest that these tumors may arise instead from hematopoietic progenitor cells. To clarify this ontogenetic dilemma, we used genome-wide expression profiling of primary hemangiosarcomas and identified three distinct tumor subtypes associated with angiogenesis (group 1), inflammation (group 2), and adipogenesis (group 3). Based on these findings, we hypothesized that a common progenitor may differentiate into the three tumor subtypes observed in our gene profiling experiment. To investigate this possibility, we cultured hemangiosarcoma cell lines under normal and sphere-forming culture conditions to enrich for tumor cell progenitors. Cells from sphere-forming cultures displayed a robust self-renewal capacity and exhibited genotypic, phenotypic, and functional properties consistent with each of the three molecular subtypes seen in primary tumors, including expression of endothelial progenitor cell (CD133 and CD34) and endothelial cell (CD105, CD146, and αvβ3 integrin) markers, expression of early hematopoietic (CD133, CD117, and CD34) and myeloid (CD115 and CD14) differentiation markers in parallel with increased phagocytic capacity, and acquisition of adipogenic potential. Collectively, these results suggest that canine hemangiosarcomas arise from multipotent progenitors that differentiate into distinct subtypes. Improved understanding of the mechanisms that determine the molecular and phenotypic differentiation of tumor cells in vivo could change paradigms regarding the origin and progression of endothelial sarcomas. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor

  11. Functional significance of CD105-positive cells in papillary renal cell carcinoma.

    PubMed

    Matak, Damian; Brodaczewska, Klaudia K; Szczylik, Cezary; Koch, Irena; Myszczyszyn, Adam; Lipiec, Monika; Lewicki, Slawomir; Szymanski, Lukasz; Zdanowski, Robert; Czarnecka, Anna M

    2017-01-05

    CD105 was postulated as a renal cell carcinoma (RCC) stem cell marker, and CD133 as a putative RCC progenitor. Hypoxia, a natural microenvironment that prevails in tumors, was also incorporated into the study, especially in terms of the promotion of hypothetical stem-like cell properties. Within this study, we verify the existence of CD105+ and CD133+ populations in selected papillary subtype RCC (pRCC) cell lines. Both populations were analyzed for correlation with stem-like cell properties, such as stemness gene expression, and sphere and colony formation. For the preliminary analysis, several RCC cell lines were chosen (786-O, SMKT-R2, Caki-2, 796-P, ACHN, RCC6) and the control was human kidney cancer stem cells (HKCSC) and renal cells of embryonic origin (ASE-5063). Four cell lines were chosen for further investigation: Caki-2 (one of the highest numbers of CD105+ cells; primary origin), ACHN (a low number of CD105+ cells; metastatic origin), HKCSC (putative positive control), and ASE-5063 (additional control). In 769-P and RCC6, we could not detect a CD105+ population. Hypoxia variously affects pRCC cell growth, and mainly diminishes the stem-like properties of cells. Furthermore, we could not observe the correlation of CD105 and/or CD133 expression with the enhancement of stem-like properties. Based on this analysis, CD105/CD133 cannot be validated as cancer stem cell markers of pRCC cell lines.

  12. Production of Multiple Transgenic Yucatan Miniature Pigs Expressing Human Complement Regulatory Factors, Human CD55, CD59, and H-Transferase Genes

    PubMed Central

    Jang, Gun-Hyuk; Jeong, Yeun-Ik; Hwang, In-Sung; Jeong, Yeon-woo; Kim, Yu-Kyung; Shin, Taeyoung; Kim, Nam-Hyung; Hyun, Sang-Hwan; Jeung, Eui-Bae; Hwang, Woo-Suk

    2013-01-01

    The present study was conducted to generate transgenic pigs coexpressing human CD55, CD59, and H-transferase (HT) using an IRES-mediated polycistronic vector. The study focused on hyperacute rejection (HAR) when considering clinical xenotransplantation as an alternative source for human organ transplants. In total, 35 transgenic cloned piglets were produced by somatic cell nuclear transfer (SCNT) and were confirmed for genomic integration of the transgenes from umbilical cord samples by PCR analysis. Eighteen swine umbilical vein endothelial cells (SUVEC) were isolated from umbilical cord veins freshly obtained from the piglets. We observed a higher expression of transgenes in the transgenic SUVEC (Tg SUVEC) compared with the human umbilical vein endothelial cells (HUVEC). Among these genes, HT and hCD59 were expressed at a higher level in the tested Tg organs compared with non-Tg control organs, but there was no difference in hCD55 expression between them. The transgenes in various organs of the Tg clones revealed organ-specific and spatial expression patterns. Using from 0 to 50% human serum solutions, we performed human complement-mediated cytolysis assays. The results showed that, overall, the Tg SUVEC tested had greater survival rates than did the non-Tg SUVEC, and the Tg SUVEC with higher HT expression levels tended to have more down-regulated α-Gal epitope expression, resulting in greater protection against cytotoxicity. By contrast, several Tg SUVEC with low CD55 expression exhibited a decreased resistance response to cytolysis. These results indicated that the levels of HT expression were inversely correlated with the levels of α-Gal epitope expression and that the combined expression of hCD55, hCD59, and HT proteins in SUVECs markedly enhances a protective response to human serum-mediated cytolysis. Taken together, these results suggest that combining a polycistronic vector system with SCNT methods provides a fast and efficient alternative for the

  13. Production and first-in-man use of T cells engineered to express a HSVTK-CD34 sort-suicide gene.

    PubMed

    Zhan, Hong; Gilmour, Kimberly; Chan, Lucas; Farzaneh, Farzin; McNicol, Anne Marie; Xu, Jin-Hua; Adams, Stuart; Fehse, Boris; Veys, Paul; Thrasher, Adrian; Gaspar, Hubert; Qasim, Waseem

    2013-01-01

    Suicide gene modified donor T cells can improve immune reconstitution after allogeneic haematopoietic stem cell transplantation (SCT), but can be eliminated in the event of graft versus host disease (GVHD) through the administration of prodrug. Here we report the production and first-in-man use of mismatched donor T cells modified with a gamma-retroviral vector expressing a herpes simplex thymidine kinase (HSVTK):truncated CD34 (tCD34) suicide gene/magnetic selection marker protein. A stable packaging cell line was established to produce clinical grade vector pseudotyped with the Gibbon Ape Leukaemia Virus (GALV). T cells were transduced in a closed bag system following activation with anti-CD3/CD28 beads, and enriched on the basis of CD34 expression. Engineered cells were administered in two escalating doses to three children receiving T-depleted, CD34 stem cell selected, mismatched allogeneic grafts. All patients had pre-existing viral infections and received chemotherapy conditioning without serotherapy. In all three subjects cell therapy was tolerated without acute toxicity or the development of acute GVHD. Circulating gene modified T cells were detectable by flow cytometry and by molecular tracking in all three subjects. There was resolution of virus infections, concordant with detectable antigen-specific T cell responses and gene modified cells persisted for over 12 months. These findings highlight the suitability of tCD34 as a GMP compliant selection marker and demonstrate the feasibility, safety and immunological potential of HSVTK-tCD34 suicide gene modified donor T cells. ClinicalTrials.gov NCT01204502

  14. Isolation and characteristics of CD133‑/A2B5+ and CD133‑/A2B5‑ cells from the SHG139s cell line.

    PubMed

    Han, Yong; Wang, Hangzhou; Huang, Yulun; Cheng, Zhe; Sun, Ting; Chen, Guilin; Xie, Xueshun; Zhou, Youxin; Du, Ziwei

    2015-12-01

    In glioma tissues, there are small cell populations with the capability of sustaining tumor formation. These cells are referred to as glioma stem cells (GSCs). However, the presence of subpopulations of GSCs, and the differences between each subpopulation remain to be fully elucidated. In the present study, CD133‑/A2B5‑ and CD133‑/A2B5+ cells from the SHG139 GSC cell line (SHG139s) were isolated using magnetic‑activated cell sorting. Following xenografting into nude mice, the two isolated subpopulations generated tumors. The characteristics of the two subpopulations were investigated extensively, and it was found that the two exhibited cancer stem cell characteristics. These cells expressed stem cell markers, exhibited a neurosphere‑like appearance, and were found to exhibit self‑renewal and multipotency capabilities. Subsequently, the self‑renewal and proliferation abilities of the two subpopulations were compared. It was found that the A2B5‑ cells had a higher proliferative index and a higher self‑renewal ability, compared with the A2B5+ cells. In addition, the A2B5‑ cells exhibited increased angiogenic ability. However, the invasion ability of the A2B5+ cells was higher than that of the A2B5‑ cells. Taken together, the results of the present study suggested that there are different cell subpopulations in GSCs, and each subpopulation has its own properties.

  15. Identification of single gene deletions at 15q13.3: further evidence that CHRNA7 causes the 15q13.3 microdeletion syndrome phenotype.

    PubMed

    Hoppman-Chaney, N; Wain, K; Seger, P R; Superneau, D W; Hodge, J C

    2013-04-01

    The 15q13.3 microdeletion syndrome (OMIM #612001) is characterized by a wide range of phenotypic features, including intellectual disability, seizures, autism, and psychiatric conditions. This deletion is inherited in approximately 75% of cases and has been found in mildly affected and normal parents, consistent with variable expressivity and incomplete penetrance. The common deletion is approximately 2 Mb and contains several genes; however, the gene(s) responsible for the resulting clinical features have not been clearly defined. Recently, four probands were reported with small deletions including only the CHRNA7 gene. These patients showed a wide range of phenotypic features similar to those associated with the larger 15q13.3 microdeletion. To further correlate genotype and phenotype, we queried our database of >15,000 patients tested in the Mayo Clinic Cytogenetics Laboratory from 2008 to 2011 and identified 19 individuals (10 probands and 9 family members) with isolated heterozygous CHRNA7 gene deletions. All but two infants displayed multiple features consistent with 15q13.3 microdeletion syndrome. We also identified the first de novo deletion confined to CHRNA7 as well as the second known case with homozygous deletion of CHRNA7 only. These results provide further evidence implicating CHRNA7 as the gene responsible for the clinical findings associated with 15q13.3 microdeletion. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  16. Microgravity and immunity: Changes in lymphocyte gene expression.

    NASA Astrophysics Data System (ADS)

    Risin, D.; Ward, N. E.; Risin, S. A.; Pellis, N. R.

    Earlier studies had shown that modeled and true microgravity MG cause multiple direct effects on human lymphocytes MG inhibits lymphocyte locomotion suppresses polyclonal and antigen-specific activation affects signal transduction mechanisms as well as activation-induced apoptosis In this study we assessed changes in gene expression associated with lymphocyte exposure to microgravity in an attempt to identify microgravity-sensitive genes MGSG in general and specifically those genes that might be responsible for the functional and structural changes observed earlier Two sets of experiments targeting different goals were conducted In the first set T-lymphocytes from normal donors were activated with anti-CD3 and IL2 and then cultured in 1g static and modeled MG MMG conditions Rotating Wall Vessel bioreactor for 24 hours This setting allowed searching for MGSG by comparison of gene expression patterns in zero and 1 g gravity In the second set - activated T-cells after culturing for 24 hours in 1g and MMG were exposed three hours before harvesting to a secondary activation stimulus PHA thus triggering the apoptotic pathway Total RNA was extracted using the RNeasy isolation kit Qiagen Valencia CA Affymetrix Gene Chips U133A allowing testing for 18 400 human genes were used for microarray analysis The experiments were performed in triplicates with T-cells obtained from different blood donors to minimize the possible input of biological variation in gene expression and discriminate changes that are associated with the

  17. CD133: Enhancement of Bone Healing by Local Transplantation of Peripheral Blood Cells in a Biologically Delayed Rat Osteotomy Model

    PubMed Central

    Preininger, Bernd; Duda, Georg; Gerigk, Hinnerk; Bruckner, Jonas; Ellinghaus, Agnes; Sass, F. Andrea; Perka, Carsten; Schmidt-Bleek, Katharina; Dienelt, Anke

    2013-01-01

    Sufficient angiogenesis is crucial during tissue regeneration and therefore also pivotal in bone defect healing. Recently, peripheral blood derived progenitor cells have been identified to have in addition to their angiogenic potential also osteogenic characteristics, leading to the hypothesis that bone regeneration could be stimulated by local administration of these cells. The aim of this study was to evaluate the angiogenic potential of locally administered progenitor cells to improve bone defect healing. Cells were separated from the peripheral blood of donor animals using the markers CD34 and CD133. Results of the in vitro experiments confirmed high angiogenic potential in the CD133(+) cell group. CD34(+) and CD133(+) cells were tested in an in vivo rat femoral defect model of delayed healing for their positive effect on the healing outcome. An increased callus formation and higher bone mineral density of callus tissue was found after the CD133(+) cell treatment compared to the group treated with CD34(+) cells and the control group without cells. Histological findings confirmed an increase in vessel formation and mineralization at day 42 in the osteotomy gap after CD133(+) cell transplantation. The higher angiogenic potential of CD133(+) cells from the in vitro experients therefore correlates with the in vivo data. This study demonstrates the suitability of angiogenic precursors to further bone healing and gives an indication that peripheral blood is a promising source for progenitor cells circumventing the problems associated with bone marrow extraction. PMID:23457441

  18. Significance of CD133 positive cells in four novel HPV-16 positive cervical cancer-derived cell lines and biopsies of invasive cervical cancer.

    PubMed

    Javed, Shifa; Sharma, Bal Krishan; Sood, Swati; Sharma, Sanjeev; Bagga, Rashmi; Bhattacharyya, Shalmoli; Rayat, Charan Singh; Dhaliwal, Lakhbir; Srinivasan, Radhika

    2018-04-02

    Cervical cancer is a major cause of cancer-related mortality in women in the developing world. Cancer Stem cells (CSC) have been implicated in treatment resistance and metastases development; hence understanding their significance is important. Primary culture from tissue biopsies of invasive cervical cancer and serial passaging was performed for establishing cell lines. Variable Number Tandem Repeat (VNTR) assay was performed for comparison of cell lines with their parental tissue. Tumorsphere and Aldefluor assays enabled isolation of cancer stem cells (CSC); immunofluorescence and flow cytometry were performed for their surface phenotypic expression in cell lines and in 28 tissue samples. Quantitative real-time PCR for stemness and epithelial-mesenchymal transition (EMT) markers, MTT cytotoxicity assay, cell cycle analysis and cell kinetic studies were performed. Four low-passage novel cell lines designated RSBS-9, - 14 and - 23 from squamous cell carcinoma and RSBS-43 from adenocarcinoma of the uterine cervix were established. All were HPV16+. VNTR assay confirmed their uniqueness and derivation from respective parental tissue. CSC isolated from these cell lines showed CD133 + phenotype. In tissue samples of untreated invasive cervical cancer, CD133 + CSCs ranged from 1.3-23% of the total population which increased 2.8-fold in radiation-resistant cases. Comparison of CD133 + with CD133 - bulk population cells revealed increased tumorsphere formation and upregulation of stemness and epithelial-mesenchymal transition (EMT) markers with no significant difference in cisplatin sensitivity. Low-passage cell lines developed would serve as models for studying tumor biology. Cancer Stem Cells in cervical cancer display CD133 + phenotype and are increased in relapsed cases and hence should be targeted for achieving remission.

  19. Metabolic Maturation during Muscle Stem Cell Differentiation Is Achieved by miR-1/133a-Mediated Inhibition of the Dlk1-Dio3 Mega Gene Cluster.

    PubMed

    Wüst, Stas; Dröse, Stefan; Heidler, Juliana; Wittig, Ilka; Klockner, Ina; Franko, Andras; Bonke, Erik; Günther, Stefan; Gärtner, Ulrich; Boettger, Thomas; Braun, Thomas

    2018-05-01

    Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. GENE EXPRESSION PATTERNS OF CD-1 DAY-8 EMBRYO CULTURES EXPOSED TO BROMOCHLORO ACETIC ACID

    EPA Science Inventory

    Gene expression patterns of CD-1 day-8 embryo cultures exposed to bromochloro acetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductiv...

  1. Imaging and Selective Elimination of Glioblastoma Stem Cells with Theranostic Near-Infrared-Labeled CD133-Specific Antibodies.

    PubMed

    Jing, Hua; Weidensteiner, Claudia; Reichardt, Wilfried; Gaedicke, Simone; Zhu, Xuekai; Grosu, Anca-Ligia; Kobayashi, Hisataka; Niedermann, Gabriele

    2016-01-01

    Near-infrared photoimmunotherapy (NIR-PIT), which employs monoclonal antibody (mAb)-phototoxic phthalocyanine dye IR700 conjugates, permits the specific, image-guided and spatiotemporally controlled elimination of tumor cells. Here, we report the highly efficient NIR-PIT of human tumor xenografts initiated from patient-derived cancer stem cells (CSCs). Using glioblastoma stem cells (GBM-SCs) expressing the prototypic CSC marker AC133/CD133, we also demonstrate here for the first time that NIR-PIT is highly effective against brain tumors. The intravenously injected theranostic AC133 mAb conjugate enabled the non-invasive detection of orthotopic gliomas by NIR fluorescence imaging, and reached AC133+ GBM-SCs at the invasive tumor front. AC133-targeted NIR-PIT induced the rapid cell death of AC133+ GBM-SCs and thereby strong shrinkage of both subcutaneous and invasively growing brain tumors. A single round of NIR-PIT extended the overall survival of mice with established orthotopic gliomas by more than a factor of two, even though the harmless NIR light was applied through the intact skull. Humanised versions of this theranostic agent may facilitate intraoperative imaging and histopathological evaluation of tumor borders and enable the highly specific and efficient eradication of CSCs.

  2. Inhibition of Midkine Suppresses Prostate Cancer CD133+ Stem Cell Growth and Migration.

    PubMed

    Erdogan, Suat; Doganlar, Zeynep B; Doganlar, Oguzhan; Turkekul, Kader; Serttas, Riza

    2017-09-01

    Midkine (MDK) is a tumor-promoting factor that is often overexpressed in various human carcinomas, and the role of MDK has not yet been fully investigated in prostate cancer stem cells. Prostate cancer CD133 + stem cells (PCSCs) were isolated from human castration-resistant PC3 cells. PCSCs were treated with different concentrations of MDK inhibitor, iMDK, for 24-72 hours. The IC 50 values were determined by the MTT test. Endogenous MDK messenger RNA expression was knocked down by small interfering RNA. Quantitative reverse transcription polymerase chain reaction, Western blot analyses and image-based cytometry were used to investigate apoptosis and cell cycle progression as well as their underlying molecular mechanisms. Cell migration was evaluated by the wound healing test. iMDK caused dose- and time-dependent inhibition of PCSC survival. Similar growth inhibition was also obtained by small interfering RNA-mediated knockdown of endogenous MDK expression. iMDK was shown to preferentially induce cell cycle arrest at the S and G2/M phases. Suppressed PCSC growth was also accompanied by increases in p53 and the cell cycle inhibitor p21 genes. Combinatorial treatment of iMDK with docetaxel significantly inhibited cell proliferation versus either of the agents used alone. Inhibition of MDK expression strongly suppressed the migration of PCSCs compared to untreated and docetaxel-treated cells. iMDK and the knockdown of MDK decreased p-Akt and significantly upregulated the expression of PI3K/phosphatase/tensin homolog. Our data indicate that MDK plays a crucial role in controlling PCSC proliferation and migration. Therefore, suppression of endogenous expression of MDK would, in combination with traditional chemotherapy drugs, be a potential treatment for PCSCs. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  3. Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells

    PubMed Central

    Podergajs, Neža; Motaln, Helena; Rajčević, Uroš; Verbovšek, Urška; Koršič, Marjan; Obad, Nina; Espedal, Heidi; Vittori, Miloš; Herold-Mende, Christel; Miletic, Hrvoje; Bjerkvig, Rolf; Turnšek, Tamara Lah

    2016-01-01

    The cancer stem cell model suggests that glioblastomas contain a subpopulation of stem-like tumor cells that reproduce themselves to sustain tumor growth. Targeting these cells thus represents a novel treatment strategy and therefore more specific markers that characterize glioblastoma stem cells need to be identified. In the present study, we performed transcriptomic analysis of glioblastoma tissues compared to normal brain tissues revealing sensible up-regulation of CD9 gene. CD9 encodes the transmembrane protein tetraspanin which is involved in tumor cell invasion, apoptosis and resistance to chemotherapy. Using the public REMBRANDT database for brain tumors, we confirmed the prognostic value of CD9, whereby a more than two fold up-regulation correlates with shorter patient survival. We validated CD9 gene and protein expression showing selective up-regulation in glioblastoma stem cells isolated from primary biopsies and in primary organotypic glioblastoma spheroids as well as in U87-MG and U373 glioblastoma cell lines. In contrast, no or low CD9 gene expression was observed in normal human astrocytes, normal brain tissue and neural stem cells. CD9 silencing in three CD133+ glioblastoma cell lines (NCH644, NCH421k and NCH660h) led to decreased cell proliferation, survival, invasion, and self-renewal ability, and altered expression of the stem-cell markers CD133, nestin and SOX2. Moreover, CD9-silenced glioblastoma stem cells showed altered activation patterns of the Akt, MapK and Stat3 signaling transducers. Orthotopic xenotransplantation of CD9-silenced glioblastoma stem cells into nude rats promoted prolonged survival. Therefore, CD9 should be further evaluated as a target for glioblastoma treatment. PMID:26573230

  4. β-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression.

    PubMed

    Xu, Chaoqian; Hu, Yingying; Hou, Liangyu; Ju, Jin; Li, Xiaoguang; Du, Ning; Guan, Xiaoxiang; Liu, Zhenhong; Zhang, Tianze; Qin, Wei; Shen, Nannan; Bilal, Muhammad U; Lu, Yanjie; Zhang, Yong; Shan, Hongli

    2014-10-01

    Oxidative stress is a causal factor and key promoter of a variety of cardiovascular diseases associated with apoptotic cell death by causing deregulation of related genes. Though carvedilol, a β-adrenergic blocker, has been shown to produce cytoprotective effects against cardiomyocyte apoptosis, the mechanisms are not fully understood. The present study was designed to investigate whether the beneficial effects of carvedilol are related to microRNAs which have emerged as critical players in cardiovascular pathophysiology via post-transcriptional regulation of protein-coding genes. In vivo, we demonstrated that carvedilol ameliorated impaired cardiac function of infarct rats and restored miR-133 expression. In vitro, carvedilol protected cardiomyocytes from H2O2 induced apoptosis detected by TUNEL staining and MTT assays, and increased miR-133 expression in cardiomyocytes. Overexpression of miR-133, a recognized anti-apoptotic miRNA, produced similar effects to carvedilol: reduction of reactive oxygen species (ROS) and malondialdehyde (MDA) content and increment of superoxide dismutase (SOD) activity and glutathione peroxidase (GPx) level, so as to protect cardiomyocytes from apoptosis by downregulating caspase-9 and caspase-3 expression in the presence of H2O2. Transfection with AMO-133 (antisense inhibitor oligodeoxyribonucleotides) alone abolished the beneficial effects of carvedilol. Caspase-9-specific inhibitor z-LEHD-fmk, caspase-3-specific inhibitor z-DEVD-fmk, caspase-9 siRNA and caspase-3 siRNA were used to establish caspase-3 as a downstream target of miR-133. In conclusion, our data indicated that carvedilol protected cardiomyocytes by increasing miR-133 expression and suppressing caspase-9 and subsequent apoptotic pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. miR-133 regulates Evi1 expression in AML cells as a potential therapeutic target.

    PubMed

    Yamamoto, Haruna; Lu, Jun; Oba, Shigeyoshi; Kawamata, Toyotaka; Yoshimi, Akihide; Kurosaki, Natsumi; Yokoyama, Kazuaki; Matsushita, Hiromichi; Kurokawa, Mineo; Tojo, Arinobu; Ando, Kiyoshi; Morishita, Kazuhiro; Katagiri, Koko; Kotani, Ai

    2016-01-12

    The Ecotropic viral integration site 1 (Evi1) is a zinc finger transcription factor, which is located on chromosome 3q26, over-expression in some acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Elevated Evi1 expression in AML is associated with unfavorable prognosis. Therefore, Evi1 is one of the strong candidate in molecular target therapy for the leukemia. MicroRNAs (miRNAs) are small non-coding RNAs, vital to many cell functions that negatively regulate gene expression by translation or inducing sequence-specific degradation of target mRNAs. As a novel biologics, miRNAs is a promising therapeutic target due to its low toxicity and low cost. We screened miRNAs which down-regulate Evi1. miR-133 was identified to directly bind to Evi1 to regulate it. miR-133 increases drug sensitivity specifically in Evi1 expressing leukemic cells, but not in Evi1-non-expressing cells The results suggest that miR-133 can be promising therapeutic target for the Evi1 dysregulated poor prognostic leukemia.

  6. Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    PubMed Central

    Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat

    2012-01-01

    Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes

  7. Re-induction of cell differentiation and (131)I uptake in dedifferentiated FTC-133 cell line by TSHR gene transfection.

    PubMed

    Feng, Fang; Wang, Hui; Hou, Shasha; Fu, Hongliang

    2012-11-01

    Radioiodine therapy is commonly used to treat differentiated thyroid cancer (DTC), but a major challenge is dedifferentiation of DTC with the loss of radioiodine uptake. TSHR is a key molecule regulating thyrocyte proliferation and function. This study aimed to test the therapeutic potential of TSHR in dedifferentiated DTC by gene transfection in order to restore cell differentiation and radioiodine uptake. Dedifferentiated FTC-133 (dFTC-133) cells were obtained by monoclonal culture of FTC-133 cell line after (131)I radiation. Recombinant plasmid pcDNA3.1-hTSHR was transfected into dFTC-133 cells by using Lipofectamine 2000 reagent. Immunofluorescence analysis was carried out to confirm TSHR expression and its location. Radioiodine uptake assay was thereafter investigated. mRNAs and proteins of TSHR and other thyroid differentiated markers were detected by real-time PCR and western blot respectively. Among the thyroid specific genes in dFTC-133 cells with stable low radioiodine uptake, TSHR was down-regulated most significantly compared with FTC-133. Then, after TSHR gene transfection, augmented expression of TSHR was observed in dFTC-133 cell surface and cytoplasm by immunofluorescence analysis. It was found that (125)I uptake was 2.9 times higher (t=28.63, P<.01) in cells with TSHR transfection than control. The mRNAs of TSHR, NIS, TPO and Tg were also significantly increased by 1.7 times (t=13.8, P<.05), 4 times (t=28.52, P<.05), 1.5 times (t=14.43, P<.05) and 2.2 times (t=19.83, P<.05) respectively compared with control group. Decreased TSHR expression correlated with FTC-133 ongoing dedifferentiation. TSHR transfection contributed to the re-differentiation of dedifferentiated thyroid follicular carcinoma cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease.

    PubMed

    Hamblin, Terry J; Orchard, Jenny A; Ibbotson, Rachel E; Davis, Zadie; Thomas, Peter W; Stevenson, Freda K; Oscier, David G

    2002-02-01

    Although the presence or absence of somatic mutations in the immunoglobulin variable region (IgV(H)) genes in chronic lymphocytic leukemia (B-CLL) identifies subtypes with very different prognoses, the assay is technically complex and unavailable to most laboratories. CD38 expression has been suggested as a surrogate marker for the 2 subtypes. IgV(H) mutations and CD38 expression in 145 patients with B-CLL with a long follow-up were compared. The 2 assays gave discordant results in 41 patients (28.3%). Multivariate analysis demonstrated that Binet stage, IgV(H) mutations and CD38 were independent prognostic indicators. Median survival time in patients whose cells had unmutated IgV(H) genes and expressed CD38 was 8 years; in those with mutated IgV(H) genes not expressing CD38, it was 26 years. For those with discordant results, median survival time was 15 years. Thus, although CD38 expression does not identify the same 2 subsets as IgV(H) mutations in CLL, it is an independent risk factor that can be used with IgV(H) mutations and clinical stage to select patients with B-CLL with the worst prognoses. Using cryopreserved cells taken at intervals during the course of the disease, however, changes of CD38 expression over time were demonstrated in 10 of 41 patients. Causes of the variation of CD38 expression require further study. Additional prospective studies are required for comparing CD38 expression with other prognostic factors and for taking sequential measurements during the course of the disease.

  9. Tissue-specific expression of human CD4 in transgenic mice.

    PubMed Central

    Gillespie, F P; Doros, L; Vitale, J; Blackwell, C; Gosselin, J; Snyder, B W; Wadsworth, S C

    1993-01-01

    The gene for the human CD4 glycoprotein, which serves as the receptor for human immunodeficiency virus type 1, along with approximately 23 kb of sequence upstream of the translational start site, was cloned. The ability of 5' flanking sequences to direct tissue-specific expression was tested in cell culture and in transgenic mice. A 5' flanking region of 6 kb was able to direct transcription of the CD4 gene in NIH 3T3 cells but did not result in detectable expression in the murine T-cell line EL4 or in four lines of transgenic mice. A larger 5' flanking region of approximately 23 kb directed high-level CD4 transcription in the murine T-cell line EL4 and in three independent lines of transgenic mice. Human CD4 expression in all tissues analyzed was tightly correlated with murine CD4 expression; the highest levels of human CD4 RNA expression were found in the thymus and spleen, with relatively low levels detected in other tissues. Expression of human CD4 protein in peripheral blood mononuclear cells was examined by flow cytometry in these transgenic animals and found to be restricted to the murine CD4+ subset of lymphocytes. Human CD4 protein, detected with an anti-human CD4 monoclonal antibody, was present on the surface of 45 to 50% of the peripheral blood mononuclear cells from all transgenic lines. Images PMID:8474453

  10. The human CD94 gene encodes multiple, expressible transcripts including a new partner of NKG2A/B.

    PubMed

    Lieto, L D; Maasho, K; West, D; Borrego, F; Coligan, J E

    2006-01-01

    CD94/NKG2A is an inhibitory receptor expressed by natural killer (NK) cells and a subset of CD8+ T cells. Ligation of CD94/NKG2A by its ligand HLA-E results in tyrosine phosphorylation of the NKG2A immunoreceptor tyrosine-based inhibitory motifs, and recruitment and activation of the SH2 domain-bearing tyrosine phosphatase-1, which in turn suppresses activation signals. The nkg2a gene encodes two isoforms, NKG2A and NKG2B, with the latter lacking the stem region. We identified three new alternative transcripts of the cd94 gene in addition to the originally described canonical CD94Full. One of the transcripts, termed CD94-T4, lacks the portion that encodes the stem region. CD94-T4 associates with both NKG2A and NKG2B, but preferentially associates with the latter. This is probably due to the absence of a stem region in both CD94-T4 and NKG2B. CD94-T4/NKG2B is capable of binding HLA-E and, when expressed in E6-1 Jurkat T cells, inhibits TCR mediated signals, demonstrating that this heterodimer is functional. Coevolution of stemless isoforms of CD94 and NKG2A that preferentially pair with each other to produce a functional heterodimer indicates that this may be more than a serendipitous event. CD94-T4/NKG2B may contribute to the plasticity of the NK immunological synapse by insuring an adequate inhibitory signal.

  11. Peripheral T-Cell Lymphoma with Aberrant Expression of CD19, CD20, and CD79a: Case Report and Literature Review

    PubMed Central

    Matnani, Rahul G.; Stewart, Rachel L.; Pulliam, Joseph; Jennings, Chester D.; Kesler, Melissa

    2013-01-01

    A case of lymphoma of T-cell derivation with aberrant expression of three B-cell lineage markers (CD19, CD20, and CD79a), which was diagnosed on a left axillary excision, is described. Immunohistochemical studies and flow cytometry analysis demonstrated neoplastic cells expressing CD3, CD19, CD20, and CD79a with absence of CD4, CD8, CD10, CD30, CD34, CD56, CD68, TDT, MPO, PAX-5, and surface immunoglobulin. Gene rearrangement studies performed on paraffin blocks demonstrated monoclonal T-cell receptor gamma chain rearrangement with no evidence of clonal heavy chain rearrangement. The neoplastic cells were negative for Epstein-Barr virus (EBV) or Human Herpes Virus 8 (HHV-8). At the time of diagnosis, the PET scan demonstrated hypermetabolic neoplastic cells involving the left axilla, bilateral internal jugular areas, mediastinum, right hilum, bilateral lungs, and spleen. However, bone marrow biopsy performed for hemolytic anemia revealed normocellular bone marrow with trilineage maturation. The patient had no evidence of immunodeficiency or infection with EBV or HHV-8. This is the first reported case of a mature T-cell lymphoma with aberrant expression of three B-cell lineage markers. The current report also highlights the need for molecular gene rearrangement studies to determine the precise lineage of ambiguous neoplastic clones. PMID:24066244

  12. Identification and characterization of a second CD4-like gene in teleost fish.

    PubMed

    Dijkstra, Johannes Martinus; Somamoto, Tomonori; Moore, Lindsey; Hordvik, Ivar; Ototake, Mitsuru; Fischer, Uwe

    2006-02-01

    In fish, T cell subdivision is not well studied, although CD8 and CD4 homologues have been reported. This study describes a second teleost CD4-like gene, CD4-like 2 (CD4L-2). Two rainbow trout copies of this gene were found, -2a and -2b, encoding molecules sharing 81% aa identity. The 2a/2b duplication may be related to tetraploid ancestry of salmonid fishes. In the Fugu genome CD4L-2 lies head to tail with an earlier reported, very different CD4-like gene [Suetake, H., Araki, K., Suzuki, Y., 2004. Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4. Immunogenetics 56, 368-374], which was designated CD4L-1 in the present article. The flanking genes of the Fugu CD4L-1 and CD4L-2 are reminiscent of the genes surrounding CD4 and LAG-3 in mammals. However, neither synteny nor phylogenetic analysis could decide between CD4 and LAG-3 identity for the fish CD4L genes. CD4L-1 and CD4L-2 share a tyrosine protein kinase p56(lck) binding motif in the cytoplasmic tail with CD4 but not with LAG-3. Trout CD4L-2 expression is highest in the thymus, similar to mammalian and chicken CD4, whereas Fugu CD4L-1 expression was highest in the spleen. However, CD4L-2 encodes only two IG-like domains, whereas CD4L-1, CD4 and LAG-3 encode four. The CD4-like genes 1 and 2 in fish apparently went through an evolution different from that of LAG-3 and CD4 in higher vertebrates.

  13. Pm-miR-133 hosting in one potential lncRNA regulates RhoA expression in pearl oyster Pinctada martensii.

    PubMed

    Zheng, Zhe; Huang, RongLian; Tian, RongRong; Jiao, Yu; Du, Xiaodong

    2016-10-15

    Long non-coding RNAs (LncRNAs) are abundant in the genome of higher forms of eukaryotes and implicated in regulating the diversity of biological processes partly because they host microRNAs (miRNAs), which are repressors of target gene expression. In vertebrates, miR-133 regulates the differentiation and proliferation of cardiac and skeletal muscles. Pinctada martensii miR-133 (pm-miR-133) was identified in our previous research through Solexa deep sequencing. In the present study, the precise sequence of mature pm-miR-133 was validated through miR-RACE. Stem loop qRT-PCR analysis demonstrated that mature pm-miR-133 was constitutively expressed in the adductor muscle, gonad, hepatopancreas, mantle, foot, and gill of P. martensii. Among these tissues, the adductor muscle exhibited the highest pm-miR-133 expression. Target analysis indicated that pm-RhoA was the potential regulatory target of pm-miR-133. Bioinformatics analyses revealed that a potential LncRNA (designated as Lnc133) with a mature pm-miR-133 could generate a hairpin structure that was highly homologous to that of Lottia gigantea. Lnc133 was also highly expressed in the adductor muscle, gill, hepatopancreas, and gonad. Phylogenetic analysis further showed that the miR-133s derived from chordate and achordate were separated into two classes. Therefore, Lnc133 hosting pm-miR-133 could be involved in regulating the cell proliferation of adductor muscles by targeting pm-RhoA. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Characterization of the compact bicistronic microRNA precursor, miR-1/miR-133, expressed specifically in Ciona muscle tissues.

    PubMed

    Kusakabe, Rie; Tani, Saori; Nishitsuji, Koki; Shindo, Miyuki; Okamura, Kohji; Miyamoto, Yuki; Nakai, Kenta; Suzuki, Yutaka; Kusakabe, Takehiro G; Inoue, Kunio

    2013-01-01

    Muscle-specific miR-1/206 and miR-133 families have been suggested to play fundamental roles in skeletal and cardiac myogenesis in vertebrates. To gain insights into the relationships between the divergence of these miRs and muscular tissue types, we investigated the expression patterns of miR-1 and miR-133 in two ascidian Ciona species and compared their genomic structures with those of other chordates. We found that Ciona intestinalis and Ciona savignyi each possess a single copy of the miR-1/miR-133 cluster, which is only 350 nucleotide long. During embryogenesis, Ciona miR-1 and miR-133 are generated as a single continuous primary transcript accumulated in the nuclei of the tail muscle cells, starting at the gastrula stage. In adults, mature miR-133 and miR-1 are differentially expressed in the heart and body wall muscle. Expression of the reporter gene linked to the 850-bp upstream region of the predicted transcription start site confirmed that this region drives the muscle-specific expression of the primary transcript of miR-1/miR-133. In many deuterostome lineages, including that of Ciona, the miR-1/133 cluster is located in the same intron of the mind bomb (mib) gene in reverse orientation. Our results suggest that the origin of genomic organization and muscle-specific regulation of miR-1/133 can be traced back to the ancestor of chordates. Duplication of this miR cluster might have led to the remarkable elaboration in the morphology and function of skeletal muscles in the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming

    PubMed Central

    Marzec, Michal; Halasa, Krzysztof; Liu, Xiaobin; Wang, Hong Y.; Cheng, Mangeng; Baldwin, Donald; Tobias, John W.; Schuster, Stephen J.; Woetmann, Anders; Zhang, Qian; Turner, Suzanne D.; Odum, Niels; Wasik, Mariusz A.

    2013-01-01

    Anaplastic lymphoma kinase (ALK) physiologically expressed only by nervous system cells displays remarkable capacity to transform CD4+ T lymphocytes and other types of non-neural cells. Here we report that activity of nucleophosphmin (NPM)/ALK chimeric protein, the dominant form of ALK expressed in T-cell lymphomas (ALK+TCL), closely resembles cell activation induced by interleukin 2 (IL-2), the key cytokine supporting growth and survival of normal CD4+ T lymphocytes. Direct comparison of gene expression by ALK+TCL cells treated with an ALK inhibitor and IL-2-dependent ALK-TCL cells stimulated with the cytokine revealed a very similar, albeit inverse, gene regulation pattern. Depending on the analysis method, up to 67% of the modulated genes could be defined as modulated in common by NPM/ALK and IL-2. Based on the gene expression patterns, Jak/STAT and IL-2 signaling pathways topped the list of pathways identified as affected by both IL-2 and NPM/ALK. The expression dependence on NPM/ALK and IL-2 of the five selected genes: CD25 (IL-2Rα), Egr-1, Fosl-1, SOCS3, and Irf-4 was confirmed at the protein level. In both ALK+TCL and IL-2-stimulated ALK-TCL cells, CD25, SOCS3, and Irf-4 genes were activated predominantly by the STAT5 and STAT3 transcription factors, while transcription of Egr-1 and Fosl-1 was induced by the MEK-ERK pathway. Finally, we found that Egr-1, a protein not associated previously with either IL-2 or ALK, contributes to the cell proliferation. These findings indicate that NPM/ALK transforms the target CD4+ T lymphocytes, at least in part, by utilizing the pre-existing, IL-2-dependent signaling pathways. PMID:24218456

  16. TCR-independent CD28-mediated gene expression in peripheral blood lymphocytes from donors chronically infected with HIV-1.

    PubMed Central

    Wong, J G; Smithgall, M D; Haffar, O K

    1997-01-01

    Complete activation of peripheral blood T cells requires both T-cell receptor (TCR) stimulation and CD28 costimulation. Signalling pathways associated specifically with CD28 are not well understood, however, because ligation of CD28 in the absence of TCR stimulation does not give rise to cellular responses in normal cells. In peripheral blood lymphocytes (PBL) from donors chronically infected with human immunodeficiency virus-1 (HIV-1), CD28 can induce viral replication through an alternative pathway that does not require TCR ligation. We have exploited this observation to study CD28-mediated signal transduction using reverse transcriptase-mediated polymerase chain reaction (RT-PCR) to amplify viral RNA. Independent ligation of CD28 on donor PBL induced expression of the HIV-1 tat gene but not the interleukin-2 (IL-2) gene. Viral induction did not occur following pretreatment of cells with actinomycin D, suggesting it was mediated through transcriptional activation of the viral long terminal repeat (LTR). tat was induced in the presence of the protein kinase C inhibitor H-7, but was inhibited by cyclosporin A. Our results demonstrate that CD28 is linked directly to specific signalling pathways leading to de novo induction of genes in PBL. Images Figure 1 Figure 2 Figure 3 PMID:9135558

  17. Cancer stem cells CD133 inhibition and cytotoxicity of certain 3-phenylthiazolo[3,2-a]benzimidazoles: design, direct synthesis, crystal study and in vitro biological evaluation.

    PubMed

    Al-Ansary, Ghada H; Eldehna, Wagdy M; Ghabbour, Hazem A; Al-Rashood, Sara T A; Al-Rashood, Khalid A; Eladwy, Radwa A; Al-Dhfyan, Abdullah; Kabil, Maha M; Abdel-Aziz, Hatem A

    2017-12-01

    Cancer stem cells (CSCs) have been objects of intensive study since their identification in 1994. Adopting a structural rigidification approach, a novel series of 3-phenylthiazolo[3,2-a]benzimidazoles 4a-d was designed and synthesised, in an attempt to develop potent anticancer agent that can target the bulk of tumour cells and CSCs. The anti-proliferative activity of the synthesised compounds was evaluated against two cell lines, namely; colon cancer HT-29 and triple negative breast cancer MDA-MB-468 cell lines. Also, their inhibitory activity against the cell surface expression of CD133 was examined. In particular, compound 4b emerged as a promising hit molecule as it manifested good antineoplastic potency against both tested cell lines (IC 50  = 9 and 12 μM, respectively), beside its ability to inhibit the cell surface expression of CD133 by 50% suggesting a promising potential of effectively controlling the tumour by eradicating the tumour bulk and inhibiting the proliferation of the CSCs. Moreover, compounds 4a and 4c showed moderate activity against HT-29 (IC 50  = 21 and 29 μM, respectively) and MDA-MB-468 (IC 50  = 23 and 24 μM, respectively) cell lines, while they inhibited the CD133 expression by 14% and 48%, respectively. Finally, a single crystal X-ray diffraction was recorded for compound 4d.

  18. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes.

    PubMed

    Horie, Takahiro; Ono, Koh; Nishi, Hitoo; Iwanaga, Yoshitaka; Nagao, Kazuya; Kinoshita, Minako; Kuwabara, Yasuhide; Takanabe, Rieko; Hasegawa, Koji; Kita, Toru; Kimura, Takeshi

    2009-11-13

    GLUT4 shows decreased levels in failing human adult hearts. We speculated that GLUT4 expression in cardiac muscle may be fine-tuned by microRNAs. Forced expression of miR-133 decreased GLUT4 expression and reduced insulin-mediated glucose uptake in cardiomyocytes. A computational miRNA target prediction algorithm showed that KLF15 is one of the targets of miR-133. It was confirmed that over-expression of miR-133 reduced the protein level of KLF15, which reduced the level of the downstream target GLUT4. Cardiac myocytes infected with lenti-decoy, in which the 3'UTR with tandem sequences complementary to miR-133 was linked to the luciferase reporter gene, had decreased miR-133 levels and increased levels of GLUT4. The expression levels of KLF15 and GLUT4 were decreased at the left ventricular hypertrophy and congestive heart failure stage in a rat model. The present results indicated that miR-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiomyocytes.

  19. CD133(+)/CD44(+)/Oct4(+)/Nestin(+) stem-like cells isolated from Panc-1 cell line may contribute to multi-resistance and metastasis of pancreatic cancer.

    PubMed

    Wang, Dongqing; Zhu, Haitao; Zhu, Ying; Liu, Yanfang; Shen, Huiling; Yin, Ruigen; Zhang, Zhijian; Su, Zhaoliang

    2013-05-01

    Pancreatic cancer is an aggressive malignant disease. Owing to the lack of early symptoms, accompanied by extensive metastasis and high resistance to chemotherapy, pancreatic adenocarcinoma becomes the fourth leading cause of cancer-related deaths. In this study, we identified a subpopulation of cells isolated from the Panc-1 cell line and named pancreatic cancer stem-like cells. These Panc-1 stem-like cells expressed high levels of CD133/CD44/Oct4/Nestin. Compared to Panc-1 cells, Panc-1 stem-like cells were resistant to gemcitabine and expressed high levels of MDR1; furthermore, Panc-1 stem-like cells have high anti-apoptotic, but weak proliferative potential. These results indicated that Panc-1 stem-like cells, as a novel group, may be a potential major cause of pancreatic cancer multidrug resistance and extensive metastasis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Microgravity and Immunity: Changes in Lymphocyte Gene Expression

    NASA Technical Reports Server (NTRS)

    Risin, D.; Pellis, N. R.; Ward, N. E.; Risin, S. A.

    2006-01-01

    Earlier studies had shown that modeled and true microgravity (MG) cause multiple direct effects on human lymphocytes. MG inhibits lymphocyte locomotion, suppresses polyclonal and antigen-specific activation, affects signal transduction mechanisms, as well as activation-induced apoptosis. In this study we assessed changes in gene expression associated with lymphocyte exposure to microgravity in an attempt to identify microgravity-sensitive genes (MGSG) in general and specifically those genes that might be responsible for the functional and structural changes observed earlier. Two sets of experiments targeting different goals were conducted. In the first set, T-lymphocytes from normal donors were activated with antiCD3 and IL2 and then cultured in 1g (static) and modeled MG (MMG) conditions (Rotating Wall Vessel bioreactor) for 24 hours. This setting allowed searching for MGSG by comparison of gene expression patterns in zero and 1 g gravity. In the second set - activated T-cells after culturing for 24 hours in 1g and MMG were exposed three hours before harvesting to a secondary activation stimulus (PHA) thus triggering the apoptotic pathway. Total RNA was extracted using the RNeasy isolation kit (Qiagen, Valencia, CA). Affymetrix Gene Chips (U133A), allowing testing for 18,400 human genes, were used for microarray analysis. In the first set of experiments MMG exposure resulted in altered expression of 89 genes, 10 of them were up-regulated and 79 down-regulated. In the second set, changes in expression were revealed in 85 genes, 20 were up-regulated and 65 were down-regulated. The analysis revealed that significant numbers of MGS genes are associated with signal transduction and apoptotic pathways. Interestingly, the majority of genes that responded by up- or down-regulation in the alternative sets of experiments were not the same, possibly reflecting different functional states of the examined T-lymphocyte populations. The responder genes (MGSG) might play an

  1. Angiogenesis-related gene expression analysis in celiac disease.

    PubMed

    Castellanos-Rubio, Ainara; Caja, Sergio; Irastorza, Iñaki; Fernandez-Jimenez, Nora; Plaza-Izurieta, Leticia; Vitoria, Juan Carlos; Maki, Markku; Lindfors, Katri; Bilbao, Jose Ramon

    2012-05-01

    Celiac disease (CD) involves disturbance of the small-bowel mucosal vascular network, and transglutaminase autoantibodies (TGA) have been related to angiogenesis disturbance, a complex phenomenon probably also influenced by common genetic variants in angiogenesis-related genes. A set of genes with "angiogenesis" GO term identified in a previous expression microarray experiment (SCG2, STAB1, TGFA, ANG, ERBB2, GNA13, PML, CASP8, ECGF1, JAG1, HIF1A, TNFSF13 and TGM2) was selected for genetic and functional studies. SNPs that showed a trend for association with CD in the first GWAS were genotyped in 555 patients and 541 controls. Gene expression of all genes was quantified in 15 pairs of intestinal biopsies (diagnosis vs. GFD) and in three-dimensional HUVEC and T84 cell cultures incubated with TGA-positive and negative serum. A regulatory SNP in TNFSF13 (rs11552708) is associated with CD (p = 0.01, OR = 0.7). Expression changes in biopsies pointed to TGM2 and PML as up-regulated antiangiogenic genes and to GNA13, TGFA, ERBB2 and SCG2 as down-regulated proangiogenic factors in CD. TGA seem to enhance TGM2 expression in both cell models, but PML expression was induced only in T84 enterocytes while GNA13 and ERBB2 were repressed in HUVEC endothelial cells, with several genes showing discordant effects in each model, highlighting the complexity of gene interactions in the pathogenesis of CD. Finally, cell culture models are useful tools to help dissect complex responses observed in human explants.

  2. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    PubMed Central

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass. PMID:28559903

  3. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway.

    PubMed

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4 , were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses ( Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  4. Viruses within the Flaviviridae Decrease CD4 Expression and Inhibit HIV Replication in Human CD4+ Cells1

    PubMed Central

    Xiang, Jinhua; McLinden, James H.; Rydze, Robert A.; Chang, Qing; Kaufman, Thomas M.; Klinzman, Donna; Stapleton, Jack T.

    2013-01-01

    Viral infections alter host cell homeostasis and this may lead to immune evasion and/or interfere with the replication of other microbes in coinfected hosts. Two flaviviruses are associated with a reduction in HIV replication or improved survival in HIV-infected people (dengue virus (DV) and GB virus type C (GBV-C)). GBV-C infection and expression of the GBV-C nonstructural protein 5A (NS5A) and the DV NS5 protein in CD4+ T cells inhibit HIV replication in vitro. To determine whether the inhibitory effect on HIV replication is conserved among other flaviviruses and to characterize mechanism(s) of HIV inhibition, the NS5 proteins of GBV-C, DV, hepatitis C virus, West Nile virus, and yellow fever virus (YFV; vaccine strain 17D) were expressed in CD4+ T cells. All NS5 proteins inhibited HIV replication. This correlated with decreased steady-state CD4 mRNA levels and reduced cell surface CD4 protein expression. Infection of CD4+ T cells and macrophages with YFV (17D vaccine strain) also inhibited HIV replication and decreased CD4 gene expression. In contrast, mumps virus was not inhibited by the expression of flavivirus NS5 protein or by YFV infection, and mumps infection did not alter CD4 mRNA or protein levels. In summary, CD4 gene expression is decreased by all human flavivirus NS5 proteins studied. CD4 regulation by flaviviruses may interfere with innate and adaptive immunity and contribute to in vitro HIV replication inhibition. Characterization of the mechanisms by which flaviviruses regulate CD4 expression may lead to novel therapeutic strategies for HIV and immunological diseases. PMID:19923460

  5. Peculiar Expression of CD3-Epsilon in Kidney of Ginbuna Crucian Carp.

    PubMed

    Miyazawa, Ryuichiro; Murata, Norifumi; Matsuura, Yuta; Shibasaki, Yasuhiro; Yabu, Takeshi; Nakanishi, Teruyuki

    2018-01-01

    TCR/CD3 complex is composed of the disulfide-linked TCR-αβ heterodimer that recognizes the antigen as a peptide presented by the MHC, and non-covalently paired CD3γε- and δε-chains together with disulfide-linked ζ-chain homodimers. The CD3 chains play key roles in T cell development and T cell activation. In the present study, we found nor or extremely lower expression of CD3ε in head- and trunk-kidney lymphocytes by flow cytometric analysis, while CD3ε was expressed at the normal level in lymphocytes from thymus, spleen, intestine, gill, and peripheral blood. Furthermore, CD4-1 + and CD8α + T cells from kidney express Zap-70, but not CD3ε, while the T cells from other tissues express both Zap-70 and CD3ε, although expression of CD3ε was low. Quantitative analysis of mRNA expression revealed that the expression level of T cell-related genes including tcrb, cd3 ε, zap-70 , and lck in CD4-1 + and CD8α + T cells was not different between kidney and spleen. Western blot analysis showed that CD3ε band was detected in the cell lysates of spleen but not kidney. To be interested, CD3ε-positive cells greatly increased after 24 h in in vitro culture of kidney leukocytes. Furthermore, expression of CD3ε in both transferred kidney and spleen leukocytes was not detected or very low in kidney, while both leukocytes expressed CD3ε at normal level in spleen when kidney and spleen leukocytes were injected into the isogeneic recipient. Lower expression of CD3ε was also found in kidney T lymphocytes of goldfish and carp. These results indicate that kidney lymphocytes express no or lower level of CD3ε protein in the kidney, although the mRNA of the gene was expressed. Here, we discuss this phenomenon from the point of function of kidney as reservoir for T lymphocytes in teleost, which lacks lymph node and bone marrow.

  6. MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs.

    PubMed

    Chen, Shuo; Jiao, Jin-Wen; Sun, Kai-Xuan; Zong, Zhi-Hong; Zhao, Yang

    2015-01-01

    Accumulating studies reveal that aberrant microRNA (miRNA) expression can affect the development of chemotherapy drug resistance by modulating the expression of relevant target proteins. The aim of this study was to investigate the role of miR-133b in the development of drug resistance in ovarian cancer cells. We examined the levels of miR-133b expression in ovarian carcinoma tissues and the human ovarian carcinoma cell lines (A2780, A2780/DDP and A2780/Taxol, respectively). We determined the cell viability of these cell lines treated with cisplatin or paclitaxel in the presence or absence of miR-133b or anti-miR-133b transfection using the MTT assay. Reverse transcription polymerase chain reaction and Western blotting were used to assess the mRNA and protein expression levels of two drug-resistance-related genes: glutathione S-transferase (GST)-π and multidrug resistance protein 1 (MDR1). The dual-luciferase reporter assay was used to detect the promoter activity of GST-π in the presence and absence of miR-133b. The expression of miR-133b was significantly lower in primary resistant ovarian carcinomas than in the chemotherapy-sensitive carcinomas (P<0.05), and the same results were found in primary resistant ovarian cell lines (A2780/Taxol and A2780/DDP) compared to the chemotherapy-sensitive cell line (A2780; P<0.05). Following miR-133b transfection, four cell lines showed increased sensitivity to paclitaxel and cisplatin, while anti-miR-133b transfection reduced cell sensitivity to paclitaxel and cisplatin. Dual-luciferase reporter assay showed that miR-133b interacted with the 3'-untranslated region of GST-π. Compared to controls, the mRNA and protein levels of MDR1 and GST-π were downregulated after miR-133b transfection and upregulated after anti-miR-133b transfection. MicroRNA-133b may reduce ovarian cancer drug resistance by silencing the expression of the drug-resistance-related proteins, GST-π and MDR1. In future, the combination of miR-133b with

  7. Chromosome Rearrangements in Cornelia de Lange Syndrome (CdLS): Report of a der(3)t(3;12)(p25.3;p13.3) in Two Half Sibs With Features of CdLS and Review of Reported CdLS Cases With Chromosome Rearrangements

    PubMed Central

    DeScipio, Cheryl; Kaur, Maninder; Yaeger, Dinah; Innis, Jeffrey W.; Spinner, Nancy B.; Jackson, Laird G.; Krantz, Ian D.

    2016-01-01

    Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited disorder characterized by multisystem involvement, cognitive delay, limb defects, and characteristic facial features. Recently, mutations in NIPBL have been found in ~50% of individuals with CdLS. Numerous chromosomal rearrangements have been reported in individuals with CdLS. These rearrangements may be causative of a CdLS phenotype, result in a phenocopy, or be unrelated to the observed phenotype. We describe two half siblings with a der(3)t(3;12)(p25.3;p13.3) chromosomal rearrangement, clinical features resembling CdLS, and phenotypic overlap with the del(3)(p25) phenotype. Region-specific BAC probes were used to fine-map the breakpoint region by fluorescence in situ hybridization (FISH). FISH analysis places the chromosome 3 breakpoint distal to RP11-115G3 on 3p25.3; the chromosome 12 breakpoint is distal to BAC RP11-88D16 on 12p13.3. A review of published cases of terminal 3p deletions and terminal 12p duplications indicates that the findings in these siblings are consistent with the del(3)(p25) phenotype. Given the phenotypic overlap with CdLS, we have reviewed the reported cases of chromosomal rearrangements involved in CdLS to better elucidate other potential loci that could harbor additional CdLS genes. Additionally, to identify chromosome rearrangements, genome-wide array comparative genomic hybridization (CGH) was performed on eight individuals with typical CdLS and without identifiable deletion or mutation of NIPBL. No pathologic rearrangements were identified. PMID:16075459

  8. Genes Related to Antiviral Activity, Cell Migration, and Lysis Are Differentially Expressed in CD4+ T Cells in Human T Cell Leukemia Virus Type 1-Associated Myelopathy/Tropical Spastic Paraparesis Patients

    PubMed Central

    Pinto, Mariana Tomazini; Malta, Tathiane Maistro; Rodrigues, Evandra Strazza; Pinheiro, Daniel Guariz; Panepucci, Rodrigo Alexandre; Malmegrim de Farias, Kelen Cristina Ribeiro; Sousa, Alessandra De Paula; Takayanagui, Osvaldo Massaiti; Tanaka, Yuetsu; Covas, Dimas Tadeu

    2014-01-01

    Abstract Human T cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T cells and these cells play a central role in HTLV-1 infection. In this study, we investigated the global gene expression profile of circulating CD4+ T cells from the distinct clinical status of HTLV-1-infected individuals in regard to TAX expression levels. CD4+ T cells were isolated from asymptomatic HTLV-1 carrier (HAC) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients in order to identify genes involved in HAM/TSP development using a microarray technique. Hierarchical clustering analysis showed that healthy control (CT) and HTLV-1-infected samples clustered separately. We also observed that the HAC and HAM/TSP groups clustered separately regardless of TAX expression. The gene expression profile of CD4+ T cells was compared among the CT, HAC, and HAM/TSP groups. The paxillin (Pxn), chemokine (C-X-C motif ) receptor 4 (Cxcr4), interleukin 27 (IL27), and granzyme A (Gzma) genes were differentially expressed between the HAC and HAM/TSP groups, regardless of TAX expression. The perforin 1 (Prf1) and forkhead box P3 (Foxp3) genes were increased in the HAM/TSP group and presented a positive correlation to the expression of TAX and the proviral load (PVL). The frequency of CD4+FOXP3+ regulatory T cells (Treg) was higher in HTLV-1-infected individuals. Foxp3 gene expression was positively correlated with cell lysis-related genes (Gzma, Gzmb, and Prf1). These findings suggest that CD4+ T cell activity is distinct between the HAC and HAM/TSP groups. PMID:24041428

  9. High Cell Surface Expression of CD4 Allows Distinction of CD4+CD25+ Antigen-specific Effector T Cells from CD4+CD25+ Regulatory T Cells in Murine Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.

    2008-01-01

    Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698

  10. CD30 Receptor-Targeted Lentiviral Vectors for Human Induced Pluripotent Stem Cell-Specific Gene Modification.

    PubMed

    Friedel, Thorsten; Jung-Klawitter, Sabine; Sebe, Attila; Schenk, Franziska; Modlich, Ute; Ivics, Zoltán; Schumann, Gerald G; Buchholz, Christian J; Schneider, Irene C

    2016-05-01

    Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4(high) cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation, efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved, while retaining their pluripotency. When added during the reprogramming process, CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus, CD30-LV may serve as novel tool for the selective gene transfer into PSCs with broad applications in basic and therapeutic research.

  11. CD146 Expression Influences Periapical Cyst Mesenchymal Stem Cell Properties.

    PubMed

    Paduano, Francesco; Marrelli, Massimo; Palmieri, Francesca; Tatullo, Marco

    2016-10-01

    Recent studies have identified a new human dental derived progenitor cell population with multi-lineage differentiation potential referred to as human periapical cyst mesenchymal stem cells (hPCy-MSCs). In the present study, we compared two subpopulations of hPCy-MSCs characterised by the low or high expression of CD146 to establish whether this expression can regulate their stem cell properties. Using flow cytometry, we evaluated the stem cell marker profile of hPCy-MSCs during passaging. Furthermore, CD146 Low and CD146 High cells were sorted by magnetic beads and subsequently both cell populations were evaluated for differences in their proliferation, self-renewal, stem cell surface markers, stemness genes expression and osteogenic differentiation potential.We found that hPCy-MSCs possessed a stable expression of several mesenchymal stem cell surface markers, whereas CD146 expression declined during passaging.In addition, sorted CD146 Low cells proliferated significantly faster, displayed higher colony-forming unit-fibroblast capacity and showed higher expression of Klf4 when compared to the CD146 High subset. Significantly, the osteogenic potential of hPCy-MSCs was greater in the CD146 Low than in CD146 High population. These results demonstrate that CD146 is spontaneously downregulated with passaging at both mRNA and protein levels and that the high expression of CD146 reduces the proliferative, self-renewal and osteogenic differentiation potential of hPCy-MSCs. In conclusion, our study demonstrates that changes in the expression of CD146 can influence the stem cell properties of hPCy-MSCs.

  12. Rapid and efficient nonviral gene delivery of CD154 to primary chronic lymphocytic leukemia cells.

    PubMed

    Li, L H; Biagi, E; Allen, C; Shivakumar, R; Weiss, J M; Feller, S; Yvon, E; Fratantoni, J C; Liu, L N

    2006-02-01

    Interactions between CD40 and CD40 ligand (CD154) are essential in the regulation of both humoral and cellular immune responses. Forced expression of human CD154 in B chronic lymphocytic leukemia (B-CLL) cells can upregulate costimulatory and adhesion molecules and restore antigen-presenting capacity. Unfortunately, B-CLL cells are resistant to direct gene manipulation with most currently available gene transfer systems. In this report, we describe the use of a nonviral, clinical-grade, electroporation-based gene delivery system and a standard plasmid carrying CD154 cDNA, which achieved efficient (64+/-15%) and rapid (within 3 h) transfection of primary B-CLL cells. Consistent results were obtained from multiple human donors. Transfection of CD154 was functional in that it led to upregulated expression of CD80, CD86, ICAM-I and MHC class II (HLA-DR) on the B-CLL cells and induction of allogeneic immune responses in MLR assays. Furthermore, sustained transgene expression was demonstrated in long-term cryopreserved transfected cells. This simple and rapid gene delivery technology has been validated under the current Good Manufacturing Practice conditions, and multiple doses of CD154-expressing cells were prepared for CLL patients from one DNA transfection. Vaccination strategies using autologous tumor cells manipulated ex vivo for patients with B-CLL and perhaps with other hematopoietic malignancies could be practically implemented using this rapid and efficient nonviral gene delivery system.

  13. Intraportal Infusion of Bone Marrow Mononuclear or CD133+ Cells in Patients With Decompensated Cirrhosis: A Double-Blind Randomized Controlled Trial

    PubMed Central

    Mohamadnejad, Mehdi; Vosough, Massoud; Moossavi, Shirin; Nikfam, Sepideh; Mardpour, Soura; Akhlaghpoor, Shahram; Ashrafi, Mandana; Azimian, Vajiheh; Jarughi, Neda; Hosseini, Seyedeh-Esmat; Moeininia, Fatemeh; Bagheri, Mohamad; Sharafkhah, Maryam; Aghdami, Nasser

    2016-01-01

    The present study assessed the effects of intraportal infusions of autologous bone marrow-derived mononuclear cells (MNCs) and/or CD133+ cells on liver function in patients with decompensated cirrhosis. We randomly assigned 27 eligible patients to a placebo, MNCs, and/or CD133+ cells. Cell infusions were performed at baseline and month 3. We considered the absolute changes in the Model for End-Stage Liver Disease (MELD) scores at months 3 and 6 after infusion as the primary outcome. The participants and those who assessed the outcomes were unaware of the treatment intervention assignments. After 6 months, 9 patients were excluded because of liver transplantation (n = 3), hepatocellular carcinoma (n = 1), loss to follow-up (n = 3), and death (n = 2). The final analysis included 4 patients from the CD133+ group, 8 from the MNC group, and 6 from the placebo group. No improvement was seen in the MELD score at month 6 using either CD133+ cells or MNC infusions compared with placebo. However, at month 3 after infusion, a trend was seen toward a higher mean absolute change in the MELD score in patients who had received CD133+ cells compared with placebo (−2.00 ± 1.87 vs. −0.13 ± 1.46; p = .08). No significant adverse events occurred in the present study. A transient improvement in the MELD score was observed in subjects treated with CD133+ cells but not in the MNC or placebo group. Although the study was not powered to make definitive conclusions, the data justify further study of CD133+ therapy in cirrhotic patients. Significance Cell therapy is a new approach in liver disease. Several clinical experiments have been reported on the safety of bone marrow-derived stem cells to treat liver disorders. However, the effectiveness of these approaches in the long-term follow-ups of patients initiated controversial discussions among the scientific community. A double-blind randomized controlled trial was designed to address this concern scientifically. A transient

  14. Evolution of the CD4 family: teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-3

    USGS Publications Warehouse

    Laing, K.J.; Zou, J.J.; Purcell, M.K.; Phillips, R.; Secombes, C.J.; Hansen, J.D.

    2006-01-01

    The T cell coreceptor CD4 is a transmembrane glycoprotein belonging to the Ig superfamily and is essential for cell-mediated immunity. Two different genes were identified in rainbow trout that resemble mammalian CD4. One (trout CD4) encodes four extracellular Ig domains reminiscent off mammalian CD4, whereas the other (CD4REL) codes for two Ig domains. Structural motifs within the amino acid sequences suggest that the two Ig domains of CD4REL duplicated to generate the four-domain molecule of CD4 and the related gene, lymphocyte activation gene-3. Here we present evidence that both of these molecules in trout are homologous to mammalian CD4 and that teleosts encode an additional CD4 family member, lymphocyte activation gene-3, which is a marker for activated T cells. The syntenic relationships of similar genes in other teleost and non-fish genomes provide evidence for the likely evolution of CD4-related molecules in vertebrates, with CD4REL likely representing the primordial form in fish. Expression of both CD4 genes is highest in the thymus and spleen, and mRNA expression of these genes is limited to surface IgM- lymphocytes, consistent with a role for T cell functionality. Finally, the intracellular regions of both CD4 and CD4REL possess the canonical CXC motif involved in the interaction off CD4 with p56LCK, implying that similar mechanisms for CD4 + T cell activation are present in all vertebrates. Our results therefore raise new questions about T cell development and functionality in lower vertebrates that cannot be answered by current mammalian models and, thus, is of fundamental importance for understanding the evolution of cell-mediated immunity in gnathosomes. Copyright ?? 2006 by The American Association of Immunologists, Inc.

  15. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    PubMed

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (P<0.0001). MRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (P<0.0001). However, no difference was observed in the expression of Arp2, Arp3 or other WASPs. A neutralizing anti-MRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (P<0.0001), and reversed the morphological effects of MRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  16. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Li, E-mail: lin.796@osu.edu; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030; Fuchs, James

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existencemore » of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced

  17. Single Insulin-Specific CD8+ T Cells Show Characteristic Gene Expression Profiles in Human Type 1 Diabetes

    PubMed Central

    Luce, Sandrine; Lemonnier, François; Briand, Jean-Paul; Coste, Joel; Lahlou, Najiba; Muller, Sylviane; Larger, Etienne; Rocha, Benedita; Mallone, Roberto; Boitard, Christian

    2011-01-01

    OBJECTIVE Both the early steps and the high recurrence of autoimmunity once the disease is established are unexplained in human type 1 diabetes. Because CD8+ T cells are central and insulin is a key autoantigen in the disease process, our objective was to characterize HLA class I–restricted autoreactive CD8+ T cells specific for preproinsulin (PPI) in recent-onset and long-standing type 1 diabetic patients and healthy control subjects. RESEARCH DESIGN AND METHODS We used HLA-A*02:01 tetramers complexed to PPI peptides to enumerate circulating PPI-specific CD8+ T cells in patients and characterize them using membrane markers and single-cell PCR. RESULTS Most autoreactive CD8+ T cells detected in recent-onset type 1 diabetic patients are specific for leader sequence peptides, notably PPI6–14, whereas CD8+ T cells in long-standing patients recognize the B-chain peptide PPI33–42 (B9–18). Both CD8+ T-cell specificities are predominantly naïve, central, and effector memory cells, and their gene expression profile differs from cytomegalovirus-specific CD8+ T cells. PPI6–14–specific CD8+ T cells detected in one healthy control displayed Il-10 mRNA expression, which was not observed in diabetic patients. CONCLUSIONS PPI-specific CD8+ T cells in type 1 diabetic patients include central memory and target different epitopes in new-onset versus long-standing disease. Our data support the hypothesis that insulin therapy may contribute to the expansion of autoreactive CD8+ T cells in the long term. PMID:21998398

  18. Lipopolysaccharide-Elicited TSLPR Expression Enriches a Functionally Discrete Subset of Human CD14+ CD1c+ Monocytes.

    PubMed

    Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Vastolo, Viviana; Petrosino, Giuseppe; Visconte, Feliciano; Raia, Maddalena; Scalia, Giulia; Loffredo, Stefania; Varricchi, Gilda; Galdiero, Maria Rosaria; Granata, Francescopaolo; Del Vecchio, Luigi; Portella, Giuseppe; Marone, Gianni

    2017-05-01

    Thymic stromal lymphopoietin (TSLP) is a cytokine produced mainly by epithelial cells in response to inflammatory or microbial stimuli and binds to the TSLP receptor (TSLPR) complex, a heterodimer composed of TSLPR and IL-7 receptor α (CD127). TSLP activates multiple immune cell subsets expressing the TSLPR complex and plays a role in several models of disease. Although human monocytes express TSLPR and CD127 mRNAs in response to the TLR4 agonist LPS, their responsiveness to TSLP is poorly defined. We demonstrate that TSLP enhances human CD14 + monocyte CCL17 production in response to LPS and IL-4. Surprisingly, only a subset of CD14 + CD16 - monocytes, TSLPR + monocytes (TSLPR + mono), expresses TSLPR complex upon LPS stimulation in an NF-κB- and p38-dependent manner. Phenotypic, functional, and transcriptomic analysis revealed specific features of TSLPR + mono, including higher CCL17 and IL-10 production and increased expression of genes with important immune functions (i.e., GAS6 , ALOX15B , FCGR2B , LAIR1 ). Strikingly, TSLPR + mono express higher levels of the dendritic cell marker CD1c. This evidence led us to identify a subset of peripheral blood CD14 + CD1c + cells that expresses the highest levels of TSLPR upon LPS stimulation. The translational relevance of these findings is highlighted by the higher expression of TSLPR and CD127 mRNAs in monocytes isolated from patients with Gram-negative sepsis compared with healthy control subjects. Our results emphasize a phenotypic and functional heterogeneity in an apparently homogeneous population of human CD14 + CD16 - monocytes and prompt further ontogenetic and functional analysis of CD14 + CD1c + and LPS-activated CD14 + CD1c + TSLPR + mono. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Regulation of gene expression in autoimmune disease loci and the genetic basis of proliferation in CD4+ effector memory T cells.

    PubMed

    Hu, Xinli; Kim, Hyun; Raj, Towfique; Brennan, Patrick J; Trynka, Gosia; Teslovich, Nikola; Slowikowski, Kamil; Chen, Wei-Min; Onengut, Suna; Baecher-Allan, Clare; De Jager, Philip L; Rich, Stephen S; Stranger, Barbara E; Brenner, Michael B; Raychaudhuri, Soumya

    2014-06-01

    Genome-wide association studies (GWAS) and subsequent dense-genotyping of associated loci identified over a hundred single-nucleotide polymorphism (SNP) variants associated with the risk of rheumatoid arthritis (RA), type 1 diabetes (T1D), and celiac disease (CeD). Immunological and genetic studies suggest a role for CD4-positive effector memory T (CD+ TEM) cells in the pathogenesis of these diseases. To elucidate mechanisms of autoimmune disease alleles, we investigated molecular phenotypes in CD4+ effector memory T cells potentially affected by these variants. In a cohort of genotyped healthy individuals, we isolated high purity CD4+ TEM cells from peripheral blood, then assayed relative abundance, proliferation upon T cell receptor (TCR) stimulation, and the transcription of 215 genes within disease loci before and after stimulation. We identified 46 genes regulated by cis-acting expression quantitative trait loci (eQTL), the majority of which we detected in stimulated cells. Eleven of the 46 genes with eQTLs were previously undetected in peripheral blood mononuclear cells. Of 96 risk alleles of RA, T1D, and/or CeD in densely genotyped loci, eleven overlapped cis-eQTLs, of which five alleles completely explained the respective signals. A non-coding variant, rs389862A, increased proliferative response (p=4.75 × 10-8). In addition, baseline expression of seventeen genes in resting cells reliably predicted proliferative response after TCR stimulation. Strikingly, however, there was no evidence that risk alleles modulated CD4+ TEM abundance or proliferation. Our study underscores the power of examining molecular phenotypes in relevant cells and conditions for understanding pathogenic mechanisms of disease variants.

  20. The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer.

    PubMed

    Tirino, Virginia; Camerlingo, Rosa; Franco, Renato; Malanga, Donatella; La Rocca, Antonello; Viglietto, Giuseppe; Rocco, Gaetano; Pirozzi, Giuseppe

    2009-09-01

    Emerging evidence suggests that specific sub-populations of cancer cells with stem cell characteristics within the bulk of tumours are implicated in the pathogenesis of heterogeneous malignant tumours. The cells that drive tumour growth have been denoted cancer-initiating cells or cancer stem cells (hereafter CSCs). CSCs have been isolated initially from leukaemias and subsequently from several solid tumours including brain, breast, prostate, colon and lung cancer. This study aimed at isolating and characterising the population of tumour-initiating cells in non-small-cell lung cancer (NSCLC). Specimens of NSCLC obtained from 89 patients undergoing tumour resection at the Cancer National Institute of Naples were analysed. Three methods to isolate the tumour-initiating cells were used: (1) flow cytometry analysis for identification of positive cells for surface markers such as CD24, CD29, CD31, CD34, CD44, CD133 and CD326; (2) Hoechst 33342 dye exclusion test for the identification of a side-population characteristic for the presence of stem cells; (3) non-adherent culture condition able to form spheres with stem cell-like characteristics. Definition of the tumourigenic potential of the cells through soft agar assay and injection into NOD/SCID mice were used to functionally define (in vitro and in vivo) putative CSCs isolated from NSCLC samples. Upon flow cytometry analysis of NSCLC samples, CD133-positive cells were found in 72% of 89 fresh specimens analysed and, on average, represented 6% of the total cells. Moreover, the number of CD133-positive cells increased markedly when the cells, isolated from NSCLC specimens, were grown as spheres in non-adherent culture conditions. Cells from NSCLC, grown as spheres, when assayed in soft agar, give rise to a 3.8-fold larger number of colonies in culture and are more tumourigenic in non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice compared with the corresponding adherent cells. We have isolated and

  1. Gene expression profiling in rat kidney after intratracheal exposure to cadmium-doped nanoparticles

    NASA Astrophysics Data System (ADS)

    Coccini, Teresa; Roda, Elisa; Fabbri, Marco; Sacco, Maria Grazia; Gribaldo, Laura; Manzo, Luigi

    2012-08-01

    While nephrotoxicity of cadmium is well documented, very limited information exists on renal effects of exposure to cadmium-containing nanomaterials. In this work, "omics" methodologies have been used to assess the action of cadmium-containing silica nanoparticles (Cd-SiNPs) in the kidney of Sprague-Dawley rats exposed intratracheally. Groups of animals received a single dose of Cd-SiNPs (1 mg/rat), CdCl2 (400 μg/rat) or 0.1 ml saline (control). Renal gene expression was evaluated 7 and 30 days post exposure by DNA microarray technology using the Agilent Whole Rat Genome Microarray 4x44K. Gene modulating effects were observed in kidney at both time periods after treatment with Cd-SiNPs. The number of differentially expressed genes being 139 and 153 at the post exposure days 7 and 30, respectively. Renal gene expression changes were also observed in the kidney of CdCl2-treated rats with a total of 253 and 70 probes modulated at 7 and 30 days, respectively. Analysis of renal gene expression profiles at day 7 indicated in both Cd-SiNP and CdCl2 groups downregulation of several cluster genes linked to immune function, oxidative stress, and inflammation processes. Differing from day 7, the majority of cluster gene categories modified by nanoparticles in kidney 30 days after dosing were genes implicated in cell regulation and apoptosis. Modest renal gene expression changes were observed at day 30 in rats treated with CdCl2. These results indicate that kidney may be a susceptible target for subtle long-lasting molecular alterations produced by cadmium nanoparticles locally instilled in the lung.

  2. Examining Smoking-Induced Differential Gene Expression Changes in Buccal Mucosa

    DTIC Science & Technology

    2010-01-01

    microarray analyses were used to evaluate gene expression in buccal cells. Initially, qPCR was used to assess relative transcript levels of four genes...U133 plus 2.0 arrays were used for a global evaluation of gene expression changes between four smokers and four nonsmokers. All female subjects were...used to prevent any gender bias in the data, and both cheeks from each subject were sampled. Total RNA was isolated and evaluated for quality as for

  3. Expression and significance of CD44s, CD44v6, and nm23 mRNA in human cancer.

    PubMed

    Liu, Yong-Jun; Yan, Pei-Song; Li, Jun; Jia, Jing-Fen

    2005-11-14

    carcinoma of breast (c2 = 5.68, P<0.05). The expressional level of nm23 mRNA was closely related to the degree of cell differentiation (P<0.05) and lymph node metastasis (P<0.01), but the expression of nm23 gene was not related to sex, age, and type of histological classification (P>0.05). Patients with overexpression of CD44s and CD44v6 and low expression of nm23 mRNA have a higher lymph node metastatic rate and invasion. In addition, overexpression of CD44v6 is closely related to the degree of cell differentiation. Detection of the three genes is able to provide a reliable index to evaluate the invasion and metastasis of tumor cells.

  4. CD36 is upregulated in mice with periodontitis and metabolic syndrome and involved in macrophage gene upregulation by palmitate.

    PubMed

    Lu, Z; Li, Y; Brinson, C W; Kirkwood, K L; Lopes-Virella, M F; Huang, Y

    2017-03-01

    We reported that high-fat diet (HFD)-induced metabolic syndrome (MetS) exacerbates lipopolysaccharide (LPS)-stimulated periodontitis and palmitate, the major saturated fatty acid in the HFD, amplified LPS-stimulated gene expression in vitro. As CD36 is a major receptor for fatty acids, we investigated periodontal CD36 expression in mice with periodontitis and MetS, and the role of CD36 in inflammatory gene expression in macrophages stimulated by palmitate. MetS and periodontitis were induced in mice by HFD and periodontal injection of LPS, respectively. The periodontal CD36 expression and its relationship with alveolar bone loss were studied using immunohistochemistry, real-time PCR, and correlation analysis. The role of CD36 in upregulation of inflammatory mediators by LPS and palmitate in macrophages was assessed using pharmacological inhibitor and small interfering RNA. Periodontal CD36 expression was higher in mice with both MetS and periodontitis than that in mice with periodontitis or MetS alone and was correlated with osteoclastogenesis and alveolar bone loss. In vitro studies showed that CD36 expression in macrophages was upregulated by LPS and palmitate, and targeting CD36 attenuated palmitate-enhanced gene expression. CD36 expression is upregulated in mice with periodontitis and MetS and involved in gene expression in macrophages stimulated by palmitate and LPS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Gene expression analysis of a Helicobacter pylori-infected and high-salt diet-treated mouse gastric tumor model: identification of CD177 as a novel prognostic factor in patients with gastric cancer

    PubMed Central

    2013-01-01

    Background Helicobacter pylori (H. pylori) infection and excessive salt intake are known as important risk factors for stomach cancer in humans. However, interactions of these two factors with gene expression profiles during gastric carcinogenesis remain unclear. In the present study, we investigated the global gene expression associated with stomach carcinogenesis and prognosis of human gastric cancer using a mouse model. Methods To find candidate genes involved in stomach carcinogenesis, we firstly constructed a carcinogen-induced mouse gastric tumor model combined with H. pylori infection and high-salt diet. C57BL/6J mice were given N-methyl-N-nitrosourea in their drinking water and sacrificed after 40 weeks. Animals of a combination group were inoculated with H. pylori and fed a high-salt diet. Gene expression profiles in glandular stomach of the mice were investigated by oligonucleotide microarray. Second, we examined an availability of the candidate gene as prognostic factor for human patients. Immunohistochemical analysis of CD177, one of the up-regulated genes, was performed in human advanced gastric cancer specimens to evaluate the association with prognosis. Results The multiplicity of gastric tumor in carcinogen-treated mice was significantly increased by combination of H. pylori infection and high-salt diet. In the microarray analysis, 35 and 31 more than two-fold up-regulated and down-regulated genes, respectively, were detected in the H. pylori-infection and high-salt diet combined group compared with the other groups. Quantitative RT-PCR confirmed significant over-expression of two candidate genes including Cd177 and Reg3g. On immunohistochemical analysis of CD177 in human advanced gastric cancer specimens, over-expression was evident in 33 (60.0%) of 55 cases, significantly correlating with a favorable prognosis (P = 0.0294). Multivariate analysis including clinicopathological factors as covariates revealed high expression of CD177 to be an

  6. High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) study

    PubMed Central

    Langer, Christian; Radmacher, Michael D.; Ruppert, Amy S.; Whitman, Susan P.; Paschka, Peter; Mrózek, Krzysztof; Baldus, Claudia D.; Vukosavljevic, Tamara; Liu, Chang-Gong; Ross, Mary E.; Powell, Bayard L.; de la Chapelle, Albert; Kolitz, Jonathan E.; Larson, Richard A.; Marcucci, Guido

    2008-01-01

    BAALC expression is considered an independent prognostic factor in cytogenetically normal acute myeloid leukemia (CN-AML), but has yet to be investigated together with multiple other established prognostic molecular markers in CN-AML. We analyzed BAALC expression in 172 primary CN-AML patients younger than 60 years of age, treated similarly on CALGB protocols. High BAALC expression was associated with FLT3-ITD (P = .04), wild-type NPM1 (P < .001), mutated CEBPA (P = .003), MLL-PTD (P = .009), absent FLT3-TKD (P = .005), and high ERG expression (P = .05). In multivariable analysis, high BAALC expression independently predicted lower complete remission rates (P = .04) when adjusting for ERG expression and age, and shorter survival (P = .04) when adjusting for FLT3-ITD, NPM1, CEBPA, and white blood cell count. A gene-expression signature of 312 probe sets differentiating high from low BAALC expressers was identified. High BAALC expression was associated with overexpression of genes involved in drug resistance (MDR1) and stem cell markers (CD133, CD34, KIT). Global microRNA-expression analysis did not reveal significant differences between BAALC expression groups. However, an analysis of microRNAs that putatively target BAALC revealed a potentially interesting inverse association between expression of miR-148a and BAALC. We conclude that high BAALC expression is an independent adverse prognostic factor and is associated with a specific gene-expression profile. PMID:18378853

  7. Presymptomatic Diagnosis of Celiac Disease in Predisposed Children: The Role of Gene Expression Profile.

    PubMed

    Galatola, Martina; Cielo, Donatella; Panico, Camilla; Stellato, Pio; Malamisura, Basilio; Carbone, Lorenzo; Gianfrani, Carmen; Troncone, Riccardo; Greco, Luigi; Auricchio, Renata

    2017-09-01

    The prevalence of celiac disease (CD) has increased significantly in recent years, and risk prediction and early diagnosis have become imperative especially in at-risk families. In a previous study, we identified individuals with CD based on the expression profile of a set of candidate genes in peripheral blood monocytes. Here we evaluated the expression of a panel of CD candidate genes in peripheral blood mononuclear cells from at-risk infants long time before any symptom or production of antibodies. We analyzed the gene expression of a set of 9 candidate genes, associated with CD, in 22 human leukocyte antigen predisposed children from at-risk families for CD, studied from birth to 6 years of age. Nine of them developed CD (patients) and 13 did not (controls). We analyzed gene expression at 3 different time points (age matched in the 2 groups): 4-19 months before diagnosis, at the time of CD diagnosis, and after at least 1 year of a gluten-free diet. At similar age points, controls were also evaluated. Three genes (KIAA, TAGAP [T-cell Activation GTPase Activating Protein], and SH2B3 [SH2B Adaptor Protein 3]) were overexpressed in patients, compared with controls, at least 9 months before CD diagnosis. At a stepwise discriminant analysis, 4 genes (RGS1 [Regulator of G-protein signaling 1], TAGAP, TNFSF14 [Tumor Necrosis Factor (Ligand) Superfamily member 14], and SH2B3) differentiate patients from controls before serum antibodies production and clinical symptoms. Multivariate equation correctly classified CD from non-CD children in 95.5% of patients. The expression of a small set of candidate genes in peripheral blood mononuclear cells can predict CD at least 9 months before the appearance of any clinical and serological signs of the disease.

  8. Transcriptome sequencing and differential gene expression analysis in Viola yedoensis Makino (Fam. Violaceae) responsive to cadmium (Cd) pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jian; Luo, Mao; Zhu, Ye

    2015-03-27

    Viola yedoensis Makino is an important Chinese traditional medicine plant adapted to cadmium (Cd) pollution regions. Illumina sequencing technology was used to sequence the transcriptome of V. yedoensis Makino. We sequenced Cd-treated (VIYCd) and untreated (VIYCK) samples of V. yedoensis, and obtained 100,410,834 and 83,587,676 high quality reads, respectively. After de novo assembly and quantitative assessment, 109,800 unigenes were finally generated with an average length of 661 bp. We then obtained functional annotations by aligning unigenes with public protein databases including NR, NT, SwissProt, KEGG and COG. In addition, 892 differentially expressed genes (DEGs) were investigated between the two libraries ofmore » untreated (VIYCK) and Cd-treated (VIYCd) plants. Moreover, 15 randomly selected DEGs were further validated with qRT-PCR and the results were highly accordant with the Solexa analysis. This study firstly generated a successful global analysis of the V. yedoensis transcriptome and it will provide for further studies on gene expression, genomics, and functional genomics in Violaceae. - Highlights: • A de novo assembly generated 109,800 unigenes and 5,4479 of them were annotated. • 31,285 could be classified into 26 COG categories. • 263 biosynthesis pathways were predicted and classified into five categories. • 892 DEGs were detected and 15 of them were validated by qRT-PCR.« less

  9. Gene Therapy for Liver Transplantation Using Adenoviral Vectors: CD40–CD154 Blockade by Gene Transfer of CD40Ig Protects Rat Livers from Cold Ischemia and Reperfusion Injury

    PubMed Central

    Ke, Bibo; Shen, Xiu-Da; Gao, Feng; Busuttil, Ronald W.; Löwenstein, Pedro R.; Castro, Maria G.; Kupiec-Weglinski, Jerzy W.

    2010-01-01

    Liver injury induced by ischemia/reperfusion (I/R) is the prime factor in delayed or loss graft function following transplantation. CD4+ T lymphocytes are key cellular mediators of antigen-independent inflammatory response triggered by I/R. We attempted to modulate rat liver I/R injury by targeted gene therapy with CD40Ig, which blocks the CD40–CD154 costimulation pathway. One hundred percent of Ad-CD40Ig-pretreated orthotopic liver transplants (OLTs) subjected to 24 h of cold (4°C) ischemia survived >14 days (vs 50% in untreated/Ad-β-gal groups). Ad-CD40Ig treatment decreased sGOT levels and depressed neutrophil infiltration, compared with controls. These functional data correlated with histological Suzuki’s grading of hepatic injury, which in untreated/Ad-β-gal groups showed severe necrosis (>60%) and moderate to severe sinusoidal congestion; the Ad-CD40Ig-pretreated group revealed minimal sinusoidal congestion/necrosis. Unlike in controls, OLT expression of mRNA coding for IL-2/IFN-γ remained depressed, whereas that of IL-4/IL-13 reciprocally increased in the Ad-CD40Ig group. Ad-CD40Ig reduced frequency of TUNEL+ cells and proapoptotic Caspase-3, but enhanced antioxidant HO-1 and antiapoptotic Bcl-2/Bcl-xl expression. Thus, prolonged blockade of CD40–CD154 by CD40Ig exerts potent cytoprotection against hepatic I/R injury. These results provide the rationale for a novel gene therapy approach to maximize the organ donor pool through the safer use of liver transplants exposed to prolonged cold ischemia. PMID:14741776

  10. Investigation of the expression of RIF1 gene on head and neck, pancreatic and brain cancer and cancer stem cells.

    PubMed

    GursesCila, Hacer E; Acar, Muradiye; Barut, Furkan B; Gunduz, Mehmet; Grenman, Reidar; Gunduz, Esra

    2016-12-01

    Recent studies have shown that cancer stem cells are resistant to chemotherapy. The aim of this study was to compare RIF1 gene expression in head and neck, pancreatic cancer and glioma cell lines and the cancer stem cells isolated from these cell lines. UT-SCC-74 from Turku University and UT-SCC-74B primary tumor metastasis and neck cancer cell lines, YKG-1 glioma cancer cell line from RIKEN, pancreatic cancer cell lines and ASPC-1 cells from ATCC were grown in cell culture. To isolate cancer stem cells, ALDH-1 for UT-SCC-74 and UT-SCC-74B cell line, CD-133 for YKG-1 cell line and CD-24 for ASPC-1 cell line, were used as markers of cancer stem cells. RNA isolation was performed for both cancer lines and cancer stem cells. RNAs were converted to cDNA. RIF1 gene expression was performed by qRT-PCR analysis. RIF1 gene expression was compared with cancer cell lines and cancer stem cells isolated from these cell lines. The possible effect of RIF1 gene was evaluated. In the pancreatic cells, RIF1 gene expression in the stem cell-positive cell line was 256 time that seen in the stem cell-negative cell line. Considering the importance of RIF1 in NHEJ and of NHEJ in pancreatic cancer, RIF1 may be one of the genes that plays an important role in the diagnoses and therapeutic treatment of pancreatic cancer. The results of head and neck and brain cancers are inconclusive and further studies are required to elucidate the connection between RIF1 gene and these other types of cancers.

  11. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets.

    PubMed

    Muller, Laurent; Mitsuhashi, Masato; Simms, Patricia; Gooding, William E; Whiteside, Theresa L

    2016-02-04

    Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4(+) Tconv, CD8(+) T or CD4(+) CD39(+) Treg were isolated from normal donors' peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24-27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4(+) Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes.

  12. Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM.

    PubMed

    Ge, Haitao; Mu, Luyan; Jin, Linchun; Yang, Changlin; Chang, Yifan Emily; Long, Yu; DeLeon, Gabriel; Deleyrolle, Loic; Mitchell, Duane A; Kubilis, Paul S; Lu, Dunyue; Qi, Jiping; Gu, Yunhe; Lin, Zhiguo; Huang, Jianping

    2017-10-01

    Tumor migration/metastasis and immunosuppression are major obstacles in effective cancer therapy. Incidentally, these 2 hurdles usually coexist inside tumors, therefore making therapy significantly more complicated, as both oncogenic mechanisms must be addressed for successful therapeutic intervention. Our recent report highlights that the tumor expression of a TNF family member, CD70, is correlated with poor survival for primary gliomas. In this study, we investigated how CD70 expression by GBM affects the characteristics of tumor cells and the tumor microenvironment. We found that the ablation of CD70 in primary GBM decreased CD44 and SOX2 gene expression, and inhibited tumor migration, growth and the ability to attract monocyte-derived M2 macrophages in vitro. In the tumor microenvironment, CD70 was associated with immune cell infiltrates, such as T cells; myeloid-derived suppressor cells; and monocytes/macrophages based on the RNA-sequencing profile. The CD163+ macrophages were far more abundant than T cells were. This overwhelming level of macrophages was identified only in GBM and not in low-grade gliomas and normal brain specimens, implying their tumor association. CD70 was detected only on tumor cells, not on macrophages, and was highly correlated with CD163 gene expression in primary GBM. Additionally, the co-expression of the CD70 and CD163 genes was found to correlate with decreased survival for patients with primary GBM. Together, these data suggest that CD70 expression is involved in promoting tumor aggressiveness and immunosuppression via tumor-associated macrophage recruitment/activation. Our current efforts to target this molecule using chimeric antigen receptor T cells hold great potential for treating patients with GBM. © 2017 UICC.

  13. Structure and expression of the human thymocyte antigens CD1a, CD1b, and CD1c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, L.H.; Calabi, F.; Lefebvre, F.A.

    1987-12-01

    The CD1 human antigens are a family of at least three components, CD1a, CD1b, and CD1c, that are characteristic of the cortical stage of thymocyte maturation. CD1a was originally named HTA1 or T6 and thought to be the human equivalent of mouse Tla. The genes coding for all three have not been identified by transfection into mouse cells. The transfectants express the surface antigens that can then be recognized by the corresponding cluster of monoclonal antibodies used to define the three members of CD1. The full sequence of the genomic DNA is described for all three. The intron-exon structure ofmore » CD1a is deduced by comparison with a near-full-length cDNA clone. Similar structures are proposed for the other two, largely based on sequence homology. An unusually long 5'-untranslated exon (280 bases long) is highly conserved between the three genes, suggesting an important but unknown function. CD1c has a duplicated form of this exon that is thought to be spliced out. The major homology between the three antigens is in the ..beta../sub 2/-microglobulin-binding-domain. The general relatedness to major histocompatibility complex class I and class II molecules is significant but low, with no section of higher homology to mouse Tla.« less

  14. Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro.

    PubMed

    Zhu, Guidong; Su, Wei; Jin, Guishan; Xu, Fujian; Hao, Shuyu; Guan, Fangxia; Jia, William; Liu, Fusheng

    2011-05-16

    The development of the cancer stem cell (CSCs) niche theory has provided a new target for the treatment of gliomas. Gene therapy using oncolytic viral vectors has shown great potential for the therapeutic targeting of CSCs. To explore whether a viral vector carrying an exogenous Endo-Angio fusion gene (VAE) can infect and kill glioma stem cells (GSCs), as well as inhibit their vascular niche in vitro, we have collected surgical specimens of human high-grade glioma (world health organization, WHO Classes III-VI) from which we isolated and cultured GSCs under conditions originally designed for the selective expansion of neural stem cells. Our results demonstrate the following: (1) Four lines of GSCs (isolated from 20 surgical specimens) could grow in suspension, were multipotent, had the ability to self-renew and expressed the neural stem cell markers, CD133 and nestin. (2) VAE could infect GSCs and significantly inhibit their viability. (3) The Endo-Angio fusion gene was expressed in GSCs 48 h after VAE infection and could inhibit the proliferation of human brain microvascular endothelial cells (HBMEC). (4) Residual viable cells lose the ability of self-renewal and adherent differentiation. In conclusion, VAE can significantly inhibit the activity of GSCs in vitro and the expression of exogenous Endo-Angio fusion gene can inhibit HBMEC proliferation. VAE can be used as a novel virus-gene therapy strategy for glioma. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Mucosal CCR1 gene expression as a marker of molecular activity in Crohn's disease: preliminary data.

    PubMed

    Dobre, Maria; Mănuc, Teodora Ecaterina; Milanesi, Elena; Pleşea, Iancu Emil; Ţieranu, Eugen Nicolae; Popa, Caterina; Mănuc, Mircea; Preda, Carmen Monica; Ţieranu, Ioana; Diculescu, Mihai Mircea; Ionescu, Elena Mirela; Becheanu, Gabriel

    2017-01-01

    A series of mechanisms of immune response, inflammation and apoptosis have been demonstrated to contribute to the appearance and evolution of Crohn's disease (CD) through the overexpression of several cytokines and chemokines in a susceptible host. The aim of this study was to identify the differences in gene expression profiles analyzing a panel of candidate genes in the mucosa from patients with active CD (CD-A), patients in remission (CD-R), and normal controls. Nine individuals were enrolled in the study: six CD patients (three with active lesions, three with mucosal healing) and three controls without inflammatory bowel disease (IBD) seen on endoscopy. All the individuals underwent mucosal biopsy during colonoscopy. Gene expression levels of 84 genes previously associated with CD were evaluated by polymerase chain reaction (PCR) array. Ten genes out of 84 were found significantly differentially expressed in CD-A (CCL11, CCL25, DEFA5, GCG, IL17A, LCN2, REG1A, STAT3, MUC1, CCR1) and eight genes in CD-R (CASP1, IL23A, STAT1, STAT3, TNF, CCR1, CCL5, and HSP90B1) when compared to controls. A quantitative gene expression analysis revealed that CCR1 gene was more expressed in CD-A than in CD-R. Our data suggest that CCR1 gene may be a putative marker of molecular activity of Crohn's disease. Following these preliminary data, a confirmation in larger cohort studies could represent a useful method in order to identify new therapeutic targets.

  16. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes.

    PubMed

    Tsai, Wei-Jern; Chang, Chu-Ting; Wang, Guei-Jane; Lee, Tzong-Huei; Chang, Shwu-Fen; Lu, Shao-Chun; Kuo, Yuh-Chi

    2011-03-25

    Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.

  17. Circulating Bone Marrow-Derived CD45-/CD34+/CD133+/VEGF+ Endothelial Progenitor Cells in Adults with Crohn's Disease.

    PubMed

    Boltin, Doron; Kamenetsky, Zvi; Perets, Tsachi Tsadok; Snir, Yifat; Sapoznikov, Boris; Schmilovitz-Weiss, Hemda; Ablin, Jacob Nadav; Dickman, Ram; Niv, Yaron

    2017-03-01

    Circulating endothelial progenitor cells (EPCs) are bone marrow-derived stem cells able to migrate to sites of damaged endothelium and differentiate into endothelial cells. Altered EPC level and function have been described in various inflammatory diseases and have been shown to augment vasculogenesis in murine models. Previous studies of EPC in the context of Crohn's disease (CD) have yielded conflicting results. To determine whether the circulating levels of EPCs are changed in the context of CD. CD patients and healthy controls were recruited. Disease activity was assessed by CDAI. Peripheral blood mononuclear cells were isolated and EPC numbers evaluated by FACS analysis using anti-CD34, anti-VEGF receptor-2, anti-CD133, and anti-CD45 markers. Eighty-three subjects, including 32 CD patients and 51 controls were recruited, including 19 (59.4 %) and 23 (45 %) males (p = 0.26), aged 34.8 ± 14.9 and 43.3 ± 18.5 years (p = 0.64), in cases and controls, respectively. Mean CDAI was 147 ± 97, disease duration was 12.7 ± 11.1 years, and 28 (87.5 %) were receiving biologics for a mean duration of 21.7 ± 16.8 months. The mean level of peripheral EPCs in CD patients was 0.050 ± 0.086 percent and 0.007 ± 0.013 % in controls (p < 0.01). There was no significant correlation between EPC levels and age (r = -0.13, p = 0.47), CDAI (r = -0.26, p = 0.15), disease duration (r = -0.04, p = 0.84), or duration of treatment with biologics (r = 0.004, p = 0.99). EPCs are elevated in patients with CD. Further studies are needed to examine the function of EPCs and their possible role as a marker of disease severity or therapeutic response.

  18. Human Uterine Leiomyoma Stem/Progenitor Cells Expressing CD34 and CD49b Initiate Tumors In Vivo

    PubMed Central

    Ono, Masanori; Moravek, Molly B.; Coon, John S.; Navarro, Antonia; Monsivais, Diana; Dyson, Matthew T.; Druschitz, Stacy A.; Malpani, Saurabh S.; Serna, Vanida A.; Qiang, Wenan; Chakravarti, Debabrata; Kim, J. Julie; Bulun, Serdar E.

    2015-01-01

    Context: Uterine leiomyoma is the most common benign tumor in reproductive-age women. Using a dye-exclusion technique, we previously identified a side population of leiomyoma cells exhibiting stem cell characteristics. However, unless mixed with mature myometrial cells, these leiomyoma side population cells did not survive or grow well in vitro or in vivo. Objective: The objective of this study was to identify cell surface markers to isolate leiomyoma stem/progenitor cells. Design: Real-time PCR screening was used to identify cell surface markers preferentially expressed in leiomyoma side population cells. In vitro colony-formation assay and in vivo tumor-regeneration assay were used to demonstrate functions of leiomyoma stem/progenitor cells. Results: We found significantly elevated CD49b and CD34 gene expression in side population cells compared with main population cells. Leiomyoma cells were sorted into three populations based on the expression of CD34 and CD49b: CD34+/CD49b+, CD34+/CD49b−, and CD34−/CD49b− cells, with the majority of the side population cells residing in the CD34+/CD49b+ fraction. Of these populations, CD34+/CD49b+ cells expressed the lowest levels of estrogen receptor-α, progesterone receptor, and α-smooth muscle actin, but the highest levels of KLF4, NANOG, SOX2, and OCT4, confirming their more undifferentiated status. The stemness of CD34+/CD49b+ cells was also demonstrated by their strongest in vitro colony-formation capacity and in vivo tumor-regeneration ability. Conclusions: CD34 and CD49b are cell surface markers that can be used to enrich a subpopulation of leiomyoma cells possessing stem/progenitor cell properties; this technique will accelerate efforts to develop new therapies for uterine leiomyoma. PMID:25658015

  19. Primary administration of Lactobacillus johnsonii NCC533 in weaning period suppresses the elevation of proinflammatory cytokines and CD86 gene expressions in skin lesions in NC/Nga mice.

    PubMed

    Inoue, Ryo; Otsuka, Mai; Nishio, Ayako; Ushida, Kazunari

    2007-06-01

    The administration of probiotic lactic acid bacteria (LAB) has been studied for its potential to prevent atopic dermatitis (AD). The objective of this study was to assess the inhibitory mechanism of a skin lesion by LAB using an experimental model that we previously demonstrated in NC/Nga mice. Lactobacillus johnsonii NCC533 (La1) was administered orally to the La1 group from 20 to 22 days after birth, while phosphate-buffered saline was given to the control group. After the induction of skin lesions in 6-week-old mice, the expression of genes supposedly involved in AD was evaluated. Gene expression of the proinflammatory cytokines [interleukin-8 (IL-8), IL-12 and IL-23] was significantly enhanced in the lesional skin of the control group by the induction of the lesion, whereas gene expression of those in the La1 group was not elevated. Interestingly, expression of the costimulatory molecule CD86 showed a pattern similar to the expression of the cytokines in the lesional skin. Moreover, the La1 group showed a significantly lower gene expression of CD86 in Peyer's patches and mesenteric lymph nodes than the control group. The suppression of proinflammatory cytokines and CD86 by primary administration of La1 may significantly contribute to the inhibitory effect on the skin lesion.

  20. Vitamin K2 promotes mesenchymal stem cell differentiation by inhibiting miR‑133a expression.

    PubMed

    Zhang, Yuelei; Weng, Shiyang; Yin, Junhui; Ding, Hao; Zhang, Changqing; Gao, Youshui

    2017-05-01

    Vitamin K2 has been demonstrated to promote the osteogenic differentiation of mesenchymal stem cells; however, the mechanisms underlying this effect remain unclear. As microRNA (miR)‑133a has been identified as a negative regulator of osteogenic differentiation, the present study hypothesized that vitamin K2 promoted osteogenesis by inhibiting miR‑133a. Using human bone marrow stromal cells (hBMSCs) overexpressing miR‑133a, or a control, the expression levels of osteogenesis‑associated proteins, including runt‑related transcription factor 2, alkaline phosphatase and osteocalcin, were analyzed. miR‑133a significantly suppressed the osteogenic differentiation of hBMSCs. To determine the effect of vitamin K2 on miR‑133a expression and osteogenesis, hBMSCs were treated with vitamin K2. Vitamin K2 inhibited miR‑133a expression, which was accompanied by enhanced osteogenic differentiation. Furthermore, the expression levels of vitamin K epoxide reductase complex subunit 1, the key protein in γ‑carboxylation, were downregulated by miR‑133a overexpression and upregulated by vitamin K2 treatment, indicating a positive feedback on γ‑carboxylation. The results of the present study suggested that vitamin K2 targets miR‑133a to regulate osteogenesis.

  1. Correlation of the expression of CD32 and CD180 receptors on CLL cells and MEC1 cell line.

    PubMed

    Tsertsvadze, T; Mitskevich, N; Ghirdaladze, D; Porakishvili, N

    2015-03-01

    Chronic Lymphocytic Leukemia (CLL) presents with clonal expansion and accumulation of CD5+CD19+CD23+ cells in peripheral lymphoid organs and tissues and in bone marrow. CLL is supposedly driven by exogenous and/or endogenous (auto)antigen(s) and there is increasing evidence that CLL cells receive microenvironmental signals which support their growth, survival and expansion in vivo. We have previously shown that powerful signals are received by CLL cells through CD180 orphan toll-like receptor. Additional accessory signals could be generated through FcγRII (CD32), since both are expressed on CLL cells as well as on control B cells. Here we studied correlation of the expression of CD32 and CD180 on CLL cells as well as on MEC1 cell line. Peripheral blood mononuclear cells (PBMC) from CLL patients and age-matched healthy volunteers were separated, stained with appropriate antibodies to CD19, CD32 and CD180 and analysed by flow cytometry. CD32 and CD180 expression on MEC1 cells was studied at different time-points. The data was statistically analysed using the Mann-Whitney non-parametrical test. Our data indicates that expression of CD32 is significantly increased on CLL cells compared to control B cells as well as in long-term MEC1 cell culture. In contrast, CD180 expression on MEC1 cells significantly decreased throughout 0-96h of MEC1 cell culture. We have recently shown that CD180 ligation can redirect sIgM-mediated signaling from pro-survival to pro-apoptotic. This data indicates that a drop in the expression of CD180 on cycling CLL cells might lead to a weakening of this effect and enhance further survival and expansion of CLL cells in proliferative centres of lymphoid tissues. Since MEC1 cells are derived from a CLL patient with mutated IGVH genes (M-CLL) negative correlation between CD180 and CD32 expression on cycling MEC1 cells could be limited to M-CLL.

  2. Reduced Expression of CD45 Protein-tyrosine Phosphatase Provides Protection against Anthrax Pathogenesis*S⃞

    PubMed Central

    Panchal, Rekha G.; Ulrich, Ricky L.; Bradfute, Steven B.; Lane, Douglas; Ruthel, Gordon; Kenny, Tara A.; Iversen, Patrick L.; Anderson, Arthur O.; Gussio, Rick; Raschke, William C.; Bavari, Sina

    2009-01-01

    The modulation of cellular processes by small molecule inhibitors, gene inactivation, or targeted knockdown strategies combined with phenotypic screens are powerful approaches to delineate complex cellular pathways and to identify key players involved in disease pathogenesis. Using chemical genetic screening, we tested a library of known phosphatase inhibitors and identified several compounds that protected Bacillus anthracis infected macrophages from cell death. The most potent compound was assayed against a panel of sixteen different phosphatases of which CD45 was found to be most sensitive to inhibition. Testing of a known CD45 inhibitor and antisense phosphorodiamidate morpholino oligomers targeting CD45 also protected B. anthracis-infected macrophages from cell death. However, reduced CD45 expression did not protect anthrax lethal toxin (LT) treated macrophages, suggesting that the pathogen and independently added LT may signal through distinct pathways. Subsequent, in vivo studies with both gene-targeted knockdown of CD45 and genetically engineered mice expressing reduced levels of CD45 resulted in protection of mice after infection with the virulent Ames B. anthracis. Intermediate levels of CD45 expression were critical for the protection, as mice expressing normal levels of CD45 or disrupted CD45 phosphatase activity or no CD45 all succumbed to this pathogen. Mechanism-based studies suggest that the protection provided by reduced CD45 levels results from regulated immune cell homeostasis that may diminish the impact of apoptosis during the infection. To date, this is the first report demonstrating that reduced levels of host phosphatase CD45 modulate anthrax pathogenesis. PMID:19269962

  3. Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer.

    PubMed

    Kennedy, Brian M; Harris, Randall E

    2018-05-07

    We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.

  4. The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential

    PubMed Central

    Arsic, Nikola; Gadea, Gilles; Lagerqvist, E. Louise; Busson, Muriel; Cahuzac, Nathalie; Brock, Carsten; Hollande, Frederic; Gire, Veronique; Pannequin, Julie; Roux, Pierre

    2015-01-01

    Summary Cancer stem cells (CSC) are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform. PMID:25754205

  5. MERP1: a mammalian ependymin-related protein gene differentially expressed in hematopoietic cells.

    PubMed

    Gregorio-King, Claudia C; McLeod, Janet L; Collier, Fiona McL; Collier, Gregory R; Bolton, Karyn A; Van Der Meer, Gavin J; Apostolopoulos, Jim; Kirkland, Mark A

    2002-03-20

    We have utilized differential display polymerase chain reaction to investigate the gene expression of hematopoietic progenitor cells from adult bone marrow and umbilical cord blood. A differentially expressed gene was identified in CD34+ hematopoietic progenitor cells, with low expression in CD34- cells. We have obtained the full coding sequence of this gene which we designated human mammalian ependymin-related protein 1 (MERP1). Expression of MERP1 was found in a variety of normal human tissues, and is 4- and 10-fold higher in adult bone marrow and umbilical cord blood CD34+ cells, respectively, compared to CD34- cells. Additionally, MERP1 expression in a hematopoietic stem cell enriched population was down-regulated with proliferation and differentiation. Conceptual translation of the MERP1 open reading frame reveals significant homology to two families of glycoprotein calcium-dependant cell adhesion molecules: ependymins and protocadherins.

  6. Negative regulation of NKG2D expression by IL-4 in memory CD8 T cells.

    PubMed

    Ventre, Erwan; Brinza, Lilia; Schicklin, Stephane; Mafille, Julien; Coupet, Charles-Antoine; Marçais, Antoine; Djebali, Sophia; Jubin, Virginie; Walzer, Thierry; Marvel, Jacqueline

    2012-10-01

    IL-4 is one of the main cytokines produced during Th2-inducing pathologies. This cytokine has been shown to affect a number of immune processes such as Th differentiation and innate immune responses. However, the impact of IL-4 on CD8 T cell responses remains unclear. In this study, we analyzed the effects of IL-4 on global gene expression profiles of Ag-induced memory CD8 T cells in the mouse. Gene ontology analysis of this signature revealed that IL-4 regulated most importantly genes associated with immune responses. Moreover, this IL-4 signature overlapped with the set of genes preferentially expressed by memory CD8 T cells over naive CD8 T cells. In particular, IL-4 downregulated in vitro and in vivo in a STAT6-dependent manner the memory-specific expression of NKG2D, thereby increasing the activation threshold of memory CD8 T cells. Furthermore, IL-4 impaired activation of memory cells as well as their differentiation into effector cells. This phenomenon could have an important clinical relevance as patients affected by Th2 pathologies such as parasitic infections or atopic dermatitis often suffer from viral-induced complications possibly linked to inefficient CD8 T cell responses.

  7. The human cumulus--oocyte complex gene-expression profile

    PubMed Central

    Assou, Said; Anahory, Tal; Pantesco, Véronique; Le Carrour, Tanguy; Pellestor, Franck; Klein, Bernard; Reyftmann, Lionel; Dechaud, Hervé; De Vos, John; Hamamah, Samir

    2006-01-01

    BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes, and cumulus cells. METHODS Using oligonucleotides microarrays, genome wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes such as DAZL, BMP15 or GDF9, oocytes upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-tocell signaling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A and SOCS7. CONCLUSION The identification of genes up and down regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumors. PMID:16571642

  8. Hematopoietic Stem Cell Capture and Directional Differentiation into Vascular Endothelial Cells for Metal Stent-Coated Chitosan/Hyaluronic Acid Loading CD133 Antibody

    PubMed Central

    Zhang, Fan; Feng, Bo; Fan, Qingyu; Yang, Feng; Shang, Debin; Sui, Jinghan; Zhao, Hong

    2015-01-01

    A series of metal stents coated with chitosan/hyaluronic acid (CS/HA) loading antibodies by electrostatic self-assembled method were prepared, and the types of cells captured by antibodies and their differentiation in vascular endothelial cells (ECs) evaluated by molecular biology and scanning electron microscope. The results showed that CD133 stent can selectively capture hematopoietic stem cells (HSC),which directionally differentiate into vascular ECs in peripheral blood by (CS/HA) induction, and simultaneously inhibit migration and proliferation of immune cells and vascular smooth muscle cells (MCs). CD34 stent can capture HSC, hematopoietic progenitor cells that differentiate into vascular ECs and immune cells, promoting smooth MCs growth, leading to thrombosis, inflammation, and rejection. CD133 stent can be implanted into miniature pig heart coronary and can repair vascular damage by capturing own HSC, thus contributing to the rapid natural vascular repair, avoiding inflammation and rejection, thrombosis and restenosis. These studies demonstrated that CD133 stent of HSC capture will be an ideal coated metal stent providing a new therapeutic approach for cardiovascular and cerebrovascular disease. PMID:25404533

  9. Hematopoietic stem cell capture and directional differentiation into vascular endothelial cells for metal stent-coated chitosan/hyaluronic acid loading CD133 antibody.

    PubMed

    Zhang, Shixuan; Zhang, Fan; Feng, Bo; Fan, Qingyu; Yang, Feng; Shang, Debin; Sui, Jinghan; Zhao, Hong

    2015-03-01

    A series of metal stents coated with chitosan/hyaluronic acid (CS/HA) loading antibodies by electrostatic self-assembled method were prepared, and the types of cells captured by antibodies and their differentiation in vascular endothelial cells (ECs) evaluated by molecular biology and scanning electron microscope. The results showed that CD133 stent can selectively capture hematopoietic stem cells (HSC),which directionally differentiate into vascular ECs in peripheral blood by (CS/HA) induction, and simultaneously inhibit migration and proliferation of immune cells and vascular smooth muscle cells (MCs). CD34 stent can capture HSC, hematopoietic progenitor cells that differentiate into vascular ECs and immune cells, promoting smooth MCs growth, leading to thrombosis, inflammation, and rejection. CD133 stent can be implanted into miniature pig heart coronary and can repair vascular damage by capturing own HSC, thus contributing to the rapid natural vascular repair, avoiding inflammation and rejection, thrombosis and restenosis. These studies demonstrated that CD133 stent of HSC capture will be an ideal coated metal stent providing a new therapeutic approach for cardiovascular and cerebrovascular disease.

  10. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes

    PubMed Central

    2011-01-01

    Background Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT. PMID:21435270

  11. Identification and characterization of a silencer regulatory element in the 3'-flanking region of the murine CD46 gene.

    PubMed Central

    Nomura, M; Tsujimura, A; Begum, N A; Matsumoto, M; Wabiko, H; Toyoshima, K; Seya, T

    2000-01-01

    The murine membrane cofactor protein (CD46) gene is expressed exclusively in testis, in contrast to human CD46, which is expressed ubiquitously. To elucidate the mechanism of differential CD46 gene expression among species, we cloned entire murine CD46 genomic DNA and possible regulatory regions were placed in the flanking region of the luciferase reporter gene. The reporter gene assay revealed a silencing activity not in the promoter, but in the 3'-flanking region of the gene and the silencer-like element was identified within a 0.2-kb region between 0.6 and 0.8 kb downstream of the stop codon. This silencer-like element was highly similar to that of the pig MHC class-I gene. The introduction of a mutation into this putative silencer element of murine CD46 resulted in an abrogation of the silencing effect. Electrophoretic mobility-shift assay indicated the presence of the binding molecule(s) for this silencer sequence in murine cell lines and tissues. A size difference of the protein-silencer-element complex was observed depending upon the solubilizers used for preparation of the nuclear extracts. A mutated silencer sequence failed to interact with the binding molecules. The level of the binding factor was lower in the testicular germ cells compared with other organs. Thus the silencer element and its binding factor may play a role in transcriptional regulation of murine CD46 gene expression. These results imply that the effects of the CD46 silencer element encompass the innate immune and reproductive systems, and in mice may determine the testicular germ-cell-dominant expression of CD46. PMID:11023821

  12. Evaluation of Reference Genes for Normalization of Gene Expression Using Quantitative RT-PCR under Aluminum, Cadmium, and Heat Stresses in Soybean.

    PubMed

    Gao, Mengmeng; Liu, Yaping; Ma, Xiao; Shuai, Qin; Gai, Junyi; Li, Yan

    2017-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used to analyze the relative gene expression level, however, the accuracy of qRT-PCR is greatly affected by the stability of reference genes, which is tissue- and environment- dependent. Therefore, choosing the most stable reference gene in a specific tissue and environment is critical to interpret gene expression patterns. Aluminum (Al), cadmium (Cd), and heat stresses are three important abiotic factors limiting soybean (Glycine max) production in southern China. To identify the suitable reference genes for normalizing the expression levels of target genes by qRT-PCR in soybean response to Al, Cd and heat stresses, we studied the expression stability of ten commonly used housekeeping genes in soybean roots and leaves under these three abiotic stresses, using five approaches, BestKeeper, Delta Ct, geNorm, NormFinder and RefFinder. We found TUA4 is the most stable reference gene in soybean root tips under Al stress. Under Cd stress, Fbox and UKN2 are the most stable reference genes in roots and leaves, respectively, while 60S is the most suitable reference gene when analyzing both roots and leaves together. For heat stress, TUA4 and UKN2 are the most stable housekeeping genes in roots and leaves, respectively, and UKN2 is the best reference gene for analysis of roots and leaves together. To validate the reference genes, we quantified the relative expression levels of six target genes that were involved in soybean response to Al, Cd or heat stresses, respectively. The expression patterns of these target genes differed between using the most and least stable reference genes, suggesting the selection of a suitable reference gene is critical for gene expression studies.

  13. Induction of CD69 expression by cagPAI-positive Helicobacter pylori infection

    PubMed Central

    Mori, Naoki; Ishikawa, Chie; Senba, Masachika

    2011-01-01

    AIM: To investigate and elucidate the molecular mechanism that regulates inducible expression of CD69 by Helicobacter pylori (H. pylori) infection. METHODS: The expression levels of CD69 in a T-cell line, Jurkat, primary human peripheral blood mononuclear cells (PBMCs), and CD4+ T cells, were assessed by immunohistochemistry, reverse transcription polymerase chain reaction, and flow cytometry. Activation of CD69 promoter was detected by reporter gene. Nuclear factor (NF)-κB activation in Jurkat cells infected with H. pylori was evaluated by electrophoretic mobility shift assay. The role of NF-κB signaling in H. pylori-induced CD69 expression was analyzed using inhibitors of NF-κB and dominant-negative mutants. The isogenic mutants with disrupted cag pathogenicity island (cagPAI) and virD4 were used to elucidate the role of cagPAI-encoding type IV secretion system and CagA in CD69 expression. RESULTS: CD69 staining was detected in mucosal lymphocytes and macrophages in specimens of patients with H. pylori-positive gastritis. Although cagPAI-positive H. pylori and an isogenic mutant of virD4 induced CD69 expression, an isogenic mutant of cagPAI failed to induce this in Jurkat cells. H. pylori also induced CD69 expression in PBMCs and CD4+ T cells. The activation of the CD69 promoter by H. pylori was mediated through NF-κB. Transfection of dominant-negative mutants of IκBs, IκB kinases, and NF-κB-inducing kinase inhibited H. pylori-induced CD69 activation. Inhibitors of NF-κB suppressed H. pylori-induced CD69 mRNA expression. CONCLUSION: The results suggest that H. pylori induces CD69 expression through the activation of NF-κB. cagPAI might be relevant in the induction of CD69 expression in T cells. CD69 in T cells may play a role in H. pylori-induced gastritis. PMID:21990950

  14. Fine Mapping and Functional Analysis of the Multiple Sclerosis Risk Gene CD6

    PubMed Central

    Swaminathan, Bhairavi; Cuapio, Angélica; Alloza, Iraide; Matesanz, Fuencisla; Alcina, Antonio; García-Barcina, Maria; Fedetz, Maria; Fernández, Óscar; Lucas, Miguel; Órpez, Teresa; Pinto-Medel, Mª Jesus; Otaegui, David; Olascoaga, Javier; Urcelay, Elena; Ortiz, Miguel A.; Arroyo, Rafael; Oksenberg, Jorge R.; Antigüedad, Alfredo; Tolosa, Eva; Vandenbroeck, Koen

    2013-01-01

    CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2nd SRCR domain with susceptibility to MS (P max(T) permutation = 1×10−4). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. – CD4+ naïve cells, P = 0.0001; CD8+ naïve cells, P<0.0001; CD4+ and CD8+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4+ and CD8+ T cells. PMID:23638056

  15. Molecular and functional characterization of CD133+ stem/progenitor cells infused in patients with end-stage liver disease reveals their interplay with stromal liver cells.

    PubMed

    Catani, Lucia; Sollazzo, Daria; Bianchi, Elisa; Ciciarello, Marilena; Antoniani, Chiara; Foscoli, Licia; Caraceni, Paolo; Giannone, Ferdinando Antonino; Baldassarre, Maurizio; Giordano, Rosaria; Montemurro, Tiziana; Montelatici, Elisa; D'Errico, Antonia; Andreone, Pietro; Giudice, Valeria; Curti, Antonio; Manfredini, Rossella; Lemoli, Roberto Massimo

    2017-12-01

    Growing evidence supports the therapeutic potential of bone marrow (BM)-derived stem/progenitor cells for end-stage liver disease (ESLD). We recently demonstrated that CD133 + stem/progenitor cell (SPC) reinfusion in patients with ESLD is feasible and safe and improve, albeit transiently, liver function. However, the mechanism(s) through which BM-derived SPCs may improve liver function are not fully elucidated. Here, we characterized the circulating SPCs compartment of patients with ESLD undergoing CD133 + cell therapy. Next, we set up an in vitro model mimicking SPCs/liver microenvironment interaction by culturing granulocyte colony-stimulating factor (G-CSF)-mobilized CD133 + and LX-2 hepatic stellate cells. We found that patients with ESLD show normal basal levels of circulating hematopoietic and endothelial progenitors with impaired clonogenic ability. After G-CSF treatment, patients with ESLD were capable to mobilize significant numbers of functional multipotent SPCs, and interestingly, this was associated with increased levels of selected cytokines potentially facilitating SPC function. Co-culture experiments showed, at the molecular and functional levels, the bi-directional cross-talk between CD133 + SPCs and human hepatic stellate cells LX-2. Human hepatic stellate cells LX-2 showed reduced activation and fibrotic potential. In turn, hepatic stellate cells enhanced the proliferation and survival of CD133 + SPCs as well as their endothelial and hematopoietic function while promoting an anti-inflammatory profile. We demonstrated that the interaction between CD133 + SPCs from patients with ESLD and hepatic stellate cells induces significant functional changes in both cellular types that may be instrumental for the improvement of liver function in cirrhotic patients undergoing cell therapy. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Comparison of the Gene Expression Profiles of Human Hematopoietic Stem Cells between Humans and a Humanized Xenograft Model.

    PubMed

    Matsuzawa, Hideyuki; Matsushita, Hiromichi; Yahata, Takashi; Tanaka, Masayuki; Ando, Kiyoshi

    2017-04-20

    The aim of this study is to evaluate the feasibility of NOD/Shi-scid-IL2Rγ null (NOG) mice transplanted with human CD34 + /CD38 - /Lin -/low hematopoietic cells from cord blood (CB) as an experimental model of the gene expression in human hematopoiesis. We compared the gene expressions of human CD34 + /CD38 - /Lin -/low cells from human bone marrow (BM) and in xenograft models. The microarray data revealed that 25 KEGG pathways were extracted from the comparison of human CD34 + /CD38 - /Lin -/low HSCs between CB and BM, and that 17 of them--which were mostly related to cellular survival, RNA metabolism and lymphoid development--were shared with the xenograft model. When the probes that were commonly altered in CD34 + /CD38 - /Lin -/low cells from both human and xenograft BM were analyzed, most of them, including the genes related hypoxia, hematopoietic differentiation, epigenetic modification, translation initiation, and RNA degradation, were downregulated. These alterations of gene expression suggest a reduced differentiation capacity and likely include key alterations of gene expression for settlement of CB CD34 + /CD38 - /Lin -/low cells in BM. Our findings demonstrate that the xenograft model of human CB CD34 + /CD38 - /Lin -/low cells using NOG mice was useful, at least in part, for the evaluation of the gene expression profile of human hematopoietic stem cells.

  17. Expression of tyrosine hydroxylase in CD4+ T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis.

    PubMed

    Wang, Xiao-Qin; Liu, Yan; Cai, Huan-Huan; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-12-01

    Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4 + T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4 + T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4 + T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4 + T cells of CIA mice. In splenic CD4 + T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4 + T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4 + T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4 + T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.

  18. CD34− Orbital Fibroblasts From Patients With Thyroid-Associated Ophthalmopathy Modulate TNF-α Expression in CD34+ Fibroblasts and Fibrocytes

    PubMed Central

    Lu, Yan; Atkins, Stephen J.; Fernando, Roshini; Trierweiler, Aaron; Mester, Tünde; Grisolia, Ana Beatriz Diniz; Mou, Pei; Novaes, Priscila; Smith, Terry J.

    2018-01-01

    Purpose Orbital fibroblasts from patients with Graves' disease (GD-OF) express many different cytokines when treated with bovine thyrotropin (bTSH). The present study aimed to determine why TNF-α cannot be induced by bTSH in GD-OF. Methods Fibrocytes and GD-OFs were cultivated from donors who were patients in a busy academic medical center practice. Real-time PCR, Western blot analysis, reporter gene assays, cell transfections, mRNA stability assays, ELISA, and flow cytometry were performed. Results We found that bTSH induces TNF-α dramatically in fibrocytes but is undetectable in GD-OF. The induction in fibrocytes is a consequence of increased TNF-α gene promoter activity and is independent of ongoing protein synthesis. It could be attenuated by dexamethasone and the IGF-1 receptor inhibiting antibody, teprotumumab. When separated into pure CD34+ OF and CD34− OF subsets, TNF-α mRNA became highly inducible by bTSH in CD34+ OF but remained undetectable in CD34− OF. Conditioned medium from CD34− OF inhibited induction of TNF-α in fibrocytes. Conclusions Our data indicate that CD34− OF appear to release a soluble(s) factor that downregulates expression and induction by bTSH of TNF-α in fibrocytes and their derivative CD34+ OF. We proffer that CD34− OF produce an unidentified modulatory factor that attenuates TNF-α expression in GD-OF and may do so in the TAO orbit. PMID:29847668

  19. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    PubMed

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  20. Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells.

    PubMed

    Fatimah, Simat Siti; Tan, Geok Chin; Chua, Kienhui; Fariha, Mohd Manzor Nur; Tan, Ay Eeng; Hayati, Abdul Rahman

    2013-03-01

    Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of stemness and angiogenic gene expressions of serial-passage HAMCs. HAMCs were isolated from human term placenta and cultured in serial passages in culture medium supplemented with 10% fetal bovine serum. Morphological analysis, growth kinetic and CFU-F assay of HAMCs were assessed. In vitro differentiation and the immunophenotype of HAMCs at P5 were also analyzed. Quantitative PCR was used to determine the stemness, angiogenic and endothelial gene expression of cultured HAMCs after serial passage. Cultured HAMCs displayed intermediate epitheloid-fibroblastoid morphology at an initial culture and the fibroblastoid features became more pronounced in later passages. They showed high clonogenic activity and faster proliferation at later passages with colony forming efficiency of 0.88%. HAMCs were successfully differentiated into adipocytes, osteocytes and neuron-like cells. Most HAMCs expressed CD9, CD44, CD73, CD90 and HLA-A,B,C but negligibly expressed CD31, CD34, CD45, CD117 and HLA-DR,DP,DQ. After serial passage, stemness genes Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4 and FZD-9 expressions significantly decreased. Of the angiogenic genes PECAM-1, bFGF, eNOS, VEGFR-2, VEGF, and vWF expressions also decreased significantly except angiopoietin-1 which significantly increased. No significant differences were observed in ABCG-2, BST-1, nestin, PGF and HGF expressions after serial passage. These results suggested that cultured HAMCs could be an alternative source of stem cells and may have the potential for angiogenesis and hence its use in stem-cell based therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia

    PubMed Central

    Fromer, Menachem; Roussos, Panos; Sieberts, Solveig K; Johnson, Jessica S; Kavanagh, David H; Perumal, Thanneer M; Ruderfer, Douglas M; Oh, Edwin C; Topol, Aaron; Shah, Hardik R; Klei, Lambertus L; Kramer, Robin; Pinto, Dalila; Gümüş, Zeynep H; Cicek, A. Ercument; Dang, Kristen K; Browne, Andrew; Lu, Cong; Xie, Lu; Readhead, Ben; Stahl, Eli A; Parvizi, Mahsa; Hamamsy, Tymor; Fullard, John F; Wang, Ying-Chih; Mahajan, Milind C; Derry, Jonathan M J; Dudley, Joel; Hemby, Scott E; Logsdon, Benjamin A; Talbot, Konrad; Raj, Towfique; Bennett, David A; De Jager, Philip L; Zhu, Jun; Zhang, Bin; Sullivan, Patrick F; Chess, Andrew; Purcell, Shaun M; Shinobu, Leslie A; Mangravite, Lara M; Toyoshiba, Hiroyoshi; Gur, Raquel E; Hahn, Chang-Gyu; Lewis, David A; Haroutunian, Vahram; Peters, Mette A; Lipska, Barbara K; Buxbaum, Joseph D; Schadt, Eric E; Hirai, Keisuke; Roeder, Kathryn; Brennand, Kristen J; Katsanis, Nicholas; Domenici, Enrico; Devlin, Bernie; Sklar, Pamela

    2016-01-01

    Over 100 genetic loci harbor schizophrenia associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of schizophrenia cases (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ~20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3, or SNAP91. Altering expression of FURIN, TSNARE1, or CNTN4 changes neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yields abnormal migration. Of 693 genes showing significant case/control differential expression, their fold changes are ≤ 1.33, and an independent cohort yields similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases. PMID:27668389

  2. Gene expression elucidates functional impact of polygenic risk for schizophrenia.

    PubMed

    Fromer, Menachem; Roussos, Panos; Sieberts, Solveig K; Johnson, Jessica S; Kavanagh, David H; Perumal, Thanneer M; Ruderfer, Douglas M; Oh, Edwin C; Topol, Aaron; Shah, Hardik R; Klei, Lambertus L; Kramer, Robin; Pinto, Dalila; Gümüş, Zeynep H; Cicek, A Ercument; Dang, Kristen K; Browne, Andrew; Lu, Cong; Xie, Lu; Readhead, Ben; Stahl, Eli A; Xiao, Jianqiu; Parvizi, Mahsa; Hamamsy, Tymor; Fullard, John F; Wang, Ying-Chih; Mahajan, Milind C; Derry, Jonathan M J; Dudley, Joel T; Hemby, Scott E; Logsdon, Benjamin A; Talbot, Konrad; Raj, Towfique; Bennett, David A; De Jager, Philip L; Zhu, Jun; Zhang, Bin; Sullivan, Patrick F; Chess, Andrew; Purcell, Shaun M; Shinobu, Leslie A; Mangravite, Lara M; Toyoshiba, Hiroyoshi; Gur, Raquel E; Hahn, Chang-Gyu; Lewis, David A; Haroutunian, Vahram; Peters, Mette A; Lipska, Barbara K; Buxbaum, Joseph D; Schadt, Eric E; Hirai, Keisuke; Roeder, Kathryn; Brennand, Kristen J; Katsanis, Nicholas; Domenici, Enrico; Devlin, Bernie; Sklar, Pamela

    2016-11-01

    Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.

  3. CD52, CD22, CD26, EG5 and IGF-1R expression in thymic malignancies.

    PubMed

    Remon, J; Abedallaa, N; Taranchon-Clermont, E; Bluthgen, V; Lindsay, C R; Besse, B; Thomas de Montpréville, V

    2017-06-01

    Thymic epithelial tumours are rare cancers for which new treatment options are required. Identification of putative predictive markers is important for developing clinical trials. We studied the expression of five putative predictive biomarkers, potentially actionable by approved experimental drugs. CD52, CD22, CD26, EG5, and IGF-1R expression were investigated by immunohistochemistry in formalin-fixed surgical samples of thymic epithelial tumour patients. All samples containing 10% positive epithelial tumour cells, independent of tumour cell intensity, were considered as positive. Correlation with histological subtype was performed. 106 surgical samples (89 thymomas, 12 thymic carcinoma, and 5 thymic neuroendocrine tumours) were evaluated. Overall, CD52, CD22, CD26, EG5 and IGF-1R expression was observed in 7%, 42%, 25%, 42% and 77% of samples, respectively. CD52 expression was more frequent in B2 and B3 thymoma. All TET subtypes stained for CD22, mainly AB thymoma (68%). CD26 expression also correlated with AB thymoma (68%), and A thymoma (50%) subtype, while IGFR1 was the most common marker expressed by thymic carcinoma samples (92%), followed by EG5 (60%). Only EG5 expression was significantly higher in thymic carcinomas than in thymomas (75% vs. 38%, p=0.026). Our data were consistent with a previous study of IGF-1R expression. Based on their expression, activity of agents targeting CD52, CD 22, CD26 and EG5 could be further explored in TET patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Differential regulation of CD44 expression by lipopolysaccharide (LPS) and TNF-alpha in human monocytic cells: distinct involvement of c-Jun N-terminal kinase in LPS-induced CD44 expression.

    PubMed

    Gee, Katrina; Lim, Wilfred; Ma, Wei; Nandan, Devki; Diaz-Mitoma, Francisco; Kozlowski, Maya; Kumar, Ashok

    2002-11-15

    Alterations in the regulation of CD44 expression play a critical role in modulating cell adhesion, migration, and inflammation. LPS, a bacterial cell wall component, regulates CD44 expression and may modulate CD44-mediated biological effects in monocytic cells during inflammation and immune responses. In this study, we show that in normal human monocytes, LPS and LPS-induced cytokines IL-10 and TNF-alpha enhance CD44 expression. To delineate the mechanism underlying LPS-induced CD44 expression, we investigated the role of the mitogen-activated protein kinases (MAPKs), p38, p42/44 extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) by using their specific inhibitors. We demonstrate the involvement, at least in part, of p38 MAPK in TNF-alpha-induced CD44 expression in both monocytes and promonocytic THP-1 cells. However, neither p38 nor p42/44 MAPKs were involved in IL-10-induced CD44 expression in monocytes. To further dissect the TNF-alpha and LPS-induced signaling pathways regulating CD44 expression independent of IL-10-mediated effects, we used IL-10 refractory THP-1 cells as a model system. Herein, we show that CD44 expression induced by the LPS-mediated pathway predominantly involved JNK activation. This conclusion was based on results derived by transfection of THP-1 cells with a dominant-negative mutant of stress-activated protein/extracellular signal-regulated kinase kinase 1, and by exposure of cells to JNK inhibitors dexamethasone and SP600125. All these treatments prevented CD44 induction in LPS-stimulated, but not in TNF-alpha-stimulated, THP-1 cells. Furthermore, we show that CD44 induction may involve JNK-dependent early growth response gene activation in LPS-stimulated monocytic cells. Taken together, these results suggest a predominant role of JNK in LPS-induced CD44 expression in monocytic cells.

  5. Association Study between an SNP in CD147 and Its Expression With Acute Coronary Syndrome in a Jiangsu Chinese Population.

    PubMed

    Yan, Jinchuan; Mao, Yu; Wang, Cuiping; Wang, Zhongqun

    2015-10-01

    CD147 is an important molecule in the inflammation and proteolysis process. This molecule crucially contributes to the initial and progression of atherosclerotic lesions. A single nucleotide polymorphism in CD147 gene, the rs8259 T/A in the 3'-untranslated region, is responsible for its expression in various cells. This study assessed whether the genetic variation rs8259 is associated with acute coronary syndrome (ACS) and CD147. A total of 943 ACS subjects and 439 stable angina subjects, and 851 controls were genotyped for rs8259 polymorphism by polymerase chain reaction restriction fragment length polymorphism and DNA-sequencing method. Plasma soluble CD147 (sCD147) level was measured by enzyme-linked immunosorbent assay. CD147 mRNA and protein expression in peripheral blood mononuclear cells were tested by real-time quantitative polymerase chain reaction and western blot, respectively. We found that TT genotype and T-allele frequency of CD147 rs8259 in ACS patients were much lower than the other patient groups. Significant difference was not observed between stable angina and controls. CD147 T allele was negatively related to ACS. ACS patients exhibited the highest CD147 expression in peripheral blood mononuclear cells and plasma sCD147 level. The plasma sCD147 levels in the culprit vessel were higher than those in the radial artery. In ACS patients, AA gene carriers had the highest CD147 levels, whereas TT gene carriers had the lowest CD147 levels. Linear regression analysis showed that genotypes and disease conditions contributed 49% to the change of the plasma CD147 level. These results suggested that the single nucleotide polymorphism of CD147 gene rs8259 T/A was associated with ACS susceptibility. Allele T gene may decrease the relative risk of suffering from ACS through downregulation of CD147 expression.

  6. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133(+) Hematopoietic Stem Cells to Osteoclasts.

    PubMed

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. In this experimental study, CD133(+) hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast.

  7. Transcription factor NF-kappaB regulates inducible CD83 gene expression in activated T lymphocytes.

    PubMed

    McKinsey, T A; Chu, Z; Tedder, T F; Ballard, D W

    2000-01-01

    The immunoglobulin superfamily member CD83 is expressed on the surface of mature dendritic cells that present processed antigens to T lymphocytes. In addition, T cells acquire CD83 expression following mitogenic stimulation in vitro. Here we report two lines of evidence demonstrating that this inducible lymphocyte response is genetically programmed by transcription factor NF-kappaB and contingent upon proteolytic breakdown of its cytoplasmic inhibitor IkappaBalpha. First, signal-dependent induction of CD83 mRNA expression is blocked in both transformed and primary T cells harboring a degradation-resistant mutant of IkappaBalpha that constitutively represses NF-kappaB. Second, as revealed in gel retardation assays, the IkappaBalpha constitutive repressor prevents the inducible interaction of NF-kappaB with consensus recognition sites identified in the CD83 promoter. Given that IkappaBalpha is functionally coupled to the T-cell antigen receptor, these findings suggest that the downstream transcription unit for CD83 is triggered by NF-kappaB during an adaptive immune response.

  8. Evidence of inflammatory immune signaling in chronic fatigue syndrome: A pilot study of gene expression in peripheral blood.

    PubMed

    Aspler, Anne L; Bolshin, Carly; Vernon, Suzanne D; Broderick, Gordon

    2008-09-26

    Genomic profiling of peripheral blood reveals altered immunity in chronic fatigue syndrome (CFS) however interpretation remains challenging without immune demographic context. The object of this work is to identify modulation of specific immune functional components and restructuring of co-expression networks characteristic of CFS using the quantitative genomics of peripheral blood. Gene sets were constructed a priori for CD4+ T cells, CD8+ T cells, CD19+ B cells, CD14+ monocytes and CD16+ neutrophils from published data. A group of 111 women were classified using empiric case definition (U.S. Centers for Disease Control and Prevention) and unsupervised latent cluster analysis (LCA). Microarray profiles of peripheral blood were analyzed for expression of leukocyte-specific gene sets and characteristic changes in co-expression identified from topological evaluation of linear correlation networks. Median expression for a set of 6 genes preferentially up-regulated in CD19+ B cells was significantly lower in CFS (p = 0.01) due mainly to PTPRK and TSPAN3 expression. Although no other gene set was differentially expressed at p < 0.05, patterns of co-expression in each group differed markedly. Significant co-expression of CD14+ monocyte with CD16+ neutrophil (p = 0.01) and CD19+ B cell sets (p = 0.00) characterized CFS and fatigue phenotype groups. Also in CFS was a significant negative correlation between CD8+ and both CD19+ up-regulated (p = 0.02) and NK gene sets (p = 0.08). These patterns were absent in controls. Dissection of blood microarray profiles points to B cell dysfunction with coordinated immune activation supporting persistent inflammation and antibody-mediated NK cell modulation of T cell activity. This has clinical implications as the CD19+ genes identified could provide robust and biologically meaningful basis for the early detection and unambiguous phenotyping of CFS.

  9. Nrf2-driven CD36 and HO-1 gene expression in circulating monocytes correlates with favourable clinical outcome in pregnancy-associated malaria.

    PubMed

    Aubouy, Agnès; Olagnier, David; Bertin, Gwladys; Ezinmegnon, Sem; Majorel, Clarisse; Mimar, Saliha; Massougbodji, Achille; Deloron, Philippe; Pipy, Bernard; Coste, Agnès

    2015-09-18

    Pregnancy-associated malaria (PAM) constitutes one of the most severe forms of malaria infection leading to fetal growth restriction and high risk of infant death. The severity of the pathology is largely attributed to the recruitment of monocytes and macrophages in the placenta which is evidenced by dysregulated inflammation found in placental blood. Importantly, CD36(+) monocytes/macrophages are also thought to participate in the tight control of the pro- and anti-inflammatory responses following Plasmodium detection through elimination of apoptotic cells and malaria-infected erythrocytes, internalization and recycling of oxidized forms of low-density lipoprotein and collaboration with TLR2 in pro-inflammatory response. Interestingly, previous work demonstrated that CD36 expression was upregulated on inflammatory macrophages following stimulation of the Nrf2 transcription factor, whilst the PPARγ pathway was inhibited and non-functional in the same inflammatory conditions. This current study examined the possible role of Nrf2-driven gene expression, CD36 and Haem-Oxygenase-1 (HO-1), in PAM clinical outcomes. Clinical data and biological samples including peripheral blood mononuclear cells were collected from 27 women presenting PAM. Polychromatic flow cytometry was used to characterize innate immune cell subpopulations and quantify CD36 protein expression level on monocytes. mRNA levels of CD36, PPARγ, Nrf2 and HO-1 were determined by qPCR and related to clinical outcomes. Finally, the capacity of monocytes to modulate CD36 expression upon rosiglitazone or sulforaphane treatment, two respective PPARγ or Nrf2 activators, was also investigated. The CD36 receptor, mostly expressed by CD14(+) circulating monocytes, statistically correlated with increased infant birth weights. Interestingly, mRNA levels of the transcription factor Nrf2 and the enzyme HO-1 also correlated with lower parasitaemia and increased infant birth weight, while PPARγ mRNA levels did not

  10. Microarray evaluation of gene expression profiles in inflamed and healthy human dental pulp: the role of IL1beta and CD40 in pulp inflammation.

    PubMed

    Gatta, V; Zizzari, V L; Dd ' Amico, V; Salini, L; D' Aurora, M; Franchi, S; Antonucci, I; Sberna, M T; Gherlone, E; Stuppia, L; Tetè, S

    2012-01-01

    Dental pulp undergoes a number of changes passing from healthy status to inflammation due to deep decay. These changes are regulated by several genes resulting differently expressed in inflamed and healthy dental pulp, and the knowledge of the processes underlying this differential expression is of great relevance in the identification of the pathogenesis of the disease. In this study, the gene expression profile of inflamed and healthy dental pulps were compared by microarray analysis, and data obtained were analyzed by Ingenuity Pathway Analysis (IPA) software. This analysis allows to focus on a variety of genes, typically expressed in inflamed tissues. The comparison analysis showed an increased expression of several genes in inflamed pulp, among which IL1β and CD40 resulted of particular interest. These results indicate that gene expression profile of human dental pulp in different physiological and pathological conditions may become an useful tool for improving our knowledge about processes regulating pulp inflammation.

  11. CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity.

    PubMed

    Straub, Melanie; Drecoll, Enken; Pfarr, Nicole; Weichert, Wilko; Langer, Rupert; Hapfelmeier, Alexander; Götz, Carolin; Wolff, Klaus-Dietrich; Kolk, Andreas; Specht, Katja

    2016-03-15

    Immunomodulatory therapies, targeting the immune checkpoint receptor-ligand complex PD-1/PD-L1 have shown promising results in early phase clinical trials in solid malignancies, including carcinomas of the head and neck. In this context, PD-L1 protein expression has been proposed as a potentially valuable predictive marker. In the present study, expression of PD-L1 and PD-1 was evaluated by immunohistochemistry in 80 patients with predominantly HPV-negative oral squamous cell carcinomas and associated nodal metastasis. In addition, CD274/PD-L1 gene copy number status was assessed by fluorescence in situ hybridization analysis. PD-L1 expression was detected in 36/80 (45%) cases and concordance of PD-L1 expression in primary tumor and corresponding nodal metastasis was present in only 20/28 (72%) cases. PD-1 expression was found in tumor-infiltrating lymphocytes (TILs) but not in tumor cells. CD274/PD-L1 gene amplification was detected in 19% of cases, with high level PD-L1 amplification present in 12/80 (15%), and low level amplification in 3/80 (4%). Interestingly, CD274/PD-L1 gene amplification was associated with positive PD-L1 immunostaining in only 73% of cases. PD-L1 copy number status was concordant in primary tumor and associated metastases. Clinically, PD-L1 tumor immunopositivity was associated with a higher risk for nodal metastasis at diagnosis, overall tumor related death und recurrence. Based on our findings we propose to include PD-L1 copy number status in addition to protein status in screening programs for future clinical trials with immunotherapeutic strategies targeting the PD-1/PD-L1 axis.

  12. CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity

    PubMed Central

    Straub, Melanie; Drecoll, Enken; Pfarr, Nicole; Weichert, Wilko; Langer, Rupert; Hapfelmeier, Alexander; Götz, Carolin; Wolff, Klaus-Dietrich; Kolk, Andreas; Specht, Katja

    2016-01-01

    Immunomodulatory therapies, targeting the immune checkpoint receptor-ligand complex PD-1/PD-L1 have shown promising results in early phase clinical trials in solid malignancies, including carcinomas of the head and neck. In this context, PD-L1 protein expression has been proposed as a potentially valuable predictive marker. In the present study, expression of PD-L1 and PD-1 was evaluated by immunohistochemistry in 80 patients with predominantly HPV-negative oral squamous cell carcinomas and associated nodal metastasis. In addition, CD274/PD-L1 gene copy number status was assessed by fluorescence in situ hybridization analysis. PD-L1 expression was detected in 36/80 (45%) cases and concordance of PD-L1 expression in primary tumor and corresponding nodal metastasis was present in only 20/28 (72%) cases. PD-1 expression was found in tumor-infiltrating lymphocytes (TILs) but not in tumor cells. CD274/PD-L1 gene amplification was detected in 19% of cases, with high level PD-L1 amplification present in 12/80 (15%), and low level amplification in 3/80 (4%). Interestingly, CD274/PD-L1 gene amplification was associated with positive PD-L1 immunostaining in only 73% of cases. PD-L1 copy number status was concordant in primary tumor and associated metastases. Clinically, PD-L1 tumor immunopositivity was associated with a higher risk for nodal metastasis at diagnosis, overall tumor related death und recurrence. Based on our findings we propose to include PD-L1 copy number status in addition to protein status in screening programs for future clinical trials with immunotherapeutic strategies targeting the PD-1/PD-L1 axis. PMID:26918453

  13. Lymphocyte gene expression signatures from patients and mouse models of hereditary hemochromatosis reveal a function of HFE as a negative regulator of CD8+ T-lymphocyte activation and differentiation in vivo.

    PubMed

    Costa, Mónica; Cruz, Eugénia; Oliveira, Susana; Benes, Vladimir; Ivacevic, Tomi; Silva, Maria João; Vieira, Inês; Dias, Francisco; Fonseca, Sónia; Gonçalves, Marta; Lima, Margarida; Leitão, Catarina; Muckenthaler, Martina U; Pinto, Jorge; Porto, Graça

    2015-01-01

    Abnormally low CD8+ T-lymphocyte numbers is characteristic of some patients with hereditary hemochromatosis (HH), a MHC-linked disorder of iron overload. Both environmental and genetic components are known to influence CD8+ T-lymphocyte homeostasis but the role of the HH associated protein HFE is still insufficiently understood. Genome-wide expression profiling was performed in peripheral blood CD8+ T lymphocytes from HH patients selected according to CD8+ T-lymphocyte numbers and from Hfe-/- mice maintained either under normal or high iron diet conditions. In addition, T-lymphocyte apoptosis and cell cycle progression were analyzed by flow cytometry in HH patients. HH patients with low CD8+ T-lymphocyte numbers show a differential expression of genes related to lymphocyte differentiation and maturation namely CCR7, LEF1, ACTN1, NAA50, P2RY8 and FOSL2, whose expression correlates with the relative proportions of naïve, central and effector memory subsets. In addition, expression levels of LEF1 and P2RY8 in memory cells as well as the proportions of CD8+ T cells in G2/M cell cycle phase are significantly different in HH patients compared to controls. Hfe-/- mice do not show alterations in CD8+ T-lymphocyte numbers but differential gene response patterns. We found an increased expression of S100a8 and S100a9 that is most pronounced in high iron diet conditions. Similarly, CD8+ T lymphocytes from HH patients display higher S100a9 expression both at the mRNA and protein level. Altogether, our results support a role for HFE as a negative regulator of CD8+ T-lymphocyte activation. While the activation markers S100a8 and S100a9 are strongly increased in CD8+ T cells from both, Hfe-/- mice and HH patients, a differential profile of genes related to differentiation/maturation of CD8+ T memory cells is evident in HH patients only. This supports the notion that HFE contributes, at least in part, to the generation of low peripheral blood CD8+ T lymphocytes in HH.

  14. Lymphocyte Gene Expression Signatures from Patients and Mouse Models of Hereditary Hemochromatosis Reveal a Function of HFE as a Negative Regulator of CD8+ T-Lymphocyte Activation and Differentiation In Vivo

    PubMed Central

    Costa, Mónica; Cruz, Eugénia; Oliveira, Susana; Benes, Vladimir; Ivacevic, Tomi; Silva, Maria João; Vieira, Inês; Dias, Francisco; Fonseca, Sónia; Gonçalves, Marta; Lima, Margarida; Leitão, Catarina; Muckenthaler, Martina U.; Pinto, Jorge; Porto, Graça

    2015-01-01

    Abnormally low CD8+ T-lymphocyte numbers is characteristic of some patients with hereditary hemochromatosis (HH), a MHC-linked disorder of iron overload. Both environmental and genetic components are known to influence CD8+ T-lymphocyte homeostasis but the role of the HH associated protein HFE is still insufficiently understood. Genome-wide expression profiling was performed in peripheral blood CD8+ T lymphocytes from HH patients selected according to CD8+ T-lymphocyte numbers and from Hfe -/- mice maintained either under normal or high iron diet conditions. In addition, T-lymphocyte apoptosis and cell cycle progression were analyzed by flow cytometry in HH patients. HH patients with low CD8+ T-lymphocyte numbers show a differential expression of genes related to lymphocyte differentiation and maturation namely CCR7, LEF1, ACTN1, NAA50, P2RY8 and FOSL2, whose expression correlates with the relative proportions of naïve, central and effector memory subsets. In addition, expression levels of LEF1 and P2RY8 in memory cells as well as the proportions of CD8+ T cells in G2/M cell cycle phase are significantly different in HH patients compared to controls. Hfe -/- mice do not show alterations in CD8+ T-lymphocyte numbers but differential gene response patterns. We found an increased expression of S100a8 and S100a9 that is most pronounced in high iron diet conditions. Similarly, CD8+ T lymphocytes from HH patients display higher S100a9 expression both at the mRNA and protein level. Altogether, our results support a role for HFE as a negative regulator of CD8+ T-lymphocyte activation. While the activation markers S100a8 and S100a9 are strongly increased in CD8+ T cells from both, Hfe -/- mice and HH patients, a differential profile of genes related to differentiation/maturation of CD8+ T memory cells is evident in HH patients only. This supports the notion that HFE contributes, at least in part, to the generation of low peripheral blood CD8+ T lymphocytes in HH. PMID

  15. Primary Central Nervous System T-Cell Lymphoma With Aberrant Expression of CD20 and CD79a: A Diagnostic Pitfall.

    PubMed

    Gupta, Neha; Nasim, Mansoor; Spitzer, Silvia G; Zhang, Xinmin

    2017-10-01

    Primary central nervous system T-cell lymphoma (PCNSTCL) is rare, accounting for 2% of CNS lymphomas. We report the first case of PCNSTCL with aberrant expression of CD20 and CD79a in an 81-year-old man with a left periventricular brain mass. A biopsy revealed dense lymphoid infiltrate consisting of medium-sized cells in a background of gliosis and many histiocytes. The lymphoid cells were positive for CD2, CD3, CD7, CD8, T-cell intracellular antigen-1, granzyme B, CD20, and CD79a and negative for CD4, CD5, PAX-5, OCT-2, BOB-1, human herpes virus-8, and Epstein-Barr virus-encoded small RNAs. Molecular studies revealed clonal TCR-β and TCR-γ gene rearrangements and negative immunoglobulin gene rearrangements. The patient was treated with chemotherapy (vincristine and methotrexate) and rituximab, but he died 1 month after the diagnosis. This is a unique case that emphasizes the use of a multimodal approach, including a broad immunohistochemical panel and molecular studies in lineage determination for lymphomas with ambiguous phenotype.

  16. Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium

    PubMed Central

    Cartularo, Laura; Laulicht, Freda; Sun, Hong; Kluz, Thomas; Freedman, Jonathan H.; Costa, Max

    2015-01-01

    Cadmium (Cd) is a toxic and carcinogenic metal naturally occurring in the earth’s crust. A common route of human exposure is via diet and cadmium accumulates in the liver. The effects of Cd exposure on gene expression in human hepatocellular carcinoma (HepG2) cells were examined in this study. HepG2 cells were acutely-treated with 0.1, 0.5, or 1.0 μM Cd for 24 hours; or chronically-treated with 0.01, 0.05, or 0.1 μM Cd for three weeks and gene expression analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST Arrays. Acute and chronic exposures significantly altered the expression of 333 and 181 genes, respectively. The genes most upregulated by acute exposure included several metallothioneins. Downregulated genes included the monooxygenase CYP3A7, involved in drug and lipid metabolism. In contrast, CYP3A7 was upregulated by chronic Cd exposure, as was DNAJB9, an anti-apoptotic J protein. Genes downregulated following chronic exposure included the transcriptional regulator early growth response protein 1. Ingenuity Pathway Analysis revealed that the top networks altered by acute exposure were lipid metabolism, small molecule biosynthesis, and cell morphology, organization, and development; while top networks altered by chronic exposure were organ morphology, cell cycle, cell signaling, and renal and urological diseases/cancer. Many of the dysregulated genes play important roles in cellular growth, proliferation, and apoptosis, and may be involved in carcinogenesis. In addition to gene expression changes, HepG2 cells treated with cadmium for 24 hours indicated a reduction in global levels of histone methylation and acetylation that persisted 72 hours post-treatment. PMID:26314618

  17. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells.

    PubMed

    Vincent, Per Henrik; Benedikz, Eirikur; Uhlén, Per; Hovatta, Outi; Sundström, Erik

    2017-06-15

    Nonpluripotent neural progenitor cells (NPCs) derived from the human fetal central nervous system were found to express a number of messenger RNA (mRNA) species associated with pluripotency, such as NANOG, REX1, and OCT4. The expression was restricted to small subpopulations of NPCs. In contrast to pluripotent stem cells, there was no coexpression of the pluripotency-associated genes studied. Although the expression of these genes rapidly declined during the in vitro differentiation of NPCs, we found no evidence that the discrete expression was associated with the markers of multipotent neural stem cells (CD133 + /CD24 lo ), the capacity of sphere formation, or high cell proliferation rates. The rate of cell death among NPCs expressing pluripotency-associated genes was also similar to that of other NPCs. Live cell imaging showed that NANOG- and REX1-expressing NPCs continuously changed morphology, as did the nonexpressing cells. Depletion experiments showed that after the complete removal of the subpopulations of NANOG- and REX1-expressing NPCs, the expression of these genes appeared in other NPCs within a few days. The percentage of NANOG- and REX1-expressing cells returned to that observed before depletion. Our results are best explained by a model in which there is stochastic transient expression of pluripotency-associated genes in proliferating NPCs.

  18. MicroRNA-133 mediates cardiac diseases: Mechanisms and clinical implications.

    PubMed

    Liu, Yi; Liang, Yan; Zhang, Jin-Fang; Fu, Wei-Ming

    2017-05-15

    MicroRNAs (miRNAs) belong to the family of small non-coding RNAs that mediate gene expression by post-transcriptional regulation. Increasing evidence have demonstrated that miR-133 is enriched in muscle tissues and myogenic cells, and its aberrant expression could induce the occurrence and development of cardiac disorders, such as cardiac hypertrophy, heart failure, etc. In this review, we summarized the regulatory roles of miR-133 in cardiac disorders and the underlying mechanisms, which suggest that miR-133 may be a potential diagnostic and therapeutic tool for cardiac disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Differentiation and activation of equine monocyte-derived dendritic cells are not correlated with CD206 or CD83 expression

    PubMed Central

    Moyo, Nathifa A; Marchi, Emanuele; Steinbach, Falko

    2013-01-01

    Dendritic cells (DC) are the main immune mediators inducing primary immune responses. DC generated from monocytes (MoDC) are a model system to study the biology of DC in vitro, as they represent inflammatory DC in vivo. Previous studies on the generation of MoDC in horses indicated that there was no distinct difference between immature and mature DC and that the expression profile was distinctly different from humans, where CD206 is expressed on immature MoDC whereas CD83 is expressed on mature MoDC. Here we describe the kinetics of equine MoDC differentiation and activation, analysing both phenotypic and functional characteristics. Blood monocytes were first differentiated with equine granulocyte–macrophage colony-stimulating factor and interleukin-4 generating immature DC (iMoDC). These cells were further activated with a cocktail of cytokines including interferon-γ) but not CD40 ligand to obtain mature DC (mMoDC). To determine the expression of a broad range of markers for which no monoclonal antibodies were available to analyse the protein expression, microarray and quantitative PCR analysis were performed to carry out gene expression analysis. This study demonstrates that equine iMoDC and mMoDC can be distinguished both phenotypically and functionally but the expression pattern of some markers including CD206 and CD83 is dissimilar to the human system. PMID:23461413

  20. Reduction of CD147 surface expression on primary T cells leads to enhanced cell proliferation.

    PubMed

    Biegler, Brian; Kasinrerk, Watchara

    2012-12-01

    CD147 is a ubiquitously expressed membrane glycoprotein that has numerous functional associations in health and disease. However, the molecular mechanisms by which CD147 participates in these processes are unclear. Establishing physiologically relevant silencing of CD147 in primary T cells could provide clues essential for elucidating some aspects of CD147 biology. To date, achieving the knockdown of CD147 in primary T cells has remained elusive. Utilizing RNA interference and the Nucleofector transfection system, we were able to reduce the expression of CD147 in primary T cells. Comparison of basic functions, such as proliferation and CD25 expression, were then made between control populations and populations with reduced expression. Up-regulation of CD147 was found upon T-cell activation, indicating a role in T-cell responses. To better understand the possible importance of this up-regulation, we knocked down the expression of CD147 using RNA interference. When compared to control populations the CD147 knockdown populations exhibited increased proliferation. This alteration of cell proliferation, however, was not linked to a change in CD25 expression. We achieved reduction of CD147 surface expression in primary T cells by siRNA-mediated gene silencing. Our results point to CD147 having a possible negative regulatory role in T cell-mediated immune responses.

  1. Insight into the expression variation of metal-responsive genes in the seedling of date palm (Phoenix dactylifera).

    PubMed

    Chaâbene, Zayneb; Rorat, Agnieszka; Rekik Hakim, Imen; Bernard, Fabien; Douglas, Grubb C; Elleuch, Amine; Vandenbulcke, Franck; Mejdoub, Hafedh

    2018-04-01

    Phytochelatin synthase and metallothionein gene expressions were monitored via qPCR in order to investigate the molecular mechanisms involved in Cd and Cr detoxification in date palm (Phoenix dactylifera). A specific reference gene validation procedure using BestKeeper, NormFinder and geNorm programs allowed selection of the three most stable reference genes in a context of Cd or Cr contamination among six reference gene candidates, namely elongation factor α1, actin, aldehyde dehydrogenase, SAND family, tubulin 6 and TaTa box binding protein. Phytochelatin synthase (pcs) and metallothionein (mt) encoding gene expression were induced from the first days of exposure. At low Cd stress (0.02 mM), genes were still up-regulated until 60th day of exposure. At the highest metal concentrations, however, pcs and mt gene expressions decreased. pcs encoding gene was significantly up-regulated under Cr exposure, and was more responsive to increasing Cr concentration than mt encoding gene. Moreover, exposure to Cd or Cr influenced clearly seed germination and hypocotyls elongation. Thus, the results have proved that both analyzed genes participate in metal detoxification and their expression is regulated at transcriptional level in date palm subjected to Cr and Cd stress. Consequently, variations of expression of mt and pcs genes may serve as early-warning biomarkers of metal stress in this species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Involvement of selenoprotein P and GPx4 gene expression in cadmium-induced testicular pathophysiology in rat.

    PubMed

    Messaoudi, Imed; Banni, Mohamed; Saïd, Lamia; Saïd, Khaled; Kerkeni, Abdelhamid

    2010-10-06

    To investigate the effect of co-exposure to cadmium (Cd) and selenium (Se) on selenoprotein P (SelP) and phospholipid hydroperoxide glutathione peroxidase (GPx4) gene expression in testis and to evaluate their possible involvement in Cd-induced testicular pathophysiology, male rats received either tap water, Cd or Cd+Se in their drinking water for 5 weeks. Cd exposure caused a down-regulation of SelP and GPx4 gene expression and a significant decrease in plasma and testicular concentrations of Se. These changes were accompanied by decreased plasma testosterone level, sperm count and motility, GSH content, protein-bound sulfhydryl concentration (PSH), enzymatic activities of catalase (CAT) and glutathione peroxidase (GSH-Px) as well as by increased glutathione-S-transferase (GST) activity, lipid peroxidation (as malondialdehyde, MDA) and proteins carbonyls (PC). The decrease of testicular SelP and GPx4 gene expression under Cd influence was significantly restored in Cd+Se group. Co-treatment with Cd and Se also totally reversed the Cd-induced depletion of Se, decrease in plasma testosterone level and partially restored Cd-induced oxidative stress and decrease in sperm count and motility. Taken together, these data suggest that down-regulation of SelP and GPx4 gene expression induces plasma and testicular Se depletion leading, at least in part, to Cd-induced testicular pathophysiology. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Targeted salinomycin delivery with EGFR and CD133 aptamers based dual-ligand lipid-polymer nanoparticles to both osteosarcoma cells and cancer stem cells.

    PubMed

    Chen, Fangyi; Zeng, Yibin; Qi, Xiaoxia; Chen, Yanchao; Ge, Zhe; Jiang, Zengxin; Zhang, Xinchao; Dong, Yinmei; Chen, Huaiwen; Yu, Zuochong

    2018-06-10

    We previously developed salinomycin (sali)-entrapped nanoparticles labeled with CD133 aptamers which could efficiently eliminate CD133 + osteosarcoma cancer stem cells (CSCs). However, sufficient evidences suggest that the simultaneous targeting both CSCs and cancer cells is pivotal in achieving preferable cancer therapeutic efficacy, due to the spontaneous conversion between cancer cells and CSCs. We hereby constructed sali-entrapped lipid-polymer nanoparticles labeled with CD133 and EGFR aptamers (CESP) to target both osteosarcoma cells and CSCs. The cytotoxicity of CESP in osteosarcoma cells and CSCs was superior to that of single targeting or nontargeted sali-loaded nanoparticles. Administration of CESP in vivo showed the best efficacy in inhibiting tumor growth than other controls in osteosarcoma-bearing mice. Thus, CESP was demonstrated to be capable of efficiently targeting both osteosarcoma CSCs and cancer cells, and it represents an effective potential approach to treat osteosarcoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. R-spondin1/Wnt-enhanced Ascl2 autoregulation controls the self-renewal of colorectal cancer progenitor cells.

    PubMed

    Ye, Jun; Liu, Shanxi; Shang, Yangyang; Chen, Haoyuan; Wang, Rongquan

    2018-06-25

    The Wnt signaling pathway controls stem cell identity in the intestinal epithelium and cancer stem cells (CSCs). The transcription factor Ascl2 (Wnt target gene) is fate decider of intestinal cryptic stem cells and colon cancer stem cells. It is unclear how Wnt signaling is translated into Ascl2 expression and keeping the self-renewal of CRC progenitor cells. We showed that the exogenous Ascl2 in colorectal cancer (CRC) cells activated the endogenous Ascl2 expression via a direct autoactivatory loop, including Ascl2 binding to its own promoter and further transcriptional activation. Higher Ascl2 expression in human CRC cancerous tissues led to greater enrichment in Ascl2 immunoprecipitated DNA within the Ascl2 promoter in the CRC cancerous sample than the peri-cancerous mucosa. Ascl2 binding to its own promoter and inducing further transcriptional activation of the Ascl2 gene was predominant in the CD133 + CD44 + CRC population. R-spondin1/Wnt activated Ascl2 expression dose-dependently in the CD133 + CD44 + CRC population, but not in the CD133 - CD44 - CRC population, which was caused by differences in Ascl2 autoregulation under R-spondin1/Wnt activation. R-spondin1/Wnt treatment in the CD133 + CD44 + or CRC CD133 - CD44 - populations exerted a different pattern of stemness maintenance, which was defined by alterations of the mRNA levels of stemness-associated genes, the protein expression levels (Bmi1, C-myc, Oct-4 and Nanog) and tumorsphere formation. The results indicated that Ascl2 autoregulation formed a transcriptional switch that was enhanced by Wnt signaling in the CD133 + CD44 + CRC population, thus conferring their self-renewal.

  5. Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartularo, Laura; Laulicht, Freda; Sun, Hong

    Cadmium (Cd) is a toxic and carcinogenic metal naturally occurring in the Earth's crust. A common route of human exposure is via diet and cadmium accumulates in the liver. The effects of Cd exposure on gene expression in human hepatocellular carcinoma (HepG2) cells were examined in this study. HepG2 cells were acutely-treated with 0.1, 0.5, or 1.0 μM Cd for 24 h; or chronically-treated with 0.01, 0.05, or 0.1 μM Cd for three weeks and gene expression analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST Arrays. Acute and chronic exposures significantly altered the expression of 333 and 181more » genes, respectively. The genes most upregulated by acute exposure included several metallothioneins. Downregulated genes included the monooxygenase CYP3A7, involved in drug and lipid metabolism. In contrast, CYP3A7 was upregulated by chronic Cd exposure, as was DNAJB9, an anti-apoptotic J protein. Genes downregulated following chronic exposure included the transcriptional regulator early growth response protein 1. Ingenuity Pathway Analysis revealed that the top networks altered by acute exposure were lipid metabolism, small molecule biosynthesis, cell morphology, organization, and development; while top networks altered by chronic exposure were organ morphology, cell cycle, cell signaling, and renal and urological diseases/cancer. Many of the dysregulated genes play important roles in cellular growth, proliferation, and apoptosis, and may be involved in carcinogenesis. In addition to gene expression changes, HepG2 cells treated with cadmium for 24 h indicated a reduction in global levels of histone methylation and acetylation that persisted 72 h post-treatment. - Highlights: • A common route of human exposure to the carcinogenic metal cadmium is via diet. • HepG2 cells were treated acutely or chronically with varying doses of cadmium. • Gene expression analysis was performed using Affymetrix Human Gene 1.0 Arrays. • Acute and chronic exposures

  6. CD25 expression status improves prognostic risk classification in AML independent of established biomarkers: ECOG phase 3 trial, E1900

    PubMed Central

    Gönen, Mithat; Sun, Zhuoxin; Figueroa, Maria E.; Patel, Jay P.; Abdel-Wahab, Omar; Racevskis, Janis; Ketterling, Rhett P.; Fernandez, Hugo; Rowe, Jacob M.; Tallman, Martin S.; Melnick, Ari; Levine, Ross L.

    2012-01-01

    We determined the prognostic relevance of CD25 (IL-2 receptor-α) expression in 657 patients (≤ 60 years) with de novo acute myeloid leukemia (AML) treated in the Eastern Cooperative Oncology Group trial, E1900. We identified CD25POS myeloblasts in 87 patients (13%), of whom 92% had intermediate-risk cytogenetics. CD25 expression correlated with expression of stem cell antigen CD123. In multivariate analysis, controlled for prognostic baseline characteristics and daunorubicin dose, CD25POS patients had inferior complete remission rates (P = .0005) and overall survival (P < .0001) compared with CD25NEG cases. In a subset of 396 patients, we integrated CD25 expression with somatic mutation status to determine whether CD25 impacted outcome independent of prognostic mutations. CD25 was positively correlated with internal tandem duplications in FLT3 (FLT3-ITD), DNMT3A, and NPM1 mutations. The adverse prognostic impact of FLT3-ITDPOS AML was restricted to CD25POS patients. CD25 expression improved AML prognostication independent of integrated, cytogenetic and mutational data, such that it reallocated 11% of patients with intermediate-risk disease to the unfavorable-risk group. Gene expression analysis revealed that CD25POS status correlated with the expression of previously reported leukemia stem cell signatures. We conclude that CD25POS status provides prognostic relevance in AML independent of known biomarkers and is correlated with stem cell gene-expression signatures associated with adverse outcome in AML. PMID:22855599

  7. The hematopoietic cell-specific transcription factor PU.1 is critical for expression of CD11c.

    PubMed

    Yashiro, Takuya; Kasakura, Kazumi; Oda, Yoshihito; Kitamura, Nao; Inoue, Akihito; Nakamura, Shusuke; Yokoyama, Hokuto; Fukuyama, Kanako; Hara, Mutsuko; Ogawa, Hideoki; Okumura, Ko; Nishiyama, Makoto; Nishiyama, Chiharu

    2017-02-01

    PU.1 is a hematopoietic cell-specific transcription factor belonging to the Ets family, which plays an important role in the development of dendritic cells (DCs). CD11c (encoded by Itgax) is well established as a characteristic marker of hematopoietic lineages including DCs. In the present study, we analyzed the role of PU.1 (encoded by Spi-1) in the expression of CD11c. When small interfering RNA (siRNA) for Spi-1 was introduced into bone marrow-derived DCs (BMDCs), the mRNA level and cell surface expression of CD11c were dramatically reduced. Using reporter assays, the TTCC sequence at -56/-53 was identified to be critical for PU.1-mediated activation of the promoter. An EMSA showed that PU.1 directly bound to this region. ChIP assays demonstrated that a significant amount of PU.1 bound to this region on chromosomal DNA in BMDCs, which was decreased in LPS-stimulated BMDCs in accordance with the reduced levels of mRNAs of Itgax and Spi-1, and the histone acetylation degree. Enforced expression of exogenous PU.1 induced the expression of the CD11c protein on the cell surface of mast cells, whereas control transfectants rarely expressed CD11c. Quantitative RT-PCR also showed that the expression of a transcription factor Irf4, which is a partner molecule of PU.1, was reduced in PU.1-knocked down BMDCs. IRF4 transactivated the Itgax gene in a synergistic manner with PU.1. Taken together, these results indicate that PU.1 functions as a positive regulator of CD11c gene expression by directly binding to the Itgax promoter and through transactivation of the Irf4 gene. © The Japanese Society for Immunology. 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta.

    PubMed

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R; Lesinski, Andrea N; Asselin, Caroline N; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T; Tanzi, Rudolph E

    2013-05-22

    The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer's disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APP(Swe)/PS1(ΔE9)/CD33(-/-) mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats.

    PubMed

    Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Fadaka, Adewale Oluwaseun; Olatunji, Babawale Peter; Akomolafe, Seun

    2017-09-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes have been reported to exert anticholinesterase potential with limited information on how they regulate acetylcholinesterase (AChE) gene expression. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA gene expression level in cadmium (Cd)-treated rats. Furthermore, in vitro effect of different concentrations of curcumin (1-5μg/mL) on rat cerebral cortex AChE activity was assessed. Animals were divided into six groups (n=6): group 1 serve as control (without Cd) and receive saline/vehicle, group 2 receive saline plus curcumin at 25mg/kg, group 3 receive saline plus curcumin 50mg/kg, group 4 receive Cd plus vehicle, group 5 receive Cd plus curcumin at 25mg/kg and group 6 receive Cd plus curcumin at 50mg/kg. Rats received Cd (2.5mg/kg) and curcumin (25 and 50mg/kg, respectively) by oral gavage for 7days. Acetylcholinesterase activity was measured by Ellman's method and AChE expression was carried out by a quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay. We observed that acute administration of Cd increased acetylcholinesterase activity and in addition caused a significant (P<0.05) increase in AChE mRNA levels in whole cerebral cortex when compared to control group. However, co-treatment with curcumin inhibited AChE activity and alters AChE mRNA levels when compared to Cd-treated group. In addition, curcumin inhibits rat cerebral cortex AChE activity in vitro. In conclusion, curcumin exhibit anti-acetylcholinesterase activity and suppressed AChE mRNA gene expression level in Cd exposed rats, thus providing some biochemical and molecular evidence on the therapeutic effect of this turmeric-derived compound in treating neurological disorders including Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Comprehensive analysis of differentially expressed profiles of lncRNAs and construction of miR-133b mediated ceRNA network in colorectal cancer.

    PubMed

    Wu, Hao; Wu, Runliu; Chen, Miao; Li, Daojiang; Dai, Jing; Zhang, Yi; Gao, Kai; Yu, Jun; Hu, Gui; Guo, Yihang; Lin, Changwei; Li, Xiaorong

    2017-03-28

    Growing evidence suggests that long non-coding RNAs (lncRNAs) play a key role in tumorigenesis. However, the mechanism remains largely unknown. Thousands of significantly dysregulated lncRNAs and mRNAs were identified by microarray. Furthermore, a miR-133b-meditated lncRNA-mRNA ceRNA network was revealed, a subset of which was validated in 14 paired CRC patient tumor/non-tumor samples. Gene set enrichment analysis (GSEA) results demonstrated that lncRNAs ENST00000520055 and ENST00000535511 shared KEGG pathways with miR-133b target genes. We used microarrays to survey the lncRNA and mRNA expression profiles of colorectal cancer and para-cancer tissues. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to explore the functions of the significantly dysregulated genes. An innovate method was employed that combined analyses of two microarray data sets to construct a miR-133b-mediated lncRNA-mRNA competing endogenous RNAs (ceRNA) network. Quantitative RT-PCR analysis was used to validate part of this network. GSEA was used to predict the potential functions of these lncRNAs. This study identifies and validates a new method to investigate the miR-133b-mediated lncRNA-mRNA ceRNA network and lays the foundation for future investigation into the role of lncRNAs in colorectal cancer.

  11. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    PubMed

    Ke, Po-Yuan; Chen, Steve S-L

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  12. Active RNA Replication of Hepatitis C Virus Downregulates CD81 Expression

    PubMed Central

    Ke, Po-Yuan; Chen, Steve S.-L.

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81. PMID:23349980

  13. Expression of HES and HEY genes in infantile hemangiomas.

    PubMed

    Adepoju, Omotinuwe; Wong, Alvin; Kitajewski, Alex; Tong, Karen; Boscolo, Elisa; Bischoff, Joyce; Kitajewski, Jan; Wu, June K

    2011-08-11

    Infantile hemangiomas (IHs) are the most common benign tumor of infancy, yet their pathogenesis is poorly understood. IHs are believed to originate from a progenitor cell, the hemangioma stem cell (HemSC). Recent studies by our group showed that NOTCH proteins and NOTCH ligands are expressed in hemangiomas, indicating Notch signaling may be active in IHs. We sought to investigate downstream activation of Notch signaling in hemangioma cells by evaluating the expression of the basic HLH family proteins, HES/HEY, in IHs. HemSCs and hemangioma endothelial cells (HemECs) are isolated from freshly resected hemangioma specimens. Quantitative RT-PCR was performed to probe for relative gene transcript levels (normalized to beta-actin). Immunofluorescence was performed to evaluate protein expression. Co-localization studies were performed with CD31 (endothelial cells) and NOTCH3 (peri-vascular, non-endothelial cells). HemSCs were treated with the gamma secretase inhibitor (GSI) Compound E, and gene transcript levels were quantified with real-time PCR. HEY1, HEYL, and HES1 are highly expressed in HemSCs, while HEY2 is highly expressed in HemECs. Protein expression evaluation by immunofluorescence confirms that HEY2 is expressed by HemECs (CD31+ cells), while HEY1, HEYL, and HES1 are more widely expressed and mostly expressed by perivascular cells of hemangiomas. Inhibition of Notch signaling by addition of GSI resulted in down-regulation of HES/HEY genes. HES/HEY genes are expressed in IHs in cell type specific patterns; HEY2 is expressed in HemECs and HEY1, HEYL, HES1 are expressed in HemSCs. This pattern suggests that HEY/HES genes act downstream of Notch receptors that function in distinct cell types of IHs. HES/HEY gene transcripts are decreased with the addition of a gamma-secretase inhibitor, Compound E, demonstrating that Notch signaling is active in infantile hemangioma cells.

  14. Gene expression of stem cells at different stages of ontological human development.

    PubMed

    Allegra, Adolfo; Altomare, Roberta; Curcio, Patrizia; Santoro, Alessandra; Lo Monte, Attilio I; Mazzola, Sergio; Marino, Angelo

    2013-10-01

    To compare multipotent mesenchymal stem cells (MSCs) obtained from chorionic villi (CV), amniotic fluid (AF) and placenta, with regard to their phenotype and gene expression, in order to understand if MSCs derived from different extra-embryonic tissues, at different stages of human ontological development, present distinct stemness characteristics. MSCs obtained from 30 samples of CV, 30 of AF and 10 placentas (obtained from elective caesarean sections) were compared. MSCs at second confluence cultures were characterized by immunophenotypic analysis with flow cytometry using FACS CANTO II. The expression of the genes Oct-4 (Octamer-binding transcription factor 4, also known as POU5F1), Sox-2 (SRY box-containing factor 2), Nanog, Rex-1 (Zfp-42) and Pax-6 (Paired Box Protein-6), was analyzed. Real-time quantitative PCR was performed by ABI Prism 7700, after RNA isolation and retro-transcription in cDNA. Statistical analysis was performed using non-parametric test Kruskal-Wallis (XLSTAT 2011) and confirmed by REST software, to estimate fold changes between samples. Each gene was defined differentially expressed if p-value was <0.05. Cells from all samples were negative for haematopoietic antigens CD45, CD34, CD117 and CD33 and positive for the typical MSCs antigens CD13, CD73 and CD90. Nevertheless, MSCs from AF and placentas showed different fluorescence intensity, reflecting the heterogeneity of these tissues. The gene expression of OCT-4, SOX-2, NANOG was not significantly different among the three groups. In AF, REX-1 and PAX-6 showed a higher expression in comparison to CV. MSCs of different extra-embryonic tissues showed no differences in immunophenotype when collected from second confluence cultures. The expression of OCT-4, NANOG and SOX-2 was not significantly different, demonstrating that all fetal sources are suitable for obtaining MSCs. These results open new possibilities for the clinical use of MSCs derived from easily accessible sources, in order to

  15. Regulation of zebrafish heart regeneration by miR-133.

    PubMed

    Yin, Viravuth P; Lepilina, Alexandra; Smith, Ashley; Poss, Kenneth D

    2012-05-15

    Zebrafish regenerate cardiac muscle after severe injuries through the activation and proliferation of spared cardiomyocytes. Little is known about factors that control these events. Here we investigated the extent to which miRNAs regulate zebrafish heart regeneration. Microarray analysis identified many miRNAs with increased or reduced levels during regeneration. miR-133, a miRNA with known roles in cardiac development and disease, showed diminished expression during regeneration. Induced transgenic elevation of miR-133 levels after injury inhibited myocardial regeneration, while transgenic miR-133 depletion enhanced cardiomyocyte proliferation. Expression analyses indicated that cell cycle factors mps1, cdc37, and PA2G4, and cell junction components cx43 and cldn5, are miR-133 targets during regeneration. Using pharmacological inhibition and EGFP sensor interaction studies, we found that cx43 is a new miR-133 target and regeneration gene. Our results reveal dynamic regulation of miRNAs during heart regeneration, and indicate that miR-133 restricts injury-induced cardiomyocyte proliferation. Copyright © 2012. Published by Elsevier Inc.

  16. Regulation of zebrafish heart regeneration by miR-133

    PubMed Central

    Yin, Viravuth P.; Lepilina, Alexandra; Smith, Ashley; Poss, Kenneth D.

    2012-01-01

    Zebrafish regenerate cardiac muscle after severe injuries through the activation and proliferation of spared cardiomyocytes. Little is known about factors that control these events. Here we investigated the extent to which miRNAs regulate zebrafish heart regeneration. Microarray analysis identified many miRNAs with increased or reduced levels during regeneration. miR-133, a miRNA with known roles in cardiac development and disease, showed diminished expression during regeneration. Induced transgenic elevation of miR-133 levels after injury inhibited myocardial regeneration, while transgenic miR-133 depletion enhanced cardiomyocyte proliferation. Expression analyses indicated that cell cycle factors mps1, cdc37, and PA2G4, and cell junction components cx43 and cldn5, are miR-133 targets during regeneration. With pharmacological inhibition and EGFP sensor interaction studies, we demonstrated that cx43 is a new miR-133 target and regeneration gene. Our results reveal dynamic regulation of miRNAs during heart regeneration, and indicate that miR-133 restricts injury-induced cardiomyocyte proliferation. PMID:22374218

  17. A Response Surface Methodology Approach to Investigate the Effect of Sulfur Dioxide, pH, and Ethanol on DbCD and DbVPR Gene Expression and on the Volatile Phenol Production in Dekkera/Brettanomyces bruxellensis CBS2499.

    PubMed

    Valdetara, Federica; Fracassetti, Daniela; Campanello, Alessia; Costa, Carlo; Foschino, Roberto; Compagno, Concetta; Vigentini, Ileana

    2017-01-01

    Dekkera/Brettanomyces bruxellensis , the main spoilage yeast in barrel-aged wine, metabolize hydroxycinnamic acids into off-flavors, namely ethylphenols. Recently, both the enzymes involved in this transformation, the cinnamate decarboxylase ( DbCD ) and the vinylphenol reductase ( DbVPR ), have been identified. To counteract microbial proliferation in wine, sulfur dioxide (SO 2 ) is used commonly to stabilize the final product, but limiting its use is advised to preserve human health and boost sustainability in winemaking. In the present study, the influence of SO 2 was investigated in relation with pH and ethanol factors on the expression of DbCD and DbVPR genes and volatile phenol production in D. bruxellensis CBS2499 strain under different model wines throughout a response surface methodology (RSM). In order to ensure an exact quantification of DbCD and DbVPR expression, an appropriate housekeeping gene was sought among DbPDC , DbALD , DbEF , DbACT , and DbTUB genes by GeNorm and Normfinder algorithms. The latter gene showed the highest expression stability and it was chosen as the reference housekeeping gene in qPCR assays. Even though SO 2 could not be commented as main factor because of its statistical irrelevance on the response of DbCD gene, linear interactions with pH and ethanol concurred to define a significant effect ( p < 0.05) on its expression. The DbCD gene was generally downregulated respect to a permissive growth condition (0 mg/L mol. SO 2 , pH 4.5 and 5% v/v ethanol); the combination of the factor levels that maximizes its expression (0.83-fold change) was calculated at 0.25 mg/L mol. SO 2 , pH 4.5 and 12.5% (v/v) ethanol. On the contrary, DbVPR expression was not influenced by main factors or by their interactions; however, its expression is maximized (1.80-fold change) at the same conditions calculated for DbCD gene. While no linear interaction between factors influenced the off-flavor synthesis, ethanol and pH produced a significant effect

  18. A Response Surface Methodology Approach to Investigate the Effect of Sulfur Dioxide, pH, and Ethanol on DbCD and DbVPR Gene Expression and on the Volatile Phenol Production in Dekkera/Brettanomyces bruxellensis CBS2499

    PubMed Central

    Valdetara, Federica; Fracassetti, Daniela; Campanello, Alessia; Costa, Carlo; Foschino, Roberto; Compagno, Concetta; Vigentini, Ileana

    2017-01-01

    Dekkera/Brettanomyces bruxellensis, the main spoilage yeast in barrel-aged wine, metabolize hydroxycinnamic acids into off-flavors, namely ethylphenols. Recently, both the enzymes involved in this transformation, the cinnamate decarboxylase (DbCD) and the vinylphenol reductase (DbVPR), have been identified. To counteract microbial proliferation in wine, sulfur dioxide (SO2) is used commonly to stabilize the final product, but limiting its use is advised to preserve human health and boost sustainability in winemaking. In the present study, the influence of SO2 was investigated in relation with pH and ethanol factors on the expression of DbCD and DbVPR genes and volatile phenol production in D. bruxellensis CBS2499 strain under different model wines throughout a response surface methodology (RSM). In order to ensure an exact quantification of DbCD and DbVPR expression, an appropriate housekeeping gene was sought among DbPDC, DbALD, DbEF, DbACT, and DbTUB genes by GeNorm and Normfinder algorithms. The latter gene showed the highest expression stability and it was chosen as the reference housekeeping gene in qPCR assays. Even though SO2 could not be commented as main factor because of its statistical irrelevance on the response of DbCD gene, linear interactions with pH and ethanol concurred to define a significant effect (p < 0.05) on its expression. The DbCD gene was generally downregulated respect to a permissive growth condition (0 mg/L mol. SO2, pH 4.5 and 5% v/v ethanol); the combination of the factor levels that maximizes its expression (0.83-fold change) was calculated at 0.25 mg/L mol. SO2, pH 4.5 and 12.5% (v/v) ethanol. On the contrary, DbVPR expression was not influenced by main factors or by their interactions; however, its expression is maximized (1.80-fold change) at the same conditions calculated for DbCD gene. While no linear interaction between factors influenced the off-flavor synthesis, ethanol and pH produced a significant effect as individual

  19. Immunologic and gene expression profiles of spontaneous canine oligodendrogliomas.

    PubMed

    Filley, Anna; Henriquez, Mario; Bhowmik, Tanmoy; Tewari, Brij Nath; Rao, Xi; Wan, Jun; Miller, Margaret A; Liu, Yunlong; Bentley, R Timothy; Dey, Mahua

    2018-05-01

    Malignant glioma (MG), the most common primary brain tumor in adults, is extremely aggressive and uniformly fatal. Several treatment strategies have shown significant preclinical promise in murine models of glioma; however, none have produced meaningful clinical responses in human patients. We hypothesize that introduction of an additional preclinical animal model better approximating the complexity of human MG, particularly in interactions with host immune responses, will bridge the existing gap between these two stages of testing. Here, we characterize the immunologic landscape and gene expression profiles of spontaneous canine glioma and evaluate its potential for serving as such a translational model. RNA in situ hybridization, flowcytometry, and RNA sequencing were used to evaluate immune cell presence and gene expression in healthy and glioma-bearing canines. Similar to human MGs, canine gliomas demonstrated increased intratumoral immune cell infiltration (CD4+, CD8+ and CD4+Foxp3+ T cells). The peripheral blood of glioma-bearing dogs also contained a relatively greater proportion of CD4+Foxp3+ regulatory T cells and plasmacytoid dendritic cells. Tumors were strongly positive for PD-L1 expression and glioma-bearing animals also possessed a greater proportion of immune cells expressing the immune checkpoint receptors CTLA-4 and PD-1. Analysis of differentially expressed genes in our canine populations revealed several genetic changes paralleling those known to occur in human disease. Naturally occurring canine glioma has many characteristics closely resembling human disease, particularly with respect to genetic dysregulation and host immune responses to tumors, supporting its use as a translational model in the preclinical testing of prospective anti-glioma therapies proven successful in murine studies.

  20. Characterization of four CD18 mutants in leucocyte adhesion deficient (LAD) patients with differential capacities to support expression and function of the CD11/CD18 integrins LFA-1, Mac-1 and p150,95

    PubMed Central

    Shaw, J M; Al-Shamkhani, A; Boxer, L A; Buckley, C D; Dodds, A W; Klein, N; Nolan, S M; Roberts, I; Roos, D; Scarth, S L; Simmons, D L; Tan, S M; Law, S K A

    2001-01-01

    Leucocyte adhesion deficiency (LAD) is a hereditary disorder caused by mutations in the CD18 (β2 integrin) gene. Four missense mutations have been identified in three patients. CD18(A270V) supports, at a diminished level, CD11b/CD18 (Mac-1, αMβ2 integrin) and CD11c/CD18 (p150,95, αXβ2 integrin) expression and function but not CD11a/CD18 (LFA-1, αLβ2 integrin) expression. Conversely, CD18(A341P) supports a limited level of expression and function of CD11a/CD18, but not of the other two CD11/CD18 antigens. CD18(C590R) and CD18(R593C) show a decreasing capacity to associate with the CD11a, CD11c and CD11b subunits. Transfectants expressing the CD11a/CD18 with the C590R and R593C mutations are more adhesive than transfectants expressing wild-type LFA-1, and express the reporter epitope of the monoclonal antibody 24 constitutively. Thus, the four mutations affect CD18 differently in its capacities to support CD11/CD18 expression and adhesion. These results not only provide a biochemical account for the clinical diversity of patients with leucocyte adhesion deficiency, but also offer novel insights into the structural basis of interaction between the α and β subunits, which is an integral component in our understanding of integrin-mediated adhesion and its regulation. PMID:11703376

  1. Association of Glioblastoma Multiforme Stem Cell Characteristics, Differentiation, and Microglia Marker Genes with Patient Survival

    PubMed Central

    Balz, Ellen; Herzog, Susann; Plantera, Laura; Vogelgesang, Silke; Seifert, Carolin; Bialke, Angela; Venugopal, Chitra; Singh, Sheila K.; Hoffmann, Wolfgang; Schroeder, Henry W. S.

    2018-01-01

    Patients with glioblastoma multiforme (GBM) are at high risk to develop a relapse despite multimodal therapy. Assumedly, glioma stem cells (GSCs) are responsible for treatment resistance of GBM. Identification of specific GSC markers may help to develop targeted therapies. Here, we performed expression analyses of stem cell (ABCG2, CD44, CD95, CD133, ELF4, Nanog, and Nestin) as well as differentiation and microglia markers (GFAP, Iba1, and Sparc) in GBM compared to nonmalignant brain. Furthermore, the role of these proteins for patient survival and their expression in LN18 stem-like neurospheres was analyzed. At mRNA level, ABCG2 and CD95 were reduced, GFAP was unchanged; all other investigated markers were increased in GBM. At protein level, CD44, ELF4, Nanog, Nestin, and Sparc were elevated in GBM, but only CD133 and Nestin were strongly associated with survival time. In addition, ABCG2 and GFAP expression was decreased in LN18 neurospheres whereas CD44, CD95, CD133, ELF4, Nanog, Nestin, and Sparc were upregulated. Altogether only CD133 and Nestin were associated with survival rates. This raises concerns regarding the suitability of the other target structures as prognostic markers, but makes both CD133 and Nestin candidates for GBM therapy. Nevertheless, a search for more specific marker proteins is urgently needed. PMID:29535786

  2. MyomiR-133 regulates brown fat differentiation through Prdm16.

    PubMed

    Trajkovski, Mirko; Ahmed, Kashan; Esau, Christine C; Stoffel, Markus

    2012-12-01

    Brown adipose tissue (BAT) uses the chemical energy of lipids and glucose to produce heat, a function that can be induced by cold exposure or diet. A key regulator of BAT is the gene encoding PR domain containing 16 (Prdm16), whose expression can drive differentiation of myogenic and white fat precursors to brown adipocytes. Here we show that after cold exposure, the muscle-enriched miRNA-133 is markedly downregulated in BAT and subcutaneous white adipose tissue (SAT) as a result of decreased expression of its transcriptional regulator Mef2. miR-133 directly targets and negatively regulates PRDM16, and inhibition of miR-133 or Mef2 promotes differentiation of precursors from BAT and SAT to mature brown adipocytes, thereby leading to increased mitochondrial activity. Forced expression of miR-133 in brown adipogenic conditions prevents the differentiation to brown adipocytes in both BAT and SAT precursors. Our results point to Mef2 and miR-133 as central upstream regulators of Prdm16 and hence of brown adipogenesis in response to cold exposure in BAT and SAT.

  3. [LincRNA-ROR functions as a ceRNA to regulate Oct4, Sox2, and Nanog expression by sponging miR-145 and its effect on biologic characteristics of colonic cancer stem cells].

    PubMed

    Yan, Z Y; Sun, X C

    2018-04-08

    Objective: To investigate the impact of lincRNA-ROR, a ceRNA by binding miR-145 on the expression of the downstream genes Oct4, Sox2 and Nanog, and related biological characteristics of colon cancer stem cells, and to elucidate the clinical significance of this molecular regulatory network. Methods: Fifty-two cases of colorectal cancer tissue and adjacent tissue were collected at Nanyang City Central Hospital and Nanyang Second Hospital, Henan Province, from 2014 to 2016. Real-time quantitative polymerase chain reaction (qPCR) was used to detect the expression of lincRNA-ROR and miR-145 in colorectal cancer tissue and isolated colon cancer cells. The correlation between the expression of lincRNA-ROR, miR-145 and the clinicopathologic features of colon cancer was performed. CD44(-)CD133(-) and CD44(+) CD133(+) cells were isolated from SW1116 by using flow cytometry. The expression of CD44, CD133, Oct4, Sox2, Nanog, lincRNA-ROR and miR-145 in cells were detected by qPCR. The relationship between lincRNA-ROR, miR-145, Oct4, Sox2 and Nanog was analyzed by bioinformatics, dual luciferase reporter assay, qPCR and Western blot. The effects of silencing lincRNA-ROR on the proliferation and chemosensitivity of colon cancer stem cells were detected by MTT, colony formation. Results: LincRNA-ROR was frequently up-regulated and inversely correlated with miR-145 down-regulation in the colon cancer specimens( P <0.05). LincRNA-ROR was related to tumor size, lymph node involvement and distant metastasis( P <0.05), and miR-145 was found related to tumor size and tumor location( P <0.05). CD44(+) CD133(+) cells were successfully isolated from SW1116 by flow cytometry. The levels of CD44, CD133, Oct4, Sox2, Nanog, lincRNA-ROR in CD44(+) CD133(+) cells were significantly increased, while miR-145 was decreased compared with CD44(-)CD133(-)cells( P <0.05). The levels of CD44, CD133, lnc-ROR in CD44(+) CD133(+) cells were significantly reduced upon cell adherence, while miR-145 was

  4. Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.

    PubMed

    Mishra, Amrendra; Sriram, Harshini; Chandarana, Pinal; Tanavde, Vivek; Kumar, Rekha V; Gopinath, Ashok; Govindarajan, Raman; Ramaswamy, S; Sadasivam, Subhashini

    2018-05-01

    The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44 + Lin - and CD44 - Lin - subpopulations were successfully isolated using fluorescence-activated cell sorting, and good-quality RNA was obtained from 14 such sorted pairs. Libraries from five pairs were sequenced and the results analysed using bioinformatics tools. Reverse transcription quantitative polymerase chain reaction was performed to experimentally validate the differential expression of selected candidate genes identified from the transcriptome sequencing in the same 5 and an additional 9 tumours. CD44 was expressed on the surface of poorly differentiated tumour cells, and within the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma samples, its messenger RNA levels were higher in tumours compared to normal. Transcriptomics revealed that 102 genes were upregulated and 85 genes were downregulated in CD44 + Lin - compared to CD44 - Lin - cells in at least 3 of the 5 tumours sequenced. The upregulated genes included those involved in immune regulation, while the downregulated genes were enriched for genes involved in cell adhesion. Decreased expression of PCDH18, MGP, SPARCL1 and KRTDAP was confirmed by reverse transcription quantitative polymerase chain reaction. Lower expression of

  5. Identification, evolution and expression of a CD36 homolog in the basal chordate amphioxus Branchiostoma japonicum.

    PubMed

    Zhang, Min; Xu, Yanping; Li, Linfang; Wei, Shulei; Zhang, Shicui; Liu, Zhenhui

    2013-02-01

    CD36, as one member of scavenger receptor class B (SRB) family, is a transmembrane glycoprotein and has been associated with diverse normal physiological processes and pathological conditions. However, little is known about it in amphioxus, a model organism for insights into the origin and evolution of vertebrates. In this paper, CD36 homologs in amphioxus were identified. Evolutionary analysis suggested that amphioxus BfCD36F-a/b, which were more similar to vertebrate CD36, might represent the primitive form before the splitting of CD36, SRB1 and SRB2 genes during evolution. Then the BjCD36F-a cDNA was cloned from Branchiostoma japonicum using RACE technology. Real-time PCR and in situ hybridization revealed the expression of BjCD36F-a in all the tissues detected with the highest expression in the hepatic caecum. The BjCD36F-a expression was obviously up-regulated after feeding and down-regulated during fasting, indicating a role of BjCD36F-a in feeding regulation. Besides, the up-regulation expression of BjCD36F-a transcripts was also found after either Lipoteichoic acid (LTA) treatment in the BjCD36F-a-transfected FG cells or Escherichia coli (E. coli) challenge in vivo, implying an immune-related function for BjCD36F-a. Collectively, we identify and characterize a conserved gene that is important in the fundamental process of immune and nutritional regulation. These are the first such data in amphioxus, laying a foundation for further study of their physiological functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Alpha-Tocopheryl phosphate induces VEGF expression via CD36/PI3Kgamma in THP-1 monocytes

    USDA-ARS?s Scientific Manuscript database

    The CD36 scavenger receptor binds several ligands and mediates ligand uptake and ligand-dependent signal transduction and gene expression, events that may involve CD36 internalization. Here we show that CD36 internalization in THP-1 monocytes is triggered by alpha-tocopherol (alpha-T) and more stron...

  7. Involvement of microRNA-133 and -29 in cardiac disturbances in diabetic ovariectomized rats.

    PubMed

    Habibi, Parisa; Alihemmati, Alireza; Nasirzadeh, Mohammadreza; Yousefi, Hadi; Habibi, Mohammadrasoul; Ahmadiasl, Nasser

    2016-11-01

    Menopause and diabetes obviously increase the risk of cardiovascular disease in women. The aims of the present study were to evaluate the effects of ovariectomy in type 2 diabetes on the histology and expression of miRNA-29, miRNA-133, IGF-1 and Bcl-2 genes and Bcl-2 protein and caspase 3 activity in the hearts of female rats. Forty Female Wistar rats were divided into four groups: control, sham, ovariectomized (OVX), and ovariectomized with type 2 diabetes (OVX.D). After the 8-week experiment, the histological evaluation of the heart tissue was performed using H&E staining and PAS analysis, and cardiac expression of miRNA-29, miRNA-133, IGF-1, and Bcl-2 were evaluated using real-time PCR, and Bcl-2 protein and caspase 3 activity were evaluated using Western blot and ELISA. Ovariectomy significantly decreased miRNA-29, miRNA-133, IGF-1, and BCL-2 expression and Bcl-2 protein and increased caspase 3 activity in the heart compared to sham animals group (P<0.05). Type 2 diabetes in ovariectomized rats markedly decreased expression of miRNA-29, miRNA-133, IGF-1, BCL-2 genes, and Bcl-2 protein, and increased caspase 3 activity and reduced collagen and fibroblast tissue and glycogen granule deposition in relation to OVX group (P<0.05). Our findings suggest that type 2 diabetes and menopause synergically could enhance the cardiac fibrosis through dysregulation of miRNA-29, miRNA-133, IGF-1, and Bcl-2 genes expression and Bcl-2 protein and upregulation of caspase 3 activity.

  8. CD40 expression in Wehi-164 cell line

    PubMed Central

    Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-01-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body’s defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system. PMID:20496113

  9. CD40 expression in Wehi-164 cell line.

    PubMed

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-07-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body's defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system.

  10. Expression of CTLA-4 (CD152) on human medullary CD4+ thymocytes.

    PubMed

    Castan, J; Klauenberg, U; Kalmár, P; Fleischer, B; Bröker, B M

    1998-06-01

    CTLA-4 (CD152) is a T cell surface receptor with sequence homology to the co-stimulatory molecule CD28. The molecule, which is essential for the inhibitory regulation of the immune response, becomes transiently expressed on mature T cells after stimulation in vitro. In situ, CTLA-4+ T cells are enriched in the light zones of the germinal centers in human peripheral lymphoid organs. In this study we have studied expression of CTLA-4 in human thymus in situ. CTLA-4 was expressed on about one third of CD4+/CD8-/CD1- medullary thymocytes. CTLA-4 was acquired by a subset of immature (CD1+) thymocytes and lost from the mature (CD1-) subpopulation within 48 h of cell culture, suggesting that the expression on medullary thymocytes is transient. The demonstration of CTLA-4 on a substantial subpopulation of mature CD4+ thymocytes adds a new dimension to the understanding of this important molecule. When contemplating application of anti-CTLA-4 for therapy its potential influence on T cell maturation has to be taken into account.

  11. Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease

    PubMed Central

    Radom-Aizik, Shlomit; Zaldivar, Frank P.; Haddad, Fadia; Cooper, Dan M.

    2014-01-01

    Physical activity can prevent and/or attenuate atherosclerosis, a disease clearly linked to inflammation. Paradoxically, even brief exercise induces a stress response and increases inflammatory cells like monocytes in the circulation. We hypothesized that exercise would regulate the expression of genes, gene pathways, and microRNAs in monocytes in a way that could limit pro-inflammatory function and drive monocytes to prevent, rather than contribute to, atherosclerosis. Twelve healthy men (22-30 yr old) performed ten 2-min bouts of cycle ergometer exercise at a constant work equivalent to an average of 82% of maximum O2 consumption interspersed with 1-min rest. Blood was drawn before and immediately after the exercise. Monocytes were isolated from peripheral blood mononuclear cells. Flow cytometry was used to identify monocyte subtypes. We used Affymetrix U133+2.0 arrays for gene expression and Agilent Human miRNA V2 Microarray for miRNAs. A stringent statistical approach (FDR < 0.05) was used to determine that exercise significantly altered the expression of 894 annotated genes and 19 miRNAs. We found distinct gene alterations that were likely to direct monocytes in an anti-inflammatory, anti-atherogenic pathway, including the downregulation of monocyte TNF, TLR4, and CD36 genes and the upregulation of EREG and CXCR4. Exercise significantly altered a number of microRNAs that likely influence monocytes involvement in vascular health. Exercise leads to a novel genomic profile of circulating monocytes, which appears to promote cardiovascular health despite the overall stress response. PMID:24423463

  12. Nipbl and mediator cooperatively regulate gene expression to control limb development.

    PubMed

    Muto, Akihiko; Ikeda, Shingo; Lopez-Burks, Martha E; Kikuchi, Yutaka; Calof, Anne L; Lander, Arthur D; Schilling, Thomas F

    2014-09-01

    Haploinsufficiency for Nipbl, a cohesin loading protein, causes Cornelia de Lange Syndrome (CdLS), the most common "cohesinopathy". It has been proposed that the effects of Nipbl-haploinsufficiency result from disruption of long-range communication between DNA elements. Here we use zebrafish and mouse models of CdLS to examine how transcriptional changes caused by Nipbl deficiency give rise to limb defects, a common condition in individuals with CdLS. In the zebrafish pectoral fin (forelimb), knockdown of Nipbl expression led to size reductions and patterning defects that were preceded by dysregulated expression of key early limb development genes, including fgfs, shha, hand2 and multiple hox genes. In limb buds of Nipbl-haploinsufficient mice, transcriptome analysis revealed many similar gene expression changes, as well as altered expression of additional classes of genes that play roles in limb development. In both species, the pattern of dysregulation of hox-gene expression depended on genomic location within the Hox clusters. In view of studies suggesting that Nipbl colocalizes with the mediator complex, which facilitates enhancer-promoter communication, we also examined zebrafish deficient for the Med12 Mediator subunit, and found they resembled Nipbl-deficient fish in both morphology and gene expression. Moreover, combined partial reduction of both Nipbl and Med12 had a strongly synergistic effect, consistent with both molecules acting in a common pathway. In addition, three-dimensional fluorescent in situ hybridization revealed that Nipbl and Med12 are required to bring regions containing long-range enhancers into close proximity with the zebrafish hoxda cluster. These data demonstrate a crucial role for Nipbl in limb development, and support the view that its actions on multiple gene pathways result from its influence, together with Mediator, on regulation of long-range chromosomal interactions.

  13. Oxygen and tissue culture affect placental gene expression.

    PubMed

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. miR-133 inhibits pituitary tumor cell migration and invasion via down-regulating FOXC1 expression.

    PubMed

    Wang, D S; Zhang, H Q; Zhang, B; Yuan, Z B; Yu, Z K; Yang, T; Zhang, S Q; Liu, Y; Jia, X X

    2016-03-24

    Many studies have shown that microRNA (miR)-133 functions as a tumor suppressor in a variety of metastatic cancers, including breast cancer, gastric cancer, and liver fibrosis. However, the influence of miR-133 on pituitary tumor malignancy has not yet been reported. The purpose of this study was to explore the role of miR-133 in pituitary tumor cell migration and invasive ability and the molecular mechanisms involved. Our findings suggest that in pituitary adenoma cell lines, through direct targeting and negative control of forkhead box C1 (FOXC1), miR-133 can inhibit pituitary adenoma cell migration and invasion. In addition, epithelial-to-mesenchymal transition can be induced by miR-133. Additionally, a negative correlation was found between FOXC1 and miR-133 expression when comparing their expression levels between cancerous tissue and adjacent normal tissue. This suggests that miR-133 can inhibit cell migration and invasion by directly targeting FOXC1, implying that miR-133 could be a potential therapeutic target for treatment of invasive pituitary adenoma.

  15. MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts.

    PubMed

    Yang, Meiling; Wei, Yuanyuan; Jiang, Feng; Wang, Yanli; Guo, Xiaojiao; He, Jing; Kang, Le

    2014-02-01

    Phenotypic plasticity is ubiquitous and primarily controlled by interactions between environmental and genetic factors. The migratory locust, a worldwide pest, exhibits pronounced phenotypic plasticity, which is a population density-dependent transition that occurs between the gregarious and solitary phases. Genes involved in dopamine synthesis have been shown to regulate the phase transition of locusts. However, the function of microRNAs in this process remains unknown. In this study, we report the participation of miR-133 in dopamine production and the behavioral transition by negatively regulating two critical genes, henna and pale, in the dopamine pathway. miR-133 participated in the post-transcriptional regulation of henna and pale by binding to their coding region and 3' untranslated region, respectively. miR-133 displayed cellular co-localization with henna/pale in the protocerebrum, and its expression in the protocerebrum was negatively correlated with henna and pale expression. Moreover, miR-133 agomir delivery suppressed henna and pale expression, which consequently decreased dopamine production, thus resulting in the behavioral shift of the locusts from the gregarious phase to the solitary phase. Increasing the dopamine content could rescue the solitary phenotype, which was induced by miR-133 agomir delivery. Conversely, miR-133 inhibition increased the expression of henna and pale, resulting in the gregarious-like behavior of solitary locusts; this gregarious phenotype could be rescued by RNA interference of henna and pale. This study shows the novel function and modulation pattern of a miRNA in phenotypic plasticity and provides insight into the underlying molecular mechanisms of the phase transition of locusts.

  16. Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues.

    PubMed

    Abbott, Barbara D; Wood, Carmen R; Watkins, Andrew M; Tatum-Gibbs, Katoria; Das, Kaberi P; Lau, Christopher

    2012-07-01

    PPARs regulate metabolism and can be activated by environmental contaminants such as perfluorooctanoic acid (PFOA). PFOA induces neonatal mortality, developmental delay, and growth deficits in mice. Studies in genetically altered mice showed that PPARα is required for PFOA-induced developmental toxicity. In this study, pregnant CD-1 mice were dosed orally from GD1 to 17 with water or 5mg PFOA/kg to examine PPARα, PPARβ, and PPARγ expression and profile the effects of PFOA on PPAR-regulated genes. Prenatal and postnatal liver, heart, adrenal, kidney, intestine, stomach, lung, spleen, and thymus were collected at various developmental ages. RNA and protein were examined using qPCR and Western blot analysis. PPAR expression varied with age in all tissues, and in liver PPARα and PPARγ expression correlated with nutritional changes as the pups matured. As early as GD14, PFOA affected expression of genes involved in lipid and glucose homeostatic control. The metabolic disruption produced by PFOA may contribute to poor postnatal survival and persistent weight deficits of CD-1 mouse neonates. Published by Elsevier Inc.

  17. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias.

    PubMed

    Mullighan, C G; Kennedy, A; Zhou, X; Radtke, I; Phillips, L A; Shurtleff, S A; Downing, J R

    2007-09-01

    Somatic mutations in nucleophosmin (NPM1) occur in approximately 35% of adult acute myeloid leukemia (AML). To assess the frequency of NPM1 mutations in pediatric AML, we sequenced NPM1 in the diagnostic blasts from 93 pediatric AML patients. Six cases harbored NPM1 mutations, with each case lacking common cytogenetic abnormalities. To explore the phenotype of the AMLs with NPM1 mutations, gene expression profiles were obtained using Affymetrix U133A microarrays. NPM1 mutations were associated with increased expression of multiple homeobox genes including HOXA9, A10, B2, B6 and MEIS1. As dysregulated homeobox gene expression is also a feature of MLL-rearranged leukemia, the gene expression signatures of NPM1-mutated and MLL-rearranged leukemias were compared. Significant differences were identified between these leukemia subtypes including the expression of different HOX genes, with NPM1-mutated AML showing higher levels of expression of HOXB2, B3, B6 and D4. These results confirm recent reports of perturbed HOX expression in NPM1-mutated adult AML, and provide the first evidence that the NPM1-mutated signature is distinct from MLL-rearranged AML. These findings suggest that mutated NPM1 leads to dysregulated HOX expression via a different mechanism than MLL rearrangement.

  18. Genomic structure and chromosomal mapping of the human CD22 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, G.L.; Kozlow, E.; Kehrl, J.H.

    1993-06-01

    The human CD22 gene is expressed specifically in B lymphocytes and likely has an important function in cell-cell interactions. A nearly full length human CD22 cDNA clone was used to isolate genomic clones that span the CD22 gene. The CD22 gene is spread over 22 kb of DNA and is composed of 15 exons. The first exon contains the major transcriptional start sites. The translation initiation codon is located in exon 3, which also encodes a portion of the signal peptide. Exons 4 to 10 encode the seven Ig domains of CD22, exon 11 encodes the transmembrane domain, exons 12more » to 15 encode the intracytoplasmic domain of CD22, and exon 15 also contains the 3' untranslated region. A minor form of CD22 mRNA likely results from splicing of exon 5 to exon 8, skipping exons 6 and 7. A 4.6-kb Xbal fragment of the CD22 gene was used to map the chromosomal location of CD22 by fluorescence in situ hybridization. The hybridization locus was identified by combining fluorescent images of the probe with the chromosomal banding pattern generated by an Alu probe. The results demonstrate the CD22 is located within the band region q13.1 of chromosome 19. Two closely clustered major transcription start sites and several minor start sites were mapped by primer extension. Similarly to many other lymphoid-specific genes, the CD22 promoter lacks an obvious TATA box. Approximately 4 kb of DNA 5' of the transcription start sites were sequenced and found to contain multiple Alu elements. Potential binding sites for the transcriptional factors NF-kB, AP-1, and Oct-2 are located within 300 bp 5' of the major transcription start sites. A 400-bp fragment (bp -339 through +71) of the CD22 promoter region was subcloned into a pGEM-chloramphenicol acetyltransferase vector and after transfection into B and T cells was found to be active in both B and T cells. 45 refs., 7 figs., 2 tabs.« less

  19. Relative Expression of PBMC MicroRNA-133a Analysis in Patients Receiving Warfarin After Mechanical Heart Valve Replacement

    PubMed Central

    Kabiri Rad, Hamid; Mazaheri, Mahta; Dehghani Firozabadi, Ali

    Background: MicroRNAs (miRNAs) are implicated in various biological processes including anticoagulation. However, the modulation of miRNA by pharmacological intervention such as warfarin treatment in patients receiving warfarin has not been disclosed yet. The aim of this study work was to assess the effect of warfarin drug on expression level of mir-133a-3p in patients with mechanical heart valve replacement. Methods: In this research, the expression level of miRNA-133a-3p was analyzed in Peripheral Blood Mononuclear Cells (PBMCs) from mechanical valve replacement patients who had received warfarin for at least 3 months continuously. Quantitative RT-PCR method was used for this assay. Results: Our findings indicated a significant diffrence between the rate of miR-133a-3p expression in individuals receiving warfarin and the control group (p<0.01). There was also a statistically significant difference in miR-133a-3p expression in patients with different ages (p<0.05) suggesting that the rate of miR-133a-3p expression in persons receiving warfarin is related to age. However, other variables like warfarin dose, International Normalized Ratio (INR), gender, and Body Mass Index (BMI) were not significantly effective on the miR-133a-3p experssion rate in individuals receving warfarin. Conclusion: Based on our results, it can be concluded that miR-133a-3p is involved in the coagulation pathway. The recent result indicates that warfarin affects the expression of miR-133a. This expression may be potentially important for treatment by anticoagulants. Awareness of the time course of miRNA expression profile can improve efficiency of response to warfarin. PMID:29296264

  20. Conserved regulation of mesenchymal gene expression by Fgf-8 in face and limb development.

    PubMed

    Tucker, A S; Al Khamis, A; Ferguson, C A; Bach, I; Rosenfeld, M G; Sharpe, P T

    1999-01-01

    Clim-2 (NLI, Lbd1) is one of two related mouse proteins that interact with Lim-domain homeoproteins. In the mouse, embryonic expression of Clim-2 is particularly pronounced in facial ectomesenchyme and limb bud mesenchyme in association with Lim genes, Lhx-6 and Lmx-1 respectively. We show that in common with both these Lim genes, Clim-2 expression is regulated by signals from overlying epithelium. In both the developing face and the limb buds we identify Fgf-8 as the likely candidate signalling molecule that regulates Clim-2 expression. We show that in the mandibular arch, as in the limb, Fgf-8 functions in combination with CD44, a cell surface binding protein, and that blocking CD44 binding results in inhibition of Fgf8-induced expression of Clim-2 and Lhx-6. Regulation of gene expression by Fgf8 in association with CD44 is thus conserved between limb and mandibular arch development.

  1. Fc gamma RII/III and CD2 expression mark distinct subpopulations of immature CD4-CD8- murine thymocytes: in vivo developmental kinetics and T cell receptor beta chain rearrangement status.

    PubMed

    Rodewald, H R; Awad, K; Moingeon, P; D'Adamio, L; Rabinowitz, D; Shinkai, Y; Alt, F W; Reinherz, E L

    1993-04-01

    chain V(D)J rearrangement is mostly, if not entirely, restricted to the Fc gamma RII/III-CD2+ subset of DN fetal thymocytes. Consistent with this analysis in fetal thymocytes, > 90% of adult thymocytes derived from mice carrying a disrupting mutation at the recombination-activating gene 2 locus (RAG-2-/-) on both alleles are developmentally arrested at the DN CD2- stage. In addition, there is a fivefold increase in the relative percentage of thymocytes expressing Fc gamma RII/III in TCR and immunoglobulin gene rearrangement-incompetent homozygous RAG-2-/- mice (15% Fc gamma RII/III+) versus rearrangement-competent heterozygous RAG-2+/- mice (< 3% Fc gamma RII/III+). Thus, Fc gamma RII/III expression defines an early DN stage preceding V beta(D beta)I beta rearrangement, which in turn is followed by surface expression of CD2. Loss of Fc gamma RII/III and acquisition of CD2 expression characterize a late DN stage immediately before the conversion into DP thymocytes.

  2. CD44s and CD44v6 Expression in Head and Neck Epithelia

    PubMed Central

    Mack, Brigitte; Gires, Olivier

    2008-01-01

    Background CD44 splice variants are long-known as being associated with cell transformation. Recently, the standard form of CD44 (CD44s) was shown to be part of the signature of cancer stem cells (CSCs) in colon, breast, and in head and neck squamous cell carcinomas (HNSCC). This is somewhat in contradiction to previous reports on the expression of CD44s in HNSCC. The aim of the present study was to clarify the actual pattern of CD44 expression in head and neck epithelia. Methods Expression of CD44s and CD44v6 was analysed by immunohistochemistry with specific antibodies in primary head and neck tissues. Scoring of all specimens followed a two-parameters system, which implemented percentages of positive cells and staining intensities from − to +++ (score = %×intensity; resulting max. score 300). In addition, cell surface expression of CD44s and CD44v6 was assessed in lymphocytes and HNSCC. Results In normal epithelia CD44s and CD44v6 were expressed in 60–95% and 50–80% of cells and yielded mean scores with a standard error of a mean (SEM) of 249.5±14.5 and 198±11.13, respectively. In oral leukoplakia and in moderately differentiated carcinomas CD44s and CD44v6 levels were slightly increased (278.9±7.16 and 242±11.7; 291.8±5.88 and 287.3±6.88). Carcinomas in situ displayed unchanged levels of both proteins whereas poorly differentiated carcinomas consistently expressed diminished CD44s and CD44v6 levels. Lymphocytes and HNSCC lines strongly expressed CD44s but not CD44v6. Conclusion CD44s and CD44v6 expression does not distinguish normal from benign or malignant epithelia of the head and neck. CD44s and CD44v6 were abundantly present in the great majority of cells in head and neck tissues, including carcinomas. Hence, the value of CD44s as a marker for the definition of a small subset of cells (i.e. less than 10%) representing head and neck cancer stem cells may need revision. PMID:18852874

  3. Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta

    PubMed Central

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R.; Lesinski, Andrea N.; Asselin, Caroline N.; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T.; Tanzi, Rudolph E.

    2013-01-01

    SUMMARY The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer’s disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APPSwe/PS1ΔE9/CD33−/− mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. PMID:23623698

  4. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells

    PubMed Central

    Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.

    2013-01-01

    Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486

  5. Thyroid hormone regulates muscle fiber type conversion via miR-133a1.

    PubMed

    Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-Cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua; Ying, Hao

    2014-12-22

    It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. © 2014 Zhang et al.

  6. Thyroid hormone regulates muscle fiber type conversion via miR-133a1

    PubMed Central

    Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua

    2014-01-01

    It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. PMID:25512392

  7. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor.

    PubMed

    Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E

    1996-02-01

    IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.

  8. Thiopurine treatment in patients with Crohn's disease leads to a selective reduction of an effector cytotoxic gene expression signature revealed by whole-genome expression profiling.

    PubMed

    Bouma, G; Baggen, J M; van Bodegraven, A A; Mulder, C J J; Kraal, G; Zwiers, A; Horrevoets, A J; van der Pouw Kraan, C T M

    2013-07-01

    Crohn's disease (CD) is characterized by chronic inflammation of the gastrointestinal tract, as a result of aberrant activation of the innate immune system through TLR stimulation by bacterial products. The conventional immunosuppressive thiopurine derivatives (azathioprine and mercaptopurine) are used to treat CD. The effects of thiopurines on circulating immune cells and TLR responsiveness are unknown. To obtain a global view of affected gene expression of the immune system in CD patients and the treatment effect of thiopurine derivatives, we performed genome-wide transcriptome analysis on whole blood samples from 20 CD patients in remission, of which 10 patients received thiopurine treatment, compared to 16 healthy controls, before and after TLR4 stimulation with LPS. Several immune abnormalities were observed, including increased baseline interferon activity, while baseline expression of ribosomal genes was reduced. After LPS stimulation, CD patients showed reduced cytokine and chemokine expression. None of these effects were related to treatment. Strikingly, only one highly correlated set of 69 genes was affected by treatment, not influenced by LPS stimulation and consisted of genes reminiscent of effector cytotoxic NK cells. The most reduced cytotoxicity-related gene in CD was the cell surface marker CD160. Concordantly, we could demonstrate an in vivo reduction of circulating CD160(+)CD3(-)CD8(-) cells in CD patients after treatment with thiopurine derivatives in an independent cohort. In conclusion, using genome-wide profiling, we identified a disturbed immune activation status in peripheral blood cells from CD patients and a clear treatment effect of thiopurine derivatives selectively affecting effector cytotoxic CD160-positive cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Possible role of CD22, CD79b and CD20 expression in distinguishing small lymphocytic lymphoma from chronic lymphocytic leukemia.

    PubMed

    Jovanovic, Danijela; Djurdjevic, Predrag; Andjelkovic, Nebojsa; Zivic, Ljubica

    2014-01-01

    Flow cytometry has an important role in diagnosis and classification of B-cell lymphoproliferative disorders (BCLPDs). However, in distinguishing chronic lymphocytic leukemia (CLL) from small lymphocytic lymphoma (SLL) only clinical criteria are available so far. Aim of the study was to determine differences in the expression of common B cell markers (CD22, CD79b and CD20) on the malignant lymphocytes in the peripheral blood samples of CLL and SLL patients. Peripheral blood samples of 56 CLL and 11 SLL patients were analyzed by 5-color flow cytometry on the CD45/CD19/CD5 gate for CD22, CD79b and CD20. In the samples collected from the CLL patients, CD22 expression was detected in only 20% of patients in the low pattern, while in SLL patients the expression was medium and present in 90.9% of patients (p < 0.0001). For CD79b expression, statistical significance is reached both in the expression pattern, which was low/medium for CLL and high for SLL, and expression level (p = 0.006). The expression of CD20 was counted as the CD20/CD19 ratio. The average ratio was 0.512 in the CLL patients vs. 0.931 in the SLL patients (p = 0.0001). The pattern of expression and expression level of CD22, CD79b and CD20 in peripheral blood could be used for distinguishing SLL from CLL patients.

  10. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    PubMed

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  11. Nursing frequency alters circadian patterns of mammary gene expression in lactating mice

    USDA-ARS?s Scientific Manuscript database

    Milking frequency impacts lactation in dairy cattle and in rodent models of lactation. The role of circadian gene expression in this process is unknown. The hypothesis tested was that changing nursing frequency alters the circadian patterns of mammary gene expression. Mid-lactation CD1 mice were stu...

  12. Expression stability and selection of optimal reference genes for gene expression normalization in early life stage rainbow trout exposed to cadmium and copper.

    PubMed

    Shekh, Kamran; Tang, Song; Niyogi, Som; Hecker, Markus

    2017-09-01

    Gene expression analysis represents a powerful approach to characterize the specific mechanisms by which contaminants interact with organisms. One of the key considerations when conducting gene expression analyses using quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is the selection of appropriate reference genes, which is often overlooked. Specifically, to reach meaningful conclusions when using relative quantification approaches, expression levels of reference genes must be highly stable and cannot vary as a function of experimental conditions. However, to date, information on the stability of commonly used reference genes across developmental stages, tissues and after exposure to contaminants such as metals is lacking for many vertebrate species including teleost fish. Therefore, in this study, we assessed the stability of expression of 8 reference gene candidates in the gills and skin of three different early life-stages of rainbow trout after acute exposure (24h) to two metals, cadmium (Cd) and copper (Cu) using qPCR. Candidate housekeeping genes were: beta actin (b-actin), DNA directed RNA polymerase II subunit I (DRP2), elongation factor-1 alpha (EF1a), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PD), hypoxanthine phosphoribosyltransferase (HPRT), ribosomal protein L8 (RPL8), and 18S ribosomal RNA (18S). Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method were employed to systematically evaluate the expression stability of these candidate genes under control and exposed conditions as well as across three different life-stages. Finally, stability of genes was ranked by taking geometric means of the ranks established by the different methods. Stability of reference genes was ranked in the following order (from lower to higher stability): HPRTCd; b-actin

  13. Duplication 16p13.3 and the CREBBP gene: confirmation of the phenotype.

    PubMed

    Demeer, Bénédicte; Andrieux, Joris; Receveur, Aline; Morin, Gilles; Petit, Florence; Julia, Sophie; Plessis, Ghislaine; Martin-Coignard, Dominique; Delobel, Bruno; Firth, Helen V; Thuresson, Ann C; Lanco Dosen, Sandrine; Sjörs, Kerstin; Le Caignec, Cedric; Devriendt, Koenraad; Mathieu-Dramard, Michèle

    2013-01-01

    The introduction of molecular karyotyping technologies into the diagnostic work-up of patients with congenital disorders permitted the identification and delineation of novel microdeletion and microduplication syndromes. Interstitial 16p13.3 duplication, encompassing the CREBBP gene, which is mutated or deleted in the Rubinstein-Taybi syndrome, have been proposed to cause a recognisable syndrome with variable intellectual disability, normal growth, mild facial dysmorphism, mild anomalies of the extremities, and occasional findings such as developmental defects of the heart, genitalia, palate or the eyes. We here report the phenotypic and genotypic delineation of 9 patients carrying a submicroscopic 16p13.3 duplication, including the smallest 16p13.3 duplication reported so far. Careful clinical assessment confirms the distinctive clinical phenotype and also defines frequent associated features : marked speech problems, frequent ocular region involvement with upslanting of the eyes, narrow palpebral fissures, ptosis and strabismus, frequent proximal implantation of thumbs, cleft palate/bifid uvula and inguinal hernia. It also confirms that CREBBP is the critical gene involved in the duplication 16p13.3 syndrome. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. MicroRNA Expression Patterns of CD8+ T Cells in Acute and Chronic Brucellosis

    PubMed Central

    Budak, Ferah; Bal, S. Haldun; Tezcan, Gulcin; Guvenc, Furkan; Akalin, E. Halis; Goral, Guher; Deniz, Gunnur

    2016-01-01

    Although our knowledge about Brucella virulence factors and the host response increase rapidly, the mechanisms of immune evasion by the pathogen and causes of chronic disease are still unknown. Here, we aimed to investigate the immunological factors which belong to CD8+ T cells and their roles in the transition of brucellosis from acute to chronic infection. Using miRNA microarray, more than 2000 miRNAs were screened in CD8+ T cells of patients with acute or chronic brucellosis and healthy controls that were sorted from peripheral blood with flow cytometry and validated through qRT-PCR. Findings were evaluated using GeneSpring GX (Agilent) 13.0 software and KEGG pathway analysis. Expression of two miRNAs were determined to display a significant fold change in chronic group when compared with acute or control groups. Both miRNAs (miR-126-5p and miR-4753-3p) were decreased (p <0.05 or fold change > 2). These miRNAs have the potential to be the regulators of CD8+ T cell-related marker genes for chronic brucellosis infections. The differentially expressed miRNAs and their predicted target genes are involved in MAPK signaling pathway, cytokine-cytokine receptor interactions, endocytosis, regulation of actin cytoskeleton, and focal adhesion indicating their potential roles in chronic brucellosis and its progression. It is the first study of miRNA expression analysis of human CD8+ T cells to clarify the mechanism of inveteracy in brucellosis. PMID:27824867

  15. Periodontal therapy alters gene expression of peripheral blood monocytes

    PubMed Central

    Papapanou, Panos N.; Sedaghatfar, Michael H.; Demmer, Ryan T.; Wolf, Dana L.; Yang, Jun; Roth, Georg A.; Celenti, Romanita; Belusko, Paul B.; Lalla, Evanthia; Pavlidis, Paul

    2009-01-01

    Aims We investigated the effects of periodontal therapy on gene expression of peripheral blood monocytes. Methods Fifteen patients with periodontitis gave blood samples at four time points: 1 week before periodontal treatment (#1), at treatment initiation (baseline, #2), 6-week (#3) and 10-week post-baseline (#4). At baseline and 10 weeks, periodontal status was recorded and subgingival plaque samples were obtained. Periodontal therapy (periodontal surgery and extractions without adjunctive antibiotics) was completed within 6 weeks. At each time point, serum concentrations of 19 biomarkers were determined. Peripheral blood monocytes were purified, RNA was extracted, reverse-transcribed, labelled and hybridized with AffymetrixU133Plus2.0 chips. Expression profiles were analysed using linear random-effects models. Further analysis of gene ontology terms summarized the expression patterns into biologically relevant categories. Differential expression of selected genes was confirmed by real-time reverse transcriptase-polymerase chain reaction in a subset of patients. Results Treatment resulted in a substantial improvement in clinical periodontal status and reduction in the levels of several periodontal pathogens. Expression profiling over time revealed more than 11,000 probe sets differentially expressed at a false discovery rate of <0.05. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis and cell signalling. Conclusions The data suggest that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect. PMID:17716309

  16. Low expression of CD39+/CD45RA+ on regulatory T cells (Treg) cells in type 1 diabetic children in contrast to high expression of CD101+/CD129+ on Treg cells in children with coeliac disease

    PubMed Central

    Åkesson, K; Tompa, A; Rydén, A; Faresjö, M

    2015-01-01

    Type 1 diabetes (T1D) and coeliac disease are both characterized by an autoimmune feature. As T1D and coeliac disease share the same risk genes, patients risk subsequently developing the other disease. This study aimed to investigate the expression of T helper (Th), T cytotoxic (Tc) and regulatory T cells (Treg) in T1D and/or coeliac disease children in comparison to healthy children. Subgroups of T cells (Th : CD4+ or Tc : CD8+); naive (CD27+CD28+CD45RA+CCR7+), central memory (CD27+CD28+CD45RA−CCR7+), effector memory (early differentiated; CD27+CD28+CD45RA−CCR7− and late differentiated; CD27−CD28−CD45RA−CCR7−), terminally differentiated effector cells (TEMRA; CD27−CD28−CD45RA+CCR7−) and Treg (CD4+CD25+FOXP3+CD127−) cells, and their expression of CD39, CD45RA, CD101 and CD129, were studied by flow cytometry in T1D and/or coeliac disease children or without any of these diseases (reference group). Children diagnosed with both T1D and coeliac disease showed a higher percentage of TEMRA CD4+ cells (P < 0·05), but lower percentages of both early and late effector memory CD8+ cells (P < 0·05) compared to references. Children with exclusively T1D had lower median fluorescence intensity (MFI) of forkhead box protein 3 (FoxP3) (P < 0·05) and also a lower percentage of CD39+ and CD45RA+ within the Treg population (CD4+CD25+FOXP3+CD127−) (P < 0·05). Children with exclusively coeliac disease had a higher MFI of CD101 (P < 0·01), as well as a higher percentage of CD129+ (P < 0·05), in the CD4+CD25hi lymphocyte population, compared to references. In conclusion, children with combined T1D and coeliac disease have a higher percentage of differentiated CD4+ cells compared to CD8+ cells. T1D children show signs of low CD39+/CD45RA+ Treg cells that may indicate loss of suppressive function. Conversely, children with coeliac disease show signs of CD101+/CD129+ Treg cells that may indicate suppressor activity. PMID:25421756

  17. Decrease of interleukin (IL)17A gene expression in leucocytes and in the amount of IL-17A protein in CD4+ T cells in children with Down Syndrome.

    PubMed

    Jakubiuk-Tomaszuk, Anna; Sobaniec, Wojciech; Rusak, Małgorzata; Poskrobko, Elżbieta; Nędzi, Agata; Olchowik, Beata; Galicka, Anna

    2015-12-01

    Down Syndrome is by far the most common and best known chromosomal disorder in humans. It expresses multiple systemic complications with both structural and functional defects as part of the clinical manifestation. The mechanisms of immune changes occurring in Down Syndrome are complex and include an extra gene copy of chromosome 21 and secondary dysregulation of numerous intercellular interactions. Recent studies suggest a role of interleukin 17A (IL-17A), a pro-inflammatory cytokine located on 6p12 chromosome, in the pathogenesis of inflammatory and autoimmune diseases. We aimed to analyze IL17A gene expression in peripheral white cells and IL-17A intracellular expression on CD4+ T-cells. The research was carried out on a group of 58 children aged 6-12 years including a group of 30 children with Down Syndrome (simple trisomy of chromosome 21 only) and a reference group of 28 healthy children. We evaluated gene IL17A expression using real-time PCR and intracellular IL-17A analyzed by flow cytometry. We found significantly decreased gene expression in white cells and significantly decreased expression of IL-17A levels on CD4+ T-cells in Down Syndrome. Our data indicate that decreased IL-17A expression may play a significant role in the etiology of infections in Down Syndrome. Moreover, we demonstrated that in Down Syndrome the other gene located outside the extra chromosome 21 is also affected. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Resveratrol-cyclodextrin complex affects the expression of genes associated with lipid metabolism in bovine in vitro produced embryos.

    PubMed

    Torres, V; Hamdi, M; Millán de la Blanca, M G; Urrego, R; Echeverri, J; López-Herrera, A; Rizos, D; Gutiérrez-Adán, A; Sánchez-Calabuig, M J

    2018-03-26

    Antioxidants have been widely used during in vitro production to decrease the negative effect of reactive oxygen species. It was reported that the complex resveratrol-methyl β-cyclodextrin (RV-CD) improves resveratrol's stability and bioavailability and increases its antioxidant activity. This study evaluates the effect of RV-CD during in vitro oocyte maturation (IVM) or in vitro embryo culture (IVC) on developmental competence and quantitative changes in gene expression of developmental important genes. In experiment 1, RV-CD was added to IVM media and maturation level, embryo development and oocytes, cumulus cells, and blastocysts gene expression by RT-qPCR were examined. In experiment 2, presumptive zygotes were cultured in SOF supplemented with RV-CD and embryo development and blastocysts gene expression by RT-qPCR were studied. A group without RV-CD (control - ) and a group with cyclodextrin (control + ) were included. No differences were found in cleavage rate or blastocyst yield between groups. However, the expression of LIPE was higher in blastocysts derived from oocytes treated with resveratrol compared with control groups (p < .05). Blastocysts produced by IVC with resveratrol showed that RV-CD could modify the expression of genes related to lipid metabolism (CYP51A1, PNPLA2 and MTORC1) compared with control groups (p < .05). RV-CD in the IVM and IVC media could reduce accumulated fat by increasing lipolysis and suppressing lipogenesis of blastocysts. © 2018 Blackwell Verlag GmbH.

  19. Gene expression of cell surface antigens in the early phase of murine influenza pneumonia determined by a cDNA expression array technique.

    PubMed

    Sakai, Shinya; Mantani, Naoki; Kogure, Toshiaki; Ochiai, Hiroshi; Shimada, Yutaka; Terasawa, Katsutoshi

    2002-12-01

    Influenza virus is a worldwide health problem with significant economic consequences. To study the gene expression pattern induced by influenza virus infection, it is useful to reveal the pathogenesis of influenza virus infection; but this has not been well examined, especially in vivo study. To assess the influence of influenza virus infection on gene expression in mice, mRNA levels in the lung and tracheal tissue 48 h after infection were investigated by cDNA array analysis. Four-week-old outbred, specific pathogen free strain, ICR female mice were infected by intra-nasal inoculation of a virus solution under ether anesthesia. The mice were sacrificed 48 h after infection and the tracheas and lungs were removed. To determine gene expression, the membrane-based microtechnique with an Atlas cDNA expression array (mouse 1.2 array II) was performed in accordance with the manual provided. We focused on the expression of 46 mRNAs for cell surface antigens. Of these 46 mRNAs that we examined, four (CD1d2 antigen, CD39 antigen-like 1, CD39 antigen-like 3, CD68 antigen) were up-regulated and one (CD36 antigen) was down-regulated. Although further studies are required, these data suggest that these molecules play an important role in influenza virus infection, especially the phase before specific immunity.

  20. MicroRNA-133 Inhibits Behavioral Aggregation by Controlling Dopamine Synthesis in Locusts

    PubMed Central

    Wang, Yanli; Guo, Xiaojiao; He, Jing; Kang, Le

    2014-01-01

    Phenotypic plasticity is ubiquitous and primarily controlled by interactions between environmental and genetic factors. The migratory locust, a worldwide pest, exhibits pronounced phenotypic plasticity, which is a population density-dependent transition that occurs between the gregarious and solitary phases. Genes involved in dopamine synthesis have been shown to regulate the phase transition of locusts. However, the function of microRNAs in this process remains unknown. In this study, we report the participation of miR-133 in dopamine production and the behavioral transition by negatively regulating two critical genes, henna and pale, in the dopamine pathway. miR-133 participated in the post-transcriptional regulation of henna and pale by binding to their coding region and 3′ untranslated region, respectively. miR-133 displayed cellular co-localization with henna/pale in the protocerebrum, and its expression in the protocerebrum was negatively correlated with henna and pale expression. Moreover, miR-133 agomir delivery suppressed henna and pale expression, which consequently decreased dopamine production, thus resulting in the behavioral shift of the locusts from the gregarious phase to the solitary phase. Increasing the dopamine content could rescue the solitary phenotype, which was induced by miR-133 agomir delivery. Conversely, miR-133 inhibition increased the expression of henna and pale, resulting in the gregarious-like behavior of solitary locusts; this gregarious phenotype could be rescued by RNA interference of henna and pale. This study shows the novel function and modulation pattern of a miRNA in phenotypic plasticity and provides insight into the underlying molecular mechanisms of the phase transition of locusts. PMID:24586212

  1. Differences in the epigenetic regulation of MT-3 gene expression between parental and Cd+2 or As+3 transformed human urothelial cells

    PubMed Central

    2011-01-01

    Background Studies have shown that metallothionein 3 (MT-3) is not expressed in normal urothelium or in the UROtsa cell line, but is expressed in urothelial cancer and in tumors generated from the UROtsa cells that have been transformed by cadmium (Cd+2) or arsenite (As+3).The present study had two major goals. One, to determine if epigenetic modifications control urothelial MT-3 gene expression and if regulation is altered by malignant transformation by Cd+2 or As+3. Two, to determine if MT-3 expression might translate clinically as a biomarker for malignant urothelial cells released into the urine. Results The histone deacetylase inhibitor MS-275 induced MT-3 mRNA expression in both parental UROtsa cells and their transformed counterparts. The demethylating agent, 5-Aza-2'-deoxycytidine (5-AZC) had no effect on MT-3 mRNA expression. ChIP analysis showed that metal-responsive transformation factor-1 (MTF-1) binding to metal response elements (MRE) elements of the MT-3 promoter was restricted in parental UROtsa cells, but MTF-1 binding to the MREs was unrestricted in the transformed cell lines. Histone modifications at acetyl H4, trimethyl H3K4, trimethyl H3K27, and trimethyl H3K9 were compared between the parental and transformed cell lines in the presence and absence of MS-275. The pattern of histone modifications suggested that the MT-3 promoter in the Cd+2 and As+3 transformed cells has gained bivalent chromatin structure, having elements of being "transcriptionally repressed" and "transcription ready", when compared to parental cells. An analysis of MT-3 staining in urinary cytologies showed that a subset of both active and non-active patients with urothelial cancer shed positive cells in their urine, but that control patients only rarely shed MT-3 positive cells. Conclusion The MT-3 gene is silenced in non-transformed urothelial cells by a mechanism involving histone modification of the MT-3 promoter. In contrast, transformation of the urothelial cells with

  2. Analysis of the reptile CD1 genes: evolutionary implications.

    PubMed

    Yang, Zhi; Wang, Chunyan; Wang, Tao; Bai, Jianhui; Zhao, Yu; Liu, Xuhan; Ma, Qingwei; Wu, Xiaobing; Guo, Ying; Zhao, Yaofeng; Ren, Liming

    2015-06-01

    CD1, as the third family of antigen-presenting molecules, is previously only found in mammals and chickens, which suggests that the chicken and mammalian CD1 shared a common ancestral gene emerging at least 310 million years ago. Here, we describe CD1 genes in the green anole lizard and Crocodylia, demonstrating that CD1 is ubiquitous in mammals, birds, and reptiles. Although the reptilian CD1 protein structures are predicted to be similar to human CD1d and chicken CD1.1, CD1 isotypes are not found to be orthologous between mammals, birds, and reptiles according to phylogenetic analyses, suggesting an independent diversification of CD1 isotypes during the speciation of mammals, birds, and reptiles. In the green anole lizard, although the single CD1 locus and MHC I gene are located on the same chromosome, there is an approximately 10-Mb-long sequence in between, and interestingly, several genes flanking the CD1 locus belong to the MHC paralogous region on human chromosome 19. The CD1 genes in Crocodylia are located in two loci, respectively linked to the MHC region and MHC paralogous region (corresponding to the MHC paralogous region on chromosome 19). These results provide new insights for studying the origin and evolution of CD1.

  3. Gene expression profile of the fibrotic response in the peritoneal cavity.

    PubMed

    Le, S J; Gongora, M; Zhang, B; Grimmond, S; Campbell, G R; Campbell, J H; Rolfe, B E

    2010-01-01

    The cellular response to materials implanted in the peritoneal cavity has been utilised to produce tissue for grafting to hollow smooth muscle organs (blood vessels, bladder, uterus and vas deferens). To gain insight into the regulatory mechanisms involved in encapsulation of a foreign object, and subsequent differentiation of encapsulating cells, the present study used microarray technology and real-time RT-PCR to identify the temporal changes in gene expression associated with tissue development. Immunohistochemical analysis showed that 3-7 days post-implantation of foreign objects (cubes of boiled egg white) into rats, they were encapsulated by tissue comprised primarily of haemopoietic (CD45(+)) cells, mainly macrophages (CD68(+), CCR1(+)). By day 14, tissue capsule cells no longer expressed CD68, but were positive for myofibroblast markers alpha-smooth muscle (SM) actin and SM22. In accordance with these results, gene expression data showed that early capsule (days 3-7) development was dominated by the expression of monocyte/macrophage-specific genes (CD14, CSF-1, CSF-1R, MCP-1) and pro-inflammatory mediators such as transforming growth factor (TGF-beta). As tissue capsule development progressed (days 14-21), myofibroblast-associated and pro-fibrotic genes (associated with TGF-beta and Wnt/beta-catenin signalling pathways, including Wnt 4, TGFbetaRII, connective tissue growth factor (CTGF), SMADs-1, -2, -4 and collagen-1 subunits) were significantly up-regulated. The up-regulation of genes associated with Cardiovascular and Skeletal and Muscular System Development at later time-points suggests the capacity of cells within the tissue capsule for further differentiation to smooth muscle, and possibly other cell types. The identification of key regulatory pathways and molecules associated with the fibrotic response to implanted materials has important applications not only for optimising tissue engineering strategies, but also to control deleterious fibrotic

  4. Expression patterns of the aquaporin gene family during renal development: influence of genetic variability.

    PubMed

    Parreira, Kleber S; Debaix, Huguette; Cnops, Yvette; Geffers, Lars; Devuyst, Olivier

    2009-08-01

    High-throughput analyses have shown that aquaporins (AQPs) belong to a cluster of genes that are differentially expressed during kidney organogenesis. However, the spatiotemporal expression patterns of the AQP gene family during tubular maturation and the potential influence of genetic variation on these patterns and on water handling remain unknown. We investigated the expression patterns of all AQP isoforms in fetal (E13.5 to E18.5), postnatal (P1 to P28), and adult (9 weeks) kidneys of inbred (C57BL/6J) and outbred (CD-1) mice. Using quantitative polymerase chain reaction (PCR), we evidenced two mRNA patterns during tubular maturation in C57 mice. The AQPs 1-7-11 showed an early (from E14.5) and progressive increase to adult levels, similar to the mRNA pattern observed for proximal tubule markers (Megalin, NaPi-IIa, OAT1) and reflecting the continuous increase in renal cortical structures during development. By contrast, AQPs 2-3-4 showed a later (E15.5) and more abrupt increase, with transient postnatal overexpression. Most AQP genes were expressed earlier and/or stronger in maturing CD-1 kidneys. Furthermore, adult CD-1 kidneys expressed more AQP2 in the collecting ducts, which was reflected by a significant delay in excreting a water load. The expression patterns of proximal vs. distal AQPs and the earlier expression in the CD-1 strain were confirmed by immunoblotting and immunostaining. These data (1) substantiate the clustering of important genes during tubular maturation and (2) demonstrate that genetic variability influences the regulation of the AQP gene family during tubular maturation and water handling by the mature kidney.

  5. CD127 and CD25 expression defines CD4+ T cell subsets that are differentially depleted during HIV infection.

    PubMed

    Dunham, Richard M; Cervasi, Barbara; Brenchley, Jason M; Albrecht, Helmut; Weintrob, Amy; Sumpter, Beth; Engram, Jessica; Gordon, Shari; Klatt, Nichole R; Frank, Ian; Sodora, Donald L; Douek, Daniel C; Paiardini, Mirko; Silvestri, Guido

    2008-04-15

    Decreased CD4(+) T cell counts are the best marker of disease progression during HIV infection. However, CD4(+) T cells are heterogeneous in phenotype and function, and it is unknown how preferential depletion of specific CD4(+) T cell subsets influences disease severity. CD4(+) T cells can be classified into three subsets by the expression of receptors for two T cell-tropic cytokines, IL-2 (CD25) and IL-7 (CD127). The CD127(+)CD25(low/-) subset includes IL-2-producing naive and central memory T cells; the CD127(-)CD25(-) subset includes mainly effector T cells expressing perforin and IFN-gamma; and the CD127(low)CD25(high) subset includes FoxP3-expressing regulatory T cells. Herein we investigated how the proportions of these T cell subsets are changed during HIV infection. When compared with healthy controls, HIV-infected patients show a relative increase in CD4(+)CD127(-)CD25(-) T cells that is related to an absolute decline of CD4(+)CD127(+)CD25(low/-) T cells. Interestingly, this expansion of CD4(+)CD127(-) T cells was not observed in naturally SIV-infected sooty mangabeys. The relative expansion of CD4(+)CD127(-)CD25(-) T cells correlated directly with the levels of total CD4(+) T cell depletion and immune activation. CD4(+)CD127(-)CD25(-) T cells were not selectively resistant to HIV infection as levels of cell-associated virus were similar in all non-naive CD4(+) T cell subsets. These data indicate that, during HIV infection, specific changes in the fraction of CD4(+) T cells expressing CD25 and/or CD127 are associated with disease progression. Further studies will determine whether monitoring the three subsets of CD4(+) T cells defined based on the expression of CD25 and CD127 should be used in the clinical management of HIV-infected individuals.

  6. Development-related expression patterns of protein-coding and miRNA genes involved in porcine muscle growth.

    PubMed

    Wang, F J; Jin, L; Guo, Y Q; Liu, R; He, M N; Li, M Z; Li, X W

    2014-11-27

    Muscle growth and development is associated with remarkable changes in protein-coding and microRNA (miRNA) gene expression. To determine the expression patterns of genes and miRNAs related to muscle growth and development, we measured the expression levels of 25 protein-coding and 16 miRNA genes in skeletal and cardiac muscles throughout 5 developmental stages by quantitative reverse transcription-polymerase chain reaction. The Short Time-Series Expression Miner (STEM) software clustering results showed that growth-related genes were downregulated at all developmental stages in both the psoas major and longissimus dorsi muscles, indicating their involvement in early developmental stages. Furthermore, genes related to muscle atrophy, such as forkhead box 1 and muscle ring finger, showed unregulated expression with increasing age, suggesting a decrease in protein synthesis during the later stages of skeletal muscle development. We found that development of the cardiac muscle was a complex process in which growth-related genes were highly expressed during embryonic development, but they did not show uniform postnatal expression patterns. Moreover, the expression level of miR-499, which enhances the expression of the β-myosin heavy chain, was significantly different in the psoas major and longissimus dorsi muscles, suggesting the involvement of miR-499 in the determination of skeletal muscle fiber types. We also performed correlation analyses of messenger RNA and miRNA expression. We found negative relationships between miR-486 and forkhead box 1, and miR-133a and serum response factor at all developmental stages, suggesting that forkhead box 1 and serum response factor are potential targets of miR-486 and miR-133a, respectively.

  7. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl; Krześlak, Anna; Forma, Ewa

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determinedmore » by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.« less

  8. Transcriptomic meta-analysis identifies gene expression characteristics in various samples of HIV-infected patients with nonprogressive disease.

    PubMed

    Zhang, Le-Le; Zhang, Zi-Ning; Wu, Xian; Jiang, Yong-Jun; Fu, Ya-Jing; Shang, Hong

    2017-09-12

    A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (<50 copies/ml) and long-term nonprogressors (LTNPs) who maintain normal CD4 + T cell counts for prolonged periods (>10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4 + and CD8 + T cells, were collected for meta-analysis. We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4 + and CD8 + T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4 + T cells and the MAPK signaling pathway in CD8 + T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new

  9. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NASA Astrophysics Data System (ADS)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  10. [The Role of 5-Aza-CdR on Methylation of Promoter in RASSF1A Gene in Endometrial Carcinoma].

    PubMed

    Huang, Li-ping; Chen, Chen; Wang, Xue-ping; Liu, Hui

    2015-05-01

    To explore the effect of demethylating drug 5-Aza-2'-deoxycytidine (5-Aza-CdR) on methtylation status of the Ras-association domain familylA gene (RASSF1A) in human endometrial carcinoma. Randomly'assign the human endometrial carcinoma cell line HEC-1-B into groups and use demethylating drug 5-Aza-CdR of different concentration to treat them. Then Methylation-specific polymerase chain reaction (MSP), real-time PCR, Western blot, TUNEL technology were used to analyze methylation status of RASSF1A promoter CpG islands, RASSF1A mRNA expression, RASSF1A protein expression and apoptosis of HEC-1-B cell. High DNA methylation in RASSF1A gene promoter region, low RASSF1A mRNA level and protein expression and out of control of human endometrial carcinoma cell HEC-1-B apoptosis were observed. 5-Aza-CdR of different concentration could reverse RASSF1A gene's methylation status, recover the expression of mRNA and protein, and control the growth of HEC-1-B by inducing apoptosis. Aberrant methylation of RASSF1A in endometrial cancer as a therapeutic target, demethylating agent 5-Aza-CdR could be an effective way of gene therapy.

  11. [Analysis of expression of cancer stem cell-related markers in orbital adenoid cystic carcinoma].

    PubMed

    Lin, Ting-ting; Zhu, Li-min; He, Yan-jin; Zhang, Hong

    2011-08-01

    To observe the expression and distribution of CD44, CD133, and ABCG2 in orbital adenoid cystic carcinoma (ACC) and investigate their correlations with pathological type and prognosis. Two steps method of immunohistochemical staining was employed in 33 cases of paraffin embedded surgical specimens of human orbital ACC, 5 cases of recurrence samples, 3 cases of an excised lacrimal gland caused by neither inflammation nor tumor diseases, and 6 cases of xenograft tumors in nude mice. A retrospective analysis was performed on the clinical material of these patients, which were collected from Jan. 1991 to Mar. 2009. The positive rate of CD44 was 54.5% (18/33), with 76.9% (10/13) in solid type and 40.0% (8/20) in adeno-tubiform type. There was no statistically significant difference between them (P = 0.072). In solid type the positive expression cells were often located at the marginal part of the cancer nest. In the adeno-tubiform type, positive cells were often located at the outer layer of the tubiform structure (myoepithelial cells). CD44 was also expressed in normal tissues. The positive rate of CD133 was 57.6% (19/33), with 76.9% (10/13) in solid type and 45.0% (9/20) in adeno-tubiform type. There was no significant difference between them (P = 0.087). CD133 antigen was expressed in either the cytoplasm or nucleus, or expressed in both the cytoplasm and nucleus. The positive rate of ABCG2 was 21.2% (7/33), with 30.77% (4/13) in solid type and 15.0% (3/20) in adeno-tubiform type. There was no significant difference between them (P = 0.393). Many positive cells surrounded the vessels in tumor tissues. There were no significant differences between different prognosis groups of these surface phenotypes. The correlative analysis results of three surface phenotypes showed that CD44(+) cells have positive correlation with CD133(+) cells (Spearman, r(s) = 0.416, P = 0.016). In six transplanted tumors of nude mice, the number of positive cases for CD44(+), CD133(+) and ABCG2

  12. Expression of KAI1/CD82 and MRP-1/CD9 in transitional cell carcinoma of bladder.

    PubMed

    Ai, Xing; Zhang, Xu; Wu, Zhun; Ma, Xin; Ju, Zhenghua; Wang, Baojun; Shi, Taoping

    2007-02-01

    The expression of KAI1/CD82 and MRP-1/CD9 in transitional cell carcinoma of bladder (TCCB) and its clinical significance were investigated. Immunohistochemistry was used to detect KAI1/CD82 and MRP-1/CD9 protein expression in 52 TCCB specimens. Correlation between the expression of KAI1/CD82 and MRP-1/CD9 to clinicopathologic factors was statistically analyzed. The results showed that the positive rate of KAI1/CD82 and MRP-1/CD9 in TCCB was 50% and 61.5%, respectively. The MRP-1/CD9 and KAI1/CD82 expression was significantly associated with grade of TCCB (P<0.05), but no correlation was found between MRP-1/CD9 or KAI1/CD82 expression and clinical stage of TCCB (P>0.05). The expression level of MRP-1/CD9 and KAI1/CD82 in recurrent TCCB samples was lower than that in non-recurrent samples (P<0.05). Meanwhile, the correlation between the KAI1/CD82 expression and MRP-1/CD9 expression was statistically significant (r=0.316, P<0.05). It was concluded that KAI1/CD82 and MRP-1/CD9 expression may be important prognostic indicators and potentially useful for assessing the biological behavior of TCCB.

  13. Gene expression profile in circulating mononuclear cells after exposure to ultrafine carbon particles

    PubMed Central

    Huang, Yuh-Chin T.; Schmitt, Michael; Yang, Zhonghui; Que, Loretta G.; Stewart, Judith C.; Frampton, Mark W.; Devlin, Robert B.

    2013-01-01

    Context Exposure to particulate matter (PM) is associated with systemic health effects, but the cellular and molecular mechanisms are unclear. Objective We hypothesized that, if circulating mononuclear cells play an important role in mediating systemic effects of PM, they would show gene expression changes following exposure. Materials and methods Peripheral blood samples were collected before (0 hour) and at 24 hours after exposure from healthy subjects who participated in previous controlled exposures to ultrafine carbon particles (UFP, 50 μg/m3) or filtered air (FA)(n = 3 each). RNA from mononuclear cell fraction (>85% lymphocytes) was extracted, amplified and hybridized to Affymetrix HU133 plus 2 microarrays. Results We identified 1713 genes (UFP 24 hours vs. FA 0 and 24 hours, p < 0.05, FDR 0.01). The top 10 upregulated genes (fold) were CDKN1C (1.86), ZNF12 (1.83), SRGAP2 (1.82), FYB (1.79), LSM14B (1.79), CD93 (1.76), NCSTN (1.70), DUSP6 (1.69), TACC1 (1.68) and H2AFY (1.68). Upregulation of CDKN1C and SRGAP2 was confirmed by RT-PCR using samples from additional 5 subjects exposed to FA and UFP. We entered 1020 genes with a ratio >1.1 or <−1.1 into the Ingenuity Pathway Analysis and identified many canonical pathways related to inflammation, tissue growth and host defense against environmental insults, including IGF-1 signaling, insulin receptor signaling and NRF2-mediated oxidative stress response pathway. Discussion and conclusions Two-hour exposures to UFP produced gene expression changes in circulating mononuclear cells. These gene changes provide biologically plausible links to PM-induced systemic health effects, especially those in the cardiovascular system and glucose metabolism. PMID:20507211

  14. Human Herpesvirus 6B Induces Hypomethylation on Chromosome 17p13.3, Correlating with Increased Gene Expression and Virus Integration.

    PubMed

    Engdahl, Elin; Dunn, Nicky; Niehusmann, Pitt; Wideman, Sarah; Wipfler, Peter; Becker, Albert J; Ekström, Tomas J; Almgren, Malin; Fogdell-Hahn, Anna

    2017-06-01

    Human herpesvirus 6B (HHV-6B) is a neurotropic betaherpesvirus that achieves latency by integrating its genome into host cell chromosomes. Several viruses can induce epigenetic modifications in their host cells, but no study has investigated the epigenetic modifications induced by HHV-6B. This study analyzed methylation with an Illumina 450K array, comparing HHV-6B-infected and uninfected Molt-3 T cells 3 days postinfection. Bisulfite pyrosequencing was used to validate the Illumina results and to investigate methylation over time in vitro Expression of genes was investigated using quantitative PCR (qPCR), and virus integration was investigated with PCR. A total of 406 CpG sites showed a significant HHV-6B-induced change in methylation in vitro Remarkably, 86% (351/406) of these CpGs were located <1 Mb from chromosomal ends and were all hypomethylated in virus-infected cells. This was most evident at chromosome 17p13.3, where HHV-6B had induced CpG hypomethylation after 2 days of infection, possibly through TET2, which was found to be upregulated by the virus. In addition, virus-induced cytosine hydroxymethylation was observed. Genes located in the hypomethylated region at 17p13.3 showed significantly upregulated expression in HHV-6B-infected cells. A temporal experiment revealed HHV-6B integration in Molt-3 cell DNA 3 days after infection. The telomere at 17p has repeatedly been described as an integration site for HHV-6B, and we show for the first time that HHV-6B induces hypomethylation in this region during acute infection, which may play a role in the integration process, possibly by making the DNA more accessible. IMPORTANCE The ability to establish latency in the host is a hallmark of herpesviruses, but the mechanisms differ. Human herpesvirus 6B (HHV-6B) is known to establish latency through integration of its genome into the telomeric regions of host cells, with the ability to reactivate. Our study is the first to show that HHV-6B specifically induces

  15. Expression of CD154 by a Simian Immunodeficiency Virus Vector Induces Only Transitory Changes in Rhesus Macaques

    PubMed Central

    Hodara, Vida L.; Velasquillo, M. Cristina; Parodi, Laura M.; Giavedoni, Luis D.

    2005-01-01

    Human immunodeficiency virus infection is characterized by dysregulation of antigen-presenting cell function and defects in cell-mediated immunity. Recent evidence suggests that impaired ability of CD4+ T cells to upregulate the costimulatory molecule CD154 is at the core of this dysregulation. To test the hypothesis that increased expression of CD154 on infected CD4+ T cells could modulate immune function, we constructed a replication-competent simian immunodeficiency virus (SIV) vector that expressed CD154. We found that this recombinant vector directed the expression of CD154 on the surface of infected CD4+ T cells and that expression of CD154 resulted in activation of B cells present in the same cultures. Experimental infection of rhesus macaques resulted in very low viral loads for the CD154-expressing virus and the control virus, indicating that expression of CD154 did not result in increased viral replication. Analyses of the anti-SIV immune responses and the phenotype of lymphocytes in blood and lymphoid tissues showed changes that occurred during the acute phase of infection only in animals infected with the CD154-expressing SIV, but that became indistinguishable from those seen in animals infected with the control virus at later time points. We conclude that the level of expression of CD154 in itself is not responsible for affecting the immune response to an attenuated virus. Considering that the CD154-expressing SIV vector and the virus control did not carry an active nef gene, our results suggest that, in CD4+ T cells infected with wild-type virus, Nef is the viral factor that interferes with the immune mechanisms that regulate expression of CD154. PMID:15795254

  16. Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population.

    PubMed

    Fadini, Gian Paolo; Coracina, Anna; Baesso, Ilenia; Agostini, Carlo; Tiengo, Antonio; Avogaro, Angelo; de Kreutzenberg, Saula Vigili

    2006-09-01

    Disruption of the endothelial layer is the first step in the atherogenic process. Experimental studies have shown that endothelial progenitor cells (EPCs) are involved in endothelial homeostasis and repair. Conversely, EPC depletion has been demonstrated in the setting of established atherosclerotic diseases. With this background, we evaluated whether variations in the number of EPCs are associated with subclinical atherosclerosis in healthy subjects. Carotid intima-media thickness (IMT), high-sensitive C-reactive protein (hsCRP), levels of circulating EPCs, and cardiovascular risk were compared in 137 healthy subjects. Six subpopulations of progenitor cells were determined by flow cytometry on the basis of the surface expression of CD34, CD133, and KDR antigens: CD34(+), CD133(+), CD34(+)CD133(+), CD34(+)KDR(+), CD133(+)KDR(+), and CD34(+)CD133(+)KDR(+). Among different antigenic profiles of EPCs, only CD34(+)KDR(+) cells were significantly reduced in subjects with increased IMT. Specifically, CD34(+)KDR(+) cells were inversely correlated with IMT, even after adjustment for hsCRP and 10-year Framingham risk and independently of other cardiovascular parameters. Depletion of CD34(+)KDR(+) EPCs is an independent predictor of early subclinical atherosclerosis in healthy subjects and may provide additional information beyond classic risk factors and inflammatory markers.

  17. Generation of mammalian cells stably expressing multiple genes at predetermined levels.

    PubMed

    Liu, X; Constantinescu, S N; Sun, Y; Bogan, J S; Hirsch, D; Weinberg, R A; Lodish, H F

    2000-04-10

    Expression of cloned genes at desired levels in cultured mammalian cells is essential for studying protein function. Controlled levels of expression have been difficult to achieve, especially for cell lines with low transfection efficiency or when expression of multiple genes is required. An internal ribosomal entry site (IRES) has been incorporated into many types of expression vectors to allow simultaneous expression of two genes. However, there has been no systematic quantitative analysis of expression levels in individual cells of genes linked by an IRES, and thus the broad use of these vectors in functional analysis has been limited. We constructed a set of retroviral expression vectors containing an IRES followed by a quantitative selectable marker such as green fluorescent protein (GFP) or truncated cell surface proteins CD2 or CD4. The gene of interest is placed in a multiple cloning site 5' of the IRES sequence under the control of the retroviral long terminal repeat (LTR) promoter. These vectors exploit the approximately 100-fold differences in levels of expression of a retrovirus vector depending on its site of insertion in the host chromosome. We show that the level of expression of the gene downstream of the IRES and the expression level and functional activity of the gene cloned upstream of the IRES are highly correlated in stably infected target cells. This feature makes our vectors extremely useful for the rapid generation of stably transfected cell populations or clonal cell lines expressing specific amounts of a desired protein simply by fluorescent activated cell sorting (FACS) based on the level of expression of the gene downstream of the IRES. We show how these vectors can be used to generate cells expressing high levels of the erythropoietin receptor (EpoR) or a dominant negative Smad3 protein and to generate cells expressing two different cloned proteins, Ski and Smad4. Correlation of a biologic effect with the level of expression of the

  18. Coexpression of CD14 and CD326 discriminate hepatic precursors in the human fetal liver.

    PubMed

    Fomin, Marina E; Tai, Lung-Kuo; Bárcena, Alicia; Muench, Marcus O

    2011-07-01

    The molecular and cellular profile of liver cells during early human development is incomplete, complicating the isolation and study of hepatocytes, cholangiocytes, and hepatic stem cells from the complex amalgam of hepatic and hematopoietic cells, that is, the fetal liver. Epithelial cell adhesion molecule, CD326, has emerged as a marker of hepatic stem cells, and lipopolysaccharide receptor CD14 is known to be expressed on adult hepatocytes. Using flow cytometry, we studied the breadth of CD326 and CD14 expression in midgestation liver. Both CD45(+) hematopoietic and CD45(-) nonhematopoietic cells expressed CD326. Moreover, diverse cell types expressing CD326 were revealed among CD45(-) cells by costaining for CD14. Fluorescence-activated cell sorting was used to isolate nonhematopoietic cells distinguished by expression of high levels of CD326 and low CD14 (CD326(++)CD14(lo)), which were characterized for gene expression associated with liver development. CD326(++)CD14(lo) cells expressed the genes albumin, α-fetoprotein, hepatic nuclear factor 3α, prospero-related homeobox 1, cytochrome P450 3A7, α(1)-antitrypsin, and transferrin. Proteins expressed included cell-surface CD24, CD26, CD29, CD34, CD49f, CD243, and CD324 and, in the cytoplasm, cytokeratins-7/8 (CAM 5.2 antigen) and some cytokeratin-19. Cultured CD326(++)CD14(lo) cells yielded albumin(+) hepatocytes, cytokeratin-19(+) cholangiocytes, and hepatoblasts expressing both markers. Using epifluorescence microscopy we observed CD326 and CD14 expression on fetal hepatocytes comprising the liver parenchyma, as well as on cells associated with ductal plates and surrounding large vessels. These findings indicate that expression of CD14 and CD326 can be used to identify functionally distinct subsets of fetal liver cells, including CD326(++)CD14(lo) cells, representing a mixture of parenchymal cells, cholangiocytes, and hepatoblasts.

  19. High efficient expression of a functional humanized single-chain variable fragment (scFv) antibody against CD22 in Pichia pastoris.

    PubMed

    Zarei, Najmeh; Vaziri, Behrouz; Shokrgozar, Mohammad Ali; Mahdian, Reza; Fazel, Ramin; Khalaj, Vahid

    2014-12-01

    Single-chain variable fragments (scFvs) have recently emerged as attractive candidates in targeted immunotherapy of various malignancies. The anti-CD22 scFv is able to target CD22, on B cell surface and is being considered as a promising molecule in targeted immunotherapy of B cell malignancies. The recombinant anti-CD22 scFv has been successfully expressed in Escherichia coli; however, the insufficient production yield has been a major bottleneck for its therapeutic application. The methylotrophic yeast Pichia pastoris has become a highly popular expression host for the production of a wide variety of recombinant proteins such as antibody fragments. In this study, we used the Pichia expression system to express a humanized scFv antibody against CD22. The full-length humanized scFv gene was codon optimized, cloned into the pPICZαA and expressed in GS115 strain. The maximum production level of the scFv (25 mg/L) were achieved at methanol concentration, 1 %; pH 6.0; inoculum density, OD600 = 3 and the induction time of 72 h. The correlation between scFv gene dosage and expression level was also investigated by real-time PCR, and the results confirmed the presence of such correlation up to five gene copies. Immunofluorescence and flow cytometry studies and Biacore analysis demonstrated binding to CD22 on the surface of human lymphoid cell line Raji and recombinant soluble CD22, respectively. Taken together, the presented data suggest that the Pichia pastoris can be considered as an efficient host for the large-scale production of anti-CD22 scFv as a promising carrier for targeted drug delivery in treatment of CD22(+) B cell malignancies.

  20. Cloning, expression, and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Z.; Chen, S.; Wilson, D.B.

    1999-11-01

    An Mn{sup 2+} and Cd{sup 2+} uptake gene, mntA, was cloned from Lactobacillus plantarum ATCC 14917 into Escherichia coli. Its expression conferred on E. coli cells increased Cd{sup 2+} sensitivity as well as energy-dependent Cd{sup 2+} uptake activity. Both transcription and translation of mntA were induced by Mn{sup 2+} starvation in L. plantarum, as indicated by reverse transcriptase PCR and immunoblotting. Two Cd{sup 2+} uptake systems have been identified in L. plantarum: one is a high-affinity Mn{sup 2+} and Cd{sup 2+} uptake system that is expressed in Mn{sup 2+}-starved cells, and the other is a nonsaturable Cd{sup 2+} uptake systemmore » that is expressed in Cd{sup 2+}-sufficient cells. MntA was not detected in an Mn{sup 2+}-dependent mutant of L. plantarum which had lost high-affinity Mn{sup 2+} and Cd{sup 2+} uptake activity. The results suggest that mntA is the gene encoding the high-affinity Mn{sup 2+} and Cd{sup 2+} transporter. On the basis of its predicted amino acid sequence, MntA belongs to the family of P-type cation-translocating ATPases. The topology and potential Mn{sup 2+}- and Cd{sup 2+}-binding sites of MntA are discussed. A second clone containing a low-affinity Cd{sup 2+} transport system was also isolated.« less

  1. Polydimethylsiloxane (PDMS) modulates CD38 expression, absorbs retinoic acid and may perturb retinoid signalling.

    PubMed

    Futrega, Kathryn; Yu, Jianshi; Jones, Jace W; Kane, Maureen A; Lott, William B; Atkinson, Kerry; Doran, Michael R

    2016-04-21

    Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34(+) cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34(+) haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34(+) cells.

  2. CD127 and CD25 Expression Defines CD4+ T Cell Subsets That Are Differentially Depleted during HIV Infection1

    PubMed Central

    Dunham, Richard M.; Cervasi, Barbara; Brenchley, Jason M.; Albrecht, Helmut; Weintrob, Amy; Sumpter, Beth; Engram, Jessica; Gordon, Shari; Klatt, Nichole R.; Frank, Ian; Sodora, Donald L.; Douek, Daniel C.; Paiardini, Mirko; Silvestri, Guido

    2009-01-01

    Decreased CD4+ T cell counts are the best marker of disease progression during HIV infection. However, CD4+ T cells are heterogeneous in phenotype and function, and it is unknown how preferential depletion of specific CD4+ T cell subsets influences disease severity. CD4+ T cells can be classified into three subsets by the expression of receptors for two T cell-tropic cytokines, IL-2 (CD25) and IL-7 (CD127). The CD127+CD25low/− subset includes IL-2-producing naive and central memory T cells; the CD127−CD25− subset includes mainly effector T cells expressing perforin and IFN-γ; and the CD127lowCD25high subset includes FoxP3-expressing regulatory T cells. Herein we investigated how the proportions of these T cell subsets are changed during HIV infection. When compared with healthy controls, HIV-infected patients show a relative increase in CD4+CD127−CD25− T cells that is related to an absolute decline of CD4+CD127+CD25low/− T cells. Interestingly, this expansion of CD4+CD127− T cells was not observed in naturally SIV-infected sooty mangabeys. The relative expansion of CD4+CD127−CD25− T cells correlated directly with the levels of total CD4+ T cell depletion and immune activation. CD4+CD127−CD25− T cells were not selectively resistant to HIV infection as levels of cell-associated virus were similar in all non-naive CD4+ T cell subsets. These data indicate that, during HIV infection, specific changes in the fraction of CD4+ T cells expressing CD25 and/or CD127 are associated with disease progression. Further studies will determine whether monitoring the three subsets of CD4+ T cells defined based on the expression of CD25 and CD127 should be used in the clinical management of HIV-infected individuals. PMID:18390743

  3. Age and CD161 Expression Contribute to Inter-Individual Variation in Interleukin-23 Response in CD8+ Memory Human T Cells

    PubMed Central

    Abraham, Clara; Cho, Judy H.

    2013-01-01

    The interleukin-23 (IL-23) pathway plays a critical role in the pathogenesis of multiple chronic inflammatory disorders, however, inter-individual variability in IL-23-induced signal transduction in circulating human lymphocytes has not been well-defined. In this study, we observed marked, reproducible inter-individual differences in IL-23 responsiveness (measured by STAT3 phosphorylation) in peripheral blood CD8+CD45RO+ memory T and CD3+CD56+ NKT cells. Age, but not gender, was a significant (Pearson’s correlation coefficient, r = −0.37, p = 0.001) source of variability observed in CD8+CD45RO+ memory T cells, with IL-23 responsiveness gradually decreasing with increasing age. Relative to cells from individuals demonstrating low responsiveness to IL-23 stimulation, CD8+CD45RO+ memory T cells from individuals demonstrating high responsiveness to IL-23 stimulation showed increased gene expression for IL-23 receptor (IL-23R), RORC (RORγt) and CD161 (KLRB1), whereas RORA (RORα) and STAT3 expression were equivalent. Similar to CD4+ memory T cells, IL-23 responsiveness is confined to the CD161+ subset in CD8+CD45RO+ memory T cells, suggesting a similar CD161+ precursor as has been reported for CD4+ Th17 cells. We observed a very strong positive correlation between IL-23 responsiveness and the fraction of CD161+, CD8+CD45RO+ memory T cells (r = 0.80, p<0.001). Moreover, the fraction of CD161+, CD8+CD45RO+ memory T cells gradually decreases with aging (r = −0.34, p = 0.05). Our data define the inter-individual differences in IL-23 responsiveness in peripheral blood lymphocytes from the general population. Variable expression of CD161, IL-23R and RORC affects IL-23 responsiveness and contributes to the inter-individual susceptibility to IL-23-mediated defenses and inflammatory processes. PMID:23469228

  4. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells.

    PubMed

    Fernando, Joan; Malfettone, Andrea; Cepeda, Edgar B; Vilarrasa-Blasi, Roser; Bertran, Esther; Raimondi, Giulia; Fabra, Àngels; Alvarez-Barrientos, Alberto; Fernández-Salguero, Pedro; Fernández-Rodríguez, Conrado M; Giannelli, Gianluigi; Sancho, Patricia; Fabregat, Isabel

    2015-02-15

    The multikinase inhibitor sorafenib is the only effective drug in advanced cases of hepatocellular carcinoma (HCC). However, response differs among patients and effectiveness only implies a delay. We have recently described that sorafenib sensitizes HCC cells to apoptosis. In this work, we have explored the response to this drug of six different liver tumor cell lines to define a phenotypic signature that may predict lack of response in HCC patients. Results have indicated that liver tumor cells that show a mesenchymal-like phenotype, resistance to the suppressor effects of transforming growth factor beta (TGF-β) and high expression of the stem cell marker CD44 were refractory to sorafenib-induced cell death in in vitro studies, which correlated with lack of response to sorafenib in nude mice xenograft models of human HCC. In contrast, epithelial-like cells expressing the stem-related proteins EpCAM or CD133 were sensitive to sorafenib-induced apoptosis both in vitro and in vivo. A cross-talk between the TGF-β pathway and the acquisition of a mesenchymal-like phenotype with up-regulation of CD44 expression was found in the HCC cell lines. Targeted CD44 knock-down in the mesenchymal-like cells indicated that CD44 plays an active role in protecting HCC cells from sorafenib-induced apoptosis. However, CD44 effect requires a TGF-β-induced mesenchymal background, since the only overexpression of CD44 in epithelial-like HCC cells is not sufficient to impair sorafenib-induced cell death. In conclusion, a mesenchymal profile and expression of CD44, linked to activation of the TGF-β pathway, may predict lack of response to sorafenib in HCC patients. © 2014 UICC.

  5. miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer.

    PubMed

    Li, Daojiang; Xia, Lu; Chen, Miao; Lin, Changwei; Wu, Hao; Zhang, Yi; Pan, Songqing; Li, Xiaorong

    2017-07-25

    MicroRNAs, a family of single-stranded and non-coding RNAs, play a crucial role in regulating gene expression at posttranscriptional level, by which it can mediate various types of physiological and pathological process in normal developmental progress and human disease, including cancer. The microRNA-133b originally defined as canonical muscle-specific microRNAs considering their function to the development and health of mammalian skeletal and cardiac muscles, but new findings coming from our group and others revealed that miR-133b have frequently abnormal expression in various kinds of human cancer and its complex complicated regulatory networks affects the tumorigenicity and development of malignant tumors. Very few existing reviews on miR-133b, until now, are principally about its role in homologous cluster (miR-1, -133 and -206s), however, most of constantly emerging new researches now are focused mainly on one of them, so In this article, to highlight the unique pathological role of miR-133b playing in tumor, we conduct a review to summarize the current understanding about one of the muscle-specific microRNAs, namely miR-133b, acting in human cancer. The review focused on the following four aspects: the overview of miR-133b, the target genes of miR-133b involved in human cancer, the expression of miR-133b and regulatory mechanisms leading to abnormal expression of miR-133b.

  6. HBx drives alpha fetoprotein expression to promote initiation of liver cancer stem cells through activating PI3K/AKT signal pathway.

    PubMed

    Zhu, Mingyue; Li, Wei; Lu, Yan; Dong, Xu; Lin, Bo; Chen, Yi; Zhang, Xueer; Guo, Junli; Li, Mengsen

    2017-03-15

    Hepatitis B virus (HBV)-X protein (HBx) plays critical role in inducing the malignant transformation of liver cells. Alpha fetoprotein (AFP) expression is closely related to hepatocarcinogenesis. We report that Oct4, Klf4, Sox2 and c-myc expression positively associated with AFP(+)/HBV(+) hepatocellular carcinoma(HCC) tissues, and the expression of the stemness markers CD44, CD133 and EpCAM was significantly higher in AFP(+)/HBV(+) HCC tissues compared to normal liver tissues or AFP (-)/HBV(-) HCC tissues. AFP expression turned on prior to expression of Oct4, Klf4, Sox2 and c-myc, and the stemness markers CD44, CD133 and EpCAM in the normal human liver L-02 cell line or CHL cell lines upon transfection with MCV-HBx vectors. Stem-like cells generated more tumour colonies compared to primary cells, and xenografts induced tumourigenesis in nude mice. Expression of reprogramming-related proteins was significantly enhanced in HLE cells while transfected with pcDNA3.1-afp vectors. The specific PI3K inhibitor Ly294002 inhibited the effects of pcDNA3.1-afp vectors. AFP-siRNA vectors were able to inhibit tumour colony formation and reprogramming-related gene expression. Altogether, HBx stimulates AFP expression to induce natural reprogramming of liver cells, and AFP plays a critical role in promoting the initiation of HCC progenitor/stem cells. AFP may be a potential novel biotarget for combating HBV-induced hepatocarcinogenesis. © 2016 UICC.

  7. A targeted gene expression platform allows for rapid analysis of chemical-induced antioxidant mRNA expression in zebrafish larvae.

    PubMed

    Mills, Margaret G; Gallagher, Evan P

    2017-01-01

    Chemical-induced oxidative stress and the biochemical pathways that protect against oxidative damage are of particular interest in the field of toxicology. To rapidly identify oxidative stress-responsive gene expression changes in zebrafish, we developed a targeted panel of antioxidant genes using the Affymetrix QuantiGene Plex (QGP) platform. The genes contained in our panel include eight putative Nrf2 (Nfe2l2a)-dependent antioxidant genes (hmox1a, gstp1, gclc, nqo1, prdx1, gpx1a, sod1, sod2), a stress response gene (hsp70), an inducible DNA damage repair gene (gadd45bb), and three reference genes (actb1, gapdh, hprt1). We tested this platform on larval zebrafish exposed to tert-butyl hydroperoxide (tBHP) and cadmium (Cd), two model oxidative stressors with different modes of action, and compared our results with those obtained using the more common quantitative PCR (qPCR) method. Both methods showed that exposure to tBHP and Cd induced expression of prdx1, gstp1, and hmox1a (2- to 12-fold increase via QGP), indicative of an activated Nrf2 response in larval zebrafish. Both compounds also elicited a general stress response as reflected by elevation of hsp70 and gadd45bb, with Cd being the more potent inducer. Transient changes were observed in sod2 and gpx1a expression, whereas nqo1, an Nrf2-responsive gene in mammalian cells, was minimally affected by either tBHP or Cd chemical exposures. Developmental expression analysis of the target genes by QGP revealed marked upregulation of sod2 between 0-96hpf, and to a lesser extent, of sod1 and gstp1. Once optimized, QGP analysis of these experiments was accomplished more rapidly, using far less tissue, and at lower total costs than qPCR analysis. In summary, the QGP platform as applied to higher-throughput zebrafish studies provides a reasonable cost-effective alternative to qPCR or more comprehensive transcriptomics approaches to rapidly assess the potential for chemicals to elicit oxidative stress as a mechanism of

  8. An enhancer located in a CpG-island 3' to the TCR/CD3-epsilon gene confers T lymphocyte-specificity to its promoter.

    PubMed Central

    Clevers, H; Lonberg, N; Dunlap, S; Lacy, E; Terhorst, C

    1989-01-01

    The gene encoding the CD3-epsilon chain of the T cell receptor (TCR/CD3) complex is uniquely transcribed in all T lymphocyte lineage cells. The human CD3-epsilon gene, when introduced into the mouse germ line, was expressed in correct tissue-specific fashion. The gene was then screened for T lymphocyte-specific cis-acting elements in transient chloramphenicol transferase assays. The promoter (-228 to +100) functioned irrespective of cell type. A 1225 bp enhancer with strict T cell-specificity was found in a DNase I hypersensitive site downstream of the last exon, 12 kb from the promoter. This site was present in T cells only. The CD3-epsilon enhancer did not display sequence similarity with the T cell-specific enhancer of CD3-delta, a related gene co-regulated with CD3-epsilon during intrathymic differentiation. The CD3-epsilon enhancer was unusual in that it constituted a CpG island, and was hypomethylated independent of tissue type. Two HTLV I-transformed T cell lines were identified in which the CD3-epsilon gene was not expressed, and in which the enhancer was inactive. Images PMID:2583122

  9. Expression of microRNA-133 inhibits epithelial-mesenchymal transition in lung cancer cells by directly targeting FOXQ1.

    PubMed

    Xiao, Bo; Liu, Huazhen; Gu, Zeyun; Ji, Cheng

    2016-10-01

    MicroRNA (miR) was implicated in the tumorigenesis of many types of cancer, but no study was conducted on the exact role of miR-133 in lung cancer. We have identified miR-133 as a putative regulator of FOXQ1 expression, and investigated the potential involvement of miR-133 in the migration and invasion of lung cancer cells, as well as the underlying molecular mechanism. MiR-133 directly targeted and down-regulated FOXQ1 expression, which in turn reduced TGF-β level. MiR-133 was down-regulated in lung cancer cell lines A549 and HCC827, and its re-expression significantly inhibited the migration and invasion of the lung cancer cells. Further investigation revealed that this inhibition was caused by reversing the epithelial-mesenchymal transition, evidenced by miR-133 induced elevation of epithelial marker E-cadherin, and reduction of mesenchymal marker Vimentin. Our study is the first to identify miR-133 as a biomarker for lung cancer. It functions to down-regulate FOXQ1, and inhibit epithelial-mesenchymal transition, which antagonizes lung cancer tumorigenesis. Therefore our data support the role of miR-133 as a potential molecular therapeutic tool in treating lung cancer. Copyright © 2015 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Modulation by Cocaine of Dopamine Receptors through miRNA-133b in Zebrafish Embryos

    PubMed Central

    Barreto-Valer, Katherine; López-Bellido, Roger; Macho Sánchez-Simón, Fátima; Rodríguez, Raquel E.

    2012-01-01

    The use of cocaine during pregnancy can affect the mother and indirectly might alter the development of the embryo/foetus. Accordingly, in the present work our aim was to study in vivo (in zebrafish embryos) the effects of cocaine on the expression of dopamine receptors and on miR-133b. These embryos were exposed to cocaine hydrochloride (HCl) at 5 hours post-fertilization (hpf) and were then collected at 8, 16, 24, 48 and 72 hpf to study the expression of dopamine receptors, drd1, drd2a, drd2b and drd3, by quantitative real time PCR (qPCR) and in situ hybridization (ISH, only at 24 hpf). Our results indicate that cocaine alters the expression of the genes studied, depending on the stage of the developing embryo and the type of dopamine receptor. We found that cocaine reduced the expression of miR-133b at 24 and 48 hpf in the central nervous system (CNS) and at the periphery by qPCR and also that the spatial distribution of miR-133b was mainly seen in somites, a finding that suggests the involvement of miR-133b in the development of the skeletal muscle. In contrast, at the level of the CNS miR-133b had a weak and moderate expression at 24 and 48 hpf. We also analysed the interaction of miR-133b with the Pitx3 and Pitx3 target genes drd2a and drd2b, tyrosine hydroxylase (th) and dopamine transporter (dat) by microinjection of the Pitx3-3'UTR sequence. Microinjection of Pitx3-3'UTR affected the expression of pitx3, drd2a, drd2b, th and dat. In conclusion, in the present work we describe a possible mechanism to account for cocaine activity by controlling miR-133b transcription in zebrafish. Via miR-133b cocaine would modulate the expression of pitx3 and subsequently of dopamine receptors, dat and th. These results indicate that miRNAs can play an important role during embryogenesis and in drug addiction. PMID:23285158

  11. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappa, Germana; College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104; Mercapide, Javier

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that threemore » distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1

  12. p73 coordinates with Δ133p53 to promote DNA double-strand break repair.

    PubMed

    Gong, Hongjian; Zhang, Yuxi; Jiang, Kunpeng; Ye, Shengfan; Chen, Shuming; Zhang, Qinghe; Peng, Jinrong; Chen, Jun

    2018-03-06

    Tumour repressor p53 isoform Δ133p53 is a target gene of p53 and an antagonist of p53-mediated apoptotic activity. We recently demonstrated that Δ133p53 promotes DNA double-strand break (DSB) repair by upregulating transcription of the repair genes RAD51, LIG4 and RAD52 in a p53-independent manner. However, Δ133p53 lacks the transactivation domain of full-length p53, and the mechanism by which it exerts transcriptional activity independently of full-length p53 remains unclear. In this report, we describe the accumulation of high levels of both Δ133p53 and p73 (a p53 family member) at 24 h post γ-irradiation (hpi). Δ133p53 can form a complex with p73 upon γ-irradiation. The co-expression of Δ133p53 and p73, but not either protein alone, can significantly promote DNA DSB repair mechanisms, including homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). p73 and Δ133p53 act synergistically to promote the expression of RAD51, LIG4 and RAD52 by joining together to bind to region containing a Δ133p53-responsive element (RE) and a p73-RE in the promoters of all three repair genes. In addition to its accumulation at 24 hpi, p73 protein expression also peaks at 4 hpi. The depletion of p73 not only reduces early-stage apoptotic frequency (4-6 hpi), but also significantly increases later-stage DNA DSB accumulation (48 hpi), leading to cell cycle arrest in the G2 phase and, ultimately, cell senescence. In summary, the apoptotic regulator p73 also coordinates with Δ133p53 to promote DNA DSB repair, and the loss of function of p73 in DNA DSB repair may underlie spontaneous and carcinogen-induced tumorigenesis in p73 knockout mice.

  13. LPS-induced expression of CD14 in the TRIF pathway is epigenetically regulated by sulforaphane in porcine pulmonary alveolar macrophages.

    PubMed

    Yang, Qin; Pröll, Maren J; Salilew-Wondim, Dessie; Zhang, Rui; Tesfaye, Dawit; Fan, Huitao; Cinar, Mehmet U; Große-Brinkhaus, Christine; Tholen, Ernst; Islam, Mohammad A; Hölker, Michael; Schellander, Karl; Uddin, Muhammad J; Neuhoff, Christiane

    2016-11-01

    Pulmonary alveolar macrophages (AMs) are important in defense against bacterial lung inflammation. Cluster of differentiation 14 (CD14) is involved in recognizing bacterial lipopolysaccharide (LPS) through MyD88-dependent and TRIF pathways of innate immunity. Sulforaphane (SFN) shows anti-inflammatory activity and suppresses DNA methylation. To identify CD14 epigenetic changes by SFN in the LPS-induced TRIF pathway, an AMs model was investigated in vitro. CD14 gene expression was induced by 5 µg/ml LPS at the time point of 12 h and suppressed by 5 µM SFN. After 12 h of LPS stimulation, gene expression was significantly up-regulated, including TRIF, TRAF6, NF-κB, TRAF3, IRF7, TNF-α, IL-1β, IL-6, and IFN-β. LPS-induced TRAM, TRIF, RIPK1, TRAF3, TNF-α, IL-1β and IFN-β were suppressed by 5 µM SFN. Similarly, DNMT3a expression was increased by LPS but significantly down-regulated by 5 µM SFN. It showed positive correlation of CD14 gene body methylation with in LPS-stimulated AMs, and this methylation status was inhibited by SFN. This study suggests that SFN suppresses CD14 activation in bacterial inflammation through epigenetic regulation of CD14 gene body methylation associated with DNMT3a. The results provide insights into SFN-mediated epigenetic down-regulation of CD14 in LPS-induced TRIF pathway inflammation and may lead to new methods for controlling LPS-induced inflammation in pigs.

  14. [Evaluation of percentage of lymphocytes B with expression of co-receptors CD 40, CD22 and CD72 in hypertrophied adenoid at children with otitis media with effusion].

    PubMed

    Wysocka, Jolanta; Zelazowska-Rutkowska, Beata; Ratomski, Karol; Skotnicka, Bozena; Hassmann-Poznańska, Elzbieta

    2009-01-01

    In hypertrophied adenoid lymphocytes B make up about 60% all lymphocytes. When the lymphocytes B come in interaction with antigens this membranes signal be passed through their receptor (BCR) to interior of cell. This signal affect modulation on gene expression, activation from which depends activation, anergy or apoptosis of lymphocyte B. Accompany BCR co-receptors regulate his functions influence stimulate or inhibitive. To the most important co-receptors stepping out on lymphocyte B belong: CD40, CD22, CD72. The aim of study was evaluation of lymphocytes B (CD19) with co-expression with CD72 and CD40 receptors in hypertrophied adenoid with at children with otitis media with effusion. An investigation was executed in hypertrophied adenoids with or without otitis media with effusion. By flow cytometry percentage of lymphocytes B with co-receptors CD 40, CD22 and CD72 in was analyzed. The percentages of CD19+CD72+ lymphocytes in the group of children with adenoid hypertrophy and exudative otitis media were lower as compared to the reference group. However, the percentages of CD19+CD22+, CD19+CD40+ in the study group was approximate to the reference group. The lower percentage of lymphocytes B CD72 + near approximate percentages of lymphocytes B CD40+ and BCD22+ at children with otitis media with effusion can be the cause of incorrect humoral response in hypertrophied adenoid at children. Maybe it is cause reduced spontaneous production IgA and IgG through lymphocyte at children with otitis media with effusion.

  15. Liver-specific gene expression in cultured human hematopoietic stem cells.

    PubMed

    Fiegel, Henning C; Lioznov, Michael V; Cortes-Dericks, Lourdes; Lange, Claudia; Kluth, Dietrich; Fehse, Boris; Zander, Axel R

    2003-01-01

    Hematopoietic and hepatic stem cells share characteristic markers such as CD34, c-kit, and Thy1. Based on the recent observations that hepatocytes may originate from bone marrow, we investigated the potential of CD34(+) bone marrow cells to differentiate into hepatocytic cells in vitro. CD34(+) and CD34(-) human bone marrow cells were separated by magnetic cell sorting. Cells were cultured on a collagen matrix in a defined medium containing hepatocyte growth factor. Cell count and size were measured by flow cytometry, and reverse transcription polymerase chain reaction was carried out for the liver-specific markers CK-19 and albumin. During cell culture, CD34(+) cells showed an increasing cell number and proliferative activity as assessed by Ki-67 staining. Under the specified culture conditions, CD34(+) cells expressed albumin RNA and CK-19 RNA after 28 days, whereas CD34(-) cells did not show liver-specific gene expression. The results indicate that CD34(+) adult human bone marrow stem cells can differentiate into hepatocytic cells in vitro.

  16. Dynamic Modulation of Expression of Lentiviral Restriction Factors in Primary CD4+ T Cells following Simian Immunodeficiency Virus Infection.

    PubMed

    Rahmberg, Andrew R; Rajakumar, Premeela A; Billingsley, James M; Johnson, R Paul

    2017-04-01

    Although multiple restriction factors have been shown to inhibit HIV/SIV replication, little is known about their expression in vivo Expression of 45 confirmed and putative HIV/SIV restriction factors was analyzed in CD4 + T cells from peripheral blood and the jejunum in rhesus macaques, revealing distinct expression patterns in naive and memory subsets. In both peripheral blood and the jejunum, memory CD4 + T cells expressed higher levels of multiple restriction factors compared to naive cells. However, relative to their expression in peripheral blood CD4 + T cells, jejunal CCR5 + CD4 + T cells exhibited significantly lower expression of multiple restriction factors, including APOBEC3G , MX2 , and TRIM25 , which may contribute to the exquisite susceptibility of these cells to SIV infection. In vitro stimulation with anti-CD3/CD28 antibodies or type I interferon resulted in upregulation of distinct subsets of multiple restriction factors. After infection of rhesus macaques with SIVmac239, the expression of most confirmed and putative restriction factors substantially increased in all CD4 + T cell memory subsets at the peak of acute infection. Jejunal CCR5 + CD4 + T cells exhibited the highest levels of SIV RNA, corresponding to the lower restriction factor expression in this subset relative to peripheral blood prior to infection. These results illustrate the dynamic modulation of confirmed and putative restriction factor expression by memory differentiation, stimulation, tissue microenvironment and SIV infection and suggest that differential expression of restriction factors may play a key role in modulating the susceptibility of different populations of CD4 + T cells to lentiviral infection. IMPORTANCE Restriction factors are genes that have evolved to provide intrinsic defense against viruses. HIV and simian immunodeficiency virus (SIV) target CD4 + T cells. The baseline level of expression in vivo and degree to which expression of restriction factors is

  17. miR-142-3p is involved in CD25+ CD4 T cell proliferation by targeting the expression of glycoprotein A repetitions predominant.

    PubMed

    Zhou, Qihui; Haupt, Sonja; Prots, Iryna; Thümmler, Katja; Kremmer, Elisabeth; Lipsky, Peter E; Schulze-Koops, Hendrik; Skapenko, Alla

    2013-06-15

    Because of the numerous targets of microRNAs (miRNAs), functional dissection of specific miRNA/mRNA interactions is important to understand the complex miRNA regulatory mechanisms. Glycoprotein A repetitions predominant (GARP) is specifically expressed on regulatory CD25(+) CD4 T cells upon their activation. GARP has a long 3' untranslated region containing five highly conserved regions suggesting miRNA regulation of its expression. Although GARP is physiologically expressed on a cell subset characterized by stringent control of proliferation, amplification of the GARP gene has been found in many tumors characterized by uncontrolled proliferation. In this study, we investigated in detail miRNA regulation of GARP expression, in particular by miR-142-3p, and dissected the functional outcome of miR-142-3p/GARP mRNA interaction. We demonstrate that miR-142-3p binds directly to the 3' untranslated region of GARP and represses GARP protein expression by Argonaute 2-associated degradation of GARP mRNA. Functionally, miR-142-3p-mediated regulation of GARP is involved in the expansion of CD25(+) CD4 T cells in response to stimulation. The data indicate that miR-142-3p regulates GARP expression on CD25(+) CD4 T cells and, as a result, their expansion in response to activation. Our data provide novel insight into the molecular mechanisms controlling regulatory T cell expansion. They may also have implications for understanding tumor cell biology.

  18. Downregulation of CD147 expression by RNA interference inhibits HT29 cell proliferation, invasion and tumorigenicity in vitro and in vivo.

    PubMed

    Li, Rui; Pan, Yuqin; He, Bangshun; Xu, Yeqiong; Gao, Tianyi; Song, Guoqi; Sun, Huiling; Deng, Qiwen; Wang, Shukui

    2013-12-01

    We investigated the effect of CD147 silencing on HT29 cell proliferation and invasion. We constructed a novel short hairpin RNA (shRNA) expression vector pYr-mir30-shRNA. The plasmid was transferred to HT29 cells. The expression of CD147, MCT1 (lactate transporters monocarboxylate transporter 1) and MCT4 (lactate transporters monocarboxylate transporter 4) were monitored by quantitative PCR and western blotting, respectively. The MMP-2 (matrix metalloproteinase-2) and MMP-9 (matrix metalloproteinase-9) activities were determined by gelatin zymography assay, while the intracellular lactate concentration was determined by the lactic acid assay kit. WST-8 assay was used to determine the HT29 cell proliferation and the chemosensitivity. Invasion assay was used to determine the invasion of HT29 cells. In addition, we established a colorectal cancer model, and detected CD147 expression in vivo. The results showed that the expression of CD147 and MCT1 was significantly reduced at both mRNA and protein levels, and also the activity of MMP-2 and MMP-9 was reduced. The proliferation and invasion were decreased, but chemosensitivity to cisplatin was increased. In vivo, the CD147 expression was also significantly decreased, and reduced the tumor growth after CD147 gene silencing. The results demonstrated that silencing of CD147 expression inhibited the proliferation and invasion, suggesting CD147 silencing might be an adjuvant gene therapy strategy to chemotherapy.

  19. The Effect of Gestational Age on Angiogenic Gene Expression in the Rat Placenta

    PubMed Central

    Vaswani, Kanchan; Hum, Melissa Wen-Ching; Chan, Hsiu-Wen; Ryan, Jennifer; Wood-Bradley, Ryan J.; Nitert, Marloes Dekker; Mitchell, Murray D.; Armitage, James A.; Rice, Gregory E.

    2013-01-01

    The placenta plays a central role in determining the outcome of pregnancy. It undergoes changes during gestation as the fetus develops and as demands for energy substrate transfer and gas exchange increase. The molecular mechanisms that coordinate these changes have yet to be fully elucidated. The study performed a large scale screen of the transcriptome of the rat placenta throughout mid-late gestation (E14.25–E20) with emphasis on characterizing gestational age associated changes in the expression of genes invoved in angiogenic pathways. Sprague Dawley dams were sacrificed at E14.25, E15.25, E17.25 and E20 (n = 6 per group) and RNA was isolated from one placenta per dam. Changes in placental gene expression were identifed using Illumina Rat Ref-12 Expression BeadChip Microarrays. Differentially expressed genes (>2-fold change, <1% false discovery rate, FDR) were functionally categorised by gene ontology pathway analysis. A subset of differentially expressed genes identified by microarrays were confirmed using Real-Time qPCR. The expression of thirty one genes involved in the angiogenic pathway was shown to change over time, using microarray analysis (22 genes displayed increased and 9 gene decreased expression). Five genes (4 up regulated: Cd36, Mmp14, Rhob and Angpt4 and 1 down regulated: Foxm1) involved in angiogenesis and blood vessel morphogenesis were subjected to further validation. qPCR confirmed late gestational increased expression of Cd36, Mmp14, Rhob and Angpt4 and a decrease in expression of Foxm1 before labour onset (P<0.0001). The observed acute, pre-labour changes in the expression of the 31 genes during gestation warrant further investigation to elucidate their role in pregnancy. PMID:24391823

  20. Gene transfer of Hodgkin cell lines via multivalent anti-CD30 scFv displaying bacteriophage.

    PubMed

    Chung, Yoon-Suk A; Sabel, Katja; Krönke, Martin; Klimka, Alexander

    2008-04-16

    The display of binding ligands, such as recombinant antibody fragments, on the surface of filamentous phage makes it possible to specifically attach these phage particles to target cells. After uptake of the phage, their internal single-stranded DNA is processed by the host cell, which allows transient expression of an encoded eukaryotic gene cassette. This opens the possibility to use bacteriophage as vectors for targeted gene therapy, although the transduction efficiency is very low. Here we demonstrate the display of an anti-CD30 single chain variable fragment fused to the major coat protein pVIII on the surface of bacteriophage. These phage particles showed an improved binding and transduction efficiency of CD30 positive Hodgkin-lymphoma cells, compared to bacteriophage with the anti-CD30 single chain variable fragment fused to the minor coat protein pIII. We can conclude from the results that the postulated multivalency of the anti-CD30-pVIII displaying bacteriophage combined with disseminated display of the anti-CD30 scFv on the whole particle surface is responsible for the improved gene transfer rate. These results mark an important step towards the use of phage particles as a cheap and safe gene transfer vehicle for the gene delivery of the desired target cells via their specific surface receptors.

  1. Comparative Analysis of Hepatic CD14 Expression between Two Different Endotoxin Shock Model Mice: Relation between Hepatic Injury and CD14 Expression

    PubMed Central

    Hozumi, Hiroyasu; Tada, Rui; Murakami, Taisuke; Adachi, Yoshiyuki; Ohno, Naohito

    2013-01-01

    CD14 is a glycoprotein that recognizes gram-negative bacterial lipopolysaccharide (LPS) and exists in both membrane-bound and soluble forms. Infectious and/or inflammatory diseases induce CD14 expression, which may be involved in the pathology of endotoxin shock. We previously found that the expression of CD14 protein differs among the endotoxin shock models used, although the reasons for these differences are unclear. We hypothesized that the differences in CD14 expression might be due to liver injury, because the hepatic tissue produces CD14 protein. We investigated CD14 expression in the plasma and liver in the carrageenan (CAR)-primed and D-galN-primed mouse models of endotoxin shock. Our results showed that severe liver injury was not induced in CAR-primed endotoxin shock model mice. In this CAR-primed model, the higher mRNA and protein expression of CD14 was observed in the liver, especially in the interlobular bile duct in contrast to D-galN-primed-endotoxin shock model mice. Our findings indicated that the molecular mechanism(s) underlying septic shock in CAR-primed and D-galN-primed endotoxin shock models are quite different. Because CD14 expression is correlated with clinical observations, the CAR-primed endotoxin shock model might be useful for studying the functions of CD14 during septic shock in vivo. PMID:23308276

  2. Expression of LLT1 and its receptor CD161 in lung cancer is associated with better clinical outcome.

    PubMed

    Braud, Véronique M; Biton, Jérôme; Becht, Etienne; Knockaert, Samantha; Mansuet-Lupo, Audrey; Cosson, Estelle; Damotte, Diane; Alifano, Marco; Validire, Pierre; Anjuère, Fabienne; Cremer, Isabelle; Girard, Nicolas; Gossot, Dominique; Seguin-Givelet, Agathe; Dieu-Nosjean, Marie-Caroline; Germain, Claire

    2018-01-01

    Co-stimulatory and inhibitory receptors expressed by immune cells in the tumor microenvironment modulate the immune response and cancer progression. Their expression and regulation are still not fully characterized and a better understanding of these mechanisms is needed to improve current immunotherapies. Our previous work has identified a novel ligand/receptor pair, LLT1/CD161, that modulates immune responses. Here, we extensively characterize its expression in non-small cell lung cancer (NSCLC). We show that LLT1 expression is restricted to germinal center (GC) B cells within tertiary lymphoid structures (TLS), representing a new hallmark of the presence of active TLS in the tumor microenvironment. CD161-expressing immune cells are found at the vicinity of these structures, with a global enrichment of NSCLC tumors in CD161 + CD4 + and CD8 + T cells as compared to normal distant lung and peripheral blood. CD161 + CD4 + T cells are more activated and produce Th1-cytokines at a higher frequency than their matched CD161-negative counterparts. Interestingly, CD161 + CD4 + T cells highly express OX40 co-stimulatory receptor, less frequently 4-1BB, and display an activated but not completely exhausted PD-1-positive Tim-3-negative phenotype. Finally, a meta-analysis revealed a positive association of CLEC2D (coding for LLT1) and KLRB1 (coding for CD161) gene expression with favorable outcome in NSCLC, independently of the size of T and B cell infiltrates. These data are consistent with a positive impact of LLT1/CD161 on NSCLC patient survival, and make CD161-expressing CD4 + T cells ideal candidates for efficient anti-tumor recall responses.

  3. Differential gene expression in patients with subsyndromal symptomatic depression and major depressive disorder.

    PubMed

    Yang, Chengqing; Hu, Guoqin; Li, Zezhi; Wang, Qingzhong; Wang, Xuemei; Yuan, Chengmei; Wang, Zuowei; Hong, Wu; Lu, Weihong; Cao, Lan; Chen, Jun; Wang, Yong; Yu, Shunying; Zhou, Yimin; Yi, Zhenghui; Fang, Yiru

    2017-01-01

    Subsyndromal symptomatic depression (SSD) is a subtype of subthreshold depressive and can lead to significant psychosocial functional impairment. Although the pathogenesis of major depressive disorder (MDD) and SSD still remains poorly understood, a set of studies have found that many same genetic factors play important roles in the etiology of these two disorders. Nowadays, the differential gene expression between MDD and SSD is still unknown. In our previous study, we compared the expression profile and made the classification with the leukocytes by using whole-genome cRNA microarrays among drug-free first-episode subjects with SSD, MDD and matched healthy controls (8 subjects in each group), and finally determined 48 gene expression signatures. Based on these findings, we further clarify whether these genes mRNA was different expressed in peripheral blood in patients with SSD, MDD and healthy controls (60 subjects respectively). With the help of the quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR), we gained gene relative expression levels among the three groups. We found that there are three of the forty eight co-regulated genes had differential expression in peripheral blood among the three groups, which are CD84, STRN, CTNS gene (F = 3.528, p = 0.034; F = 3.382, p = 0.039; F = 3.801, p = 0.026, respectively) while there were no significant differences for other genes. CD84, STRN, CTNS gene may have significant value for performing diagnostic functions and classifying SSD, MDD and healthy controls.

  4. MicroRNA-133 mediates cardiac diseases: Mechanisms and clinical implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi; Liang, Yan; Zhang, Jin-fang

    MicroRNAs (miRNAs) belong to the family of small non-coding RNAs that mediate gene expression by post-transcriptional regulation. Increasing evidence have demonstrated that miR-133 is enriched in muscle tissues and myogenic cells, and its aberrant expression could induce the occurrence and development of cardiac disorders, such as cardiac hypertrophy, heart failure, etc. In this review, we summarized the regulatory roles of miR-133 in cardiac disorders and the underlying mechanisms, which suggest that miR-133 may be a potential diagnostic and therapeutic tool for cardiac disorders. - Highlights: • miR-218 is frequently downregulated in multiple cancers. • miR-218 plays pivotal roles in carcinogenesis.more » • miR-218 mediates proliferation, apoptosis, metastasis, invasion, etc. • miR-218 mediates tumorigenesis and metastasis via multiple pathways.« less

  5. Nephron segment-specific gene expression using AAV vectors.

    PubMed

    Asico, Laureano D; Cuevas, Santiago; Ma, Xiaobo; Jose, Pedro A; Armando, Ines; Konkalmatt, Prasad R

    2018-02-26

    AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict the transgene expression to the desired cell type within the kidney, so that the physiological endpoints represent the function of the transgene expressed in that specific cell type within kidney. We hypothesized that segment-specific gene expression within the kidney can be accomplished using the highly efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired segment of the nephron in combination with administration by retrograde infusion into the kidney via the ureter. We constructed AAV vectors carrying eGFP under the control of: kidney-specific cadherin (KSPC) gene promoter for expression in the entire nephron; Na + /glucose co-transporter (SGLT2) gene promoter for expression in the S1 and S2 segments of the proximal tubule; sodium, potassium, 2 chloride co-transporter (NKCC2) gene promoter for expression in the thick ascending limb of Henle's loop (TALH); E-cadherin (ECAD) gene promoter for expression in the collecting duct (CD); and cytomegalovirus (CMV) early promoter that provides expression in most of the mammalian cells, as control. We tested the specificity of the promoter constructs in vitro for cell type-specific expression in mouse kidney cells in primary culture, followed by retrograde infusion of the AAV vectors via the ureter in the mouse. Our data show that AAV9 vector, in combination with the segment-specific promoters administered by retrograde infusion via the ureter, provides renal nephron segment-specific gene expression. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb.

    PubMed

    Bernard, F; Dumez, S; Brulle, F; Lemière, S; Platel, A; Nesslany, F; Cuny, D; Deram, A; Vandenbulcke, F

    2016-02-01

    This study focused on the expression analysis of antioxidant defense genes in Brassica oleracea and in Trifolium repens. Plants were exposed for 3, 10, and 56 days in microcosms to a field-collected suburban soil spiked by low concentrations of cadmium and/or lead. In both species, metal accumulations and expression levels of genes encoding proteins involved and/or related to antioxidant defense systems (glutathione transferases, peroxidases, catalases, metallothioneins) were quantified in leaves in order to better understand the detoxification processes involved following exposure to metals. It appeared that strongest gene expression variations in T. repens were observed when plants are exposed to Cd (metallothionein and ascorbate peroxidase upregulations) whereas strongest variations in B. oleracea were observed in case of Cd/Pb co-exposures (metallothionein, glutathione transferase, and peroxidase upregulations). Results also suggest that there is a benefit to use complementary species in order to better apprehend the biological effects in ecotoxicology.

  7. Analysis of gene expression provides insights into the mechanism of cadmium tolerance in Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Minjie; Li, Yanjun; Zhang, Li; Wang, Jianying; Zheng, Chunli; Zhang, Xuefeng

    2015-02-01

    Acidithiobacillus ferrooxidans plays a critical role in metal solubilization in the biomining industry, and occupies an ecological niche characterized by high acidity and high concentrations of toxic heavy metal ions. In order to investigate the possible metal resistance mechanism, the cellular distribution of cadmium was tested. The result indicated that Cd(2+) entered the cells upon initial exposure resulting in increased intracellular concentrations, followed by its excretion from the cells during subsequent growth and adaptation. Sequence homology analyses were used to identify 10 genes predicted to participate in heavy metal homeostasis, and the expression of these genes was investigated in cells cultured in the presence of increasing concentrations of toxic divalent cadmium (Cd(2+)). The results suggested that one gene (cmtR A.f ) encoded a putative Cd(2+)/Pb(2+)-responsive transcriptional regulator; four genes (czcA1 A.f , czcA2 A.f , czcB1 A.f ; and czcC1 A.f ) encoded heavy metal efflux proteins for Cd(2+); two genes (cadA1 A.f and cadB1 A.f ) encoded putative cation channel proteins related to the transport of Cd(2+). No significant enhancement of gene expression was observed at low concentrations of Cd(2+) (5 mM) and most of the putative metal resistance genes were up-regulated except cmtR A.f , cadB3 A.f ; and czcB1 A.f at higher concentrations (15 and 30 mM) according to real-time polymerase chain reaction. A model was developed for the mechanism of resistance to cadmium ions based on homology analyses of the predicted genes, the transcription of putative Cd(2+) resistance genes, and previous work.

  8. Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart

    PubMed Central

    Rodríguez-Penas, Diego; Feijóo-Bandín, Sandra; Noguera-Moreno, Teresa; Calaza, Manuel; Álvarez-Barredo, María; Mosquera-Leal, Ana; Parrington, John; Brugada, Josep; Portolés, Manuel; Rivera, Miguel; González-Juanatey, José Ramón; Lago, Francisca

    2012-01-01

    Background Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca2+)-handling in the human heart. Methods RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6). Results Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca2+-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca2+-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM. Conclusion DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca2+-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca2+-handling genes

  9. Circulating CD34+ progenitor cells and risk of mortality in a population with coronary artery disease.

    PubMed

    Patel, Riyaz S; Li, Qunna; Ghasemzadeh, Nima; Eapen, Danny J; Moss, Lauren D; Janjua, A Umair; Manocha, Pankaj; Kassem, Hatem Al; Veledar, Emir; Samady, Habib; Taylor, W Robert; Zafari, A Maziar; Sperling, Laurence; Vaccarino, Viola; Waller, Edmund K; Quyyumi, Arshed A

    2015-01-16

    Low circulating progenitor cell numbers and activity may reflect impaired intrinsic regenerative/reparative potential, but it remains uncertain whether this translates into a worse prognosis. To investigate whether low numbers of progenitor cells associate with a greater risk of mortality in a population at high cardiovascular risk. Patients undergoing coronary angiography were recruited into 2 cohorts (1, n=502 and 2, n=403) over separate time periods. Progenitor cells were enumerated by flow cytometry as CD45(med+) blood mononuclear cells expressing CD34, with additional quantification of subsets coexpressing CD133, vascular endothelial growth factor receptor 2, and chemokine (C-X-C motif) receptor 4. Coefficient of variation for CD34 cells was 2.9% and 4.8%, 21.6% and 6.5% for the respective subsets. Each cohort was followed for a mean of 2.7 and 1.2 years, respectively, for the primary end point of all-cause death. There was an inverse association between CD34(+) and CD34(+)/CD133(+) cell counts and risk of death in cohort 1 (β=-0.92, P=0.043 and β=-1.64, P=0.019, respectively) that was confirmed in cohort 2 (β=-1.25, P=0.020 and β=-1.81, P=0.015, respectively). Covariate-adjusted hazard ratios in the pooled cohort (n=905) were 3.54 (1.67-7.50) and 2.46 (1.18-5.13), respectively. CD34(+)/CD133(+) cell counts improved risk prediction metrics beyond standard risk factors. Reduced circulating progenitor cell counts, identified primarily as CD34(+) mononuclear cells or its subset expressing CD133, are associated with risk of death in individuals with coronary artery disease, suggesting that impaired endogenous regenerative capacity is associated with increased mortality. These findings have implications for biological understanding, risk prediction, and cell selection for cell-based therapies. © 2014 American Heart Association, Inc.

  10. Gene expression patterns regulating the seed metabolism in relation to deterioration/ageing of primed mung bean (Vigna radiata L.) seeds.

    PubMed

    Sharma, Satyendra Nath; Maheshwari, Ankita; Sharma, Chitra; Shukla, Nidhi

    2018-03-01

    We are proposing mechanisms to account for the loss of viability (seed deterioration/ageing) and enhancement in seed quality (post-storage priming treatment). In order to understand the regulatory mechanism of these traits, we conducted controlled deterioration (CD) test for up to 8 d using primed mung bean seeds and examined how CD effects the expression of many genes, regulating the seed metabolism in relation to CD and priming. Germination declined progressively with increased duration of CD, and the priming treatment completely/partially reversed the inhibition depending on the duration of CD. The loss of germination capacity by CD was accompanied by a reduction in total RNA content and RNA integrity, indicating that RNA quantity and quality impacts seed longevity. Expression analysis revealed that biosynthesis genes of GA, ethylene, ABA and ROS-scavenging enzymes were differentially affected in response to duration of CD and priming, suggesting coordinately regulated mechanisms for controlling the germination capacity of seeds by modifying the permeability characteristics of biological membranes and activities of different enzymes. ABA genes were highly expressed when germination was delayed and inhibited by CD. Whereas, GA and ethylene genes were more highly expressed when germination was enhanced and permitted by priming under similar conditions. GSTI, a well characterized enzyme family involved in stress tolerance, was expressed in primed seeds over the period of CD, suggesting an additional protection against deterioration. The results are discussed in light of understanding the mechanisms underlying longevity/priming which are important issues economically and ecologically. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. MicroRNA-133a Regulates Insulin-like Growth Factor-1 Receptor Expression and Vascular Smooth Muscle Cell Proliferation in Murine Atherosclerosis

    PubMed Central

    Gao, Song; Wassler, Michael; Zhang, Lulu; Li, Yangxin; Wang, Jun; Zhang, Yi; Shelat, Harnath; Williams, Jason; Geng, Yong-Jian

    2014-01-01

    Objective MicroRNA-133a (miR-133a) and insulin-like growth factor-1 (IGF-1) are two different molecules known to regulate cardiovascular cell proliferation. This study tested whether miR-133a affects expression of IGF-1 receptor (IGF-1R) and proliferation of IGF-1-stimulated vascular smooth muscle cells (VSMC) in a murine model of atherosclerosis. Methods and Results Expression of IGF-1R was analyzed by immuno-fluorescence and immuno-blotting, and miR-133a by qRT-PCR in the aortas of wild-type C57BL/6J (WT) and apolipoprotein-E deficient (ApoE−/−) mice. Compared to those in WT aortas, the IGF-1R and miR-133a levels were lower in ApoE−/− aortas. ApoE−/− VSMC grew slower than WT cells in the cultures with IGF-1-containing medium. MiR-133a-specific inhibitor decreased miR-133a, IGF-1R expression, IGF-1-stimulated VSMC growth in lipoprotein-deficient media. By contrast, miR-133a precursor increased IGF-1R levels and promoted IGF-1-induced VSMC proliferation. In the luciferase-IGF-1R 3’UTR reporter system, the reporter luciferase activity was not inhibited in VSMC with miR-133a overexpression. IGF-1R mRNA half-life in ApoE−/− VSMC was shorter than that in WT VSMC. MiR-133a inhibitor reduced but precursor increased the mRNA half-life, although the effects appeared less striking in ApoE−/− VSMC than in WT cells. Conclusion MiR-133a serves as a stimulatory factor for IGF-1R expression through prolonging IGF-1R mRNA half-life. In atherosclerosis induced by ApoE deficiency, reduced miR-133a expression is associated with lower IGF-1R levels and suppressive VSMC growth. Administration of miR-133a precursor may potentiate IGF-1 stimulated VSMC survival and growth. PMID:24401233

  12. CD30 expression in follicular lymphoma.

    PubMed

    Gardner, L J; Polski, J M; Evans, H L; Perkins, S L; Dunphy, C H

    2001-08-01

    CD30(+) anaplastic large cell lymphomas were originally described as being of T-cell, null cell, and B-cell origin. CD30, however, is not a specific marker of anaplastic large cell lymphoma and has been found to be expressed in reactive as well as neoplastic populations as a probable activation marker. In addition, CD30(+) cells have also been described in both diffuse large B-cell and follicular lymphomas (FLs), resembling the pattern seen in reactive tonsils and lymph nodes. We report an index case of FL with CD30 expression, which on initial touch preparations and flow cytometric immunophenotyping revealed a prominent population of CD30(+) cells with marked cellular pleomorphism (anaplasia) in a background of typical FL. Immunohistochemistry of the paraffin section for CD30 in our index case confirmed unequivocal CD30(+) pleomorphic cells in the malignant nodules in occasional clusters. This case prompted a study of additional cases of FL for pattern of immunoreactivity with CD30 on paraffin sections. Twenty-two additional cases of FL (grades 1-3) were retrieved for CD30 immunoperoxidase staining as in the index case. This study demonstrated 32% of the additional cases of FL had definitive CD30(+), large, pleomorphic malignant cells by paraffin immunohistochemistry. In 2 cases (9%), the pattern of immunoreactivity with CD30 showed clustering and variable staining of large cells, as our index case. This study underscores the morphologic and immunophenotypic spectrum of FL that includes CD30 staining and cellular pleomorphism.

  13. Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes

    PubMed Central

    Dorsett, Dale

    2006-01-01

    The sister chromatid cohesion apparatus mediates physical pairing of duplicated chromosomes. This pairing is essential for appropriate distribution of chromosomes into the daughter cells upon cell division. Recent evidence shows that the cohesion apparatus, which is a significant structural component of chromosomes during interphase, also affects gene expression and development. The Cornelia de Lange (CdLS) and Roberts/SC phocomelia (RBS/SC) genetic syndromes in humans are caused by mutations affecting components of the cohesion apparatus. Studies in Drosophila suggest that effects on gene expression are most likely responsible for developmental alterations in CdLS. Effects on chromatid cohesion are apparent in RBS/SC syndrome, but data from yeast and Drosophila point to the likelihood that changes in expression of genes located in heterochromatin could contribute to the developmental deficits. PMID:16819604

  14. Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia.

    PubMed

    Lin, Ke; Sherrington, Paul D; Dennis, Michael; Matrai, Zoltan; Cawley, John C; Pettitt, Andrew R

    2002-08-15

    Established adverse prognostic factors in chronic lymphocytic leukemia (CLL) include CD38 expression, relative lack of IgV(H) mutation, and defects of the TP53 gene. However, disruption of the p53 pathway can occur through mechanisms other than TP53 mutation, and we have recently developed a simple screening test that detects p53 dysfunction due to mutation of the genes encoding either p53 or ATM, a kinase that regulates p53. The present study was conducted to examine the predictive value of this test and to establish the relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation. CLL cells from 71 patients were examined for IgV(H) mutation, CD38 expression, and p53 dysfunction (detected as an impaired p53/p21 response to ionizing radiation). Survival data obtained from 69 patients were analyzed according to each of these parameters. Relative lack of IgV(H) mutation (less than 5%; n = 45), CD38 positivity (antigen expressed on more than 20% of malignant cells; n = 19), and p53 dysfunction (n = 19) were independently confirmed as adverse prognostic factors. Intriguingly, all p53-dysfunctional patients and all but one of the CD38(+) patients had less [corrected] than 5% IgV(H) mutation. Moreover, patients with p53 dysfunction and/or CD38 positivity (n = 31) accounted for the short survival of the less mutated group. These findings indicate that the poor outcome associated with having less than 5% IgV(H) mutation may be due to the overrepresentation of high-risk patients with p53 dysfunction and/or CD38 positivity within this group, and that CD38(-) patients with functionally intact p53 may have a prolonged survival regardless of the extent of IgV(H) mutation.

  15. Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34(+)/CD133(+)/CXCR4(+)/ Lin(-)CD45(-) cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells.

    PubMed

    Sovalat, Hanna; Scrofani, Maurice; Eidenschenk, Antoinette; Pasquet, Stéphanie; Rimelen, Valérie; Hénon, Philippe

    2011-04-01

    Recently, we demonstrated that normal human bone marrow (hBM)-derived CD34(+) cells, released into the peripheral blood after granulocyte colony-stimulating factor mobilization, contain cell subpopulations committed along endothelial and cardiac differentiation pathways. These subpopulations could play a key role in the regeneration of post-ischemic myocardial lesion after their direct intracardiac delivery. We hypothesized that these relevant cells might be issued from very small embryonic-like stem cells deposited in the BM during ontogenesis and reside lifelong in the adult BM, and that they could be mobilized into peripheral blood by granulocyte colony-stimulating factor. Samples of normal hBM and leukapheresis products harvested from cancer patients after granulocyte colony-stimulating factor mobilization were analyzed and sorted by multiparameter flow cytometry strategy. Immunofluorescence and reverse transcription quantitative polymerase chain reaction assays were performed to analyze the expression of typical pluripotent stem cells markers. A population of CD34(+)/CD133(+)/CXCR4(+)/Lin(-) CD45(-) immature cells was first isolated from the hBM or from leukapheresis products. Among this population, very small (2-5 μm) cells expressing Oct-4, Nanog, and stage-specific embryonic antigen-4 at protein and messenger RNA levels were identified. Our study supports the hypothesis that very small embryonic-like stem cells constitute a "mobile" pool of primitive/pluripotent stem cells that could be released from the BM into the peripheral blood under the influence of various physiological or pathological stimuli. In order to fully support that hBM- and leukapheresis product-derived very small embryonic-like stem cells are actually pluripotent, we are currently testing their ability to differentiate in vitro into cells from all three germ layers. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  16. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.

    PubMed

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-03-01

    CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.

  17. Histone methylation mediates plasticity of human FOXP3+ regulatory T cells by modulating signature gene expressions

    PubMed Central

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-01-01

    CD4+ FOXP3+ regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4+ CD25high CD127low/− Treg cells convert to two subpopulations with distinctive FOXP3+ and FOXP3− phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. PMID:24152290

  18. Successful In Vitro Expansion and Differentiation of Cord Blood Derived CD34+ Cells into Early Endothelial Progenitor Cells Reveals Highly Differential Gene Expression

    PubMed Central

    Topcic, Denijal; Haviv, Izhak; Merivirta, Ruusu-Maaria; Agrotis, Alexander; Leitner, Ephraem; Jowett, Jeremy B.; Bode, Christoph; Lappas, Martha; Peter, Karlheinz

    2011-01-01

    Endothelial progenitor cells (EPCs) can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU) assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP), PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15) or pro-angiogenic (galectin-3) properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP) was the most up-regulated gene. PMID:21858032

  19. Attenuation of p38-mediated miR-1/133 expression facilitates myoblast proliferation during the early stage of muscle regeneration.

    PubMed

    Zhang, Duo; Li, Xihua; Chen, Chuchu; Li, Yuyin; Zhao, Lei; Jing, Yanyan; Liu, Wei; Wang, Xiaoyun; Zhang, Ying; Xia, Hongfeng; Chang, Yaning; Gao, Xiang; Yan, Jun; Ying, Hao

    2012-01-01

    Myoblast proliferation following myotrauma is regulated by multiple factors including growth factors, signal pathways, transcription factors, and miRNAs. However, the molecular mechanisms underlying the orchestration of these regulatory factors remain unclear. Here we show that p38 signaling is required for miR-1/133a clusters transcription and both p38 activity and miR-1/133 expression are attenuated during the early stage of muscle regeneration in various animal models. Additionally, we show that both miR-1 and miR-133 reduce Cyclin D1 expression and repress myoblast proliferation by inducing G1 phase arrest. Furthermore, we demonstrate that miR-133 inhibits mitotic progression by targeting Sp1, which mediates Cyclin D1 transcription, while miR-1 suppresses G1/S phase transition by targeting Cyclin D1. Finally, we reveal that proproliferative FGF2, which is elevated during muscle regeneration, attenuates p38 signaling and miR-1/133 expression. Taken together, our results suggest that downregulation of p38-mediated miR-1/133 expression by FGF2 and subsequent upregulation of Sp1/Cyclin D1 contribute to the increased myoblast proliferation during the early stage of muscle regeneration.

  20. CD25 is expressed by canine cutaneous mast cell tumors but not by cutaneous connective tissue mast cells.

    PubMed

    Meyer, A; Gruber, A D; Klopfleisch, R

    2012-11-01

    Canine cutaneous mast cell tumors (MCT) of different histological grades have distinct biological behaviors. However, little is known about underlying molecular mechanisms that lead to tumor development and increasing malignancy with higher tumor grade. Recent studies have identified the interleukin-2 receptor (IL-2R) subunits CD25 and CD2 as markers that distinguish nonneoplastic from neoplastic mast cells in human systemic mastocytosis. In this study, their potential as a marker for canine MCT and their possible impact on MCT carcinogenesis were evaluated. mRNA expression levels of both genes were compared between grade 1 (n = 12) and grade 3 (n = 8) MCT, and protein expression levels of CD25 were compared in 90 MCT of different tumor grades. mRNA expression levels of both CD25 and CD2 were upregulated in grade 3 MCT. In contrast, CD25 protein was expressed by fewer tumor cells and at decreased levels in grade 3 tumors, while most grade 1 MCT had strong CD25 protein expression. Moreover, CD25 was not expressed by nonneoplastic, resting cutaneous mast cells, while few presumably activated mast cells in tissue samples from dogs with allergic dermatitis had weak CD25 expression. Taken together, these findings suggest that CD25 may play a critical role in early MCT development and may be a stimulatory factor in grade 1 MCT, while grade 3 MCT seem to be less dependent on CD25. Because of the low number of CD25-positive tumor cells in high-grade tumors, the usefulness of CD25 as a tumor marker is, however, questionable.

  1. The pan-B cell marker CD22 is expressed on gastrointestinal eosinophils and negatively regulates tissue eosinophilia.

    PubMed

    Wen, Ting; Mingler, Melissa K; Blanchard, Carine; Wahl, Benjamin; Pabst, Oliver; Rothenberg, Marc E

    2012-02-01

    CD22 is currently recognized as a B cell-specific Siglec and has been exploited therapeutically with humanized anti-CD22 mAb having been used against B cell leukemia. In this study, tissue-specific eosinophil mRNA microarray analysis identified that CD22 transcript levels of murine gastrointestinal (GI) eosinophils are 10-fold higher than those of lung eosinophils. To confirm the mRNA data at the protein level, we developed a FACS-based protocol designed to phenotype live GI eosinophils isolated from the murine lamina propria. Indeed, we found that jejunum eosinophils expressed remarkably high levels of surface CD22, similar to levels found in B cells across multiple mouse strains. In contrast, CD22 was undetectable on eosinophils from the colon, blood, thymus, spleen, uterus, peritoneal cavity, and allergen-challenged lung. Eosinophils isolated from newborn mice did not express CD22 but subsequently upregulated CD22 expression to adult levels within the first 10 d after birth. The GI lamina propria from CD22 gene-targeted mice harbored more eosinophils than wild type control mice, whereas the GI eosinophil turnover rate was unaltered in the absence of CD22. Our findings identify a novel expression pattern and tissue eosinophilia-regulating function for the "B cell-specific" inhibitory molecule CD22 on GI eosinophils.

  2. Residential Proximity to Major Roadways Is Associated With Increased Levels of AC133+ Circulating Angiogenic Cells.

    PubMed

    DeJarnett, Natasha; Yeager, Ray; Conklin, Daniel J; Lee, Jongmin; O'Toole, Timothy E; McCracken, James; Abplanalp, Wes; Srivastava, Sanjay; Riggs, Daniel W; Hamzeh, Ihab; Wagner, Stephen; Chugh, Atul; DeFilippis, Andrew; Ciszewski, Tiffany; Wyatt, Brad; Becher, Carrie; Higdon, Deirdre; Ramos, Kenneth S; Tollerud, David J; Myers, John A; Rai, Shesh N; Shah, Jasmit; Zafar, Nagma; Krishnasamy, Sathya S; Prabhu, Sumanth D; Bhatnagar, Aruni

    2015-11-01

    Previous studies have shown that residential proximity to a roadway is associated with increased cardiovascular disease risk. Yet, the nature of this association remains unclear, and its effect on individual cardiovascular disease risk factors has not been assessed. The objective of this study was to determine whether residential proximity to roadways influences systemic inflammation and the levels of circulating angiogenic cells. In a cross-sectional study, cardiovascular disease risk factors, blood levels of C-reactive protein, and 15 antigenically defined circulating angiogenic cell populations were measured in participants (n=316) with moderate-to-high cardiovascular disease risk. Attributes of roadways surrounding residential locations were assessed using geographic information systems. Associations between road proximity and cardiovascular indices were analyzed using generalized linear models. Close proximity (<50 m) to a major roadway was associated with lower income and higher rates of smoking but not C-reactive protein levels. After adjustment for potential confounders, the levels of circulating angiogenic cells in peripheral blood were significantly elevated in people living in close proximity to a major roadway (CD31(+)/AC133(+), AC133(+), CD34(+)/AC133(+), and CD34(+)/45(dim)/AC133(+) cells) and positively associated with road segment distance (CD31(+)/AC133(+), AC133(+), and CD34(+)/AC133(+) cells), traffic intensity (CD31(+)/AC133(+) and AC133(+) cells), and distance-weighted traffic intensity (CD31(+)/34(+)/45(+)/AC133(+) cells). Living close to a major roadway is associated with elevated levels of circulating cells positive for the early stem marker AC133(+). This may reflect an increased need for vascular repair. Levels of these cells in peripheral blood may be a sensitive index of cardiovascular injury because of residential proximity to roadways. © 2015 American Heart Association, Inc.

  3. MiR-133 is Involved in Estrogen Deficiency-Induced Osteoporosis through Modulating Osteogenic Differentiation of Mesenchymal Stem Cells.

    PubMed

    Lv, Hao; Sun, Yujie; Zhang, Yuchen

    2015-05-27

    MiR-133 expression is dysregulated in postmenopausal osteoporosis. However, its role in postmenopausal osteoporosis is still not well understood. In the current study, we explore how estrogen deficiency affects miR-133 expression and how miR-133 is involved in osteogenic differentiation of mesenchymal stem cells (MSCs). qRT-PCR analysis was performed to assess miR-133 expression in MSCs isolated from bone marrow of an ovariectomized (OVX) animal model and postmenopausal osteoporosis patients (PMOP) and their corresponding controls. The binding between miR-133 and predicted target SLC39A1 was verified using dual luciferase assay and Western blot analysis. The effect of miR-133 and SLC39A1 on osteogenic differentiation of MSCs was assessed through measuring alkaline phosphatase (ALP), mineralization nodules, and osteoblast-specific genes Runx2 and Osterix expression. miR-133 expression is significantly enhanced as a result of estrogen deficiency. Its overexpression is negatively correlated to osteogenic differentiation of hMSCs. SLC39A1 showed an inverse expression trend to miR-133 during the differentiation. miR-133 can directly target 3'UTR of SLC39A1 and thereby modulate its expression in hMSCs. The miR-133-SLC39A1 axis might play an important role in osteogenic differentiation of hMSCs. SLC39A1 can promote ALP activity and formation of mineralization nodules. In addition, SLC39A1 expression level is also positively correlated with RUNX2 and Osterix. Estrogen deficiency is associated with miR-133 overexpression. MiR-133 can induce postmenopausal osteoporosis by weakening osteogenic differentiation of hMSCs, at least partly through repressing SLC39A1 expression.

  4. MiR-133 is Involved in Estrogen Deficiency-Induced Osteoporosis through Modulating Osteogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Lv, Hao; Sun, Yujie; Zhang, Yuchen

    2015-01-01

    Background MiR-133 expression is dysregulated in postmenopausal osteoporosis. However, its role in postmenopausal osteoporosis is still not well understood. In the current study, we explore how estrogen deficiency affects miR-133 expression and how miR-133 is involved in osteogenic differentiation of mesenchymal stem cells (MSCs). Material/Methods qRT-PCR analysis was performed to assess miR-133 expression in MSCs isolated from bone marrow of an ovariectomized (OVX) animal model and postmenopausal osteoporosis patients (PMOP) and their corresponding controls. The binding between miR-133 and predicted target SLC39A1 was verified using dual luciferase assay and Western blot analysis. The effect of miR-133 and SLC39A1 on osteogenic differentiation of MSCs was assessed through measuring alkaline phosphatase (ALP), mineralization nodules, and osteoblast-specific genes Runx2 and Osterix expression. Results miR-133 expression is significantly enhanced as a result of estrogen deficiency. Its overexpression is negatively correlated to osteogenic differentiation of hMSCs. SLC39A1 showed an inverse expression trend to miR-133 during the differentiation. miR-133 can directly target 3′UTR of SLC39A1 and thereby modulate its expression in hMSCs. The miR-133-SLC39A1 axis might play an important role in osteogenic differentiation of hMSCs. SLC39A1 can promote ALP activity and formation of mineralization nodules. In addition, SLC39A1 expression level is also positively correlated with RUNX2 and Osterix. Conclusions Estrogen deficiency is associated with miR-133 overexpression. MiR-133 can induce postmenopausal osteoporosis by weakening osteogenic differentiation of hMSCs, at least partly through repressing SLC39A1 expression. PMID:26013661

  5. [Gene copy number, mRNA transcription and protein expression of PD-1 gene in primary hepatocarcinoma patients].

    PubMed

    Fan, Hui-Min; Wu, Ling-Jie; Hu, Feng-Yu; Yang, Zhan

    2012-08-01

    To study the gene copy number, mRNA transcription and protien expression of programmed cell death 1 (PD-1) gene in primary hepatocellular carcinoma (PHC) patients and normal control individuals (NC) who are anti-HBs positive, and to investigate the variations in PD-1 gene copy numbers and its relationship with PHC. Real-time PCR was adopted to detect the PD-1 gene copy numbers and their mRNA expressions in peripheral blood mononuclear cells (PBMCs) from 24 samples of PHC patients and 26 of NC. Protein expression level of PD-1 on CD8+ T was analyzed by flow cytometry. In terms of number of PD-1 gene copy numbers, the percentage of cases of haploid (single) was 34.62% and 4.17% in PHC group and control group respectively while the percentage of cases of diploid (double) was 61.54% and 95.83% respectively. The difference between the two was statistically significant (chi2 = 7.639, P = 0.006). The rate of cases with double PD-1 gene copy numbers was found to be higher in patients with PHC than in control group. It was also found that the average expression of PD-1 mRNA was 2.35E-03 in control group and 1.23E-03 in PHC group. The expression level was significant lower in PHC group than that in control group when compared by using Mann-whitey technic (U = 153, P = 0.009). Furthermore, the frequency of PD-1 protein expression on CD8+ T cells was 3.72 +/- 0.32 in control group and 16.13 +/- 1.68 in PHC group. The level of PD-1 mRNA expression was higher in PHC and significant differences was shown between two groups (t = -7.073, P = 0.000). Our study suggests that the variation in PD-1 gene copy number may trigger primary hepatocellular carcinoma to HBV carriers. The relationship between the variation of PD-1 gene copy numbers and its association with primary hepatocellular carcinoma is worth further focus.

  6. Chemotherapeutic Effect of CD147 Antibody-labeled Micelles Encapsulating Doxorubicin Conjugate Targeting CD147-Expressing Carcinoma Cells.

    PubMed

    Asakura, Tadashi; Yokoyama, Masayuki; Shiraishi, Koichi; Aoki, Katsuhiko; Ohkawa, Kiyoshi

    2018-03-01

    CD147 (basigin/emmprin) is expressed on the surface of carcinoma cells. For studying the efficacy of CD147-targeting medicine on CD147-expressing cells, we studied the effect of anti-CD147-labeled polymeric micelles (CD147ab micelles) that encapsulated a conjugate of doxorubicin with glutathione (GSH-DXR), with specific accumulation and cytotoxicity against CD147-expressing A431 human epidermoid carcinoma cells, Ishikawa human endometrial adenocarcinoma cells, and PC3 human prostate carcinoma cells. By treatment of each cell type with CD147ab micelles for 1 h, a specific accumulation of CD147ab micelles in CD147-expressing cells was observed. In addition, the cytotoxicity of GSH-DXR-encapsulated micelles against each cell type was measured by treatment of the micelles for 1 h. The cytotoxic effect of CD147ab micelles carrying GSH-DXR was 3- to 10-fold higher for these cells than that of micelles without GSH-DXR. These results suggest that GSH-DXR-encapsulated CD147ab micelles could serve as an effective drug delivery system to CD147-expressing carcinoma cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Gene expression profiles characterize early graft response in living donor small bowel transplantation: a case report.

    PubMed

    Bradley, S P; Pahari, M; Uknis, M E; Rastellini, C; Cicalese, L

    2006-01-01

    The cellular and histological events that occur during the regeneration process in invertebrates have been studied in the field of visceral regeneration. We would like to explore the molecular aspects of the regeneration process in the small intestine. The aim of this study was to characterize the gene expression profiles of the intestinal graft to identify which genes may have a role in regeneration of graft tissue posttransplant. In a patient undergoing living related small bowel transplantation (LRSBTx) in our institution, mucosal biopsies were obtained from the recipient intestine and donor graft at the time of transplant and at weeks 1, 2, 3, and 6 posttransplant. Total RNA was isolated from sample biopsies followed by gene expression profiles determined from the replicate samples (n = 3) for each biopsy using the Affymetrix U133 Plus 2.0 Human GeneChip set. Two profiles were obtained from the data. One profile showed rapid increase of 45 genes immediately after transplant by week 1 with significant changes (P < .05) greater than threefold including the chemokine CXC9 and glutathione-related stress factors, GPX2 and GSTA4. The second profile identified 133 genes that were significantly decreased by threefold or greater immediately after transplant week 1, including UCC1, the human homolog of the Ependymin gene. We have identified two gene expression profiles representing early graft responses to small bowel transplantation. These profiles will serve to identify and study those genes whose products may play a role in accelerating tissue regeneration following segmental LRSBTx.

  8. Expansion of natural killer cell receptor (CD94/NKG2A)-expressing cytolytic CD8 T cells and CD4+CD25+ regulatory T cells from the same cord blood unit.

    PubMed

    Tanaka, Junji; Sugita, Junichi; Kato, Naoko; Toubai, Tomomi; Ibata, Makoto; Shono, Yusuke; Ota, Shuichi; Kondo, Takeshi; Kobayashi, Takahiko; Kobayashi, Masanobu; Asaka, Masahiro; Imamura, Masahiro

    2007-10-01

    Cord blood contains a significant number of precursor cells that differentiate to cytotoxic effector cells and immunoregulatory cells. We tried to expand inhibitory natural killer cell receptor CD94-expressing CD8 T cells with cytolytic activity and CD4(+)CD25(+) regulatory T cells from the same cord cell unit. Cytotoxic CD94-expressing CD8 T cells were expanded from CD4-depleted cord blood using an immobilized anti-CD3 monoclonal antibody and a cytokine and also CD4(+)CD25(+) regulatory T cells were expanded from a CD4-enriched fraction derived from the same cord blood unit using anti-CD3/CD28 monoclonal antibody-coated Dynabeads and cytokines. We were able to obtain a more than 1000-fold expansion of CD94-expressing CD8 T cells and a more than 50-fold expansion of CD4(+)CD25(+) cells from the same cord blood unit. These expanded CD4(+)CD25(+) cells expressed FoxP3 mRNA at a level about 100-fold higher than that in isolated CD25(-) cells and could suppress allogeneic mixed lymphocyte culture by >80% (effector cells: CD4(+)CD25(+) cells = 2:1). Cytolytic activities of purified CD94-expressing cells detected by a 4-hour (51)Cr release assay against K562 were >60%. Coculture of CD94-expressing cells with expanded CD4(+)CD25(+) cells did not have any effect on cytolytic activities of purified CD94-expressing cells against K562 cells. These expanded cytolytic CD94-expressing CD8 cells might be able to induce a graft-vs-leukemia effect without enhancing graft-vs-host disease, and CD4(+)CD25(+) cells might be able to suppress allogeneic responses, including graft-vs-host disease and graft rejection after cord blood transplantation.

  9. BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes.

    PubMed

    Cismasiu, Valeriu B; Duque, Javier; Paskaleva, Elena; Califano, Danielle; Ghanta, Sailaja; Young, Howard A; Avram, Dorina

    2009-01-15

    BCL11B is a transcriptional regulator with an important role in T-cell development and leukaemogenesis. We demonstrated recently that BCL11B controls expression from the IL (interleukin)-2 promoter through direct binding to the US1 (upstream site 1). In the present study, we provide evidence that BCL11B also participates in the activation of IL-2 gene expression by enhancing NF-kappaB (nuclear factor kappaB) activity in the context of TCR (T-cell receptor)/CD28-triggered T-cell activation. Enhanced NF-kappaB activation is not a consequence of BCL11B binding to the NF-kappaB response elements or association with the NF-kappaB-DNA complexes, but rather the result of higher translocation of NF-kappaB to the nucleus caused by enhanced degradation of IkappaB (inhibitor of NF-kappaB). The enhanced IkappaB degradation in cells with increased levels of BCL11B was specific for T-cells activated through the TCR, but not for cells activated through TNFalpha (tumour necrosis factor alpha) or UV light, and was caused by increased activity of IkappaB kinase, as indicated by its increase in phosphorylation. As BCL11B is a transcription factor, we investigated whether the expression of genes upstream of IkappaB kinase in the TCR/CD28 signalling pathway was affected by increased BCL11B expression, and found that Cot (cancer Osaka thyroid oncogene) kinase mRNA levels were elevated. Cot kinase is known to promote enhanced IkappaB kinase activity, which results in the phosphorylation and degradation of IkappaB and activation of NF-kappaB. The implied involvement of Cot kinase in BCL11B-mediated NF-kappaB activation in response to TCR activation is supported by the fact that a Cot kinase dominant-negative mutant or Cot kinase siRNA (small interfering RNA) knockdown blocked BCL11B-mediated NF-kappaB activation. In support of our observations, in the present study we report that BCL11B enhances the expression of several other NF-kappaB target genes, in addition to IL-2. In addition, we

  10. CD28 T-cell costimulatory molecule expression in pemphigus vulgaris.

    PubMed

    Alecu, M; Ursaciuc, C; Surcel, M; Coman, G; Ciotaru, D; Dobre, M

    2009-03-01

    CD28 superfamily of immune costimulatory molecules could play an important role in autotolerance control. CD28 costimulation seems to be necessary for regulatory T cell (Treg) activation and successive suppressive activities involved in autoimmunity protection. This study investigates CD28 expression, especially inducible costimulator fraction, on T lymphocytes in pemphigus vulgaris (PV) patients. CD28 expression on T lymphocytes was assessed in 16 PV patients during acute attack. All patients and 10 healthy control subjects were tested for lymphocyte populations, T-cell subpopulations (T-CD4+, T-CD8+), Treg and CD28 expression on T-cell subpopulations. T, B and natural killer cells average values in PV patients were close to the control group values. Compared with control group, PV values showed lower Treg (2.2% compared with 4.7%), slightly decreased CD4+ CD28+ T cells (91% compared with 95%), higher CD4+ CD28- T cells (9% compared with 5%), decreased CD8+ CD28+ T cells (57% and 73%, respectively) and significantly enhanced CD8+ CD28- T cells (43% compared with 27%). These data suggest that Treg-mediated suppressor T-cell effects could be diminished in PV, together with an abnormal or ineffective subsequent helper T-cell suppression. CD28 high expression on helper T cells and low expression on suppressor T cells are arguments for a potential CD28 role in PV autoimmune response mechanism.

  11. Associations between CD36 gene polymorphisms and susceptibility to coronary artery heart disease

    PubMed Central

    Zhang, Y.; Ling, Z.Y.; Deng, S.B.; Du, H.A.; Yin, Y.H.; Yuan, J.; She, Q.; Chen, Y.Q.

    2014-01-01

    Associations between polymorphisms of the CD36 gene and susceptibility to coronary artery heart disease (CHD) are not clear. We assessed allele frequencies and genotype distributions of CD36 gene polymorphisms in 112 CHD patients and 129 control patients using semi-quantitative polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis. Additionally, we detected CD36 mRNA expression by real-time quantitative PCR, and we quantified plasma levels of oxidized low-density lipoprotein (ox-LDL) using an enzyme-linked immunosorbent assay (ELISA). There were no significant differences between the two groups (P>0.05) in allele frequencies of rs1761667 or in genotype distribution and allele frequencies of rs3173798. The genotype distribution of rs1761667 significantly differed between CHD patients and controls (P=0.034), with a significantly higher frequency of the AG genotype in the CHD group compared to the control group (P=0.011). The plasma levels of ox-LDL in patients with the AG genotype were remarkably higher than those with the GG and AA genotypes (P=0.010). In a randomized sample taken from patients in the two groups, the CD36 mRNA expression of the CHD patients was higher than that of the controls. In CHD patients, the CD36 mRNA expression in AG genotype patients was remarkably higher than in those with an AA genotype (P=0.005). After adjusted logistic regression analysis, the AG genotype of rs1761667 was associated with an increased risk of CHD (OR=2.337, 95% CI=1.336-4.087, P=0.003). In conclusion, the rs1761667 polymorphism may be closely associated with developing CHD in the Chongqing Han population of China, and an AG genotype may be a genetic susceptibility factor for CHD. PMID:25118627

  12. Real-time functional imaging for monitoring miR-133 during myogenic differentiation.

    PubMed

    Kato, Yoshio; Miyaki, Shigeru; Yokoyama, Shigetoshi; Omori, Shin; Inoue, Atsushi; Horiuchi, Machiko; Asahara, Hiroshi

    2009-11-01

    MicroRNAs (miRNAs) are a class of non-coding small RNAs that act as negative regulators of gene expression through sequence-specific interactions with the 3' untranslated regions (UTRs) of target mRNA and play various biological roles. miR-133 was identified as a muscle-specific miRNA that enhanced the proliferation of myoblasts during myogenic differentiation, although its activity in myogenesis has not been fully characterized. Here, we developed a novel retroviral vector system for monitoring muscle-specific miRNA in living cells by using a green fluorescent protein (GFP) that is connected to the target sequence of miR-133 via the UTR and a red fluorescent protein for normalization. We demonstrated that the functional promotion of miR-133 during myogenesis is visualized by the reduction of GFP carrying the miR-133 target sequence, suggesting that miR-133 specifically down-regulates its targets during myogenesis in accordance with its expression. Our cell-based miRNA functional assay monitoring miR-133 activity should be a useful tool in elucidating the role of miRNAs in various biological events.

  13. A reevaluation of CD22 expression in human lung cancer.

    PubMed

    Pop, Laurentiu M; Barman, Stephen; Shao, Chunli; Poe, Jonathan C; Venturi, Guglielmo M; Shelton, John M; Pop, Iliodora V; Gerber, David E; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I; Richardson, James A; Minna, John D; Tedder, Thomas F; Vitetta, Ellen S

    2014-01-01

    CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B-cell receptor and its coreceptor CD19. Recent reports indicate that most human lung cancer cells and cell lines express CD22, making it an important new therapeutic target for lung cancer. The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by quantitative real-time PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200 to 60,000-fold lower than those observed in the human CD22(+) Burkitt lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by either CD22 antibodies or our highly potent anti-CD22 immunotoxin. In contrast, CD22(+) Daudi cells expressed high levels of CD22 mRNA and protein, and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from more than 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells, and that these cells cannot be killed by anti-CD22 immunotoxins.

  14. IL-10 production by B cells expressing CD5 with the alternative exon 1B.

    PubMed

    Garaud, Soizic; Le Dantec, Christelle; de Mendoza, Agnès Revol; Mageed, Rizgar A; Youinou, Pierre; Renaudineau, Yves

    2009-09-01

    B lymphocytes are divided into two subpopulations, B1 and B2 cells based on expression of the T cell-associated protein CD5. Natural B1 cells are further divided into B1a cells that express CD5 on their membrane and B1b cells that do not but share most other biological characteristics of B1a cells. Recent studies from our laboratory have revealed, in humans, the existence of two alternative isoforms of the CD5 protein. A cell surface CD5 isoform which uses exon 1A (E1A) of the gene in B1a cells, and an intracellular isoform which uses exon 1B (E1B) mainly in human B1b cells. Indeed, the protein isoform encoded by transcripts containing E1B lack the leader peptide and is, thus, retained in the cytoplasm of B cells. The restriction of interleukin (IL)-10 to B1 lymphocytes in the mouse raises the possibility that the human CD5-E1B-expressing B cells produce IL-10. This prediction was confirmed in the CD5 negative Jok-1 B cells transfected with cDNA for either isoforms resulted in high level IL-10 production. Our data indicate that E1B-CD5-expressing B cells have the capacity to interfere with the immune response through their ability to produce high levels of IL-10.

  15. Prognostic stratification improvement by integrating ID1/ID3/IGJ gene expression signature and immunophenotypic profile in adult patients with B-ALL.

    PubMed

    Cruz-Rodriguez, Nataly; Combita, Alba L; Enciso, Leonardo J; Raney, Lauren F; Pinzon, Paula L; Lozano, Olga C; Campos, Alba M; Peñaloza, Niyireth; Solano, Julio; Herrera, Maria V; Zabaleta, Jovanny; Quijano, Sandra

    2017-02-28

    Survival of adults with B-Acute Lymphoblastic Leukemia requires accurate risk stratification of patients in order to provide the appropriate therapy. Contemporary techniques, using clinical and cytogenetic variables are incomplete for prognosis prediction. To improve the classification of adult patients diagnosed with B-ALL into prognosis groups, two strategies were examined and combined: the expression of the ID1/ID3/IGJ gene signature by RT-PCR and the immunophenotypic profile of 19 markers proposed in the EuroFlow protocol by Flow Cytometry in bone marrow samples. Both techniques were correlated to stratify patients into prognostic groups. An inverse relationship between survival and expression of the three-genes signature was observed and an immunophenotypic profile associated with clinical outcome was identified. Markers CD10 and CD20 were correlated with simultaneous overexpression of ID1, ID3 and IGJ. Patients with simultaneous expression of the poor prognosis gene signature and overexpression of CD10 or CD20, had worse Event Free Survival and Overall Survival than patients who had either the poor prognosis gene expression signature or only CD20 or CD10 overexpressed. By utilizing the combined evaluation of these two immunophenotypic markers along with the poor prognosis gene expression signature, the risk stratification can be significantly strengthened. Further studies including a large number of patients are needed to confirm these findings.

  16. Single cell gene expression profiling of cortical osteoblast lineage cells.

    PubMed

    Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon

    2013-03-01

    In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Increased expression of activation antigens on CD8+ T lymphocytes in Myalgic Encephalomyelitis/chronic fatigue syndrome: inverse associations with lowered CD19+ expression and CD4+/CD8+ ratio, but no associations with (auto)immune, leaky gut, oxidative and nitrosative stress biomarkers.

    PubMed

    Maes, Michael; Bosmans, Eugene; Kubera, Marta

    2015-01-01

    There is now evidence that specific subgroups of patients with Myalgic Encephalomyelitis / chronic fatigue syndrome (ME/CFS) suffer from a neuro-psychiatric-immune disorder. This study was carried out to delineate the expression of the activation markers CD38 and human leukocyte antigen (HLA) DR on CD4+ and CD8+ peripheral blood lymphocytes in ME/CFS. Proportions and absolute numbers of peripheral lymphocytes expressing CD3+, CD19+, CD4+, CD8+, CD38+ and HLA-DR+ were measured in ME/CFS (n=139), chronic fatigue (CF, n=65) and normal controls (n=40). The proportions of CD3+, CD8+, CD8+CD38+ and CD8+HLA-DR+ were significantly higher in ME/CFS patients than controls, while CD38+, CD8+CD38+, CD8+HLA-DR+ and CD38+HLA-DR+ were significantly higher in ME/CFS than CF. The percentage of CD19+ cells and the CD4+/CD8+ ratio were significantly lower in ME/CFS and CF than in controls. There were highly significant inverse correlations between the increased expression of CD38+, especially that of CD8+CD38+, and the lowered CD4+/CD8+ ratio and CD19+ expression. There were no significant associations between the flow cytometric results and severity or duration of illness and peripheral blood biomarkers of oxidative and nitrosative stress (O&NS, i.e. IgM responses to O&N modified epitopes), leaky gut (IgM or IgA responses to LPS of gut commensal bacteria), cytokines (interleukin-1, tumor necrosis factor-α), neopterin, lysozyme and autoimmune responses to serotonin. The results support that a) increased CD38 and HLA-DR expression on CD8+ T cells are biomarkers of ME/CFS; b) increased CD38 antigen expression may contribute to suppression of the CD4+/CD8+ ratio and CD19+ expression; c) there are different immune subgroups of ME/CFS patients, e.g. increased CD8+ activation marker expression versus inflammation or O&NS processes; and d) viral infections or reactivation may play a role in a some ME/CFS patients.

  18. Atorvastatin inhibits the immediate-early response gene EGR1 and improves the functional pro of CD4+T-lymphocytes in acute coronary syndromes

    PubMed Central

    Campioni, Mara; Flego, Davide; Angelini, Giulia; Pedicino, Daniela; Giglio, Ada Francesca; Trotta, Francesco; Giubilato, Simona; Pazzano, Vincenzo; Lucci, Claudia; Iaconelli, Antonio; Ruggio, Aureliano; Biasucci, Luigi Marzio

    2017-01-01

    Background- Adaptive immune-response is associated with a worse outcome in acute coronary syndromes. Statins have anti-inflammatory activity beyond lowering lipid levels. We investigated the effects of ex-vivo and in-vivo atorvastatin treatment in acute coronary syndromes on CD4+T-cells, and the underlying molecular mechanisms. Approach and results- Blood samples were collected from 50 statin-naïve acute coronary syndrome patients. We assessed CD4+T-cell activation by flow-cytometry, the expression of 84 T-helper transcription-factors and 84 T-cell related genes by RT-qPCR, and protein expression by Western-blot, before and after 24-hours incubation with increasing doses of atorvastatin: 3-10-26 g/ml (corresponding to blood levels achieved with doses of 10-40-80 mg, respectively). After incubation, we found a significant decrease in interferon-?-producing CD4+CD28nullT-cells (P = 0.009) and a significant increase in interleukin-10-producing CD4+CD25highT-cells (P < 0.001). Atorvastatin increased the expression of 2 genes and decreased the expression of 12 genes (in particular, EGR1, FOS,CCR2 and toll like receptor-4; >3-fold changes). The in-vivo effects of atorvastatin were analyzed in 10 statin-free acute coronary syndrome patients at baseline, and after 24h and 48h of atorvastatin therapy (80 mg/daily): EGR1-gene expression decreased at 24h (P = 0.01) and 48h (P = 0.005); EGR1-protein levels decreased at 48h (P = 0.03). Conclusions-In acute coronary syndromes, the effects of atorvastatin on immune system might be partially related to the inhibition of the master regulator gene EGR1. Our finding might offer a causal explanation on why statins improve the early outcome in acute coronary syndromes. PMID:28407684

  19. Temporal Changes in Gene Expression after Injury in the Rat Retina

    PubMed Central

    Vázquez-Chona, Félix; Song, Bong K.; Geisert, Eldon E.

    2010-01-01

    Purpose The goal of this study was to define the temporal changes in gene expression after retinal injury and to relate these changes to the inflammatory and reactive response. A specific emphasis was placed on the tetraspanin family of proteins and their relationship with markers of reactive gliosis. Methods Retinal tears were induced in adult rats by scraping the retina with a needle. After different survival times (4 hours, and 1, 3, 7, and 30 days), the retinas were removed, and mRNA was isolated, prepared, and hybridized to the Affymatrix RGU34A microarray (Santa Clara, CA). Microarray results were confirmed by using RT-PCR and correlation to protein levels was determined. Results Of the 8750 genes analyzed, approximately 393 (4.5%) were differentially expressed. Clustering analysis revealed three major profiles: (1) The early response was characterized by the upregulation of transcription factors; (2) the delayed response included a high percentage of genes related to cell cycle and cell death; and (3) the late, sustained profile clustered a significant number of genes involved in retinal gliosis. The late, sustained cluster also contained the upregulated crystallin genes. The tetraspanins Cd9, Cd81, and Cd82 were also associated with the late, sustained response. Conclusions The use of microarray technology enables definition of complex genetic changes underlying distinct phases of the cellular response to retinal injury. The early response clusters genes associate with the transcriptional regulation of the wound-healing process and cell death. Most of the genes in the late, sustained response appear to be associated with reactive gliosis. PMID:15277499

  20. Production of heterozygous alpha 1,3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39.

    PubMed

    Choi, Kimyung; Shim, Joohyun; Ko, Nayoung; Eom, Heejong; Kim, Jiho; Lee, Jeong-Woong; Jin, Dong-Il; Kim, Hyunil

    2017-04-01

    Production of transgenic pigs for use as xenotransplant donors is a solution to the severe shortage of human organs for transplantation. The first barrier to successful xenotransplantation is hyperacute rejection, a rapid, massive humoral immune response directed against the pig carbohydrate GGTA1 epitope. Platelet activation, adherence, and clumping, all major features of thrombotic microangiopathy, are inevitable results of immune-mediated transplant rejection. Human CD39 rapidly hydrolyzes ATP and ADP to AMP; AMP is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, an anti-thrombotic and cardiovascular protective mediator. In this study, we developed a vector-based strategy for ablation of GGTA1 function and concurrent expression of human CD39 (hCD39). An hCD39 expression cassette was constructed to target exon 4 of GGTA1. We established heterozygous GGTA1 knock-out cell lines expressing hCD39 from pig ear fibroblasts for somatic cell nuclear transfer (SCNT). We also described production of heterozygous GGTA1 knock-out piglets expressing hCD39 and analyzed expression and function of the transgene. Human CD39 was expressed in heart, kidney and aorta. Human CD39 knock-in heterozygous ear fibroblast from transgenic cloned pigs, but not in non-transgenic pig's cells. Expression of GGTA1 gene was lower in the knock-in heterozygous ear fibroblast from transgenic pigs compared to the non-transgenic pig's cell. The peripheral blood mononuclear cells (PBMC) from the transgenic pigs were more resistant to lysis by pooled complement-preserved normal human serum than that from wild type (WT) pig. Accordingly, GGTA1 mutated piglets expressing hCD39 will provide a new organ source for xenotransplantation research.

  1. [Expression and clinical significance of CD147 in parathyroid carcinoma].

    PubMed

    Du, X M; Wang, L L; Chang, H; Meng, W; Zhang, J Y; Shen, B

    2016-06-08

    To study the expression and clinical significance of CD147 in the patients of parathyroid carcinoma. Fourteen cases of parathyroid carcinoma encountered during the period from 2012 to 2015 were enrolled. Thirty three cases of parathyroid adenoma encountered during the same period were enrolled. The expression of CD147 in parathyroid carcinoma and parathyroid adenoma was studied by means of immunohistochemistry (EnVision method). CD147 positive color was brown and yellow, and positive position was located mainly in the cytomembrane, and a small amount of cytoplasm was appeared. Among 14 cases of parathyroid carcinoma, 11 cases of CD147 positive score was 3+ , 3 cases of CD147 positive score was 2+ ; Among 33 cases of parathyroid adenoma , 8 cases of CD147 positive score was 2+ , 15 cases of it was 1+ , 10 cases of it was negative. CD147 was highly expressed in parathyroid carcinoma tissues, and the expression of CD147 was significantly different from the expression of parathyroid adenoma(P<0.05). CD147 immunohistochemical staining can help to diagnose parathyroid carcinoma.

  2. Attenuation of p38-Mediated miR-1/133 Expression Facilitates Myoblast Proliferation during the Early Stage of Muscle Regeneration

    PubMed Central

    Zhang, Duo; Li, Xihua; Chen, Chuchu; Li, Yuyin; Zhao, Lei; Jing, Yanyan; Liu, Wei; Wang, Xiaoyun; Zhang, Ying; Xia, Hongfeng; Chang, Yaning; Gao, Xiang; Yan, Jun; Ying, Hao

    2012-01-01

    Myoblast proliferation following myotrauma is regulated by multiple factors including growth factors, signal pathways, transcription factors, and miRNAs. However, the molecular mechanisms underlying the orchestration of these regulatory factors remain unclear. Here we show that p38 signaling is required for miR-1/133a clusters transcription and both p38 activity and miR-1/133 expression are attenuated during the early stage of muscle regeneration in various animal models. Additionally, we show that both miR-1 and miR-133 reduce Cyclin D1 expression and repress myoblast proliferation by inducing G1 phase arrest. Furthermore, we demonstrate that miR-133 inhibits mitotic progression by targeting Sp1, which mediates Cyclin D1 transcription, while miR-1 suppresses G1/S phase transition by targeting Cyclin D1. Finally, we reveal that proproliferative FGF2, which is elevated during muscle regeneration, attenuates p38 signaling and miR-1/133 expression. Taken together, our results suggest that downregulation of p38-mediated miR-1/133 expression by FGF2 and subsequent upregulation of Sp1/Cyclin D1 contribute to the increased myoblast proliferation during the early stage of muscle regeneration. PMID:22911796

  3. Genome-wide gene expression profiling reveals unsuspected molecular alterations in pemphigus foliaceus

    PubMed Central

    Malheiros, Danielle; Panepucci, Rodrigo A; Roselino, Ana M; Araújo, Amélia G; Zago, Marco A; Petzl-Erler, Maria Luiza

    2014-01-01

    Pemphigus foliaceus (PF) is a complex autoimmune disease characterized by bullous skin lesions and the presence of antibodies against desmoglein 1. In this study we sought to contribute to a better understanding of the molecular processes in endemic PF, as the identification of factors that participate in the pathogenesis is a prerequisite for understanding its biological basis and may lead to novel therapeutic interventions. CD4+ T lymphocytes are central to the development of the disease. Therefore, we compared genome-wide gene expression profiles of peripheral CD4+ T cells of various PF patient subgroups with each other and with that of healthy individuals. The patient sample was subdivided into three groups: untreated patients with the generalized form of the disease, patients submitted to immunosuppressive treatment, and patients with the localized form of the disease. Comparisons between different subgroups resulted in 135, 54 and 64 genes differentially expressed. These genes are mainly related to lymphocyte adhesion and migration, apoptosis, cellular proliferation, cytotoxicity and antigen presentation. Several of these genes were differentially expressed when comparing lesional and uninvolved skin from the same patient. The chromosomal regions 19q13 and 12p13 concentrate differentially expressed genes and are candidate regions for PF susceptibility genes and disease markers. Our results reveal genes involved in disease severity, potential therapeutic targets and previously unsuspected processes involved in the pathogenesis. Besides, this study adds original information that will contribute to the understanding of PF's pathogenesis and of the still poorly defined in vivo functions of most of these genes. PMID:24813052

  4. Characterization of CD22 Expression in Acute Lymphoblastic Leukemia

    PubMed Central

    Shah, Nirali N.; Stetler-Stevenson, Maryalice; Yuan, Constance M.; Richards, Kelly; Delbrook, Cindy; Kreitman, Robert J.; Pastan, Ira; Wayne, Alan S.

    2015-01-01

    Background CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Procedure Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL. Results CD22 expression was demonstrated in all subjects (n=163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349 – 19,653, n=160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n=20 versus 3,853 sites/cell, range 451-19,653, n=140; p=<0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22% – 82% CD22+). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents. Conclusions These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population. PMID:25728039

  5. Quantification of midkine gene expression in Patella caerulea (Mollusca, Gastropoda) exposed to cadmium

    NASA Astrophysics Data System (ADS)

    Stillitano, Francesca; Mugelli, Alessandro; Cerbai, Elisabetta; Vanucci, Silvana

    2007-10-01

    The release of cadmium into many coastal areas represents a threat to ecosystems and human health; cadmium is carcinogenic in mammals and in both marine invertebrates and vertebrates. The use of molluscs to assess the ecologic risk associated with contaminants is strongly recommended on account of their ecological role and on their highly conserved control and regulatory pathways that are often homologous to vertebrate systems. We previously identified a midkine family protein in the limpet Patella caerulea; the midkine is a recently discovered cytokines family with unequivocal informative value on repairing injury and neoplastic processes in mammals. Here we report on midkine ( mdk) and α-tubulin ( α-tub) gene expression patterns in P. caerulea exposed to cadmium. Limpets, collected on two occasions from a breakwater at a marina (Tyrrhenian Sea) were exposed to sublethal cadmium concentrations (0.5 and 1 mg l -1 Cd) over a 10-day exposure period. RNA was extracted from the viscera of unexposed and exposed specimens. Real time TaqMan RT-PCR was performed to measure the relative mdk and α-tub gene expression levels. A remarkable mdk over-expression was observed in all exposed animals with respect to unexposed ones; mdk over-expression was significantly higher in both treatments when compared with un-treatment (mean expression levels: 23- and 38-fold, for 0.5 and 1 mg l -1 Cd treatment, respectively; ANOVA, for both P < 0.01). The study also indicates that the mdk up-regulation was significantly Cd-concentration dependent ( P < 0.05). A significant up-regulation of the constitutive α-tub gene was also observed in 1 mg l -1 Cd-treated animals (mean expression level: 4-fold; ANOVA, P < 0.05). In conclusion, these data provide the first evidence paving the way for the use of the midkine as a promising new biomarker of effect in the environment risk assessment policy.

  6. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo.

    PubMed

    Torella, Daniele; Iaconetti, Claudio; Catalucci, Daniele; Ellison, Georgina M; Leone, Angelo; Waring, Cheryl D; Bochicchio, Angela; Vicinanza, Carla; Aquila, Iolanda; Curcio, Antonio; Condorelli, Gianluigi; Indolfi, Ciro

    2011-09-30

    MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal-regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases.

  7. Calcineurin-dependent negative regulation of CD94/NKG2A expression on naive CD8+ T cells.

    PubMed

    Cho, Jae-Ho; Kim, Hee-Ok; Webster, Kylie; Palendira, Mainthan; Hahm, Bumsuk; Kim, Kyu-Sik; King, Cecile; Tangye, Stuart G; Sprent, Jonathan

    2011-07-07

    Immune responses lead to expression of immunoregulatory molecules on T cells, including natural killer (NK) receptors, such as CD94/NKG2A on CD8(+) T cells; these receptors restrain CD8(+) responses, thereby preventing T-cell exhaustion in chronic infections and limiting immunopathology. Here, we examined the requirements for inducing CD94/NKG2A on T cells responding to antigen. In vitro, moderate induction of CD94/NKG2A expression occurred after exposure of naive CD8(+) (but not CD4(+)) cells to CD3 ligation or specific peptide. Surprisingly, expression was inhibited by CD28/B7 costimulation. Such inhibition applied only to CD94/NKG2A and not other NK receptors (NKG2D) and was mediated by IL-2. Inhibition by IL-2 occurred via a NFAT cell-independent component of the calcineurin pathway, and CD94/NKG2A induction was markedly enhanced in the presence of calcineurin blockers, such as FK506 or using calcineurin-deficient T cells, both in vitro and in vivo. In addition to CD28-dependent inhibition by IL-2, CD94/NKG2A expression was impaired by several other cytokines (IL-4, IL-23, and transforming growth factor-β) but enhanced by others (IL-6, IL-10, and IL-21). The complex interplay between these various stimuli may account for the variable expression of CD94/NKG2A during responses to different pathogens in vivo.

  8. Effect of cadmium exposure on hepatopancreas and gills of the estuary mud crab (Scylla paramamosain): Histopathological changes and expression characterization of stress response genes.

    PubMed

    Zhu, Qi-Hui; Zhou, Zhong-Kai; Tu, Dan-Dan; Zhou, Yi-Lian; Wang, Cong; Liu, Ze-Peng; Gu, Wen-Bin; Chen, Yu-Yin; Shu, Miao-An

    2018-02-01

    Cadmium (Cd) is a heavy metal that accumulates easily in organisms and causes several detrimental effects, including tissue damage. Cd contamination from anthropogenic terrestrial sources flows into rivers, and through estuaries to the ocean. To evaluate the toxic effects of Cd on estuary crustaceans, we exposed the mud crab Scylla paramamosain to various Cd concentrations (0, 10.0, 20.0, and 40.0mg/L) for 24h. We also exposed mud crabs to a fixed Cd concentration (20.0mg/L) for various periods of time (0, 6, 12, 24, 48, and 72h). We observed that after exposure to Cd, the surfaces of the gill lamellae were wrinkled, and the morphologies of the nuclei and mitochondria in the hepatopancreas were altered. We analyzed the expression profiles of 36 stress-related genes after Cd exposure, including those encoding metallothioneins, heat shock proteins, apoptosis-related proteins, and antioxidant proteins, with quantitative reverse transcription PCR. We found that exposure to Cd altered gene expression, and that some genes might be suitable bioindicators of Cd stress. Gene expression profiles were organ-, duration-, and concentration-dependent, suggesting that stress-response genes might be involved in an innate defense system for handling heavy metal exposure. To the best of our knowledge, this study is the first one of histopathology and stress-response gene expression pattern of Scylla paramamosain after Cd exposure. Our work could increase our understanding of the effect of environmental toxins on estuary crustaceans. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Analysis of the association between CD40 and CD40 ligand polymorphisms and systemic sclerosis.

    PubMed

    Teruel, María; Simeon, Carmen P; Broen, Jasper; Vonk, Madelon C; Carreira, Patricia; Camps, Maria Teresa; García-Portales, Rosa; Delgado-Frías, Esmeralda; Gallego, Maria; Espinosa, Gerard; Beretta, Lorenzo; Airó, Paolo; Lunardi, Claudio; Riemekasten, Gabriela; Witte, Torsten; Krieg, Thomas; Kreuter, Alexander; Distler, Jörg H W; Hunzelmann, Nicolas; Koeleman, Bobby P; Voskuyl, Alexandre E; Schuerwegh, Annemie J; González-Gay, Miguel Angel; Radstake, Timothy R D J; Martin, Javier

    2012-06-25

    The aim of the present study was to investigate the possible role of CD40 and CD40 ligand (CD40LG) genes in the susceptibility and phenotype expression of systemic sclerosis (SSc). In total, 2,670 SSc patients and 3,245 healthy individuals from four European populations (Spain, Germany, The Netherlands, and Italy) were included in the study. Five single-nucleotide polymorphisms (SNPs) of CD40 (rs1883832, rs4810485, rs1535045) and CD40LG (rs3092952, rs3092920) were genotyped by using a predesigned TaqMan allele-discrimination assay technology. Meta-analysis was assessed to determine whether an association exists between the genetic variants and SSc or its main clinical subtypes. No evidence of association between CD40 and CD40LG genes variants and susceptibility to SSc was observed. Similarly, no significant statistical differences were observed when SSc patients were stratified by the clinical subtypes, the serologic features, and pulmonary fibrosis. Our results do not suggest an important role of CD40 and CD40LG gene polymorphisms in the susceptibility to or clinical expression of SSc.

  10. Humoral Activity of Cord Blood-Derived Stem/Progenitor Cells: Implications for Stem Cell-Based Adjuvant Therapy of Neurodegenerative Disorders

    PubMed Central

    Paczkowska, Edyta; Kaczyńska, Katarzyna; Pius-Sadowska, Ewa; Rogińska, Dorota; Kawa, Miłosz; Ustianowski, Przemysław; Safranow, Krzysztof; Celewicz, Zbigniew; Machaliński, Bogusław

    2013-01-01

    Background Stem/progenitor cells (SPCs) demonstrate neuro-regenerative potential that is dependent upon their humoral activity by producing various trophic factors regulating cell migration, growth, and differentiation. Herein, we compared the expression of neurotrophins (NTs) and their receptors in specific umbilical cord blood (UCB) SPC populations, including lineage-negative, CD34+, and CD133+ cells, with that in unsorted, nucleated cells (NCs). Methods and Results The expression of NTs and their receptors was detected by QRT-PCR, western blotting, and immunofluorescent staining in UCB-derived SPC populations (i.e., NCs vs. lineage-negative, CD34+, and CD133+ cells). To better characterize, global gene expression profiles of SPCs were determined using genome-wide RNA microarray technology. Furthermore, the intracellular production of crucial neuro-regenerative NTs (i.e., BDNF and NT-3) was assessed in NCs and lineage-negative cells after incubation for 24, 48, and 72 h in both serum and serum-free conditions. We discovered significantly higher expression of NTs and NT receptors at both the mRNA and protein level in lineage-negative, CD34+, and CD133+ cells than in NCs. Global gene expression analysis revealed considerably higher expression of genes associated with the production and secretion of proteins, migration, proliferation, and differentiation in lineage-negative cells than in CD34+ or CD133+ cell populations. Notably, after short-term incubation under serum-free conditions, lineage-negative cells and NCs produced significantly higher amounts of BDNF and NT-3 than under steady-state conditions. Finally, conditioned medium (CM) from lineage-negative SPCs exerted a beneficial impact on neural cell survival and proliferation. Conclusions Collectively, our findings demonstrate that UCB-derived SPCs highly express NTs and their relevant receptors under steady-state conditions, NT expression is greater under stress-related conditions and that CM from SPCs

  11. Humoral activity of cord blood-derived stem/progenitor cells: implications for stem cell-based adjuvant therapy of neurodegenerative disorders.

    PubMed

    Paczkowska, Edyta; Kaczyńska, Katarzyna; Pius-Sadowska, Ewa; Rogińska, Dorota; Kawa, Miłosz; Ustianowski, Przemysław; Safranow, Krzysztof; Celewicz, Zbigniew; Machaliński, Bogusław

    2013-01-01

    Stem/progenitor cells (SPCs) demonstrate neuro-regenerative potential that is dependent upon their humoral activity by producing various trophic factors regulating cell migration, growth, and differentiation. Herein, we compared the expression of neurotrophins (NTs) and their receptors in specific umbilical cord blood (UCB) SPC populations, including lineage-negative, CD34(+), and CD133(+) cells, with that in unsorted, nucleated cells (NCs). The expression of NTs and their receptors was detected by QRT-PCR, western blotting, and immunofluorescent staining in UCB-derived SPC populations (i.e., NCs vs. lineage-negative, CD34(+), and CD133(+) cells). To better characterize, global gene expression profiles of SPCs were determined using genome-wide RNA microarray technology. Furthermore, the intracellular production of crucial neuro-regenerative NTs (i.e., BDNF and NT-3) was assessed in NCs and lineage-negative cells after incubation for 24, 48, and 72 h in both serum and serum-free conditions. We discovered significantly higher expression of NTs and NT receptors at both the mRNA and protein level in lineage-negative, CD34(+), and CD133(+) cells than in NCs. Global gene expression analysis revealed considerably higher expression of genes associated with the production and secretion of proteins, migration, proliferation, and differentiation in lineage-negative cells than in CD34(+) or CD133(+) cell populations. Notably, after short-term incubation under serum-free conditions, lineage-negative cells and NCs produced significantly higher amounts of BDNF and NT-3 than under steady-state conditions. Finally, conditioned medium (CM) from lineage-negative SPCs exerted a beneficial impact on neural cell survival and proliferation. Collectively, our findings demonstrate that UCB-derived SPCs highly express NTs and their relevant receptors under steady-state conditions, NT expression is greater under stress-related conditions and that CM from SPCs favorable influence neural cell

  12. The pan-B cell marker CD22 is expressed on gastrointestinal eosinophils and negatively regulates tissue eosinophilia¶

    PubMed Central

    Wen, Ting; Mingler, Melissa K.; Blanchard, Carine; Wahl, Benjamin; Pabst, Oliver; Rothenberg, Marc E.

    2011-01-01

    CD22 is currently recognized as a B cell-specific Siglec and has been exploited therapeutically with humanized anti-CD22 monoclonal antibody having been used against B cell leukemia. Herein, tissue-specific eosinophil mRNA microarray analysis identified that CD22 transcript levels of murine gastrointestinal (GI) eosinophils are 10-fold higher than those of lung eosinophils. In order to confirm the mRNA data at the protein level, we developed a FACS-based protocol designed to phenotype live GI eosinophils isolated from the murine lamina propria. Indeed, we found that jejunum eosinophils expressed remarkably high levels of surface CD22, similar to levels found in B cells across multiple mouse strains. In contrast, CD22 was undetectable on eosinophils from the colon, blood, thymus, spleen, uterus, peritoneal cavity and allergen-challenged lung. Eosinophils isolated from newborn mice did not express CD22 but subsequently upregulated CD22 expression to adult levels within the first 10 days after birth. The GI lamina propria from CD22 gene-targeted mice harbored more eosinophils than wild-type control mice, while the GI eosinophil turnover rate was unaltered in the absence of CD22. Our findings identify a novel expression pattern and tissue eosinophilia-regulating function for the “B cell-specific” inhibitory molecule CD22 on GI eosinophils. PMID:22190185

  13. CD56 Expression in Odontogenic Cysts and Tumors.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Dehghani-Nazhvani, Ali; Razmjouyi, Faranak

    2014-01-01

    Background and aims. Odontogenic cysts and tumors have a wide spectrum of clinical characteristics that lead to the different management strategies. Since definite diagnosis is difficult in some cases, it has been suggested that CD56 may be a candidate marker for definitive diagnosis of some odontogenic tumors. The present study was designed to examine CD56 expression in lesions with histopathological similarities. Materials and methods. In this cross-sectional, analytical study the subjects were 22 ameloblastomas, 13 dentigerous cysts, 10 keratocystic odontogenic tumors (KCOT), 4 adenomatoid odontogenic tumors (AOT), 3 orthokeratinized odonto-genic cysts, 3 calcifying odontogenic cysts (COC) and one glandular odontogenic cyst (GOC). All the samples were examined for CD56 immunoreactivity. Data were analyzed using chi-square test. Results. Twenty cases (91%) of ameloblastomas, 3 (75%) AOT, 4 (40%) KCOT and one case of GOC were positive for CD56. None of the dentigerous cysts, COC and orthokeratinized odontogenic cysts was CD56-positive. There was a significant difference in the CD56 expression between ameloblastoma and dentigerous cyst, as well as COC. Also, KCOT showed significantly higher expression than orthokeratinized odontogenic cyst. Conclusion. In this study CD56 expression was limited to the odontogenic tumors and more aggressive cystic lesions. This marker can be a useful aid for distinguishing cysts and tumors from similar lesions.

  14. Expression and prognostic value of soluble CD97 and its ligand CD55 in intrahepatic cholangiocarcinoma.

    PubMed

    Meng, Ze-Wu; Liu, Min-Chao; Hong, Hai-Jie; Du, Qiang; Chen, Yan-Ling

    2017-03-01

    The incidence rate of intrahepatic cholangiocarcinoma is rising, and treatment options are limited. Therefore, new biological markers of intrahepatic cholangiocarcinoma are needed. Immunohistochemistry and enzyme-linked immunosorbent assay were applied to analyze the expressions of CD97, CD55, and soluble CD97 in 71 patients with intrahepatic cholangiocarcinoma and 10 patients with hepatolithiasis. CD97 and CD55 were not expressed in hepatolithiatic tissues, but positive expression was observed in 76.1% (54/71) and 70.4% (50/71) of intrahepatic cholangiocarcinoma patients. The univariate analyses indicated that the positive expressions of CD97 and CD55 were related to short intrahepatic cholangiocarcinoma survival of patients (both p = 0.001). Furthermore, CD97 and CD55 expressions and biliary soluble CD97 levels were significantly associated with histological grade (p = 0.004, 0.002, and 0.012, respectively), lymph node metastases (p = 0.020, 0.038, and 0.001, respectively), and venous invasion (p = 0.003, 0.002, and 0.001, respectively). The multivariate analyses indicated that lymph node metastases (hazard ratio: 2.407, p = 0.003), positive CD55 expression (hazard ratio: 4.096, p = 0.003), and biliary soluble CD97 levels (hazard ratio: 2.434, p = 0.002) were independent risk factors for the intrahepatic cholangiocarcinoma survival. The receiver operating characteristic (ROC) curve analysis indicated that when the cutoff values of biliary soluble CD97 were 1.15 U/mL, the diagnostic value for predicting lymph node metastasis had a sensitivity of 87.5% and a specificity of 51.3%. For intrahepatic cholangiocarcinoma patient death within 60 months at a cutoff value of 0.940 U/mL, the diagnostic value sensitivity was 89.3% and the specificity was 93.3%. Biliary soluble CD97 may be a new biological marker for early diagnosis, prediction of lymph node metastasis and poor prognosis, and discovery of a therapeutic target.

  15. COMPARE CPM-RMI Trial: Intramyocardial Transplantation of Autologous Bone Marrow-Derived CD133+ Cells and MNCs during CABG in Patients with Recent MI: A Phase II/III, Multicenter, Placebo-Controlled, Randomized, Double-Blind Clinical Trial.

    PubMed

    Naseri, Mohammad Hassan; Madani, Hoda; Ahmadi Tafti, Seyed Hossein; Moshkani Farahani, Maryam; Kazemi Saleh, Davood; Hosseinnejad, Hossein; Hosseini, Saeid; Hekmat, Sepideh; Hossein Ahmadi, Zargham; Dehghani, Majid; Saadat, Alireza; Mardpour, Soura; Hosseini, Seyedeh Esmat; Esmaeilzadeh, Maryam; Sadeghian, Hakimeh; Bahoush, Gholamreza; Bassi, Ali; Amin, Ahmad; Fazeli, Roghayeh; Sharafi, Yaser; Arab, Leila; Movahhed, Mansour; Davaran, Saeid; Ramezanzadeh, Narges; Kouhkan, Azam; Hezavehei, Ali; Namiri, Mehrnaz; Kashfi, Fahimeh; Akhlaghi, Ali; Sotoodehnejadnematalahi, Fattah; Vosough Dizaji, Ahmad; Gourabi, Hamid; Syedi, Naeema; Shahverdi, Abdol Hosein; Baharvand, Hossein; Aghdami, Nasser

    2018-07-01

    The regenerative potential of bone marrow-derived mononuclear cells (MNCs) and CD133+ stem cells in the heart varies in terms of their pro-angiogenic effects. This phase II/III, multicenter and double-blind trial is designed to compare the functional effects of intramyocardial autologous transplantation of both cell types and placebo in patients with recent myocardial infarction (RMI) post-coronary artery bypass graft. This was a phase II/III, randomized, double-blind, placebo-controlled trial COMPARE CPM-RMI (CD133, Placebo, MNCs - recent myocardial infarction) conducted in accordance with the Declaration of Helsinki that assessed the safety and efficacy of CD133 and MNCs compared to placebo in patients with RMI. We randomly assigned 77 eligible RMI patients selected from 5 hospitals to receive CD133+ cells, MNC, or a placebo. Patients underwent gated single photon emission computed tomography assessments at 6 and 18 months post-intramyocardial transplantation. We tested the normally distributed efficacy outcomes with a mixed analysis of variance model that used the entire data set of baseline and between-group comparisons as well as within subject (time) and group×time interaction terms. There were no related serious adverse events reported. The intramyocardial transplantation of both cell types increased left ventricular ejection fraction by 9% [95% confidence intervals (CI): 2.14% to 15.78%, P=0.01] and improved decreased systolic wall thickening by -3.7 (95% CI: -7.07 to -0.42, P=0.03). The CD133 group showed significantly decreased non-viable segments by 75% (P=0.001) compared to the placebo and 60% (P=0.01) compared to the MNC group. We observed this improvement at both the 6- and 18-month time points. Intramyocardial injections of CD133+ cells or MNCs appeared to be safe and efficient with superiority of CD133+ cells for patients with RMI. Although the sample size precluded a definitive statement about clinical outcomes, these results have provided the

  16. CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells

    PubMed Central

    Tay, Neil Q.; Lee, Debbie C. P.; Chua, Yen Leong; Prabhu, Nayana; Gascoigne, Nicholas R. J.; Kemeny, David M.

    2017-01-01

    CD8+ T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs) by CD4+ T cells is known to be necessary for the generation of a robust CD8+ T cell response, the contribution of CD8+ T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8+ T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8+ T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8+ T cell responses, we generated and characterized CD40L-expressing CD8+ T cells both in vitro and in vivo. We found that CD40L was expressed on 30–50% of effector CD8+ T cells when stimulated and that this expression was transient. The expression of CD40L on CD8+ T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8+ T cells and the bystander effector CD8+ T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8+ T cells and DCs cooperate to maximize CD8+ T cell responses. PMID:29163545

  17. Acidic conditions induce the suppression of CD86 and CD54 expression in THP-1 cells.

    PubMed

    Mitachi, Takafumi; Mezaki, Minori; Yamashita, Kunihiko; Itagaki, Hiroshi

    2018-01-01

    To evaluate the sensitization potential of chemicals in cosmetics, using non-animal methods, a number of in vitro safety tests have been designed. Current assays are based on the expression of cell surface markers, such as CD86 and CD54, which are associated with the activation of dendritic cells, in skin sensitization tests. However, these markers are influenced by culture conditions through activating danger signals. In this study, we investigated the relationship between extracellular pH and the expression of the skin sensitization test human cell line activation test (h-CLAT) markers CD86 and CD54. We measured expression levels after THP-1 cells were exposed to representative contact allergens, i.e., 2,4-dinitrochlorobenzene and imidazolidinyl urea, under acidic conditions. These conditions were set by exposure to hydrochloric acid, lactic acid, and citric acid. An acidic extracellular pH (6-7) suppressed the augmentation of CD86 and CD54 levels by the sensitizer. Additionally, when the CD86/CD54 expression levels were suppressed, a reduction in the intracellular pH was confirmed. Furthermore, we observed that Na + /H + exchanger 1 (NHE-1), a protein that contributes to the regulation of extracellular/intracellular pH, is involved in CD86 and CD54 expression. These findings suggest that the extracellular/intracellular pH has substantial effects on in vitro skin sensitization markers and should be considered in evaluations of the safety of mixtures and commercial products in the future.

  18. siRNA associated with immunonanoparticles directed against cd99 antigen improves gene expression inhibition in vivo in Ewing's sarcoma.

    PubMed

    Ramon, A L; Bertrand, J R; de Martimprey, H; Bernard, G; Ponchel, G; Malvy, C; Vauthier, C

    2013-07-01

    Ewing's sarcoma is a rare, mostly pediatric bone cancer that presents a chromosome abnormality called EWS/Fli-1, responsible for the development of the tumor. In vivo, tumor growth can be inhibited specifically by delivering small interfering RNA (siRNA) associated with nanoparticles. The aim of the work was to design targeted nanoparticles against the cell membrane glycoprotein cd99, which is overexpressed in Ewing's sarcoma cells to improve siRNA delivery to tumor cells. Biotinylated poly(isobutylcyanoacrylate) nanoparticles were conceived as a platform to design targeted nanoparticles with biotinylated ligands and using the biotin-streptavidin coupling method. The targeted nanoparticles were validated in vivo for the targeted delivery of siRNA after systemic administration to mice bearing a tumor model of the Ewing's sarcoma. The expression of the gene responsible of Ewing's sarcoma was inhibited at 78% ± 6% by associating the siRNA with the cd99-targeted nanoparticles compared with an inhibition of only 41% ± 9% achieved with the nontargeted nanoparticles. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Prenatal and early-life exposures alter expression of innate immunity genes: the PASTURE cohort study.

    PubMed

    Loss, Georg; Bitter, Sondhja; Wohlgensinger, Johanna; Frei, Remo; Roduit, Caroline; Genuneit, Jon; Pekkanen, Juha; Roponen, Marjut; Hirvonen, Maija-Riitta; Dalphin, Jean-Charles; Dalphin, Marie-Laure; Riedler, Josef; von Mutius, Erika; Weber, Juliane; Kabesch, Michael; Michel, Sven; Braun-Fahrländer, Charlotte; Lauener, Roger

    2012-08-01

    There is evidence that gene expression of innate immunity receptors is upregulated by farming-related exposures. We sought to determine environmental and nutritional exposures associated with the gene expression of innate immunity receptors during pregnancy and the first year of a child's life. For the Protection Against Allergy: Study in Rural Environments (PASTURE) birth cohort study, 1133 pregnant women were recruited in rural areas of Austria, Finland, France, Germany, and Switzerland. mRNA expression of the Toll-like receptor (TLR) 1 through TLR9 and CD14 was assessed in blood samples at birth (n= 938) and year 1 (n= 752). Environmental exposures, as assessed by using questionnaires and a diary kept during year 1, and polymorphisms in innate receptor genes were related to gene expression of innate immunity receptors by using ANOVA and multivariate regression analysis. Gene expression of innate immunity receptors in cord blood was overall higher in neonates of farmers (P for multifactorial multivariate ANOVA= .041), significantly so for TLR7 (adjusted geometric means ratio [aGMR], 1.15; 95% CI, 1.02-1.30) and TLR8 (aGMR, 1.15; 95% CI, 1.04-1.26). Unboiled farm milk consumption during the first year of life showed the strongest association with mRNA expression at year 1, taking the diversity of other foods introduced during that period into account: TLR4 (aGMR, 1.22; 95% CI, 1.03-1.45), TLR5 (aGMR, 1.19; 95% CI, 1.01-1.41), and TLR6 (aGMR, 1.20; 95% CI, 1.04-1.38). A previously described modification of the association between farm milk consumption and CD14 gene expression by the single nucleotide polymorphism CD14/C-1721T was not found. Farming-related exposures, such as raw farm milk consumption, that were previously reported to decrease the risk for allergic outcomes were associated with a change in gene expression of innate immunity receptors in early life. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All

  20. CD8 single-cell gene coexpression reveals three different effector types present at distinct phases of the immune response

    PubMed Central

    Peixoto, António; Evaristo, César; Munitic, Ivana; Monteiro, Marta; Charbit, Alain; Rocha, Benedita; Veiga-Fernandes, Henrique

    2007-01-01

    To study in vivo CD8 T cell differentiation, we quantified the coexpression of multiple genes in single cells throughout immune responses. After in vitro activation, CD8 T cells rapidly express effector molecules and cease their expression when the antigen is removed. Gene behavior after in vivo activation, in contrast, was quite heterogeneous. Different mRNAs were induced at very different time points of the response, were transcribed during different time periods, and could decline or persist independently of the antigen load. Consequently, distinct gene coexpression patterns/different cell types were generated at the various phases of the immune responses. During primary stimulation, inflammatory molecules were induced and down-regulated shortly after activation, generating early cells that only mediated inflammation. Cytotoxic T cells were generated at the peak of the primary response, when individual cells simultaneously expressed multiple killer molecules, whereas memory cells lost killer capacity because they no longer coexpressed killer genes. Surprisingly, during secondary responses gene transcription became permanent. Secondary cells recovered after antigen elimination were more efficient killers than cytotoxic T cells present at the peak of the primary response. Thus, primary responses produced two transient effector types. However, after boosting, CD8 T cells differentiate into long-lived killer cells that persist in vivo in the absence of antigen. PMID:17485515

  1. Expression of the Mir-133 and Bcl-2 could be affected by swimming training in the heart of ovariectomized rats.

    PubMed

    Habibi, Parisa; Alihemmati, Alireza; NourAzar, Alireza; Yousefi, Hadi; Mortazavi, Safieh; Ahmadiasl, Nasser

    2016-04-01

    The beneficial and more potent role of exercise to prevent heart apoptosis in ovariectomized rats has been known. The aim of this study was to examine the effects of swimming training on cardiac expression of Bcl-2, and Mir-133 levels and glycogen changes in the myocyte. Forty animals were separated into four groups as control, sham, ovariectomy (OVX) and ovariectomized group with 8 weeks swimming training (OVX.E). Training effects were evaluated by measuring lipid profiles, Bcl-2 and Mir-133 expression levels in the cardiac tissue. Grafts were analyzed by reverse transcription-polymerase chain reaction for Bcl-2 mRNA and Mir-133 and by Western blot for Bcl-2 protein. Ovariectomy down-regulated Bcl-2 and Mir-133 expression levels in the cardiac tissue, and swimming training up-regulated their expression significantly (P<0.05). Our results showed that regular exercise as a physical replacement therapy could prevent and improve the effects of estrogen deficiency in the cardia.

  2. Galunisertib suppresses the staminal phenotype in hepatocellular carcinoma by modulating CD44 expression.

    PubMed

    Rani, Bhavna; Malfettone, Andrea; Dituri, Francesco; Soukupova, Jitka; Lupo, Luigi; Mancarella, Serena; Fabregat, Isabel; Giannelli, Gianluigi

    2018-03-07

    Cancer stem cells (CSCs) niche in the tumor microenvironment is responsible for cancer recurrence and therapy failure. To better understand its molecular and biological involvement in hepatocellular carcinoma (HCC) progression, one can design more effective therapies and tailored then to individual patients. While sorafenib is currently the only approved drug for first-line treatment of advanced stage HCC, its role in modulating the CSC niche is estimated to be small. By contrast, transforming growth factor (TGF)-β pathway seems to influence the CSC and thus may impact hallmarks of HCC, such as liver fibrosis, cirrhosis, and tumor progression. Therefore, blocking this pathway may offer an appealing and druggable target. In our study, we have used galunisertib (LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGFβI/ALK5) activation, currently under clinical investigation in HCC patients. Because the drug resistance is mainly mediated by CSCs, we tested the effects of galunisertib on stemness phenotype in HCC cells to determine whether TGF-β signaling modulates CSC niche and drug resistance. Galunisertib modulated the expression of stemness-related genes only in the invasive (HLE and HLF) HCC cells inducing a decreased expression of CD44 and THY1. Furthermore, galunisertib also reduced the stemness-related functions of invasive HCC cells decreasing the formation of colonies, liver spheroids and invasive growth ability. Interestingly, CD44 loss of function mimicked the galunisertib effects on HCC stemness-related functions. Galunisertib treatment also reduced the expression of stemness-related genes in ex vivo human HCC specimens. Our observations are the first evidence that galunisertib effectiveness overcomes stemness-derived aggressiveness via decreased expression CD44 and THY1.

  3. Characterization of CD22 expression in acute lymphoblastic leukemia.

    PubMed

    Shah, Nirali N; Stevenson, Maryalice Stetler; Yuan, Constance M; Richards, Kelly; Delbrook, Cindy; Kreitman, Robert J; Pastan, Ira; Wayne, Alan S

    2015-06-01

    CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL. CD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349-19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n = 20 versus 3,853 sites/cell, range 451-19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22%-82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents. These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  4. Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease.

    PubMed

    Yamano, Yoshihisa; Takenouchi, Norihiro; Li, Hong-Chuan; Tomaru, Utano; Yao, Karen; Grant, Christian W; Maric, Dragan A; Jacobson, Steven

    2005-05-01

    CD4(+)CD25(+) Tregs are important in the maintenance of immunological self tolerance and in the prevention of autoimmune diseases. As the CD4(+)CD25(+) T cell population in patients with human T cell lymphotropic virus type I-associated (HTLV-I-associated) myelopathy/tropical spastic paraparesis (HAM/TSP) has been shown to be a major reservoir for this virus, it was of interest to determine whether the frequency and function of CD4(+)CD25(+) Tregs in HAM/TSP patients might be affected. In these cells, both mRNA and protein expression of the forkhead transcription factor Foxp3, a specific marker of Tregs, were lower than those in CD4(+)CD25(+) T cells from healthy individuals. The virus-encoded transactivating HTLV-I tax gene was demonstrated to have a direct inhibitory effect on Foxp3 expression and function of CD4(+)CD25(+) T cells. This is the first report to our knowledge demonstrating the role of a specific viral gene product (HTLV-I Tax) on the expression of genes associated with Tregs (in particular, foxp3) resulting in inhibition of Treg function. These results suggest that direct human retroviral infection of CD4(+)CD25(+) T cells may be associated with the pathogenesis of HTLV-I-associated neurologic disease.

  5. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms

    PubMed Central

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-01-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3–23.3 (n=1), 9q33.1–34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31–36.33 (n=6), 17q21.2–q21.31 (n=5) and 17q25.1–25.3 (n=5) and deletions affecting 18p11.31–11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a ‘HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal. PMID:22829077

  6. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue

    PubMed Central

    Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small

  7. miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction.

    PubMed

    Izarra, Alberto; Moscoso, Isabel; Levent, Elif; Cañón, Susana; Cerrada, Inmaculada; Díez-Juan, Antonio; Blanca, Vanessa; Núñez-Gil, Iván-J; Valiente, Iñigo; Ruíz-Sauri, Amparo; Sepúlveda, Pilar; Tiburcy, Malte; Zimmermann, Wolfram-H; Bernad, Antonio

    2014-12-09

    miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

    PubMed Central

    Izarra, Alberto; Moscoso, Isabel; Levent, Elif; Cañón, Susana; Cerrada, Inmaculada; Díez-Juan, Antonio; Blanca, Vanessa; Núñez-Gil, Iván-J.; Valiente, Iñigo; Ruíz-Sauri, Amparo; Sepúlveda, Pilar; Tiburcy, Malte; Zimmermann, Wolfram-H.; Bernad, Antonio

    2014-01-01

    Summary miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue. PMID:25465869

  9. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro✩

    PubMed Central

    Secor, Eric R.; Singh, Anurag; Guernsey, Linda A.; McNamara, Jeff T.; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S.

    2009-01-01

    Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4+ T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4+ T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4+ T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4+ T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions. PMID:19162239

  10. CD32-Expressing CD4 T Cells Are Phenotypically Diverse and Can Contain Proviral HIV DNA.

    PubMed

    Martin, Genevieve E; Pace, Matthew; Thornhill, John P; Phetsouphanh, Chansavath; Meyerowitz, Jodi; Gossez, Morgane; Brown, Helen; Olejniczak, Natalia; Lwanga, Julianne; Ramjee, Gita; Kaleebu, Pontiano; Porter, Kholoud; Willberg, Christian B; Klenerman, Paul; Nwokolo, Nneka; Fox, Julie; Fidler, Sarah; Frater, John

    2018-01-01

    Efforts to both characterize and eradicate the HIV reservoir have been limited by the rarity of latently infected cells and the absence of a specific denoting biomarker. CD32a (FcγRIIa) has been proposed to be a marker for an enriched CD4 T cell HIV reservoir, but this finding remains controversial. Here, we explore the expression of CD32 on CD3 + CD4 + cells in participants from two primary HIV infection studies and identify at least three distinct phenotypes (CD32 low , CD32 + CD14 + , and CD32 high ). Of note, CD4 negative enrichment kits remove the majority of CD4 + CD32 + T cells, potentially skewing subsequent analyses if used. CD32 high CD4 T cells had higher levels of HLA-DR and HIV co-receptor expression than other subsets, compatible with their being more susceptible to infection. Surprisingly, they also expressed high levels of CD20, TCRαβ, IgD, and IgM (but not IgG), markers for both T cells and naïve B cells. Compared with other populations, CD32 low cells had a more differentiated memory phenotype and high levels of immune checkpoint receptors, programmed death receptor-1 (PD-1), Tim-3, and TIGIT. Within all three CD3 + CD4 + CD32 + phenotypes, cells could be identified in infected participants, which contained HIV DNA. CD32 expression on CD4 T cells did not correlate with HIV DNA or cell-associated HIV RNA (both surrogate measures of overall reservoir size) or predict time to rebound viremia following treatment interruption, suggesting that it is not a dominant biomarker for HIV persistence. Our data suggest that while CD32 + T cells can be infected with HIV, CD32 is not a specific marker of the reservoir although it might identify a population of HIV enriched cells in certain situations.

  11. Detection of high CD44 expression in oral cancers using the novel monoclonal antibody, C44Mab-5.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Yanaka, Miyuki; Kaneko, Mika K; Kato, Yukinari

    2018-07-01

    CD44 is a transmembrane glycoprotein that regulates a variety of genes related to cell-adhesion, migration, proliferation, differentiation, and survival. A large number of alternative splicing isoforms of CD44, containing various combinations of alternative exons, have been reported. CD44 standard (CD44s), which lacks variant exons, is widely expressed on the surface of most tissues and all hematopoietic cells. In contrast, CD44 variant isoforms show tissue-specific expression patterns and have been extensively studied as both prognostic markers and therapeutic targets in cancer and other diseases. In this study, we immunized mice with CHO-K1 cell lines overexpressing CD44v3-10 to obtain novel anti-CD44 mAbs. One of the clones, C 44 Mab-5 (IgG 1 , kappa), recognized both CD44s and CD44v3-10. C 44 Mab-5 also reacted with oral cancer cells such as Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4 using flow cytometry. Moreover, immunohistochemical analysis revealed that C 44 Mab-5 detected 166/182 (91.2%) of oral cancers. These results suggest that the C 44 Mab-5 antibody may be useful for investigating the expression and function of CD44 in various cancers.

  12. CD10 and osteopontin expression in dentigerous cyst and ameloblastoma.

    PubMed

    Masloub, Shaimaa M; Abdel-Azim, Adel M; Elhamid, Ehab S Abd

    2011-05-24

    To investigate the expression of CD10 and osteopontin in dentigerous cyst and ameloblastoma and to correlate their expression with neoplastic potentiality of dentigerous cyst and local invasion and risk of local recurrence in ameloblastoma. CD10 and osteopontin expression was studied by means of immunohistochemistry in 9 cases of dentigerous cysts (DC) and 17 cases of ameloblastoma. There were 7 unicystic ameloblastoma (UCA) and 10 multicystic ameloblastoma (MCA). Positive cases were included in the statistical analysis, carried on the tabulated data using the Open Office Spreadsheet 3.2.1 under Linux operating system. Analysis of variance and correlation studies were performed using "R" under Linux operating system (R Development Core Team (2010). Tukey post-hoc test was also performed as a pair-wise test. The significant level was set at 0.05. High CD10 and osteopontin expression was observed in UCA and MCA, and low CD10 and osteopontin expression was observed in DC. Significant correlation was seen between CD10 and osteopontin expression and neoplastic potentiality of DC and local invasion and risk of recurrences in ameloblastoma. In DC, high CD10 and osteopontin expression may indicate the neoplastic potentiality of certain areas. In UCA & MCA, high CD10 and osteopontin expression may identify areas with locally invasive behavior and high risk of recurrence.

  13. CD44v6 expression in patients with stage II or stage III sporadic colorectal cancer is superior to CD44 expression for predicting progression

    PubMed Central

    Zhao, LH; Lin, QL; Wei, J; Huai, YL; Wang, KJ; Yan, HY

    2015-01-01

    Background: Currently, it is difficult to predict the prognosis of patients exhibiting stage II or stage III colorectal cancer (CRC) and to identify those patients most likely to benefit from aggressive treatment. The current study was performed to examine the clinicopathological significance of CD44 and CD44v6 protein expression in these patients. Study design: We retrospectively investigated 187 consecutive patients who underwent surgery with curative intent for stage II to III CRC from 2007 to 2013 in the Beijing Civil Aviation Hospital. CD44 and CD44v6 protein expression levels were determined using immunohistochemistry and compared to the clinicopathological data. Results: Using immunohistochemical detection, CD44 expression was observed in 108 (57.75%) of the CRC patients; and its detection was significantly associated with greater invasion depth, lymph node metastasis, angiolymphatic invasion, and a more advanced pathological tumor-lymph node-metastasis (TNM) stage. CD44v6 expression was observed in 135 (72.19%) of the CRC patients; and its expression was significantly associated with a poorly differentiated histology, greater invasion depth, lymph node metastasis, angiolymphatic invasion, and a more advanced pathological TNM stage. Expression of CD44v6 was higher than that of CD44 in stage II and stage III sporadic CRC. Conclusion: CD44v6 is a more useful marker for predicting a poor prognosis in stage II and stage III sporadic CRC as compared to CD44. PMID:25755763

  14. Hypoxic regulation of the expression of cell proliferation related genes in U87 glioma cells upon inhibition of ire1 signaling enzyme

    PubMed

    Minchenko, O H; Tsymbal, D O; Minchenko, D O; Riabovol, O O; Ratushna, O O; Karbovskyi, L L

    2016-01-01

    We have studied the effect of inhibition of IRE1 (inositol requiring enzyme 1), which is a central mediator of endoplasmic reticulum stress and a controller of cell proliferation and tumor growth, on hypoxic regulation of the expression of different proliferation related genes in U87 glioma cells. It was shown that hypoxia leads to up-regulation of the expression of IL13RA2, CD24, ING1, ING2, ENDOG, and POLG genes and to down-regulation – of KRT18, TRAPPC3, TSFM, and MTIF2 genes at the mRNA level in control glioma cells. Changes for ING1 and CD24 genes were more significant. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes. In particular, it increases sensitivity to hypoxia of the expression of IL13RA2, TRAPPC3, ENDOG, and PLOG genes and suppresses the effect of hypoxia on the expression of ING1 gene. Additionally, it eliminates hypoxic regulation of KRT18, CD24, ING2, TSFM, and MTIF2 genes expressions and introduces sensitivity to hypoxia of the expression of BET1 gene in glioma cells. The present study demonstrates that hypoxia, which often contributes to tumor growth, affects the expression of almost all studied genes. Additionally, inhibition of IRE1 can both enhance and suppress the hypoxic regulation of these gene expressions in a gene specific manner and thus possibly contributes to slower glioma growth, but several aspects of this regulation must be further clarified.

  15. Whole Genome Gene Expression Meta-Analysis of Inflammatory Bowel Disease Colon Mucosa Demonstrates Lack of Major Differences between Crohn's Disease and Ulcerative Colitis

    PubMed Central

    Østvik, Ann E.; Drozdov, Ignat; Gustafsson, Bjørn I.; Kidd, Mark; Beisvag, Vidar; Torp, Sverre H.; Waldum, Helge L.; Martinsen, Tom Christian; Damås, Jan Kristian; Espevik, Terje; Sandvik, Arne K.

    2013-01-01

    Background In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn’s disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Methods Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Results Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. Conclusions There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology. PMID:23468882

  16. Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn's disease and ulcerative colitis.

    PubMed

    Granlund, Atle van Beelen; Flatberg, Arnar; Østvik, Ann E; Drozdov, Ignat; Gustafsson, Bjørn I; Kidd, Mark; Beisvag, Vidar; Torp, Sverre H; Waldum, Helge L; Martinsen, Tom Christian; Damås, Jan Kristian; Espevik, Terje; Sandvik, Arne K

    2013-01-01

    In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn's disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology.

  17. Low Dose Decitabine Treatment Induces CD80 Expression in Cancer Cells and Stimulates Tumor Specific Cytotoxic T Lymphocyte Responses

    PubMed Central

    Zhou, Ji-Hao; Yao, Yu-Shi; Li, Yong-Hui; Xu, Yi-Han; Li, Jing-Xin; Gao, Xiao-Ning; Zhou, Min-Hang; Jiang, Meng-Meng; Gao, Li; Ding, Yi; Lu, Xue-Chun; Shi, Jin-Long; Luo, Xu-Feng; Wang, Jia; Wang, Li-Li; Qu, Chunfeng; Bai, Xue-Feng; Yu, Li

    2013-01-01

    Lack of immunogenicity of cancer cells has been considered a major reason for their failure in induction of a tumor specific T cell response. In this paper, we present evidence that decitabine (DAC), a DNA methylation inhibitor that is currently used for the treatment of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and other malignant neoplasms, is capable of eliciting an anti-tumor cytotoxic T lymphocyte (CTL) response in mouse EL4 tumor model. C57BL/6 mice with established EL4 tumors were treated with DAC (1.0 mg/kg body weight) once daily for 5 days. We found that DAC treatment resulted in infiltration of IFN-γ producing T lymphocytes into tumors and caused tumor rejection. Depletion of CD8+, but not CD4+ T cells resumed tumor growth. DAC-induced CTL response appeared to be elicited by the induction of CD80 expression on tumor cells. Epigenetic evidence suggests that DAC induces CD80 expression in EL4 cells via demethylation of CpG dinucleotide sites in the promoter of CD80 gene. In addition, we also showed that a transient, low-dose DAC treatment can induce CD80 gene expression in a variety of human cancer cells. This study provides the first evidence that epigenetic modulation can induce the expression of a major T cell co-stimulatory molecule on cancer cells, which can overcome immune tolerance, and induce an efficient anti-tumor CTL response. The results have important implications in designing DAC-based cancer immunotherapy. PMID:23671644

  18. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses.

    PubMed

    Wang, Li-Xin; Mei, Zhen-Yang; Zhou, Ji-Hao; Yao, Yu-Shi; Li, Yong-Hui; Xu, Yi-Han; Li, Jing-Xin; Gao, Xiao-Ning; Zhou, Min-Hang; Jiang, Meng-Meng; Gao, Li; Ding, Yi; Lu, Xue-Chun; Shi, Jin-Long; Luo, Xu-Feng; Wang, Jia; Wang, Li-Li; Qu, Chunfeng; Bai, Xue-Feng; Yu, Li

    2013-01-01

    Lack of immunogenicity of cancer cells has been considered a major reason for their failure in induction of a tumor specific T cell response. In this paper, we present evidence that decitabine (DAC), a DNA methylation inhibitor that is currently used for the treatment of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and other malignant neoplasms, is capable of eliciting an anti-tumor cytotoxic T lymphocyte (CTL) response in mouse EL4 tumor model. C57BL/6 mice with established EL4 tumors were treated with DAC (1.0 mg/kg body weight) once daily for 5 days. We found that DAC treatment resulted in infiltration of IFN-γ producing T lymphocytes into tumors and caused tumor rejection. Depletion of CD8(+), but not CD4(+) T cells resumed tumor growth. DAC-induced CTL response appeared to be elicited by the induction of CD80 expression on tumor cells. Epigenetic evidence suggests that DAC induces CD80 expression in EL4 cells via demethylation of CpG dinucleotide sites in the promoter of CD80 gene. In addition, we also showed that a transient, low-dose DAC treatment can induce CD80 gene expression in a variety of human cancer cells. This study provides the first evidence that epigenetic modulation can induce the expression of a major T cell co-stimulatory molecule on cancer cells, which can overcome immune tolerance, and induce an efficient anti-tumor CTL response. The results have important implications in designing DAC-based cancer immunotherapy.

  19. Na+ influx via Orai1 inhibits intracellular ATP-induced mTORC2 signaling to disrupt CD4 T cell gene expression and differentiation.

    PubMed

    Miao, Yong; Bhushan, Jaya; Dani, Adish; Vig, Monika

    2017-05-11

    T cell effector functions require sustained calcium influx. However, the signaling and phenotypic consequences of non-specific sodium permeation via calcium channels remain unknown. α-SNAP is a crucial component of Orai1 channels, and its depletion disrupts the functional assembly of Orai1 multimers. Here we show that α-SNAP hypomorph, hydrocephalus with hopping gait, Napa hyh/hyh mice harbor significant defects in CD4 T cell gene expression and Foxp3 regulatory T cell (Treg) differentiation. Mechanistically, TCR stimulation induced rapid sodium influx in Napa hyh/hyh CD4 T cells, which reduced intracellular ATP, [ATP] i . Depletion of [ATP] i inhibited mTORC2 dependent NFκB activation in Napa hyh/hyh cells but ablation of Orai1 restored it. Remarkably, TCR stimulation in the presence of monensin phenocopied the defects in Napa hyh/hyh signaling and Treg differentiation, but not IL-2 expression. Thus, non-specific sodium influx via bonafide calcium channels disrupts unexpected signaling nodes and may provide mechanistic insights into some divergent phenotypes associated with Orai1 function.

  20. Na+ influx via Orai1 inhibits intracellular ATP-induced mTORC2 signaling to disrupt CD4 T cell gene expression and differentiation

    PubMed Central

    Miao, Yong; Bhushan, Jaya; Dani, Adish; Vig, Monika

    2017-01-01

    T cell effector functions require sustained calcium influx. However, the signaling and phenotypic consequences of non-specific sodium permeation via calcium channels remain unknown. α-SNAP is a crucial component of Orai1 channels, and its depletion disrupts the functional assembly of Orai1 multimers. Here we show that α-SNAP hypomorph, hydrocephalus with hopping gait, Napahyh/hyh mice harbor significant defects in CD4 T cell gene expression and Foxp3 regulatory T cell (Treg) differentiation. Mechanistically, TCR stimulation induced rapid sodium influx in Napahyh/hyh CD4 T cells, which reduced intracellular ATP, [ATP]i. Depletion of [ATP]i inhibited mTORC2 dependent NFκB activation in Napahyh/hyh cells but ablation of Orai1 restored it. Remarkably, TCR stimulation in the presence of monensin phenocopied the defects in Napahyh/hyh signaling and Treg differentiation, but not IL-2 expression. Thus, non-specific sodium influx via bonafide calcium channels disrupts unexpected signaling nodes and may provide mechanistic insights into some divergent phenotypes associated with Orai1 function. DOI: http://dx.doi.org/10.7554/eLife.25155.001 PMID:28492364

  1. Gene expression analysis of hypersensitivity to mosquito bite, chronic active EBV infection and NK/T-lymphoma/leukemia.

    PubMed

    Washio, Kana; Oka, Takashi; Abdalkader, Lamia; Muraoka, Michiko; Shimada, Akira; Oda, Megumi; Sato, Hiaki; Takata, Katsuyoshi; Kagami, Yoshitoyo; Shimizu, Norio; Kato, Seiichi; Kimura, Hiroshi; Nishizaki, Kazunori; Yoshino, Tadashi; Tsukahara, Hirokazu

    2017-11-01

    The human herpes virus, Epstein-Barr virus (EBV), is a known oncogenic virus and plays important roles in life-threatening T/NK-cell lymphoproliferative disorders (T/NK-cell LPD) such as hypersensitivity to mosquito bite (HMB), chronic active EBV infection (CAEBV), and NK/T-cell lymphoma/leukemia. During the clinical courses of HMB and CAEBV, patients frequently develop malignant lymphomas and the diseases passively progress sequentially. In the present study, gene expression of CD16 (-) CD56 (+) -, EBV (+) HMB, CAEBV, NK-lymphoma, and NK-leukemia cell lines, which were established from patients, was analyzed using oligonucleotide microarrays and compared to that of CD56 bright CD16 dim/- NK cells from healthy donors. Principal components analysis showed that CAEBV and NK-lymphoma cells were relatively closely located, indicating that they had similar expression profiles. Unsupervised hierarchal clustering analyses of microarray data and gene ontology analysis revealed specific gene clusters and identified several candidate genes responsible for disease that can be used to discriminate each category of NK-LPD and NK-cell lymphoma/leukemia.

  2. Heterogeneous expression and regulation of CD40 in human hepatocellular carcinoma.

    PubMed

    Holub, Margareta; Zakeri, Schaker M; Lichtenberger, Cornelia; Pammer, Johannes; Paolini, Pierre; Leifeld, Ludger; Rockenschaub, Susanne; Wolschek, Markus F; Steger, Günther; Willheim, Martin; Gangl, Alfred; Reinisch, Walter

    2003-02-01

    CD40, a member of the tumour necrosis factor receptor family, plays a major role in adaptive immune responses and contributes to cancer surveillance. Conflicting results have been reported recently on the expression and function of CD40 in carcinomas. The aim of the present study was to investigate the role of CD40 in human hepatoma. CD40 expression was examined in hepatomas and derived cell lines by immunohistochemistry, flow cytometry and reverse transcriptase polymerase chain reaction. We investigated in hepatoma cell lines the regulation of CD40 by pro-inflammatory cytokines and the effects of its ligation with soluble CD40L on the expression of co-stimulatory and pro-apoptotic cell-surface molecules and survival. CD40 was detected with a similar frequency of about 40% in hepatoma specimens and derived cell lines but not in normal hepatocytes. Tumour necrosis factor alpha and its combination with interferon gamma upregulated CD40 only in intrinsically positive cell lines. CD40 ligation had no effect on cell viability or surface expression of CD54, CD80, CD86 or CD95. CD40 is expressed variably in human hepatoma and enhanced by distinct pro-inflammatory cytokines. The lack of detectable effects of CD40 ligation does not support a major role of this molecule in hepatocellular carcinoma biology.

  3. Histone Acetylation at the Ifng Promoter in Tolerized CD4 Cells Is Associated with Increased IFN-γ Expression during Subsequent Immunization to the Same Antigen1

    PubMed Central

    Long, Meixiao; Slaiby, Aaron M.; Wu, Shuang; Hagymasi, Adam T.; Mihalyo, Marianne A.; Bandyopadhyay, Suman; Vella, Anthony T.; Adler, Adam J.

    2010-01-01

    When naive CD4+ Th cells encounter cognate pathogen-derived Ags they expand and develop the capacity to express the appropriate effector cytokines for neutralizing the pathogen. Central to this differentiation process are epigenetic modifications within the effector cytokine genes that allow accessibility to the transcriptional machinery. In contrast, when mature self-reactive CD4 cells encounter their cognate epitopes in the periphery they generally undergo a process of tolerization in which they become hyporesponsive/anergic to antigenic stimulation. In the current study, we used a TCR transgenic adoptive transfer system to demonstrate that in a dose-dependent manner parenchymal self-Ag programs cognate naive CD4 cells to acetylate histones bound to the promoter region of the Ifng gene (which encodes the signature Th1 effector cytokine) during peripheral tolerization. Although the Ifng gene gains transcriptional competence, these tolerized CD4 cells fail to express substantial amounts of IFN-γ in response to antigenic stimulation apparently because a blockage in TCR-mediated signaling also develops. Nevertheless, responsiveness to antigenic stimulation is partially restored when self-Ag-tolerized CD4 cells are retransferred into mice infected with a virus expressing the same Ag. Additionally, there is preferential boosting in the ability of these CD4 cells to express IFN-γ relative to other cytokines with expression that also becomes impaired. Taken together, these results suggest that epigenetic modification of the Ifng locus during peripheral CD4 cell tolerization might allow for preferential expression of IFN-γ during recovery from tolerance. PMID:17947638

  4. The Downregulation of the Expression of CD147 by Tumor Suppressor REIC/Dkk-3, and Its Implication in Human Prostate Cancer Cell Growth Inhibition.

    PubMed

    Mori, Akihiro; Watanabe, Masami; Sadahira, Takuya; Kobayashi, Yasuyuki; Ariyoshi, Yuichi; Ueki, Hideo; Wada, Koichiro; Ochiai, Kazuhiko; Li, Shun-Ai; Nasu, Yasutomo

    2017-04-01

    The cluster of differentiation 147 (CD147), also known as EMMPRIN, is a key molecule that promotes cancer progression. We previously developed an adenoviral vector encoding a tumor suppressor REIC/Dkk-3 gene (Ad-REIC) for cancer gene therapy. The therapeutic effects are based on suppressing the growth of cancer cells, but, the underlying molecular mechanism has not been fully clarified. To elucidate this mechanism, we investigated the effects of Ad-REIC on the expression of CD147 in LNCaP prostate cancer cells. Western blotting revealed that the expression of CD147 was significantly suppressed by Ad-REIC. Ad-REIC also suppressed the cell growth of LNCaP cells. Since other researchers have demonstrated that phosphorylated mitogen-activated protein kinases (MAPKs) and c-Myc protein positively regulate the expression of CD147, we investigated the correlation between the CD147 level and the activation of MAPK and c-Myc expression. Unexpectedly, no positive correlation was observed between CD147 and its possible regulators, suggesting that another signaling pathway was involved in the downregulation of CD147. This is the first study to show the downregulation of CD147 by Ad-REIC in prostate cancer cells. At least some of the therapeutic effects of Ad-REIC may be due to the downregulation of the cancer-progression factor, CD147.

  5. A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes.

    PubMed

    Jebbawi, Fadi; Fayyad-Kazan, Hussein; Merimi, Makram; Lewalle, Philippe; Verougstraete, Jean-Christophe; Leo, Oberdan; Romero, Pedro; Burny, Arsene; Badran, Bassam; Martiat, Philippe; Rouas, Redouane

    2014-08-06

    Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation. We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA 'signature' for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the 'TargetScan' and 'miRBase' bioinformatics programs to identify potential target sites for these microRNAs in the 3'-UTR of important Treg cell-associated genes. The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. We are examining the biological relevance of this 'signature' by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.

  6. Hypothermia inhibits expression of CD11b (MAC-1) and CD162 (PSGL-1) on monocytes during extracorporeal circulation.

    PubMed

    Swoboda, Stefanie; Gruettner, Joachim; Lang, Siegfried; Wendel, Hans-Peter; Beyer, Martin E; Griesel, Eva; Hoffmeister, Hans-Martin; Walter, Thomas

    2013-01-01

    The aim of the present study was to investigate the effect of different hypothermic temperatures on the expression of cellular adhesion molecules on leukocytes. Circulation of blood from six volunteers was performed in an extracorporeal circulation model at 36°C, 28°C and 18°C for 30 minutes. Expression of CD11b, CD54 and CD162 on monocytes was measured using flow cytometry. Expression of CD11b significantly decreased at 18°C and at 28°C compared to 36°C. A significant reduction of CD162 expression was found at 18°C compared to 28°C and 36°C and at 28°C compared to 36°C. No association was found between temperature and expression of CD54. Expression of CD11b and CD162 on monocytes has a temperature-dependent regulation, with decreased expression during hypothermia, which may result in an inhibition of leukocyte-endothelial and leukocyte-platelet interaction. This beneficial effect may influence the extracorporeal circulation-related inflammatory response and tissue damage.

  7. Comparision of Immunohistochemical Expression of CD10 in Odontogenic Cysts

    PubMed Central

    Munisekhar, M.S.; Suri, Charu; Rajalbandi, Santosh Kumar; M.R., Pradeep; Gothe, Pavan

    2014-01-01

    Background: Expression of CD10 has been documented in various tumors like nasopharyngeal carcinoma, gastric carcinoma, squamous cell carcinoma, odontogenic tumors. Aim: To evaluate and compare CD10 expression in odontogenic cysts like radicular cyst, dentigerous cyst and odontogenic keratocyst (OKC). Materials and Methods: Total 60 cases were included in the study, comprising 20 cases each of radicular, dentigerous and odontogenic keratocyst. Each case was evaluated and compared for immunohistochemical expression of CD10. Results obtained were statistically analysed using ANOVA test followed by post hoc test Tukey-Kramer Multiple Comparisons Test for continuous variable and Chi-square test for discrete variable. Results: More number of cases showing sub-epithelial stromal CD10 expression were found in OKC among the cysts. Conclusion: CD10 expression was more in OKC compared to radicular and dentigerous cysts. PMID:25584313

  8. The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells.

    PubMed

    Nabatov, Alexey A; Raginov, Ivan S

    2015-01-01

    This study aimed to clarify interactions of the pattern-recognition receptor DC-SIGN with cells from the HIV-infected peripheral blood lymphocyte cultures. Cells from control and HIV-infected peripheral blood lymphocyte cultures were tested for the surface expression of DC-SIGN ligands. The DC-SIGN ligand expressing cells were analyzed for the role of DC-SIGN-ligand interaction in their functionality. In the vast majority of experiments HIV-infected lymphocytes did not express detectable DC-SIGN ligands on their cell surfaces. In contrast, non-infected cells, carrying NK-specific marker CD56, expressed cell surface DC-SIGN ligands. The weakly polysialylated CD56 was identified as a novel DC-SIGN ligand. The treatment of DC-SIGN expressing dendritic cells with anti-DC-SIGN antibodies increased the anti-dendritic cell cytotoxicity of CD56(pos) cells. The treatment of CD56(pos) cells with a peptide, blocking the weakly polysialylated CD56-specifc trans-homophilic interactions, inhibited their anti-dendritic cells cytotoxicity. The interaction between DC-SIGN and CD56 inhibits homotypic intercellular interactions of CD56(pos) cells and protects DC-SIGN expressing dendritic cells against CD56(pos) cell-mediated cytotoxicity. This finding can have an impact on the development of approaches to HIV infection and cancer therapy as well as in transplantation medicine.

  9. A Re-evaluation of CD22 Expression by Human Lung Cancer

    PubMed Central

    Pop, Laurentiu M.; Barman, Stephen; Shao, Chunli; Poe, Jonathan C.; Venturi, Guglielmo M.; Shelton, John M.; Pop, Iliodora V.; Gerber, David E.; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I.; Richardson, James A.; Minna, John D.; Tedder, Thomas F.; Vitetta, Ellen S.

    2014-01-01

    CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B cell receptor and its co-receptor CD19. Recently it was reported that most human lung cancer cells and cell lines express CD22 making it an important new lung cancer therapeutic target (Can Res 72:5556, 2012). The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by qRT-PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200–60,000- fold lower than those observed in the human CD22+ Burkitt’s lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by CD22 antibodies or our highly potent anti-CD22 immunotoxin. By contrast, CD22+ Daudi cells expressed high levels of CD22 mRNA and protein and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from over 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells and that these cells can not be killed by anti-CD22 immunotoxins. PMID:24395821

  10. Inflammatory gene expression in whole blood cells after EPA vs. DHA supplementation: Results from the ComparED study.

    PubMed

    Vors, Cécile; Allaire, Janie; Marin, Johanne; Lépine, Marie-Claude; Charest, Amélie; Tchernof, André; Couture, Patrick; Lamarche, Benoît

    2017-02-01

    Whether EPA and DHA exert similar anti-inflammatory effects through modulation of gene expression in immune cells remains unclear. The aim of the study was to compare the impact of EPA and DHA supplementation on inflammatory gene expression in subjects at risk for cardiometabolic diseases. In this randomized double-blind crossover trial, 154 men and women with abdominal obesity and low-grade inflammation were subjected to three 10-wk supplementation phases: 1) EPA (2.7 g/d); 2) DHA (2.7 g/d); 3) corn oil (3 g/d), separated by a 9-wk washout. Pro- and anti-inflammatory gene expression was assessed in whole blood cells by RT-qPCR after each treatment in a representative sample of 44 participants. No significant difference was observed between EPA and DHA in the expression of any of the genes investigated. Compared with control, EPA enhanced TRAF3 and PPARA expression and lowered CD14 expression (p < 0.01) whereas DHA increased expression of PPARA and TNFA and decreased CD14 expression (p < 0.05). Variations in gene expression after EPA and after DHA were strongly correlated for PPARA (r = 0.73, p < 0.0001) and TRAF3 (r = 0.66, p < 0.0001) and less for TNFA (r = 0.46, p < 0.005) and CD14 (r = 0.16, p = 0.30). High-dose supplementation with either EPA or DHA has similar effects on the expression of many inflammation-related genes in immune cells of men and women at risk for cardiometabolic diseases. The effects of EPA and of DHA on anti-inflammatory gene expression may be more consistent than their effects on expression of pro-inflammatory genes in whole blood cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) stimulates murine macrophages infected with Citrobacter rodentium.

    PubMed

    Hugo, Ayelén A; Rolny, Ivanna S; Romanin, David; Pérez, Pablo F

    2017-03-01

    Citrobacter rodentium is a specific murine enteropathogen which causes diarrheal disease characterized by colonic hyperplasia and intestinal inflammation. Recruitment of neutrophils and macrophages constitute a key step to control the infection. Since modulation of the activity of professional phagocytic cells could contribute to improve host´s defences against C. rodentium, we investigated the effect of Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) on the interaction between murine macrophages (RAW 264.7) and C. rodentium. Phagocytosis, surface molecules and inducible nitric oxide synthase (iNOs) expression were determined by flow cytometry. Reactive oxygen species (ROS) were assessed by fluorescence microscopy. The presence of lactobacilli increased phagocytosis of C. rodentium whereas C. rodentium had no effect on lactobacilli internalization. Survival of internalized C. rodentium diminished when strain CIDCA 133 was present. CD-86, MHCII, iNOs expression and nitrite production were increased when C. rodentium and lactobacilli were present even though strain CIDCA 133 alone had no effect. Strain CIDCA 133 led to a strong induction of ROS activity which was not modified by C. rodentium. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) is able to increase the activation of murine macrophages infected with C. rodentium. The sole presence of lactobacilli is enough to modify some stimulation markers (e.g. ROS induction) whereas other markers require the presence of both bacteria; thus, indicating a synergistic effect.

  12. Effects of pitavastatin on walking capacity and CD34+/133+ cell number in patients with peripheral artery disease.

    PubMed

    Arao, Kenshiro; Yasu, Takanori; Endo, Yasuhiro; Funazaki, Toshikazu; Ota, Yoshimi; Shimada, Kazunori; Tokutake, Eiichi; Naito, Naoki; Takase, Bonpei; Wake, Minoru; Ikeda, Nahoko; Horie, Yasuto; Sugimura, Hiroyuki; Momomura, Shin-Ichi; Kawakami, Masanobu

    2017-10-01

    This multi-center prospective non-randomized comparative study investigated the effects of pitavastatin in patients with peripheral artery disease (PAD) in terms of exercise tolerance capacities and peripheral CD34 + /133 + cell numbers. At baseline, a peripheral blood test was administered to 75 patients with PAD, along with a treadmill exercise test using the Skinner-Gardner protocol to measure asymptomatic walking distance (AWD) and maximum walking distance (MWD). Each patient was assigned to a 6-month pitavastatin treatment group (n = 53) or a control group (n = 22), according to the patient's preference. The tests were repeated in both groups at 3 and 6 months. Baseline AWD and MWD correlated positively with the ankle-brachial pressure index (r = 0.342, p = 0.0032 and r = 0.324, p = 0.0054, respectively). Both AWD and MWD values improved at 3 and 6 months compared with baseline, and the degrees of their improvement were higher in the pitavastatin treatment group. CD34 + /133 + cell numbers did not change over time or between groups. Eighty-seven percent of patients in the treatment group attained low-density lipoprotein cholesterol levels below 100 mg/dL after 3 months. The study shows that pitavastatin may be effective in increasing exercise tolerance capacity in patients with PAD.

  13. Cultured Human Adipose Tissue Pericytes and Mesenchymal Stromal Cells Display a Very Similar Gene Expression Profile

    PubMed Central

    Malta, Tathiane Maistro; de Deus Wagatsuma, Virgínia Mara; Palma, Patrícia Viana Bonini; Araújo, Amélia Goes; Ribeiro Malmegrim, Kelen Cristina; Morato de Oliveira, Fábio; Panepucci, Rodrigo Alexandre; Silva, Wilson Araújo; Kashima Haddad, Simone; Covas, Dimas Tadeu

    2015-01-01

    Mesenchymal stromal cells (MSCs) are cultured cells that can give rise to mature mesenchymal cells under appropriate conditions and secrete a number of biologically relevant molecules that may play an important role in regenerative medicine. Evidence indicates that pericytes (PCs) correspond to mesenchymal stem cells in vivo and can give rise to MSCs when cultured, but a comparison between the gene expression profiles of cultured PCs (cPCs) and MSCs is lacking. We have devised a novel methodology to isolate PCs from human adipose tissue and compared cPCs to MSCs obtained through traditional methods. Freshly isolated PCs expressed CD34, CD140b, and CD271 on their surface, but not CD146. Both MSCs and cPCs were able to differentiate along mesenchymal pathways in vitro, displayed an essentially identical surface immunophenotype, and exhibited the ability to suppress CD3+ lymphocyte proliferation in vitro. Microarray expression data of cPCs and MSCs formed a single cluster among other cell types. Further analyses showed that the gene expression profiles of cPCs and MSCs are extremely similar, although MSCs differentially expressed endothelial cell (EC)-specific transcripts. These results confirm, using the power of transcriptomic analysis, that PCs give rise to MSCs and suggest that low levels of ECs may persist in MSC cultures established using traditional protocols. PMID:26192741

  14. Molecular characterization of Cry1D-133 toxin from Bacillus thuringiensis strain HD133 and its toxicity against Spodoptera littoralis.

    PubMed

    BenFarhat-Touzri, Dalel; Driss, Fatma; Jemli, Sonia; Tounsi, Slim

    2018-06-01

    Bacillus thuringiensis subsp. aizawai strain HD133, known by its effectiveness against Spodoptera species, produces bipyramidal crystals encompassing the insecticidal proteins Cry1Ab, Cry1Ca and Cry1D-133 in the proportions 60:37:3, respectively. In this study, we dealt with the relevance of the low rate of Cry1D-133. The cry1D-133 gene from HD133 was cloned and sequenced. Both nucleotide and amino acid sequence similarity analyses with the cry1D genes available in the GenBank database revealed that cry1D-133 is a new variant of cry1Da-type genes with 99% identity with cry1Da1. Molecular modeling of the Cry1D-133 toxin showed that its higher toxicity is correlated to a higher number of toxin-receptor interactions. Optimal culture conditions of 4 h post-induction time, 160 rpm agitation and 37 °C post-induction temperature were determined and adopted to overproduce Cry1D-133 toxin at adequate amounts to carryout bioassays. A gradual increase of the proportion of Cry1D-133 to the HD133 insecticidal proteins forming the crystal (Cry1D-133, Cry1Ca and Cry1Ab) showed an improvement of the toxicity against Spodoptera littoralis larvae. Therefore, the potential of Cry1D-133 to enhance HD133 toxicity could promote its combination with other B. thuringiensis insecticidal proteins toxins in order to increase target range or to delay the emergence of resistance. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Expression of CD43 in chronic lymphoproliferative leukemias.

    PubMed

    Sorigue, Marc; Juncà, Jordi; Sarrate, Edurne; Grau, Javier

    2018-01-01

    CD43 has been used on histological samples for the differential diagnosis of lymphoproliferative disorders but there is scarce data on its use by flow cytometry (FC). We set out to characterize the expression of CD43 by FC in B-cell lymphoproliferative disorders and to determine its possible role in the differential diagnosis of these malignancies. We analyzed the expression of CD43 in clonal B-cell lymphoproliferative disorders with exclusive peripheral blood and/or bone marrow involvement based on their Moreau chronic lymphocytic leukemia (CLL) score with particular emphasis on Moreau CLL score 3 (MS3) cases, which often present a diagnostic challenge. The cohort included 433 CLL (score 4-5), 34 MS3 and 166 lymphoproliferative disorders with lower scores. Generally, the higher the Moreau CLL score, the higher CD43-positivity (425/443 [96%] for CLL, 23/34 [67%] for MS3 and 18/166 [11%] for cases with lower scores). MS3 cases constituted 5.4% of all cases and were more frequently CD5, CD200, CD43-positive and had del(q13) than score 0-2 cases. Among MS3 cases, del(13q) cases were predominantly CD43-positive (12/13). The frequency of CD43-positivity increases sharply with the Moreau score. MS3 cases seem to include both CLL and non-CLL lymphoproliferative disorders and CD43 could aid in the differential diagnosis between the two. However, studies analyzing the correlation between CD43 expression and the underlying biologic changes of these cases are warranted. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.

  16. Natural Polymorphisms in Tap2 Influence Negative Selection and CD4∶CD8 Lineage Commitment in the Rat

    PubMed Central

    Tuncel, Jonatan; Haag, Sabrina; Yau, Anthony C. Y.; Norin, Ulrika; Baud, Amelie; Lönnblom, Erik; Maratou, Klio; Ytterberg, A. Jimmy; Ekman, Diana; Thordardottir, Soley; Johannesson, Martina; Gillett, Alan; Stridh, Pernilla; Jagodic, Maja; Olsson, Tomas; Fernández-Teruel, Alberto; Zubarev, Roman A.; Mott, Richard; Aitman, Timothy J.; Flint, Jonathan; Holmdahl, Rikard

    2014-01-01

    Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells. PMID:24586191

  17. Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium.

    PubMed

    Feng, Sheng Jun; Liu, Xue Song; Tao, Hua; Tan, Shang Kun; Chu, Shan Shan; Oono, Youko; Zhang, Xian Duo; Chen, Jian; Yang, Zhi Min

    2016-12-01

    We report genome-wide single-base resolution maps of methylated cytosines and transcriptome change in Cd-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between Cd-exposed and Cd-free rice genomes. There are 2320 non-redundant differentially methylated regions detected in the genome. RNA sequencing revealed 2092 DNA methylation-modified genes differentially expressed under Cd exposure. More genes were found hypermethylated than those hypomethylated in CG, CHH and CHG (where H is A, C or T) contexts in upstream, gene body and downstream regions. Many of the genes were involved in stress response, metal transport and transcription factors. Most of the DNA methylation-modified genes were transcriptionally altered under Cd stress. A subset of loss of function mutants defective in DNA methylation and histone modification activities was used to identify transcript abundance of selected genes. Compared with wide type, mutation of MET1 and DRM2 resulted in general lower transcript levels of the genes under Cd stress. Transcripts of OsIRO2, OsPR1b and Os09g02214 in drm2 were significantly reduced. A commonly used DNA methylation inhibitor 5-azacytidine was employed to investigate whether DNA demethylation affected physiological consequences. 5-azacytidine provision decreased general DNA methylation levels of selected genes, but promoted growth of rice seedlings and Cd accumulation in rice plant. © 2016 John Wiley & Sons Ltd.

  18. Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells.

    PubMed

    Wu, H; Zhang, J; Shi, H

    2016-01-01

    Effect of the tumor suppression gene p16 on the biological characteristics of HeLa cervical carcinoma cells was explored. The expression of p16 protein was increased in HeLa tumor sphere cells, and no significant difference in tumor spheres from the first to the fourth passages. Compared with those of parental HeLa cells, the proportion of CD44+/CD24- and ABCG2+ cells increased significantly in tumor spheres. However after the cells were silenced by the p16-sh289 vector, expression of P16 protein and the cell number of CD44+/CD24- and ABCG2+ decreased. Moreover, HeLa cells with p16 gene silencing showed decreased abilities of sphere formation and matrigel invasion. More HeLa cells with p16 gene silence were needed for tumor formation in nude mice. Tumor size and weight in mouse model established with p16 gene silenced HeLa cells were less than those with HeLa parental cell model. The present results indicate that silencing of the p16 gene inhibits expression of cancer stem cell markers and tumorigenic ability of HeLa cells.

  19. Utility of miR‑133a‑3p as a diagnostic indicator for hepatocellular carcinoma: An investigation combined with GEO, TCGA, meta‑analysis and bioinformatics.

    PubMed

    Liang, Hai-Wei; Yang, Xia; Wen, Dong-Yue; Gao, Li; Zhang, Xiang-Yu; Ye, Zhi-Hua; Luo, Jie; Li, Zu-Yun; He, Yun; Pang, Yu-Yan; Chen, Gang

    2018-01-01

    Increasing evidence has demonstrated that microRNA (miR)‑133a‑3p is an important regulator of hepatocellular carcinoma (HCC). In the present study, the diagnostic role of miR‑133a‑3p in HCC, and the potential functional pathways, were both explored based on publicly available data. Eligible microarray datasets were collected from NCBI Gene Expression Omnibus (GEO) database and ArrayExpress database. The data related to HCC and matched adjacent normal tissues were also downloaded from The Cancer Genome Atlas (TCGA). Published studies reporting the association between miR‑133a‑3p expression and HCC were reviewed from multiple databases. By combining the data derived from three sources (GEO, TCGA and published studies), the authors analyzed the comprehensive relationship between miR‑133a‑3p expression and clinicopathological features of HCC. Eventually, putative targets of miR‑133a‑3p in HCC were selected for further bioinformatics prediction. A total of eight published microarray datasets were gathered, and the pooled results demonstrated that the expression of miR‑133a‑3p in the tumor group was lower than that in normal groups [standardized mean difference (SMD)=‑0.54; 95% confidence interval (CI), ‑0.74 to ‑0.35; P<0.001]. Consistently, the level of miR‑133a‑1 in HCC was reduced markedly compared to normal tissues (P<0.001) based on TCGA data, and the AUC value of low miR‑133a‑1 expression for HCC diagnosis was 0.670 (P<0.001). Furthermore, the combined SMD of all datasets (GEO, TCGA and literature) suggested that significant difference was observed between the HCC group and the normal control group, and lower miR‑133a‑3p expression in HCC group was noted (SMD=‑0.69; 95% CI, ‑1.10 to ‑0.29; P=0.001). In addition, the authors discovered five key genes of the calcium signaling pathway (NOS1, ADRA1A, ADRA1B, ADRA1D and TBXA2R) that may probably be targeted by miR‑133a‑3p in HCC. The study reveals that miR‑133a‑3p

  20. Altered expression of CD45 isoforms in differentiation of acute myeloid leukemia.

    PubMed

    Miyachi, H; Tanaka, Y; Gondo, K; Kawada, T; Kato, S; Sasao, T; Hotta, T; Oshima, S; Ando, Y

    1999-11-01

    Specific expression of different CD45 isoforms can be seen in various stages of differentiation of normal nucleated hematopoietic cells. Association of membrane expression of CD45 isoforms and differential levels of leukemia cells was studied in 91 cases with de novo acute myeloid leukemia (AML). Membrane expression of CD45RA and CD45RO was analyzed by flow cytometry and their expression patterns were compared with AML subtypes classified according to the French-American-British (FAB) classification. CD45RA was essentially expressed in all of the FAB myelocytic subtypes (M0-M3). Its expression in percentage was lower in the most differentiated subtype of AML (M3) when compared with other myelocytic subtypes. CD45RO expression was rarely observed in cases with myelocytic subtypes (1/56 cases of M0, M1, M2, and M3) except for the minimally differentiated myelocytic subtype (M0) or those with potential for differentiation to T-cell lineage where three of 12 cases showed CD45RO expression. When leukemia cells of an M3 case were differentiated to mature granulocytes by treatment of all-trans-retinoic acid, they showed increasing expression of CD45RO. In subtypes with a monocytic component (M4 and M5), both of CD45RA and CD45RO expression were observed and mutually exclusive. When 10 cases of M5 were subdivided by the differential level into undifferentiated (M5a) and differentiated monocytic leukemia (M5b), expression of CD45RA and CD45RO was strictly restricted to cases with M5a and M5b, respectively. These results suggest that CD45 isoform expression in AML characterizes differential levels both in myelocytic and monocytic lineages and specifically disturbed in each subtype. The assessment of CD45 isoform expression appears to provide an insight on biological characteristics and a useful supplementary test for differential diagnosis of AML subtypes. Copyright 1999 Wiley-Liss, Inc.

  1. Rhizobial infection does not require cortical expression of upstream common symbiosis genes responsible for the induction of Ca(2+) spiking.

    PubMed

    Hayashi, Teruyuki; Shimoda, Yoshikazu; Sato, Shusei; Tabata, Satoshi; Imaizumi-Anraku, Haruko; Hayashi, Makoto

    2014-01-01

    For the establishment of an effective root nodule symbiosis, a coordinated regulation of the infection processes between the epidermis and cortex is required. However, it remains unclear whether the symbiotic genes identified so far are involved in epidermal and/or cortical infection, e.g. epidermal and cortical infection thread formation or cortical cell division. To analyze the symbiotic gene requirements of the infection process, we have developed an epidermis-specific expression system (pEpi expression system) and examined the symbiotic genes NFR1, NFR5, NUP85, NUP133, CASTOR, POLLUX, CCaMK, CYCLOPS, NSP1 and NSP2 for involvement in the infection process in the epidermis and cortex. Our study shows that expression of the upstream common symbiosis genes CASTOR, POLLUX, NUP85 and NUP133 in the epidermis is sufficient to induce formation of infection threads and cortical cell division, leading to the development of fully effective nodules. Our system also shows a requirement of CCaMK, CYCLOPS, NSP1 and NSP2 for the entire nodulation process, and the different contributions of NFR1 and NFR5 to cortical infection thread formation. Based on these analyses using the pEpi expression system, we propose a functional model of symbiotic genes for epidermal and cortical infection. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  2. [Novel therapy for malignant lymphoma: adoptive immuno-gene therapy using chimeric antigen receptor(CAR)-expressing T lymphocytes].

    PubMed

    Ozawa, Keiya

    2014-03-01

    Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed.

  3. The CDgene in duck (Anatidae): cloning, characterization, and expression during viral infection.

    PubMed

    Xu, Qi; Chen, Yang; Zhao, Wen Ming; Huang, Zheng Yang; Duan, Xiu Jun; Tong, Yi Yu; Zhang, Yang; Li, Xiu; Chang, Guo Bin; Chen, Guo Hong

    2015-02-01

    Cluster of differentiation 8 alpha (CD8α) is critical for cell-mediated immune defense and T-cell development. Although CD8α sequences have been reported for several species, very little is known about CD8α in ducks. To elucidate the mechanisms involved in the innate and adaptive immune responses of ducks, we cloned CD8α coding sequences from domestic, Muscovy, Mallard, and Spotbill ducks using reverse transcription polymerase chain reaction (RT-PCR). Each sequence consisted of 714 nucleotides and encoded a signal peptide, an IgV-like domain, a stalk region, a transmembrane region, and a cytoplasmic tail. We identified 58 nucleotide differences and 37 amino acid differences among the four types of duck; of these, 53 nucleotide and 33 amino acid differences were between Muscovy ducks and the other duck species. The CD8α cDNA sequence from domestic duck consisted of a 61-nucleotide 5' untranslated region (UTR), a 714-nucleotide open reading frame, and an 849-nucleotide 3' UTR. Multiple sequence alignments showed that the amino acid sequence of CD8α is conserved in vertebrates. RT-PCR revealed that expression of CD8α mRNA of domestic ducks was highest in the thymus and very low in the kidney, cerebrum, cerebellum, and muscle. Immunohistochemical analyses detected CD8α on the splenic corpuscle and periarterial lymphatic sheath of the spleen. CD8α mRNA in domestic ducklings was initially up-regulated, and then down-regulated, in the thymus, spleen, and liver after treatment with duck hepatitis virus type I (DHV-1) or the immunostimulant polyriboinosinic polyribocytidylic acid (poly I:C).

  4. Clinical significance of CD44 expression in children with hepatoblastoma.

    PubMed

    Cai, H-Y; Yu, B; Feng, Z-C; Qi, X; Wei, X-J

    2015-10-27

    The aim of this study was to investigate the expression of CD44 and its clinical significance in children suffering from hepatoblastoma (HB). CD44 expression was detected with immunohistochemistry staining in 30 samples from hepatoblastoma children and 10 normal liver tissue samples from normal children. The data obtained was statistically analyzed using the chi-square test, using the SPSS (v.11.0) software. The rate of CD44 expression was significantly higher (66.7%) in hepatoblastoma tissues than in normal liver tissues (χ(2) = 4.848, P < 0.05). The rate of CD44 expression was significantly higher in children with stage III or IV hepatoblastoma (83.3%) than that in children with stage I and II hepatoblastoma (χ(2) = 5.625, P < 0.05) (41.7%). Therefore, CD44 expression might play an important role in the pathogenesis, progression, and prognosis of HB in children.

  5. Distinct Gene Expression Patterns between Nasal Mucosal Cells and Blood Collected from Allergic Rhinitis Sufferers.

    PubMed

    Watts, Annabelle M; West, Nicholas P; Cripps, Allan W; Smith, Pete K; Cox, Amanda J

    2018-06-19

    Investigations of gene expression in allergic rhinitis (AR) typically rely on invasive nasal biopsies (site of inflammation) or blood samples (systemic immunity) to obtain sufficient genetic material for analysis. New methodologies to circumvent the need for invasive sample collection offer promise to further the understanding of local immune mechanisms relevant in AR. A within-subject design was employed to compare immune gene expression profiles obtained from nasal washing/brushing and whole blood samples collected during peak pollen season. Twelve adults (age: 46.3 ± 12.3 years) with more than a 2-year history of AR and a confirmed grass pollen allergy participated in the study. Gene expression analysis was performed using a panel of 760 immune genes with the NanoString nCounter platform on nasal lavage/brushing cell lysates and compared to RNA extracted from blood. A total of 355 genes were significantly differentially expressed between sample types (9.87 to -9.71 log2 fold change). The top 3 genes significantly upregulated in nasal lysate samples were Mucin 1 (MUC1), Tight Junction Protein 1 (TJP1), and Lipocalin-2 (LCN2). The top 3 genes significantly upregulated in blood samples were cluster of differentiation 3e (CD3E), FYN Proto-Oncogene Src Family Tyrosine Kinase (FYN) and cluster of differentiation 3d (CD3D). Overall, the blood and nasal lavage samples showed vastly distinct gene expression profiles and functional gene pathways which reflect their anatomical and functional origins. Evaluating immune gene expression of the nasal mucosa in addition to blood samples may be beneficial in understanding AR pathophysiology and response to allergen challenge. © 2018 S. Karger AG, Basel.

  6. Low gene expression levels of activating receptors of natural killer cells (NKG2E and CD94) in patients with fulminant type 1 diabetes.

    PubMed

    Nakata, Shinsuke; Imagawa, Akihisa; Miyata, Yugo; Yoshikawa, Atsushi; Kozawa, Junji; Okita, Kohei; Funahashi, Tohru; Nakamura, Seiji; Matsubara, Kenichi; Iwahashi, Hiromi; Shimomura, Iichiro

    2013-01-01

    Fulminant type 1 diabetes is an independent subtype of type 1 diabetes characterized by extremely rapid onset and absence of islet-related autoantibodies. However, detailed pathophysiology of this subtype is poorly understood. In this study, a comprehensive approach was applied to understand the pathogenesis of fulminant type 1 diabetes. We determined the genes that were differentially expressed in fulminant type 1 diabetes compared with type 1A diabetes and healthy control, using gene expression microarray in peripheral blood cells. Using volcano plot analysis, we found reduced expression of killer cell lectin-like receptor subfamily C, member 3 (KLRC3) which encodes NKG2E, a natural killer (NK) cell activating receptor, in fulminant type 1 diabetes, compared with healthy controls. This difference was confirmed by real-time RT-PCR among NK-enriched cells. The expression of KLRD1 (CD94), which forms heterodimer with NKG2E (KLRC3), was also reduced in NK-enriched cells in fulminant type 1 diabetes. Furthermore, flow cytometry showed significantly lower proportion of NK cells among peripheral blood mononuclear cells (PBMCs) in fulminant type 1 diabetes than in healthy controls. In patients with fulminant type 1 diabetes, the relative proportion of NK cells correlated significantly with the time period between onset of fever to the appearance of hyperglycemic-related symptoms. We conclude the presence of reduced NK activating receptor gene expression and low proportion of NK cells in fulminant type 1 diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    PubMed Central

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  8. Effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells in vitro using a novel zinc-finger nuclease-targeted gene knockout approach.

    PubMed

    Li, Hong-Wei; Yang, Xiang-Min; Tang, Juan; Wang, Shi-Jie; Chen, Zhi-Nan; Jiang, Jian-Li

    2015-03-01

    HAb18G/CD147 belongs to the immunoglobulin superfamily and predominantly functions as an inducer of matrix metalloproteinase secretion for tumor invasion and metastasis. This study was designed to investigate the effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells using zinc-finger nuclease (ZFNs)-targeted gene knockout approach. The HCC cell line SMMC-7721 was used for ZFNs-targeted cleavage of the HAb18G/CD147 gene. RT-PCR and Western blot assays were used to detect HAb18G/CD147 expression. HAb18G phenotypic changes following HAb18G/CD147 knockout in SMMC-K7721 cells were assessed using tumor cell adhesion, invasion, migration and colony formation and flow cytometric assays. These data demonstrated that tumor cell adhesion, invasion, migration, and colony formation capabilities of SMMC-K7721 were significantly reduced compared to parental cells or SMMC-7721 with re-expression of HAb18G/CD147 protein transfected with HAb18G/CD147 cDNA. Moreover, knockout of HAb18G/CD147 expression also induced SMMC-K7721 cells to undergo apoptosis compared to SMMC-7721 and SMMC-R7721 (P < 0.01). Molecularly, protein expression of p53 was induced in these cells, but re-expression of HAb18G/CD147 reduced p53 levels in SMMC-R7721 cells, possibly through inhibition of the PI3K-Akt-MDM2 signaling pathway. The findings provide a novel insight into the mechanisms underlying HAb18G/CD147-induced progression of HCC cells.

  9. Cyclophosphamide Alters the Gene Expression Profile in Patients Treated with High Doses Prior to Stem Cell Transplantation

    PubMed Central

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Background Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. Methods We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Results Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. Conclusion This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression. PMID:24466173

  10. Cyclophosphamide alters the gene expression profile in patients treated with high doses prior to stem cell transplantation.

    PubMed

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression.

  11. Cloning and expression of canine CD25 for validation of an anti-human CD25 antibody to compare T regulatory lymphocytes in healthy dogs and dogs with osteosarcoma.

    PubMed

    Rissetto, K C; Rindt, H; Selting, K A; Villamil, J A; Henry, C J; Reinero, C R

    2010-05-15

    T regulatory cells (Tregs) are a unique subset of T helper cells that serve to modify/inhibit effector cells of the immune system and thus are essential to prevent autoimmunity. Overzealous Treg activity may contribute to impaired immune responses to cancer. Tregs can be phenotypically identified by proteins expressed on the cell surface (CD4 and CD25) and inside the cell (forkhead box3 (FoxP3)), although in dogs, no anti-canine CD25 antibody exists. We hypothesized that a mouse anti-human CD25 antibody definitively recognizes the canine protein and can be used to identify Tregs in dogs. We describe cloning and transfection of the canine CD25 gene into human HeLa cells with subsequent expression of the canine protein on the cell surface detected using an anti-human CD25 antibody in a flow cytometric assay. Validation of this antibody was used to identify CD4+CD25+FoxP3+ Tregs in 39 healthy dogs and 16 dogs with osteosarcoma (OSA). Results were expressed in five different ways and showed significantly fewer %CD4+CD25+ T lymphocytes expressing FoxP3 in blood of older dogs (>/=7 years) compared with the other two age groups (<2 and 2-6 years) (p<0.001) and fewer %CD4+CD25+FoxP3+ Tregs in the tumor draining lymph nodes of OSA patients compared to the unrelated lymph node (p=0.049). However, there was no significant difference in % Tregs in the peripheral blood or lymph nodes between the control dogs and those with OSA. While the CD25 antibody can be successfully used in a flow cytometric assay to identify Tregs, this study does not support clinical utility of phenotypic recognition of Tregs in dogs with OSA. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate

    PubMed Central

    Gomez, Danielle L.; O’Driscoll, Marci; Sheets, Timothy P.; Hruban, Ralph H.; Oberholzer, Jose; McGarrigle, James J.; Shamblott, Michael J.

    2015-01-01

    Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment. PMID:26288179

  13. Muscle myeloid type I interferon gene expression may predict therapeutic responses to rituximab in myositis patients

    PubMed Central

    Nagaraju, Kanneboyina; Ghimbovschi, Svetlana; Rayavarapu, Sree; Phadke, Aditi; Rider, Lisa G.; Hoffman, Eric P.

    2016-01-01

    Abstract Objective. To identify muscle gene expression patterns that predict rituximab responses and assess the effects of rituximab on muscle gene expression in PM and DM. Methods. In an attempt to understand the molecular mechanism of response and non-response to rituximab therapy, we performed Affymetrix gene expression array analyses on muscle biopsy specimens taken before and after rituximab therapy from eight PM and two DM patients in the Rituximab in Myositis study. We also analysed selected muscle-infiltrating cell phenotypes in these biopsies by immunohistochemical staining. Partek and Ingenuity pathway analyses assessed the gene pathways and networks. Results. Myeloid type I IFN signature genes were expressed at higher levels at baseline in the skeletal muscle of rituximab responders than in non-responders, whereas classic non-myeloid IFN signature genes were expressed at higher levels in non-responders at baseline. Also, rituximab responders have a greater reduction of the myeloid and non-myeloid type I IFN signatures than non-responders. The decrease in the type I IFN signature following administration of rituximab may be associated with the decreases in muscle-infiltrating CD19 + B cells and CD68 + macrophages in responders. Conclusion. Our findings suggest that high levels of myeloid type I IFN gene expression in skeletal muscle predict responses to rituximab in PM/DM and that rituximab responders also have a greater decrease in the expression of these genes. These data add further evidence to recent studies defining the type I IFN signature as both a predictor of therapeutic responses and a biomarker of myositis disease activity. PMID:27215813

  14. Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes.

    PubMed

    Wang, Changhu; Guo, Weili; Cai, Xingzhe; Li, Ruyu; Ow, David W

    2018-04-21

    Cadmium (Cd) as a carcinogen poses a great threat to food security and public health through plant-derived foods such as rice, the staple for nearly half of the world's population. We have previously reported that overexpression of truncated gene fragments derived from the rice genes OsO3L2 and OsO3L3 could reduce Cd accumulation in transgenic rice. However, we did not test the full length genes due to prior work in Arabidopsis where overexpression of these genes caused seedling lethality. Here, we report on limiting the overexpression of OsO3L2 and OsO3L3 through the use of the stress- inducible promoter RD29B. However, despite generating 625 putative transformants, only 7 lines survived as T1 seedlings and only 1 line of each overexpressed OsO3L2 or OsO3L3-produced T2 progeny. The T2 homozygotes from these 2 lines showed the same effect of reducing accumulation of Cd in root and shoot as well as in T3 grain. As importantly, the concentrations of essential metals copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were unaffected. Analysis of the expression profile suggested that low Cd accumulation may be due to high expression of OsO3L2 and OsO3L3 in the root tip region. Cellular localization of OsO3L2 and OsO3L3 indicate that they are histone H2A interacting nuclear proteins in vascular cells and especially in the root tip region. It is possible that interaction with histone H2A modifies chromatin to regulate downstream gene expression. Copyright © 2018. Published by Elsevier B.V.

  15. Characterization of cancer stem cell properties of CD24 and CD26-positive human malignant mesothelioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Hiroto; Naito, Motohiko; Ghani, Farhana Ishrat

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer We focused on CD24 and CD26 for further analysis of CSC properties in MM. Black-Right-Pointing-Pointer Their expressions were correlated with chemoresistance, cell growth, and invasion. Black-Right-Pointing-Pointer Their expressions were also correlated with several cancer related genes. Black-Right-Pointing-Pointer The expression of each marker was correlated with different CSC property in Meso1. Black-Right-Pointing-Pointer Phosphorylation of ERK by EGF was regulated by expression of CD26, but not CD24. -- Abstract: Malignant mesothelioma (MM) is an asbestos-related malignancy characterized by rapid growth and poor prognosis. In our previous study, we have demonstrated that several cancer stem cell (CSC) markers correlated with CSCmore » properties in MM cells. Among these markers, we focused on two: CD24, the common CSC marker, and CD26, the additional CSC marker. We further analyzed the CSC properties of CD24 and CD26-positve MM cells. We established RNAi-knockdown cells and found that these markers were significantly correlated with chemoresistance, proliferation, and invasion potentials in vitro. Interestingly, while Meso-1 cells expressed both CD24 and CD26, the presence of each of these two markers was correlated with different CSC property. In addition, downstream signaling of these markers was explored by microarray analysis, which revealed that their expressions were correlated with several cancer-related genes. Furthermore, phosphorylation of ERK by EGF stimulation was significantly affected by the expression of CD26, but not CD24. These results suggest that CD24 and CD26 differentially regulate the CSC potentials of MM and could be promising targets for CSC-oriented therapy.« less

  16. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury

    PubMed Central

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Purpose: Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). Methods: In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. Results: The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. Conclusion: The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI. PMID:26823722

  17. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury.

    PubMed

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.

  18. Cell differentiation in cardiac myxomas: confocal microscopy and gene expression analysis after laser capture microdissection.

    PubMed

    Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni

    2018-05-22

    Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.

  19. Recreational music-making alters gene expression pathways in patients with coronary heart disease

    PubMed Central

    Bittman, Barry; Croft, Daniel T.; Brinker, Jeannie; van Laar, Ryan; Vernalis, Marina N.; Ellsworth, Darrell L.

    2013-01-01

    Background Psychosocial stress profoundly impacts long-term cardiovascular health through adverse effects on sympathetic nervous system activity, endothelial dysfunction, and atherosclerotic development. Recreational Music Making (RMM) is a unique stress amelioration strategy encompassing group music-based activities that has great therapeutic potential for treating patients with stress-related cardiovascular disease. Material/Methods Participants (n=34) with a history of ischemic heart disease were subjected to an acute time-limited stressor, then randomized to RMM or quiet reading for one hour. Peripheral blood gene expression using GeneChip® Human Genome U133A 2.0 arrays was assessed at baseline, following stress, and after the relaxation session. Results Full gene set enrichment analysis identified 16 molecular pathways differentially regulated (P<0.005) during stress that function in immune response, cell mobility, and transcription. During relaxation, two pathways showed a significant change in expression in the control group, while 12 pathways governing immune function and gene expression were modulated among RMM participants. Only 13% (2/16) of pathways showed differential expression during stress and relaxation. Conclusions Human stress and relaxation responses may be controlled by different molecular pathways. Relaxation through active engagement in Recreational Music Making may be more effective than quiet reading at altering gene expression and thus more clinically useful for stress amelioration. PMID:23435350

  20. MicroRNA‑133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease.

    PubMed

    Guo, Yihang; Li, Xiaorong; Lin, Changwei; Zhang, Yi; Hu, Gui; Zhou, Jianyu; Du, Juan; Gao, Kai; Gan, Yi; Deng, Hao

    2015-04-01

    Accumulating evidence indicates that dysregulation of microRNA‑133b (miR‑133b) is an important step in the development of certain types of human cancer and contributes to tumorigenesis. Altered expression of miR‑133b has been reported in colon carcinoma, but its association with clinical stage in colorectal cancer (CRC) has remained elusive. Connective tissue growth factor (CTGF), a potentially promising candidate gene for interaction with miR‑133b, was screened using microarray analysis. The expression of miR‑133b and CTGF was evaluated using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The regulatory effects of miR‑133b on CTGF were evaluated using a dual‑luciferase reporter assay. CTGF was identified as a functional target of miR‑133b. The results demonstrated low expression of miR‑133b in CRC specimens with poor cell differentiation (P=0.011), lymph node metastasis (P=0.037) and advanced clinical stages (stage III or IV vs. I or II; P=0.036). Furthermore, there was a significant association between a high level of expression of CTGF mRNA and an advanced clinical stage (stage III or IV vs. I or II; P=0.015) and lymph node metastasis (P=0.034). CTGF expression was negatively regulated by miR‑133b in the human colorectum, suggesting that miR‑133b and CTGF may be candidate therapeutic targets in colorectal cancer.

  1. Radiation leukemia virus-induced thymic lymphomas express a restricted repertoire of T-cell receptor V beta gene products.

    PubMed Central

    Sen-Majumdar, A; Weissman, I L; Hansteen, G; Marian, J; Waller, E K; Lieberman, M

    1994-01-01

    We have investigated the phenotypic changes that take place during the process of neoplastic transformation in the thymocytes of C57BL/Ka mice infected by the radiation leukemia virus (RadLV). By the combined use of antibodies against the envelope glycoprotein gp70 of RadLV, the transformation-associated cell surface marker 1C11, and the CD3-T-cell receptor (TCR) complex, we found that in the RadLV-infected thymus, the earliest expression of viral gp70 is in 1C11hi cells; a small but significant percentage of these cells also express CD3. A first wave of viral replication, manifested by the expression of high levels of gp70 in thymocytes (over 70% positive), reaches a peak at 2 weeks; during this period, no significant changes are observed in the expression of 1C11 or CD3. The population of gp70+ cells is drastically reduced at 3 to 4 weeks after infection. However, a second cohort of gp70+ cells appears after 4 weeks, and these cells express high levels of 1C11 and TCR determinants as well. RadLV-induced lymphomas differ from normal thymocytes in their CD4 CD8 phenotype, with domination by one or more subsets. Characterization of TCR gene rearrangements in RadLV-induced lymphomas shows that most of these tumors are clonal or oligoclonal with respect to the J beta 2 TCR gene, while the J beta 1 TCR gene is rearranged in a minority (4 of 11) of lymphomas. TCR V beta repertoire analysis of 12 tumors reveals that 6 (50%) express exclusively the V beta 6 gene product, 2 (17%) are V beta 5+, and 1 (8%) each are V beta 8+ and V beta 9+. In normal C57BL/Ka mice, V beta 6 is expressed on 12%, V beta 5 is expressed on 9%, V beta 8 is expressed on 22%, and V beta 9 is expressed on 4% of TCRhi thymocytes. Thus, it appears that RadLV-induced thymic lymphomas are not randomly selected with respect to expressed TCR V beta type. Images PMID:8289345

  2. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data.

    PubMed

    Manijak, Mieszko P; Nielsen, Henrik B

    2011-06-11

    Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700 Arabidopsis microarray experiments. Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/.

  3. Luteolin, a flavonoid, inhibits CD40 ligand expression by activated human basophils.

    PubMed

    Hirano, Toru; Arimitsu, Junsuke; Higa, Shinji; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Kawase, Ichiro; Tanaka, Toshio

    2006-01-01

    We have previously shown that flavonoids such as luteolin, apigenin and fisetin inhibit interleukin 4 and interleukin 13 production. In this study, we investigated whether luteolin can suppress CD40 ligand expression by basophils. A human basophilic cell line, KU812, was stimulated with A23187 and phorbol myristate acetate (PMA) with or without various concentrations of luteolin or other flavonoids for 12 h, and CD40 ligand expression was analyzed by FACS. The effect of luteolin on CD40 ligand mRNA expression was studied by semiquantitative reverse transcription PCR analysis. In addition, CD40 ligand expression was also measured in purified basophils that had been stimulated for 12 h with A23187 plus PMA with or without various concentrations of luteolin. CD40 ligand expression by KU812 cells was enhanced noticeably in response to A23187 and even more strikingly augmented by A23187 plus PMA. The expression was significantly suppressed by 10 or 30 microM of luteolin, whereas myricetin failed to inhibit. Reverse transcription PCR analyses demonstrated that luteolin inhibited CD40 ligand mRNA expression by stimulated KU812 cells. Of the six flavonoids examined, luteolin, apigenin, fisetin and quercetin at 30 microM showed a significant inhibitory effect on CD40 ligand expression. The incubation of purified basophils with A23187 plus PMA significantly enhanced CD40 ligand expression, and the presence of luteolin again had an inhibitory effect. Luteolin inhibits CD40 ligand expression by activated basophils.

  4. Cadmium induces cadmium-tolerant gene expression in the filamentous fungus Trichoderma harzianum.

    PubMed

    Cacciola, Santa O; Puglisi, Ivana; Faedda, Roberto; Sanzaro, Vincenzo; Pane, Antonella; Lo Piero, Angela R; Evoli, Maria; Petrone, Goffredo

    2015-11-01

    The filamentous fungus Trichoderma harzianum, strain IMI 393899, was able to grow in the presence of the heavy metals cadmium and mercury. The main objective of this research was to study the molecular mechanisms underlying the tolerance of the fungus T. harzianum to cadmium. The suppression subtractive hybridization (SSH) method was used for the characterization of the genes of T. harzianum implicated in cadmium tolerance compared with those expressed in the response to the stress induced by mercury. Finally, the effects of cadmium exposure were also validated by measuring the expression levels of the putative genes coding for a glucose transporter, a plasma membrane ATPase, a Cd(2+)/Zn(2+) transporter protein and a two-component system sensor histidine kinase YcbA, by real-time-PCR. By using the aforementioned SSH strategy, it was possible to identify 108 differentially expressed genes of the strain IMI 393899 of T. harzianum grown in a mineral substrate with the addition of cadmium. The expressed sequence tags identified by SSH technique were encoding different genes that may be involved in different biological processes, including those associated to primary and secondary metabolism, intracellular transport, transcription factors, cell defence, signal transduction, DNA metabolism, cell growth and protein synthesis. Finally, the results show that in the mechanism of tolerance to cadmium a possible signal transduction pathway could activate a Cd(2+)/Zn(2+) transporter protein and/or a plasma membrane ATPase that could be involved in the compartmentalization of cadmium inside the cell.

  5. Gene expression in gastrointestinal stromal tumors is distinguished by KIT genotype and anatomic site.

    PubMed

    Antonescu, Cristina R; Viale, Agnes; Sarran, Lisa; Tschernyavsky, Sylvia J; Gonen, Mithat; Segal, Neil H; Maki, Robert G; Socci, Nicholas D; DeMatteo, Ronald P; Besmer, Peter

    2004-05-15

    Gastrointestinal stromal tumors (GISTs) are specific KIT expressing and KIT-signaling driven mesenchymal tumors of the human digestive tract, many of which have KIT-activating mutations. Previous studies have found a relatively homogeneous gene expression profile in GIST, as compared with other histological types of sarcomas. Transcriptional heterogeneity within clinically or molecularly defined subsets of GISTs has not been previously reported. We tested the hypothesis that the gene expression profile in GISTs might be related to KIT genotype and possibly to other clinicopathological factors. An HG-U133A Affymetrix chip (22,000 genes) platform was used to determine the variability of gene expression in 28 KIT-expressing GIST samples from 24 patients. A control group of six intra-abdominal leiomyosarcomas was also included for comparison. Statistical analyses (t tests) were performed to identify discriminatory gene lists among various GIST subgroups. The levels of expression of various GIST subsets were also linked to a modified version of the growth factor/KIT signaling pathway to analyze differences at various steps in signal transduction. Genes involved in KIT signaling were differentially expressed among wild-type and mutant GISTs. High gene expression of potential drug targets, such as VEGF, MCSF, and BCL2 in the wild-type group, and Mesothelin in exon 9 GISTs were found. There was a striking difference in gene expression between stomach and small bowel GISTs. This finding was validated in four separate tumors, two gastric and two intestinal, from a patient with familial GIST with a germ-line KIT W557R substitution. GISTs have heterogeneous gene expression depending on KIT genotype and tumor location, which is seen at both the genomic level and the KIT signaling pathway in particular. These findings may explain their variable clinical behavior and response to therapy.

  6. Nuclear Factor kappa B is central to Marek’s Disease herpesvirus induced neoplastic transformation of CD30 expressing lymphocytes in-vivo

    PubMed Central

    2012-01-01

    Background Marek’s Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30hi) and are in minority, while the non-neoplastic cells (CD30lo) form the majority of population. MD is a unique natural in-vivo model of human CD30hi lymphomas with both natural CD30hi lymphomagenesis and spontaneous regression. The exact mechanism of neoplastic transformation from CD30lo expressing phenotype to CD30hi expressing neoplastic phenotype is unknown. Here, using microarray, proteomics and Systems Biology modeling; we compare the global gene expression of CD30lo and CD30hi cells to identify key pathways of neoplastic transformation. We propose and test a specific mechanism of neoplastic transformation, and genetic resistance, involving the MDV oncogene Meq, host gene products of the Nuclear Factor Kappa B (NF-κB) family and CD30; we also identify a novel Meq protein interactome. Results Our results show that a) CD30lo lymphocytes are pre-neoplastic precursors and not merely reactive lymphocytes; b) multiple transformation mechanisms exist and are potentially controlled by Meq; c) Meq can drive a feed-forward cycle that induces CD30 transcription, increases CD30 signaling which activates NF-κB, and, in turn, increases Meq transcription; d) Meq transcriptional repression or activation of the CD30 promoter generally correlates with polymorphisms in the CD30 promoter distinguishing MD-lymphoma resistant and susceptible chicken genotypes e) MDV oncoprotein Meq interacts with proteins involved in physiological processes central to lymphomagenesis. Conclusions In the context of the MD lymphoma microenvironment (and potentially in other CD30hi lymphomas as well), our results show that the neoplastic transformation is a continuum and the non-neoplastic cells are actually pre-neoplastic precursor

  7. Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides.

    PubMed

    Mukhopadhya, Indrani; Murray, Graeme I; Duncan, Linda; Yuecel, Raif; Shattock, Robin; Kelly, Charles; Iannelli, Francesco; Pozzi, Gianni; El-Omar, Emad M; Hold, Georgina L; Hijazi, Karolin

    2016-09-06

    CD4+ T lymphocytes in the colorectal mucosa are key in HIV-1 transmission and dissemination. As such they are also the primary target for antiretroviral (ARV)-based rectal microbicides for pre-exposure prophylaxis. Drug transporters expressed in mucosal CD4+ T cells determine ARV distribution across the cell membrane and, most likely, efficacy of microbicides. We describe transporters for antiretroviral drugs in colorectal mucosal CD4+ T lymphocytes and compare gene expression with circulating α4β7+CD4+ T cells, which traffic to the intestine and have been shown to be preferentially infected by HIV-1. Purified total CD4+ T cells were obtained from colorectal tissue and blood samples by magnetic separation. CD4+ T cells expressing α4β7 integrin were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells of healthy volunteers. Expressions of 15 efflux and uptake drug transporter genes were quantified using Taqman qPCR assays. Expression of efflux transporters MRP3, MRP5, and BCRP and uptake transporter CNT2 were significantly higher in colorectal CD4+ T cells compared to circulating CD4+ T cells (p = 0.01-0.03). Conversely, circulating α4β7+CD4+ T cells demonstrated significantly higher expression of OATPD compared to colorectal CD4+ T cells (p = 0.001). To the best of our knowledge this is the first report of drug transporter gene expression in colorectal CD4+ and peripheral α4β7+CD4+ T cells. The qualitative and quantitative differences in drug transporter gene expression profiles between α4β7+CD4+ T cells and total mucosal CD4+ T cells may have significant implications for the efficacy of rectally delivered ARV-microbicides. Most notably, we have identified efflux drug transporters that could be targeted by selective inhibitors or beneficial drug-drug interactions to enhance intracellular accumulation of antiretroviral drugs.

  8. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.

    PubMed

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-07-17

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. © 2014 The Authors.

  9. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures

    PubMed Central

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-01-01

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. PMID:24920580

  10. JNK1 Mediates Lipopolysaccharide-Induced CD14 and SR-AI Expression and Macrophage Foam Cell Formation.

    PubMed

    An, Dong; Hao, Feng; Hu, Chen; Kong, Wei; Xu, Xuemin; Cui, Mei-Zhen

    2017-01-01

    Foam cell formation is the key process in the development of atherosclerosis. The uptake of oxidized low-density lipoprotein (oxLDL) converts macrophages into foam cells. We recently reported that lipopolysaccharide (LPS)-induced foam cell formation is regulated by CD14 and scavenger receptor AI (SR-AI). In this study, we employed pharmaceutical and gene knockdown approaches to determine the upstream molecular mediators, which control LPS-induced foam cell formation. Our results demonstrated that the specific c-Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, but neither the specific inhibitor of extracellular signaling-regulated kinase (ERK) kinase MEK1/2, U0126, nor the specific inhibitor of p38 MAPK, SB203580, significantly blocks LPS-induced oxLDL uptake, suggesting that the JNK pathway is the upstream mediator of LPS-induced oxLDL uptake/foam cell formation. To address whether JNK pathway mediates LPS-induced oxLDL uptake is due to JNK pathway-regulated CD14 and SR-AI expression, we assessed whether the pharmaceutical inhibitor of JNK influences LPS-induced expression of CD14 and SR-AI. Our results indicate that JNK pathway mediates LPS-induced CD14 and SR-AI expression. To conclusively address the isoform role of JNK family, we depleted JNK isoforms using the JNK isoform-specific siRNA. Our data showed that the depletion of JNK1, but not JNK2 blocked LPS-induced CD14/SR-AI expression and foam cell formation. Taken together, our results reveal for the first time that JNK1 is the key mediator of LPS-induced CD14 and SR-AI expression in macrophages, leading to LPS-induced oxLDL uptake/foam cell formation. We conclude that the novel JNK1/CD14/SR-AI pathway controls macrophage oxLDL uptake/foam cell formation.

  11. Elevated CD26 Expression by Skin Fibroblasts Distinguishes a Profibrotic Phenotype Involved in Scar Formation Compared to Gingival Fibroblasts.

    PubMed

    Mah, Wesley; Jiang, Guoqiao; Olver, Dylan; Gallant-Behm, Corrie; Wiebe, Colin; Hart, David A; Koivisto, Leeni; Larjava, Hannu; Häkkinen, Lari

    2017-08-01

    Compared to skin, wound healing in oral mucosa is faster and produces less scarring, but the mechanisms involved are incompletely understood. Studies in mice have linked high expression of CD26 to a profibrotic fibroblast phenotype, but this has not been tested in models more relevant for humans. We hypothesized that CD26 is highly expressed by human skin fibroblasts (SFBLs), and this associates with a profibrotic phenotype distinct from gingival fibroblasts (GFBLs). We compared CD26 expression in human gingiva and skin and in gingival and hypertrophic-like scar-forming skin wound healing in a pig model, and used three-dimensional cultures of human GFBLs and SFBLs. In both humans and pigs, nonwounded skin contained abundantly CD26-positive fibroblasts, whereas in gingiva they were rare. During skin wound healing, CD26-positive cells accumulated over time and persisted in forming hypertrophic-like scars, whereas few CD26-positive cells were present in the regenerated gingival wounds. Cultured human SFBLs displayed significantly higher levels of CD26 than GFBLs. This was associated with an increased expression of profibrotic genes and transforming growth factor-β signaling in SFBLs. The profibrotic phenotype of SFBLs partially depended on expression of CD26, but was independent of its catalytic activity. Thus, a CD26-positive fibroblast population that is abundant in human skin but not in gingiva may drive the profibrotic response leading to excessive scarring. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. CRTAM determines the CD4+ cytotoxic T lymphocyte lineage

    PubMed Central

    Takeuchi, Arata; Badr, Mohamed El Sherif Gadelhaq; Miyauchi, Kosuke; Ishihara, Chitose; Onishi, Reiko; Guo, Zijin; Sasaki, Yoshiteru; Ike, Hiroshi; Takumi, Akiko; Tsuji, Noriko M.; Murakami, Yoshinori; Katakai, Tomoya; Kubo, Masato

    2016-01-01

    Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene. PMID:26694968

  13. In Vivo Selection of CD4+ T Cells Transduced with a Gamma-Retroviral Vector Expressing a Single-Chain Intrabody Targeting HIV-1 Tat

    PubMed Central

    Braun, Stephen E.; Taube, Ran; Zhu, Quan; Wong, Fay Eng; Murakami, Akikazu; Kamau, Erick; Dwyer, Markryan; Qiu, Gang; Daigle, Janet; Carville, Angela; Johnson, R. Paul

    2012-01-01

    Abstract We evaluated the potential of an anti–human immunodeficiency virus (HIV) Tat intrabody (intracellular antibody) to promote the survival of CD4+ cells after chimeric simian immunodeficiency virus (SIV)/HIV (SHIV) infection in rhesus macaques. Following optimization of stimulation and transduction conditions, purified CD4+ T cells were transduced with GaLV-pseudotyped retroviral vectors expressing either an anti-HIV-1 Tat or a control single-chain intrabody. Ex vivo intrabody-gene marking was highly efficient, averaging four copies per CD4+ cell. Upon reinfusion of engineered autologous CD4+ cells into two macaques, high levels of gene marking (peak of 0.6% and 6.8% of peripheral blood mononuclear cells (PBMCs) and 0.3% or 2.2% of the lymph node cells) were detected in vivo. One week post cell infusion, animals were challenged with SHIV 89.6p and the ability of the anti-HIV Tat intrabody to promote cell survival was evaluated. The frequency of genetically modified CD4+ T cells progressively decreased, concurrent with loss of CD4+ cells and elevated viral loads in both animals. However, CD4+ T cells expressing the therapeutic anti-Tat intrabody exhibited a relative survival advantage over an 8- and 21-week period compared with CD4+ cells expressing a control intrabody. In one animal, this survival benefit of anti-Tat transduced cells was associated with a reduction in viral load. Overall, these results indicate that a retrovirus-mediated anti-Tat intrabody provided significant levels of gene marking in PBMCs and peripheral tissues and increased relative survival of transduced cells in vivo. PMID:22734618

  14. Fusobacterium nucleatum binding to complement regulatory protein CD46 modulates the expression and secretion of cytokines and matrix metalloproteinases by oral epithelial cells.

    PubMed

    Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel

    2011-02-01

    Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.

  15. Polymorphisms in CD14 Gene May Modify Soluble CD14 Levels and Represent Risk Factors for Multiple Sclerosis.

    PubMed

    Farrokhi, Mehrdad; Moeini, Pedram; Fazilati, Mohammad; Nazem, Habibollah; Faraji, Shahla; Saadatpour, Zahra; Fadaei, Elyas; Saadatpour, Leila; Rezaei, Ali; Ansaripour, Sadra; Amani-Beni, Ali

    2016-11-07

    Besides the central role of the adaptive immune system, a disturbance of innate immune system is also suggested to be involved in the pathogenesis of multiple sclerosis (MS). CD14, a receptor upregulated in activated microglia, is known to be an essential mediator of inflammation in innate immune responses. Therefore, in this study we aimed to assess possible roles of CD14-159 and -260 gene polymorphisms in MS susceptibility and the effects of those polymorphisms to its protein producing capacity in Iranian population. In this case control study, CD14-159 and -260 polymorphisms were genotyped using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) in 200 MS patients and 200 healthy controls matched in age and gender. Serum levels of soluble CD14 (sCD14) was determined by enzyme-linked immunosorbent assay (ELISA). There were significant differences in genotype distribution of CD14-159 and -260 polymorphisms between patients and controls (P = 0.01, for-both). Mean serum level of sCD14 was significantly higher in MS patients than in control subjects (3340.30 ± 612.50 ng/ml vs 2353.73 ± 539.07 ng/ml; P < 0.01). In summary, we conclude that CD14-159 and -260 polymorphisms are associated with the risk of MS in Iranian population and affects CD14 promoter activity, thereby regulating CD14 expression. Furthermore, our study provides preliminary evidence for the activation of innate immunity in the pathogenesis of MS. In addition, the findings of the present study suggest serum level of sCD14 as candidate biomarker of MS severity.

  16. Effect of CMV and Aging on the Differential Expression of CD300a, CD161, T-bet, and Eomes on NK Cell Subsets.

    PubMed

    Lopez-Sejas, Nelson; Campos, Carmen; Hassouneh, Fakhri; Sanchez-Correa, Beatriz; Tarazona, Raquel; Pera, Alejandra; Solana, Rafael

    2016-01-01

    Natural killer (NK) cells are innate lymphoid cells involved in the defense against virus-infected cells and tumor cells. NK cell phenotype and function is affected with age and cytomegalovirus (CMV) latent infection. Aging affects the frequency and phenotype of NK cells, and CMV infection also contributes to these alterations. Thus, a reduction of CD56 bright NK cell subpopulation associated with age and an expansion of memory-like NK cells CD56 dim CD57 + NKG2C + probably related to CMV seropositivity have been described. NK cells express T-bet and Eomes transcription factors that are necessary for the development of NK cells. Here, we analyze the effect of age and CMV seropositivity on the expression of CD300a and CD161 inhibitory receptors, and T-bet and Eomes transcription factors in NK cell subsets defined by the expression of CD56 and CD57. CD300a is expressed by the majority of NK cells. CD56 bright NK cells express higher levels of CD300a than CD56 dim NK cells. An increase in the expression of CD300a was associated with age, whereas a decreased expression of CD161 in CD56 dim NK cells was associated with CMV seropositivity. In CD56 dim NK cells, an increased percentage of CD57 + CD300a + and a reduction in the percentage of CD161 + CD300a + cells were found to be associated with CMV seropositivity. Regarding T-bet and Eomes transcription factors, CMV seropositivity was associated with a decrease of T-bet hi in CD56 dim CD57 + NK cells from young individuals, whereas Eomes expression was increased with CMV seropositivity in both CD56 bright and CD56 dim CD57 +/- (from middle age and young individuals, respectively) and was decreased with aging in all NK subsets from the three group of age. In conclusion, CMV infection and age induce significant changes in the expression of CD300a and CD161 in NK cell subsets defined by the expression of CD56 and CD57. T-bet and Eomes are differentially expressed on NK cell subsets, and their expression is affected by CMV

  17. Transcriptome Analysis of CD4+ T Cells in Coeliac Disease Reveals Imprint of BACH2 and IFNγ Regulation

    PubMed Central

    Molloy, Ben; Dominguez Castro, Patricia; Cormican, Paul; Trimble, Valerie; Mahmud, Nasir; McManus, Ross

    2015-01-01

    Genetic studies have to date identified 43 genome wide significant coeliac disease susceptibility (CD) loci comprising over 70 candidate genes. However, how altered regulation of such disease associated genes contributes to CD pathogenesis remains to be elucidated. Recently there has been considerable emphasis on characterising cell type specific and stimulus dependent genetic variants. Therefore in this study we used RNA sequencing to profile over 70 transcriptomes of CD4+ T cells, a cell type crucial for CD pathogenesis, in both stimulated and resting samples from individuals with CD and unaffected controls. We identified extensive transcriptional changes across all conditions, with the previously established CD gene IFNy the most strongly up-regulated gene (log2 fold change 4.6; Padjusted = 2.40x10-11) in CD4+ T cells from CD patients compared to controls. We show a significant correlation of differentially expressed genes with genetic studies of the disease to date (Padjusted = 0.002), and 21 CD candidate susceptibility genes are differentially expressed under one or more of the conditions used in this study. Pathway analysis revealed significant enrichment of immune related processes. Co-expression network analysis identified several modules of coordinately expressed CD genes. Two modules were particularly highly enriched for differentially expressed genes (P<2.2x10-16) and highlighted IFNy and the genetically associated transcription factor BACH2 which showed significantly reduced expression in coeliac samples (log2FC -1.75; Padjusted = 3.6x10-3) as key regulatory genes in CD. Genes regulated by BACH2 were very significantly over-represented among our differentially expressed genes (P<2.2x10-16) indicating that reduced expression of this master regulator of T cell differentiation promotes a pro-inflammatory response and strongly corroborates genetic evidence that BACH2 plays an important role in CD pathogenesis. PMID:26444573

  18. CD30 Expression by B and T Cells: A Frequent Finding in Angioimmunoblastic T-Cell Lymphoma and Peripheral T-Cell Lymphoma-Not Otherwise Specified.

    PubMed

    Onaindia, Arantza; Martínez, Nerea; Montes-Moreno, Santiago; Almaraz, Carmen; Rodríguez-Pinilla, Socorro M; Cereceda, Laura; Revert, Jose B; Ortega, César; Tardio, Antoni; González, Lucía; García, Sonia; Camacho, Francisca I; González-Vela, Carmen; Piris, Miguel A

    2016-03-01

    CD30 expression in peripheral T-cell lymphoma (PTCL) and angioimmunoblastic T-cell lymphoma (AITL) is currently of great interest because therapy targeting CD30 is of clinical benefit, but the clinical and therapeutic relevance of CD30 expression in these neoplasms still remains uncertain. The aim of this study was to better quantify CD30 expression in AITL and PTCL-not otherwise specified (NOS). The secondary objective was to determine whether CD30 cells exhibit a B-cell or a T-cell phenotype. Gene expression profiling was studied in a series of 37 PTCL cases demonstrating a continuous spectrum of TNFRSF8 expression. This prompted us to study CD30 immunohistochemical (IHC) expression and mRNA levels by reverse transcription polymerase chain reaction (RT-PCR) in a different series of 51 cases (43 AITLs and 8 PTCL-NOSs) in routine samples. Double stainings with PAX5/CD30, CD3/CD30, and LEF1/CD30 were performed to study the phenotype of CD30 cells. Most (90%) of the cases showed some level of CD30 expression by IHC (1% to 95%); these levels were high (>50% of tumoral cells) in 14% of cases. CD30 expression was not detected in 10% of the cases. Quantitative RT-PCR results largely confirmed these findings, demonstrating a moderately strong correlation between global CD30 IHC and mRNA levels (r=0.65, P=1.75e-7). Forty-four of the positive cases (98%) contained CD30-positive B cells (PAX5), whereas atypical CD30-positive T cells were detected in 42 cases (93%). In conclusion, our data show that most AITL and PTCL-NOS cases express CD30, exhibiting very variable levels of CD30 expression that may be measured by IHC or RT-PCR techniques.

  19. Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate

    PubMed Central

    Pascal, Laura E; True, Lawrence D; Campbell, David S; Deutsch, Eric W; Risk, Michael; Coleman, Ilsa M; Eichner, Lillian J; Nelson, Peter S; Liu, Alvin Y

    2008-01-01

    Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD) genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63). Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50) but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers. PMID:18501003

  20. Expression of CD30 in patients with acute graft-versus-host disease.

    PubMed

    Chen, Yi-Bin; McDonough, Sean; Hasserjian, Robert; Chen, Heidi; Coughlin, Erin; Illiano, Christina; Park, In Sun; Jagasia, Madan; Spitzer, Thomas R; Cutler, Corey S; Soiffer, Robert J; Ritz, Jerome

    2012-07-19

    Acute GVHD (aGVHD) remains a major source of morbidity after allogeneic hematopoietic cell transplantation. CD30 is a cell-surface protein expressed on certain activated T cells. We analyzed CD30 expression on peripheral blood T-cell subsets and soluble CD30 levels in 26 patients at the time of presentation of aGVHD, before the initiation of treatment, compared with 27 patients after hematopoietic cell transplantation without aGVHD (NONE). Analysis by flow cytometry showed that patients with aGVHD had a greater percentage of CD30 expressing CD8(+) T cells with the difference especially pronounced in the central memory subset (CD8(+)CD45RO(+)CD62L(+)): GVHD median 12.4% (range, 0.8%-33.4%) versus NONE 2.1% (0.7%, 17.5%), P < .001. There were similar levels of CD30 expression in naive T cells, CD4(+) T cells, and regulatory (CD4(+)CD127(low)CD25(+)) T cells. Plasma levels of soluble CD30 were significantly greater in patients with GVHD: median 61.7 ng/mL (range, 9.8-357.1 ng/mL) versus 17.4 (range, 3.7-142.4 ng/mL) in NONE (P < .001). Immunohistochemical analysis of affected intestinal tissue showed many CD30(+) infiltrating lymphocytes present. These results suggest that CD30 expression on CD8(+) T-cell subsets or plasma levels of soluble CD30 may be a potential biomarker for aGVHD. CD30 may also represent a target for novel therapeutic approaches for aGVHD.

  1. Expression of CD30 in patients with acute graft-versus-host disease

    PubMed Central

    McDonough, Sean; Hasserjian, Robert; Chen, Heidi; Coughlin, Erin; Illiano, Christina; Park, In Sun; Jagasia, Madan; Spitzer, Thomas R.; Cutler, Corey S.; Soiffer, Robert J.; Ritz, Jerome

    2012-01-01

    Acute GVHD (aGVHD) remains a major source of morbidity after allogeneic hematopoietic cell transplantation. CD30 is a cell-surface protein expressed on certain activated T cells. We analyzed CD30 expression on peripheral blood T-cell subsets and soluble CD30 levels in 26 patients at the time of presentation of aGVHD, before the initiation of treatment, compared with 27 patients after hematopoietic cell transplantation without aGVHD (NONE). Analysis by flow cytometry showed that patients with aGVHD had a greater percentage of CD30 expressing CD8+ T cells with the difference especially pronounced in the central memory subset (CD8+CD45RO+CD62L+): GVHD median 12.4% (range, 0.8%-33.4%) versus NONE 2.1% (0.7%, 17.5%), P < .001. There were similar levels of CD30 expression in naive T cells, CD4+ T cells, and regulatory (CD4+CD127lowCD25+) T cells. Plasma levels of soluble CD30 were significantly greater in patients with GVHD: median 61.7 ng/mL (range, 9.8-357.1 ng/mL) versus 17.4 (range, 3.7-142.4 ng/mL) in NONE (P < .001). Immunohistochemical analysis of affected intestinal tissue showed many CD30+ infiltrating lymphocytes present. These results suggest that CD30 expression on CD8+ T-cell subsets or plasma levels of soluble CD30 may be a potential biomarker for aGVHD. CD30 may also represent a target for novel therapeutic approaches for aGVHD. PMID:22661699

  2. Transcriptome Analysis of Mycobacteria-Specific CD4+ T Cells Identified by Activation-Induced Expression of CD154.

    PubMed

    Kunnath-Velayudhan, Shajo; Goldberg, Michael F; Saini, Neeraj K; Johndrow, Christopher T; Ng, Tony W; Johnson, Alison J; Xu, Jiayong; Chan, John; Jacobs, William R; Porcelli, Steven A

    2017-10-01

    Analysis of Ag-specific CD4 + T cells in mycobacterial infections at the transcriptome level is informative but technically challenging. Although several methods exist for identifying Ag-specific T cells, including intracellular cytokine staining, cell surface cytokine-capture assays, and staining with peptide:MHC class II multimers, all of these have significant technical constraints that limit their usefulness. Measurement of activation-induced expression of CD154 has been reported to detect live Ag-specific CD4 + T cells, but this approach remains underexplored and, to our knowledge, has not previously been applied in mycobacteria-infected animals. In this article, we show that CD154 expression identifies adoptively transferred or endogenous Ag-specific CD4 + T cells induced by Mycobacterium bovis bacillus Calmette-Guérin vaccination. We confirmed that Ag-specific cytokine production was positively correlated with CD154 expression by CD4 + T cells from bacillus Calmette-Guérin-vaccinated mice and show that high-quality microarrays can be performed from RNA isolated from CD154 + cells purified by cell sorting. Analysis of microarray data demonstrated that the transcriptome of CD4 + CD154 + cells was distinct from that of CD154 - cells and showed major enrichment of transcripts encoding multiple cytokines and pathways of cellular activation. One notable finding was the identification of a previously unrecognized subset of mycobacteria-specific CD4 + T cells that is characterized by the production of IL-3. Our results support the use of CD154 expression as a practical and reliable method to isolate live Ag-specific CD4 + T cells for transcriptomic analysis and potentially for a range of other studies in infected or previously immunized hosts. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Microarray-based analysis of gene expression in lycopersicon esculentum seedling roots in response to cadmium, chromium, mercury, and lead.

    PubMed

    Hou, Jing; Liu, Xinhui; Wang, Juan; Zhao, Shengnan; Cui, Baoshan

    2015-02-03

    The effects of heavy metals in agricultural soils have received special attention due to their potential for accumulation in crops, which can affect species at all trophic levels. Therefore, there is a critical need for reliable bioassays for assessing risk levels due to heavy metals in agricultural soil. In the present study, we used microarrays to investigate changes in gene expression of Lycopersicon esculentum in response to Cd-, Cr-, Hg-, or Pb-spiked soil. Exposure to (1)/10 median lethal concentrations (LC50) of Cd, Cr, Hg, or Pb for 7 days resulted in expression changes in 29 Cd-specific, 58 Cr-specific, 192 Hg-specific and 864 Pb-specific genes as determined by microarray analysis, whereas conventional morphological and physiological bioassays did not reveal any toxicant stresses. Hierarchical clustering analysis showed that the characteristic gene expression profiles induced by Cd, Cr, Hg, and Pb were distinct from not only the control but also one another. Furthermore, a total of three genes related to "ion transport" for Cd, 14 genes related to "external encapsulating structure organization", "reproductive developmental process", "lipid metabolic process" and "response to stimulus" for Cr, 11 genes related to "cellular metabolic process" and "cellular response to stimulus" for Hg, 78 genes related to 20 biological processes (e.g., DNA metabolic process, monosaccharide catabolic process, cell division) for Pb were identified and selected as their potential biomarkers. These findings demonstrated that microarray-based analysis of Lycopersicon esculentum was a sensitive tool for the early detection of potential toxicity of heavy metals in agricultural soil, as well as an effective tool for identifying the heavy metal-specific genes, which should be useful for assessing risk levels due to heavy metals in agricultural soil.

  4. Quantifying engineered nanomaterial toxicity: comparison of common cytotoxicity and gene expression measurements.

    PubMed

    Atha, Donald H; Nagy, Amber; Steinbrück, Andrea; Dennis, Allison M; Hollingsworth, Jennifer A; Dua, Varsha; Iyer, Rashi; Nelson, Bryant C

    2017-11-09

    When evaluating the toxicity of engineered nanomaterials (ENMS) it is important to use multiple bioassays based on different mechanisms of action. In this regard we evaluated the use of gene expression and common cytotoxicity measurements using as test materials, two selected nanoparticles with known differences in toxicity, 5 nm mercaptoundecanoic acid (MUA)-capped InP and CdSe quantum dots (QDs). We tested the effects of these QDs at concentrations ranging from 0.5 to 160 µg/mL on cultured normal human bronchial epithelial (NHBE) cells using four common cytotoxicity assays: the dichlorofluorescein assay for reactive oxygen species (ROS), the lactate dehydrogenase assay for membrane viability (LDH), the mitochondrial dehydrogenase assay for mitochondrial function, and the Comet assay for DNA strand breaks. The cytotoxicity assays showed similar trends when exposed to nanoparticles for 24 h at 80 µg/mL with a threefold increase in ROS with exposure to CdSe QDs compared to an insignificant change in ROS levels after exposure to InP QDs, a twofold increase in the LDH necrosis assay in NHBE cells with exposure to CdSe QDs compared to a 50% decrease for InP QDs, a 60% decrease in the mitochondrial function assay upon exposure to CdSe QDs compared to a minimal increase in the case of InP and significant DNA strand breaks after exposure to CdSe QDs compared to no significant DNA strand breaks with InP. High-throughput quantitative real-time polymerase chain reaction (qRT-PCR) data for cells exposed for 6 h at a concentration of 80 µg/mL were consistent with the cytotoxicity assays showing major differences in DNA damage, DNA repair and mitochondrial function gene regulatory responses to the CdSe and InP QDs. The BRCA2, CYP1A1, CYP1B1, CDK1, SFN and VEGFA genes were observed to be upregulated specifically from increased CdSe exposure and suggests their possible utility as biomarkers for toxicity. This study can serve as a model for comparing traditional

  5. A microRNA, mir133b, suppresses melanopsin expression mediated by failure dopaminergic amacrine cells in RCS rats.

    PubMed

    Li, Yaochen; Li, Chunshi; Chen, Zhongshan; He, Jianrong; Tao, Zui; Yin, Zheng Qin

    2012-03-01

    The photopigment melanopsin and melanopsin-containing RGCs (mRGCs or ipRGCs) represent a brand-new and exciting direction in the field of visual field. Although the melanopsin is much less sensitive to light and has far less spatial resolution, mRGCs have the unique ability to project to brain areas by the retinohypothalamic tract (RHT) and communicate directly with the brain. Unfortunately, melanopsin presents lower expression levels in many acute and chronic retinal diseases. The molecular mechanisms underlying melanopsin expression are not yet really understood. MicroRNAs play important roles in the control of development. Most importantly, the link of microRNA biology to a diverse set of cellular processes, ranging from proliferation, apoptosis and malignant transformation to neuronal development and fate specification is emerging. We employed Royal College of Surgeon (RCS) rats as animal model to investigate the underlying molecular mechanism regulating melanopsin expression using a panel of miRNA by quantitative real-time reverse transcription polymerase chain reaction. We identified a microRNA, mir133b, that is specifically expressed in retinal dopaminergic amacrine cells as well as markedly increased expression at early stage during retinal degeneration in RCS rats. The overexpression of mir133b downregulates the important transcription factor Pitx3 expression in dopaminergic amacrine cells in RCS rats retinas and makes amacrine cells stratification deficit in IPL. Furthermore, deficient dopaminergic amacrine cells presented decreased TH expression and dopamine production, which lead to a failure to direct mRGCs dendrite to stratify and enter INL and lead to the reduced correct connections between amacrine cells and mRGCs. Our study suggested that overexpression of mir133b and downregulated Pitx3 suppress maturation and function of dopaminergic amacrine cells, and overexpression of mir133b decreased TH and D2 receptor expression as well as dopamine

  6. Molecular Cloning and mRNA Expression of Heat Shock Protein Genes and Their Response to Cadmium Stress in the Grasshopper Oxya chinensis.

    PubMed

    Zhang, Yuping; Liu, Yaoming; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2015-01-01

    Heat shock proteins (Hsps) are highly conserved molecular chaperones that are synthesized in response to stress. In this study, we cloned the full-length sequences of the Grp78 (glucose-regulated protein 78), Hsp70, Hsp90, and Hsp40 genes from the Chinese rice grasshopper Oxya chinensis. The full-length cDNA sequences of OcGrp78, OcHsp70, OcHsp90, and OcHsp40 contain open reading frames of 1947, 1920, 2172, and 1042 bp that encode proteins of 649, 640, 724, and 347 amino acids, respectively. Fluorescent real-time quantitative PCR (RT-qPCR) was performed to quantify the relative transcript levels of these Hsp genes in different tissues and developmental stages. The mRNAs encoding these four Hsp genes were present at all developmental stages and in all tissues examined but were expressed at varying levels. Additionally, we investigated the mRNA expression profiles of these four Hsps in O. chinensis subjected to Cadmium (Cd) stress. OcGrp78, OcHsp70, OcHsp90, and OcHsp40 mRNA expression was induced under acute Cd stress; the levels reached a maximum within a short time (6 h), were reduced significantly at 12 h, and were lowered to or below control levels by 48 h. Regarding induction efficiency, OcHsp70 was the most sensitive gene to acute Cd stress. Chronic Cd exposure showed that dietary Cd treatment induced increased OcGrp78, OcHsp90, and OcHsp40 expression. However, dietary Cd induced a significant reduction of OcHsp70 expression. In the period tested, no significant difference in the mortality of the grasshoppers was observed. Our results suggest that these four Hsps genes, especially OcHsp70, are sensitive to acute Cd stress and could be used as molecular markers for toxicology studies. However, our results also indicate that OcHsp70 is not suitable for use as a molecular marker of chronic Cd contamination.

  7. CD4+ Primary T Cells Expressing HCV-Core Protein Upregulate Foxp3 and IL-10, Suppressing CD4 and CD8 T Cells

    PubMed Central

    Aguado, Enrique; Garcia-Cozar, Francisco

    2014-01-01

    Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein. PMID:24465502

  8. Expression of CD163 in the liver of patients with viral hepatitis.

    PubMed

    Hiraoka, Atsushi; Horiike, Norio; Akbar, Sk Md Fazle; Michitaka, Kojiro; Matsuyama, Takami; Onji, Morikazu

    2005-01-01

    CD163 is a marker of activated macrophages, and increased levels of soluble CD163 have been detected in sera obtained from patients with hepatitis. The aim of this study was to detect the expression of CD163 in the liver from patients with viral hepatitis. Frozen sections of liver specimens were obtained from 5 patients with acute viral hepatitis (AH) and from 23 patients with chronic viral hepatitis (CH). The expression of CD163 in the liver was determined immunohistochemically using monoclonal antibody to human CD163. Double immunostaining was done to assess those cell types that express CD163 in the liver. The frequencies of CD163-positive cells were significantly higher both in the portal areas and in the hepatic lobules in the liver of patients with AH compared to those with CH (p < 0.05). Double immunostaining revealed that most of the CD163-positive cells were macrophages and Kupffer cells, because they expressed CD68. The expression of CD163 was very low in endothelial cells and liver stellate cells. This study shows that macrophages are activated in hepatitis liver.

  9. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  10. Homologs of CD83 from elasmobranch and teleost fish.

    PubMed

    Ohta, Yuko; Landis, Eric; Boulay, Thomas; Phillips, Ruth B; Collet, Bertrand; Secombes, Chris J; Flajnik, Martin F; Hansen, John D

    2004-10-01

    Dendritic cells are one of the most important cell types connecting innate and adaptive immunity, but very little is known about their evolutionary origins. To begin to study dendritic cells from lower vertebrates, we isolated and characterized CD83 from the nurse shark (Ginglymostoma cirratum (Gici)) and rainbow trout (Oncorhynchus mykiss (Onmy)). The open reading frames for Gici-CD83 (194 aa) and Onmy-CD83 (218 aa) display approximately 28-32% identity to mammalian CD83 with the presence of two conserved N-linked glycosylation sites. Identical with mammalian CD83 genes, Gici-CD83 is composed of five exons including conservation of phase for the splice sites. Mammalian CD83 genes contain a split Ig superfamily V domain that represents a unique sequence feature for CD83 genes, a feature conserved in both Gici- and Onmy-CD83. Gici-CD83 and Onmy-CD83 are not linked to the MHC, an attribute shared with mouse but not human CD83. Gici-CD83 is expressed rather ubiquitously with highest levels in the epigonal tissue, a primary site for lymphopoiesis in the nurse shark, whereas Onmy-CD83 mRNA expression largely paralleled that of MHC class II but at lower levels. Finally, Onmy-CD83 gene expression is up-regulated in virus-infected trout, and the promoter is responsive to trout IFN regulatory factor-1. These results suggest that the role of CD83, an adhesion molecule for cell-mediated immunity, has been conserved over 450 million years of vertebrate evolution.

  11. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Tumor Necrosis Factor alpha (TNF{alpha}) regulates CD40 expression through SMAR1 phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kamini; Sinha, Surajit; Malonia, Sunil Kumar

    2010-01-08

    CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNF{alpha} is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-{kappa}B target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNF{alpha} stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thusmore » releasing its negative effect. Concomitantly, TNF{alpha} induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNF{alpha} mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.« less

  13. Properties of human blood monocytes. I. CD91 expression and log orthogonal light scatter provide a robust method to identify monocytes that is more accurate than CD14 expression.

    PubMed

    Hudig, Dorothy; Hunter, Kenneth W; Diamond, W John; Redelman, Doug

    2014-03-01

    This study was designed to improve identification of human blood monocytes by using antibodies to molecules that occur consistently on all stages of monocyte development and differentiation. We examined blood samples from 200 healthy adults without clinically diagnosed immunological abnormalities by flow cytometry (FCM) with multiple combinations of antibodies and with a hematology analyzer (Beckman LH750). CD91 (α2 -macroglobulin receptor) was expressed only by monocytes and to a consistent level among subjects [mean median fluorescence intensity (MFI) = 16.2 ± 3.2]. Notably, only 85.7 ± 5.82% of the CD91(+) monocytes expressed high levels of the classical monocyte marker CD14, with some CD91(+) CD16(+) cells having negligible CD14, indicating that substantial FCM under-counts will occur when monocytes are identified by high CD14. CD33 (receptor for sialyl conjugates) was co-expressed with CD91 on monocytes but CD33 expression varied by nearly ten-fold among subjects (mean MFI = 17.4 ± 7.7). In comparison to FCM analyses, the hematology analyzer systematically over-counted monocytes and eosinophils while lymphocyte and neutrophil differential values generally agreed with FCM methods. CD91 is a better marker to identify monocytes than CD14 or CD33. Furthermore, FCM (with anti-CD91) identifies monocytes better than a currently used clinical CBC instrument. Use of anti-CD91 together with anti-CD14 and anti-CD16 supports the identification of the diagnostically significant monocyte populations with variable expression of CD14 and CD16. Copyright © 2013 Clinical Cytometry Society.

  14. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene

    PubMed Central

    Hsu, Cary; Jones, Stephanie A.; Cohen, Cyrille J.; Zheng, Zhili; Kerstann, Keith; Zhou, Juhua; Robbins, Paul F.; Peng, Peter D.; Shen, Xinglei; Gomes, Theotonius J.; Dunbar, Cynthia E.; Munroe, David J.; Stewart, Claudia; Cornetta, Kenneth; Wangsa, Danny; Ried, Thomas; Rosenberg, Steven A.

    2007-01-01

    Malignancies arising from retrovirally transduced hematopoietic stem cells have been reported in animal models and human gene therapy trials. Whether mature lymphocytes are susceptible to insertional mutagenesis is unknown. We have characterized a primary human CD8+ T-cell clone, which exhibited logarithmic ex vivo growth in the absence of exogenous cytokine support for more than 1 year after transduction with a murine leukemia virus–based vector encoding the T-cell growth factor IL-15. Phenotypically, the clone was CD28−, CD45RA−, CD45RO+, and CD62L−, a profile consistent with effector memory T lymphocytes. After gene transfer with tumor-antigen–specific T-cell receptors, the clone secreted IFN-γ upon encountering tumor targets, providing further evidence that they derived from mature lymphocytes. Gene-expression analyses revealed no evidence of insertional activation of genes flanking the retroviral insertion sites. The clone exhibited constitutive telomerase activity, and the presence of autocrine loop was suggested by impaired cell proliferation following knockdown of IL-15Rα expression. The generation of this cell line suggests that nonphysiologic expression of IL-15 can result in the long-term in vitro growth of mature human T lymphocytes. The cytokine-independent growth of this line was a rare event that has not been observed in other IL-15 vector transduction experiments or with any other integrating vector system. It does not appear that the retroviral vector integration sites played a role in the continuous growth of this cell clone, but this remains under investigation. PMID:17353346

  15. Gene expression profiling for nitric oxide prodrug JS-K to kill HL-60 myeloid leukemia cells.

    PubMed

    Liu, Jie; Malavya, Swati; Wang, Xueqian; Saavedra, Joseph E; Keefer, Larry K; Tokar, Erik; Qu, Wei; Waalkes, Michael P; Shami, Paul J

    2009-07-01

    The nitric oxide (NO) prodrug JS-K is shown to have anticancer activity. To profile the molecular events associated with the anticancer effects of JS-K, HL-60 leukemia cells were treated with JS-K and subjected to microarray and real-time RT-PCR analysis. JS-K induced concentration- and time-dependent gene expression changes in HL-60 cells corresponding to the cytolethality effects. The apoptotic genes (caspases, Bax, and TNF-alpha) were induced, and differentiation-related genes (CD14, ITGAM, and VIM) were increased. For acute phase protein genes, some were increased (TP53, JUN) while others were suppressed (c-myc, cyclin E). The expression of anti-angiogenesis genes THBS1 and CD36 and genes involved in tumor cell migration such as tissue inhibitors of metalloproteinases, were also increased by JS-K. Confocal analysis confirmed key gene changes at the protein levels. Thus, multiple molecular events are associated with JS-K effects in killing HL-60, which could be molecular targets for this novel anticancer NO prodrug.

  16. Increasing CACNA1C expression in placenta containing high Cd level: an implication of Cd toxicity.

    PubMed

    Phuapittayalert, Laorrat; Saenganantakarn, Phisid; Supanpaiboon, Wisa; Cheunchoojit, Supaporn; Hipkaeo, Wiphawi; Sakulsak, Natthiya

    2016-12-01

    Cadmium (Cd) has known to produce many adverse effects on organs including placenta. Many essential transporters are involved in Cd transport pathways such as DMT-1, ZIP as well as L-VDCC. Fourteen pregnant women participated and were divided into two groups: high and low Cd-exposed (H-Cd, L-Cd) groups on the basis of their residential areas, Cd concentrations in the blood (B-Cd), urine (U-Cd), and placenta (P-Cd). The results showed that the B-Cd and U-Cd were significantly increased in H-Cd group (p < 0.05). Interestingly, the P-Cd in H-Cd group was elevated (p < 0.05) and positively related to their B-Cd and U-Cd values (p < 0.05). However, the mean cord blood Cd (C-Cd) concentration in H-Cd group was not significantly increased about 2.5-fold when comparing to L-Cd group. To determine the Cd accumulation in placental tissues, metallothionein-1A (MT-1A) and metallothionein-2A (MT-2A) expressions were used as biomarkers. The results revealed that mean MT-1A and MT-2A mRNAs and MT-1/2 proteins were up-regulated in H-Cd group (p < 0.05). In addition, the Ca channel alpha 1C (CACNA1C) mRNA and protein expressions were noticeably elevated in H-Cd group (p < 0.05). From these findings, we suggested that CACNA1C might be implicated in Cd transport in human placenta.

  17. Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures

    PubMed Central

    Lijavetzky, Diego; Almagro, Lorena; Belchi-Navarro, Sarai; Martínez-Zapater, José M; Bru, Roque; Pedreño, Maria A

    2008-01-01

    Background Plant cell cultures have been shown as feasible systems for the production of secondary metabolites, being the elicitation with biotic or abiotic stimuli the most efficient strategy to increase the production of those metabolites. Vitaceae phytoalexins constitute a group of molecules belonging to the stilbene family which are derivatives of the trans-resveratrol structure and are produced by plants and cell cultures as a response to biotic and abiotic stresses. The potential benefits of resveratrol on human health have made it one of the most thoroughly studied phytochemical molecules. The aim of this study was to evaluate the elicitor effect of both cyclodextrin (CD) and methyljasmonate (MeJA) on grapevine cell cultures by carrying out a quantitative analysis of their role on resveratrol production and on the expression of stilbene biosynthetic genes in Vitis vinifera cv Monastrell albino cell suspension cultures. Findings MeJA and CD significantly but transiently induced the expression of stilbene biosynthetic genes when independently used to treat grapevine cells. This expression correlated with resveratrol production in CD-treated cells but not in MeJA-treated cells, which growth was drastically affected. In the combined treatment of CD and MeJA cell growth was similarly affected, however resveratrol production was almost one order of magnitude higher, in correlation with maximum expression values for stilbene biosynthetic genes. Conclusion The effect of MeJA on cell division combined with a true and strong elicitor like CD could be responsible for the observed synergistic effect of both compounds on resveratrol production and on the expression of genes in the stilbene pathway. PMID:19102745

  18. Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

    PubMed

    Huang, Ling; Schiefelbein, John

    2015-08-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants. © 2015 American Society of Plant Biologists. All rights reserved.

  19. Spaceflight effects on T lymphocyte distribution, function and gene expression

    PubMed Central

    Gridley, Daila S.; Slater, James M.; Luo-Owen, Xian; Rizvi, Asma; Chapes, Stephen K.; Stodieck, Louis S.; Ferguson, Virginia L.; Pecaut, Michael J.

    2009-01-01

    The immune system is highly sensitive to stressors present during spaceflight. The major emphasis of this study was on the T lymphocytes in C57BL/6NTac mice after return from a 13-day space shuttle mission (STS-118). Spleens and thymuses from flight animals (FLT) and ground controls similarly housed in animal enclosure modules (AEM) were evaluated within 3–6 h after landing. Phytohemagglutinin-induced splenocyte DNA synthesis was significantly reduced in FLT mice when based on both counts per minute and stimulation indexes (P < 0.05). Flow cytometry showed that CD3+ T and CD19+ B cell counts were low in spleens from the FLT group, whereas the number of NK1.1+ natural killer (NK) cells was increased (P < 0.01 for all three populations vs. AEM). The numerical changes resulted in a low percentage of T cells and high percentage of NK cells in FLT animals (P < 0.05). After activation of spleen cells with anti-CD3 monoclonal antibody, interleukin-2 (IL-2) was decreased, but IL-10, interferon-γ, and macrophage inflammatory protein-1α were increased in FLT mice (P < 0.05). Analysis of cancer-related genes in the thymus showed that the expression of 30 of 84 genes was significantly affected by flight (P < 0.05). Genes that differed from AEM controls by at least 1.5-fold were Birc5, Figf, Grb2, and Tert (upregulated) and Fos, Ifnb1, Itgb3, Mmp9, Myc, Pdgfb, S100a4, Thbs, and Tnf (downregulated). Collectively, the data show that T cell distribution, function, and gene expression are significantly modified shortly after return from the spaceflight environment. PMID:18988762

  20. Identification of specific gene expression profiles in fibroblasts derived from middle ear cholesteatoma.

    PubMed

    Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi

    2006-07-01

    To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.