Science.gov

Sample records for cd40l dna combined

  1. Construction of the HBV S-ecdCD40L fusion gene and effects of HBV S-ecdCD40L modification on function of dendritic cells.

    PubMed

    Wu, J-M; Lin, X-F; Huang, Z-M; Wu, J S

    2011-10-01

    We examined the effect of dendritic cells engineered to express an HBV S antigen CD40L fusion gene (HBV S-ecdCD40L). The DNA of HBV S gene and the cDNA of the extracellular domain of human CD40 ligand were linked by cloning. Peripheral blood mononuclear cells (PBMC) from healthy adults were incubated and induced into dendritic cells (DC) in presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4(IL-4). The DCs were transfected the novel construct, and the impact of the expressed clone assessed. We find that, compared with control groups, modification of DCs with HBV S-ecdCD40L fusion gene resulted in the activation of DCs with upregulated expression of immunologically important cell surface molecules (CD80, CD86 and HLA-DR) and proinflammatory cytokines (IL-12). The DCs modified with HBV S-ecdCD40L are able to stimulate enhanced allogeneic T-cell proliferation in vitro. Thus, the fusion gene HBV S-ecdCD40L can promote DC's activation and enhance its function and may prove to be the foundation for a new type of hepatitis B vaccine. PMID:21914064

  2. Multifunctional CD40L: pro- and anti-neoplastic activity.

    PubMed

    Korniluk, Aleksandra; Kemona, Halina; Dymicka-Piekarska, Violetta

    2014-10-01

    The CD40 ligand is a type I transmembrane protein that belongs to a tumor necrosis factor (TNF) superfamily. It is present not only on the surface of activated CD4+ T cells, B cells, blood platelets, monocytes, and natural killer (NK) cells but also on cancer cells. The receptor for ligand is constitutively expressed on cells, TNF family protein: CD40. The role of the CD40/CD40L pathway in the induction of body immunity, in inflammation, or in hemostasis has been well documented, whereas its involvement in neoplastic disease is still under investigation. CD40L ligand may potentiate apoptosis of tumor cells by activation of nuclear factor-κB (NF-κB), AP-1, CD95, or caspase-depended pathways and stimulate host immunity to defend against cancer. Although CD40L has a major contribution to anti-cancer activity, many reports point at its ambivalent nature. CD40L enhance release of strongly pro-angiogenic factor, vascular endothelial growth factor (VEGF), and activator of coagulation, TF, the level of which is correlated with tumor metastasis. CD40L involvement in the inhibition of tumor progression has led to the emergence of not only therapy using recombinant forms of the ligand and vaccines in the treatment of cancer but also therapy consisting of inhibiting platelets-main source of CD40L. This article is a review of studies on the ambivalent role of CD40L in neoplastic diseases. PMID:25117071

  3. Rosuvastatin Attenuates CD40L-Induced Downregulation of Extracellular Matrix Production in Human Aortic Smooth Muscle Cells via TRAF6-JNK-NF-κB Pathway

    PubMed Central

    Wang, Xiao-Lin; Zhou, Yuan-Li; Sun, Wei; Li, Li

    2016-01-01

    CD40L and statins exhibit pro-inflammatory and anti-inflammatory effects, respectively. They are both pleiotropic and can regulate extracellular matrix (ECM) degeneration in an atherosclerotic plaque. Statins can decrease both the CD40 expression and the resulting inflammation. However, the effects of CD40L and stains on atherosclerotic plaque ECM production and the underlying mechanisms are not well established. Moreover, prolyl-4-hydroxylase α1 (P4Hα1) is involved in collagen synthesis but its correlations with CD40L and statins are unknown. In the present study, CD40L suppressed P4Hα1 expression in human aortic smooth muscle cells (HASMCs) in a dose- and time-dependent manner, with insignificant changes in MMP2 expression and negative enzymatic activity of MMP9. CD40L increased TRAF6 expression, JNK phosphorylation, NF-κB nuclear translocation as well as DNA binding. Furthermore, silencing TRAF6, JNK or NF-κB genes abolished CD40L-induced suppression of P4Hα1. Lower NF-κB nuclear import rates were observed when JNK or TRAF6 silenced HASMCs were stimulated with CD40L compared to HASMCs with active JNK or TRAF6. Together, these results indicate that CD40L suppresses P4Hα1 expression in HASMCs by activating the TRAF6-JNK- NF-κB pathway. We also found that rosuvastatin inhibits CD40L-induced activation of the TRAF6-JNK- NF-κB pathway, thereby significantly rescuing the CD40L stimulated P4Hα1 inhibition. The results from this study will help find potential targets for stabilizing vulnerable atherosclerotic plaques. PMID:27120457

  4. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome.

    PubMed

    Hubbard, Nicholas; Hagin, David; Sommer, Karen; Song, Yumei; Khan, Iram; Clough, Courtnee; Ochs, Hans D; Rawlings, David J; Scharenberg, Andrew M; Torgerson, Troy R

    2016-05-26

    Loss of CD40 ligand (CD40L) expression or function results in X-linked hyper-immunoglobulin (Ig)M syndrome (X-HIGM), characterized by recurrent infections due to impaired immunoglobulin class-switching and somatic hypermutation. Previous attempts using retroviral gene transfer to correct murine CD40L expression restored immune function; however, treated mice developed lymphoproliferative disease, likely due to viral-promoter-dependent constitutive CD40L expression. These observations highlight the importance of preserving endogenous gene regulation in order to safely correct this disorder. Here, we report efficient, on-target, homology-directed repair (HDR) editing of the CD40LG locus in primary human T cells using a combination of a transcription activator-like effector nuclease-induced double-strand break and a donor template delivered by recombinant adeno-associated virus. HDR-mediated insertion of a coding sequence (green fluorescent protein or CD40L) upstream of the translation start site within exon 1 allowed transgene expression to be regulated by endogenous CD40LG promoter/enhancer elements. Additionally, inclusion of the CD40LG 3'-untranslated region in the transgene preserved posttranscriptional regulation. Expression kinetics of the transgene paralleled that of endogenous CD40L in unedited T cells, both at rest and in response to T-cell stimulation. The use of this method to edit X-HIGM patient T cells restored normal expression of CD40L and CD40-murine IgG Fc fusion protein (CD40-muIg) binding, and rescued IgG class switching of naive B cells in vitro. These results demonstrate the feasibility of engineered nuclease-directed gene repair to restore endogenously regulated CD40L, and the potential for its use in T-cell therapy for X-HIGM syndrome. PMID:26903548

  5. NORE1A induction by membrane-bound CD40L (mCD40L) contributes to CD40L-induced cell death and G1 growth arrest in p21-mediated mechanism

    PubMed Central

    Elmetwali, T; Salman, A; Palmer, D H

    2016-01-01

    Membrane-bound CD40L (mCD40L) but not soluble CD40L (sCD40L) has been implicated in direct cell death induction and apoptosis in CD40-expressing carcinomas. In this study, we show that mCD40L but not sCD40L induces NORE1A/Rassf5 expression in an NFκB-dependant mechanism. NORE1A expression appeared to contribute to mCD40L-induced cell death and enhance cell transition from G1 to S phase of the cell cycle in a p21-dependent mechanism. The upregulation of p21 protein was attributed to NORE1A expression, since NORE1A inhibition resulted in p21 downregulation. p21 upregulation was concomitant with lower p53 expression in the cytoplasmic fraction with no detectable increase at the nuclear p53 level. Moreover, mCD40L-induced cell death mediated by NORE1A expression appeared to be independent of mCD40L-induced cell death mediated by sustained JNK activation since NORE1A inhibition did not affect JNK phosphorylation and vice versa. The presented data allow better understanding of the mechanism by which mCD40L induces cell death which could be exploited in the clinical development of CD40-targeted anti-cancer therapies. PMID:26986513

  6. NORE1A induction by membrane-bound CD40L (mCD40L) contributes to CD40L-induced cell death and G1 growth arrest in p21-mediated mechanism.

    PubMed

    Elmetwali, T; Salman, A; Palmer, D H

    2016-01-01

    Membrane-bound CD40L (mCD40L) but not soluble CD40L (sCD40L) has been implicated in direct cell death induction and apoptosis in CD40-expressing carcinomas. In this study, we show that mCD40L but not sCD40L induces NORE1A/Rassf5 expression in an NFκB-dependant mechanism. NORE1A expression appeared to contribute to mCD40L-induced cell death and enhance cell transition from G1 to S phase of the cell cycle in a p21-dependent mechanism. The upregulation of p21 protein was attributed to NORE1A expression, since NORE1A inhibition resulted in p21 downregulation. p21 upregulation was concomitant with lower p53 expression in the cytoplasmic fraction with no detectable increase at the nuclear p53 level. Moreover, mCD40L-induced cell death mediated by NORE1A expression appeared to be independent of mCD40L-induced cell death mediated by sustained JNK activation since NORE1A inhibition did not affect JNK phosphorylation and vice versa. The presented data allow better understanding of the mechanism by which mCD40L induces cell death which could be exploited in the clinical development of CD40-targeted anti-cancer therapies. PMID:26986513

  7. Modulation of Single-Cell IgG Secretion Frequency and Rates in Human Memory B Cells by CpG DNA, CD40L, IL-21 and Cell Division∥

    PubMed Central

    Henn, Alicia D.; Rebhahn, Jonathan; Brown, Miguel A.; Murphy, Alison J.; Coca, Mircea N.; Hyrien, Ollivier; Pellegrin, Tina; Mosmann, Tim; Zand, Martin S.

    2009-01-01

    During the recall response by CD27+ IgG class switched human memory B cells, total IgG secreted is a function of (1) the number of IgG secreting cells (IgG-SC) and (2) the secretion rate of each cell. Here we report the quantitative ELISPOT method (qELISPOT) for simultaneous estimation of single cell IgG secretion rates and secreting cell frequencies in human B cell populations. We found that CD27+ IgMneg memory B cells activated with CpG and cytokines had considerable heterogeneity in the IgG secretion rates, with two major secretion rate subpopulations. B cell receptor cross-linking reduced the frequency of cells with high per-cell IgG secretion rates, with a parallel decrease in CD27hi B cell blasts. Increased cell death may account for the BCR-stimulated reduction in high-rate IgG-SC CD27hi B cell blasts. In contrast, the addition of IL-21 to CD40L +IL-4 activated human memory B cells induced a high-rate IgG-SC population in B cells with otherwise low per-cell IgG secretion rates. The profiles of human B cell IgG secretion rates followed the same biphasic distribution and range irrespective of division class. This, along with the presence of non-IgG-producing, dividing B cells in CpG+ck-activated B memory B cell populations, is suggestive of an “On/Off switch” regulating IgG secretion. Finally, these data support a mixture model of IgG secretion in which IgG secreted over time is modulated by the frequency of IgG secreting cells and the distribution of their IgG secretion rates. This is an author-produced version of a manuscript accepted for publication in The Journal of Immunology (The JI). The American Association of Immunologists, Inc. (AAI), publisher of The JI, holds the copyright to this manuscript. This version of the manuscript has not yet been copyedited or subjected to editorial proofreading by The JI; hence, it may differ from the final version published in The JI (online and in print). AAI (The JI) is not liable for errors or omissions in this

  8. Human Dendritic Cells Activated by TSLP and CD40L Induce Proallergic Cytotoxic T Cells

    PubMed Central

    Gilliet, Michel; Soumelis, Vassili; Watanabe, Norihiko; Hanabuchi, Shino; Antonenko, Svetlana; de Waal-Malefyt, Rene; Liu, Yong-Jun

    2003-01-01

    Human thymic stromal lymphopoietin (TSLP) is a novel epithelial cell–derived cytokine, which induces dendritic cell (DC)-mediated CD4+ T cell responses with a proallergic phenotype. Although the participation of CD8+ T cells in allergic inflammation is well documented, their functional properties as well as the pathways leading to their generation remain poorly understood. Here, we show that TSLP-activated CD11c+ DCs potently activate and expand naive CD8+ T cells, and induce their differentiation into interleukin (IL)-5 and IL-13–producing effectors exhibiting poor cytolytic activity. Additional CD40L triggering of TSLP-activated DCs induced CD8+ T cells with potent cytolytic activity, producing large amounts of interferon (IFN)-γ, while retaining their capacity to produce IL-5 and IL-13. These data further support the role of TSLP as initial trigger of allergic T cell responses and suggest that CD40L-expressing cells may act in combination with TSLP to amplify and sustain pro-allergic responses and cause tissue damage by promoting the generation of IFN-γ–producing cytotoxic effectors. PMID:12707303

  9. Vaccination with a Fusion Protein That Introduces HIV-1 Gag Antigen into a Multitrimer CD40L Construct Results in Enhanced CD8+ T Cell Responses and Protection from Viral Challenge by Vaccinia-Gag

    PubMed Central

    Gupta, Sachin; Termini, James M.; Raffa, Francesca N.; Williams, Cindi-Ann; Kornbluth, Richard S.

    2014-01-01

    CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8+ T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8+ T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8+ T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8+ T cell responses. PMID:24227853

  10. Enhancing Antitumor Efficacy of Chimeric Antigen Receptor T Cells Through Constitutive CD40L Expression

    PubMed Central

    Curran, Kevin J; Seinstra, Beatrijs A; Nikhamin, Yan; Yeh, Raymond; Usachenko, Yelena; van Leeuwen, Dayenne G; Purdon, Terence; Pegram, Hollie J; Brentjens, Renier J

    2015-01-01

    Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40+ tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40+ tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19+ systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy. PMID:25582824

  11. CD40L induces inflammation and adipogenesis in adipose cells--a potential link between metabolic and cardiovascular disease.

    PubMed

    Missiou, Anna; Wolf, Dennis; Platzer, Isabel; Ernst, Sandra; Walter, Carina; Rudolf, Philipp; Zirlik, Katja; Köstlin, Natascha; Willecke, Florian K; Münkel, Christian; Schönbeck, Uwe; Libby, Peter; Bode, Christoph; Varo, Nerea; Zirlik, Andreas

    2010-04-01

    CD40L figures prominently in atherogenesis. Recent data demonstrate elevated levels of sCD40L in the serum of patients with the metabolic syndrome (MS). This study investigated the role of CD40L in pro-inflammatory gene expression and cellular differentiation in adipose tissue to obtain insight into mechanisms linking the MS with atherosclerosis. Human adipocytes and preadipocytes expressed CD40 but not CD40L. Stimulation with recombinant CD40L or membranes over-expressing CD40L induced a time- and dose-dependent expression of IL-6, MCP-1, IL-8, and PAI-1. Supernatants of CD40L-stimulated adipose cells activated endothelial cells, suggesting a systemic functional relevance of our findings. Neutralising antibodies against CD40L attenuated these effects substantially. Signalling studies revealed the involvement of mitogen-activated protein kinases and NFkB. Furthermore, stimulation with CD40L resulted in enhanced activation of C/EBPa and PPARg and promoted adipogenesis of preadipose cells in the presence and absence of standard adipogenic conditions. Finally, patients suffering from the metabolic syndrome with high levels of sCD40L also displayed high levels of IL-6, in line with the concept that CD40L may induce the expression of inflammatory cytokines in vivo in this population. Our data reveal potent metabolic functions of CD40L aside from its known pivotal pro-inflammatory role within plaques. Our data suggest that CD40L may mediate risk at the interface of metabolic and atherothrombotic disease. PMID:20174757

  12. CD40L expression permits CD8+ T cells to execute immunologic helper functions

    PubMed Central

    Stark, Regina; Matzmohr, Nadine; Meier, Sarah; Durlanik, Sibel; Schulz, Axel R.; Stervbo, Ulrik; Jürchott, Karsten; Gebhardt, Friedemann; Heine, Guido; Reuter, Morgan A.; Betts, Michael R.; Busch, Dirk

    2013-01-01

    CD8+ T cells play an essential role in immunity against intracellular pathogens, with cytotoxicity being considered their major effector mechanism. However, we here demonstrate that a major part of central and effector memory CD8+ T cells expresses CD40L, one key molecule for CD4+ T-cell–mediated help. CD40L+ CD8+ T cells are detectable among human antigen-specific immune responses, including pathogens such as influenza and yellow fever virus. CD40L+ CD8+ T cells display potent helper functions in vitro and in vivo, such as activation of antigen-presenting cells, and exhibit a cytokine expression signature similar to CD4+ T cells and unrelated to cytotoxic CD8+ T cells. The broad occurrence of CD40L+ CD8+ T cells in cellular immunity implicates that helper functions are not only executed by major histocompatibility complex (MHC) class II–restricted CD4+ helper T cells but are also a common feature of MHC class I–restricted CD8+ T cell responses. Due to their versatile functional capacities, human CD40L+ CD8+ T cells are promising candidate cells for immune therapies, particularly when CD4+ T-cell help or pathogen-associated molecular pattern signals are limited. PMID:23719298

  13. High serum levels of soluble CD40-L in patients with undifferentiated nasopharyngeal carcinoma: pathogenic and clinical relevance

    PubMed Central

    Caggiari, Laura; Guidoboni, Massimo; Vaccher, Emanuela; Barzan, Luigi; Franchin, Giovanni; Gloghini, Annunziata; Martorelli, Debora; Zancai, Paola; Bortolin, Maria Teresa; Mazzucato, Mario; Serraino, Diego; Carbone, Antonino; De Paoli, Paolo; Dolcetti, Riccardo

    2007-01-01

    Background Engagement of CD40 promotes survival of undifferentiated nasopharyngeal carcinoma (UNPC) cells and similar effects are induced by the EBV oncoprotein LMP-1 that is expressed in a fraction of cases. Considering that CD40 may be activated also by the soluble isoform of CD40L (sCD40L), we investigated the serum levels of sCD40L in a series of 61 UNPC patients from Italy, a non-endemic area for this disease. Results At diagnosis, serum samples of UNPC patients contained significantly higher levels of sCD40L than age-matched healthy controls (p < 0.001). High levels of sCD40L (i.e., >18 ng/ml) were more frequently found in patients <40 years of age (p = 0.03) and with distant metastases at presentation (p = 0.03). Serum levels of sCD40L were inversely associated with the expression of the EBV oncoprotein LMP-1 (p = 0.03), which mimics a constitutively activated CD40. The amount of sCD40L decreased in a fraction of patients treated with local radiotherapy alone. Moreover, CD40L+ lymphoid cells admixed to neoplastic UNPC cells were detected in cases with high serum levels of sCD40L, suggesting that sCD40L is probably produced within the tumor mass. Conclusion sCD40L may contribute to CD40 activation in UNPC cells, particularly of LMP-1-negative cases, further supporting the crucial role of CD40 signalling in the pathogenesis of UNPC. sCD40L levels may be useful to identify UNPC patients with occult distant metastases at presentation. PMID:17331231

  14. Enhanced Soluble Serum CD40L and Serum P-Selectin Levels in Primary Aldosteronism.

    PubMed

    Petramala, L; Iacobellis, G; Carnevale, R; Marinelli, C; Zinnamosca, L; Concistrè, A; Galassi, M; Iannucci, G; Lucia, P; Pignatelli, P; Ciardi, A; Violi, F; De Toma, G; Letizia, C

    2016-07-01

    Primary aldosteronism (PA) is one of the most frequent forms of secondary hypertension, associated with atherosclerosis and higher risk of cardiovascular events. Platelets play a key role in the atherosclerotic process. The aim of the study was to evaluate the platelet activation by measuring serum levels of soluble CD40L (sCD40L) and P-selectin (sP-selectin) in consecutive PA patients [subgroup: aldosterone-secreting adrenal adenoma (APA) and bilateral adrenal hyperplasia (IHA)], matched with essential hypertensive (EH) patients. The subgroup of APA patients was revaluated 6-months after unilateral adrenalectomy. In all PA group, we measured higher serum levels of both sP-selectin (14.29±9.33 pg/ml) and sCD40L (9.53±4.2 ng/ml) compared to EH patients (9.39±5.3 pg/ml and 3.54±0.94 ng/ml, respectively; p<0.001). After removal of APA, PA patients showed significant reduction of blood pressure (BP) values, plasma aldosterone (PAC) levels and ARR-ratio, associated with a significant reduction of sP-selectin (16.74±8.9 pg/ml vs. 8.1±3.8 pg/ml; p<0.01) and sCD40L (8.6±1 ng/ml vs. 5.24±0.94 ng/ml; p<0.001). In PA patients, we found a significant correlation between sP-selectin and sCD40L with PAC (r=0.52, p<0.01; r=0.50, p<0.01, respectively); this correlation was stronger in APA patients (r=0.54; p<0.01 r=0.63; p<0.01, respectively). Our results showed that PA is related to platelet activation, expressed as higher plasma values of sCD40L and sP-selectin values. Surgical treatment and consequent normalization of aldosterone secretion was associated with significant reduction of sCD40L and sP-selectin values in APA patients. PMID:27101095

  15. Thymic medullary epithelium and thymocyte self tolerance require cooperation between CD28-CD80/86 and CD40-CD40L costimulatory pathways

    PubMed Central

    Williams, Joy A.; Zhang, Jingjing; Jeon, Hyein; Nitta, Takeshi; Ohigashi, Izumi; Klug, David; Kruhlak, Michael J.; Choudhury, Baishakhi; Sharrow, Susan O.; Granger, Larry; Adams, Anthony; Eckhaus, Michael A.; Jenkinson, S. Rhiannon; Richie, Ellen R.; Gress, Ronald E.; Takahama, Yousuke; Hodes, Richard J.

    2014-01-01

    A critical process during thymic development of the T cell repertoire is the induction of self-tolerance. Tolerance in developing T cells is highly dependent on medullary thymic epithelial cells (mTEC) and mTEC development in turn requires signals from mature single positive (SP) thymocytes, a bidirectional relationship termed thymus crosstalk. We show that CD28-CD80/86 and CD40-CD40L costimulatory interactions, which mediate negative selection and self-tolerance, upregulate expression of LTα, LTβ and RANK in the thymus and are necessary for medullary development. Combined absence of CD28-CD80/86 and CD40-CD40L results in profound deficiency in mTEC development comparable to that observed in the absence of SP thymocytes. This requirement for costimulatory signaling is maintained even in a TCR transgenic model of high affinity TCR-ligand interactions. CD4 thymocytes maturing in the altered thymic epithelial environment of CD40/CD80/86 KO mice are highly autoreactive in vitro and are lethal in congenic adoptive transfer in vivo, demonstrating a critical role for these costimulatory pathways in self-tolerance as well as thymic epithelial development. These findings demonstrate that cooperativity between CD28-CD80/86 and CD40-CD40L pathways is required for normal medullary epithelium and for maintenance of self-tolerance in thymocyte development. PMID:24337745

  16. Characterisation of the TNF superfamily members CD40L and BAFF in the small-spotted catshark (Scyliorhinus canicula).

    PubMed

    Li, Ronggai; Redmond, Anthony K; Wang, Tiehui; Bird, Steve; Dooley, Helen; Secombes, Chris J

    2015-11-01

    The tumour necrosis factor superfamily (TNFSF) members CD40L and BAFF play critical roles in mammalian B cell survival, proliferation and maturation, however little is known about these key cytokines in the oldest jawed vertebrates, the cartilaginous fishes. Here we report the cloning of CD40L and BAFF orthologues (designated ScCD40L and ScBAFF) in the small-spotted catshark (Scyliorhinus canicula). As predicted both proteins are type II membrane-bound proteins with a TNF homology domain in their extracellular region and both are highly expressed in shark immune tissues. ScCD40L transcript levels correlate with those of TCRα and transcription of both genes is modulated in peripheral blood leukocytes following in vitro stimulation. Although a putative CD40L orthologue was identified in the elephant shark genome the work herein is the first molecular characterisation and transcriptional analysis of CD40L in a cartilaginous fish. ScBAFF was also cloned and its transcription characterised in an attempt to resolve the discrepancies observed between spiny dogfish BAFF and bamboo shark BAFF in previously published studies. PMID:26386192

  17. Genetic Adjuvantation of Recombinant MVA with CD40L Potentiates CD8 T Cell Mediated Immunity

    PubMed Central

    Lauterbach, Henning; Pätzold, Juliane; Kassub, Ronny; Bathke, Barbara; Brinkmann, Kay; Chaplin, Paul; Suter, Mark; Hochrein, Hubertus

    2013-01-01

    Modified vaccinia Ankara (MVA) is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70) early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression) was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated cytotoxic T-lymphocytes (CTLs) also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality, and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases. PMID:23986761

  18. T Lymphocytes Induce Endothelial Cell Matrix Metalloproteinase Expression by a CD40L-Dependent Mechanism

    PubMed Central

    Mach, François; Schönbeck, Uwe; Fabunmi, Rosalind P.; Murphy, Curran; Atkinson, Elizabeth; Bonnefoy, Jean-Yves; Graber, Pierre; Libby, Peter

    1999-01-01

    Neovascularization frequently accompanies chronic immune responses characterized by T cell infiltration and activation. Angiogenesis requires endothelial cells (ECs) to penetrate extracellular matrix, a process that involves matrix metalloproteinases (MMPs). We report here that activated human T cells mediate contact-dependent expression of MMPs in ECs through CD40/CD40 ligand signaling. Ligation of CD40 on ECs induced de novo expression of gelatinase B (MMP-9), increased interstitial collagenase (MMP-1) and stromelysin (MMP-3), and activated gelatinase A (MMP-2). Recombinant human CD40L induced expression of MMPs by human vascular ECs to a greater extent than did maximally effective concentrations of interleukin-1β or tumor necrosis factor-α. Moreover, activation of human vascular ECs through CD40 induced tube formation in a three-dimensional fibrin matrix gel assay, an effect antagonized by a MMP inhibitor. These results demonstrated that activation of ECs by interaction with T cells induced synthesis and release of MMPs and promoted an angiogenic function of ECs via CD40L-CD40 signaling. As vascular cells at the sites of chronic inflammation, such as atherosclerotic plaques, express CD40 and its ligand, our findings suggest that ligation of CD40 on ECs can mediate aspects of vascular remodeling and neovessel formation during atherogenesis and other chronic immune reactions. PMID:9916937

  19. The Serum Levels of the Soluble Factors sCD40L and CXCL1 Are Not Indicative of Endometriosis

    PubMed Central

    Pateisky, Petra; Pils, Dietmar; Kuessel, Lorenz; Szabo, Ladislaus; Walch, Katharina; Obwegeser, Reinhard; Wenzl, René; Yotova, Iveta

    2016-01-01

    Endometriosis is a benign but troublesome gynecological condition, characterized by endometrial-like tissue outside the uterine cavity. Lately, the discovery and validation of noninvasive diagnostic biomarkers for endometriosis is one of the main priorities in the field. As the disease elicits a chronic inflammatory reaction, we focused our interest on two factors well known to be involved in inflammation and neoplastic processes, namely, soluble CD40 Ligand and CXCL1, and asked whether differences in the serum levels of sCD40L and CXCL1 in endometriosis patients versus controls can serve as noninvasive disease markers. A total of n = 60 women were included in the study, 31 endometriosis patients and 29 controls, and the serum levels of sCD40L and CXCL1 were measured by enzyme-linked immunosorbent assay. Overall, there were no statistically significant differences in the levels of expression of both sCD40L and CXCL1 between patients and controls. This study adds useful clinical data showing that the serum levels of the soluble factors sCD40L and CXCL1 are not associated with endometriosis and are not suitable as biomarkers for disease diagnosis. However, we found a trend toward lower levels of sCD40L in the deep infiltrating endometriosis subgroup making it a potentially interesting target worth further investigation. PMID:27190986

  20. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type-1 immunity

    PubMed Central

    Zaccard, Colleen R.; Watkins, Simon C.; Kalinski, Pawel; Fecek, Ronald J.; Yates, Aarika L.; Salter, Russell D.; Ayyavoo, Velpandi; Rinaldo, Charles R.; Mailliard, Robbie B.

    2014-01-01

    The ability of dendritic cells (DC) to mediate CD4+ T cell help for cellular immunity is guided by instructive signals received during DC maturation, and the resulting pattern of DC responsiveness to the Th signal, CD40L. Furthermore, the professional transfer of antigenic information from migratory DC to lymph node-residing DC is critical for the effective induction of cellular immune responses. Here we report that, in addition to their enhanced IL-12p70 producing capacity, human DC matured in the presence of inflammatory mediators of type-1 immunity (DC1) are uniquely programmed to form networks of tunneling nanotube-like structures in response to CD40L-expressing Th cells or recombinant CD40L. This immunologic process of DC ‘reticulation’ facilitates intercellular trafficking of endosome-associated vesicles and Ag, but also pathogens such HIV-1, and is regulated by the opposing roles of IFN-γ and IL-4. The initiation of DC reticulation represents a novel helper function of CD40L and a superior mechanism of intercellular communication possessed by DC1, as well as a target for exploitation by pathogens to enhance direct cell-to-cell spread. PMID:25548234

  1. PU.1 Expression in T Follicular Helper Cells Limits CD40L-Dependent Germinal Center B Cell Development.

    PubMed

    Awe, Olufolakemi; Hufford, Matthew M; Wu, Hao; Pham, Duy; Chang, Hua-Chen; Jabeen, Rukhsana; Dent, Alexander L; Kaplan, Mark H

    2015-10-15

    PU.1 is an ETS family transcription factor that is important for the development of multiple hematopoietic cell lineages. Previous work demonstrated a critical role for PU.1 in promoting Th9 development and in limiting Th2 cytokine production. Whether PU.1 has functions in other Th lineages is not clear. In this study, we examined the effects of ectopic expression of PU.1 in CD4(+) T cells and observed decreased expression of genes involved with the function of T follicular helper (Tfh) cells, including Il21 and Tnfsf5 (encoding CD40L). T cells from conditional mutant mice that lack expression of PU.1 in T cells (Sfpi1(lck-/-)) demonstrated increased production of CD40L and IL-21 in vitro. Following adjuvant-dependent or adjuvant-independent immunization, we observed that Sfpi1(lck-/-) mice had increased numbers of Tfh cells, increased germinal center B cells (GCB cells), and increased Ab production in vivo. This correlated with increased expression of IL-21 and CD40L in Tfh cells from Sfpi1(lck-/-) mice compared with control mice. Finally, although blockade of IL-21 did not affect GCB cells in Sfpi1(lck-/-) mice, anti-CD40L treatment of immunized Sfpi1(lck-/-) mice decreased GCB cell numbers and Ag-specific Ig concentrations. Together, these data indicate an inhibitory role for PU.1 in the function of Tfh cells, germinal centers, and Tfh-dependent humoral immunity. PMID:26363052

  2. Phorbol myristate acetate, but not CD40L, induces the differentiation of CLL B cells into Ab-secreting cells

    PubMed Central

    Ghamlouch, Hussein; Ouled-Haddou, Hakim; Guyart, Aude; Regnier, Aline; Trudel, Stéphanie; Claisse, Jean-François; Fuentes, Vincent; Royer, Bruno; Marolleau, Jean-Pierre; Gubler, Brigitte

    2014-01-01

    In this study, we investigated the capacity of chronic lymphocytic leukemia (CLL) B cells to undergo terminal differentiation into Ig-secreting plasma cells in T cell-independent and T cell-dependent responses. We used a two-step model involving stimulation with phorbol myristate acetate (PMA) and CD40L, together with cytokines (PMA/c and CD40L/c), for 7 days. We describe immunophenotypic modifications, changes in the levels of mRNA and protein for transcription factors and morphological and functional events occurring during the differentiation of CLL B cells into antibody-secreting cells (ASCs). The induction of differentiation differed significantly between the CD40L/c and PMA/c culture systems. The PMA/c culture system allowed CLL B cells to differentiate into IgM-secreting cells with an immunophenotype and molecular profile resembling those of preplasmablasts. By contrast, CD40L/c-stimulated cells had a phenotype and morphology similar to those of activated B cells and resembling those of the CLL B cells residing in the lymph node and bone marrow. These data suggest that the CLL B cells are not frozen permanently at a stage of differentiation and are able to differentiate into ASCs as appropriate stimulation are provided. The data presented here raise questions about the molecular processes and stimulation required for CLL B-cell differentiation and about the inability of CD40 ligand to induce differentiation of the CLL B cells. PMID:24797583

  3. Organization of the human CD40L gene: Implications for molecular defects in X chromosome-linked hyper-IgM syndrome and prenatal diagnosis

    SciTech Connect

    Villa, A.; Macchi, P.P.; Strina, D.; Frattini, A.; Lucchini, F.; Patrosso, C.M.; Vezzoni, P.; Notarangelo, L.D.; Giliani, S.; Mantuano, E.

    1994-03-15

    Recently, CD40L has been identified as the gene responsible for X chromosome-linked hyper-IgM syndrome (HIGM1). CD40L on activated T cells from HIGM1 patients fails to bind B-cell CD40 molecules, and subsequent analysis of CD40L transcripts by reverse transcription PCR demonstrated coding region mutations in these patients. This approach, however, is of limited use for prenatal diagnosis of HIGM1 in the early-gestation fetus. In this report, the authors have defined the genomic structure of the CD40L gene, which is composed of five exons and four intervening introns. With this information, the authors have defined at the genomic level the CD40L coding region. These different deletions arose from three distinct mechanisms, including (i) a splice donor mutation with exon skipping, (ii) a splice acceptor mutation with utilization of a cryptic splice site, and (iii) a deletion/insertion event with the creation of a new splice acceptor site. In addition, they have performed prenatal evaluation of an 11-week-old fetus at risk for HIGM1. CD40L genomic clones provide a starting point for further studies of the genetic elements that control CD40L expression. Knowledge of the CD40L gene structure will prove useful for the identification of additional mutations in HIGM1 and for performing genetic counseling about this disease. 54 refs., 4 figs., 1 tab.

  4. Increased concentrations of soluble vascular cell adhesion molecule-1 and soluble CD40L in subjects with metabolic syndrome.

    PubMed

    Palomo, Iván G; Jaramillo, Julio C; Alarcón, Marcelo L; Gutiérrez, César L; Moore-Carrasco, Rodrigo; Segovia, Fabián M; Leiva, Elba M; Mujica, Verónica E; Icaza, Gloria; Dí, Nora S

    2009-01-01

    Metabolic syndrome (MS) is associated with a high incidence rate of cardiovascular disease. It is characterized by abdominal obesity, elevated blood pressure, atherogenic dyslipidemia [high LDL-c (low density lipoprotein cholesterol) and low HDL-c (high density lipoprotein cholesterol)] and insulin resistance or glucose intolerance. In the context of MS, alterations in the plasmatic levels of some soluble forms of cell adhesion molecules can appear, e.g., soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin) and soluble CD40L (sCD40L). The objective of this study was to compare the serum levels of sVCAM-1, sE-selectin and sCD40L in MS and non-MS groups and to associate these molecules with the diagnostic criteria of MS. A total of 185 non-smokers between 45 and 64 years of age were included. Of these, 93 corresponded to the MS group and the remaining 92 to a non-MS group (according to modified ATP III criteria). The serum concentration of sVCAM-1, sE-selectin and sCD40L was determined by commercial solid phase ELISA. The results were expressed as a median and interquartile range. The MS group showed high levels of sVCAM-1 (558.9 ng/ml; 481.3-667.6 ng/ml) compared with the non-MS group (405.2 ng/ml; 361.0-470.5 ng/ml) (p<0.0001). As well, the median level of sCD40L (3.0 ng/ml; 2.1l-11.7 ng/ml) was significantly higher in the MS group than that in the non-MS group (2.6 ng/ml; 2.3-3.4 ng/ml) (p=0.0061). sE-selectin levels did not differ significantly between the groups: 73.9 ng/ml (58.3-87.0 ng/ml) and 68.5 ng/ml (51.6-97.5 ng/ml) in the MS and non-MS group, respectively. In conclusion, the serum levels of sVCAM-1 and sCD40L, but not sE-selectin, were significantly higher in patients with MS than in subjects that did not present MS. MS may therefore increase the expression of cell adhesion molecules, probably through endothelial activation. PMID:21475854

  5. Regulatory T Cell-Dependent and -Independent Mechanisms of Immune Suppression by CD28/B7 and CD40/CD40L Costimulation Blockade.

    PubMed

    Vogel, Isabel; Verbinnen, Bert; Van Gool, Stefaan; Ceuppens, Jan L

    2016-07-15

    Blocking of costimulatory CD28/B7 and CD40/CD40L interactions is an experimental approach to immune suppression and tolerance induction. We previously reported that administration of a combination of CTLA-4Ig and MR1 (anti-CD40L mAb) for blockade of these interactions induces tolerance in a fully mismatched allogeneic splenocyte transfer model in mice. We now used this model to study whether regulatory T cells (Tregs) contribute to immune suppression and why both pathways have to be blocked simultaneously. Mice were injected with allogeneic splenocytes, CD4(+) T cells, or CD8(+) T cells and treated with MR1 mAb and different doses of CTLA-4Ig. The graft-versus-host reaction of CD4(+) T cells, but not of CD8(+) T cells, was inhibited by MR1. CTLA-4Ig was needed to cover CD8(+) T cells but had only a weak effect on CD4(+) T cells. Consequently, only the combination provided full protection when splenocytes were transferred. Importantly, MR1 and low-dose CTLA-4Ig treatment resulted in a relative increase in Tregs, and immune suppressive efficacy was abolished in the absence of Tregs. High-dose CTLA-4Ig treatment, in contrast, prevented Treg expansion and activity, and in combination with MR1 completely inhibited CD4(+) and CD8(+) T cell activation in a Treg-independent manner. In conclusion, MR1 and CTLA-4Ig act synergistically as they target different T cell populations. The contribution of Tregs to immune suppression by costimulation blockade depends on the concentration of CTLA-4Ig and thus on the degree of available CD28 costimulation. PMID:27288533

  6. Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes.

    PubMed

    Fan, X; Hashem, A M; Chen, Z; Li, C; Doyle, T; Zhang, Y; Yi, Y; Farnsworth, A; Xu, K; Li, Z; He, R; Li, X; Wang, J

    2015-01-01

    The influenza viral hemagglutinin (HA) is comprised of two subunits. Current influenza vaccine predominantly induces neutralizing antibodies (Abs) against the HA1 subunit, which is constantly evolving in unpredictable fashion. The other subunit, HA2, however, is highly conserved but largely shielded by the HA head domain. Thus, enhancing immune response against HA2 could potentially elicit broadly inhibitory Abs. We generated a recombinant adenovirus (rAd) encoding secreted fusion protein, consisting of codon-optimized HA2 subunit of influenza A/California/7/2009(H1N1) virus fused to a trimerized form of murine CD40L, and determined its ability of inducing protective immunity upon intranasal administration. We found that mice immunized with this recombinant viral vaccine were completely protected against lethal challenge with divergent influenza A virus subtypes including H1N1, H3N2, and H9N2. Codon-optimization of HA2 as well as the use of CD40L as a targeting ligand/molecular adjuvant were indispensable to enhance HA2-specific mucosal IgA and serum IgG levels. Moreover, induction of HA2-specific T-cell responses was dependent on CD40L, as rAd secreting HA2 subunit without CD40L failed to induce any significant levels of T-cell cytokines. Finally, sera obtained from immunized mice were capable of inhibiting 13 subtypes of influenza A viruses in vitro. These results provide proof of concept for a prototype HA2-based universal influenza vaccine. PMID:25052763

  7. Intraperitoneal Administration of a Tumor-Associated Antigen SART3, CD40L, and GM-CSF Gene-Loaded Polyplex Micelle Elicits a Vaccine Effect in Mouse Tumor Models

    PubMed Central

    Furugaki, Kouichi; Cui, Lin; Kunisawa, Yumi; Osada, Kensuke; Shinkai, Kentaro; Tanaka, Masao; Kataoka, Kazunori; Nakano, Kenji

    2014-01-01

    Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3), adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF) as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC). Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver. Compared with mock controls, the triple gene vaccine significantly prolonged the survival of mice harboring peritoneal dissemination of CT26 colorectal cancer cells, of which long-term surviving mice showed complete rejection when re-challenged with CT26 tumors. Moreover, the DNA vaccine inhibited the growth and metastasis of subcutaneous CT26 and Lewis lung tumors in BALB/c and C57BL/6 mice, respectively, which represent different MHC haplotypes. The DNA vaccine highly stimulated both cytotoxic T lymphocyte and natural killer cell activities, and increased the infiltration of CD11c+ DCs and CD4+/CD8a+ T cells into tumors. Depletion of CD4+ or CD8a+ T cells by neutralizing antibodies deteriorated the anti-tumor efficacy of the DNA vaccine. In conclusion, a SART3/CD40L+GM-CSF gene-loaded polyplex micelle can be applied as a novel vaccine platform to elicit tumor rejection immunity regardless of the recipient MHC haplotype. PMID:25013909

  8. The CD40-CD40L Pathway Contributes to the Proinflammatory Function of Intestinal Epithelial Cells in Inflammatory Bowel Disease

    PubMed Central

    Borcherding, Frauke; Nitschke, Martin; Hundorfean, Gheorghe; Rupp, Jan; von Smolinski, Dorthe; Bieber, Katja; van Kooten, Cees; Lehnert, Hendrik; Fellermann, Klaus; Büning, Jürgen

    2010-01-01

    In inflammatory bowel diseases (IBD), intestinal epithelial cells (IECs) are involved in the outbalanced immune responses toward luminal antigens. However, the signals responsible for this proinflammatory capacity of IECs in IBD remain unclear. The CD40/CD40L interaction activates various pathways in immune and nonimmune cells related to inflammation and was shown to be critical for the development of IBD. Here we demonstrate CD40 expression within IECs during active IBD. Endoscopically obtained biopsies taken from Crohn’s disease (n = 112) and ulcerative colitis patients (n = 67) consistently showed immunofluorescence staining for CD40 in IECs of inflamed ileal or colonic mucosa. In noninvolved mucosa during active disease, tissue obtained during Crohn’s disease or ulcerative colitis in remission and biopsies from healthy controls (n = 38) IECs almost entirely lacked CD40 staining. Flow cytometry and RT-PCR analysis using different intestinal epithelial cell lines (HT29, SW480, and T84) showed IFN-γ to effectively induce CD40 in IECs. Cells were virtually unresponsive to LPS or whole E. coli regarding CD40 expression. In addition, a moderate induction of CD40 was found in response to TNF-α, which exerted synergistical effects with IFN-γ. CD40 ligation by CD40L-transfected murine fibroblasts or soluble CD40L increased the secretion of IL-8 in IFN-γ pretreated HT29 cells. Our findings provide evidence for the epithelial expression and modulation of CD40 in IBD-affected mucosa and indicate its involvement in the proinflammatory function of IECs. PMID:20133813

  9. The importance of sCD40 and sCD40L concentration in patients with chronic HCV infection and HIV co-infection.

    PubMed

    Lapiński, Tadeusz Wojciech; Pogorzelska, Joanna; Grzeszczuk, Anna; Swiderska, Magdalena; Kowalczuk, Oksana; Nikliński, Jacek; Flisiak, Robert

    2014-01-01

    CD40 receptor is activated by ligand CD40L (CD154) which is synthesized in inflammation by NK cells, monocytes and lymphocytes B. TRAF proteins are activated in cells by CD40 stimulation and next they stimulate different enzymatic pathways. High concentrations of CD40L stimulate CD40, and consequently STAT enzyme system inhibits the expression ofnonstructural proteins ofHCV NS3 and NS5A and E2 core in infected human hepatocytes. PURPOSE. The aim of the study was to evaluate the concentration of soluble components of the complex: sCD40 and sCD40L in the serum of patients infected with HCV and HCV/HIV-1 co-infected. The effect ofHCV genotype, HIV and HCV viral load and rs12979860 polymorphism on serum sCD40 and sCD40L was established among the patients. The influence of the number of CD3+, CD4+ and CD8+ on the concentrations of sCD40 and sCD40L was evaluated in the HIV-1 infected group MATERIALS AND METHODS. Serum concentrations of sCD40 and sCD40L were determined using ELISA in 68 HCV infected patients including 39 HCV monoinfected and 29 HCV/HIV-1 co-infected. RESULTS. Serum concentration of sCD40 and sCD40L was significantly higher in HCV and HCV/HIV coinfected patients compared to healthy subjects (25.7 and 23.2 v. 8.5 pg/ml and 12.7 and 7.3 v. 0.79 ng/ml). The concentration of sCD40L in patients with genotype CC rs12979860 was significantly higher compared to patients with Non-CC genotypes (11.8 v. 7.6 ng/ml, p < 0.018). CONCLUSIONS. High levels of sCD40 and sCD40L were detected among patients with chronic HCV and HCV/ HIV-1 infection The high concentration of sCD40L correlates with CC rs12979860 genotype. PMID:25004625

  10. T lymphocytes induce endothelial cell matrix metalloproteinase expression by a CD40L-dependent mechanism: implications for tubule formation.

    PubMed

    Mach, F; Schönbeck, U; Fabunmi, R P; Murphy, C; Atkinson, E; Bonnefoy, J Y; Graber, P; Libby, P

    1999-01-01

    Neovascularization frequently accompanies chronic immune responses characterized by T cell infiltration and activation. Angiogenesis requires endothelial cells (ECs) to penetrate extracellular matrix, a process that involves matrix metalloproteinases (MMPs). We report here that activated human T cells mediate contact-dependent expression of MMPs in ECs through CD40/CD40 ligand signaling. Ligation of CD40 on ECs induced de novo expression of gelatinase B (MMP-9), increased interstitial collagenase (MMP-1) and stromelysin (MMP-3), and activated gelatinase A (MMP-2). Recombinant human CD40L induced expression of MMPs by human vascular ECs to a greater extent than did maximally effective concentrations of interleukin-1beta or tumor necrosis factor-alpha. Moreover, activation of human vascular ECs through CD40 induced tube formation in a three-dimensional fibrin matrix gel assay, an effect antagonized by a MMP inhibitor. These results demonstrated that activation of ECs by interaction with T cells induced synthesis and release of MMPs and promoted an angiogenic function of ECs via CD40L-CD40 signaling. As vascular cells at the sites of chronic inflammation, such as atherosclerotic plaques, express CD40 and its ligand, our findings suggest that ligation of CD40 on ECs can mediate aspects of vascular remodeling and neovessel formation during atherogenesis and other chronic immune reactions. PMID:9916937

  11. Plasma Prostaglandin E2 Levels Correlated with the Prevention of Intravenous Immunoglobulin Resistance and Coronary Artery Lesions Formation via CD40L in Kawasaki Disease

    PubMed Central

    Kuo, Ho-Chang; Wang, Chih-Lu; Yang, Kuender D.; Lo, Mao-Hung; Hsieh, Kai-Sheng; Li, Sung-Chou

    2016-01-01

    Background A form of systemic vasculitis, Kawasaki disease (KD) occurs most frequently in children under the age of five years old. Previous studies have found that Prostaglandin E2 (PGE2) correlates with KD, although the related mechanisms are still unknown. CD40L may also be a marker of vasculitis in KD, so this study focuses on PGE2 and CD40L expression in KD. Materials and Methods This study consisted of a total of 144 KD patients, whose intravenous immunoglobulin (IVIG)/coronary arterial lesion (CAL) formation resistance was evaluated. PGE2 levels were evaluated in vitro to study the effect of CD40L on CD4+ T lymphocytes. Results PGE2 levels significantly increased after IVIG treatment (p<0.05), especially in patients who responded to initial IVIG treatment (p = 0.004) and for patients without CAL formation (p = 0.016). Furthermore, an in vitro study revealed that IVIG acted as a trigger for PGE2 expression in the acute-stage mononuclear cells of KD patients. According to our findings, both IVIG and PGE2 can impede surface CD40L expressions on CD4+ T lymphocytes (p<0.05). Conclusions The results of this study are among the first to find that plasma PGE2 is correlated with the prevention of IVIG resistance and CAL formation through CD40L in KD. PMID:27525421

  12. Effects of representative glucocorticoids on TNFα- and CD40L-induced NF-κB activation in sensor cells.

    PubMed

    Cechin, Sirlene R; Buchwald, Peter

    2014-07-01

    Glucocorticoids are an important class of anti-inflammatory/immunosuppressive drugs. A crucial part of their anti-inflammatory action results from their ability to repress proinflammatory transcription factors such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) upon binding to the glucocorticoid receptor (GR). Accordingly, sensor cells quantifying their effect on inflammatory signal-induced NF-κB activation can provide useful information regarding their potencies as well as their transrepression abilities. Here, we report results obtained on their effect in suppressing both the TNFα- and the CD40L-induced activation of NF-κB in sensor cells that contain an NF-κB-inducible SEAP construct. In these cells, we confirmed concentration-dependent NF-κB activation for both TNFα and CD40L at low nanomolar concentrations (EC50). Glucocorticoids tested included hydrocortisone, prednisolone, dexamethasone, loteprednol etabonate, triamcinolone acetonide, beclomethasone dipropionate, and clobetasol propionate. They all caused significant, but only partial inhibition of these activations in concentration-dependent manners that could be well described by sigmoid response-functions. Despite the limitations of only partial maximum inhibitions, this cell-based assay could be used to quantitate the suppressing ability of glucocorticoids (transrepression potency) on the expression of proinflammatory transcription factors caused by two different cytokines in parallel both in a detailed, full dose-response format as well as in a simpler single-dose format. Whereas inhibitory potencies obtained in the TNF assay correlated well with consensus glucocorticoid potencies (receptor-binding affinities, Kd, RBA, at the GR) for all compounds, the non-halogenated steroids (hydrocortisone, prednisolone, and loteprednol etabonate) were about an order of magnitude more potent than expected in the CD40 assay in this system. PMID:24747770

  13. Valproic Acid Inhibits the Release of Soluble CD40L Induced by Non-Nucleoside Reverse Transcriptase Inhibitors in Human Immunodeficiency Virus Infected Individuals

    PubMed Central

    Davidson, Donna C.; Schifitto, Giovanni; Maggirwar, Sanjay B.

    2013-01-01

    Despite the use of highly active antiretroviral therapies (HAART), a majority of Human Immunodeficiency Virus Type 1 (HIV) infected individuals continually develop HIV – Associated Neurocognitive Disorders (HAND), indicating that host inflammatory mediators, in addition to viral proteins, may be contributing to these disorders. Consistent with this notion, we have previously shown that levels of the inflammatory mediator soluble CD40 ligand (sCD40L) are elevated in the plasma and cerebrospinal fluid (CSF) of HIV infected, cognitively impaired individuals, and that excess sCD40L can contribute to blood brain barrier (BBB) permeability in vivo, thereby signifying the importance of this inflammatory mediator in the pathogenesis of HAND. Here we demonstrate that the non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz (EFV) induces the release of circulating sCD40L in both HIV infected individuals and in an in vitro suspension of washed human platelets, which are the main source of circulating sCD40L. Additionally, EFV was found to activate glycogen synthase kinase 3 beta (GSK3β) in platelets, and we now show that valproic acid (VPA), a known GSK3β inhibitor, was able to attenuate the release of sCD40L in HIV infected individuals receiving EFV, and in isolated human platelets. Collectively these results have important implications in determining the pro-inflammatory role that some antiretroviral regimens may have. The use of antiretrovirals remains the best strategy to prevent HIV-associated illnesses, including HAND, however these drugs have clear limitations to this end, and thus, these results underscore the need to develop adjunctive therapies for HAND that can also minimize the undesired negative effects of the antiretrovirals. PMID:23555843

  14. The role of CD40 and CD40L in bone mineral density and in osteoporosis risk: A genetic and functional study.

    PubMed

    Panach, Layla; Pineda, Begoña; Mifsut, Damián; Tarín, Juan J; Cano, Antonio; García-Pérez, Miguel Ángel

    2016-02-01

    Compelling data are revealing that the CD40/CD40L system is involved in bone metabolism. Furthermore, we have previously demonstrated that polymorphisms in both genes are associated with bone phenotypes. The aim of this study is to further characterize this association and to identify the causal functional mechanism. We conducted an association study of BMD with 15 SNPs in CD40/CD40L genes in a population of 779 women. In addition, we assessed the functionality of this association through the study of the allele-dependent expression of CD40 and CD40L in peripheral blood leukocytes (PBLs) and in human osteoblasts (OBs) obtained from bone explants by qPCR and by sequencing. When an allelic imbalance (AI) was detected, studies on allele-dependent in vitro transcription rate and on CpG methylation in the gene promoter were also performed. Our results confirm the genetic association between SNP rs116535 (T>C) of CD40L gene with LS-BMD. Regarding CD40 gene, two SNPs showed nominal P-values<0.05 for FN- and LS-BMD (Z-scores), although the association was not significant after correcting for multiple testing. Homozygous TT women for SNP rs1883832 (C>T) of CD40 gene showed a trend to have lower levels of OPG (Q-value=0.059), especially when women of BMD-quartile ends were selected (P<0.05). Regarding functionality, we detected an AI for rs1883832 with the C allele the most expressed in OBs and in PBLs. Since the rs116535 of CD40L gene did not show AI, it was not further analyzed. Finally, we described a differential methylation of CpGs in the CD40 promoter among women of high in comparison to low BMD. Our results suggest that the CD40/CD40L system plays a role in regulating BMD. Effectively, our data suggest that a decreased production of OPG could be the cause of the lower BMD observed in TT women for rs1883832 of the CD40 gene and that the degree of methylation of CpGs in the CD40 promoter could contribute to the acquisition of BMD. One possibility that deserves further

  15. Agreement of skin test with IL-4 production and CD40L expression by T cells upon immunotherapy of subjects with systemic reactions to Hymenoptera stings.

    PubMed

    Urra, José M; Cabrera, Carmen M; Alfaya, Teresa; Feo-Brito, Francisco

    2016-02-01

    Venom immunotherapy is the only curative intervention for subjects with Hymenoptera venom allergy who suffering systemic reactions upon bee or wasp stings. Venom immunotherapy can restore normal immunity against venom allergens, as well as providing to allergic subjects a lifetime tolerance against venoms. Nevertheless, it is necessary using safety assays to monitoring the development of tolerance in the VIT protocols to avoid fatal anaphylactic reactions. The purpose of this study was to assess the modifications in several markers of tolerance induction in subjects with Hymenoptera venom allergy undergoing immunotherapy. The studies were performed at baseline time and after six month of VIT. Intradermal skin tests, basophil activation tests, specific IgE levels; and the T-cell markers (IL-4 and IFN-γ producing cells; and expression of the surface activation markers CD40L and CTLA-4) were assayed. At six month of immunotherapy all parameters studied had significant alterations. All decreased, except the IFN-γ producing cells. In addition, modifications in intradermal skin test showed a significant correlation with both, CD40L expression on CD4 T lymphocytes (p=0.043) and IL-4 producing T lymphocytes (p=0.012). Neither basophil activation test nor serum levels of sIgE demonstrated any correlation with the immunological parameters studied nor among them. These results suggest that both IL-4 production and CD40L expression could be two good indicators of the beneficial effects of venom immunotherapy which translate into skin tests. PMID:26774053

  16. mRNA Electroporation of Dendritic Cells with WT1, Survivin, and TriMix (a Mixture of caTLR4, CD40L, and CD70).

    PubMed

    Coosemans, An; Tuyaerts, Sandra; Morias, Kim; Corthals, Jurgen; Heirman, Carlo; Thielemans, Kris; Van Gool, Stefaan W; Vergote, Ignace; Amant, Frédéric

    2016-01-01

    The immune system is a crucial player in the development of cancer. Once it is in imbalance and immunosuppressive mechanisms supporting tumor growth take over control, dendritic cell immunotherapy might offer a solution to restore the balance. There are several methods to manufacture dendritic cells but none of them has yet proven to be superior to others. In this chapter, we discuss the methodology using electroporation of mRNA encoding Wilms' tumor gene 1, survivin, and TriMix (mixture of caTLR4, CD40L, and CD70) to simultaneously load and mature dendritic cells. PMID:27236806

  17. Bezafibrate and medroxyprogesterone acetate target resting and CD40L-stimulated primary marginal zone lymphoma and show promise in indolent B-cell non-Hodgkin lymphomas.

    PubMed

    Hayden, Rachel E; Kussaibati, Racha; Cronin, Laura M; Pratt, Guy; Roberts, Claudia; Drayson, Mark T; Bunce, Christopher M

    2015-04-01

    B cell non-Hodgkin lymphomas (B-NHLs) are the most common adult hematological cancers and many remain incurable. Development of chemotherapy regimens is confounded by the prevalence of B-NHL in older, frailer patients and the chemo-protective tumor microenvironment. Although biological therapies such as rituximab have significantly improved outcomes and selective kinase inhibitors are showing promise, the rate of new drug discovery remains disappointing, the treatments expensive and long-term benefits uncertain. An alternative strategy is redeployment of available, inexpensive and non-toxic drugs. Here, we demonstrate the antiproliferative and mitochondrial superoxide (MSO) driven pro-apoptotic activities of bezafibrate (BEZ) and medroxyprogesterone acetate (MPA) against B-NHL cells, with a bias toward MZL, in the presence and absence of the microenvironmental signal CD40L. Our study is the first to confirm the presence of CD40L within the lymph node of B-NHL and its capacity to drive B-NHL proliferation. These findings implicate BEZ + MPA as a potential therapeutic strategy in B-NHL. PMID:24996440

  18. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells.

    PubMed

    Marigo, Ilaria; Zilio, Serena; Desantis, Giacomo; Mlecnik, Bernhard; Agnellini, Andrielly H R; Ugel, Stefano; Sasso, Maria Stella; Qualls, Joseph E; Kratochvill, Franz; Zanovello, Paola; Molon, Barbara; Ries, Carola H; Runza, Valeria; Hoves, Sabine; Bilocq, Amélie M; Bindea, Gabriela; Mazza, Emilia M C; Bicciato, Silvio; Galon, Jérôme; Murray, Peter J; Bronte, Vincenzo

    2016-09-12

    Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies. PMID:27622331

  19. Use of CD40L immunoconjugates to overcome the defective immune response to vaccines for infections and cancer in the aged.

    PubMed

    Tang, Yu Cheng; Thoman, Marilyn; Linton, Phyllis-Jean; Deisseroth, Albert

    2009-12-01

    :147-164, 1998; Ben-Yehuda and Weksler In: Cancer Investigation 10:525-531, 1992]. One of the more interesting examples of the functional defects in the cells of the adaptive immune response is a reduced level of expression in the surface cytoadhesion and activation receptor molecules on CD4 helper T cells undergoing activation during vaccination. Upon infection or vaccination, CD40L is typically increased on the surface of CD4 helper T cells during activation, and this increased expression is absolutely essential to the CD40L promotion of expansion of antigen-specific B cells and CD 8 effector T cells in response to infection or vaccination [Singh et al. In: Protein Sci 7:1124-1135, 1998; Grewal and Flavell In: Immunol Res 16: 59-70, 1997; Kornbluth In: J Hematother Stem Cell Res 11:787-801, 2002; Garcia de Vinuesa et al. In: Eur J Immunol 29:3216-3224, 1999]. In aged human beings and mice, the reduced levels of expression of CD40 ligand (CD40L) in activated CD4 helper T cells is dramatically reduced [Eaton et al. In: J Exp Med 200:1613-1622, 2004; Dong et al. In: J Gen Virol 84:1623-1628, 2003]. To circumvent the reduction in CD40L expression and the subsequent reduction in immune response in the elderly, we have developed a chimeric vaccine comprised of the CD40L linked to the target antigen, in a replication incompetent adenoviral vector and in booster protein. This review will discuss the implementation the potential use of this approach for the vaccination of the older populations for cancer and infection. PMID:19444444

  20. Loss of cooperativity of secreted CD40L and increased dose-response to IL4 on CLL cell viability correlates with enhanced activation of NF-kB and STAT6.

    PubMed

    Bhattacharya, Nupur; Reichenzeller, Michaela; Caudron-Herger, Maiwen; Haebe, Sarah; Brady, Nathan; Diener, Susanne; Nothing, Maria; Döhner, Hartmut; Stilgenbauer, Stephan; Rippe, Karsten; Mertens, Daniel

    2015-01-01

    Chronic lymphocytic leukemia (CLL) cells fail to enter apoptosis in vivo as opposed to their non-malignant B-lymphocyte counterparts. The ability of CLL cells to escape apoptosis is highly dependent on their microenvironment. Compared to non-malignant B cells, CLL cells are more responsive to complex stimuli that can be reproduced in vitro by the addition of cytokines. To understand the molecular mechanism of the environment-dependent anti-apoptotic signaling circuitry of CLL cells, we quantified the effect of the SDF-1, BAFF, APRIL, anti-IgM, interleukin-4 (IL4) and secreted CD40L (sCD40L) on the survival of in vitro cultured CLL cells and found IL4 and sCD40L to be most efficient in rescuing CLL cells from apoptosis. In quantitative dose-response experiments using cell survival as readout, the binding affinity of IL4 to its receptor was similar between malignant and non-malignant cells. However, the downstream signaling in terms of the amount of STAT6 and its degree of phosphorylation was highly stimulated in CLL cells. In contrast, the response to sCD40L showed a loss of cooperative binding in CLL cells but displayed a largely increased ligand binding affinity. Although a high-throughput microscopy analysis did not reveal a significant difference in the spatial CD40 receptor organization, the downstream signaling showed an enhanced activation of the NF-kB pathway in the malignant cells. Thus, we propose that the anti-apoptotic phenotype of CLL involves a sensitized response for IL4 dependent STAT6 phosphorylation, and an activation of NF-kB signaling due to an increased affinity of sCD40L to its receptor. PMID:24828787

  1. Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells

    PubMed Central

    Amin, Hiren P.; Czank, Charles; Raheem, Saki; Zhang, Qingzhi; Botting, Nigel P.; Cassidy, Aedín

    2015-01-01

    Scope In vitro and in vivo studies suggest that dietary anthocyanins modulate cardiovascular disease risk; however, given anthocyanins extensive metabolism, it is likely that their degradation products and conjugated metabolites are responsible for this reported bioactivity. Methods and results Human vascular endothelial cells were stimulated with either oxidized LDL (oxLDL) or cluster of differentiation 40 ligand (CD40L) and cotreated with cyanidin‐3‐glucoside and 11 of its recently identified metabolites, at 0.1, 1, and 10 μM concentrations. Protein and gene expression of IL‐6 and VCAM‐1 was quantified by ELISA and RT‐qPCR. In oxLDL‐stimulated cells the parent anthocyanin had no effect on IL‐6 production, whereas numerous anthocyanin metabolites significantly reduced IL‐6 protein levels; phase II conjugates of protocatechuic acid produced the greatest effects (>75% reduction, p ≤ 0.05). In CD40L‐stimulated cells the anthocyanin and its phase II metabolites reduced IL‐6 protein production, where protocatechuic acid‐4‐sulfate induced the greatest reduction (>96% reduction, p ≤ 0.03). Similarly, the anthocyanin and its metabolites reduced VCAM‐1 protein production, with ferulic acid producing the greatest effect (>65% reduction, p ≤ 0.04). Conclusion These novel data provide evidence to suggest that anthocyanin metabolites are bioactive at physiologically relevant concentrations and have the potential to modulate cardiovascular disease progression by altering the expression of inflammatory mediators. PMID:25787755

  2. CD40L expressed from the canarypox vector, ALVAC, can boost immunogenicity of HIV-1 canarypox vaccine in mice and enhance the in-vitro expansion of viral specific CD8+ T cell memory responses from HIV-1-infected and HIV-1-uninfected individuals

    PubMed Central

    Liu, Jun; Yu, Qigui; Stone, Geoffrey W.; Yue, Feng Yun; Ngai, Nicholas; Jones, R. Brad; Kornbluth, Richard S.; Ostrowski, Mario A.

    2011-01-01

    Summary Human immunodeficiency virus-1 (HIV-1) canarypox vaccines are safe but poorly immunogenic. CD40 ligand (CD40L), a member of the tumor necrosis factor superfamily (TNFSF), is a pivotal co-stimulatory molecule for immune responses. To explore whether CD40L can be used as an adjuvant for HIV-1 canarypox vaccine, we constructed recombinant canarypox viruses expressing CD40L. Co-immunization of mice with CD40L expressing canarypox and the canarypox vaccine expressing HIV-1 proteins, vCP1452, augmented HIV-1 specific cytotoxic T lymphocyte (CTL) responses in terms of frequency, polyfunctionality and interleukin (IL)-7 receptor α chain (IL-7Rα, CD127) expression. In addition, CD40L expressed from canarypox virus could significantly augment CD4+ T cell responses against HIV-1 in mice. CD40L expressed from canarypox virus matured human monocyte-derived dendritic cells (MDDCs) in a tumor necrosis factor α (TNF-α) independent manner, which underwent less apoptosis, and could expand ex vivo Epstein-Barr virus (EBV)-specific CTL responses from healthy human individuals and ex vivo HIV-1-specific CTL responses from HIV-1-infected individuals in the presence or absence of CD4+ T cells. Taken together, our results suggest that CD40L incorporation into poxvirus vectors could be used as a strategy to enhance their immunogenicity. PMID:18562053

  3. Induction of IL-12 Production in Human Peripheral Monocytes by Trypanosoma cruzi Is Mediated by Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins and Potentiated by IFN-γ and CD40-CD40L Interactions

    PubMed Central

    Abel, Lúcia Cristina Jamli; Ferreira, Ludmila Rodrigues Pinto; Cunha Navarro, Isabela; Baron, Monique Andrade; Kalil, Jorge; Gazzinelli, Ricardo Tostes; Rizzo, Luiz Vicente; Cunha-Neto, Edecio

    2014-01-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is characterized by immunopathology driven by IFN-γ secreting Th1-like T cells. T. cruzi has a thick coat of mucin-like glycoproteins covering its surface, which plays an important role in parasite invasion and host immunomodulation. It has been extensively described that T. cruzi or its products—like GPI anchors isolated from GPI-anchored mucins from the trypomastigote life cycle stage (tGPI-mucins)—are potent inducers of proinflammatory responses (i.e., cytokines and NO production) by IFN-γ primed murine macrophages. However, little is known about whether T. cruzi or GPI-mucins exert a similar action in human cells. We therefore decided to further investigate the in vitro cytokine production profile from human mononuclear cells from uninfected donors exposed to T. cruzi as well as tGPI-mucins. We observed that both living T. cruzi trypomastigotes and tGPI-mucins are potent inducers of IL-12 by human peripheral blood monocytes and this effect depends on CD40-CD40L interaction and IFN-γ. Our findings suggest that the polarized T1-type cytokine profile seen in T. cruzi infected patients might be a long-term effect of IL-12 production induced by lifelong exposure to T. cruzi tGPI-mucins. PMID:25120285

  4. CD40L+ CD4+ memory T cells migrate in a CD62P-dependent fashion into reactive lymph nodes and license dendritic cells for T cell priming

    PubMed Central

    Martín-Fontecha, Alfonso; Baumjohann, Dirk; Guarda, Greta; Reboldi, Andrea; Hons, Miroslav; Lanzavecchia, Antonio; Sallusto, Federica

    2008-01-01

    There is growing evidence that the maturation state of dendritic cells (DCs) is a critical parameter determining the balance between tolerance and immunity. We report that mouse CD4+ effector memory T (TEM) cells, but not naive or central memory T cells, constitutively expressed CD40L at levels sufficient to induce DC maturation in vitro and in vivo in the absence of antigenic stimulation. CD4+ TEM cells were excluded from resting lymph nodes but migrated in a CD62P-dependent fashion into reactive lymph nodes that were induced to express CD62P, in a transient or sustained fashion, on high endothelial venules. Trafficking of CD4+ TEM cells into chronic reactive lymph nodes maintained resident DCs in a mature state and promoted naive T cell responses and experimental autoimmune encephalomyelitis (EAE) to antigens administered in the absence of adjuvants. Antibodies to CD62P, which blocked CD4+ TEM cell migration into reactive lymph nodes, inhibited DC maturation, T cell priming, and induction of EAE. These results show that TEM cells can behave as endogenous adjuvants and suggest a mechanistic link between lymphocyte traffic in lymph nodes and induction of autoimmunity. PMID:18838544

  5. Generation of a soluble recombinant trimeric form of bovine CD40L and its potential use as a vaccine adjuvant in cows.

    PubMed

    Pujol, Julien; Bouillenne, Fabrice; Farnir, Frédéric; Dufrasne, Isabelle; Mainil, Jacques; Galleni, Moreno; Lekeux, Pierre; Bureau, Fabrice; Fiévez, Laurence

    2015-11-15

    Vaccination is the most cost-effective way to control infectious diseases in cattle. However, many infectious diseases leading to severe economical losses worldwide still remain for which a really effective and safe vaccine is not available. These diseases are most often due to intracellular pathogens such as bacteria or viruses, which are, by their localization, protected from antibiotics and/or CD4(+) T cell-dependent humoral responses. We therefore postulated that strategies leading to induction of not only CD4(+) T cell responses but also CD8(+) cytotoxic T lymphocyte (CTL) responses against infected cells should be privileged in the development of new vaccines against problematic intracellular pathogens in bovines. CD40 signaling in antigen-presenting cells may lead to the induction of robust CD4-independent CTL responses and several studies, especially in mice, have used CD40 stimulation to promote CD8(+) T cell-mediated immunity. For example, we have recently shown that immunization of mice with heat-killed Staphylococcus aureus (HKSA) and agonistic anti-CD40 monoclonal antibodies elicits strong CTL responses capable of protecting mice from subsequent staphylococcal mastitis. Unfortunately, there is at present no tool available to efficiently stimulate CD40 in cattle. In this study, we therefore first produced a soluble recombinant trimeric form of the natural bovine CD40 ligand (sboCD40LT). We then observed that sboCD40LT was able to potently stimulate bovine cells in vitro. Finally, we provide evidence that immunization of cows with sboCD40LT combined with HKSA was able to significantly increase the number of both HKSA-specific CD4(+) and CD8(+) T cells in the draining lymph nodes. In conclusion, we suggest that this new molecular tool could help in the development of vaccine strategies against bovine diseases caused by intracellular pathogens. PMID:26553560

  6. Th cells promote CTL survival and memory via acquired pMHC-I and endogenous IL-2 and CD40L signaling and by modulating apoptosis-controlling pathways.

    PubMed

    Umeshappa, Channakeshava Sokke; Xie, Yufeng; Xu, Shulin; Nanjundappa, Roopa Hebbandi; Freywald, Andrew; Deng, Yulin; Ma, Hong; Xiang, Jim

    2013-01-01

    Involvement of CD4(+) helper T (Th) cells is crucial for CD8(+) cytotoxic T lymphocyte (CTL)-mediated immunity. However, CD4(+) Th's signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4(+) Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4(+) T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA)-pulsed dendritic cell (DCova). CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2K(b)/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I) complex signaling, CD4(+) Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4(+) Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2) and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7) molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4(+) Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy. PMID:23785406

  7. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells.

    PubMed

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-11-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces. PMID:21985363

  8. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells

    PubMed Central

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-01-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces. PMID:21985363

  9. DNA Profiling of Convicted Offender Samples for the Combined DNA Index System

    ERIC Educational Resources Information Center

    Millard, Julie T

    2011-01-01

    The cornerstone of forensic chemistry is that a perpetrator inevitably leaves trace evidence at a crime scene. One important type of evidence is DNA, which has been instrumental in both the implication and exoneration of thousands of suspects in a wide range of crimes. The Combined DNA Index System (CODIS), a network of DNA databases, provides…

  10. DNA methyltransferase detection based on digestion triggering the combination of poly adenine DNA with gold nanoparticles.

    PubMed

    Liu, Pei; Wang, Dandan; Zhou, Yunlei; Wang, Haiyan; Yin, Huanshun; Ai, Shiyun

    2016-06-15

    DNA methyltransferase (MTase) has received a large amount of attention due to its catalyzation of DNA methylation in both eukaryotes and prokaryotes, which has a close relationship to cancer and bacterial diseases. Herein, a novel electrochemical strategy based on Dpn I digestion triggering the combination of poly adenine (polyA) DNA with a gold nanoparticles functioned glassy carbon electrode (AuNPs/GCE), is developed for the simple and efficient detection of DNA MTase and inhibitor screening. Only one methylene blue (MB)-labeled DNA hairpin probe and two enzymes are involved in this designed method. In the presence of Dam MTase, the hairpin probe can be methylated and then cleaved by the restriction endonuclease. Thus, a MB-labeled polyA signal-stranded DNA product is introduced to the surface of AuNPs/GCE through the effect between polyA and AuNPs, resulting in an obvious electrochemical signal. On the contrary, in the absence of Dam MTase, the DNA probe cannot be cleaved and a relatively small electrochemical response can be observed. As a result, the as-proposed biosensor offered an efficient way for Dam MTase activity monitoring with a low detection of 0.27U/mL, a wide linear range and good stability. Additionally, this assay holds great potential for further application in real biological matrices and inhibitors screening, which is expected to be useful in disease diagnosis and drug discovery. PMID:26807517

  11. Simple combined model for nonlinear excitations in DNA.

    PubMed

    Hien, D L; Nhan, N T; Ngo, V Thanh; Viet, N A

    2007-08-01

    We propose a simple model for DNA denaturation bases on the pendulum model of Englander [Proc. Natl. Acad. Sci. U.S.A. 77, 7222 (1980)] and the microscopic model of Peyrard and Bishop [Phys. Rev. Lett. 62, 2755 (1989)], so-called "combined model." The main parameters of our model are the coupling constant k along each strand, the mean stretching y* of the hydrogen bonds, the ratio of the damping constant and driven force gamma/F. We show that both the length L of unpaired bases and the velocity v of kinks depend on not only the coupling constant k but also the temperature T. Our results are in good agreement with previous works. PMID:17930079

  12. A combined DNA vaccine provides protective immunity against Mycobacterium bovis and Brucella abortus in cattle.

    PubMed

    Hu, Xi-Dan; Yu, Da-Hai; Chen, Su-Ting; Li, Shu-Xia; Cai, Hong

    2009-04-01

    We evaluated the immunogenicity and protective efficacy of a combined DNA vaccine containing six genes encoding immunodominant antigens from Mycobacterium bovis and Brucella abortus. The number of lymph node and spleen cultures positive for M. bovis and B. abortus from calves immunized with the combined DNA vaccine was significantly reduced (p < 0.01) compared with unvaccinated calves after challenge with virulent M. bovis and B. abortus 544. The combined DNA vaccine group displayed stronger antigen-specific interferon-gamma (IFN-gamma) responses and antigen-specific IFN-gamma ELISPOT activities 2 months after final immunization and after challenge. Antigen-specific CD4(+) and CD8(+) T cell responses in the combined DNA vaccine group were higher than either the Bacillus Calmette-Guerin (BCG)-positive or S19-positive control group. Likewise, more calves in the DNA vaccine group exhibited antigen-specific IgG titers and had higher IgG titers than those in the BCG- or S19-immunized groups 2 months after the final immunization. Moreover, two antigens in the combined DNA vaccine induced significant antigen-specific IFN-gamma responses 6 months after challenge (p < 0.05). Bacterial counts and pathological analyses of the challenged animals indicated that the combined DNA vaccine provided significantly better protection than the BCG vaccine against M. bovis, and the protection level induced by the combined DNA vaccine was comparable to S19 against B. abortus. This is the first report to demonstrate that a single combined DNA vaccine protects cattle against two infectious diseases. PMID:19364278

  13. Combinative exposure effect of radio frequency signals from CDMA mobile phones and aphidicolin on DNA integrity.

    PubMed

    Tiwari, R; Lakshmi, N K; Surender, V; Rajesh, A D V; Bhargava, S C; Ahuja, Y R

    2008-01-01

    The aim of present study is to assess DNA integrity on the effect of exposure to a radio frequency (RF) signal from Code Division Multiple Access (CDMA) mobile phones. Whole blood samples from six healthy male individuals were exposed for RF signals from a CDMA mobile phone for 1 h. Alkaline comet assay was performed to assess the DNA damage. The combinative exposure effect of the RF signals and APC at two concentrations on DNA integrity was studied. DNA repair efficiency of the samples was also studied after 2 h of exposure. The RF signals and APC (0.2 microg/ml) alone or in synergism did not have any significant DNA damage as compared to sham exposed. However, univariate analysis showed that DNA damage was significantly different among combinative exposure of RF signals and APC at 0.2 microg/ml (p < 0.05) and at 2 microg/ml (p < 0.02). APC at 2 microg/ml concentration also showed significant damage levels (p < 0.05) when compared to sham exposed. DNA repair efficiency also varied in a significant way in combinative exposure sets (p < 0.05). From these results, it appears that the repair inhibitor APC enhances DNA breaks at 2 microg/ml concentration and that the damage is possibly repairable. Thus, it can be inferred that the in vitro exposure to RF signals induces reversible DNA damage in synergism with APC. PMID:19037791

  14. Enhancement of anti-proliferative activities of Metformin, when combined with Celecoxib, without increasing DNA damage.

    PubMed

    Ullah, Asad; Ashraf, Muhammad; Javeed, Aqeel; Anjum, Aftab Ahmad; Attiq, Ali; Ali, Sarwat

    2016-07-01

    Pathophysiological changes in diabetes like hyperglycemia, oxidative stress, insulin resistance and compensatory hyperinsulinemia predispose cells to malignant transformation and damage DNA repair mechanism. This study was designed to explore the potential synergistic toxic effects of anti-diabetic drug (Metformin), and an analgesic drug (Celecoxib) at cellular level. MTT assay run on Vero cell line revealed that the combinations of Metformin and Celecoxib augment the anti-proliferative effects, whereas Single cell gel electrophoresis spotlighted that Metformin produce non-significant DNA damage with the threshold concentration of 400μg/ml in peripheral blood mononuclear cells (lymphocytes and monocytes), while Celecoxib produced significant (P<0.05) DNA damage (class III comets) above the concentration of 75μg/ml, however the DNA damage or DNA tail protrusions by combinations of both drugs were less than what was observed with Celecoxib alone. Metformin or Celecoxib did not appear mutagenic against any mutant strains (TA 100 and TA 98) but their combination exhibited slight mutagenicity at much higher concentration. The results obtained at concentrations higher than the therapeutic level of drugs and reflect that Metformin in combination with Celecoxib synergistically inhibits the cell proliferation in a concentration dependent pattern. Since, this increase in cytotoxicity did not confer an increase in DNA damage; this combination could be adopted to inhibit the growth of malignant cell without producing any genotoxic or mutagenic effects at cellular level. PMID:27327526

  15. Effect of Danhong Injection Combined with Naoxintong Tablets on Prognosis and Inflammatory Factor Expression in Acute Coronary Syndrome Patients Undergoing Percutaneous Coronary Intervention

    PubMed Central

    Lv*, Yun; Pan, Yaping; Gao*, Yan; Lu, Jingqian; Li, Yi; Bai, Jie; Zhai, Jing

    2015-01-01

    Background Danhong is a Chinese medical component that has been broadly used to treat various cerebrovascular diseases. This work aimed to investigate the effect of Danhong injection combined with Naoxintong tablets on the short-term prognosis and expression of inflammatory factor-soluble CD40 ligand (sCD40L) in acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI). Methods A total of 100 ACS patients with PCI were randomly divided equally into treatment and control groups. The control group was treated with conventional secondary prevention of coronary heart disease. Based on secondary prevention, Danhong injection combined with Naoxintong tablets was administered in the treatment group. The incidences of major adverse cardiovascular events and cardiac functions, including ejection fraction (EF) and six-minute walk test distance, during hospital discharge and at the third postoperative month were observed. The serum sCD40 levels at different times were also noted. Results There were 2 patients in the treatment group and 7 in the control group that were lost during follow-up, so the collected data were from only 48 patients in the treatment and 43 in the control group. During hospital discharge and at the third postoperative month, no significant difference in death, myocardial infarction, stroke, angina pectoris and readmission were observed between the two groups (p > 0.05). Upon hospital discharge, EF, six-minute walk test distance and serum sCD40L level in the two groups were not significantly different (p > 0.05). At the third postoperative month, EF and six-minute walk test distance in treatment group were significantly higher than those in the control group (p < 0.05), and the serum sCD40L level in the treatment group was significantly lower than that in the control group (p < 0.01). In addition, serum sCD40L levels in the two groups at the third postoperative month were significantly lower than those during hospital

  16. Ultrasensitive electrochemical biosensing for DNA using quantum dots combined with restriction endonuclease.

    PubMed

    Zhang, Can; Lou, Jing; Tu, Wenwen; Bao, Jianchun; Dai, Zhihui

    2015-01-21

    A universal and sensitive electrochemical biosensing platform for the detection and identification of DNA using CdSe quantum dots (CdSe QDs) as signal markers was designed. The detection mechanism was based on the specific recognition of MspI endonuclease combined with the signal amplification of gold nanoparticles (AuNPs). MspI endonuclease could recognize its specific sequence in the double-strand DNA (dsDNA) and cleave the dsDNA fragments linked with CdSe QDs from the electrode. The remaining attached CdSe QDs can be easily read out by square-wave voltammetry using an electrodeposited bismuth (Bi) film-modified glass carbon electrode. The concentrations of target DNA could be simultaneously detected by the signal of metal markers. Using mycobacterium tuberculosis (Mtb) DNA as a model, under the optimal conditions, the proposed biosensor could detect Mtb DNA down to 8.7 × 10(-15) M with a linear range of 5 orders of magnitude (from 1.0 × 10(-14) to 1.0 × 10(-9) M) and discriminate mismatched DNA with high selectivity. This strategy presented a universal and convenient biosensing platform for DNA assay, and its satisfactory performances make it a potential candidate for the early diagnosis of gene-related diseases. PMID:25408952

  17. Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezer

    NASA Astrophysics Data System (ADS)

    Shivashankar, G. V.; Libchaber, A.

    1997-12-01

    In this letter, we report on spatially selecting and grafting a DNA-tethered bead to an atomic force microscope (AFM) cantilever, using an optical tweezer. To quantify this technique, we measure force versus extension of a single DNA molecule using AFM. For such studies, we have developed a micromanipulation approach by combining an AFM, an optical tweezer, and visualization setup. The ability to select a single DNA polymer and specifically graft it to a localized position on a substrate opens up new possibilities in biosensors and bioelectronic devices.

  18. Low-density lipoprotein peptide-combined DNA nanocomplex as an efficient anticancer drug delivery vehicle.

    PubMed

    Zhang, Nan; Tao, Jun; Hua, Haiying; Sun, Pengchao; Zhao, Yongxing

    2015-08-01

    DNA is a type of potential biomaterials for drug delivery due to its nanoscale geometry, loading capacity of therapeutics, biocompatibility, and biodegradability. Unfortunately, DNA is easily degraded by DNases in the body circulation and has low intracellular uptake. In the present study, we selected three cationic polymers polyethylenimine (PEI), hexadecyl trimethyl ammonium bromide (CTAB), and low-density lipoprotein (LDL) receptor targeted peptide (RLT), to modify DNA and improve the issues. A potent anti-tumor anthracycline-doxorubicin (DOX) was intercalated into DNA non-covalently and the DOX/DNA was then combined with PEI, CTAB, and RLT, respectively. Compact nanocomplexes were formed by electrostatic interaction and could potentially protect DNA from DNases. More importantly, RLT had the potential to enhance intracellular uptake by LDL receptor mediated endocytosis. In a series of in vitro experiments, RLT complexed DNA enhanced intracellular delivery of DOX, increased tumor cell death and intracellular ROS production, and reduced intracellular elimination of DOX. All results suggested that the easily prepared and targeted RLT/DNA nanocomplexes had great potential to be developed into a formulation for doxorubicin with enhanced anti-tumor activity. PMID:25960329

  19. Combining crystallography and EPR: crystal and solution structures of the multidomain cochaperone DnaJ

    SciTech Connect

    Barends, Thomas R. M.; Brosi, Richard W. W.; Steinmetz, Andrea; Scherer, Anna; Hartmann, Elisabeth; Eschenbach, Jessica; Lorenz, Thorsten; Seidel, Ralf; Shoeman, Robert L.; Zimmermann, Sabine; Bittl, Robert; Schlichting, Ilme; Reinstein, Jochen

    2013-08-01

    The crystal structure of the N-terminal part of T. thermophilus DnaJ unexpectedly showed an ordered GF domain and guided the design of a construct enabling the first structure determination of a complete DnaJ cochaperone molecule. By combining the crystal structures with spin-labelling EPR and cross-linking in solution, a dynamic view of this flexible molecule was developed. Hsp70 chaperones assist in a large variety of protein-folding processes in the cell. Crucial for these activities is the regulation of Hsp70 by Hsp40 cochaperones. DnaJ, the bacterial homologue of Hsp40, stimulates ATP hydrolysis by DnaK (Hsp70) and thus mediates capture of substrate protein, but is also known to possess chaperone activity of its own. The first structure of a complete functional dimeric DnaJ was determined and the mobility of its individual domains in solution was investigated. Crystal structures of the complete molecular cochaperone DnaJ from Thermus thermophilus comprising the J, GF and C-terminal domains and of the J and GF domains alone showed an ordered GF domain interacting with the J domain. Structure-based EPR spin-labelling studies as well as cross-linking results showed the existence of multiple states of DnaJ in solution with different arrangements of the various domains, which has implications for the function of DnaJ.

  20. STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA (presentation video)

    NASA Astrophysics Data System (ADS)

    Heller, Iddo; Sitters, Gerrit; Broekmans, Onno D.; Farge, Géraldine; Menges, Carolin; Wende, Wolfgang; Hell, Stefan W.; Peterman, Erwin J.; Wuite, Gijs J.

    2014-09-01

    Dense coverage of DNA by proteins is a ubiquitous feature of cellular processes such as DNA organization, replication and repair. We present a single-molecule approach capable of visualizing individual DNA-binding proteins on densely covered DNA and in the presence of high protein concentrations. Our approach combines optical tweezers with multicolor confocal and stimulated emission depletion (STED) fluorescence microscopy. Proteins on DNA are visualized at a resolution of 50 nm, a sixfold resolution improvement over that of confocal microscopy. High temporal resolution (<50 ms) is ensured by fast one-dimensional beam scanning. Individual trajectories of proteins translocating on DNA can thus be distinguished and tracked with high precision. We demonstrate our multimodal approach by visualizing the assembly of dense nucleoprotein filaments with unprecedented spatial resolution in real time. Experimental access to the force-dependent kinetics and motility of DNA-associating proteins at biologically relevant protein densities is essential for linking idealized in vitro experiments with the in vivo situation.

  1. Synergistic antitumor efficacy of combined DNA vaccines targeting tumor cells and angiogenesis.

    PubMed

    Yin, Xiaotao; Wang, Wei; Zhu, Xiaoming; Wang, Yu; Wu, Shuai; Wang, Zicheng; Wang, Lin; Du, Zhiyan; Gao, Jiangping; Yu, Jiyun

    2015-09-18

    To further enhance the antitumor efficacy of DNA vaccine, we proposed a synergistic strategy that targeted tumor cells and angiogenesis simultaneously. In this study, a Semliki Forest Virus (SFV) replicon DNA vaccine expressing 1-4 domains of murine VEGFR2 and IL12 was constructed, and was named pSVK-VEGFR2-GFc-IL12 (CAVE). The expression of VEGFR2 antigen and IL12 adjuvant molecule in 293T cells in vitro were verified by western blot and enzyme-linked immune sorbent assay (ELISA). Then CAVE was co-immunized with CAVA, a SFV replicon DNA vaccine targeting survivin and β-hCG antigens constructed previously. The antitumor efficacy of our combined replicon vaccines was evaluated in mice model and the possible mechanism was further investigated. The combined vaccines could elicit efficient humoral and cellular immune responses against survivin, β-hCG and VEGFR2 simultaneously. Compared with CAVE or CAVA vaccine alone, the combined vaccines inhibited the tumor growth and improved the survival rate in B16 melanoma mice model more effectively. Furthermore, the intratumoral microvessel density was lowest in combined vaccines group than CAVE or CAVA alone group. Therefore, this synergistic strategy of DNA vaccines for tumor treatment results in an increased antitumor efficacy, and may be more suitable for translation to future research and clinic. PMID:26253468

  2. Combined antibody and DNA detection for early diagnosis of leptospirosis after a disaster.

    PubMed

    Iwasaki, Hiroko; Chagan-Yasutan, Haorile; Leano, Prisca Susan A; Koizumi, Nobuo; Nakajima, Chie; Taurustiati, Delsi; Hanan, Firmanto; Lacuesta, Talitha Lea; Ashino, Yugo; Suzuki, Yasuhiko; Gloriani, Nina G; Telan, Elizabeth Freda O; Hattori, Toshio

    2016-04-01

    Early diagnosis based on laboratory confirmation is essential for managing leptospirosis. This study investigated the effectiveness of a novel method of detecting leptospirosis that combines measurement of anti-Leptospira antibodies by the microscopic agglutination test (MAT), enzyme-linked immunosorbent assay (ELISA), and immunochromatographic test (ICT) and leptospiral DNA by loop-mediated isothermal amplification (LAMP) and real-time PCR in plasma and 2 types of urine pellets. Of 113 suspected cases, 68.1%, 76.1%, and 60.2% were positive by MAT, ELISA, and ICT, respectively. Real-time PCR using DNA purified from urine pellets collected by low-speed centrifugation yielded positive signals for patients in late acute as well as early phase who were positive by LAMP using plasma DNA or urine pellets. Among antibody-negative patients, 9.5% were positive by DNA detection. These findings indicate that the leptospirosis detection rate is increased by combining antibody and DNA detection, providing a new tool for timely diagnosis of infection. PMID:26860351

  3. The Updated Phylogenies of the Phasianidae Based on Combined Data of Nuclear and Mitochondrial DNA

    PubMed Central

    Shen, Yong-Yi; Dai, Kun; Cao, Xue; Murphy, Robert W.; Shen, Xue-Juan; Zhang, Ya-Ping

    2014-01-01

    The phylogenetic relationships of species in the Phasianidae, Order Galliformes, are the object of intensive study. However, convergent morphological evolution and rapid species radiation result in much ambiguity in the group. Further, matrilineal (mtDNA) genealogies conflict with trees based on nuclear DNA retrotransposable elements. Herein, we analyze 39 nearly complete mitochondrial genomes (three new) and up to seven nuclear DNA segments. We combine these multiple unlinked, more informative genetic markers to infer historical relationships of the major groups of phasianids. The nuclear DNA tree is largely congruent with the tree derived from mt genomes. However, branching orders of mt/nuclear trees largely conflict with those based on retrotransposons. For example, Gallus/Bambusicola/Francolinus forms the sister-group of Coturnix/Alectoris in the nuclear/mtDNA trees, yet the tree based on retrotransposable elements roots the former at the base of the tree and not with the latter. Further, while peafowls cluster with Gallus/Coturnix in the mt tree, they root at the base of the phasianids following Gallus in the tree based on retrotransposable elements. The conflicting branch orders in nuclear/mtDNA and retrotransposons-based trees in our study reveal the complex topology of the Phasianidae. PMID:24748132

  4. [Release of Extracellular DNA after Administration of Radioprotective Combination of α-Tocopherol and Ascorbic Acid].

    PubMed

    Vasilyeval, I N; Bespalov, V G

    2015-01-01

    Radioprotective and apoptotic activities of α-tocopherol acetate (vitamin E) and ascorbic acid (vitamin C) have been studied in 180 Wistar male rats. Rats were administered a single oral dose with vitamin E, vitamin C or their combination at prophylactic doses before or after the single whole body exposure to irradiation at the doses of 2 or 8 Gy. The radioprotective effect was evaluated by the frequency of chromosomal aberrations at metaphase plates of the bone marrow cells, apoptotic--by the level of circulating low-molecular-weight DNA (ImwDNA) in the blood plasma of irradiated rats. Administration of the combination of vitamins E and C before and after the irradiation at the dose of 2 Gy reduced the number of the cells with chromosomal aberrations thus providing the radioprotective effect, but separately administration of these vitamins did not show the significant radioprotective activity. Administration of the combination of vitamins E and C before irradiation with 8 Gy increased the lmwDNA in blood thus providing the apoptotic effect. So, synergy of radioprotective activities has been revealed in vitamins E and C action at prophylactic doses. Radioprotective effect of the combination of vitamins E and C can be associated with the apoptotic activity and can be explained by elimination of the least viable irradiated cells from the cell population. PMID:26863779

  5. A DNA-based system for selecting and displaying the combined result of two input variables

    PubMed Central

    Liu, Huajie; Wang, Jianbang; Song, Shiping; Fan, Chunhai; Gothelf, Kurt V.

    2015-01-01

    Oligonucleotide-based technologies for biosensing or bio-regulation produce huge amounts of rich high-dimensional information. There is a consequent need for flexible means to combine diverse pieces of such information to form useful derivative outputs, and to display those immediately. Here we demonstrate this capability in a DNA-based system that takes two input numbers, represented in DNA strands, and returns the result of their multiplication, writing this as a number in a display. Unlike a conventional calculator, this system operates by selecting the result from a library of solutions rather than through logic operations. The multiplicative example demonstrated here illustrates a much more general capability—to generate a unique output for any distinct pair of DNA inputs. The system thereby functions as a lookup table and could be a key component in future, more powerful data-processing systems for diagnostics and sensing. PMID:26646059

  6. A DNA-based system for selecting and displaying the combined result of two input variables.

    PubMed

    Liu, Huajie; Wang, Jianbang; Song, Shiping; Fan, Chunhai; Gothelf, Kurt V

    2015-01-01

    Oligonucleotide-based technologies for biosensing or bio-regulation produce huge amounts of rich high-dimensional information. There is a consequent need for flexible means to combine diverse pieces of such information to form useful derivative outputs, and to display those immediately. Here we demonstrate this capability in a DNA-based system that takes two input numbers, represented in DNA strands, and returns the result of their multiplication, writing this as a number in a display. Unlike a conventional calculator, this system operates by selecting the result from a library of solutions rather than through logic operations. The multiplicative example demonstrated here illustrates a much more general capability--to generate a unique output for any distinct pair of DNA inputs. The system thereby functions as a lookup table and could be a key component in future, more powerful data-processing systems for diagnostics and sensing. PMID:26646059

  7. Dual Targeting Biomimetic Liposomes for Paclitaxel/DNA Combination Cancer Treatment

    PubMed Central

    Liu, Guo-Xia; Fang, Gui-Qing; Xu, Wei

    2014-01-01

    Combinations of chemotherapeutic drugs with nucleic acid has shown great promise in cancer therapy. In the present study, paclitaxel (PTX) and DNA were co-loaded in the hyaluronic acid (HA) and folate (FA)-modified liposomes (HA/FA/PPD), to obtain the dual targeting biomimetic nanovector. The prepared HA/FA/PPD exhibited nanosized structure and narrow size distributions (247.4 ± 4.2 nm) with appropriate negative charge of −25.40 ± 2.7 mV. HA/FA/PD (PTX free HA/FA/PPD) showed almost no toxicity on murine malignant melanoma cell line (B16) and human hepatocellular carcinoma cell line (HepG2) (higher than 80% cell viability), demonstrating the safety of the blank nanovector. In comparison with the FA-modified PTX/DNA co-loaded liposomes (FA/PPD), HA/FA/PPD showed significant superiority in protecting the nanoparticles from aggregation in the presence of plasma and degradation by DNase I. Moreover, HA/FA/PPD could also significantly improve the transfection efficiency and cellular internalization rates on B16 cells comparing to that of FA/PPD (p < 0.05) and PPD (p < 0.01), demonstrating the great advantages of dual targeting properties. Furthermore, fluorescence microscope and flow cytometry results showed that PTX and DNA could be effectively co-delivered into the same tumor cell via HA/FA/PPD, contributing to PTX/DNA combination cancer treatment. In conclusion, the obtained HA/FA/PPD in the study could effectively target tumor cells, enhance transfection efficiency and subsequently achieve the co-delivery of PTX and DNA, displaying great potential for optimal combination therapy. PMID:25177862

  8. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology

    NASA Astrophysics Data System (ADS)

    Samanta, Anirban; Medintz, Igor L.

    2016-04-01

    Functionally integrating DNA and other nucleic acids with nanoparticles in all their different physicochemical forms has produced a rich variety of composite nanomaterials which, in many cases, display unique or augmented properties due to the synergistic activity of both components. These capabilities, in turn, are attracting greater attention from various research communities in search of new nanoscale tools for diverse applications that include (bio)sensing, labeling, targeted imaging, cellular delivery, diagnostics, therapeutics, theranostics, bioelectronics, and biocomputing to name just a few amongst many others. Here, we review this vibrant and growing research area from the perspective of the materials themselves and their unique capabilities. Inorganic nanocrystals such as quantum dots or those made from gold or other (noble) metals along with metal oxides and carbon allotropes are desired as participants in these hybrid materials since they can provide distinctive optical, physical, magnetic, and electrochemical properties. Beyond this, synthetic polymer-based and proteinaceous or viral nanoparticulate materials are also useful in the same role since they can provide a predefined and biocompatible cargo-carrying and targeting capability. The DNA component typically provides sequence-based addressability for probes along with, more recently, unique architectural properties that directly originate from the burgeoning structural DNA field. Additionally, DNA aptamers can also provide specific recognition capabilities against many diverse non-nucleic acid targets across a range of size scales from ions to full protein and cells. In addition to appending DNA to inorganic or polymeric nanoparticles, purely DNA-based nanoparticles have recently surfaced as an excellent assembly platform and have started finding application in areas like sensing, imaging and immunotherapy. We focus on selected and representative nanoparticle-DNA materials and highlight their

  9. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology.

    PubMed

    Samanta, Anirban; Medintz, Igor L

    2016-04-28

    Functionally integrating DNA and other nucleic acids with nanoparticles in all their different physicochemical forms has produced a rich variety of composite nanomaterials which, in many cases, display unique or augmented properties due to the synergistic activity of both components. These capabilities, in turn, are attracting greater attention from various research communities in search of new nanoscale tools for diverse applications that include (bio)sensing, labeling, targeted imaging, cellular delivery, diagnostics, therapeutics, theranostics, bioelectronics, and biocomputing to name just a few amongst many others. Here, we review this vibrant and growing research area from the perspective of the materials themselves and their unique capabilities. Inorganic nanocrystals such as quantum dots or those made from gold or other (noble) metals along with metal oxides and carbon allotropes are desired as participants in these hybrid materials since they can provide distinctive optical, physical, magnetic, and electrochemical properties. Beyond this, synthetic polymer-based and proteinaceous or viral nanoparticulate materials are also useful in the same role since they can provide a predefined and biocompatible cargo-carrying and targeting capability. The DNA component typically provides sequence-based addressability for probes along with, more recently, unique architectural properties that directly originate from the burgeoning structural DNA field. Additionally, DNA aptamers can also provide specific recognition capabilities against many diverse non-nucleic acid targets across a range of size scales from ions to full protein and cells. In addition to appending DNA to inorganic or polymeric nanoparticles, purely DNA-based nanoparticles have recently surfaced as an excellent assembly platform and have started finding application in areas like sensing, imaging and immunotherapy. We focus on selected and representative nanoparticle-DNA materials and highlight their

  10. Prenatal diagnosis of X-linked adrenoleukodystrophy combining biochemical, immunocytochemical and DNA analyses.

    PubMed

    Maier, E M; Roscher, A A; Kammerer, S; Mehnert, K; Conzelmann, E; Holzinger, A

    1999-04-01

    Amniocentesis was performed at 17 weeks' gestation on a 39-year-old woman at risk of being a carrier for X-linked adrenoleukodystrophy (X-ALD). Her first son had been affected with childhood cerebral X-ALD and had died at the age of nine years. DNA analysis had not been performed nor was any material available. The amniotic fluid cells (AFC) karyotype was found to be male and initial determination of very long chain fatty acids (VLCFA) in cultured amniocytes revealed borderline values. As an alternative strategy the complete coding region of the ALD gene was amplified and sequenced using DNA isolated from both AFC and maternal leukocytes as templates. Sequencing of the mother's DNA revealed the heterozygous pattern of a 2 bp deletion in exon 5, the most frequent individual mutation leading to X-ALD. It has previously been described to result in a complete loss of protein. This deletion was excluded in the fetus. Accordingly, ALDP was readily detected in AFC by immunofluorescence. We conclude that under circumstances of incomplete data about the index case the combination of methods, namely DNA analysis of the heterozygous mother, and biochemical, immunocytochemical and DNA analyses in fetal cells can secure a reliable prenatal diagnosis of X-ALD. PMID:10327143

  11. Combining Single-molecule Manipulation and Imaging for the Study of Protein-DNA Interactions

    PubMed Central

    Monico, Carina; Belcastro, Gionata; Vanzi, Francesco; Pavone, Francesco S.; Capitanio, Marco

    2014-01-01

    The paper describes the combination of optical tweezers and single molecule fluorescence detection for the study of protein-DNA interaction. The method offers the opportunity of investigating interactions occurring in solution (thus avoiding problems due to closeby surfaces as in other single molecule methods), controlling the DNA extension and tracking interaction dynamics as a function of both mechanical parameters and DNA sequence. The methods for establishing successful optical trapping and nanometer localization of single molecules are illustrated. We illustrate the experimental conditions allowing the study of interaction of lactose repressor (lacI), labeled with Atto532, with a DNA molecule containing specific target sequences (operators) for LacI binding. The method allows the observation of specific interactions at the operators, as well as one-dimensional diffusion of the protein during the process of target search. The method is broadly applicable to the study of protein-DNA interactions but also to molecular motors, where control of the tension applied to the partner track polymer (for example actin or microtubules) is desirable. PMID:25226304

  12. A Platform for Combined DNA and Protein Microarrays Based on Total Internal Reflection Fluorescence

    PubMed Central

    Asanov, Alexander; Zepeda, Angélica; Vaca, Luis

    2012-01-01

    We have developed a novel microarray technology based on total internal reflection fluorescence (TIRF) in combination with DNA and protein bioassays immobilized at the TIRF surface. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing and stringency control, and measure only end-point results, our TIRF microarray technology provides several orders of magnitude better signal-to-background ratio, performs analysis rapidly in one step, and measures the entire course of association and dissociation kinetics between target DNA and protein molecules and the bioassays. In many practical cases detection of only DNA or protein markers alone does not provide the necessary accuracy for diagnosing a disease or detecting a pathogen. Here we describe TIRF microarrays that detect DNA and protein markers simultaneously, which reduces the probabilities of false responses. Supersensitive and multiplexed TIRF DNA and protein microarray technology may provide a platform for accurate diagnosis or enhanced research studies. Our TIRF microarray system can be mounted on upright or inverted microscopes or interfaced directly with CCD cameras equipped with a single objective, facilitating the development of portable devices. As proof-of-concept we applied TIRF microarrays for detecting molecular markers from Bacillus anthracis, the pathogen responsible for anthrax. PMID:22438738

  13. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    PubMed Central

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-01-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/. PMID:26482832

  14. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  15. Augmentation of French grunt diet description using combined visual and DNA-based analyses

    USGS Publications Warehouse

    Hargrove, John S.; Parkyn, Daryl C.; Murie, Debra J.; Demopoulos, Amanda W.J.; Austin, James D.

    2012-01-01

    Trophic linkages within a coral-reef ecosystem may be difficult to discern in fish species that reside on, but do not forage on, coral reefs. Furthermore, dietary analysis of fish can be difficult in situations where prey is thoroughly macerated, resulting in many visually unrecognisable food items. The present study examined whether the inclusion of a DNA-based method could improve the identification of prey consumed by French grunt, Haemulon flavolineatum, a reef fish that possesses pharyngeal teeth and forages on soft-bodied prey items. Visual analysis indicated that crustaceans were most abundant numerically (38.9%), followed by sipunculans (31.0%) and polychaete worms (5.2%), with a substantial number of unidentified prey (12.7%). For the subset of prey with both visual and molecular data, there was a marked reduction in the number of unidentified sipunculans (visual – 31.1%, combined &ndash 4.4%), unidentified crustaceans (visual &ndash 15.6%, combined &ndash 6.7%), and unidentified taxa (visual &ndash 11.1%, combined &ndash 0.0%). Utilising results from both methodologies resulted in an increased number of prey placed at the family level (visual &ndash 6, combined &ndash 33) and species level (visual &ndash 0, combined &ndash 4). Although more costly than visual analysis alone, our study demonstrated the feasibility of DNA-based identification of visually unidentifiable prey in the stomach contents of fish.

  16. Perspectives on the combination of radiotherapy and targeted therapy with DNA repair inhibitors in the treatment of pancreatic cancer

    PubMed Central

    Yang, Shih-Hung; Kuo, Ting-Chun; Wu, Hsu; Guo, Jhe-Cyuan; Hsu, Chiun; Hsu, Chih-Hung; Tien, Yu-Wen; Yeh, Kun-Huei; Cheng, Ann-Lii; Kuo, Sung-Hsin

    2016-01-01

    Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair pathways, which are indicated by increased phosphorylation of numerous factors, including H2AX, ATM, ATR, Chk1, Chk2, DNA-PKcs, Rad51, and Ku70/Ku80 heterodimers. Radiotherapy causes DNA damage. Cancer cells can be made more sensitive to the effects of radiation (radiosensitization) through inhibition of DNA repair pathways. The synergistic effects, of two or more combined non-lethal treatments, led to co-administration of chemotherapy and radiosensitization in BRCA-defective cells and patients, with promising results. ATM/Chk2 and ATR/Chk1 pathways are principal regulators of cell cycle arrest, following DNA double-strand or single-strand breaks. DNA double-stranded breaks activate DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). It forms a holoenzyme with Ku70/Ku80 heterodimers, called DNA-PK, which catalyzes the joining of nonhomologous ends. This is the primary repair pathway utilized in human cells after exposure to ionizing radiation. Radiosensitization, induced by inhibitors of ATM, ATR, Chk1, Chk2, Wee1, PP2A, or DNA-PK, has been demonstrated in preclinical pancreatic cancer studies. Clinical trials are underway. Development of agents that inhibit DNA repair pathways to be clinically used in combination with radiotherapy is warranted for the treatment of pancreatic cancer. PMID:27621574

  17. Perspectives on the combination of radiotherapy and targeted therapy with DNA repair inhibitors in the treatment of pancreatic cancer.

    PubMed

    Yang, Shih-Hung; Kuo, Ting-Chun; Wu, Hsu; Guo, Jhe-Cyuan; Hsu, Chiun; Hsu, Chih-Hung; Tien, Yu-Wen; Yeh, Kun-Huei; Cheng, Ann-Lii; Kuo, Sung-Hsin

    2016-08-28

    Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair pathways, which are indicated by increased phosphorylation of numerous factors, including H2AX, ATM, ATR, Chk1, Chk2, DNA-PKcs, Rad51, and Ku70/Ku80 heterodimers. Radiotherapy causes DNA damage. Cancer cells can be made more sensitive to the effects of radiation (radiosensitization) through inhibition of DNA repair pathways. The synergistic effects, of two or more combined non-lethal treatments, led to co-administration of chemotherapy and radiosensitization in BRCA-defective cells and patients, with promising results. ATM/Chk2 and ATR/Chk1 pathways are principal regulators of cell cycle arrest, following DNA double-strand or single-strand breaks. DNA double-stranded breaks activate DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). It forms a holoenzyme with Ku70/Ku80 heterodimers, called DNA-PK, which catalyzes the joining of nonhomologous ends. This is the primary repair pathway utilized in human cells after exposure to ionizing radiation. Radiosensitization, induced by inhibitors of ATM, ATR, Chk1, Chk2, Wee1, PP2A, or DNA-PK, has been demonstrated in preclinical pancreatic cancer studies. Clinical trials are underway. Development of agents that inhibit DNA repair pathways to be clinically used in combination with radiotherapy is warranted for the treatment of pancreatic cancer. PMID:27621574

  18. DNA Repair in Human Cells Exposed to Combinations of Carcinogenic Agents

    SciTech Connect

    Setlow, R. B.; Ahmed, F. E.

    1980-01-01

    Normal human and XP2 fibroblasts were treated with UV plus UV-mimetic chemicals. The UV dose used was sufficient to saturate the UV excision repair system. Excision repair after combined treatments was estimated by unscheduled DNA synthesis, BrdUrd photolysis, and the loss of sites sensitive to a UV specific endonuclease. Since the repair of damage from UV and its mimetics is coordinately controlled we expected that there would be similar rate-limiting steps in the repair of UV and chemical damage and that after a combined treatment the total amount of repair would be the same as from UV or the chemicals separately. The expectation was not fulfilled. In normal cells repair after a combined treatment was additive whereas in XP cells repair after a combined treatment was usually less than after either agent separately. The chemicals tested were AAAF, DMBA-epoxide, 4NQO, and ICR-170.

  19. Combining allele frequency uncertainty and population substructure corrections in forensic DNA calculations.

    PubMed

    Cowell, Robert

    2016-07-01

    In forensic DNA calculations of relatedness of individuals and in DNA mixture analyses, at least two sources of uncertainty are present concerning the allele frequencies used for evaluating genotype probabilities when evaluating likelihoods. They are: (i) imprecision in the estimates of the allele frequencies in the population by using an inevitably finite database of DNA profiles to estimate them; and (ii) the existence of population substructure. Green and Mortera [6] showed that these effects may be taken into account individually using a common Dirichlet model within a Bayesian network formulation, but that when taken in combination this is not the case; however they suggested an approximation that could be used. Here we develop a slightly different approximation that is shown to be exact in the case of a single individual. We demonstrate the numerical closeness of the approximation using a published database of allele counts, and illustrate the effect of incorporating the approximation into calculations of a recently published statistical model of DNA mixtures. PMID:27231804

  20. DISSOLVED FREE AMINO ACIDS, COMBINED AMINO ACIDS, AND DNA AS SOURCES OF CARBON AND NITROGEN TO MARINE BACTERIA

    EPA Science Inventory

    Utilization of naturally-occurring dissolved free and combined mino cids (DFAA and DCAA) and dissolved DNA FD-DNA) was studied in batch cultures of bacteria from 2 shallow marine environments. anta Rosa Sound (SRS), Florida, USA, and Flax Pond (FP), Long Island, New York, USA. n ...

  1. 53BP1 deficiency combined with telomere dysfunction activates ATR-dependent DNA damage response.

    PubMed

    Martínez, Paula; Flores, Juana M; Blasco, Maria A

    2012-04-16

    TRF1 protects mammalian telomeres from fusion and fragility. Depletion of TRF1 leads to telomere fusions as well as accumulation of γ-H2AX foci and activation of both the ataxia telangiectasia mutated (ATM)- and the ataxia telangiectasia and Rad3 related (ATR)-mediated deoxyribonucleic acid (DNA) damage response (DDR) pathways. 53BP1, which is also present at dysfunctional telomeres, is a target of ATM that accumulates at DNA double-strand breaks and favors nonhomologous end-joining (NHEJ) repair over ATM-dependent resection and homology-directed repair (homologous recombination [HR]). To address the role of 53BP1 at dysfunctional telomeres, we generated mice lacking TRF1 and 53BP1. 53BP1 deficiency significantly rescued telomere fusions in mouse embryonic fibroblasts (MEFs) lacking TRF1, but they showed evidence of a switch from the NHEJ- to HR-mediated repair of uncapped telomeres. Concomitantly, double-mutant MEFs showed evidence of hyperactivation of the ATR-dependent DDR. In intact mice, combined 53BP1/TRF1 deficiency in stratified epithelia resulted in earlier onset of DNA damage and increased CHK1 phosphorylation during embryonic development, leading to aggravation of skin phenotypes. PMID:22508511

  2. Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases.

    PubMed

    Leung, Elvis M K; Deng, Kailin; Wong, Tin-Yan; Chan, Wan

    2016-01-01

    The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results. PMID:26581621

  3. Combined sequencing of mRNA and DNA from human embryonic stem cells.

    PubMed

    Mertes, Florian; Kuhl, Heiner; Wruck, Wasco; Lehrach, Hans; Adjaye, James

    2016-06-01

    Combined transcriptome and whole genome sequencing of the same ultra-low input sample down to single cells is a rapidly evolving approach for the analysis of rare cells. Besides stem cells, rare cells originating from tissues like tumor or biopsies, circulating tumor cells and cells from early embryonic development are under investigation. Herein we describe a universal method applicable for the analysis of minute amounts of sample material (150 to 200 cells) derived from sub-colony structures from human embryonic stem cells. The protocol comprises the combined isolation and separate amplification of poly(A) mRNA and whole genome DNA followed by next generation sequencing. Here we present a detailed description of the method developed and an overview of the results obtained for RNA and whole genome sequencing of human embryonic stem cells, sequencing data is available in the Gene Expression Omnibus (GEO) database under accession number GSE69471. PMID:27275414

  4. Combining natural and man-made DNA tracers to advance understanding of hydrologic flow pathway evolution

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Walter, M. T.; Lyon, S. W.; Rosqvist, G. N.

    2014-12-01

    Identifying and characterizing the sources, pathways and residence times of water and associated constituents is critical to developing improved understanding of watershed-stream connections and hydrological/ecological/biogeochemical models. To date the most robust information is obtained from integrated studies that combine natural tracers (e.g. isotopes, geochemical tracers) with controlled chemical tracer (e.g., bromide, dyes) or colloidal tracer (e.g., carboxilated microspheres, tagged clay particles, microorganisms) applications. In the presented study we explore how understanding of sources and flow pathways of water derived from natural tracer studies can be improved and expanded in space and time by simultaneously introducing man-made, synthetic DNA-based microtracers. The microtracer used were composed of polylactic acid (PLA) microspheres into which short strands of synthetic DNA and paramagnetic iron oxide nanoparticles are incorporated. Tracer experiments using both natural tracers and the DNA-based microtracers were conducted in the sub-arctic, glacierized Tarfala (21.7 km2) catchment in northern Sweden. Isotopic hydrograph separations revealed that even though storm runoff was dominated by pre-event water the event water (i.e. rainfall) contributions to streamflow increased throughout the summer season as glacial snow cover decreased. This suggests that glaciers are a major source of the rainwater fraction in streamflow. Simultaneous injections of ten unique DNA-based microtracers confirmed this hypothesis and revealed that the transit time of water traveling from the glacier surface to the stream decreased fourfold over the summer season leading to instantaneous rainwater contributions during storm events. These results highlight that integrating simultaneous tracer injections (injecting tracers at multiple places at one time) with traditional tracer methods (sampling multiple times at one place) rather than using either approach in isolation can

  5. A combination treatment with DNA methyltransferase inhibitors and suramin decreases invasiveness of breast cancer cells

    PubMed Central

    Borges, Sahra; Döppler, Heike R.

    2014-01-01

    The treatment of patients with invasive breast cancer remains a major issue because of the acquisition of drug resistance to conventional chemotherapy. Here we propose a new therapeutic strategy by combining DNA methyltransferase inhibitors (DMTIs) with suramin. Cytotoxic effects of suramin or combination treatment with DMTIs were determined in highly invasive breast cancer cell lines MDA-MB-231, BT-20 and HCC1954, or control cells. In addition, effects on cell invasion were determined in 3-dimensional cell culture assays. DMTI-mediated upregulation of Protein Kinase D1 (PKD1) expression was shown by Western blotting. Effects of suramin on PKD1 activity was determined in vitro and in cells. The importance of PKD1 in mediating the effects of such combination treatment in cell invasion was demonstrated using 3D cell culture assays. A proof of principal animal experiment was performed showing that PKD1 is critical for breast cancer growth. We show that when used in combination, suramin and DMTIs impair the invasive phenotype of breast cancer cells. We show that PKD1, a kinase that previously has been described as a suppressor of tumor cell invasion, is an interface for both FDA-approved drugs, since the additive effects observed are due to DMTI-mediated re-expression and suramin-induced activation of PKD1. Our data reveal a mechanism of how a combination treatment with non-toxic doses of suramin and DMTIs may be of therapeutic benefit for patients with aggressive, multi-drug resistant breast cancer. PMID:24510012

  6. DNA bases assembled on the Au(110)/electrolyte interface: a combined experimental and theoretical study.

    PubMed

    Salvatore, Princia; Nazmutdinov, Renat R; Ulstrup, Jens; Zhang, Jingdong

    2015-02-19

    Among the low-index single-crystal gold surfaces, the Au(110) surface is the most active toward molecular adsorption and the one with fewest electrochemical adsorption data reported. Cyclic voltammetry (CV), electrochemically controlled scanning tunneling microscopy (EC-STM), and density functional theory (DFT) calculations have been employed in the present study to address the adsorption of the four nucleobases adenine (A), cytosine (C), guanine (G), and thymine (T), on the Au(110)-electrode surface. Au(110) undergoes reconstruction to the (1 × 3) surface in electrochemical environment, accompanied by a pair of strong voltammetry peaks in the double-layer region in acid solutions. Adsorption of the DNA bases gives featureless voltammograms with lower double-layer capacitance, suggesting that all the bases are chemisorbed on the Au(110) surface. Further investigation of the surface structures of the adlayers of the four DNA bases by EC-STM disclosed lifting of the Au(110) reconstruction, specific molecular packing in dense monolayers, and pH dependence of the A and G adsorption. DFT computations based on a cluster model for the Au(110) surface were performed to investigate the adsorption energy and geometry of the DNA bases in different adsorbate orientations. The optimized geometry is further used to compute models for STM images which are compared with the recorded STM images. This has provided insight into the physical nature of the adsorption. The specific orientations of A, C, G, and T on Au(110) and the nature of the physical adsorbate/surface interaction based on the combination of the experimental and theoretical studies are proposed, and differences from nucleobase adsorption on Au(111)- and Au(100)-electrode surfaces are discussed. PMID:25611676

  7. Radiation damage to a DNA-binding protein. Combined circular dichroism and molecular dynamics simulation analysis.

    PubMed

    Mazier, S; Villette, S; Goffinont, S; Renouard, S; Maurizot, J C; Genest, D; Spotheim-Maurizot, M

    2008-11-01

    The E. coli lactose operon, the paradigm of gene expression regulation systems, is the best model for studying the effect of radiation on such systems. The operon function requires the binding of a protein, the repressor, to a specific DNA sequence, the operator. We have previously shown that upon irradiation the repressor loses its operator binding ability. The main radiation-induced lesions of the headpiece have been identified by mass spectrometry. All tyrosine residues are oxidized into 3,4-dihydroxyphenylalanine (DOPA). In the present study we report a detailed characterization of the headpiece radiation-induced modification. An original approach combining circular dichroism measurements and the analysis of molecular dynamics simulation of headpieces bearing DOPA-s instead of tyrosines has been applied. The CD measurements reveal an irreversible modification of the headpiece structure and stability. The molecular dynamics simulation shows a loss of stability shown by an increase in internal dynamics and allows the estimation of the modifications due to tyrosine oxidation for each structural element of the protein. The changes in headpiece structure and stability can explain at least in part the radiation-induced loss of binding ability of the repressor to the operator. This conclusion should hold for all proteins containing radiosensitive amino acids in their DNA-binding site. PMID:18959464

  8. DNA damage and radiosensitizers: M. luteus sensitive sites for misonidazole-TAN combination

    SciTech Connect

    Skov, K.A.; Palcic, B.; Skarsgard, L.D.

    1982-10-01

    It has been shown previously that TAN does not enhance production of single-strand breaks (SSB) in DNA of Chinese hamster cells irradiated under hypoxia. In contrast, misonidazole does enhance the yield of SSB, but this SSB enhancement by misonidazole is reduced if TAN is present with misonidazole during irradiation. It was also shown that each of these sensitizers enhances base/sugar damage, measured with the aid of bacterial enzymes (MLS). The results presented here for MLS damage in mammalian cells irradiated in the presence of the misonidazole-TAN combination indicate that the two drugs act independently in enhancing MLS damage, and hence they interact with different types of lesions to produce base/sugar damage. It is proposed that the protection by TAN in mammalian cells observed at the survival level is due to repair of some of that type of damage which would otherwise become a misonidazole-enhanced SSB.

  9. Combined metformin and resveratrol confers protection against UVC-induced DNA damage in A549 lung cancer cells via modulation of cell cycle checkpoints and DNA repair.

    PubMed

    Lee, Yong-Syu; Doonan, Barbara B; Wu, Joseph M; Hsieh, Tze-Chen

    2016-06-01

    Aging in humans is a multi-factorial cellular process that is associated with an increase in the risk of numerous diseases including diabetes, coronary heart disease and cancer. Aging is linked to DNA damage, and a persistent source of DNA damage is exposure to ultraviolet (UV) radiation. As such, identifying agents that confer protection against DNA damage is an approach that could reduce the public health burden of age-related disorders. Metformin and resveratrol have both shown effectiveness in preventing several age-related diseases; using human A549 cells, we investigated whether metformin or resveratrol, alone or combined, prevent UVC-induced DNA damage. We found that metformin inhibited UVC-induced upregulation of p53, as well as downregulated the expression of two DNA damage markers: γH2AX and p-chk2. Metformin also upregulated DNA repair as evidenced by the increase in expression of p53R2. Treatment with metformin also induced cell cycle arrest in UVC-induced cells, in correlation with a reduction in the levels of cyclin E/cdk2/Rb and cyclin B1/cdk1. Compared to metformin, resveratrol as a single agent showed less effectiveness in counteracting UVC-elicited cellular responses. However, resveratrol displayed synergism when combined with metformin as shown by the downregulation of p53/γH2AX/p-chk2. In conclusion, the results of the present study validate the effectiveness of metformin, alone or with the addition of resveratrol, in reducing the risk of aging by conferring protection against UV-induced DNA damage. PMID:27109601

  10. ThPOK represses CXXC5, which induces methylation of histone H3 lysine 9 in Cd40lg promoter by association with SUV39H1: implications in repression of CD40L expression in CD8+ cytotoxic T cells.

    PubMed

    Tsuchiya, Yukako; Naito, Taku; Tenno, Mari; Maruyama, Mitsuo; Koseki, Haruhiko; Taniuchi, Ichiro; Naoe, Yoshinori

    2016-08-01

    CD40 ligand is induced in CD4(+) Th cells upon TCR stimulation and provides an activating signal to B cells, making CD40 ligand an important molecule for Th cell function. However, the detailed molecular mechanisms, whereby CD40 ligand becomes expressed on the cell surface in T cells remain unclear. Here, we showed that CD40 ligand expression in CD8(+) cytotoxic T cells was suppressed by combined epigenetic regulations in the promoter region of the Cd40lg gene, such as the methylation of CpG dinucleotides, histone H3 lysine 9, histone H3 lysine 27, and histone H4 lysine 20. As the transcription factor Th-inducing pox virus and zinc finger/Kruppel-like factor (encoded by the Zbtb7b gene) is critical in Th cell development, we focused on the role of Th-inducing pox virus and zinc finger/Kruppel-like factor in CD40 ligand expression. We found that CD40 ligand expression is moderately induced by retroviral Thpok transduction into CD8(+) cytotoxic T cells, which was accompanied by a reduction of histone H3 lysine 9 methylation and histone H3 lysine 27 methylation in the promoter region of the Cd40lg gene. Th-inducing pox virus and zinc finger/Kruppel-like factor directly inhibited the expression of murine CXXC5, a CXXC-type zinc finger protein that induced histone H3 lysine 9 methylation, in part, through an interaction with the histone-lysine N-methyltransferase SUV39H1. In addition, to inhibit CD40 ligand induction in activated CD4(+) T cells by the CXXC5 transgene, our findings indicate that CXXC5 was one of the key molecules contributing to repressing CD40 ligand expression in CD8(+) cytotoxic T cells. PMID:26896487

  11. DNA Diagnostics of Hereditary Hearing Loss: A Targeted Resequencing Approach Combined with a Mutation Classification System.

    PubMed

    Sommen, Manou; Schrauwen, Isabelle; Vandeweyer, Geert; Boeckx, Nele; Corneveaux, Jason J; van den Ende, Jenneke; Boudewyns, An; De Leenheer, Els; Janssens, Sandra; Claes, Kathleen; Verstreken, Margriet; Strenzke, Nicola; Predöhl, Friederike; Wuyts, Wim; Mortier, Geert; Bitner-Glindzicz, Maria; Moser, Tobias; Coucke, Paul; Huentelman, Matthew J; Van Camp, Guy

    2016-08-01

    Although there are nearly 100 different causative genes identified for nonsyndromic hearing loss (NSHL), Sanger sequencing-based DNA diagnostics usually only analyses three, namely, GJB2, SLC26A4, and OTOF. As this is seen as inadequate, there is a need for high-throughput diagnostic methods to detect disease-causing variations, including single-nucleotide variations (SNVs), insertions/deletions (Indels), and copy-number variations (CNVs). In this study, a targeted resequencing panel for hearing loss was developed including 79 genes for NSHL and selected forms of syndromic hearing loss. One-hundred thirty one presumed autosomal-recessive NSHL (arNSHL) patients of Western-European ethnicity were analyzed for SNVs, Indels, and CNVs. In addition, we established a straightforward variant classification system to deal with the large number of variants encountered. We estimate that combining prescreening of GJB2 with our panel leads to a diagnosis in 25%-30% of patients. Our data show that after GJB2, the most commonly mutated genes in a Western-European population are TMC1, MYO15A, and MYO7A (3.1%). CNV analysis resulted in the identification of causative variants in two patients in OTOA and STRC. One of the major challenges for diagnostic gene panels is assigning pathogenicity for variants. A collaborative database collecting all identified variants from multiple centers could be a valuable resource for hearing loss diagnostics. PMID:27068579

  12. A Synthetic Lethal Screen Identifies DNA Repair Pathways that Sensitize Cancer Cells to Combined ATR Inhibition and Cisplatin Treatments

    PubMed Central

    Mohni, Kareem N.; Thompson, Petria S.; Luzwick, Jessica W.; Glick, Gloria G.; Pendleton, Christopher S.; Lehmann, Brian D.; Pietenpol, Jennifer A.; Cortez, David

    2015-01-01

    The DNA damage response kinase ATR may be a useful cancer therapeutic target. ATR inhibition synergizes with loss of ERCC1, ATM, XRCC1 and DNA damaging chemotherapy agents. Clinical trials have begun using ATR inhibitors in combination with cisplatin. Here we report the first synthetic lethality screen with a combination treatment of an ATR inhibitor (ATRi) and cisplatin. Combination treatment with ATRi/cisplatin is synthetically lethal with loss of the TLS polymerase ζ and 53BP1. Other DNA repair pathways including homologous recombination and mismatch repair do not exhibit synthetic lethal interactions with ATRi/cisplatin, even though loss of some of these repair pathways sensitizes cells to cisplatin as a single-agent. We also report that ATRi strongly synergizes with PARP inhibition, even in homologous recombination-proficient backgrounds. Lastly, ATR inhibitors were able to resensitize cisplatin-resistant cell lines to cisplatin. These data provide a comprehensive analysis of DNA repair pathways that exhibit synthetic lethality with ATR inhibitors when combined with cisplatin chemotherapy, and will help guide patient selection strategies as ATR inhibitors progress into the cancer clinic. PMID:25965342

  13. A Preclinical Study Combining the DNA Repair Inhibitor Dbait with Radiotherapy for the Treatment of Melanoma1

    PubMed Central

    Biau, Julian; Devun, Flavien; Jdey, Wael; Kotula, Ewa; Quanz, Maria; Chautard, Emmanuel; Sayarath, Mano; Sun, Jian-Sheng; Verrelle, Pierre; Dutreix, Marie

    2014-01-01

    Melanomas are highly radioresistant tumors, mainly due to efficient DNA double-strand break (DSB) repair. Dbait (which stands for DNA strand break bait) molecules mimic DSBs and trap DNA repair proteins, thereby inhibiting repair of DNA damage induced by radiation therapy (RT). First, the cytotoxic efficacy of Dbait in combination with RT was evaluated in vitro in SK28 and 501mel human melanoma cell lines. Though the extent of RT-induced damage was not increased by Dbait, it persisted for longer revealing a repair defect. Dbait enhanced RT efficacy independently of RT doses. We further assayed the capacity of DT01 (clinical form of Dbait) to enhance efficacy of “palliative” RT (10 × 3 Gy) or “radical” RT (20 × 3 Gy), in an SK28 xenografted model. Inhibition of repair of RT-induced DSB by DT01 was revealed by the significant increase of micronuclei in tumors treated with combined treatment. Mice treated with DT01 and RT combination had significantly better tumor growth control and longer survival compared to RT alone with the “palliative” protocol [tumor growth delay (TGD) by 5.7-fold; median survival: 119 vs 67 days] or the “radical” protocol (TGD by 3.2-fold; median survival: 221 vs 109 days). Only animals that received the combined treatment showed complete responses. No additional toxicity was observed in any DT01-treated groups. This preclinical study provides encouraging results for a combination of a new DNA repair inhibitor, DT01, with RT, in the absence of toxicity. A first-in-human phase I study is currently under way in the palliative management of melanoma in-transit metastases (DRIIM trial). PMID:25379020

  14. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  15. Combined DNA extraction and antibody elution from filter papers for the assessment of malaria transmission intensity in epidemiological studies

    PubMed Central

    2013-01-01

    Background Informing and evaluating malaria control efforts relies on knowledge of local transmission dynamics. Serological and molecular tools have demonstrated great sensitivity to quantify transmission intensity in low endemic settings where the sensitivity of traditional methods is limited. Filter paper blood spots are commonly used a source of both DNA and antibodies. To enhance the operational practicability of malaria surveys, a method is presented for combined DNA extraction and antibody elution. Methods Filter paper blood spots were collected as part of a large cross-sectional survey in the Kenyan highlands. DNA was extracted using a saponin/chelex method. The eluate of the first wash during the DNA extraction process was used for antibody detection and compared with previously validated antibody elution procedures. Antibody elution efficiency was assessed by total IgG ELISA for malaria antigens apical membrane antigen-1 (AMA-1) and merozoite-surface protein-1 (MSP-142). The sensitivity of nested 18S rRNA and cytochrome b PCR assays and the impact of doubling filter paper material for PCR sensitivity were determined. The distribution of cell material and antibodies throughout filter paper blood spots were examined using luminescent and fluorescent reporter assays. Results Antibody levels measured after the combined antibody/DNA extraction technique were strongly correlated to those measured after standard antibody elution (p < 0.0001). Antibody levels for both AMA-1 and MSP-142 were generally slightly lower (11.3-21.4%) but age-seroprevalence patterns were indistinguishable. The proportion of parasite positive samples ranged from 12.9% to 19.2% in the different PCR assays. Despite strong agreement between outcomes of different PCR assays, none of the assays detected all parasite-positive individuals. For all assays doubling filter paper material for DNA extraction increased sensitivity. The concentration of cell and antibody material was not

  16. Laser microbeam - kinetic studies combined with molecule - structures reveal mechanisms of DNA repair

    NASA Astrophysics Data System (ADS)

    Altenberg, B.; Greulich, K. O.

    2011-10-01

    Kinetic studies on double strand DNA damages induced by a laser microbeam have allowed a precise definition of the temporal order of recruitment of repair molecules. The order is KU70 / KU80 - XRCC4 --NBS1 -- RAD51. These kinetic studies are now complemented by studies on molecular structures of the repair proteins, using the program YASARA which does not only give molecular structures but also physicochemical details on forces involved in binding processes. It turns out that the earliest of these repair proteins, the KU70 / KU80 heterodimer, has a hole with high DNA affinity. The next molecule, XRCC4, has a body with two arms, the latter with extremely high DNA affinity at their ends and a binding site for Ligase 4. Together with the laser microbeam results this provides a detailed view on the early steps of DNA double strand break repair. The sequence of DNA repair events is presented as a movie.

  17. A Combinational Clustering Based Method for cDNA Microarray Image Segmentation.

    PubMed

    Shao, Guifang; Li, Tiejun; Zuo, Wangda; Wu, Shunxiang; Liu, Tundong

    2015-01-01

    Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi's individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is

  18. A Combinational Clustering Based Method for cDNA Microarray Image Segmentation

    PubMed Central

    Shao, Guifang; Li, Tiejun; Zuo, Wangda; Wu, Shunxiang; Liu, Tundong

    2015-01-01

    Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi’s individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is

  19. Combined Immunofluorescence and DNA FISH on 3D-preserved Interphase Nuclei to Study Changes in 3D Nuclear Organization

    PubMed Central

    Chaumeil, Julie; Micsinai, Mariann; Skok, Jane A.

    2013-01-01

    Fluorescent in situ hybridization using DNA probes on 3-dimensionally preserved nuclei followed by 3D confocal microscopy (3D DNA FISH) represents the most direct way to visualize the location of gene loci, chromosomal sub-regions or entire territories in individual cells. This type of analysis provides insight into the global architecture of the nucleus as well as the behavior of specific genomic loci and regions within the nuclear space. Immunofluorescence, on the other hand, permits the detection of nuclear proteins (modified histones, histone variants and modifiers, transcription machinery and factors, nuclear sub-compartments, etc). The major challenge in combining immunofluorescence and 3D DNA FISH is, on the one hand to preserve the epitope detected by the antibody as well as the 3D architecture of the nucleus, and on the other hand, to allow the penetration of the DNA probe to detect gene loci or chromosome territories 1-5. Here we provide a protocol that combines visualization of chromatin modifications with genomic loci in 3D preserved nuclei. PMID:23407477

  20. Enhancement of DNA cancer vaccine efficacy by combination with anti-angiogenesis in regression of established subcutaneous B16 melanoma.

    PubMed

    Chan, Ray Chun-Fai; Gutierrez, Benjamin; Ichim, Thomas E; Lin, Feng

    2009-11-01

    Immunotherapy of cancer offers great promise, however translation into human studies has yielded relatively poor results to date. The concept of combining cancer vaccination with angiogenesis inhibition is appealing, due to favorable safety profile of both approaches, as well as possible biological synergies. Here we studied the anti-tumor effects of combining plasmid DNA (pDNA) vaccination and anti-angiogenesis in B16F10 murine model. By using electroporation-mediated gene/pDNA delivery, the anti-tumor efficacy of vaccination with pDNAs encoding gp100, TRP2 and Ii-PADRE was facilitated by administration of soluble form of EphB4 fused with human serum albumin (sEphB4-HSA), or by co-delivery of pDNAs encoding Angiostatin and/or Endostatin. In an optimized administration protocol, melanoma vaccination together with intratumoral delivery of pDNAs encoding Angiostatin and Endostatin resulted in 57% tumor-free survival over 90 days after challenge. These data support the general concept that suppression of angiogenesis may allow for enhanced efficacy of anti-tumor immunity, suggesting the synergetic effects of therapeutic pDNA vaccination and angiogenesis inhibition in cancer therapy. PMID:19787240

  1. Simultaneous measurement of DNA motor protein conformation and activity with combined optical trap and single-molecule fluorescence

    NASA Astrophysics Data System (ADS)

    Chemla, Yann

    2013-03-01

    We present single-molecule measurements of Superfamily 1 UvrD helicase DNA unwinding that reveal directly how helicase stoichiometry and conformation regulate motor activity. Using a new instrument that combines high resolution optical tweezers with single-molecule fluorescence microscopy, we record DNA unwinding activity with base pair-scale resolution (via optical tweezers) simultaneously with helicase stoichiometry and conformation (via fluorescence). Quantifying the fluorescence signal from labeled UvrD, we observe that pairs of UvrD molecules are required for long distance unwinding but that individual molecules exhibit limited, non-processive unwinding activity. UvrD is also known to exhibit two different conformations, `closed' and `open', based on the orientation of its 2B regulatory domain. The function of these conformations has remained elusive. Measuring the fluorescence of FRET labeled proteins, we detect directly the conformation of the 2B domain of individual UvrD molecules during unwinding activity. We observe that UvrD is in the `closed' conformation during DNA unwinding but surprisingly switches to the `open' conformation upon reversal of helicase direction, i.e. when UvrD switches strands and translocates on the opposing strand with the DNA junction rezipping behind it. We hypothesize that the 2B domain acts as a conformational switch that controls DNA unwinding vs. re-annealing. Work supported by NSF (PHY-082261, Center for the Physics of Living Cells) and NIH (R21 RR025341A)

  2. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA.

    PubMed

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e

    2016-03-01

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4-[4-(N-methyl)styrene]-benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2. PMID:26629954

  3. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e.

    2016-03-01

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4- [4-(N-methyl)styrene] -benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2.

  4. Combining crystallography and EPR: crystal and solution structures of the multidomain cochaperone DnaJ

    PubMed Central

    Barends, Thomas R. M.; Brosi, Richard W. W.; Steinmetz, Andrea; Scherer, Anna; Hartmann, Elisabeth; Eschenbach, Jessica; Lorenz, Thorsten; Seidel, Ralf; Shoeman, Robert L.; Zimmermann, Sabine; Bittl, Robert; Schlichting, Ilme; Reinstein, Jochen

    2013-01-01

    Hsp70 chaperones assist in a large variety of protein-folding processes in the cell. Crucial for these activities is the regulation of Hsp70 by Hsp40 cochaperones. DnaJ, the bacterial homologue of Hsp40, stimulates ATP hydrolysis by DnaK (Hsp70) and thus mediates capture of substrate protein, but is also known to possess chaperone activity of its own. The first structure of a complete functional dimeric DnaJ was determined and the mobility of its individual domains in solution was investigated. Crystal structures of the complete molecular cochaperone DnaJ from Thermus thermophilus comprising the J, GF and C-terminal domains and of the J and GF domains alone showed an ordered GF domain interacting with the J domain. Structure-based EPR spin-labelling studies as well as cross-linking results showed the existence of multiple states of DnaJ in solution with different arrangements of the various domains, which has implications for the function of DnaJ. PMID:23897477

  5. Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy.

    PubMed

    Ghosh, Anirban; Kar, Rajiv Kumar; Jana, Jagannath; Saha, Abhijit; Jana, Batakrishna; Krishnamoorthy, Janarthanan; Kumar, Dinesh; Ghosh, Surajit; Chatterjee, Subhrangsu; Bhunia, Anirban

    2014-09-01

    Indolicidin (IR13), a 13-residue antimicrobial peptide from the cathelicidin family, is known to exhibit a broad spectrum of antimicrobial activity against various microorganisms. This peptide inhibits bacterial DNA synthesis resulting in cell filamentation. However, the precise mechanism remains unclear and requires further investigation. The central PWWP motif of IR13 provides a unique structural element that can wrap around, and thus stabilize, duplex B-type DNA structures. Replacements of the central Trp-Trp pair with Ala-Ala, His-His, or Phe-Phe residues in the PxxP motif significantly affects the ability of the peptide to stabilize duplex DNA. Results of microscopy studies in conjunction with spectroscopic data confirm that the DNA duplex is stabilized by IR13, thereby inhibiting DNA replication and transcription. In this study we provide high-resolution structural information on the interaction between indolicidin and DNA, which will be beneficial for the design of novel therapeutic antibiotics based on peptide scaffolds. PMID:25044630

  6. Early Combination Antiretroviral Therapy Limits Exposure to HIV-1 Replication and Cell-Associated HIV-1 DNA Levels in Infants.

    PubMed

    McManus, Margaret; Mick, Eric; Hudson, Richard; Mofenson, Lynne M; Sullivan, John L; Somasundaran, Mohan; Luzuriaga, Katherine

    2016-01-01

    The primary aim of this study was to measure HIV-1 persistence following combination antiretroviral therapy (cART) in infants and children. Peripheral blood mononuclear cell (PBMC) HIV-1 DNA was quantified prior to and after 1 year of cART in 30 children, stratified by time of initiation (early, age <3 months, ET; late, age >3 months-2 years, LT). Pre-therapy PBMC HIV-1 DNA levels correlated with pre-therapy plasma HIV-1 levels (r = 0.59, p<0.001), remaining statistically significant (p = 0.002) after adjustment for prior perinatal antiretroviral exposure and age at cART initiation. PBMC HIV-1 DNA declined significantly after 1 year of cART (Overall: -0.91±0.08 log10 copies per million PBMC, p<0.001; ET: -1.04±0.11 log10 DNA copies per million PBMC, p<0.001; LT: -0.74 ±0.13 log10 DNA copies per million PBMC, p<0.001) but rates of decline did not differ significantly between ET and LT. HIV-1 replication exposure over the first 12 months of cART, estimated as area-under-the-curve (AUC) of circulating plasma HIV-1 RNA levels, was significantly associated with PBMC HIV-1 DNA at one year (r = 0.51, p = 0.004). In 21 children with sustained virologic suppression after 1 year of cART, PBMC HIV-1 DNA levels continued to decline between years 1 and 4 (slope -0.21 log10 DNA copies per million PBMC per year); decline slopes did not differ significantly between ET and LT. PBMC HIV-1 DNA levels at 1 year and 4 years of cART correlated with age at cART initiation (1 year: p = 0.04; 4 years: p = 0.03) and age at virologic control (1 and 4 years, p = 0.02). Altogether, these data indicate that reducing exposure to HIV-1 replication and younger age at cART initiation are associated with lower HIV-1 DNA levels at and after one year of age, supporting the concept that HIV-1 diagnosis and cART initiation in infants should occur as early as possible. PMID:27104621

  7. Early Combination Antiretroviral Therapy Limits Exposure to HIV-1 Replication and Cell-Associated HIV-1 DNA Levels in Infants

    PubMed Central

    McManus, Margaret; Mick, Eric; Hudson, Richard; Mofenson, Lynne M.; Sullivan, John L.; Somasundaran, Mohan; Luzuriaga, Katherine

    2016-01-01

    The primary aim of this study was to measure HIV-1 persistence following combination antiretroviral therapy (cART) in infants and children. Peripheral blood mononuclear cell (PBMC) HIV-1 DNA was quantified prior to and after 1 year of cART in 30 children, stratified by time of initiation (early, age <3 months, ET; late, age >3 months-2 years, LT). Pre-therapy PBMC HIV-1 DNA levels correlated with pre-therapy plasma HIV-1 levels (r = 0.59, p<0.001), remaining statistically significant (p = 0.002) after adjustment for prior perinatal antiretroviral exposure and age at cART initiation. PBMC HIV-1 DNA declined significantly after 1 year of cART (Overall: -0.91±0.08 log10 copies per million PBMC, p<0.001; ET: -1.04±0.11 log10 DNA copies per million PBMC, p<0.001; LT: -0.74 ±0.13 log10 DNA copies per million PBMC, p<0.001) but rates of decline did not differ significantly between ET and LT. HIV-1 replication exposure over the first 12 months of cART, estimated as area-under-the-curve (AUC) of circulating plasma HIV-1 RNA levels, was significantly associated with PBMC HIV-1 DNA at one year (r = 0.51, p = 0.004). In 21 children with sustained virologic suppression after 1 year of cART, PBMC HIV-1 DNA levels continued to decline between years 1 and 4 (slope -0.21 log10 DNA copies per million PBMC per year); decline slopes did not differ significantly between ET and LT. PBMC HIV-1 DNA levels at 1 year and 4 years of cART correlated with age at cART initiation (1 year: p = 0.04; 4 years: p = 0.03) and age at virologic control (1 and 4 years, p = 0.02). Altogether, these data indicate that reducing exposure to HIV-1 replication and younger age at cART initiation are associated with lower HIV-1 DNA levels at and after one year of age, supporting the concept that HIV-1 diagnosis and cART initiation in infants should occur as early as possible. PMID:27104621

  8. Enhancement of reverse transfection efficiency by combining stimulated DNA surface desorption and electroporation

    NASA Astrophysics Data System (ADS)

    Creasey, Rhiannon; Hook, Andrew; Thissen, Helmut; Voelcker, Nicolas H.

    2007-12-01

    Transfection cell microarrays (TCMs) are a high-throughput, miniaturised cell-culture system utilising reverse transfection, in which cells are seeded onto a DNA array resulting in localised regions of transfected cells. TCMs are useful for the analysis of gene expression, and can be used to identify genes involved in many cellular processes. This is of significant interest in fields such as tissue engineering, diagnostic screening, and drug testing [1, 2]. Low transfection efficiency has so far limited the application and utility of this technique. Recently, the transfection efficiency of TCMs was improved by an application of a high voltage for a short period of time to the DNA array resulting in the electroporation of cells attached to the surface [3, 4]. Furthermore, application of a low voltage for a longer period of time to the DNA array was shown to improve the transfection efficiency by stimulating the desorption of attached DNA, increasing the concentration of DNA available for cellular uptake [5]. In the present study, the optimisation of the uptake of adsorbed DNA vectors by adherent cells, utilising a voltage bias without compromising cell viability was investigated. This was achieved by depositing negatively charged DNA plasmids onto a positively charged allylamine plasma polymer (ALAPP) layer deposited on highly doped p-type silicon wafers either using a pipettor or a microarray contact printer. Surface-dependant human embryonic kidney (HEK 293 line) cells were cultured onto the DNA vector loaded ALAPP spots and the plasmid transfection events were detected by fluorescence microscopy. Cell viability assays, including fluorescein diacetate (FDA) / Hoechst DNA labelling, were carried out to determine the number of live adherent cells before and after application of a voltage. A protocol was developed to screen for voltage biases and exposure times in order to optimise transfection efficiency and cell viability. Cross-contamination between the microarray

  9. Combined DNA-RNA Fluorescent In situ Hybridization (FISH) to Study X Chromosome Inactivation in Differentiated Female Mouse Embryonic Stem Cells

    PubMed Central

    Barakat, Tahsin Stefan; Gribnau, Joost

    2014-01-01

    Fluorescent in situ hybridization (FISH) is a molecular technique which enables the detection of nucleic acids in cells. DNA FISH is often used in cytogenetics and cancer diagnostics, and can detect aberrations of the genome, which often has important clinical implications. RNA FISH can be used to detect RNA molecules in cells and has provided important insights in regulation of gene expression. Combining DNA and RNA FISH within the same cell is technically challenging, as conditions suitable for DNA FISH might be too harsh for fragile, single stranded RNA molecules. We here present an easily applicable protocol which enables the combined, simultaneous detection of Xist RNA and DNA encoded by the X chromosomes. This combined DNA-RNA FISH protocol can likely be applied to other systems where both RNA and DNA need to be detected. PMID:24961515

  10. Sensitive Zn(2+) sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures.

    PubMed

    Liu, Nannan; Hou, Ruizuo; Gao, Pengcheng; Lou, Xiaoding; Xia, Fan

    2016-06-21

    The sensitivity of detection based on biofunctionalized nanopores is limited since the target-to-signal ratio is 1 : 1. Isothermal amplification is a promising amplification strategy at constant temperature due to its easy operation, quick results, PCR-like sensitivity, low cost and energy efficiency. In the present work, the isothermally amplified detection of Zn(2+) is achieved by using a DNA supersandwich structure and Zn(2+)-requiring DNAzymes. The DNA supersandwich structures, due to the multiple amplification of nucleic acids, heavily plug the nanopore. Simultaneously, the DNA supersandwich structures bond with the sessile probe (SP) of the substrate in the nanopore which partially hybridizes with DNAzymes. In the presence of Zn(2+), the Zn(2+)-requiring DNAzyme cleaves the SP into two fragments, while the DNA supersandwich structures are peeled off and the ionic pathway is unimpeded. A steep drop and a sequential complete recovery of the current occur in the I-V plot when the DNA supersandwich structures are decorated and peeled off. In the present system, the reliable detection limit of Zn(2+) is as low as 1 nM. Discrimination between different types of ions (Cu(2+), Hg(2+), Pb(2+)) is achieved. PMID:26911926

  11. Combined hopping?superexchange model of a hole transfer in DNA

    NASA Astrophysics Data System (ADS)

    Lakhno, V. D.; Sultanov, V. B.; Pettitt, B. Montgomery

    2004-12-01

    Relative hole transfer rates in DNA have been investigated in a number of nucleotide sequences experimentally. Calculation of the transfer rates in DNA is performed relying on the assumption that the transfer is realized as hopping of a hole on guanine sites, each hop being calculated on the basis of superexchange theory. It is shown that the medium reorganization energy and free energy changes play an important role in determining the transfer rate and the type of a nucleotide sequence. The results of the calculations are compared with experimental data covering a range of available sequences.

  12. Fabrication of DNA/RNA Hybrids Through Sequence-Specific Scission of Both Strands by pcPNA-S1 Nuclease Combination.

    PubMed

    Futai, Kazuki; Sumaoka, Jun; Komiyama, Makoto

    2016-05-01

    By combining two strands of pseudo-complementary peptide nucleic acid (pcPNA) with S1 nuclease, a tool for site-selective and dual-strand scission of DNA/RNA hybrids has been developed. Both of the DNA and the RNA strands in the hybrids are hydrolyzed at desired sites to provide unique sticky ends. The scission fragments are directly ligated with other DNA/RNA hybrids by using T4 DNA ligase, resulting in the formation of desired recombinant DNA/RNA hybrids. PMID:27057646

  13. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  14. Combination of Gefitinib and DNA Methylation Inhibitor Decitabine Exerts Synergistic Anti-Cancer Activity in Colon Cancer Cells

    PubMed Central

    Chen, Pin-jia; Huang, Guo-bin; Li, Bin; Zheng, De-qing; Yu, Xiu-rong; Luo, Xiao-yong

    2014-01-01

    Despite recent advances in the treatment of human colon cancer, the chemotherapy efficacy against colon cancer is still unsatisfactory. In the present study, effects of concomitant inhibition of the epidermal growth factor receptor (EGFR) and DNA methyltransferase were examined in human colon cancer cells. We demonstrated that decitabine (a DNA methyltransferase inhibitor) synergized with gefitinib (an EGFR inhibitor) to reduce cell viability and colony formation in SW1116 and LOVO cells. However, the combination of the two compounds displayed minimal toxicity to NCM460 cells, a normal human colon mucosal epithelial cell line. The combination was also more effective at inhibiting the AKT/mTOR/S6 kinase pathway. In addition, the combination of decitabine with gefitinib markedly inhibited colon cancer cell migration. Furthermore, gefitinib synergistically enhanced decitabine-induced cytotoxicity was primarily due to apoptosis as shown by Annexin V labeling that was attenuated by z-VAD-fmk, a pan caspase inhibitor. Concomitantly, cell apoptosis resulting from the co-treatment of gefitinib and decitabine was accompanied by induction of BAX, cleaved caspase 3 and cleaved PARP, along with reduction of Bcl-2 compared to treatment with either drug alone. Interestingly, combined treatment with these two drugs increased the expression of XIAP-associated factor 1 (XAF1) which play an important role in cell apoptosis. Moreover, small interfering RNA (siRNA) depletion of XAF1 significantly attenuated colon cancer cells apoptosis induced by the combination of the two drugs. Our findings suggested that gefitinib in combination with decitabine exerted enhanced cell apoptosis in colon cancer cells were involved in mitochondrial-mediated pathway and induction of XAF1 expression. In conclusion, based on the observations from our study, we suggested that the combined administration of these two drugs might be considered as a novel therapeutic regimen for treating colon cancer. PMID

  15. Quantitation of DNA methyltransferase activity via chronocoulometry in combination with rolling chain amplification.

    PubMed

    Ji, Jingjing; Liu, Yuanjian; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2016-11-15

    In this paper, a rolling chain amplification (RCA) strategy was proposed for chronocoulometric detection of DNA methyltransferase (MTase) activity. Briefly, after the double DNA helix structure was assembled on the surface of gold electrode, it was first methylated by M. SssI MTase and then RCA was realized in the presence of E. coli and phi29 DNA polymerase. Successively, numerous hexaammineruthenium (III) chloride ([Ru(NH3)6)(3+), RuHex) were adsorbed on replicons by electrostatic interaction and generated a large electrochemical readout, the signal was "on". On the contrary, in the absence of M. SssI MTase, the methylated CpG site in the unmethylated double DNA helix structure could be specifically recognized and cleaved by HpaII, resulting in a disconnection of RCA from the electrode. This led seldom RuHex to be absorbed onto the surface of electrode, the signal was "off". Based on the proposed strategy, the activity of M. SssI MTase was assayed in the range of 0.5-60U/mL with a detection limit of 0.09U/mL (S/N=3). In addition, the inhibition of procaine and epicatechin on M. SssI MTase activity was evaluated. When the proposed method was applied in complex matrix such as human serum samples, acceptable accuracy, precision and high sensitivity were achieved. Therefore, the proposed method was a potential useful mean for clinical diagnosis and drug development. PMID:27155113

  16. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA

    NASA Astrophysics Data System (ADS)

    Kurihara, Kensuke; Tamura, Mieko; Shohda, Koh-Ichiroh; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi

    2011-10-01

    The construction of a protocell from a materials point of view is important in understanding the origin of life. Both self-reproduction of a compartment and self-replication of an informational substance have been studied extensively, but these processes have typically been carried out independently, rather than linked to one another. Here, we demonstrate the amplification of DNA (encapsulated guest) within a self-reproducible cationic giant vesicle (host). With the addition of a vesicular membrane precursor, we observe the growth and spontaneous division of the giant vesicles, accompanied by distribution of the DNA to the daughter giant vesicles. In particular, amplification of the DNA accelerated the division of the giant vesicles. This means that self-replication of an informational substance has been linked to self-reproduction of a compartment through the interplay between polyanionic DNA and the cationic vesicular membrane. Our self-reproducing giant vesicle system therefore represents a step forward in the construction of an advanced model protocell.

  17. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA.

    PubMed

    Kurihara, Kensuke; Tamura, Mieko; Shohda, Koh-Ichiroh; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi

    2011-10-01

    The construction of a protocell from a materials point of view is important in understanding the origin of life. Both self-reproduction of a compartment and self-replication of an informational substance have been studied extensively, but these processes have typically been carried out independently, rather than linked to one another. Here, we demonstrate the amplification of DNA (encapsulated guest) within a self-reproducible cationic giant vesicle (host). With the addition of a vesicular membrane precursor, we observe the growth and spontaneous division of the giant vesicles, accompanied by distribution of the DNA to the daughter giant vesicles. In particular, amplification of the DNA accelerated the division of the giant vesicles. This means that self-replication of an informational substance has been linked to self-reproduction of a compartment through the interplay between polyanionic DNA and the cationic vesicular membrane. Our self-reproducing giant vesicle system therefore represents a step forward in the construction of an advanced model protocell. PMID:21941249

  18. Modified method for combined DNA and RNA isolation from peanut and other oil seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isolation of good quality RNA and DNA from seeds is difficult due to high levels of polysaccharides, polyphenols, and lipids that can degrade or co-precipitate with nucleic acids. Standard RNA extraction methods utilizing guanidinium-phenol-chloroform extraction has not shown to be successful. RNA...

  19. Proposed Strategy for Selection Against Recessive Genetic Defects Through a Combination of Inbreeding and DNA Markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recessive genetic defects are currently on the minds of many cattle breeders. The relatively rapid development of diagnostic DNA tests for recessive defects appears to be a major recent technological advancement. However, the attitude of breeders and breed associations toward recessive defects seems...

  20. Immune responses induced by DNA vaccines bearing Spike gene of PEDV combined with porcine IL-18

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine epidemic diarrhea virus (PEDV) is the causative agent of porcine epidemic diarrhea, a highly contagious enteric disease of swine. The Spike (S) protein is one of the main structural proteins of PEDV capable of inducing neutralizing antibodies in vivo. Herein, we generated three distinct DNA ...

  1. Combined effect of Cd and Pb spiked field soils on bioaccumulation, DNA damage, and peroxidase activities in Trifolium repens.

    PubMed

    Lanier, C; Bernard, F; Dumez, S; Leclercq, J; Lemière, S; Vandenbulcke, F; Nesslany, F; Platel, A; Devred, I; Cuny, D; Deram, A

    2016-01-01

    The present study was designed to investigate the combined effects of Cd and Pb on accumulation and genotoxic potential in white clover (Trifolium repens). For this purpose, T. repens was exposed to contaminated soils (2.5-20 mg kg(-1) cadmium (Cd), 250-2000 mg kg(-1) lead (Pb) and a mixture of these two heavy metals) for 3, 10 and 56 days. The resulting bioaccumulation of Cd and Pb, DNA damage (comet assay) and peroxidase activities (APOX and GPOX) were determined. The exposure time is a determinant factor in experiments designed to measure the influence of heavy metal contamination. The accumulation of Cd or Pb resulting from exposure to the two-metal mixture does not appear to depend significantly on whether the white clover is exposed to soil containing one heavy metal or both. However, when T. repens is exposed to a Cd/Pb mixture, the percentage of DNA damage is lower than when the plant is exposed to monometallic Cd. DNA damage is close to that observed in the case of monometallic Pb exposure. Peroxidase activity cannot be associated with DNA damage under these experimental conditions. PMID:26396009

  2. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis

    PubMed Central

    Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying

    2016-01-01

    Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis. PMID:27411928

  3. Aggravated DNA damage as a basis for enhanced glioma cell killing by MJ-66 in combination with minocycline

    PubMed Central

    Hour, Mann-Jen; Liu, Wei-Ting; Lu, I-Chen; Kuo, Sheng-Chu; Gean, Po-Wu

    2014-01-01

    Despite recent advances in the treatment of malignant glomas, the prognosis of patients remains very poor and more efficient therapeutic approaches are urgently needed. In the present study, we investigated whether 2-(naphthalene-1-yl)-6-pyrrolidinyl-4-quinazolinone (MJ-66), a synthetic quinazolinone analog, induces glioma cell death through DNA damage. Treatment of C6 glioma cells with MJ-66 resulted in a time-dependent increase in γ-H2AX and increased the appearance of nuclear γ-H2AX foci. MJ-66 interfered with G2/M DNA damage checkpoint through increasing phosphorylated levels of Chk1 and Cdc25C. UCN-01, a Chk1 inhibitor, reversed MJ-66-induced activation of Cdc25C and caspase 3. MJ-66 inhibited tumor growth and prolonged survival time in intracranial glioma xenograft model. The combination of MJ-66 and Mino enhanced DNA damage and synergistically inhibited tumor growth and prolonged survival time in intracranial glioma xenograft model. These results suggest that the combination of MJ-66 and Mino may be developed as a new therapeutic strategy against malignant gliomas. PMID:25232489

  4. Molecular phylogeny of Diabrotica beetles (Coleoptera: Chrysomelidae) inferred from analysis of combined mitochondrial and nuclear DNA sequences.

    PubMed

    Clark, T L; Meinke, L J; Foster, J E

    2001-08-01

    The phylogenetic relationships of thirteen Diabrotica (representing virgifera and fucata species groups) and two outgroup Acalymma beetle species (Coleoptera: Chrysomelidae) were inferred from the phylogenetic analysis of a combined data set of 1323 bp of mitochondrial DNA (mtDNA) cytochrome oxidase subunit 1 (COI) and the entire second internal transcribed spacer region (ITS-2) of nuclear ribosomal DNA of 362 characters. Species investigated were D. adelpha, D. balteata, D. barberi, D. cristata, D. lemniscata, D. longicornis, D. porracea, D. speciosa, D. undecimpunctata howardi, D. u. undecimpunctata, D. virgifera virgifera, D. v. zeae, D. viridula, and outgroup A. blandulum and A. vittatum. Maximum parsimony (MP), minimum evolution (ME), and maximum likelihood (ML) analyses of combined COI and ITS-2 sequences clearly place species into their traditional morphological species groups with MP and ME analyses resulting in identical topologies. Results generally confer with a prior work based on allozyme data, but within the virgifera species group, D. barberi and D. longicornis strongly resolve as sister taxa as well as monophyletic with the neotropical species, D. viridula, D. cristata and D. lemniscata also resolve as sister taxa. Both relationships are not in congruence with the prior allozyme-based hypothesis. Within the fucata species group, D. speciosa and D. balteata resolve as sister taxa. Results also strongly supported the D. virgifera and D. undecimpunctata subspecies complexes. Our proposed phylogeny provides some insight into current hypotheses regarding distribution status and evolution of various life history traits for Diabrotica. PMID:11520353

  5. Berberine in combination with cisplatin suppresses breast cancer cell growth through induction of DNA breaks and caspase-3-dependent apoptosis.

    PubMed

    Zhao, Yuwan; Jing, Zuolei; Li, Yan; Mao, Weifeng

    2016-07-01

    Berberine (BBR) is an isoquinoline alkaloid extracted from medicinal plants such as Hydrastis canadensis, Berberis aristata and Coptis chinensis. BBR displays a number of beneficial roles in the treatment of various types of cancers, yet the precise mechanisms of its action remain unclear. Cisplatin is an effective cancer chemotherapeutic agent and functions by generating DNA damage, promoting DNA damage-induced cell cycle arrest and apoptosis; however, its efficacy is challenged by the resistance of tumor cells in clinical application. The aim of the present study was to investigate the effects of BBR in combination with cisplatin on human breast cancer cells. MTT assay showed that BBR inhibited breast cancer MCF-7 cell growth with a 50% inhibitory concentration (IC50) value of 52.178±1.593 µM and the IC50 value of cisplatin was 49.541±1.618 µM, while in combination with 26 µM BBR, the IC50 value of cisplatin was 5.759±0.76 µM. BBR sensitized the MCF-7 cells to cisplatin in a time- and dose-dependent manner. After treatment of BBR and cisplatin, the cellular pro-apoptotic capase-3 and cleaved capspase-3 and caspase-9 were upregulated and the anti-apoptotic Bcl-2 was downregulated. Importantly, BBR restrained the expression of cellular PCNA, and immunofluoresence analysis of γH2AX showed that BBR increased the DNA damages induced by cisplatin. Taken together, the results demonstrated that BBR sensitized MCF-7 cells to cisplatin through induction of DNA breaks and caspase-3-dependent apoptosis. PMID:27177238

  6. Enhanced Performance of Plasmid DNA Polyplexes Stabilized by a Combination of Core Hydrophobicity and Surface PEGylation

    PubMed Central

    Adolph, Elizabeth J.; Nelson, Christopher E.; Werfel, Thomas A.; Guo, Ruijing; Davidson, Jeffrey M.; Duvall, Craig L.

    2014-01-01

    Nonviral gene therapy has high potential for safely promoting tissue restoration and for treating various genetic diseases. One current limitation is that conventional transfection reagents such as polyethylenimine (PEI) form electrostatically stabilized plasmid DNA (pDNA) polyplexes with poor colloidal stability. In this study, a library of poly(ethylene glycol-b-(dimethylaminoethyl methacrylate-co-butyl methacrylate)) [poly(EG-b-(DMAEMA-co-BMA))] polymers were synthesized and screened for improved colloidal stability and nucleic acid transfection following lyophilization. When added to pDNA in the appropriate pH buffer, the DMAEMA moieties initiate formation of electrostatic polyplexes that are internally stabilized by hydrophobic interactions of the core BMA blocks and sterically stabilized against aggregation by a PEG corona. The BMA content was varied from 0% to 60% in the second polymer block in order to optimally tune the balance of electrostatic and hydrophobic interactions in the polyplex core, and polymers with 40 and 50 mol% BMA achieved the highest transfection efficiency. Diblock copolymers were more stable than PEI in physiologic buffers. Consequently, diblock copolymer polyplexes aggregated more slowly and followed a reaction-limited colloidal aggregation model, while fast aggregation of PEI polyplexes was governed by a diffusion-limited model. Polymers with 40% BMA did not aggregate significantly after lyophilization and produced up to 20-fold higher transfection efficiency than PEI polyplexes both before and after lyophilization. Furthermore, poly(EG-b-(DMAEMA-co-BMA)) polyplexes exhibited pH-dependent membrane disruption in a red blood cell hemolysis assay and endosomal escape as observed by confocal microscopy.Lyophilized polyplexes made with the lead candidate diblock copolymer (40% BMA) also successfully transfected cells in vitro following incorporation into gas-foamed polymeric scaffolds. In summary, the enhanced colloidal stability

  7. Mitochondrial DNA deletion in a patient with combined features of Leigh and Pearson syndromes

    SciTech Connect

    Blok, R.B.; Thorburn, D.R.; Danks, D.M.

    1994-09-01

    We describe a heteroplasmic 4237 bp mitochondrial DNA (mtDNA) deletion in an 11 year old girl who has suffered from progressive illness since birth. She has some features of Leigh syndrome (global developmental delay with regression, brainstem dysfunction and lactic acidosis), together with other features suggestive of Pearson syndrome (history of pancytopenia and failure to thrive). The deletion was present at a level greater than 50% in skeletal muscle, but barely detectable in skin fibroblasts following Southern blot analysis, and only observed in blood following PCR analysis. The deletion spanned nt 9498 to nt 13734, and was flanked by a 12 bp direct repeat. Genes for cytochrome c oxidase subunit III, NADH dehydrogenase subunits 3, 4L, 4 and 5, and tRNAs for glycine, arginine, histidine, serine({sup AGY}) and leucine({sup CUN}) were deleted. Southern blotting also revealed an altered Apa I restriction site which was shown by sequence analysis to be caused by G{r_arrow}A nucleotide substitution at nt 1462 in the 12S rRNA gene. This was presumed to be a polymorphism. No abnormalities of mitochondrial ultrastructure, distribution or of respiratory chain enzyme complexes I-IV in skeletal muscle were observed. Mitochondrial disorders with clinical features overlapping more than one syndrome have been reported previously. This case further demonstrates the difficulty in correlating observed clinical features with a specific mitochondrial DNA mutation.

  8. A Fatal Combination: A Thymidylate Synthase Inhibitor with DNA Damaging Activity

    PubMed Central

    Ligasová, Anna; Strunin, Dmytro; Friedecký, David; Adam, Tomáš; Koberna, Karel

    2015-01-01

    2′-deoxy-5-ethynyluridine (EdU) has been previously shown to be a cell poison whose toxicity depends on the particular cell line. The reason is not known. Our data indicates that different efficiency of EdU incorporation plays an important role. The EdU-mediated toxicity was elevated by the inhibition of 2′-deoxythymidine 5′-monophosphate synthesis. EdU incorporation resulted in abnormalities of the cell cycle including the slowdown of the S phase and a decrease in DNA synthesis. The slowdown but not the cessation of the first cell division after EdU administration was observed in all of the tested cell lines. In HeLa cells, a 10 μM EdU concentration led to the cell death in the 100% of cells probably due to the activation of an intra S phase checkpoint in the subsequent S phase. Our data also indicates that this EdU concentration induces interstrand DNA crosslinks in HeLa cells. We suppose that these crosslinks are the primary DNA damage resulting in cell death. According to our results, the EdU-mediated toxicity is further increased by the inhibition of thymidylate synthase by EdU itself at its higher concentrations. PMID:25671308

  9. Effects of combinations of ROS scavengers on oxidative DNA damage caused by visible-light-activated camphorquinone/N,N-dimethyl-p-toluidine.

    PubMed

    Lee, Seungbum; Pagoria, Dustin; Raigrodski, Ariel; Geurtsen, Werner

    2007-11-01

    The objective of this investigation was to analyze whether various combinations of the ROS scavengers glutathione (GSH), N-acetyl-cysteine (NAC), and vitamins C and E decrease DNA damage due to visible-light-irradiated (VL-irradiated) camphorquinone/N,N-dimethyl-p-toluidine (CQ/DMT) compared with individual vitamin C or E. PhiX-174 RF plasmid DNA was used to determine single and double strand breaks as parameters of DNA damage. Individual ROS scavengers and combinations of the antioxidants were added to plasmid DNA treated with VL-irradiated CQ/DMT/Cu (II). After incubation, DNA was loaded into a 1% agarose gel. Following electrophoresis, gels stained with 0.5 microg/mL ethidium bromide were photographed under ultraviolet illumination and analyzed with NIH ImageJ software. Results were evaluated between groups for statistical significance using Student's paired t-test (p < 0.05). Glutathione significantly reduced oxidative DNA damage at all test concentrations when combined with vitamin C or vitamin E. The concentration of damaged DNA observed in the presence of combinations of GSH with vitamin C or vitamin E was significantly lower compared with all other combinations of antioxidants investigated in our study (p < 0.05). In contrast to GSH, NAC was not able to compensate the pro-oxidative effects of vitamin C and vitamin E. Only at a concentration of 2 mM, NAC combined with vitamin C efficiently prevented CQ/DMT/Cu (II)-associated DNA damage. Our data indicate that solely the combinations of GSH with vitamin C or vitamin E significantly reduce the severity of oxidative DNA damage caused by CQ/DMT, whereas NAC may even increase the pro-oxidant activity of vitamin C and vitamin E. PMID:17443666

  10. Combined inhibition of DNA methyltransferase and histone deacetylase restores caspase-8 expression and sensitizes SCLC cells to TRAIL.

    PubMed

    Kaminskyy, Vitaliy O; Surova, Olga V; Vaculova, Alena; Zhivotovsky, Boris

    2011-10-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising drug for the treatment of tumors; however, a number of cancer cells are resistant to this cytokine. Among the mechanisms of resistance of small cell lung carcinomas (SCLCs) to TRAIL is the lack of caspase-8 expression. Although methylation of the caspase-8 promoter has been suggested as the main mechanism of caspase-8 silencing, we showed that reduction of the enzymes involved in DNA methylation, DNA methyltransferases (DNMT) 1, 3a and 3b, was not sufficient to significantly restore caspase-8 expression in SCLC cells, signifying that other mechanisms are involved in caspase-8 silencing. We found that combination of the DNMT inhibitor decitabine with an inhibitor of histone deacetylase (HDAC) significantly increased caspase-8 expression in SCLC cells at the RNA and protein levels. Among all studied HDAC inhibitors, valproic acid (VPA) and CI-994 showed prolonged effects on histone acetylation, while combination with decitabine produced the most prominent effects on caspase-8 re-expression. Moreover, a significant reduction of survivin and cIAP-1 proteins level was observed after treatment with VPA. The combination of two drugs sensitized SCLC cells to TRAIL-induced apoptosis, involving mitochondrial apoptotic pathway and was accompanied by Bid cleavage, activation of Bax, and release of cytochrome c. Both initiator caspase-8 and -9 were required for the sensitization of SCLC cells to TRAIL. Thus, efficient restoration of caspase-8 expression in SCLC cells is achieved when a combination of DNMT and HDAC inhibitors is used, suggesting a combination of decitabine and VPA or CI-994 as a potential treatment for sensitization of SCLC cells lacking caspase-8 to TRAIL. PMID:21771726

  11. Electrochemiluminescence signal amplification combined with a conformation-switched hairpin DNA probe for determining the methylation level and position in the Hsp53 tumor suppressor gene.

    PubMed

    Zhang, Hui; Li, Meixing; Fan, Mengxing; Gu, Jinxing; Wu, Ping; Cai, Chenxin

    2014-03-18

    We report a new strategy for detection of the methylation level and position in the Hsp53 tumor suppressor gene based on the electrochemiluminescence signal amplification combined with a conformation-switched hairpin DNA probe for improving selectivity. PMID:24501739

  12. Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication.

    PubMed

    Zhu, Xiaoli; Sun, Liya; Chen, Yangyang; Ye, Zonghuang; Shen, Zhongming; Li, Genxi

    2013-09-15

    Graphene, a single atom thick and two dimensional carbon nano-material, has been proven to possess many unique properties, one of which is the recent discovery that it can interact with single-stranded DNA through noncovalent π-π stacking. In this work, we demonstrate that a new strategy to fabricate many kinds of biosensors can be developed by combining this property with cascade chemical reactions. Taking the fabrication of glucose sensor as an example, while the detection target, glucose, may regulate the graphene-DNA interaction through three cascade chemical reactions, electrochemical techniques are employed to detect the target-regulated graphene-DNA interaction. Experimental results show that in a range from 5μM to 20mM, the glucose concentration is in a natural logarithm with the logarithm of the amperometric response, suggesting a best detection limit and detection range. The proposed biosensor also shows favorable selectivity, and it has the advantage of no need for labeling. What is more, by controlling the cascade chemical reactions, detection of a variety of other targets may be achieved, thus the strategy proposed in this work may have a wide application potential in the future. PMID:23542067

  13. A computer programme for estimation of genetic risk in X linked disorders, combining pedigree and DNA probe data with other conditional information.

    PubMed Central

    Sarfarazi, M; Williams, H

    1986-01-01

    A computer programme is presented for calculating the recurrence risk in X linked disorders, combining pedigree and DNA probe data with other conditional information such as carrier detection tests. The methods of computation are shown in the given examples. The programme can be used with either a single DNA probe or two 'flanking' DNA probes for both familial and isolated case pedigrees. For isolated case families the mutation rate at the disease locus can be taken into account in conjunction with the DNA probe data. PMID:3754009

  14. Combined DNA, toxicological and heavy metal analyses provides an auditing toolkit to improve pharmacovigilance of traditional Chinese medicine (TCM).

    PubMed

    Coghlan, Megan L; Maker, Garth; Crighton, Elly; Haile, James; Murray, Dáithí C; White, Nicole E; Byard, Roger W; Bellgard, Matthew I; Mullaney, Ian; Trengove, Robert; Allcock, Richard J N; Nash, Christine; Hoban, Claire; Jarrett, Kevin; Edwards, Ross; Musgrave, Ian F; Bunce, Michael

    2015-01-01

    Globally, there has been an increase in the use of herbal remedies including traditional Chinese medicine (TCM). There is a perception that products are natural, safe and effectively regulated, however, regulatory agencies are hampered by a lack of a toolkit to audit ingredient lists, adulterants and constituent active compounds. Here, for the first time, a multidisciplinary approach to assessing the molecular content of 26 TCMs is described. Next generation DNA sequencing is combined with toxicological and heavy metal screening by separation techniques and mass spectrometry (MS) to provide a comprehensive audit. Genetic analysis revealed that 50% of samples contained DNA of undeclared plant or animal taxa, including an endangered species of Panthera (snow leopard). In 50% of the TCMs, an undeclared pharmaceutical agent was detected including warfarin, dexamethasone, diclofenac, cyproheptadine and paracetamol. Mass spectrometry revealed heavy metals including arsenic, lead and cadmium, one with a level of arsenic >10 times the acceptable limit. The study showed 92% of the TCMs examined were found to have some form of contamination and/or substitution. This study demonstrates that a combination of molecular methodologies can provide an effective means by which to audit complementary and alternative medicines. PMID:26658160

  15. Combined DNA, toxicological and heavy metal analyses provides an auditing toolkit to improve pharmacovigilance of traditional Chinese medicine (TCM)

    PubMed Central

    Coghlan, Megan L.; Maker, Garth; Crighton, Elly; Haile, James; Murray, Dáithí C.; White, Nicole E.; Byard, Roger W.; Bellgard, Matthew I.; Mullaney, Ian; Trengove, Robert; Allcock, Richard J. N.; Nash, Christine; Hoban, Claire; Jarrett, Kevin; Edwards, Ross; Musgrave, Ian F.; Bunce, Michael

    2015-01-01

    Globally, there has been an increase in the use of herbal remedies including traditional Chinese medicine (TCM). There is a perception that products are natural, safe and effectively regulated, however, regulatory agencies are hampered by a lack of a toolkit to audit ingredient lists, adulterants and constituent active compounds. Here, for the first time, a multidisciplinary approach to assessing the molecular content of 26 TCMs is described. Next generation DNA sequencing is combined with toxicological and heavy metal screening by separation techniques and mass spectrometry (MS) to provide a comprehensive audit. Genetic analysis revealed that 50% of samples contained DNA of undeclared plant or animal taxa, including an endangered species of Panthera (snow leopard). In 50% of the TCMs, an undeclared pharmaceutical agent was detected including warfarin, dexamethasone, diclofenac, cyproheptadine and paracetamol. Mass spectrometry revealed heavy metals including arsenic, lead and cadmium, one with a level of arsenic >10 times the acceptable limit. The study showed 92% of the TCMs examined were found to have some form of contamination and/or substitution. This study demonstrates that a combination of molecular methodologies can provide an effective means by which to audit complementary and alternative medicines. PMID:26658160

  16. Combined DNA, toxicological and heavy metal analyses provides an auditing toolkit to improve pharmacovigilance of traditional Chinese medicine (TCM)

    NASA Astrophysics Data System (ADS)

    Coghlan, Megan L.; Maker, Garth; Crighton, Elly; Haile, James; Murray, Dáithí C.; White, Nicole E.; Byard, Roger W.; Bellgard, Matthew I.; Mullaney, Ian; Trengove, Robert; Allcock, Richard J. N.; Nash, Christine; Hoban, Claire; Jarrett, Kevin; Edwards, Ross; Musgrave, Ian F.; Bunce, Michael

    2015-12-01

    Globally, there has been an increase in the use of herbal remedies including traditional Chinese medicine (TCM). There is a perception that products are natural, safe and effectively regulated, however, regulatory agencies are hampered by a lack of a toolkit to audit ingredient lists, adulterants and constituent active compounds. Here, for the first time, a multidisciplinary approach to assessing the molecular content of 26 TCMs is described. Next generation DNA sequencing is combined with toxicological and heavy metal screening by separation techniques and mass spectrometry (MS) to provide a comprehensive audit. Genetic analysis revealed that 50% of samples contained DNA of undeclared plant or animal taxa, including an endangered species of Panthera (snow leopard). In 50% of the TCMs, an undeclared pharmaceutical agent was detected including warfarin, dexamethasone, diclofenac, cyproheptadine and paracetamol. Mass spectrometry revealed heavy metals including arsenic, lead and cadmium, one with a level of arsenic >10 times the acceptable limit. The study showed 92% of the TCMs examined were found to have some form of contamination and/or substitution. This study demonstrates that a combination of molecular methodologies can provide an effective means by which to audit complementary and alternative medicines.

  17. The combination of FLT3 and DNA methyltransferase inhibition is synergistically cytotoxic to FLT3/ITD acute myeloid leukemia cells.

    PubMed

    Chang, E; Ganguly, S; Rajkhowa, T; Gocke, C D; Levis, M; Konig, H

    2016-05-01

    Effective treatment regimens for elderly acute myeloid leukemia (AML) patients harboring internal tandem duplication mutations in the FMS-like tyrosine kinase-3 (FLT3) gene (FLT3/ITD) are lacking and represent a significant unmet need. Recent data on the effects of FLT3 tyrosine kinase inhibitors on FLT3/ITD(+) AML showed promising clinical activity, including in elderly patients. DNA methyltransferase (DNMT) inhibitors such as decitabine (5-aza-2-deoxycytidine, DEC) and 5-azacitidine (AZA) demonstrated clinical benefit in AML, are well tolerated and are associated with minimal increases in FLT3 ligand, which can represent a potential resistance mechanism to FLT3 inhibitors. In addition, both FLT3 and DNMT inhibition are associated with the induction of terminal differentiation of myeloid blasts. Consequently, there is a strong theoretical rationale for combining FLT3 and DNMT inhibition for FLT3/ITD(+) AML. We therefore sought to study the anti-leukemic effects of DEC, AZA and FLT3 inhibitors, either as single agents or in combination, on AML cell lines and primary cells derived from newly diagnosed and relapsed AML patients. Our studies indicate that combined treatment using FLT3 inhibition and hypomethylation confers synergistic anti-leukemic effects, including apoptosis, growth inhibition and differentiation. The simultaneous administration of AZA and FLT3 inhibition appears to be the most efficacious combination in this regard. These drugs may provide a novel therapeutic approach for FLT3/ITD(+) AML, in particular for older patients. PMID:26686245

  18. Synthesis of DNA containing the simian virus 40 origin of replication by the combined action of DNA polymerases alpha and delta.

    PubMed Central

    Lee, S H; Eki, T; Hurwitz, J

    1989-01-01

    Proliferating-cell nuclear antigen (PCNA) mediates the replication of simian virus 40 (SV40) DNA by reversing the effects of a protein that inhibits the elongation reaction. Two other protein fractions, activator I and activator II, were also shown to play important roles in this process. We report that activator II isolated from HeLa cell extracts is a PCNA-dependent DNA polymerase delta that is required for efficient replication of DNA containing the SV40 origin of replication. PCNA-dependent DNA polymerase delta on a DNA singly primed phi X174 single-stranded circular DNA template required PCNA, a complex of the elongation inhibitor and activator I, and the single-stranded DNA-binding protein essential for SV40 DNA replication. DNA polymerase delta, in contrast to DNA polymerase alpha, hardly used RNA-primed DNA templates. These results indicate that both DNA polymerase alpha and delta are involved in SV40 DNA replication in vitro and their activity depends on PCNA, the elongation inhibitor, and activator I. Images PMID:2571990

  19. The energetic basis of the DNA double helix: a combined microcalorimetric approach

    PubMed Central

    Vaitiekunas, Paulius; Crane-Robinson, Colyn; Privalov, Peter L.

    2015-01-01

    Microcalorimetric studies of DNA duplexes and their component single strands showed that association enthalpies of unfolded complementary strands into completely folded duplexes increase linearly with temperature and do not depend on salt concentration, i.e. duplex formation results in a constant heat capacity decrement, identical for CG and AT pairs. Although duplex thermostability increases with CG content, the enthalpic and entropic contributions of an AT pair to duplex formation exceed that of a CG pair when compared at the same temperature. The reduced contribution of AT pairs to duplex stabilization comes not from their lower enthalpy, as previously supposed, but from their larger entropy contribution. This larger enthalpy and particularly the greater entropy results from water fixed by the AT pair in the minor groove. As the increased entropy of an AT pair exceeds that of melting ice, the water molecule fixed by this pair must affect those of its neighbors. Water in the minor groove is, thus, orchestrated by the arrangement of AT groups, i.e. is context dependent. In contrast, water hydrating exposed nonpolar surfaces of bases is responsible for the heat capacity increment on dissociation and, therefore, for the temperature dependence of all thermodynamic characteristics of the double helix. PMID:26304541

  20. Circular Dichroism of DNA G-Quadruplexes: Combining Modeling and Spectroscopy To Unravel Complex Structures.

    PubMed

    Gattuso, Hugo; Spinello, Angelo; Terenzi, Alessio; Assfeld, Xavier; Barone, Giampaolo; Monari, Antonio

    2016-03-31

    We report on the comparison between the computational and experimental determination of electronic circular dichroism spectra of different guanine quadruplexes obtained from human telomeric sequences. In particular the difference between parallel, antiparallel, and hybrid structures is evidenced, as well as the induction of transitions between the polymorphs depending on the solution environment. Extensive molecular dynamics simulations (MD) are used to probe the conformational space of the different quadruplexes, and subsequently state-of-the-art hybrid quantum mechanics/molecular mechanics (QM/MM) techniques coupled with excitonic semiempirical Hamiltonian are used to simulate the macromolecular induced circular dichroism. The coupling of spectroscopy and molecular simulation allows an efficient one-to-one mapping between structures and optical properties, offering a way to disentangle the rich, yet complicated, quantity of information embedded in circular dichroism spectra. We show that our methodology is robust and efficient and allows us to take into account subtle conformational changes. As such, it could be used as an efficient tool to investigate structural modification upon DNA/drug interactions. PMID:26943487

  1. Synergistic effects of combined DNA methyltransferase inhibition and MBD2 depletion on breast cancer cells; MBD2 depletion blocks 5-aza-2ʹ-deoxycytidine-triggered invasiveness

    PubMed Central

    Cheishvili, David; Chik, Flora; Li, Chen Chen; Bhattacharya, Bishnu; Suderman, Matthew; Arakelian, Ani; Hallett, Michael; Rabbani, Shafaat A.; Szyf, Moshe

    2014-01-01

    5-Aza-2ʹ-deoxycytidine (5-azaCdR) not only inhibits growth of non-invasive breast cancer cells but also increases their invasiveness through induction of pro-metastatic genes. Methylated DNA binding protein 2 (MBD2) is involved in silencing methylated tumor suppressor genes as well as activation of pro-metastatic genes. In this study, we show that a combination of MBD2 depletion and DNA methyltransferases (DNMT) inhibition in breast cancer cells results in a combined effect in vitro and in vivo, enhancing tumor growth arrest on one hand, while inhibiting invasiveness triggered by 5-azaCdR on the other hand. The combined treatment of MBD2 depletion and 5-azaCdR suppresses and augments distinct gene networks that are induced by DNMT inhibition alone. These data point to a potential new approach in targeting the DNA methylation machinery by combination of MBD2 and DNMT inhibitors. PMID:25178277

  2. Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines.

    PubMed

    Yu, Yun-Zhou; Ma, Yao; Xu, Wen-Hui; Wang, Shuang; Sun, Zhi-Wei

    2015-08-01

    DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as "built-in" adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines. PMID:25265876

  3. Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures.

    PubMed

    Eipel, Monika; Mayer, Felix; Arent, Tanja; Ferreira, Marcelo R P; Birkhofer, Carina; Gerstenmaier, Uwe; Costa, Ivan G; Ritz-Timme, Stefanie; Wagner, Wolfgang

    2016-05-01

    Aging is reflected by highly reproducible DNA methylation (DNAm) changes that open new perspectives for estimation of chronological age in legal medicine. DNA can be harvested non-invasively from cells at the inside of a person's cheek using buccal swabs - but these specimens resemble heterogeneous mixtures of buccal epithelial cells and leukocytes with different epigenetic makeup. In this study, we have trained an age predictor based on three age-associated CpG sites (associated with the genesPDE4C, ASPA, and ITGA2B) for swab samples to reach a mean absolute deviation (MAD) between predicted and chronological age of 4.3 years in a training set and of 7.03 years in a validation set. Subsequently, the composition of buccal epithelial cells versus leukocytes was estimated by two additional CpGs (associated with the genes CD6 and SERPINB5). Results of this "Buccal-Cell-Signature" correlated with cell counts in cytological stains (R2 = 0.94). Combination of cell type-specific and age-associated CpGs into one multivariate model enabled age predictions with MADs of 5.09 years and 5.12 years in two independent validation sets. Our results demonstrate that the cellular composition in buccal swab samples can be determined by DNAm at two cell type-specific CpGs to improve epigenetic age predictions. PMID:27249102

  4. Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures

    PubMed Central

    Eipel, Monika; Mayer, Felix; Arent, Tanja; Ferreira, Marcelo R. P.; Birkhofer, Carina; Gerstenmaier, Uwe; Costa, Ivan G.; Ritz-Timme, Stefanie; Wagner, Wolfgang

    2016-01-01

    Aging is reflected by highly reproducible DNA methylation (DNAm) changes that open new perspectives for estimation of chronological age in legal medicine. DNA can be harvested non-invasively from cells at the inside of a person's cheek using buccal swabs – but these specimens resemble heterogeneous mixtures of buccal epithelial cells and leukocytes with different epigenetic makeup. In this study, we have trained an age predictor based on three age-associated CpG sites (associated with the genes PDE4C, ASPA, and ITGA2B) for swab samples to reach a mean absolute deviation (MAD) between predicted and chronological age of 4.3 years in a training set and of 7.03 years in a validation set. Subsequently, the composition of buccal epithelial cells versus leukocytes was estimated by two additional CpGs (associated with the genes CD6 and SERPINB5). Results of this “Buccal-Cell-Signature” correlated with cell counts in cytological stains (R2 = 0.94). Combination of cell type-specific and age-associated CpGs into one multivariate model enabled age predictions with MADs of 5.09 years and 5.12 years in two independent validation sets. Our results demonstrate that the cellular composition in buccal swab samples can be determined by DNAm at two cell type-specific CpGs to improve epigenetic age predictions. PMID:27249102

  5. SHAMS: Combining chemical modification of RNA with mass spectrometry to examine polypurine tract-containing RNA/DNA hybrids

    PubMed Central

    Turner, Kevin B.; Yi-Brunozzi, Hye Young; Brinson, Robert G.; Marino, John P.; Fabris, Daniele; Le Grice, Stuart F.J.

    2009-01-01

    Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) has gained popularity as a facile method of examining RNA structure both in vitro and in vivo, exploiting accessibility of the ribose 2′-OH to acylation by N-methylisatoic anhydride (NMIA) in unpaired or flexible configurations. Subsequent primer extension terminates at the site of chemical modification, and these products are fractionated by high-resolution gel electrophoresis. When applying SHAPE to investigate structural features associated with the wild-type and analog-substituted polypurine tract (PPT)–containing RNA/DNA hybrids, their size (20–25 base pairs) rendered primer extension impractical. As an alternative method of detection, we reasoned that chemical modification could be combined with tandem mass spectrometry, relying on the mass increment of RNA fragments containing the NMIA adduct (Mr = 133 Da). Using this approach, we demonstrate both specific modification of the HIV-1 PPT RNA primer and variations in its acylation pattern induced by replacing template nucleotides with a non-hydrogen-bonding thymine isostere. Our selective 2′-hydroxyl acylation analyzed by mass spectrometry strategy (SHAMS) should find utility when examining the structure of small RNA fragments or RNA/DNA hybrids where primer extension cannot be performed. PMID:19535461

  6. Nonsense mutation at Tyr-4046 in the DNA-dependent protein kinase catalytic subunit of severe combined immune deficiency mice

    PubMed Central

    Araki, Ryoko; Fujimori, Akira; Hamatani, Kiyohiro; Mita, Kazuei; Saito, Toshiyuki; Mori, Masahiko; Fukumura, Ryutaro; Morimyo, Mitsuoki; Muto, Masahiro; Itoh, Masahiro; Tatsumi, Kouichi; Abe, Masumi

    1997-01-01

    The severe combined immune deficiency (SCID) mouse was reported as an animal model for human immune deficiency. Through the course of several studies, the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) gene came to be considered a candidate for the SCID-responsible gene. We isolated an ORF of the murine DNA-PKcs gene from SCID mice and their parent strain C.B-17 mice and determined the DNA sequences. The ORF of the murine DNA-PKcs gene contained 4128-aa residues and had 78.9% homology with the human DNA-PKcs gene. A particularly important finding is that a T to A transversion results in the substitution of termination codon in SCID mice for the Tyr-4046 in C.B-17 mice. No other mutation was detected in the ORF of the gene. The generality of this transversion was confirmed using four individual SCID and wild-type mice. The substitution took place in the phosphatidylinositol 3-kinase domain, and the mutated gene encodes the truncated products missing 83 residues of wild-type DNA-PKcs products. Furthermore, the quantity of DNA-PKcs transcript in wild-type and SCID cells was almost equal. These observations indicate that the DNA-PKcs gene is the SCID-responsible gene itself and that the detected mutation leads to the SCID aberration. PMID:9122213

  7. Combination of PDT and a DNA demethylating agent produces anti-tumor immune response in a mouse tumor model

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Hamblin, Michael R.

    2009-06-01

    Epigenetic mechanisms, which involve DNA methylation and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. However, these changes must be actively maintained after each cell division rendering them a promising target for pharmacologic inhibition. DNA methyltransferase inhibitors like 5-aza-deoxycytidine (5-aza-dC) induce and/or up-regulate the expression of MAGE-type antigens in human and mice cancer cells. Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of stimulating tumor-directed immune response. We studied the effects of a new therapy that combined the demethylating agent 5-aza-dC with PDT in the breast cancer model 4T1 syngenic to immunocompetent BALB/c mice. PDT was used as a locally ablating tumor treatment that is capable of eliciting strong and tumor directed immune response while 5-aza-dC pretreatment was used promote de novo induction of the expression of P1A.protein. This is the mouse homolog of human MAGE family antigens and is reported to function as a tumor rejection antigen in certain mouse tumors. This strategy led to an increase in PDT-mediated immune response and better treatment outcome. These results strongly suggest that the MAGE family antigens are important target for PDT mediated immune response but that their expression can be silenced by epigenetic mechanisms. Therefore the possibility that PDT can be combined with epigenetic strategies to elicit anti-tumor immunity in MAGE-positive tumor models is highly clinically significant and should be studied in detail.

  8. Targeting DNA repair with combination veliparib (ABT-888) and temozolomide in patients with metastatic castration-resistant prostate cancer

    PubMed Central

    Carducci, Michael A.; Slovin, Susan; Cetnar, Jeremy; Qian, Jiang; McKeegan, Evelyn M.; Refici-Buhr, Marion; Chyla, Brenda; Shepherd, Stacie P.; Giranda, Vincent L.; Alumkal, Joshi J.

    2015-01-01

    Summary Androgen receptor-mediated transcription is directly coupled with the induction of DNA damage, and castration-resistant tumor cells exhibit increased activity of poly (ADP-ribose) polymerase (PARP)-1, a DNA repair enzyme. This study assessed the efficacy and safety of low dose oral PARP inhibitor veliparib (ABT-888) and temozolomide (TMZ) in docetaxel-pretreated patients with metastatic castration-resistant prostate cancer (mCRPC) in a single-arm, open-label, pilot study. Patients with mCRPC progressing on at least one docetaxel-based therapy and prostate specific antigen (PSA) ≥2 ng/mL were treated with veliparib 40 mg twice daily on days 1–7 and TMZ once daily (150 mg/m2/day cycle 1; if well tolerated then 200 mg/m2/day cycle 2 onwards) on days 1–5 q28 days. Patients received 2 (median) treatment cycles (range, 1–9). The primary end-point was confirmed PSA response rate (decline≥30 %). Twenty-six eligible patients were enrolled, 25 evaluable for PSA response. Median baseline PSA was 170 ng/mL. Two patients had a confirmed PSA response (8.0 %; 95 % CI: 1.0– 26.0), 13 stable PSA, and 10 PSA progression. The median progression-free survival was 9 weeks (95 % CI: 7.9–17) and median overall survival 39.6 weeks (95 % CI: 26.6–not estimable). The most frequent treatment-emergent adverse events (AEs) were thrombocytopenia (77 %), anemia (69 %), fatigue (50 %), neutropenia (42 %), nausea (38 %), and constipation (23 %). Grade 3/4 AEs occurring in >10 % of patients were thrombocytopenia (23 %) and anemia (15 %). Veliparib and TMZ combination was well tolerated but with modest activity. Biomarker analysis supported the proof of concept that this combination has some antitumor activity in mCRPC. PMID:24764124

  9. Acoustic detection of DNA conformation in genetic assays combined with PCR.

    PubMed

    Papadakis, G; Tsortos, A; Kordas, A; Tiniakou, I; Morou, E; Vontas, J; Kardassis, D; Gizeli, E

    2013-01-01

    Application of PCR to multiplexing assays is not trivial; it requires multiple fluorescent labels for amplicon detection and sophisticated software for data interpretation. Alternative PCR-free methods exploiting new concepts in nanotechnology exhibit high sensitivities but require multiple labeling and/or amplification steps. Here, we propose to simplify the problem of simultaneous analysis of multiple targets in genetic assays by detecting directly the conformation, rather than mass, of target amplicons produced in the same PCR reaction. The new methodology exploits acoustic wave devices which are shown to be able to characterize in a fully quantitative manner multiple double stranded DNAs of various lengths. The generic nature of the combined acoustic/PCR platform is shown using real samples and, specifically, during the detection of SNP genotyping in Anopheles gambiae and gene expression quantification in treated mice. The method possesses significant advantages to TaqMan assay and real-time PCR regarding multiplexing capability, speed, simplicity and cost. PMID:23778520

  10. Acoustic detection of DNA conformation in genetic assays combined with PCR

    PubMed Central

    Papadakis, G.; Tsortos, A.; Kordas, A.; Tiniakou, I.; Morou, E.; Vontas, J.; Kardassis, D.; Gizeli, E.

    2013-01-01

    Application of PCR to multiplexing assays is not trivial; it requires multiple fluorescent labels for amplicon detection and sophisticated software for data interpretation. Alternative PCR-free methods exploiting new concepts in nanotechnology exhibit high sensitivities but require multiple labeling and/or amplification steps. Here, we propose to simplify the problem of simultaneous analysis of multiple targets in genetic assays by detecting directly the conformation, rather than mass, of target amplicons produced in the same PCR reaction. The new methodology exploits acoustic wave devices which are shown to be able to characterize in a fully quantitative manner multiple double stranded DNAs of various lengths. The generic nature of the combined acoustic/PCR platform is shown using real samples and, specifically, during the detection of SNP genotyping in Anopheles gambiae and gene expression quantification in treated mice. The method possesses significant advantages to TaqMan assay and real-time PCR regarding multiplexing capability, speed, simplicity and cost. PMID:23778520

  11. Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods.

    PubMed

    Wang, Dangge; Xu, Zhiai; Yu, Haijun; Chen, Xianzhi; Feng, Bing; Cui, Zhirui; Lin, Bin; Yin, Qi; Zhang, Zhiwen; Chen, Chunying; Wang, Jun; Zhang, Wen; Li, Yaping

    2014-09-01

    Despite the exciting advances in cancer therapy over past decades, tumor metastasis remains the dominate reason for cancer-related mortality. In present work, DNA-wrapped gold nanorods with doxorubicin (DOX)-loading (GNR@DOX) were developed for treatment of metastatic breast cancer via a combination of chemotherapy and photothermal ablation. The GNR@DOX nanoparticles induced significant temperature elevation and DOX release upon irradiation with near infrared (NIR) light as shown in the test tube studies. It was found that GNR@DOX nanoparticles in combination with laser irradiation caused higher cytotoxicity than free DOX in 4T1 breast cancer cells. Animal experiment with an orthotropic 4T1 mammary tumor model demonstrated that GNR@DOX nanoplatform significantly reduced the growth of primary tumors and suppressed their lung metastasis. The Hematoxylin and Eosin (H&E) and immunohistochemistry (IHC) staining assays confirmed that the tumor growth inhibition and metastasis prevention of GNR@DOX nanoparticles were attributed to their abilities to induce cellular apoptosis/necrosis and ablate intratumoral blood vessels. All these results suggested a considerable potential of GNR@DOX nanoplatform for treatment of metastatic breast cancer. PMID:24996756

  12. Determining the Architecture of a Protein-DNA Complex by Combining FeBABE Cleavage Analyses, 3-D Printed Structures, and the ICM Molsoft Program.

    PubMed

    James, Tamara; Hsieh, Meng-Lun; Knipling, Leslie; Hinton, Deborah

    2015-01-01

    Determining the structure of a protein-DNA complex can be difficult, particularly if the protein does not bind tightly to the DNA, if there are no homologous proteins from which the DNA binding can be inferred, and/or if only portions of the protein can be crystallized. If the protein comprises just a part of a large multi-subunit complex, other complications can arise such as the complex being too large for NMR studies, or it is not possible to obtain the amounts of protein and nucleic acids needed for crystallographic analyses. Here, we describe a technique we used to map the position of an activator protein relative to the DNA within a large transcription complex. We determined the position of the activator on the DNA from data generated using activator proteins that had been conjugated at specific residues with the chemical cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). These analyses were combined with 3-D models of the available structures of portions of the activator protein and B-form DNA to obtain a 3-D picture of the protein relative to the DNA. Finally, the Molsoft program was used to refine the position, revealing the architecture of the protein-DNA within the transcription complex. PMID:26404142

  13. Ultra-low Doping on Two-Dimensional Transition Metal Dichalcogenides using DNA Nanostructure Doped by a Combination of Lanthanide and Metal Ions

    PubMed Central

    Kang, Dong-Ho; Dugasani, Sreekantha Reddy; Park, Hyung-Youl; Shim, Jaewoo; Gnapareddy, Bramaramba; Jeon, Jaeho; Lee, Sungjoo; Roh, Yonghan; Park, Sung Ha; Park, Jin-Hong

    2016-01-01

    Here, we propose a novel DNA-based doping method on MoS2 and WSe2 films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures, using the newly proposed concept of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions). The available n-doping range on the MoS2 by Ln-DNA is between 6 × 109 and 2.6 × 1010 cm−2. The p-doping change on WSe2 by Ln-DNA is adjusted between −1.0 × 1010 and −2.4 × 1010 cm−2. In Eu3+ or Gd3+-Co-DNA doping, a light p-doping is observed on MoS2 and WSe2 (~1010 cm−2). However, in the devices doped by Tb3+ or Er3+-Co-DNA, a light n-doping (~1010 cm−2) occurs. A significant increase in on-current is also observed on the MoS2 and WSe2 devices, which are, respectively, doped by Tb3+- and Gd3+-Co-DNA, due to the reduction of effective barrier heights by the doping. In terms of optoelectronic device performance, the Tb3+ or Er3+-Co-DNA (n-doping) and the Eu3+ or Gd3+-Co-DNA (p-doping) improve the MoS2 and WSe2 photodetectors, respectively. We also show an excellent absorbing property by Tb3+ ions on the TMD photodetectors. PMID:26838524

  14. Ultra-low Doping on Two-Dimensional Transition Metal Dichalcogenides using DNA Nanostructure Doped by a Combination of Lanthanide and Metal Ions.

    PubMed

    Kang, Dong-Ho; Dugasani, Sreekantha Reddy; Park, Hyung-Youl; Shim, Jaewoo; Gnapareddy, Bramaramba; Jeon, Jaeho; Lee, Sungjoo; Roh, Yonghan; Park, Sung Ha; Park, Jin-Hong

    2016-01-01

    Here, we propose a novel DNA-based doping method on MoS2 and WSe2 films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures, using the newly proposed concept of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions). The available n-doping range on the MoS2 by Ln-DNA is between 6 × 10(9) and 2.6 × 10(10 ) cm(-2). The p-doping change on WSe2 by Ln-DNA is adjusted between -1.0 × 10(10) and -2.4 × 10(10 ) cm(-2). In Eu(3+) or Gd(3+)-Co-DNA doping, a light p-doping is observed on MoS2 and WSe2 (~10(10 ) cm(-2)). However, in the devices doped by Tb(3+) or Er(3+)-Co-DNA, a light n-doping (~10(10 ) cm(-2)) occurs. A significant increase in on-current is also observed on the MoS2 and WSe2 devices, which are, respectively, doped by Tb(3+)- and Gd(3+)-Co-DNA, due to the reduction of effective barrier heights by the doping. In terms of optoelectronic device performance, the Tb(3+) or Er(3+)-Co-DNA (n-doping) and the Eu(3+) or Gd(3+)-Co-DNA (p-doping) improve the MoS2 and WSe2 photodetectors, respectively. We also show an excellent absorbing property by Tb(3+) ions on the TMD photodetectors. PMID:26838524

  15. Ultra-low Doping on Two-Dimensional Transition Metal Dichalcogenides using DNA Nanostructure Doped by a Combination of Lanthanide and Metal Ions

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Ho; Dugasani, Sreekantha Reddy; Park, Hyung-Youl; Shim, Jaewoo; Gnapareddy, Bramaramba; Jeon, Jaeho; Lee, Sungjoo; Roh, Yonghan; Park, Sung Ha; Park, Jin-Hong

    2016-02-01

    Here, we propose a novel DNA-based doping method on MoS2 and WSe2 films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures, using the newly proposed concept of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions). The available n-doping range on the MoS2 by Ln-DNA is between 6 × 109 and 2.6 × 1010 cm-2. The p-doping change on WSe2 by Ln-DNA is adjusted between -1.0 × 1010 and -2.4 × 1010 cm-2. In Eu3+ or Gd3+-Co-DNA doping, a light p-doping is observed on MoS2 and WSe2 (~1010 cm-2). However, in the devices doped by Tb3+ or Er3+-Co-DNA, a light n-doping (~1010 cm-2) occurs. A significant increase in on-current is also observed on the MoS2 and WSe2 devices, which are, respectively, doped by Tb3+- and Gd3+-Co-DNA, due to the reduction of effective barrier heights by the doping. In terms of optoelectronic device performance, the Tb3+ or Er3+-Co-DNA (n-doping) and the Eu3+ or Gd3+-Co-DNA (p-doping) improve the MoS2 and WSe2 photodetectors, respectively. We also show an excellent absorbing property by Tb3+ ions on the TMD photodetectors.

  16. Evidence of Subclinical mtDNA Alterations in HIV-Infected Pregnant Women Receiving Combination Antiretroviral Therapy Compared to HIV-Negative Pregnant Women

    PubMed Central

    Money, Deborah M.; Wagner, Emily C.; Maan, Evelyn J.; Chaworth-Musters, Tessa; Gadawski, Izabelle; van Schalkwyk, Julie E.; Forbes, John C.; Burdge, David R.; Albert, Arianne Y. K.; Lohn, Zoe; Côté, Hélène C. F.

    2015-01-01

    Introduction Combination antiretroviral therapy (cART) can effectively prevent vertical transmission of HIV but there is potential risk of adverse maternal, foetal or infant effects. Specifically, the effect of cART use during pregnancy on mitochondrial DNA (mtDNA) content in HIV-positive (HIV+) women is unclear. We sought to characterize subclinical alterations in peripheral blood mtDNA levels in cART-treated HIV+ women during pregnancy and the postpartum period. Methods This prospective longitudinal observational cohort study enrolled both HIV+ and HIV-negative (HIV-) pregnant women. Clinical data and blood samples were collected at three time points in pregnancy (13-<23 weeks, 23-<30 weeks, 30–40 weeks), and at delivery and six weeks post-partum in HIV+ women. Peripheral blood mtDNA to nuclear DNA (nDNA) ratio was measured by qPCR. Results Over a four year period, 63 HIV+ and 42 HIV- women were enrolled. HIV+ women showed significantly lower mtDNA/nDNA ratios compared to HIV- women during pregnancy (p = 0.003), after controlling for platelet count and repeated measurements using a multivariable mixed-effects model. Ethnicity, gestational age (GA) and substance use were also significantly associated with mtDNA/nDNA ratio (p≤0.02). Among HIV+ women, higher CD4 nadir was associated with higher mtDNA/nDNA ratios (p<0.0001), and these ratio were significantly lower during pregnancy compared to the postpartum period (p<0.0001). Conclusions In the context of this study, it was not possible to distinguish between mtDNA effects related to HIV infection versus cART therapy. Nevertheless, while mtDNA levels were relatively stable over time in both groups during pregnancy, they were significantly lower in HIV+ women compared to HIV- women. Although no immediate clinical impact was observed on maternal or infant health, lower maternal mtDNA levels may exert long-term effects on women and children and remain a concern. Improved knowledge of such subclinical alterations is

  17. The use of biodegradable polymeric nanoparticles in combination with a low-pressure gene gun for transdermal DNA delivery.

    PubMed

    Lee, Po-Wei; Peng, Shu-Fen; Su, Chun-Jen; Mi, Fwu-Long; Chen, Hsin-Lung; Wei, Ming-Cheng; Lin, Hao-Jan; Sung, Hsing-Wen

    2008-02-01

    Gold particles have been used as a carrier for transdermal gene delivery, which may cause adverse side effects when accumulated. In this study, biodegradable nanoparticles, composed of chitosan (CS) and poly-gamma-glutamic acid (gamma-PGA), were prepared by an ionic-gelation method for transdermal DNA delivery (CS/gamma-PGA/DNA) using a low-pressure gene gun. The conventional CS/DNA without the incorporation of gamma-PGA was used as a control. Small-angle X-ray scattering (SAXS) was used to examine the internal structures of test nanoparticles, while identification of their constituents was conducted by Fourier transformed infrared (FT-IR) spectroscopy. The CS/gamma-PGA/DNA were spherical in shape with a relatively homogeneous size distribution. In contrast, CS/DNA had a heterogeneous size distribution with a donut, rod or pretzel shape. Both test nanoparticles were able to effectively retain the encapsulated DNA and protect it from nuclease degradation. As compared with CS/DNA, CS/gamma-PGA/DNA improved their penetration depth into the mouse skin and enhanced gene expression. These observations may be attributed to the fact that CS/gamma-PGA/DNA were more compact in their internal structures and had a greater density than their CS/DNA counterparts, thus having a larger momentum to penetrate into the skin barrier. The results revealed that CS/gamma-PGA/DNA may substitute gold particles as a DNA carrier for transdermal gene delivery. PMID:18001831

  18. Combined immunization using DNA-Sm14 and DNA-Hsp65 increases CD8+ memory T cells, reduces chronic pathology and decreases egg viability during Schistosoma mansoni infection

    PubMed Central

    2014-01-01

    Background Schistosomiasis is one of the most important neglected diseases found in developing countries and affects 249 million people worldwide. The development of an efficient vaccination strategy is essential for the control of this disease. Previous work showed partial protection induced by DNA-Sm14 against Schistosoma mansoni infection, whereas DNA-Hsp65 showed immunostimulatory properties against infectious diseases, autoimmune diseases, cancer and antifibrotic properties in an egg-induced granuloma model. Methods C57BL/6 mice received 4 doses of DNA-Sm14 (100 μg/dose) and DNA-Hsp65 (100 μg/dose), simultaneously administrated, or DNA-Sm14 alone, once a week, during four weeks. Three groups were included: 1- Control (no immunization); 2- DNA-Sm14; 3- DNA-Sm14/DNA-Hsp65. Two weeks following last immunization, animals were challenged subcutaneously with 30 cercariae. Fifteen, 48 and 69 days after infection splenocytes were collected to evaluate the number of CD8+ memory T cells (CD44highCD62low) using flow cytometry. Forty-eight days after challenge adult worms were collected by portal veins perfusion and intestines were collected to analyze the intestinal egg viability. Histological, immunohistochemical and soluble quantification of collagen and α-SMA accumulation were performed on the liver. Results In the current work, we tested a new vaccination strategy using DNA-Sm14 with DNA-Hsp65 to potentiate the protection against schistosomiasis. Combined vaccination increased the number of CD8+ memory T cells and decreased egg viability on the intestinal wall of infected mice. In addition, simultaneous vaccination with DNA-Sm14/DNA-Hsp65 reduced collagen and α-SMA accumulation during the chronic phase of granuloma formation. Conclusion Simultaneous vaccination with DNA-Sm14/DNA-Hsp65 showed an immunostimulatory potential and antifibrotic property that is associated with the reduction of tissue damage on Schistosoma mansoni experimental infection. PMID

  19. Site-specific T-DNA integration in Arabidopsis thaliana mediated by the combined action of CRE recombinase and ϕC31 integrase.

    PubMed

    De Paepe, Annelies; De Buck, Sylvie; Nolf, Jonah; Van Lerberge, Els; Depicker, Ann

    2013-07-01

    Random T-DNA integration into the plant host genome can be problematic for a variety of reasons, including potentially variable transgene expression as a result of different integration positions and multiple T-DNA copies, the risk of mutating the host genome and the difficulty of stacking well-defined traits. Therefore, recombination systems have been proposed to integrate the T-DNA at a pre-selected site in the host genome. Here, we demonstrate the capacity of the ϕC31 integrase (INT) for efficient targeted T-DNA integration. Moreover, we show that the iterative site-specific integration system (ISSI), which combines the activities of the CRE recombinase and INT, enables the targeting of genes to a pre-selected site with the concomitant removal of the resident selectable marker. To begin, plants expressing both the CRE and INT recombinase and containing the target attP site were constructed. These plants were supertransformed with a T-DNA vector harboring the loxP site, the attB sites, a selectable marker and an expression cassette encoding a reporter protein. Three out of the 35 transformants obtained (9%) showed transgenerational site-specific integration (SSI) of this T-DNA and removal of the resident selectable marker, as demonstrated by PCR, Southern blot and segregation analysis. In conclusion, our results show the applicability of the ISSI system for precise and targeted Agrobacterium-mediated integration, allowing the serial integration of transgenic DNA sequences in plants. PMID:23574114

  20. Combined chemoassay and mass spectrometric approach to study the reactive potential of electrophiles towards deoxynucleosides as model for DNA.

    PubMed

    Schmied-Tobies, Maria I H; Paschke, Heidrun; Reemtsma, Thorsten

    2016-05-01

    The modification of DNA by adduct formation is a potential molecular initiating event of genotoxicity. A chemoassay was established to study adduct formation of electrophiles with deoxynucleosides. Liquid chromatography-mass spectrometry was used to determine the reactivity of the model electrophiles para-benzoquinone, hydroquinone, and 1,4-naphthoquinone with deoxynucleoside (deoxyadenosine (dA), deoxyguanosine (dG), deoxycytidine (dC) and thymidine (dT)) to detect formation of adducts via constant neutral loss scan of deoxyribose (116 Da), and to elucidate adduct structures using high resolution mass spectrometry. Of the four deoxynucleosides dG was most susceptible, followed by dC and para-benzoquinone was the most reactive electrophile. With this approach five dG and four dC adducts were detected, formed by Michael addition and subsequent condensation. Also oxidation occurred with reactive oxygen species (ROS). Three of the adducts formed by benzoquinone have not been reported before. This chemoassay combined with mass spectrometry offers a way (a) to screen a large number of chemicals for their genotoxic potential, (b) to determine novel adducts that may be searched for in in vitro and in vivo studies and thus (c) to better understand the reaction of electrophiles with nucleobases. PMID:26945242

  1. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2'-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells.

    PubMed

    Shaker, Sepideh; Bernstein, Mark; Momparler, Louise F; Momparler, Richard L

    2003-05-01

    During the development of leukemia, genes that suppress growth and induce differentiation can be silenced by aberrant DNA methylation and by changes in chromatin structure that involve histone deacetylation. It has been reported that a positive interaction between DNA methylation and histone deacetylation takes place to inhibit transcription. Based on this observation, our working hypothesis was that a combination of inhibitors of these processes should produce an enhancement of their antineoplastic activity on leukemic cells. The cytosine nucleoside analog, 5-aza-2'-deoxycytidine (5AZA), is a potent inhibitor of DNA methylation, which can activate tumor suppressor genes in leukemic cells that have been silenced by aberrant methylation. In clinical trials, 5AZA was demonstrated to be an active antileukemic agent. Histone deacetylase inhibitors (HDI) can also activate gene expression in leukemic cell lines by producing changes in chromatin configuration, and show antineoplastic activity in preclinical studies. In this report, we investigated the in vitro antineoplastic activity of 5AZA, alone and in combination with the HDI, trichostatin A (TSA) and depsipeptide (FR901228, depsi), on the human myeloid leukemic cell lines, HL-60 and KG1a. The results showed that the combination of 5AZA with TSA or depsi produced a greater inhibition of growth and DNA synthesis and a greater loss of clonogenicity than either agent alone. These results suggest that 5AZA used in combination with HDI may be an interesting chemotherapeutic regimen to investigate in patients with acute myeloid leukemia that is resistant to conventional chemotherapy. PMID:12620295

  2. A combined DNA vaccine encoding BCSP31, SOD, and L7/L12 confers high protection against Brucella abortus 2308 by inducing specific CTL responses.

    PubMed

    Yu, Da-Hai; Hu, Xi-Dan; Cai, Hong

    2007-06-01

    We constructed a combined DNA vaccine comprising genes encoding the antigens BCSP31, superoxide dismutase (SOD), and L7/L12 and evaluated its immunogenicity and protective efficacy. Immunization of mice with the combined DNA vaccine offered high protection against Brucella abortus (B. abortus) infection. The vaccine induced a vigorous specific immunoglobulin G (IgG) response, with higher IgG2a than IgG1 titers. Cytokine profiling performed at the same time showed a biased Th1-type immune response with significantly increased interferon-gamma and tumor necrosis factor-alpha stimulation. CD8(+), but not CD4(+), T cells accumulated at significantly higher levels after administration of the vaccine. Granzyme B-producing CD8(+) T cells were significantly higher in number in samples prepared from combined DNA-vaccinated mice compared with S19-vaccinated mice, demonstrating that the cytotoxicity lysis pathway is involved in the response to Brucella infection. The success of our combined DNA vaccine in a mouse model suggests its potential efficacy against brucellosis infection in large animals. PMID:17570767

  3. A strategy of tumor treatment in mice with doxorubicin-cyclophosphamide combination based on dendritic cell activation by human double-stranded DNA preparation

    PubMed Central

    2010-01-01

    Background Immunization of mice with tumor homogenate after combined treatment with cyclophosphamide (CP) and double-stranded DNA (dsDNA) preparation is effective at inhibition of growth of tumor challenged after the treatment. It was assumed that this inhibition might be due to activation of the antigen-presenting cells. The purpose was to develop improved antitumor strategy using mice. We studied the combined action of cytostatics doxorubicin (Dox) plus CP with subsequent dsDNA preparation on tumor growth. Methods Three-month old CBA/Lac mice were used in the experiments. Mice were injected with CP and human dsDNA preparation. The percentage of mature dendritic cells (DCs) was estimated by staining of mononuclear cells isolated from spleen and bone marrow 3, 6, and 9 days later with monoclonal antibodies CD34, CD80, and CD86. In the next set of experiments, mice were given intramuscularly injections of 1-3 × 105 tumor cells. Four days later, they were injected intravenously with 6-6.7 mg/kg Dox and intraperitoneally with 100-200 mg/kg CP; 200 mkg human DNA was injected intraperitoneally after CP administration. Differences in tumor size between groups were analyzed for statistical significance by Student's t-test. The MTT-test was done to determine the cytotoxic index of mouse leucocytes from treated groups. Results The conducted experiments showed that combined treatment with CP and dsDNA preparation produce an increase in the total amount of mature DCs in vivo. Treatment of tumor bearers with preparation of fragmented dsDNA on the background of pretreatment with Dox plus CP demonstrated a strong suppression of tumor growth in two models. RLS, a weakly immunogenic, resistant to alkalyting cytostatics tumor, grew 3.4-fold slower when compared with the control (p < 0.001). In experiment with Krebs-2 tumor, only 2 of the 10 mice in the Dox+CP+DNA group had a palpable tumor on day 16. The cytotoxic index of leucocytes was 86.5% in the Dox+CP+DNA group, but it was 0

  4. Novel strategy combining SYBR Green I with carbon nanotubes for highly sensitive detection of Salmonella typhimurium DNA.

    PubMed

    Mao, Pingdao; Ning, Yi; Li, Wenkai; Peng, Zhihui; Chen, Yongzhe; Deng, Le

    2014-01-10

    A simple, selective, sensitive and label-free fluorescent method for detecting trpS-harboring Salmonella typhimurium was developed in this study. This assay used the non-covalent interaction of single-stranded DNA (ssDNA) probes with SWNTs, since SWNTs can quench fluorescence. Fluorescence recovery (78% with 1.8 nM target DNA) was detected in the presence of target DNA as ssDNA probes detached from SWNTs hybridized with target DNA, and the resulting double-stranded DNA (dsDNA) intercalated with SYBR Green I (SG) dyes. The increasing fluorescence intensity reached 4.54-fold. In contrast, mismatched oligonucleotides (1- or 3-nt difference to the target DNA) did not contribute to significant fluorescent recovery, which demonstrated the specificity of the assay. The increasing fluorescence intensity increased 3.15-fold when purified PCR products containing complementary sequences of trpS gene were detected. These results confirmed the ability to use this assay for detecting real samples. PMID:24267562

  5. Combined Stimulation of IL-2 and 4-1BB Receptors Augments the Antitumor Activity of E7 DNA Vaccines by Increasing Ag-Specific CTL Responses

    PubMed Central

    Kim, Ha; Kwon, Byungsuk; Sin, Jeong-Im

    2013-01-01

    Human papillomavirus (HPV) infection is a major cause of cervical cancer. Here, we investigate whether concurrent therapy using HPV E7 DNA vaccines (pE7) plus IL-2 vs. IL-15 cDNA and anti-4-1BB Abs might augment antitumor activity against established tumors. IL-2 cDNA was slightly better than IL-15 cDNA as a pE7 adjuvant. Co-delivery of pE7+IL-2 cDNA increased tumor cure rates from 7% to 27%, whereas co-delivery of pE7+IL-2 cDNA with anti-4-1BB Abs increased tumor cure rates from 27% to 67% and elicited long-term memory responses. This increased activity was concomitant with increased induction of Ag-specific CTL activity and IFN-γ responses, but not with Ag-specific IgG production. Moreover, the combined stimulation of IL-2 and 4-1BB receptors with rIL-2 and anti-4-1BB Abs resulted in enhanced production of IFN-γ from Ag-specific CD8+ T cells. However, this effect was abolished by treatment with anti-IL-2 Abs and 4-1BB-Fc, suggesting that the observed effect was IL-2- and anti-4-1BB Ab-specific. A similar result was also obtained for Ag-specific CTL activity. Thus, these studies demonstrate that combined stimulation through the IL-2 and 4-1BB receptors augments the Ag-specific CD8+ CTL responses induced by pE7, increasing tumor cure rates and long-term antitumor immune memory. These findings may have implications for the design of DNA-based therapeutic vaccines against cancer. PMID:24391824

  6. Combined stimulation of IL-2 and 4-1BB receptors augments the antitumor activity of E7 DNA vaccines by increasing Ag-specific CTL responses.

    PubMed

    Kim, Ha; Kwon, Byungsuk; Sin, Jeong-Im

    2013-01-01

    Human papillomavirus (HPV) infection is a major cause of cervical cancer. Here, we investigate whether concurrent therapy using HPV E7 DNA vaccines (pE7) plus IL-2 vs. IL-15 cDNA and anti-4-1BB Abs might augment antitumor activity against established tumors. IL-2 cDNA was slightly better than IL-15 cDNA as a pE7 adjuvant. Co-delivery of pE7+IL-2 cDNA increased tumor cure rates from 7% to 27%, whereas co-delivery of pE7+IL-2 cDNA with anti-4-1BB Abs increased tumor cure rates from 27% to 67% and elicited long-term memory responses. This increased activity was concomitant with increased induction of Ag-specific CTL activity and IFN-γ responses, but not with Ag-specific IgG production. Moreover, the combined stimulation of IL-2 and 4-1BB receptors with rIL-2 and anti-4-1BB Abs resulted in enhanced production of IFN-γ from Ag-specific CD8+ T cells. However, this effect was abolished by treatment with anti-IL-2 Abs and 4-1BB-Fc, suggesting that the observed effect was IL-2- and anti-4-1BB Ab-specific. A similar result was also obtained for Ag-specific CTL activity. Thus, these studies demonstrate that combined stimulation through the IL-2 and 4-1BB receptors augments the Ag-specific CD8+ CTL responses induced by pE7, increasing tumor cure rates and long-term antitumor immune memory. These findings may have implications for the design of DNA-based therapeutic vaccines against cancer. PMID:24391824

  7. Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy.

    PubMed

    Albarakati, Nada; Abdel-Fatah, Tarek M A; Doherty, Rachel; Russell, Roslin; Agarwal, Devika; Moseley, Paul; Perry, Christina; Arora, Arvind; Alsubhi, Nouf; Seedhouse, Claire; Rakha, Emad A; Green, Andrew; Ball, Graham; Chan, Stephen; Caldas, Carlos; Ellis, Ian O; Madhusudan, Srinivasan

    2015-01-01

    BRCA1, a key factor in homologous recombination (HR) repair may also regulate base excision repair (BER). Targeting BRCA1-BER deficient cells by blockade of ATM and DNA-PKcs could be a promising strategy in breast cancer. We investigated BRCA1, XRCC1 and pol β protein expression in two cohorts (n = 1602 sporadic and n = 50 germ-line BRCA1 mutated) and mRNA expression in two cohorts (n = 1952 and n = 249). Artificial neural network analysis for BRCA1-DNA repair interacting genes was conducted in 249 tumours. Pre-clinically, BRCA1 proficient and deficient cells were DNA repair expression profiled and evaluated for synthetic lethality using ATM and DNA-PKcs inhibitors either alone or in combination with cisplatin. In human tumours, BRCA1 negativity was strongly associated with low XRCC1, and low pol β at mRNA and protein levels (p < 0.0001). In patients with BRCA1 negative tumours, low XRCC1 or low pol β expression was significantly associated with poor survival in univariate and multivariate analysis compared to high XRCC1 or high pol β expressing BRCA1 negative tumours (ps < 0.05). Pre-clinically, BRCA1 negative cancer cells exhibit low mRNA and low protein expression of XRCC1 and pol β. BRCA1-BER deficient cells were sensitive to ATM and DNA-PKcs inhibitor treatment either alone or in combination with cisplatin and synthetic lethality was evidenced by DNA double strand breaks accumulation, cell cycle arrest and apoptosis. We conclude that XRCC1 and pol β expression status in BRCA1 negative tumours may have prognostic significance. BRCA1-BER deficient cells could be targeted by ATM or DNA-PKcs inhibitors for personalized therapy. PMID:25205036

  8. DNA Damage and Inhibition of Akt Pathway in MCF-7 Cells and Ehrlich Tumor in Mice Treated with 1,4-Naphthoquinones in Combination with Ascorbate

    PubMed Central

    Ourique, Fabiana; Kviecinski, Maicon R.; Felipe, Karina B.; Correia, João Francisco Gomes; Farias, Mirelle S.; Castro, Luiza S. E. P. W.; Grinevicius, Valdelúcia M. A. S.; Valderrama, Jaime; Rios, David; Benites, Julio; Buc Calderon, Pedro; Pedrosa, Rozangela Curi

    2015-01-01

    The aim of this study was to enhance the understanding of the antitumor mechanism of 1,4-naphthoquinones and ascorbate. Juglone, phenylaminonaphthoquinone-7, and 9 (Q7/Q9) were evaluated for effects on CT-DNA and DNA of cancer cells. Evaluations in MCF-7 cells are DNA damage, ROS levels, viability, and proliferation. Proteins from MCF-7 lysates were immunoblotted for verifying PARP integrity, γH2AX, and pAkt. Antitumor activity was measured in Ehrlich ascites carcinoma-bearing mice. The same markers of molecular toxicity were assessed in vivo. The naphthoquinones intercalate into CT-DNA and caused oxidative cleavage, which is increased in the presence of ascorbate. Treatments caused DNA damage and reduced viability and proliferation of MCF-7 cells. Effects were potentiated by ascorbate. No PARP cleavage was observed. Naphthoquinones, combined with ascorbate, caused phosphorylation of H2AX and inhibited pAkt. ROS were enhanced in MCF-7 cells, particularly by the juglone and Q7 plus ascorbate. Ehrlich carcinoma was inhibited by juglone, Q7, or Q9, but the potentiating effect of ascorbate was reproduced in vivo only in the cases of juglone and Q7, which caused up to 60% inhibition of tumor and the largest extension of survival. Juglone and Q7 plus ascorbate caused enhanced ROS and DNA damage and inhibited pAkt also in Ehrlich carcinoma cells. PMID:25793019

  9. Combined exposure to nano-silica and lead induced potentiation of oxidative stress and DNA damage in human lung epithelial cells.

    PubMed

    Lu, Chun-Feng; Yuan, Xiao-Yan; Li, Li-Zhong; Zhou, Wei; Zhao, Jun; Wang, Yi-Mei; Peng, Shuang-Qing

    2015-12-01

    Growing evidence has confirmed that exposure to ambient particulate matters (PM) is associated with increased morbidity and mortality of cardiovascular and pulmonary diseases. Ambient PM is a complex mixture of particles and air pollutants. Harmful effects of PM are specifically associated with ultrafine particles (UFPs) that can adsorb high concentrations of toxic air pollutants and are easily inhaled into the lungs. However, combined effects of UFPs and air pollutants on human health remain unclear. In the present study, we elucidated the combined toxicity of silica nanoparticles (nano-SiO2), a typical UFP, and lead acetate (Pb), a typical air pollutant. Lung adenocarcinoma A549 cells were exposed to nano-SiO2 and Pb alone or their combination, and their combined toxicity was investigated by focusing on cellular oxidative stress and DNA damage. Factorial analyses were performed to determine the potential interactions between nano-SiO2 and Pb. Our results showed that exposure of A549 cells to a modest cytotoxic concentration of Pb alone induced oxidative stress, as evidenced by elevated reactive oxygen species generation and lipid peroxidation, and reduced glutathione content and superoxide dismutase and glutathione peroxidase activities. In addition, exposure of A549 cells to Pb alone induced DNA damage, as evaluated by alkaline comet assay. Exposure of A549 cells to non-cytotoxic concentration of nano-SiO2 did not induce cellular oxidative stress and DNA damage. However, exposure to the combination of nano-SiO2 and Pb potentiated oxidative stress and DNA damage in A549 cells. Factorial analyses indicated that the potentiation of combined toxicity of nano-SiO2 and Pb was induced by additive or synergistic interactions. PMID:26432026

  10. Oxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability.

    PubMed

    Cilli, Piera; Ventura, Ilenia; Minoprio, Anna; Meccia, Ettore; Martire, Alberto; Wilson, Samuel H; Bignami, Margherita; Mazzei, Filomena

    2016-06-20

    DNA trinucleotide repeat (TNR) expansion underlies several neurodegenerative disorders including Huntington's disease (HD). Accumulation of oxidized DNA bases and their inefficient processing by base excision repair (BER) are among the factors suggested to contribute to TNR expansion. In this study, we have examined whether oxidation of the purine dNTPs in the dNTP pool provides a source of DNA damage that promotes TNR expansion. We demonstrate that during BER of 8-oxoguanine (8-oxodG) in TNR sequences, DNA polymerase β (POL β) can incorporate 8-oxodGMP with the formation of 8-oxodG:C and 8-oxodG:A mispairs. Their processing by the OGG1 and MUTYH DNA glycosylases generates closely spaced incisions on opposite DNA strands that are permissive for TNR expansion. Evidence in HD model R6/2 mice indicates that these DNA glycosylases are present in brain areas affected by neurodegeneration. Consistent with prevailing oxidative stress, the same brain areas contained increased DNA 8-oxodG levels and expression of the p53-inducible ribonucleotide reductase. Our in vitro and in vivo data support a model where an oxidized dNTPs pool together with aberrant BER processing contribute to TNR expansion in non-replicating cells. PMID:26980281

  11. Oxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability

    PubMed Central

    Cilli, Piera; Ventura, Ilenia; Minoprio, Anna; Meccia, Ettore; Martire, Alberto; Wilson, Samuel H.; Bignami, Margherita; Mazzei, Filomena

    2016-01-01

    DNA trinucleotide repeat (TNR) expansion underlies several neurodegenerative disorders including Huntington's disease (HD). Accumulation of oxidized DNA bases and their inefficient processing by base excision repair (BER) are among the factors suggested to contribute to TNR expansion. In this study, we have examined whether oxidation of the purine dNTPs in the dNTP pool provides a source of DNA damage that promotes TNR expansion. We demonstrate that during BER of 8-oxoguanine (8-oxodG) in TNR sequences, DNA polymerase β (POL β) can incorporate 8-oxodGMP with the formation of 8-oxodG:C and 8-oxodG:A mispairs. Their processing by the OGG1 and MUTYH DNA glycosylases generates closely spaced incisions on opposite DNA strands that are permissive for TNR expansion. Evidence in HD model R6/2 mice indicates that these DNA glycosylases are present in brain areas affected by neurodegeneration. Consistent with prevailing oxidative stress, the same brain areas contained increased DNA 8-oxodG levels and expression of the p53-inducible ribonucleotide reductase. Our in vitro and in vivo data support a model where an oxidized dNTPs pool together with aberrant BER processing contribute to TNR expansion in non-replicating cells. PMID:26980281

  12. Quantifying the effect of surface ligands on dendron-DNA interactions: insights into multivalency through a combined experimental and theoretical approach.

    PubMed

    Jones, Simon P; Pavan, Giovanni M; Danani, Andrea; Pricl, Sabrina; Smith, David K

    2010-04-19

    We report the synthesis, DNA binding ability and preliminary gene delivery profiles of dendrons with different amine surface groups, 1,3-diaminopropane (DAP), N,N-di-(3-aminopropyl)-N-(methyl)amine (DAPMA) and spermine (SPM). By using a combination of ethidium bromide displacement, gel electrophoresis and transfection assays, it is shown that the dendrons with SPM groups are the most effective DNA binders, while the DAPMA-functionalised dendrons were the most effective systems for gene delivery (although the gene delivery profiles were still modest). In order to provide deeper insight into the experimental data, we performed a molecular dynamics simulation of the interactions between the dendrons and DNA. The results of these simulations demonstrated that, in general terms, the enthalpic contribution to binding was roughly proportional to the dendron surface charge, but that dendrons with DAP (and DAPMA) surface amines had significant entropic costs of binding to DNA. In the case of DAP, this is a consequence of the fact that the entire dendron structure has to be organised in order for each individual monoamine charge to make effective contact with DNA. For SPM, however, each surface ligand is already a multivalent triamine, therefore, each individual charge has a much lower entropic cost of binding. For DAPMA, we observed that strong binding of the hindered tertiary amine to the DNA double helix led to ligand back-folding and significant geometric distortion of DNA. Although this weakens the overall binding, we suggest that this distortion might be an explanation for the experimentally observed enhanced gene delivery, in which DNA compaction is an important step. Overall, this paper demonstrates how structure-activity relationships can be developed for multivalent dendritic ligands and provides insights into the thermodynamics of multivalent interactions. PMID:20235240

  13. A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality.

    PubMed

    Zhou, Zhenpeng; Li, Tian; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Chengzhi; Li, Na

    2014-11-11

    Silver-enhanced fluorescence was coupled with a bio-barcode assay to facilitate a dual amplification assay to demonstrate a non-enzymatic approach for simple and sensitive detection of DNA. In the assay design, magnetic nanoparticles seeded with silver nanoparticles were modified with the capture DNA, and silver nanoparticles were modified with the binding of ssDNA and the fluorescently labeled barcode dsDNA. Upon introduction of the target DNA, a sandwich structure was formed because of the hybridization reaction. By simple magnetic separation, silver-enhanced fluorescence of barcode DNAs could be readily measured without the need of a further step to liberate barcode DNAs from silver nanoparticles, endowing the method with simplicity and high sensitivity with a detection limit of 1 pM. PMID:25233044

  14. Combining combing and secondary ion mass spectrometry to study DNA on chips using (13)C and (15)N labeling.

    PubMed

    Cabin-Flaman, Armelle; Monnier, Anne-Francoise; Coffinier, Yannick; Audinot, Jean-Nicolas; Gibouin, David; Wirtz, Tom; Boukherroub, Rabah; Migeon, Henri-Noël; Bensimon, Aaron; Jannière, Laurent; Ripoll, Camille; Norris, Victor

    2016-01-01

    Dynamic secondary ion mass spectrometry ( D-SIMS) imaging of combed DNA - the combing, imaging by SIMS or CIS method - has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to (13)C-labeling via the detection and quantification of the (13)C (14)N (-) recombinant ion and the use of the (13)C: (12)C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS. PMID:27429742

  15. Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling

    PubMed Central

    Cabin-Flaman, Armelle; Monnier, Anne-Francoise; Coffinier, Yannick; Audinot, Jean-Nicolas; Gibouin, David; Wirtz, Tom; Boukherroub, Rabah; Migeon, Henri-Noël; Bensimon, Aaron; Jannière, Laurent; Ripoll, Camille; Norris, Victor

    2016-01-01

    Dynamic secondary ion mass spectrometry ( D-SIMS) imaging of combed DNA – the combing, imaging by SIMS or CIS method – has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to 13C-labeling via the detection and quantification of the 13C 14N - recombinant ion and the use of the 13C: 12C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS. PMID:27429742

  16. Combining denaturing gradient gel electrophoresis of 16S rDNA V3 region and 16S-23S rDNA spacer region polymorphism analyses for the identification of staphylococci from Italian fermented sausages.

    PubMed

    Blaiotta, Giuseppe; Pennacchia, Carmelina; Ercolini, Danilo; Moschetti, Giancarlo; Villani, Francesco

    2003-09-01

    Separation of amplified V3 region from 16S rDNA by denaturing gradient gel electrophoresis (PCR-DGGE) and 16S-23S rDNA intergenic spacer region polymorphism (ISR-PCR) analyses were tested as tool for differentiation of staphylococcal strains commonly isolated from fermented sausages. Variable V3 regions of 25 staphylococcal reference strains and 96 wild strains of species belonging to the genera Staphylococcus, Micrococcus and Kocuria were analyzed. PCR-DGGE profiles obtained were species-specific for S. sciuri, S. haemolyticus, S. hominis, S. auricularis, S. condimenti, S. kloosi, S. vitulus, S. succinus, S. pasteuri, S. capitis and S. (Macrococcus) caseolyticus. Moreover, 7 groups could be distinguished gathering the remaining species as result of the separation of the V3 rDNA amplicons in DGGE. Furthermore, the combination of the results obtained by PCR-DGGE and ISR-PCR analyses allowed a clear differentiation of all the staphylococcal species analysed, with exception of the pairs S. equorum-S. cohnii and S. carnosus-S. schleiferi. The suitability of both molecular techniques and of the combination their results for the identification of staphylococci was validated analysing partial nucleotide sequence of the 16S rDNA of a representative number of wild strains. PMID:14529185

  17. Combination of MIDGE-Th1 DNA vaccines with the cationic lipid SAINT-18: studies on formulation, biodistribution and vector clearance.

    PubMed

    Endmann, Anne; Oswald, Detlef; Riede, Oliver; Talman, Eduard G; Vos, Roelien E; Schroff, Matthias; Kleuss, Christiane; Ruiters, Marcel H J; Juhls, Christiane

    2014-06-01

    We have previously shown that the combination of MIDGE-Th1 DNA vectors with the cationic lipid SAINT-18 increases the immune response to the encoded antigen in mice. Here, we report on experiments to further optimize and characterize this approach. We evaluated different formulations of MIDGE-Th1 vectors with SAINT-18 by assessing their influence on the transfection efficiency in cell culture and on the immune response in mice. We found that high amounts of SAINT-18 in formulations with a w/w ratio MIDGE Th1/SAINT-18 of 1:4.8 are beneficial for cell transfection in vitro. In contrast, the formulation of HBsAg-encoding MIDGE-Th1 DNA vectors with the lowest amount of SAINT-18 (w/w ratio MIDGE Th1/SAINT-18 of 1:0.5) resulted in the highest serum IgG1 and IgG2a levels after intradermal immunization of mice. Consequently, latter formulation was selected for a comparative biodistribution study in rats. Following intradermal administration of both naked and formulated MIDGE-Th1 DNA, the vectors localized primarily at the site of injection. Vector DNA levels decreased substantially over the two months duration of the study. When administered in combination with SAINT-18, the vectors were found in significantly higher amounts in draining lymph nodes in comparison to administration of naked MIDGE-Th1 DNA. We propose that the high immune responses induced by MIDGE-Th1/SAINT-18 lipoplexes are mediated by enhanced transfection of cells in vivo, resulting in stronger antigen expression and presentation. Importantly, the combination of MIDGE-Th1 vectors with SAINT-18 was well tolerated in mice and rats and is expected to be safe in human clinical applications. PMID:24681271

  18. More efficient induction of antitumor T cell immunity by exosomes from CD40L gene-modified lung tumor cells.

    PubMed

    Wang, Jiaoli; Wang, Limin; Lin, Zhendong; Tao, Lisha; Chen, Ming

    2014-01-01

    The incidence of lung cancer increases annually. However, the effects of the present methods for the treatment of lung cancer are extremely poor. It has been reported that exosomes from heat‑stressed 3LL Lewis lung tumor cells effectively elicit systemic antitumor immunity. CD40 signaling is critical in the activation of dendritic cells (DCs), which are important in the induction of antitumor immunity. In the present study, exosomes from CD40 ligand gene‑modified 3LL tumor cells (CD40L‑EXO) were identified to be more immunogenic compared with control‑EXO and lac Z-EXO. CD40L‑EXO induced a more mature phenotype of the DCs and promoted them to secrete high levels of interleukin‑12. CD40L‑EXO‑treated DCs induced a greater proliferation of allogeneic T cells in the mixed lymphocyte reaction. Moreover, CD40L‑EXO induced robust tumor antigen‑specific CD4+ T cell proliferation ex vivo. CD40L‑EXO were also extremely effective in the protective and therapeutic antitumor tests in vivo. These results indicate that CD40L‑EXO may be used as an efficient vaccine for lung cancer immunotherapy. PMID:24173626

  19. Identification of invasive fungal diseases in immunocompromised patients by combining an Aspergillus specific PCR with a multifungal DNA-microarray from primary clinical samples.

    PubMed

    Boch, T; Reinwald, M; Postina, P; Cornely, O A; Vehreschild, J J; Heußel, C P; Heinz, W J; Hoenigl, M; Eigl, S; Lehrnbecher, T; Hahn, J; Claus, B; Lauten, M; Egerer, G; Müller, M C; Will, S; Merker, N; Hofmann, W-K; Buchheidt, D; Spiess, B

    2015-12-01

    The increasing incidence of invasive fungal diseases (IFD), most of all invasive aspergillosis (IA) in immunocompromised patients emphasises the need to improve the diagnostic tools for detection of fungal pathogens. We investigated the diagnostic performance of a multifungal DNA-microarray detecting 15 different fungi [Aspergillus, Candida, Fusarium, Mucor, Rhizopus, Scedosporium and Trichosporon species (spp.)] in addition to an Aspergillus specific polymerase chain reaction (PCR) assay. Biopsies, bronchoalveolar lavage and peripheral blood samples of 133 immunocompromised patients (pts) were investigated by a multifungal DNA-microarray as well as a nested Aspergillus specific PCR assay. Patients had proven (n = 18), probable (n = 29), possible (n = 48) and no IFD (n = 38) and were mostly under antifungal therapy at the time of sampling. The results were compared to culture, histopathology, imaging and serology, respectively. For the non-Aspergillus IFD the microarray analysis yielded in all samples a sensitivity of 64% and a specificity of 80%. Best results for the detection of all IFD were achieved by combining DNA-microarray and Aspergillus specific PCR in biopsy samples (sensitivity 79%; specificity 71%). The molecular assays in combination identify genomic DNA of fungal pathogens and may improve identification of causative pathogens of IFD and help overcoming the diagnostic uncertainty of culture and/or histopathology findings, even during antifungal therapy. PMID:26497302

  20. One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms.

    PubMed

    Zhang, Miao; Liu, Yinan; Chen, Lili; Quan, Sheng; Jiang, Shimeng; Zhang, Dabing; Yang, Litao

    2013-01-01

    Quickness, simplicity, and effectiveness are the three major criteria for establishing a good molecular diagnosis method in many fields. Herein we report a novel detection system for genetically modified organisms (GMOs), which can be utilized to perform both on-field quick screening and routine laboratory diagnosis. In this system, a newly designed inexpensive DNA extraction device was used in combination with a modified visual loop-mediated isothermal amplification (vLAMP) assay. The main parts of the DNA extraction device included a silica gel membrane filtration column and a modified syringe. The DNA extraction device could be easily operated without using other laboratory instruments, making it applicable to an on-field GMO test. High-quality genomic DNA (gDNA) suitable for polymerase chain reaction (PCR) and isothermal amplification could be quickly isolated from plant tissues using this device within 15 min. In the modified vLAMP assay, a microcrystalline wax encapsulated detection bead containing SYBR green fluorescent dye was introduced to avoid dye inhibition and cross-contaminations from post-LAMP operation. The system was successfully applied and validated in screening and identification of GM rice, soybean, and maize samples collected from both field testing and the Grain Inspection, Packers, and Stockyards Administration (GIPSA) proficiency test program, which demonstrated that it was well-adapted to both on-field testing and/or routine laboratory analysis of GMOs. PMID:23181490

  1. The effect of two pre-cryopreservation single layer colloidal centrifugation protocols in combination with different freezing extenders on the fragmentation dynamics of thawed equine sperm DNA

    PubMed Central

    2012-01-01

    Background Variability among stallions in terms of semen cryopreservation quality renders it difficult to arrive at a standardized cryopreservation method. Different extenders and processing techniques (such us colloidal centrifugation) are used in order to optimize post-thaw sperm quality. Sperm chromatin integrity analysis is an effective tool for assessing such quality. The aim of the present study was to compare the effect of two single layer colloidal centrifugation protocols (prior to cryopreservation) in combination with three commercial freezing extenders on the post-thaw chromatin integrity of equine sperm samples at different post-thaw incubation (37°C) times (i.e., their DNA fragmentation dynamics). Results Post-thaw DNA fragmentation levels in semen samples subjected to either of the colloidal centrifugation protocols were significantly lower (p<0.05) immediately after thawing and after 4 h of incubation at 37°C compared to samples that underwent standard (control) centrifugation. The use of InraFreeze® extender was associated with significantly less DNA fragmentation than the use of Botu-Crio® extender at 6 h of incubation, and than the use of either Botu-Crio® or Gent® extender at 24 h of incubation (p<0.05). Conclusions These results suggest that single layer colloidal centrifugation performed with extended or raw semen prior to cryopreservation reduces DNA fragmentation during the first four hours after thawing. Further studies are needed to determine the influence of freezing extenders on equine sperm DNA fragmentation dynamics. PMID:23217215

  2. Combined IL-12 Plasmid and Recombinant SjGST Enhance the Protective and Anti-pathology Effect of SjGST DNA Vaccine Against Schistosoma japonicum.

    PubMed

    Cheng, Po-Ching; Lin, Ching-Nan; Peng, Shih-Yi; Kang, Tsung-Fu; Lee, Kin-Mu

    2016-02-01

    Schistosomiasis is listed as one of most important tropical diseases and more than 200 million people are estimated to be infected. Development of a vaccine is thought to be the most effective way to control this disease. Recombinant 26-kDa glutathione S-transferase (rSjGST) has previously been reported to achieve a worm reduction rate of 42-44%. To improve the efficiency of the vaccine against Schistosoma japonicum, we immunized mice with a combination of pcDNA vector-encoded 26-kDa SjGST (pcDNA/SjGST), IL-12 expressing-plasmid (pIL-12), and rSjGST. Co-vaccination with pcDNA/SjGST, pIL-12, and rSjGST led to a reduction in worm burden, hepatic egg burden, and the size of liver tissue granulomas than that in the untreated infection controls. In addition, we detected high levels of specific IgG, IgG1, and IgG2a against the rSjGST antigen in infected mice vaccinated with this combination of pcDNA/SjGST, pIL-12, and rSjGST. Moreover, high expression levels of Th2 cytokines, including IL-4 and IL-10, were also detected in this group, without diminished levels of IL-12, INF-γ, and TNF-α cytokines that are related to parasite killing. In conclusion, we have developed a new vaccination regimen against S. japonicum infection and shown that co-immunization with pcDNA/SjGST vaccine, pIL-12, and rSjGST has significant anti-parasite, anti-hepatic egg and anti-pathology effects in mice. The efficacy of this vaccination method should be further validated in large animals such as water buffalo. This method may help to reduce the transmission of zoonotic schistosomiasis japonica. PMID:26891172

  3. Combined IL-12 Plasmid and Recombinant SjGST Enhance the Protective and Anti-pathology Effect of SjGST DNA Vaccine Against Schistosoma japonicum

    PubMed Central

    Cheng, Po-Ching; Lin, Ching-Nan; Peng, Shih-Yi; Kang, Tsung-Fu; Lee, Kin-Mu

    2016-01-01

    Schistosomiasis is listed as one of most important tropical diseases and more than 200 million people are estimated to be infected. Development of a vaccine is thought to be the most effective way to control this disease. Recombinant 26-kDa glutathione S-transferase (rSjGST) has previously been reported to achieve a worm reduction rate of 42–44%. To improve the efficiency of the vaccine against Schistosoma japonicum, we immunized mice with a combination of pcDNA vector-encoded 26-kDa SjGST (pcDNA/SjGST), IL-12 expressing-plasmid (pIL-12), and rSjGST. Co-vaccination with pcDNA/SjGST, pIL-12, and rSjGST led to a reduction in worm burden, hepatic egg burden, and the size of liver tissue granulomas than that in the untreated infection controls. In addition, we detected high levels of specific IgG, IgG1, and IgG2a against the rSjGST antigen in infected mice vaccinated with this combination of pcDNA/SjGST, pIL-12, and rSjGST. Moreover, high expression levels of Th2 cytokines, including IL-4 and IL-10, were also detected in this group, without diminished levels of IL-12, INF-γ, and TNF-α cytokines that are related to parasite killing. In conclusion, we have developed a new vaccination regimen against S. japonicum infection and shown that co-immunization with pcDNA/SjGST vaccine, pIL-12, and rSjGST has significant anti-parasite, anti-hepatic egg and anti-pathology effects in mice. The efficacy of this vaccination method should be further validated in large animals such as water buffalo. This method may help to reduce the transmission of zoonotic schistosomiasis japonica. PMID:26891172

  4. Comet assay combined with p53 detection as a sensitive approach for DNA photoprotection assessment in vitro.

    PubMed

    Marrot, Laurent; Belaïdi, Jean-Philippe; Meunier, Jean-Roch

    2002-01-01

    A simple in vitro approach where sun formulations are spread on a quartz slide and placed over human skin cells in culture is proposed as a convenient test for photoprotection assessment at the DNA level. Using the comet assay, DNA strand breaks and oxidative DNA damage were detected. Then, accumulation of p53 protein was studied as a marker for UV-induced genotoxic stress. Such a method was used to compare formulations with different photostability. Spectroradiometry showed that a photo-unstable formulation lost its effectiveness in UVA screening when pre-irradiated by simulated sunlight. As a consequence, such a formulation was not as protective as a photostable one at the genomic level. PMID:12444957

  5. Integrated process for purification of plasmid DNA using aqueous two-phase systems combined with membrane filtration and lid bead chromatography.

    PubMed

    Kepka, Cecilia; Lemmens, Raf; Vasi, Jozsef; Nyhammar, Tomas; Gustavsson, Per-Erik

    2004-11-19

    An integrated process for purifying a 6.1 kilo base pair (kbp) plasmid from a clarified Escherichia coli cell lysate based on an ultra/diafiltration step combined with polymer/polymer aqueous two-phase system and a new type of chromatography is described. The process starts with a volume reduction (ultrafiltration) and buffer exchange (diafiltration) of the clarified lysate using a hollow fibre membrane system. The concentrated and desalted plasmid solution is then extracted in a thermoseparating aqueous two-phase system, where the contaminants (RNA and proteins) to a large extent are removed. While the buffer exchange (diafiltration) is necessary in order to extract the plasmid DNA exclusively to the top phase, experiments showed that the ultrafiltration step increased the productivity of the aqueous two-phase system by a factor of more than 10. The thermoseparated water phase was then subjected to a polishing step using lid bead chromatography. Lid beads are a new type of restricted access chromatography beads, here with a positively charged inner core that adsorbed the remaining RNA while its inert surface layer prevented adsorption of the plasmid DNA thus passing in the flow-through of the column. Differently-sized plasmid DNA in the range of 2.7-20.5 kbp were also partitioned in the aqueous two-phase system. Within this size range, all plasmid DNA was exclusively extracted to the top phase. The complete process is free of additives and easy scalable for use in large scale production of plasmid DNA. The overall process yield for plasmid DNA was 69%. PMID:15584230

  6. Fetal Gene Therapy for Ornithine Transcarbamylase Deficiency by Intrahepatic Plasmid DNA-Micro-Bubble Injection Combined with Hepatic Ultrasound Insonation.

    PubMed

    Oishi, Yoshie; Kakimoto, Takashi; Yuan, Wenji; Kuno, Shuichi; Yamashita, Hiromasa; Chiba, Toshio

    2016-06-01

    We evaluated the therapeutic efficacy of hepatic transfection of plasmid DNA using micro-bubbles and ultrasound insonation for fetal correction of ornithine transcarbamylase (OTC) deficiency in mice. Twenty-three sparse-fur heterozygous pregnant mice (day 16 of gestation) were divided into three groups: injection of plasmid-DNA micro-bubble mixture into fetal liver with ultrasound insonation (Tr, n = 11); control group 1 (C1), injection of plasmid-DNA micro-bubble mixture into fetal liver with no insonation (n = 5); and control group 2 (C2), injection of saline-micro-bubble mixture into fetal liver with ultrasound insonation (n = 7). Levels of blood ammonia and urinary orotic acid were significantly lower in the Tr group than in the C1 and C2 groups (p < 0.05, p < 0.01, respectively), whereas OTC activity was not different between groups. Therefore, ultrasound insonation with micro-bubbles enhanced plasmid DNA transfection into fetal mouse liver, leading to one of the therapeutic methods in ammonia metabolism. This might provide more time for OTC-deficient infants until liver transplantation. PMID:26995155

  7. Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining

    PubMed Central

    Catez, Frédéric; Rousseau, Antoine; Labetoulle, Marc; Lomonte, Patrick

    2014-01-01

    Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue. PMID:24514006

  8. Membrane Destruction and DNA Binding of Staphylococcus aureus Cells Induced by Carvacrol and Its Combined Effect with a Pulsed Electric Field.

    PubMed

    Wang, Lang-Hong; Wang, Man-Sheng; Zeng, Xin-An; Zhang, Zhi-Hong; Gong, De-Ming; Huang, Yan-Bo

    2016-08-17

    Carvacrol (5-isopropyl-2-methylphenol, CAR) is an antibacterial ingredient that occurs naturally in the leaves of the plant Origanum vulgare. The antimicrobial mechanism of CAR against Staphylococcus aureus ATCC 43300 was investigated in the study. Analysis of the membrane fatty acids by gas chromatography-mass spectrometry (GC-MS) showed that exposure to CAR at low concentrations induced a marked increase in the level of unbranched fatty acids (from 34.90 ± 1.77% to 62.37 ± 4.26%). Moreover, CAR at higher levels severely damaged the integrity and morphologies of the S. aureus cell membrane. The DNA-binding properties of CAR were also investigated using fluorescence, circular dichroism, molecular modeling, and atomic-force microscopy. The results showed that CAR bound to DNA via the minor-groove mode, mildly perturbed the DNA secondary structure, and induced DNA molecules to be aggregated. Furthermore, a combination of CAR with a pulsed-electric field was found to exhibit strong synergistic effects on S. aureus. PMID:27420472

  9. Multifunctional pDNA-Conjugated Polycationic Au Nanorod-Coated Fe3 O4 Hierarchical Nanocomposites for Trimodal Imaging and Combined Photothermal/Gene Therapy.

    PubMed

    Hu, Yang; Zhou, Yiqiang; Zhao, Nana; Liu, Fusheng; Xu, Fu-Jian

    2016-05-01

    It is very desirable to design multifunctional nanocomposites for theranostic applications via flexible strategies. The synthesis of one new multifunctional polycationic Au nanorod (NR)-coated Fe3 O4 nanosphere (NS) hierarchical nanocomposite (Au@pDM/Fe3 O4 ) based on the ternary assemblies of negatively charged Fe3 O4 cores (Fe3 O4 -PDA), polycation-modified Au nanorods (Au NR-pDM), and polycations is proposed. For such nanocomposites, the combined near-infrared absorbance properties of Fe3 O4 -PDA and Au NR-pDM are applied to photoacoustic imaging and photothermal therapy. Besides, Fe3 O4 and Au NR components allow the nanocomposites to serve as MRI and CT contrast agents. The prepared positively charged Au@pDM/Fe3 O4 also can complex plasmid DNA into pDNA/Au@pDM/Fe3 O4 and efficiently mediated gene therapy. The multifunctional applications of pDNA/Au@pDM/Fe3 O4 nanocomposites in trimodal imaging and combined photothermal/gene therapy are demonstrated using a xenografted rat glioma nude mouse model. The present study demonstrates that the proper assembly of different inorganic nanoparticles and polycations is an effective strategy to construct new multifunctional theranostic systems. PMID:26996155

  10. Combination of DNA prime--adenovirus boost immunization with entecavir elicits sustained control of chronic hepatitis B in the woodchuck model.

    PubMed

    Kosinska, Anna D; Zhang, Ejuan; Johrden, Lena; Liu, Jia; Seiz, Pia L; Zhang, Xiaoyong; Ma, Zhiyong; Kemper, Thekla; Fiedler, Melanie; Glebe, Dieter; Wildner, Oliver; Dittmer, Ulf; Lu, Mengji; Roggendorf, Michael

    2013-01-01

    A potent therapeutic T-cell vaccine may be an alternative treatment of chronic hepatitis B virus (HBV) infection. Previously, we developed a DNA prime-adenovirus (AdV) boost vaccination protocol that could elicit strong and specific CD8+ T-cell responses to woodchuck hepatitis virus (WHV) core antigen (WHcAg) in mice. In the present study, we first examined whether this new prime-boost immunization could induce WHcAg-specific T-cell responses and effectively control WHV replication in the WHV-transgenic mouse model. Secondly, we evaluated the therapeutic effect of this new vaccination strategy in chronically WHV-infected woodchucks in combination with a potent antiviral treatment. Immunization of WHV-transgenic mice by DNA prime-AdV boost regimen elicited potent and functional WHcAg-specific CD8+ T-cell response that consequently resulted in the reduction of the WHV load below the detection limit in more than 70% of animals. The combination therapy of entecavir (ETV) treatment and DNA prime-AdV boost immunization in chronic WHV carriers resulted in WHsAg- and WHcAg-specific CD4+ and CD8+ T-cell responses, which were not detectable in ETV-only treated controls. Woodchucks receiving the combination therapy showed a prolonged suppression of WHV replication and lower WHsAg levels compared to controls. Moreover, two of four immunized carriers remained WHV negative after the end of ETV treatment and developed anti-WHs antibodies. These results demonstrate that the combined antiviral and vaccination approach efficiently elicited sustained immunological control of chronic hepadnaviral infection in woodchucks and may be a new promising therapeutic strategy in patients. PMID:23785279

  11. Detection of Leishmania-specific DNA and surface antigens using a combination of functionalized magnetic beads and cadmium selenite quantum dots.

    PubMed

    Andreadou, Margarita; Liandris, Emmanouil; Gazouli, Maria; Mataragka, Antonia; Tachtsidis, Ilias; Goutas, Nikolaοs; Vlachodimitropoulos, Dimitrios; Ikonomopoulos, John

    2016-04-01

    Leishmaniosis is a zoonotic disease that affects millions of people especially in resource-poor settings. The development of reliable diagnostic assays that do not require dedicated equipment or highly trained personnel would improve early diagnosis and effective control. For this purpose, a combination of magnetic bead and cadmium selenite quantum dot probes was applied for the detection of Leishmania-specific surface antigens (proteins) and DNA. Both analytes are isolated from the solution using magnetic bead capture probes whereas the presence of the targeted molecules is demonstrated by quantum dot detection probes. The sensitivity and specificity of this method reached 100% based on an assessment performed on 55 cultured isolates of various microbial pathogens. The low limit of detection was 3125 ng/μl and 10(3)cells/ml for Leishmania DNA and protein, respectively. The method shows considerable potential for clinical application in human and veterinary medicine, especially in resource-poor settings. PMID:26658854

  12. Phylogenetic analysis of the genus Sorghum based on combined sequence data from cpDNA regions and ITS generate well-supported trees with two major lineages

    PubMed Central

    Ng'uni, Dickson; Geleta, Mulatu; Fatih, Moneim; Bryngelsson, Tomas

    2010-01-01

    Background and Aims Wild Sorghum species provide novel traits for both biotic and abiotic stress resistance and yield for the improvement of cultivated sorghum. A better understanding of the phylogeny in the genus Sorghum will enhance use of the valuable agronomic traits found in wild sorghum. Methods Four regions of chloroplast DNA (cpDNA; psbZ-trnG, trnY-trnD, trnY-psbM and trnT-trnL) and the internal transcribed spacer (ITS) of nuclear ribosomal DNA were used to analyse the phylogeny of sorghum based on maximum-parsimony analyses. Key Results Parsimony analyses of the ITS and cpDNA regions as separate or combined sequence datasets formed trees with strong bootstrap support with two lineages: the Eu-sorghum species S. laxiflorum and S. macrospermum in one and Stiposorghum and Para-sorghum in the other. Within Eu-sorghum, S. bicolor-3, -11 and -14 originating from southern Africa form a distinct clade. S. bicolor-2, originally from Yemen, is distantly related to other S. bicolor accessions. Conclusions Eu-sorghum species are more closely related to S. macrospermum and S. laxiflorum than to any other Australian wild Sorghum species. S. macrospermum and S. laxiflorum are so closely related that it is inappropriate to classify them in separate sections. S. almum is closely associated with S. bicolor, suggesting that the latter is the maternal parent of the former given that cpDNA is maternally inherited in angiosperms. S. bicolor-3, -11 and -14, from southern Africa, are closely related to each other but distantly related to S. bicolor-2. PMID:20061309

  13. Safety and Comparative Immunogenicity of an HIV-1 DNA Vaccine in Combination with Plasmid Interleukin 12 and Impact of Intramuscular Electroporation for Delivery

    PubMed Central

    Kalams, Spyros A.; Parker, Scott D.; Elizaga, Marnie; Metch, Barbara; Edupuganti, Srilatha; Hural, John; De Rosa, Stephen; Carter, Donald K.; Rybczyk, Kyle; Frank, Ian; Fuchs, Jonathan; Koblin, Beryl; Kim, Denny H.; Joseph, Patrice; Keefer, Michael C.; Baden, Lindsey R.; Eldridge, John; Boyer, Jean; Sherwat, Adam; Cardinali, Massimo; Allen, Mary; Pensiero, Michael; Butler, Chris; Khan, Amir S.; Yan, Jian; Sardesai, Niranjan Y.; Kublin, James G.; Weiner, David B.

    2013-01-01

    Background. DNA vaccines have been very poorly immunogenic in humans but have been an effective priming modality in prime-boost regimens. Methods to increase the immunogenicity of DNA vaccines are needed. Methods. HIV Vaccine Trials Network (HVTN) studies 070 and 080 were multicenter, randomized, clinical trials. The human immunodeficiency virus type 1 (HIV-1) PENNVAX®-B DNA vaccine (PV) is a mixture of 3 expression plasmids encoding HIV-1 Clade B Env, Gag, and Pol. The interleukin 12 (IL-12) DNA plasmid expresses human IL-12 proteins p35 and p40. Study subjects were healthy HIV-1–uninfected adults 18–50 years old. Four intramuscular vaccinations were given in HVTN 070, and 3 intramuscular vaccinations were followed by electroporation in HVTN 080. Cellular immune responses were measured by intracellular cytokine staining after stimulation with HIV-1 peptide pools. Results. Vaccination was safe and well tolerated. Administration of PV plus IL-12 with electroporation had a significant dose-sparing effect and provided immunogenicity superior to that observed in the trial without electroporation, despite fewer vaccinations. A total of 71.4% of individuals vaccinated with PV plus IL-12 plasmid with electroporation developed either a CD4+ or CD8+ T-cell response after the second vaccination, and 88.9% developed a CD4+ or CD8+ T-cell response after the third vaccination. Conclusions. Use of electroporation after PV administration provided superior immunogenicity than delivery without electroporation. This study illustrates the power of combined DNA approaches to generate impressive immune responses in humans. PMID:23840043

  14. An epigenetic biomarker combination of PCDH17 and POU4F2 detects bladder cancer accurately by methylation analyses of urine sediment DNA in Han Chinese

    PubMed Central

    Li, Qiaoling; An, Dan; Fang, Lu; Lin, Youcheng; Hou, Yong; Xu, Abai; Fu, Yu; Lu, Wei; Chen, Xin; Chen, Mingwei; Zhang, Meng; Jiang, Huiling; Zhang, Chuanxia; Dong, Pei; Li, Chong; Chen, Jun; Yang, Guosheng; Liu, Chunxiao; Cai, Zhiming; Zhou, Fangjian; Wu, Song

    2016-01-01

    To develop a routine and effectual procedure of detecting bladder cancer (BlCa), an optimized combination of epigenetic biomarkers that work synergistically with high sensitivity and specificity is necessary. In this study, methylation levels of seven biomarkers (EOMES, GDF15, NID2, PCDH17, POU4F2, TCF21, and ZNF154) in 148 individuals—which including 58 urothelial cell carcinoma (UCC) patients, 20 infected urinary calculi (IUC) patients, 20 kidney cancer (KC) patients,20 prostate cancer (PC) patients, and 30 healthy volunteers (HV)—were quantified by qMSP using the urine sediment DNA. Receiver operating characteristic (ROC) curves were generated for each biomarker. The combining predictors of possible combinations were calculated through logistic regression model. Subsequently, ROC curves of the three best performing combinations were constructed. Then, we validated the three best performing combinations and POU4F2 in another 72 UCC, 21 IUC, 26 KC and 22 PC, and 23 HV urine samples. The combination of POU4F2/PCDH17 has yielded the highest sensitivity and specificity of 90.00% and 93.96% in all the 312 individuals, showing the capability of detecting BlCa effectively among pathologically varied sample groups. PMID:26700620

  15. NSCLC cells demonstrate differential mode of cell death in response to the combined treatment of radiation and a DNA-PKcs inhibitor

    PubMed Central

    Hsu, Feng-Ming; Zhang, Zhang; Tumati, Vasu; Lin, Yu-Fen; Chen, Benjamin P.C.; Saha, Debabrata

    2015-01-01

    The current standard of care for lung cancer consists of concurrent chemotherapy and radiation. Several studies have shown that the DNA-PKcs inhibitor NU7441 is a highly potent radiosensitizer, however, the mechanism of NU7441's anti-proliferation effect has not been fully elucidated. In this study, the combined effect of NU7441 and ionizing radiation (IR) in a panel of non-small cell lung cancer cell lines (A549, H460 and H1299) has been investigated. We found that NU7441 significantly enhances the effect of IR in all cell lines. The notable findings in response to this combined treatment are (i) prolonged delay in IR-induced DNA DSB repair, (ii) induced robust G2/M checkpoint, (iii) increased aberrant mitosis followed by mitotic catastrophe specifically in H1299, (iv) dramatically induced autophagy in A549 and (v) IR-induced senescence specifically in H460. H1299 cells show greater G2 checkpoint adaptation after combined treatment, which can be attributed to higher expression level of Plk1 compared to A549 and H460. The enhanced autophagy after NU7441 treatment in A549 is possibly due to the higher endogenous expression of pS6K compared to H1299 and H460 cells. In conclusion, choice of cell death pathway is dependent on the mutation status and other genetic factors of the cells treated. PMID:25714019

  16. Inhibition of DNA Topoisomerase Type IIα (TOP2A) by Mitoxantrone and Its Halogenated Derivatives: A Combined Density Functional and Molecular Docking Study

    PubMed Central

    Abu Saleh, Md.; Solayman, Md.; Hoque, Mohammad Mazharol; Khan, Mohammad A. K.; Sarwar, Mohammed G.; Halim, Mohammad A.

    2016-01-01

    In this study, mitoxantrone and its halogenated derivatives have been designed by density functional theory (DFT) to explore their structural and thermodynamical properties. The performance of these drugs was also evaluated to inhibit DNA topoisomerase type IIα (TOP2A) by molecular docking calculation. Noncovalent interactions play significant role in improving the performance of halogenated drugs. The combined quantum and molecular mechanics calculations revealed that CF3 containing drug shows better preference in inhibiting the TOP2A compared to other modified drugs. PMID:27088089

  17. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE PAGESBeta

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  18. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These

  19. The histone deacetylase inhibitor SAHA sensitizes acute myeloid leukemia cells to a combination of nucleoside analogs and the DNA-alkylating agent busulfan.

    PubMed

    Song, Guiyun; Valdez, Benigno C; Li, Yang; Dominguez, Jose R; Corn, Paul; Champlin, Richard E; Andersson, Borje S

    2014-07-01

    Fludarabine (Flu), clofarabine (Clo) and busulfan (Bu) are used in allogeneic hematopoietic stem cell transplant (allo-HSCT). We reported that combining [Flu + Clo + Bu] had a synergistic cytotoxicity in AML cells. We hypothesized that combining [Flu + Clo + Bu] with the histone deacetylase inhibitor SAHA will further enhance cytotoxicity. We exposed the acute myeloid leukemia (AML) cell lines KBM3/Bu250(6) and OCI-AML3 to Flu, Clo, Bu and SAHA alone and in various combinations. [Flu + Clo + Bu + SAHA] resulted in synergistic cytotoxicity, which can be attributed to (1) activated DNA-damage response and cell cycle checkpoint activation through the ATM-CHK2-P53 (or P73) pathway or ATM-CHK2-cdc25-cdc2 pathway, (2) histone modifications and (3) activated apoptosis pathway. The [Flu + Clo + Bu + SAHA] combination causes mitochondrial outer membrane permeabilization, leakage of cytochrome c and Smac/Diablo into the cytosol with caspase activation, and release of apoptosis-inducing factor (AIF) into the nucleus resulting in nuclear fragmentation and cell death. These results provide a mechanistic basis for using SAHA in future clinical trials with double nucleoside analog-busulfan combinations in pretransplant conditioning therapy. PMID:24144307

  20. Combining plasma Epstein-Barr virus DNA and nodal maximal standard uptake values of 18F-fluoro-2-deoxy-D-glucose positron emission tomography improved prognostic stratification to predict distant metastasis for locoregionally advanced nasopharyngeal carcinoma

    PubMed Central

    Chen, Qiu-Yan; Guo, Shan-Shan; Liu, Li-Ting; Fan, Wei; Zhang, Xu; Guo, Ling; Zhao, Chong; Cao, Ka-Jia; Qian, Chao-Nan; Guo, Xiang; Xie, Dan; Zeng, Mu-Sheng; Mai, Hai-Qiang

    2015-01-01

    Background This study aimed to evaluate the value of combining the nodal maximal standard uptake values (SUVmax) of 18 F-fluoro-2-deoxy-D-glucose positron emission tomography with Epstein-Barr virus DNA(EBV DNA) levels to predict distant metastasis for nasopharyngeal carcinoma (NPC) patients Patients and Methods Eight hundred seventy-four patients with stage III-IVa-b NPC were evaluated for the effects of combining SUVmax and EBV DNA levels on distant metastasis-free survival (DMFS), disease-free survival (DFS) and overall survival (OS). Results The optimal cutoff value was 6,220 copies/mL for EBV DNA and 7.5 for SUVmax-N. Patients with lower EBV DNA levels or SUVmax-N had a significantly better 3-year DMFS, DFS, and OS. Patients were divided into four groups based on EBV DNA and SUVmax-N, as follows: low EBV DNA and low SUVmax-N (LL), low EBV DNA and high SUVmax-N (LH), high EBV DNA and low SUVmax-N (HL), and high EBV DNA and high SUVmax-N (HH). There were significant differences between the four mentioned groups in 3-year DMFS: 95.7%, 92.2%, 92.3%, and 80.1%, respectively (Ptrend < 0.001). When looking at the disease stage, the 3-year DMFS in group LL, LH, HL, HH were 94.2%, 92.9%, 95.0%, and 81.1%, respectively, in stage III patients (Ptrend < 0.001) and 92.7%, 87.2%, 86.3%, and 77.0% in stage IVa–b patients (Ptrend = 0.026). Conclusion Pretreatment EBV DNA and SUVmax of neck lymph nodes were independent prognostic factors for distant metastasis in NPC patients. Combining EBV DNA and SUVmax-N led to an improved risk stratification for distant metastasis in advanced-stage disease. PMID:26512922

  1. Personal identification of cold case remains through combined contribution from anthropological, mtDNA and bomb–pulse dating analyses*†

    PubMed Central

    Speller, Camilla F.; Spalding, Kirsty L.; Buchholz, Bruce A.; Hildebrand, Dean; Moore, Jason; Mathewes, Rolf; Skinner, Mark F.; Yang, Dongya Y.

    2013-01-01

    In 1968, a child’s cranium was recovered from the banks of a northern Canadian river, and held in trust until the ‘cold case’ was re-opened in 2005. The cranium underwent re-analysis at the Centre for Forensic Research, Simon Fraser University, using recently developed anthropological, ‘bomb-pulse’ radiocarbon analysis and forensic DNA techniques. Craniometrics, skeletal ossification and dental formation indicated an age-at-death of 4.4 ±1 years. Radiocarbon analysis of enamel from two teeth indicated a year of birth between 1958–1962. Forensic DNA analysis indicated the child was male, and the obtained mitochondrial profile matched a living maternal relative of the presumed missing child. These multi-disciplinary analyses resulted in a legal identification 41 years after the discovery of the remains, highlighting the enormous potential of combining radiocarbon analysis with anthropological and mtDNA analyses in producing confident personal identifications for forensic cold cases dating to within the last 60 years. PMID:22804335

  2. Rabies vaccination: comparison of neutralizing antibody responses after priming and boosting with different combinations of DNA, inactivated virus, or recombinant vaccinia virus vaccines.

    PubMed

    Lodmell, D L; Ewalt, L C

    2000-05-01

    Long-term levels of neutralizing antibody were evaluated in mice after a single immunization with experimental DNA or recombinant vaccinia virus (RVV) vaccines encoding the rabies virus glycoprotein (G), or the commercially available inactivated virus human diploid cell vaccine (HDCV). Anamnestic antibody titers were also evaluated after two booster immunizations with vaccines that were identical to or different from the priming vaccine. Five hundred and forty days (1.5 year) after a single immunization with any of the three vaccines, neutralizing antibody titers remained greater than the minimal acceptable human level of antibody titer (0.5 International Units (IU)/ml). In addition, either an HDCV or DNA booster elicited early and elevated anamnestic antibody responses in mice that had been primed with any of the three vaccines. In contrast, RVV boosters failed to elevate titers in mice that had been previously primed with RVV, and elicited slowly rising titers in mice that had been primed with either DNA or HDCV. Thus, a single vaccination with any of the three different vaccines elicited long-term levels of neutralizing antibody that exceeded 0.5 IU/ml. In contrast, different prime-booster vaccine combinations elicited anamnestic neutralizing antibody responses that increased quickly, increased slowly or failed to increase. PMID:10738096

  3. Reproductive morphology and DNA sequences of the brown alga Platysiphon verticillatus support the new combination Platysiphon glacialis.

    PubMed

    Kawai, Hiroshi; Hanyuda, Takeaki; Yamagishi, Takahiro; Kai, Atsushi; Lane, Chris E; McDevit, Dan; Küpper, Frithjof C; Saunders, Gary W

    2015-10-01

    Platysiphon verticillatus, a brown alga endemic to the Arctic, was described based on vegetative specimens collected at Inglefield Bay, West Greenland. The species is distinctive in having a lanceolate blade-like thallus terminated by a terete portion, both covered with hair-like assimilatory filaments. Punctaria glacialis was described from Eastern Greenland, and the species differs from other Punctaria species in lacking hairs and plurilocular zoidangia. Unilocular zoidangia were reported, but instead of zoids being released they formed cell walls in situ developing the appearance of plurilocular zoidangia. However, the fate of the zoids, as well as the walled cells was not traced, and the life history of the alga has remained unclear. By comparing DNA sequences (cox1, cox3, and rDNA ITS2) of specimens morphologically referable to Platysiphon verticillatus and Punctaria glacialis collected at Baffin Island, as well as re-examining morphology and studying crude cultures, we concluded that they are the same taxonomic entity. Furthermore, their cox3 sequence and vegetative morphology agreed with those of the type specimen of Punctaria glacialis. Consequently, we propose Platysiphon glacialis comb. nov. The life cycle could not be completed in culture, but we hypothesize that in situ germination of the unizoids produces reduced gametophytes housed in peripheral tissue of erect sporophytic thalli. PMID:26986887

  4. Sensitive Electrochemiluminescence Immunosensor for Detection of N-Acetyl-β-d-glucosaminidase Based on a "Light-Switch" Molecule Combined with DNA Dendrimer.

    PubMed

    Wang, Haijun; Yuan, Yali; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2016-06-01

    Here, a novel "light-switch" molecule of Ru (II) complex ([Ru(dcbpy)2dppz](2+)-DPEA) with self-enhanced electrochemiluminescence (ECL) property is proposed, which is almost nonemissive in aqueous solution but is brightly luminescent when it intercalates into DNA duplex. Owing to less energy loss and shorter electron-transfer distance, the intramolecular ECL reaction between the luminescent [Ru(dcbpy)2dppz](2+) and coreactive tertiary amine group in N,N-diisopropylethylenediamine (DPEA) makes the obtained "light-switch" molecule possess much higher light-switch efficiency compared with the traditional "light-switch" molecule. For increasing the loading amount and further enhancing the luminous efficiency of the "light-switch" molecule, biotin labeled DNA dendrimer (the fourth generation, G4) is prepared from Y-shape DNA by a step-by-step assembly strategy, which provides abundant intercalated sites for [Ru(dcbpy)2dppz](2+)-DPEA. Meanwhile, the obtained nanocomposite (G4-[Ru(dcbpy)2dppz](2+)-DPEA) could well bind with streptavidin labeled detection antibody (SA-Ab2) due to the existence of abundant biotin. Through sandwiched immunoreaction, an ECL immunosensor was fabricated for sensitive determination of N-acetyl-β-d-glucosaminidase (NAG), a typical biomarker for diabetic nephropathy (DN). The detemination linear range was 0.1 pg mL(-1) to 1 ng mL(-1), and the detection limit was 0.028 pg mL(-1). The developed strategy combining the ECL self-enhanced "light-switch" molecular and DNA nanotechnology offers an effective signal amplification mean and provides ample potential for further bioanalysis and clinical study. PMID:27185239

  5. Protection against H1N1 influenza challenge by a DNA vaccine expressing H3/H1 subtype hemagglutinin combined with MHC class II-restricted epitopes

    PubMed Central

    2010-01-01

    Background Multiple subtypes of avian influenza viruses have crossed the species barrier to infect humans and have the potential to cause a pandemic. Therefore, new influenza vaccines to prevent the co-existence of multiple subtypes within a host and cross-species transmission of influenza are urgently needed. Methods Here we report a multi-epitope DNA vaccine targeted towards multiple subtypes of the influenza virus. The protective hemagglutinin (HA) antigens from H5/H7/H9 subtypes were screened for MHC II class-restricted epitopes overlapping with predicted B cell epitopes. We then constructed a DNA plasmid vaccine, pV-H3-EHA-H1, based on HA antigens from human influenza H3/H1 subtypes combined with the H5/H7/H9 subtype Th/B epitope box. Results Epitope-specific IFN-γ ELISpot responses were significantly higher in the multi-epitope DNA group than in other vaccine and control groups (P < 0.05). The multi-epitope group significantly enhanced Th2 cell responses as determined by cytokine assays. The survival rate of mice given the multi-epitope vaccine was the highest among the vaccine groups, but it was not significantly different compared to those given single antigen expressing pV-H1HA1 vaccine and dual antigen expressing pV-H3-H1 vaccine (P > 0.05). No measurable virus titers were detected in the lungs of the multi-epitope immunized group. The unique multi-epitope DNA vaccine enhanced virus-specific antibody and cellular immunity as well as conferred complete protection against lethal challenge with A/New Caledonia/20/99 (H1N1) influenza strain in mice. Conclusions This approach may be a promising strategy for developing a universal influenza vaccine to prevent multiple subtypes of influenza virus and to induce long-term protective immune against cross-species transmission. PMID:21134292

  6. Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer.

    PubMed

    Sun, Qingjiang; Subramanyam, Guru; Dai, Liming; Check, Michael; Campbell, Angela; Naik, Rajesh; Grote, James; Wang, Yongqiang

    2009-03-24

    Owing to their narrow bright emission band, broad size-tunable emission wavelength, superior photostability, and excellent flexible-substrate compatibility, light-emitting diodes based on quantum dots (QD-LEDs) are currently under intensive research and development for multiple consumer applications including flat-panel displays and flat lighting. However, their commercialization is still precluded by the slow development to date of efficient QD-LEDs as even the highest reported efficiency of 2.0% cannot favorably compete with their organic counterparts. Here, we report QD-LEDs with a record high efficiency (approximately 4%), high brightness (approximately 6580 cd/m(2)), low turn-on voltage (approximately 2.6 V), and significantly improved color purity by simply using deoxyribonucleic acid (DNA) complexed with cetyltrimetylammonium (CTMA) (DNA-CTMA) as a combined hole transporting and electron-blocking layer (HTL/EBL). This, together with controlled thermal decomposition of ligand molecules from the QD shell, represents a novel combined, but simple and very effective, approach toward the development of highly efficient QD-LEDs with a high color purity. PMID:19309174

  7. Baculovirus-expressed virus-like particle vaccine in combination with DNA encoding the fusion protein confers protection against respiratory syncytial virus.

    PubMed

    Lee, Jong Seok; Kwon, Young-Man; Hwang, Hye Suk; Lee, Yu-Na; Ko, Eun-Ju; Yoo, Si-Eun; Kim, Min-Chul; Kim, Ki-Hye; Cho, Min Kyoung; Lee, Young-Tae; Lee, You Ri; Quan, Fu-Shi; Kang, Sang-Moo

    2014-10-01

    Respiratory syncytial virus (RSV) is a major viral agent causing significant morbidity and mortality in young infants and the elderly. There is no licensed vaccine against RSV and it is a high priority to develop a safe RSV vaccine. We determined the immunogenicity and protective efficacy of combined virus-like particle and DNA vaccines presenting RSV glycoproteins (Fd.VLP) in comparison with formalin inactivated RSV (FI-RSV). Immunization of mice with Fd.VLP induced higher ratios of IgG2a/IgG1 antibody responses compared to those with FI-RSV. Upon live RSV challenge, Fd.VLP and FI-RSV vaccines were similarly effective in clearing lung viral loads. However, FI-RSV immunized mice showed a substantial weight loss and high levels of T helper type 2 (Th2) cytokines as well as extensive lung histopathology and eosinophil infiltration. In contrast, Fd.VLP immunized mice did not exhibit Th2 type cytokines locally and systemically, which might contribute to preventing vaccine-associated RSV lung disease. These results indicate that virus-like particles in combination with DNA vaccines represent a potential approach for developing a safe and effective RSV vaccine. PMID:25173478

  8. DNA immunization combined with scFv phage display identifies antagonistic GCGR specific antibodies and reveals new epitopes on the small extracellular loops.

    PubMed

    van der Woning, Bas; De Boeck, Gitte; Blanchetot, Christophe; Bobkov, Vladimir; Klarenbeek, Alex; Saunders, Michael; Waelbroeck, Magali; Laeremans, Toon; Steyaert, Jan; Hultberg, Anna; De Haard, Hans

    2016-01-01

    The identification of functional monoclonal antibodies directed against G-protein coupled receptors (GPCRs) is challenging because of the membrane-embedded topology of these molecules. Here, we report the successful combination of llama DNA immunization with scFv-phage display and selections using virus-like particles (VLP) and the recombinant extracellular domain of the GPCR glucagon receptor (GCGR), resulting in glucagon receptor-specific antagonistic antibodies. By immunizing outbred llamas with plasmid DNA containing the human GCGR gene, we sought to provoke their immune system, which generated a high IgG1 response. Phage selections on VLPs allowed the identification of mAbs against the extracellular loop regions (ECL) of GCGR, in addition to multiple VH families interacting with the extracellular domain (ECD) of GCGR. Identifying mAbs binding to the ECL regions of GCGR is challenging because the large ECD covers the small ECLs in the energetically most favorable 'closed conformation' of GCGR. Comparison of Fab with scFv-phage display demonstrated that the multivalent nature of scFv display is essential for the identification of GCGR specific clones by selections on VLPs because of avid interaction. Ten different VH families that bound 5 different epitopes on the ECD of GCGR were derived from only 2 DNA-immunized llamas. Seven VH families demonstrated interference with glucagon-mediated cAMP increase. This combination of technologies proved applicable in identifying multiple functional binders in the class B GPCR context, suggesting it is a robust approach for tackling difficult membrane proteins. PMID:27211075

  9. Co-administration of certain DNA vaccine combinations expressing different H5N1 influenza virus antigens can be beneficial or detrimental to immune protection.

    PubMed

    Patel, Ami; Gray, Michael; Li, Yan; Kobasa, Darwyn; Yao, Xiaojian; Kobinger, Gary P

    2012-01-11

    Achieving broad-spectrum immunity against emerging zoonotic viruses such as avian influenza H5N1 and other possible pandemic viruses will require generation of cross-protective immune responses. Strong antibody responses generated against the H5HA protein are protective, however, antigenic variation between diverging isolates can interfere with virus neutralization. The current study investigates co-administration of an H5 HA DNA vaccine with other variable and conserved influenza antigens (NA, NP, and M2). All antigens were derived from the A/Hanoi/30408/2005 (H5N1) virus and the contribution towards overall protection and immune activation was assessed against lethal homologous and heterologous challenges. An (HA+NA) combination afforded the best protection against homologous challenge and (HA+NP) was comparable to HA alone against heterologous A/Hong Kong/483/1997 challenge. Interestingly, combining all four H5 antigens at a single site did not improve protection against matched challenge and unexpectedly reduced survival by 30% against a heterologous challenge. Survival was also significantly decreased against heterologous challenge following combination of (HA+NP) with an unrelated antigen. Although there were no significant changes in antibody titres, significantly lower T-cell responses were detected against all antigens except HA in each combination. Co-administration of the vaccines at different injection sites restored T-cell responses but did not improve overall protection. Similar observations were also recorded following combination of HA and NP antigens using two different adenovirus-based backbones. Overall, the data suggest that co-administering certain H5N1 antigens offer better or comparable protection to HA alone, however, combining extra antigens may be unnecessary and lead to unfavourable immune responses. PMID:22119588

  10. Blood levels of histone-complexed DNA fragments are associated with coagulopathy, inflammation and endothelial damage early after trauma

    PubMed Central

    Johansson, Pär I; Windeløv, Nis A; Rasmussen, Lars S; Sørensen, Anne Marie; Ostrowski, Sisse R

    2013-01-01

    Background: Tissue injury increases blood levels of extracellular histones and nucleic acids, and these may influence hemostasis, promote inflammation and damage the endothelium. Trauma-induced coagulopathy (TIC) may result from an endogenous response to the injury that involves the neurohumoral, inflammatory and hemostatic systems. Aims: To study the contribution of extracellular nucleic constituents to TIC, inflammation and endothelial damage. Setting and Design: Prospective observational study. Materials and Methods: We investigated histone-complexed DNA fragments (hcDNA) along with biomarkers of coagulopathy, inflammation and endothelial damage in plasma from 80 trauma patients admitted directly to the Trauma Centre from the scene of the accident. Blood was sampled a median of 68 min (IQR 48-88) post injury. Trauma patients with hcDNA levels >median or ≤median were compared. Results: Trauma patients with high plasma hcDNA had higher Injury Severity Score (ISS) and level of sympathoadrenal activation (higher adrenaline and noradrenaline) and a higher proportion of prolonged activated partial thromboplastin time (APTT) and higher D-dimer, tissue-type plasminogen activator (tPA), Annexin V and soluble CD40 ligand (sCD40L) concurrent with lower plasminogen activator inhibitor (PAI)-1) and prothrombin fragment (PF) 1 + 2 (all P < 0.05), all indicative of impaired thrombin generation, hyperfibrinolysis and platelet activation. Furthermore, patients with high hcDNA had enhanced inflammation and endothelial damage evidenced by higher plasma levels of terminal complement complex (sC5b-9), IL-6, syndecan-1, thrombomodulin and tissue factor pathway inhibitor (all P < 0.05). Conclusions: Excessive release of extracellular histones and nucleic acids seems to contribute to the hypocoagulability, inflammation and endothelial damage observed early after trauma. PMID:23960372

  11. Structural of the class II enzyme of human liver alcohol dehydrogenase: combined cDNA and protein sequence determination of the. pi. subunit

    SciTech Connect

    Hoeoeg, J.O.; von Bahr-Lindstroem, H.; Heden, L.O.; Holmquist, B.; Larsson, K.; Hempel, J.; Vallee, B.L.; Joernvall, H.

    1987-04-07

    The class II enzyme of human liver alcohol dehydrogenase was isolated, carboxymethylated, and cleaved with CNBr and proteolytic enzymes. Sequence analysis of peptides established structures corresponding to the ..pi.. subunit. Two segments from the C-terminal region unique to ..pi.. were selected for synthesis of oligodeoxyribonucleotide probes to screen a human liver cDNA library constructed in plasmid pT4. Sequence analysis of two identical hybridization-positive clones with cDNA inserts of about 2000 nucleotides gave the entire coding region of the ..pi.. subunit, a 61-nucleotide 5' noncoding region and a 741-nucleotide 3' noncoding region containing four possible polyadenylation sites. Translation of the coding region yields a 391-residue polypeptide, which in all regions except the C-terminal segment corresponds to the protein structure as determined directly by peptide analysis. With the class I numbering system, the exception concerns a residue exchange at position 368, the actual C-terminus which is Phe-374 by peptide data but a 12 residue extension by cDNA data, and possibly two further residue exchanges at positions 303 and 312. The size difference might indicate the existence of posttranslational modifications of the mature protein or, in combination with the residue exchanges, the existence of polymorphism at the locus for class II subunits. The ..pi.. subunit analyzed directly results in a 379-residue polypeptide and is the only class II size thus far known to occur in the mature protein. Comparison of the ..pi.. structure with those of the class I subunits (..cap alpha.., ..beta.., and ..gamma..) reveals a homology with extensive differences. Large variations in segments affecting relationships at the active site and the area of subunit interactions account for the significant alterations of enzymatic specificities and other properties that differentiate class II from class I enzymes.

  12. Characterisation of cisplatin coordination sites in cellular Escherichia coli DNA-binding proteins by combined biphasic liquid chromatography and ESI tandem mass spectrometry.

    PubMed

    Will, Joanna; Sheldrick, William S; Wolters, Dirk

    2008-03-01

    Combined multidimensional liquid chromatography and electrospray ionisation tandem mass spectrometry was employed to analyse platinated tryptic peptides from Escherichia coli cells treated with the anticancer drug cis-[PtCl2(NH3)2] at pH 7.0. Prerequisites for the LC/LC/MS/MS analysis of protein targets that are fulfilled by cisplatin are (a) that the original protein binding sites have a high kinetic stability over the range 2.3 < pH < 8.5, and (b) that the metal fragment remains coordinated to a significant number of b+ and y+ peptide ions under MS/MS fragmentation conditions. Matching the MS/MS spectra of the platinated tryptic peptides to sequences of proteins in the E. coli database enabled the identification of 31 protein targets for cisplatin. Whereas six of these are high-abundance enzymes and ribosomal proteins in E. coli cells, five low-abundance DNA-binding proteins were also identified as specific targets. These include the DNA mismatch repair protein mutS, the DNA helicase II (uvrD) and topoisomerase I (top1). Two efflux proteins (acrD, mdtA), the redox regulator thioredoxin 1 (thiO) and the external filament-like type-1 fimbrial protein A chain (fimA1) were also characterised as specific cisplatin-binding proteins. Kinetically favoured carboxylate (D, E) and hydroxy (S, T, Y) O atoms were identified as the Pt coordination sites in 18 proteins and methionyl S atoms in 9 proteins. PMID:18157731

  13. Characterization of Nanoscale Transformations in Polyelectrolyte Multilayers Fabricated from Plasmid DNA Using Laser Scanning Confocal Microscopy in Combination with Atomic Force Microscopy

    PubMed Central

    Fredin, Nathaniel J.; Flessner, Ryan M.; Jewell, Christopher M.; Bechler, Shane L.; Buck, Maren E.; Lynn, David M.

    2010-01-01

    Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) were used to characterize changes in nanoscale structure that occur when ultrathin polyelectrolyte multilayers (PEMs) are incubated in aqueous media. The PEMs investigated here were fabricated by the deposition of alternating layers of plasmid DNA and a hydrolytically degradable polyamine onto a precursor film composed of alternating layers of linear poly(ethylene imine) (LPEI) and sodium poly(styrene sulfonate) (SPS). Past studies of these materials in the context of gene delivery revealed transformations from a morphology that is smooth and uniform to one characterized by the formation of nanometer-scale particulate structures. We demonstrate that in-plane registration of LSCM and AFM images acquired from the same locations of films fabricated using fluorescently labeled polyelectrolytes allows the spatial distribution of individual polyelectrolyte species to be determined relative to the locations of topographic features that form during this transformation. Our results suggest that this physical transformation leads to a morphology consisting of a relatively less disturbed portion of film composed of polyamine and DNA juxtaposed over an array of particulate structures composed predominantly of LPEI and SPS. Characterization by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) microanalysis provides additional support for this interpretation. The combination of these different microscopy techniques provides insight into the structures and dynamics of these multicomponent thin films that cannot be achieved using any one method alone, and that could prove useful for the further development of these assemblies as platforms for the surface-mediated delivery of DNA. PMID:20155860

  14. Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors

    PubMed Central

    2013-01-01

    Background The global effect of copy number and epigenetic alterations on miRNA expression in cancer is poorly understood. In the present study, we integrate genome-wide DNA methylation, copy number and miRNA expression and identify genetic mechanisms underlying miRNA dysregulation in breast cancer. Results We identify 70 miRNAs whose expression was associated with alterations in copy number or methylation, or both. Among these, five miRNA families are represented. Interestingly, the members of these families are encoded on different chromosomes and are complementarily altered by gain or hypomethylation across the patients. In an independent breast cancer cohort of 123 patients, 41 of the 70 miRNAs were confirmed with respect to aberration pattern and association to expression. In vitro functional experiments were performed in breast cancer cell lines with miRNA mimics to evaluate the phenotype of the replicated miRNAs. let-7e-3p, which in tumors is found associated with hypermethylation, is shown to induce apoptosis and reduce cell viability, and low let-7e-3p expression is associated with poorer prognosis. The overexpression of three other miRNAs associated with copy number gain, miR-21-3p, miR-148b-3p and miR-151a-5p, increases proliferation of breast cancer cell lines. In addition, miR-151a-5p enhances the levels of phosphorylated AKT protein. Conclusions Our data provide novel evidence of the mechanisms behind miRNA dysregulation in breast cancer. The study contributes to the understanding of how methylation and copy number alterations influence miRNA expression, emphasizing miRNA functionality through redundant encoding, and suggests novel miRNAs important in breast cancer. PMID:24257477

  15. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations

    NASA Astrophysics Data System (ADS)

    Dannemiller, Karen C.; Lang-Yona, Naama; Yamamoto, Naomichi; Rudich, Yinon; Peccia, Jordan

    2014-02-01

    We examined fungal communities associated with the PM10 mass of Rehovot, Israel outdoor air samples collected in the spring and fall seasons. Fungal communities were described by 454 pyrosequencing of the internal transcribed spacer (ITS) region of the fungal ribosomal RNA encoding gene. To allow for a more quantitative comparison of fungal exposure in humans, the relative abundance values of specific taxa were transformed to absolute concentrations through multiplying these values by the sample's total fungal spore concentration (derived from universal fungal qPCR). Next, the sequencing-based absolute concentrations for Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, and Penicillium/Aspergillus spp. were compared to taxon-specific qPCR concentrations for A. alternata, C. cladosporioides, E. nigrum, and Penicillium/Aspergillus spp. derived from the same spring and fall aerosol samples. Results of these comparisons showed that the absolute concentration values generated from pyrosequencing were strongly associated with the concentration values derived from taxon-specific qPCR (for all four species, p < 0.005, all R > 0.70). The correlation coefficients were greater for species present in higher concentrations. Our microbial aerosol population analyses demonstrated that fungal diversity (number of fungal operational taxonomic units) was higher in the spring compared to the fall (p = 0.02), and principal coordinate analysis showed distinct seasonal differences in taxa distribution (ANOSIM p = 0.004). Among genera containing allergenic and/or pathogenic species, the absolute concentrations of Alternaria, Aspergillus, Fusarium, and Cladosporium were greater in the fall, while Cryptococcus, Penicillium, and Ulocladium concentrations were greater in the spring. The transformation of pyrosequencing fungal population relative abundance data to absolute concentrations can improve next-generation DNA sequencing-based quantitative aerosol exposure

  16. Combination of treatment with death receptor 5-specific antibody with therapeutic HPV DNA vaccination generates enhanced therapeutic anti-tumor effects.

    PubMed

    Tseng, Chih Wen; Monie, Archana; Trimble, Cornelia; Alvarez, Ronald D; Huh, Warner K; Buchsbaum, Donald J; Straughn, J Michael; Wang, Mei-Cheng; Yagita, Hideo; Hung, Chien-Fu; Wu, T-C

    2008-08-12

    There is currently a vital need for the development of novel therapeutic strategies for the control of advanced stage cancers. Antigen-specific immunotherapy and the employment of antibodies against the death receptor 5 (DR5) have emerged as two potentially promising strategies for cancer treatment. In the current study, we hypothesize that the combination of treatment with the anti-DR5 monoclonal antibody, MD5-1 with a DNA vaccine encoding calreticulin (CRT) linked to human papillomavirus type 16 (HPV-16) E7 antigen (CRT/E7(detox)) administered via gene gun would lead to further enhancement of E7-specific immune responses as well as anti-tumor effects. Our results indicated that mice bearing the E7-expressing tumor, TC-1 treated with MD5-1 monoclonal antibody followed by CRT/E7(detox) DNA vaccination generated the most potent therapeutic anti-tumor effects as well as highest levels of E7-specific CD8+ T cells among all the groups tested. In addition, treatment with MD5-1 monoclonal antibody was capable of rendering the TC-1 tumor cells more susceptible to lysis by E7-specific cytotoxic T lymphocytes. Our findings serve as an important foundation for future clinical translation. PMID:18598733

  17. Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Delta with other DNA repair genes in Saccharomyces cerevisiae.

    PubMed Central

    Klein, H L

    2001-01-01

    The SRS2 gene of Saccharomyces cerevisiae encodes a DNA helicase that is active in the postreplication repair pathway and homologous recombination. srs2 mutations are lethal in a rad54Delta background and cause poor growth or lethality in rdh54Delta, rad50Delta, mre11Delta, xrs2Delta, rad27Delta, sgs1Delta, and top3Delta backgrounds. Some of these genotypes are known to be defective in double-strand break repair. Many of these lethalities or poor growth can be suppressed by mutations in other genes in the DSB repair pathway, namely rad51, rad52, rad55, and rad57, suggesting that inhibition of recombination at a prior step prevents formation of a lethal intermediate. Lethality of the srs2Delta rad54Delta and srs2Delta rdh54Delta double mutants can also be rescued by mutations in the DNA damage checkpoint functions RAD9, RAD17, RAD24, and MEC3, indicating that the srs2 rad54 and srs2 rdh54 mutant combinations lead to an intermediate that is sensed by these checkpoint functions. When the checkpoints are intact the cells never reverse from the arrest, but loss of the checkpoints releases the arrest. However, cells do not achieve wild-type growth rates, suggesting that unrepaired damage is still present and may lead to chromosome loss. PMID:11156978

  18. Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of L. infantum.

    PubMed

    Rafati, Sima; Nakhaee, Alireza; Taheri, Tahere; Taslimi, Yasaman; Darabi, Haideh; Eravani, Davood; Sanos, Stephanie; Kaye, Paul; Taghikhani, Mohammad; Jamshidi, Shahram; Rad, Mohammad Ali

    2005-05-25

    Leishmania infantum is known to be associated with visceral leishmaniasis in Iran and canids are natural reservoirs. Control of disease in dogs appears to be one of the most effective approaches for interrupting the domestic cycle of the disease. In search for successful vaccine strategies, we evaluated the cysteine proteinases (CPs) type I and II using a heterologous prime-boost regime for vaccination against experimental visceral leishmaniasis in dogs. Following vaccination and challenge, dogs were followed for 12 months. Ten dogs vaccinated by prime/boost with DNA/recombinant CPs (in combination with CpG ODN and Montanide 720) remained free of infection in their bone morrow. In contrast, three out of four dogs in the control groups had infection in their bone marrow. The peripheral lymphocytes from protected animals had generally higher proliferation responses to F/T antigen, recombinant CPA (rCPA) and recombinant CPB (rCPB) than controls. During post-challenge period, the difference in stimulation index is significant (p<0.05) on months 11 and 12 to F/T antigens, all months for rCPA and 5, 7, 9, 11 and 12 months for rCPB. Analysis of cytokine mRNA level suggested that vaccinated dogs had elevated IFN-gamma mRNA in peripheral blood mononuclear cells (PBMC), whereas there was a consistent increase in the level of IL-10 in the control groups and some vaccinated dogs. The level of total IgG and IgG2, but not IgG1, to rCPA and rCPB was significantly higher in the vaccinated group (p<0.05) than the control groups. We also showed that with the exception of one dog, all dogs in the vaccinated group in comparison to control dogs had strong DTH responses. We propose that the combination of DNA and recombinant protein vaccination using CPs could be instrumental to control (VL) in dogs. PMID:15882533

  19. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology.

    PubMed

    Giribet, G; Distel, D L; Polz, M; Sterrer, W; Wheeler, W C

    2000-09-01

    Triploblastic relationships were examined in the light of molecular and morphological evidence. Representatives for all triploblastic "phyla" (except Loricifera) were represented by both sources of phylogenetic data. The 18S ribosomal (rDNA) sequence data for 145 terminal taxa and 276 morphological characters coded for 36 supraspecific taxa were combined in a total evidence regime to determine the most consistent picture of triploblastic relationships for these data. Only triploblastic taxa are used to avoid rooting with distant outgroups, which seems to happen because of the extreme distance that separates diploblastic from triploblastic taxa according to the 18S rDNA data. Multiple phylogenetic analyses performed with variable analysis parameters yield largely inconsistent results for certain groups such as Chaetognatha, Acoela, and Nemertodermatida. A normalized incongruence length metric is used to assay the relative merit of the multiple analyses. The combined analysis having the least character incongruence yields the following scheme of relationships of four main clades: (1) Deuterostomia [((Echinodermata + Enteropneusta) (Cephalochordata (Urochordata + Vertebrata)))]; (2) Ecdysozoa [(((Priapulida + Kinorhyncha) (Nematoda + Nematomorpha)) ((Onychophora + Tardigrada) Arthropoda))]; (3) Trochozoa [((Phoronida + Brachiopoda) (Entoprocta (Nemertea (Sipuncula (Mollusca (Pogonophora (Echiura + Annelida)))))))]; and (4) Platyzoa [((Gnathostomulida (Cycliophora + Syndermata)) (Gastrotricha + Plathelminthes))]. Chaetognatha, Nemertodermatida, and Bryozoa cannot be assigned to any one of these four groups. For the first time, a data analysis recognizes a clade of acoelomates, the Platyzoa (sensu Cavalier-Smith, Biol. Rev. 73:203-266, 1998). Other relationships that corroborate some morphological analyses are the existence of a clade that groups Gnathostomulida + Syndermata (= Gnathifera), which is expanded to include the enigmatic phylum Cycliophora, as sister group

  20. Combined Quantification of Pulmonary Pneumocystis jirovecii DNA and Serum (1→3)-β-d-Glucan for Differential Diagnosis of Pneumocystis Pneumonia and Pneumocystis Colonization

    PubMed Central

    Le Gal, Solène; Da Costa, Cécilia; Virmaux, Michèle; Nevez, Gilles; Totet, Anne

    2013-01-01

    This study assessed a quantitative PCR (qPCR) assay for Pneumocystis jirovecii quantification in bronchoalveolar lavage (BAL) fluid samples combined with serum (1→3)-β-d-glucan (BG) level detection to distinguish Pneumocystis pneumonia (PCP) from pulmonary colonization with P. jirovecii. Forty-six patients for whom P. jirovecii was initially detected in BAL fluid samples were retrospectively enrolled. Based on clinical data and results of P. jirovecii detection, 17 and 29 patients were diagnosed with PCP and colonization, respectively. BAL fluid samples were reassayed using a qPCR assay targeting the mitochondrial large subunit rRNA gene. qPCR results and serum BG levels (from a Fungitell kit) were analyzed conjointly. P. jirovecii DNA copy numbers were significantly higher in the PCP group than in the colonization group (1.3 × 107 versus 3.4 × 103 copies/μl, P < 0.05). A lower cutoff value (1.6 × 103 copies/μl) achieving 100% sensitivity for PCP diagnosis and an upper cutoff value (2 × 104 copies/μl) achieving 100% specificity were determined. Applying these two values, 13/17 PCP patients and 19/29 colonized patients were correctly assigned to their patient groups. For the remaining 14 patients with P. jirovecii DNA copy numbers between the cutoff values, PCP and colonization could not be distinguished on the basis of qPCR results. Four of these patients who were initially assigned to the PCP group presented BG levels of ≥100 pg/ml. The other 10 patients, who were initially assigned to the colonization group, presented BG levels of <100 pg/ml. These results suggest that the combination of the qPCR assay, applying cutoff values of 1.6 × 103 and 2 × 104 copies/μl, and serum BG detection, applying a 100 pg/ml threshold, can differentiate PCP and colonization diagnoses. PMID:23903553

  1. Evolution of the assassin's arms: insights from a phylogeny of combined transcriptomic and ribosomal DNA data (Heteroptera: Reduvioidea).

    PubMed

    Zhang, Junxia; Gordon, Eric R L; Forthman, Michael; Hwang, Wei Song; Walden, Kim; Swanson, Daniel R; Johnson, Kevin P; Meier, Rudolf; Weirauch, Christiane

    2016-01-01

    Assassin bugs (Reduvioidea) are one of the most diverse (>7,000 spp.) lineages of predatory animals and have evolved an astounding diversity of raptorial leg modifications for handling prey. The evolution of these modifications is not well understood due to the lack of a robust phylogeny, especially at deeper nodes. We here utilize refined data from transcriptomes (370 loci) to stabilize the backbone phylogeny of Reduvioidea, revealing the position of major clades (e.g., the Chagas disease vectors Triatominae). Analyses combining transcriptomic and Sanger-sequencing datasets result in the first well-resolved phylogeny of Reduvioidea. Despite amounts of missing data, the transcriptomic loci resolve deeper nodes while the targeted ribosomal genes anchor taxa at shallower nodes, both with high support. This phylogeny reveals patterns of raptorial leg evolution across major leg types. Hairy attachment structures (fossula spongiosa), present in the ancestor of Reduvioidea, were lost multiple times within the clade. In contrast to prior hypotheses, this loss is not directly correlated with the evolution of alternative raptorial leg types. Our results suggest that prey type, predatory behavior, salivary toxicity, and morphological adaptations pose intricate and interrelated factors influencing the evolution of this diverse group of predators. PMID:26916580

  2. Evolution of the assassin’s arms: insights from a phylogeny of combined transcriptomic and ribosomal DNA data (Heteroptera: Reduvioidea)

    PubMed Central

    Zhang, Junxia; Gordon, Eric R. L.; Forthman, Michael; Hwang, Wei Song; Walden, Kim; Swanson, Daniel R.; Johnson, Kevin P.; Meier, Rudolf; Weirauch, Christiane

    2016-01-01

    Assassin bugs (Reduvioidea) are one of the most diverse (>7,000 spp.) lineages of predatory animals and have evolved an astounding diversity of raptorial leg modifications for handling prey. The evolution of these modifications is not well understood due to the lack of a robust phylogeny, especially at deeper nodes. We here utilize refined data from transcriptomes (370 loci) to stabilize the backbone phylogeny of Reduvioidea, revealing the position of major clades (e.g., the Chagas disease vectors Triatominae). Analyses combining transcriptomic and Sanger-sequencing datasets result in the first well-resolved phylogeny of Reduvioidea. Despite amounts of missing data, the transcriptomic loci resolve deeper nodes while the targeted ribosomal genes anchor taxa at shallower nodes, both with high support. This phylogeny reveals patterns of raptorial leg evolution across major leg types. Hairy attachment structures (fossula spongiosa), present in the ancestor of Reduvioidea, were lost multiple times within the clade. In contrast to prior hypotheses, this loss is not directly correlated with the evolution of alternative raptorial leg types. Our results suggest that prey type, predatory behavior, salivary toxicity, and morphological adaptations pose intricate and interrelated factors influencing the evolution of this diverse group of predators. PMID:26916580

  3. Predicted sub-populations in a marine shrimp proteome as revealed by combined EST and cDNA data from multiple Penaeus species

    PubMed Central

    2010-01-01

    Background Many species of marine shrimp in the Family Penaeidae, viz. Penaeus (Litopenaeus) vannamei, Penaeus monodon, Penaeus (Fenneropenaeus) chinensis, and Penaeus (Marsupenaeus) japonicus, are animals of economic importance in the aquaculture industry. Yet information about their DNA and protein sequences is lacking. In order to predict their collective proteome, we combined over 270,000 available EST and cDNA sequences from the 4 shrimp species with all protein sequences of Drosophila melanogaster and Caenorhabditis elegans. EST data from 4 other crustaceans, the crab Carcinus maenas, the lobster Homarus americanus (Decapoda), the water flea Daphnia pulex, and the brine shrimp Artemia franciscana were also used. Findings Similarity searches from EST collections of the 4 shrimp species matched 64% of the protein sequences of the fruit fly, but only 45% of nematode proteins, indicating that the shrimp proteome content is more similar to that of an insect than a nematode. Combined results with 4 additional non-shrimp crustaceans increased matching to 78% of fruit fly and 56% of nematode proteins, suggesting that present shrimp EST collections still lack sequences for many conserved crustacean proteins. Analysis of matching data revealed the presence of 4 EST groups from shrimp, namely sequences for proteins that are both fruit fly-like and nematode-like, fruit fly-like only, nematode-like only, and non-matching. Gene ontology profiles of proteins for the 3 matching EST groups were analyzed. For non-matching ESTs, a small fraction matched protein sequences from other species in the UniProt database, including other crustacean-specific proteins. Conclusions Shrimp ESTs indicated that the shrimp proteome is comprised of sub-populations of proteins similar to those common to both insect and nematode models, those present specifically in either model, or neither. Combining small EST collections from related species to compensate for their small size allowed

  4. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett's oesophagus

    PubMed Central

    Dvorak, Katerina; Payne, Claire M; Chavarria, Melissa; Ramsey, Lois; Dvorakova, Barbora; Bernstein, Harris; Holubec, Hana; Sampliner, Richard E; Guy, Naihsuan; Condon, Amanda; Bernstein, Carol; Green, Sylvan B; Prasad, Anil; Garewal, Harinder S

    2007-01-01

    Background Barrett's oesophagus is a premalignant condition associated with an increased risk for the development of oesophageal adenocarcinoma (ADCA). Previous studies indicated that oxidative damage contributes to the development of ADCA. Objective To test the hypothesis that bile acids and gastric acid, two components of refluxate, can induce oxidative stress and oxidative DNA damage. Methods Oxidative stress was evaluated by staining Barrett's oesophagus tissues with different degrees of dysplasia with 8‐hydroxy‐deoxyguanosine (8‐OH‐dG) antibody. The levels of 8‐OH‐dG were also evaluated ex vivo in Barrett's oesophagus tissues incubated for 10 min with control medium and medium acidified to pH 4 and supplemented with 0.5 mM bile acid cocktail. Furthermore, three oesophageal cell lines (Seg‐1 cells, Barrett's oesophagus cells and HET‐1A cells) were exposed to control media, media containing 0.1 mM bile acid cocktail, media acidified to pH 4, and media at pH 4 supplemented with 0.1 mM bile acid cocktail, and evaluated for induction of reactive oxygen species (ROS). Results Immunohistochemical analysis showed that 8‐OH‐dG is formed mainly in the epithelial cells in dysplastic Barrett's oesophagus. Importantly, incubation of Barrett's oesophagus tissues with the combination of bile acid cocktail and acid leads to increased formation of 8‐OH‐dG. An increase in ROS in oesophageal cells was detected after exposure to pH 4 and bile acid cocktail. Conclusions Oxidative stress and oxidative DNA damage can be induced in oesophageal tissues and cells by short exposures to bile acids and low pH. These alterations may underlie the development of Barrett's oesophagus and tumour progression. PMID:17145738

  5. γ-H2AX responds to DNA damage induced by long-term exposure to combined low-dose-rate neutron and γ-ray radiation.

    PubMed

    Zhang, Junlin; He, Ying; Shen, Xianrong; Jiang, Dingwen; Wang, Qingrong; Liu, Qiong; Fang, Wen

    2016-01-01

    Risk estimates for low-dose radiation (LDR) remain controversial. The possible involvement of DNA repair-related genes in long-term low-dose-rate neutron-gamma radiation exposure is poorly understood. In this study, 60 rats were divided into control groups and irradiated groups, which were exposed to low-dose-rate n-γ combined radiation (LDCR) for 15, 30, or 60 days. The effects of different cumulative radiation doses on peripheral blood cell (PBC), subsets of T cells of peripheral blood lymphocytes (PBL) and DNA damage repair were investigated. Real-time PCR and immunoblot analyses were used to detect expression of DNA DSB-repair-related genes involved in the NHEJ pathway, such as Ku70 and Ku80, in PBL. The mRNA level of H2AX and the expression level of γ-H2AX were detected by real-time PCR, immunoblot, and flow cytometry. White blood cells (WBC) and platelets (PLT) of all ionizing radiation (IR) groups decreased significantly, while no difference was seen between the 30 day and 60 day exposure groups. The numbers of CD3(+), CD4(+) T cells and CD4(+)/CD8(+) in the PBL of IR groups were lower than in the control group. In the 30 day and 60 day exposure groups, CD8(+) T cells decreased significantly. Real-time PCR and immunoblot results showed no significant difference in the mRNA and protein expression of Ku70 and Ku80 between the control groups and IR groups. However, the mRNA of H2AX increased significantly, and there was a positive correlation with dose. There was no difference in the protein expression of γ-H2AX between 30 day and 60 day groups, which may help to explain the damage to PBL. In conclusion, PBL damage increased with cumulative dose, suggesting that γ-H2AX, but neither Ku70 nor Ku80, plays an important role in PBL impairment induced by LDCR. PMID:26774665

  6. Sensitive Visual Detection of AHPND Bacteria Using Loop-Mediated Isothermal Amplification Combined with DNA-Functionalized Gold Nanoparticles as Probes

    PubMed Central

    Arunrut, Narong; Kampeera, Jantana; Sirithammajak, Sarawut; Sanguanrut, Piyachat; Proespraiwong, Porranee; Suebsing, Rungkarn; Kiatpathomchai, Wansika

    2016-01-01

    Acute hepatopancreatic necrosis disease (AHPND) is a component cause of early mortality syndrome (EMS) of shrimp. In 2013, the causative agent was found to be unique isolates of Vibrio parahaemolyticus (VPAHPND) that contained a 69 kbp plasmid (pAP1) carrying binary Pir-like toxin genes PirvpA and PirvpB. In Thailand, AHPND was first recognized in 2012, prior to knowledge of the causative agent, and it subsequently led to a precipitous drop in shrimp production. After VPAHPND was characterized, a major focus of the AHPND control strategy was to monitor broodstock shrimp and post larvae for freedom from VPAHPND by nucleic acid amplification methods, most of which required use of expensive and sophisticated equipment not readily available in a shrimp farm setting. Here, we describe a simpler but equally sensitive approach for detection of VPAHPND based on loop-mediated isothermal amplification (LAMP) combined with unaided visual reading of positive amplification products using a DNA-functionalized, ssDNA-labled nanogold probe (AuNP). The target for the special set of six LAMP primers used was the VPAHPND PirvpA gene. The LAMP reaction was carried out at 65°C for 45 min followed by addition of the red AuNP solution and further incubation at 65°C for 5 min, allowing any PirvpA gene amplicons present to hybridize with the probe. Hybridization protected the AuNP against aggregation, so that the solution color remained red upon subsequent salt addition (positive test result) while unprotected AuNP aggregated and underwent a color change from red to blue and eventually precipitated (negative result). The total assay time was approximately 50 min. The detection limit (100 CFU) was comparable to that of other commonly-used methods for nested PCR detection of VPAHPND and 100-times more sensitive than 1-step PCR detection methods (104 CFU) that used amplicon detection by electrophoresis or spectrophotometry. There was no cross reaction with DNA templates derived from non

  7. Combined quantification of pulmonary Pneumocystis jirovecii DNA and serum (1->3)-β-D-glucan for differential diagnosis of pneumocystis pneumonia and Pneumocystis colonization.

    PubMed

    Damiani, Céline; Le Gal, Solène; Da Costa, Cécilia; Virmaux, Michèle; Nevez, Gilles; Totet, Anne

    2013-10-01

    This study assessed a quantitative PCR (qPCR) assay for Pneumocystis jirovecii quantification in bronchoalveolar lavage (BAL) fluid samples combined with serum (1→3)-β-d-glucan (BG) level detection to distinguish Pneumocystis pneumonia (PCP) from pulmonary colonization with P. jirovecii. Forty-six patients for whom P. jirovecii was initially detected in BAL fluid samples were retrospectively enrolled. Based on clinical data and results of P. jirovecii detection, 17 and 29 patients were diagnosed with PCP and colonization, respectively. BAL fluid samples were reassayed using a qPCR assay targeting the mitochondrial large subunit rRNA gene. qPCR results and serum BG levels (from a Fungitell kit) were analyzed conjointly. P. jirovecii DNA copy numbers were significantly higher in the PCP group than in the colonization group (1.3 × 10(7) versus 3.4 × 10(3) copies/μl, P < 0.05). A lower cutoff value (1.6 × 10(3) copies/μl) achieving 100% sensitivity for PCP diagnosis and an upper cutoff value (2 × 10(4) copies/μl) achieving 100% specificity were determined. Applying these two values, 13/17 PCP patients and 19/29 colonized patients were correctly assigned to their patient groups. For the remaining 14 patients with P. jirovecii DNA copy numbers between the cutoff values, PCP and colonization could not be distinguished on the basis of qPCR results. Four of these patients who were initially assigned to the PCP group presented BG levels of ≥100 pg/ml. The other 10 patients, who were initially assigned to the colonization group, presented BG levels of <100 pg/ml. These results suggest that the combination of the qPCR assay, applying cutoff values of 1.6 × 10(3) and 2 × 10(4) copies/μl, and serum BG detection, applying a 100 pg/ml threshold, can differentiate PCP and colonization diagnoses. PMID:23903553

  8. Construction of recombinant eukaryotic expression plasmid containing murine CD40 ligand gene and its expression in H22 cells

    PubMed Central

    Jiang, Yong-Fang; He, Yan; Gong, Guo-Zhong; Chen, Jun; Yang, Chun-Yan; Xu, Yun

    2005-01-01

    AIM: To construct a recombinant murine CD40 ligand (mCD40L) eukaryotic expression vector for gene therapy and target therapy of hepatocellular carcinoma (HCC). METHODS: mCD40L cDNA was synthesized by RT-PCR with the specific primers and directly cloned into T vector to generate middle recombinant. After digestion with restriction endonuclease, the target fragment was subcloned into the multi-clone sites of the eukaryotic vector. The constructed vector was verified by enzyme digestion and sequencing, and the product expressed was detected by RT-PCR and immunofluorescence methods. RESULTS: The full-length mCD40L-cDNA was successfully cloned into the eukaryotic vector through electrophoresis, and mCD40L gene was integrated into the genome of infected H22 cells by RT-PCR. Murine CD40L antigen molecule was observed in the plasma of mCD40L-H22 by indirect immuno-fluorescence staining. CONCLUSION: The recombined mCD40L eukaryotic expression vector can be expressed in H22 cell line. It provides experimental data for gene therapy and target therapy of hepatocellular carcinoma. PMID:15633212

  9. Use of vibrational spectroscopy to study protein and DNA structure, hydration, and binding of biomolecules: A combined theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Jalkanen, K. J.; Jürgensen, V. Würtz; Claussen, A.; Rahim, A.; Jensen, G. M.; Wade, R. C.; Nardi, F.; Jung, C.; Degtyarenko, I. M.; Nieminen, R. M.; Herrmann, F.; Knapp-Mohammady, M.; Niehaus, T. A.; Frimand, K.; Suhai, S.

    We report on our work with vibrational absorption, vibrational circular dichroism, Raman scattering, Raman optical activity, and surface-enhanced Raman spectroscopy to study protein and DNA structure, hydration, and the binding of ligands, drugs, pesticides, or herbicides via a combined theoretical and experimental approach. The systems we have studied systematically are the amino acids (L-alanine, L-tryptophan, and L-histidine), peptides (N-4271 acetyl L-alanine N?-methyl amide, N-acetyl L-tryptophan N?-methyl amide, N-acetyl L-histidine N?-methyl amide, L-alanyl L-alanine, tri-L-serine, N-acetyl L-alanine L-proline L-tyrosine N?-methyl amide, Leu-enkephalin, cyclo-(gly-L-pro)3, N-acetyl (L-alanine)n N?-methyl amide), 3-methyl indole, and a variety of small molecules (dichlobenil and 2,6-dochlorobenzamide) of relevance to the protein systems under study. We have used molecular mechanics, the SCC-DFTB, SCC-DFTB+disp, RHF, MP2, and DFT methodologies for the modeling studies with the goal of interpreting the experimentally measured vibrational spectra for these molecules to the greatest extent possible and to use this combined approach to understand the structure, function, and electronic properties of these molecules in their various environments. The application of these spectroscopies to biophysical and environmental assays is expanding, and therefore a thorough understanding of the phenomenon from a rigorous theoretical basis is required. In addition, we give some exciting and new preliminary results which allow us to extend our methods to even larger and more complex systems. The work presented here is the current state of the art to this ever and fast changing field of theoretical spectroscopic interpretation and use of VA, VCD, Raman, ROA, EA, and ECD spectroscopies.

  10. Assessment of DNA damage in Ehlrich carcinoma after treatment with doxorubicin encapsulated in nanoscales thermosensitive liposomes in combination with localized hyperthermia.

    PubMed

    Rageh, Monira M; Shafaa, Medhat W; Elhefnawy, Mona R; El-Nagdy, Mohamed S

    2016-07-01

    Nanoscales thermosensitive liposomes (TSL) composed of synthetic lipids (dipalmitoylphosphatidylcholine, and distearoylphosphatidylcholine), were used for doxorubicin encapsulation with 70% encapsulated efficiency. The liposomes were characterized by dynamic light scattering, transmission electron microscopy and turbidity method. Additionally, the liposomes exhibited a significant release of doxorubicin (Dox) by 60% within 5 min at 42°C. To assess the therapeutic efficacy of Dox in combination with hyperthermia, Dox free and encapsulated TSL were administered directly to Ehrlich tumor bearing mice at 1 mg/kg dose. Immediately after the drug administration, hyperthermia was applied to mention the temperature inside the tumor site at 42°C either for 5 min and 30 min. The results indicate a significant increase in the percent of apoptotic and necrotic cells in the treated group. Moreover, disrupts the integrity and the amount of intact DNA in tumor cells. In conclusion, Dox and hyperthermia may serve as a useful targeted drug delivery system for management of Ehrlich carcinoma. PMID:27174899

  11. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease.

    PubMed

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-07-01

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. PMID:27123586

  12. Metformin synergizes 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) combination therapy through impairing intracellular ATP production and DNA repair in breast cancer stem cells.

    PubMed

    Soo, Jaslyn Sian-Siu; Ng, Char-Hong; Tan, Si Hoey; Malik, Rozita Abdul; Teh, Yew-Ching; Tan, Boon-Shing; Ho, Gwo-Fuang; See, Mee-Hoong; Taib, Nur Aishah Mohd; Yip, Cheng-Har; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Teo, Soo-Hwang; Leong, Chee-Onn

    2015-10-01

    Metformin, an AMPK activator, has been reported to improve pathological response to chemotherapy in diabetic breast cancer patients. To date, its mechanism of action in cancer, especially in cancer stem cells (CSCs) have not been fully elucidated. In this study, we demonstrated that metformin, but not other AMPK activators (e.g. AICAR and A-769662), synergizes 5-fluouracil, epirubicin, and cyclophosphamide (FEC) combination chemotherapy in non-stem breast cancer cells and breast cancer stem cells. We show that this occurs through an AMPK-dependent mechanism in parental breast cancer cell lines. In contrast, the synergistic effects of metformin and FEC occurred in an AMPK-independent mechanism in breast CSCs. Further analyses revealed that metformin accelerated glucose consumption and lactate production more severely in the breast CSCs but the production of intracellular ATP was severely hampered, leading to a severe energy crisis and impairs the ability of CSCs to repair FEC-induced DNA damage. Indeed, addition of extracellular ATP completely abrogated the synergistic effects of metformin on FEC sensitivity in breast CSCs. In conclusion, our results suggest that metformin synergizes FEC sensitivity through distinct mechanism in parental breast cancer cell lines and CSCs, thus providing further evidence for the clinical relevance of metformin for the treatment of cancers. PMID:26276035

  13. A new genomic tool, ultra-frequently cleaving TaqII/sinefungin endonuclease with a combined 2.9-bp recognition site, applied to the construction of horse DNA libraries

    PubMed Central

    2013-01-01

    Background Genomics and metagenomics are currently leading research areas, with DNA sequences accumulating at an exponential rate. Although enormous advances in DNA sequencing technologies are taking place, progress is frequently limited by factors such as genomic contig assembly and generation of representative libraries. A number of DNA fragmentation methods, such as hydrodynamic sharing, sonication or DNase I fragmentation, have various drawbacks, including DNA damage, poor fragmentation control, irreproducibility and non-overlapping DNA segment representation. Improvements in these limited DNA scission methods are consequently needed. An alternative method for obtaining higher quality DNA fragments involves partial digestion with restriction endonucleases (REases). We have shown previously that class-IIS/IIC/IIG TspGWI REase, the prototype member of the Thermus sp. enzyme family, can be chemically relaxed by a cofactor analogue, allowing it to recognize very short DNA sequences of 3-bp combined frequency. Such frequently cleaving REases are extremely rare, with CviJI/CviJI*, SetI and FaiI the only other ones found in nature. Their unusual features make them very useful molecular tools for the development of representative DNA libraries. Results We constructed a horse genomic library and a deletion derivative library of the butyrylcholinesterase cDNA coding region using a novel method, based on TaqII, Thermus sp. family bifunctional enzyme exhibiting cofactor analogue specificity relaxation. We used sinefungin (SIN) – an S-adenosylmethionine (SAM) analogue with reversed charge pattern, and dimethylsulfoxide (DMSO), to convert the 6-bp recognition site TaqII (5′-GACCGA-3′ [11/9]) into a theoretical 2.9-bp REase, with 70 shortened variants of the canonical recognition sequence detected. Because partial DNA cleavage is an inherent feature of the Thermus sp. enzyme family, this modified TaqII is uniquely suited to quasi-random library generation. Conclusions

  14. A novel quantitative assay of mitophagy: Combining high content fluorescence microscopy and mitochondrial DNA load to quantify mitophagy and identify novel pharmacological tools against pathogenic heteroplasmic mtDNA.

    PubMed

    Diot, Alan; Hinks-Roberts, Alex; Lodge, Tiffany; Liao, Chunyan; Dombi, Eszter; Morten, Karl; Brady, Stefen; Fratter, Carl; Carver, Janet; Muir, Rebecca; Davis, Ryan; Green, Charlotte J; Johnston, Iain; Hilton-Jones, David; Sue, Carolyn; Mortiboys, Heather; Poulton, Joanna

    2015-10-01

    Mitophagy is a cellular mechanism for the recycling of mitochondrial fragments. This process is able to improve mitochondrial DNA (mtDNA) quality in heteroplasmic mtDNA disease, in which mutant mtDNA co-exists with normal mtDNA. In disorders where the load of mutant mtDNA determines disease severity it is likely to be an important determinant of disease progression. Measuring mitophagy is technically demanding. We used pharmacological modulators of autophagy to validate two techniques for quantifying mitophagy. First we used the IN Cell 1000 analyzer to quantify mitochondrial co-localisation with LC3-II positive autophagosomes. Unlike conventional fluorescence and electron microscopy, this high-throughput system is sufficiently sensitive to detect transient low frequency autophagosomes. Secondly, because mitophagy preferentially removes pathogenic heteroplasmic mtDNA mutants, we developed a heteroplasmy assay based on loss of m.3243A>G mtDNA, during culture conditions requiring oxidative metabolism ("energetic stress"). The effects of the pharmacological modulators on these two measures were consistent, confirming that the high throughput imaging output (autophagosomes co-localising with mitochondria) reflects mitochondrial quality control. To further validate these methods, we performed a more detailed study using metformin, the most commonly prescribed antidiabetic drug that is still sometimes used in Maternally Inherited Diabetes and Deafness (MIDD). This confirmed our initial findings and revealed that metformin inhibits mitophagy at clinically relevant concentrations, suggesting that it may have novel therapeutic uses. PMID:26196248

  15. Identification of human DNA in forensic evidence by loop-mediated isothermal amplification combined with a colorimetric gold nanoparticle hybridization probe.

    PubMed

    Watthanapanpituck, Khanistha; Kiatpathomchai, Wansika; Chu, Eric; Panvisavas, Nathinee

    2014-11-01

    A DNA test based on loop-mediated isothermal amplification (LAMP) and colorimetric gold nanoparticle (AuNP) hybridization probe to detect the presence of human DNA in forensic evidence was developed. The LAMP primer set targeted eight regions of the human cytochrome b, and its specificity was verified against the DNA of 11 animal species, which included animals closely related to humans, such as chimpanzee and orangutan. By using the AuNP probe, sequence-specific LAMP product could be detected and the test result could be visualized through the change in color. The limit of detection was demonstrated with reproducibility to be as low as 718 fg of genomic DNA, which is equivalent to approximately 100 plasmid DNA copies containing the cytochrome b DNA target region. A simple DNA extraction method for the commonly found forensic biological samples was also devised to streamline the test process. This LAMP-AuNP human DNA test showed to be a robust, specific, and cost-effective tool for the forensic identification of human specimens without requiring sophisticated laboratory instruments. PMID:24827529

  16. Combined effects of DNA methyltransferase 1 and 3A polymorphisms and urinary total arsenic levels on the risk for clear cell renal cell carcinoma.

    PubMed

    Yang, Shu-Mei; Huang, Chao-Yuan; Shiue, Horng-Sheng; Pu, Yeong-Shiau; Hsieh, Yi-Hsun; Chen, Wei-Jen; Lin, Ying-Chin; Hsueh, Yu-Mei

    2016-08-15

    Our previous study showed that high urinary total arsenic levels were associated with higher odds ratio (OR) for renal cell carcinoma (RCC). Single nucleotide polymorphisms (SNPs) of DNA methyltransferases (DNMTs) might influence DNMT enzyme activity associated with tumorigenesis. In this study, we investigated the association of five SNPs from DNMT1 (rs8101626 and rs2228611), DNMT3A (rs34048824 and rs1550117), and DNMT3B (rs1569686) with the risk of clear cell renal cell carcinoma (ccRCC). We also examined the combined effects of DNMT genotypes and urinary arsenic levels on ccRCC risk. We conducted a hospital-based case-control study, which included 293 subjects with ccRCC and 293 age- and gender-matched controls. The urinary arsenic species were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Genotypes were investigated using polymerase chain reaction and restriction fragment length polymorphism analyses. We observed that the DNMT1 rs8101626 G/G genotype was significantly associated with reduced odds ratio (OR) of ccRCC [OR=0.38, 95% confidence interval (CI) 0.14-0.99]. Subjects with concurrent DNMT1 rs8101626 A/A+A/G and DNMT3A rs34048824 T/T+T/C genotypes had significantly higher OR for ccRCC [OR=2.88, 95% CI 1.44-5.77]. Participants with the high-risk genotype of DNMT1 rs8101626 and DNMT3A rs34048824 with concurrently high urinary total arsenic levels had even higher OR of ccRCC in a dose-response manner. This is the first study to evaluate variant DNMT1 rs8101626 and DNMT3A rs34048824 genotypes that modify the arsenic-related ccRCC risk in a geographic area without significant arsenic exposure in Taiwan. PMID:27292127

  17. Combining pseudo dinucleotide composition with the Z curve method to improve the accuracy of predicting DNA elements: a case study in recombination spots.

    PubMed

    Dong, Chuan; Yuan, Ya-Zhou; Zhang, Fa-Zhan; Hua, Hong-Li; Ye, Yuan-Nong; Labena, Abraham Alemayehu; Lin, Hao; Chen, Wei; Guo, Feng-Biao

    2016-08-16

    Pseudo dinucleotide composition (PseDNC) and Z curve showed excellent performance in the classification issues of nucleotide sequences in bioinformatics. Inspired by the principle of Z curve theory, we improved PseDNC to give the phase-specific PseDNC (psPseDNC). In this study, we used the prediction of recombination spots as a case to illustrate the capability of psPseDNC and also PseDNC fused with Z curve theory based on a novel machine learning method named large margin distribution machine (LDM). We verified that combining the two widely used approaches could generate better performance compared to only using PseDNC with a support vector machine based (SVM-based) model. The best Mathew's correlation coefficient (MCC) achieved by our LDM-based model was 0.7037 through the rigorous jackknife test and improved by ∼6.6%, ∼3.2%, and ∼2.4% compared with three previous studies. Similarly, the accuracy was improved by 3.2% compared with our previous iRSpot-PseDNC web server through an independent data test. These results demonstrate that the joint use of PseDNC and Z curve enhances performance and can extract more information from a biological sequence. To facilitate research in this area, we constructed a user-friendly web server for predicting hot/cold spots, HcsPredictor, which can be freely accessed from . In summary, we provided a united algorithm by integrating Z curve with PseDNC. We hope this united algorithm could be extended to other classification issues in DNA elements. PMID:27410247

  18. A combination of computational and experimental approaches identifies DNA sequence constraints associated with target site binding specificity of the transcription factor CSL.

    PubMed

    Torella, Rubben; Li, Jinghua; Kinrade, Eddie; Cerda-Moya, Gustavo; Contreras, Ashley N; Foy, Robert; Stojnic, Robert; Glen, Robert C; Kovall, Rhett A; Adryan, Boris; Bray, Sarah J

    2014-01-01

    Regulation of transcription is fundamental to development and physiology, and occurs through binding of transcription factors to specific DNA sequences in the genome. CSL (CBF1/Suppressor of Hairless/LAG-1), a core component of the Notch signaling pathway, is one such transcription factor that acts in concert with co-activators or co-repressors to control the activity of associated target genes. One fundamental question is how CSL can recognize and select among different DNA sequences available in vivo and whether variations between selected sequences can influence its function. We have therefore investigated CSL-DNA recognition using computational approaches to analyze the energetics of CSL bound to different DNAs and tested the in silico predictions with in vitro and in vivo assays. Our results reveal novel aspects of CSL binding that may help explain the range of binding observed in vivo. In addition, using molecular dynamics simulations, we show that domain-domain correlations within CSL differ significantly depending on the DNA sequence bound, suggesting that different DNA sequences may directly influence CSL function. Taken together, our results, based on computational chemistry approaches, provide valuable insights into transcription factor-DNA binding, in this particular case increasing our understanding of CSL-DNA interactions and how these may impact on its transcriptional control. PMID:25114055

  19. A Combination DNA and Attenuated Simian Immunodeficiency Virus Vaccine Strategy Provides Enhanced Protection from Simian/Human Immunodeficiency Virus-Induced Disease†

    PubMed Central

    Amara, Rama Rao; Patel, Kalpana; Niedziela, Genevieve; Nigam, Pragati; Sharma, Sunita; Staprans, Silvija I.; Montefiori, David C.; Chenareddi, Lakshmi; Herndon, James G.; Robinson, Harriet L.; McClure, Harold M.; Novembre, Francis J.

    2005-01-01

    Among the most effective vaccine candidates tested in the simian immunodeficiency virus (SIV)/macaque system, live attenuated viruses have been shown to provide the best protection from challenge. To investigate if preimmunization would increase the level of protection afforded by live attenuated SIVmac239Δnef (Δnef), macaques were given two priming immunizations of DNA encoding SIV Gag and Pol proteins, with control macaques receiving vector DNA immunizations. In macaques receiving the SIV DNA inoculation, SIV-specific cellular but not humoral responses were readily detectable 2 weeks after the second DNA inoculation. Following boosting with live attenuated virus, control of Δnef replication was superior in SIV-DNA-primed macaques versus vector-DNA-primed macaques and was correlated with higher levels of CD8+/gamma-interferon-positive and/or interleukin-2-positive cells. Challenge with an intravenous inoculation of simian/human immunodeficiency virus (SHIV) strain SHIV89.6p resulted in infection of all animals. However, macaques receiving SIV DNA as the priming immunizations had statistically lower viral loads than control animals and did not develop signs of disease, whereas three of seven macaques receiving vector DNA showed severe CD4+ T-cell decline, with development of AIDS in one of these animals. No correlation of immune responses to protection from disease could be derived from our analyses. These results demonstrate that addition of a DNA prime to a live attenuated virus provided better protection from disease following challenge than live attenuated virus alone. PMID:16306607

  20. National decline in invasive prenatal diagnostic procedures in association with uptake of combined first trimester and cell-free DNA aneuploidy screening.

    PubMed

    Robson, Stephen J; Hui, Lisa

    2015-10-01

    In late 2012, a new screening test for fetal aneuploidy based on circulating cell-free DNA (cfDNA) became available to Australian women. The introduction of this technology in the United States has led to a reduction in invasive diagnostic procedures. Analysis of the number of amniocentesis and chorionic villus sampling (CVS) procedures performed in Australia from 1994 to 2014 shows that the introduction of cfDNA testing has been associated with the most rapid decline in invasive procedures in the last 20 years. This change has important implications for training in, and maintenance of, the procedural skills of amniocentesis and CVS. PMID:26259499

  1. A randomised, phase II trial of the DNA-hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in combination with carboplatin vs carboplatin alone in patients with recurrent, partially platinum-sensitive ovarian cancer

    PubMed Central

    Glasspool, R M; Brown, R; Gore, M E; Rustin, G J S; McNeish, I A; Wilson, R H; Pledge, S; Paul, J; Mackean, M; Hall, G D; Gabra, H; Halford, S E R; Walker, J; Appleton, K; Ullah, R; Kaye, S

    2014-01-01

    Background: Our previous laboratory and clinical data suggested that one mechanism underlying the development of platinum resistance in ovarian cancer is the acquisition of DNA methylation. We therefore tested the hypothesis that the DNA hypomethylating agent 5-aza-2′-deoxycytodine (decitabine) can reverse resistance to carboplatin in women with relapsed ovarian cancer. Methods: Patients progressing 6–12 months after previous platinum therapy were randomised to decitabine on day 1 and carboplatin (AUC 6) on day 8, every 28 days or carboplatin alone. The primary objective was response rate in patients with methylated hMLH1 tumour DNA in plasma. Results: After a pre-defined interim analysis, the study closed due to lack of efficacy and poor treatment deliverability in 15 patients treated with the combination. Responses by GCIG criteria were 9 out of 14 vs 3 out of 15 and by RECIST were 6 out of 13 vs 1 out of 12 for carboplatin and carboplatin/decitabine, respectively. Grade 3/4 neutropenia was more common with the combination (60% vs 15.4%) as was G2/3 carboplatin hypersensitivity (47% vs 21%). Conclusions: With this schedule, the addition of decitabine appears to reduce rather than increase the efficacy of carboplatin in partially platinum-sensitive ovarian cancer and is difficult to deliver. Patient-selection strategies, different schedules and other demethylating agents should be considered in future combination studies. PMID:24642620

  2. Single and Combined Effects of Deoxynivalenol Mycotoxin and a Microbial Feed Additive on Lymphocyte DNA Damage and Oxidative Stress in Broiler Chickens

    PubMed Central

    Awad, Wageha A.; Ghareeb, Khaled; Dadak, Agnes; Hess, Michael; Böhm, Josef

    2014-01-01

    The immune and intestinal epithelial cells are particularly sensitive to the toxic effects of deoxynivalenol (DON). The aim of this experiment was to study the effects of DON and/or a microbial feed additive on the DNA damage of blood lymphocytes and on the level of thiobarbituric acid reactive substance (TBARS) as an indicator of lipid peroxidation and oxidative stress in broilers. A total of forty 1-d-old broiler chicks were randomly assigned to 1 of 4 dietary treatments (10 birds per group) for 5 wk. The dietary treatments were 1) basal diet; 2) basal diet contaminated with 10 mg DON/kg feed; 3) basal diet contaminated with 10 mg DON/kg feed and supplemented with 2.5 kg/ton of feed of Mycofix Select; 4) basal diet supplemented with Mycofix Select (2.5 kg/ton of feed). At the end of the feeding trial, blood were collected for measuring the level of lymphocyte DNA damage of blood and the TBARS level was measured in plasma, heart, kidney, duodenum and jejunum. The dietary exposure of DON caused a significant increase (P = 0.001) of DNA damage in blood lymphocytes (31.99±0.89%) as indicated in the tail of comet assay. Interestingly addition of Mycofix Select to DON contaminated diet decreased (P = 0.001) the DNA damage (19.82±1.75%) induced by DON. In order to clarify the involvement of lipid peroxidation in the DNA damage of DON, TBARS levels was measured. A significant increase (P = 0.001) in the level of TBARS (23±2 nmol/mg) was observed in the jejunal tissue suggesting that the lipid peroxidation might be involved in the DNA damage. The results indicate that DON is cytotoxic and genotoxic to the chicken intestinal and immune cells and the feed additive have potential ability to prevent DNA damage induced by DON. PMID:24498242

  3. An Enhanced Synthetic Multiclade DNA Prime Induces Improved Cross-Clade-Reactive Functional Antibodies when Combined with an Adjuvanted Protein Boost in Nonhuman Primates

    PubMed Central

    Wise, Megan C.; Hutnick, Natalie A.; Pollara, Justin; Myles, Devin J. F.; Williams, Constance; Yan, Jian; LaBranche, Celia C.; Khan, Amir S.; Sardesai, Niranjan Y.; Montefiori, David; Barnett, Susan W.; Zolla-Pazner, Susan; Ferrari, Guido

    2015-01-01

    ABSTRACT The search for an efficacious human immunodeficiency virus type 1 (HIV-1) vaccine remains a pressing need. The moderate success of the RV144 Thai clinical vaccine trial suggested that vaccine-induced HIV-1-specific antibodies can reduce the risk of HIV-1 infection. We have made several improvements to the DNA platform and have previously shown that improved DNA vaccines alone are capable of inducing both binding and neutralizing antibodies in small-animal models. In this study, we explored how an improved DNA prime and recombinant protein boost would impact HIV-specific vaccine immunogenicity in rhesus macaques (RhM). After DNA immunization with either a single HIV Env consensus sequence or multiple constructs expressing HIV subtype-specific Env consensus sequences, we detected both CD4+ and CD8+ T-cell responses to all vaccine immunogens. These T-cell responses were further increased after protein boosting to levels exceeding those of DNA-only or protein-only immunization. In addition, we observed antibodies that exhibited robust cross-clade binding and neutralizing and antibody-dependent cellular cytotoxicity (ADCC) activity after immunization with the DNA prime-protein boost regimen, with the multiple-Env formulation inducing a more robust and broader response than the single-Env formulation. The magnitude and functionality of these responses emphasize the strong priming effect improved DNA immunogens can induce, which are further expanded upon protein boost. These results support further study of an improved synthetic DNA prime together with a protein boost for enhancing anti-HIV immune responses. IMPORTANCE Even with effective antiretroviral drugs, HIV remains an enormous global health burden. Vaccine development has been problematic in part due to the high degree of diversity and poor immunogenicity of the HIV Env protein. Studies suggest that a relevant HIV vaccine will likely need to induce broad cellular and humoral responses from a simple vaccine

  4. Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress.

    PubMed

    Tentner, Andrea R; Lee, Michael J; Ostheimer, Gerry J; Samson, Leona D; Lauffenburger, Douglas A; Yaffe, Michael B

    2012-01-01

    Following DNA damage, cells display complex multi-pathway signaling dynamics that connect cell-cycle arrest and DNA repair in G1, S, or G2/M phase with phenotypic fate decisions made between survival, cell-cycle re-entry and proliferation, permanent cell-cycle arrest, or cell death. How these phenotypic fate decisions are determined remains poorly understood, but must derive from integrating genotoxic stress signals together with inputs from the local microenvironment. To investigate this in a systematic manner, we undertook a quantitative time-resolved cell signaling and phenotypic response study in U2OS cells receiving doxorubicin-induced DNA damage in the presence or absence of TNFα co-treatment; we measured key nodes in a broad set of DNA damage signal transduction pathways along with apoptotic death and cell-cycle regulatory responses. Two relational modeling approaches were then used to identify network-level relationships between signals and cell phenotypic events: a partial least squares regression approach and a complementary new technique which we term 'time-interval stepwise regression.' Taken together, the results from these analysis methods revealed complex, cytokine-modulated inter-relationships among multiple signaling pathways following DNA damage, and identified an unexpected context-dependent role for Erk in both G1/S arrest and apoptotic cell death following treatment with this commonly used clinical chemotherapeutic drug. PMID:22294094

  5. T cell-B cell thymic cross-talk: Maintenance and function of thymic B cells requires cognate CD40-CD40L interaction

    PubMed Central

    Fujihara, Chiharu; Williams, Joy A.; Watanabe, Masashi; Jeon, Hyein; Sharrow, Susan O.; Hodes, Richard J.

    2014-01-01

    Thymic development requires bidirectional interaction or cross-talk between developing T cells and thymic stromal cells, a relationship that has been best characterized for the interaction between thymocytes and thymic epithelial cells (TECs). We have characterized here the requirement for similar cross-talk in the maintenance and function of thymic B cells, another population that plays a role in selection of developing thymic T cells. We found that maintenance of thymic B cells is strongly dependent upon the presence of mature single positive (SP) thymocytes and on the interactions of these T cells with specific antigen ligand. Maintenance of thymic B cell number is strongly dependent upon B cell-autonomous expression of CD40, but not MHCII, indicating that direct engagement of CD40 on thymic B cells is necessary to support their maintenance and proliferation. Thymic B cells can mediate negative selection of superantigen-specific self-reactive SP thymocytes, and we show that CD40 expression on B cells is critical for this negative selection. Cross-talk with thymic T cells is thus required to support the thymic B cell population through a pathway that requires cell-autonomous expression of CD40, and that reciprocally functions in negative selection of autoreactive T cells. PMID:25344473

  6. Using the ubiquitous pH meter combined with a loop mediated isothermal amplification method for facile and sensitive detection of Nosema bombycis genomic DNA PTP1.

    PubMed

    Xie, Shunbi; Yuan, Yali; Song, Yue; Zhuo, Ying; Li, Tian; Chai, Yaqin; Yuan, Ruo

    2014-12-28

    Here we show an amplification-coupled detection method for directly measuring released hydrogen ions during the loop mediated isothermal amplification (LAMP) procedure by using a pH meter. The genomic DNA of Nosema bombycis (N. bombycis) was amplified and detected by employing this LAMP-pH meter platform for the first time. PMID:25381873

  7. Genetic variants in DNA repair pathways and risk of upper aerodigestive tract cancers: combined analysis of data from two genome-wide association studies in European populations.

    PubMed

    Babron, Marie-Claude; Kazma, Rémi; Gaborieau, Valérie; McKay, James; Brennan, Paul; Sarasin, Alain; Benhamou, Simone

    2014-07-01

    DNA repair pathways are good candidates for upper aerodigestive tract cancer susceptibility because of their critical role in maintaining genome integrity. We have selected 13 pathways involved in DNA repair representing 212 autosomal genes. To assess the role of these pathways and their associated genes, two European data sets from the International Head and Neck Cancer Epidemiology consortium were pooled, totaling 1954 cases and 3121 controls, with documented demographic, lifetime alcohol and tobacco consumption information. We applied an innovative approach that tests single nucleotide polymorphism (SNP)-sets within DNA repair pathways and then within genes belonging to the significant pathways. We showed an association between the polymerase pathway and oral cavity/pharynx cancers (P-corrected = 4.45 × 10(-) (2)), explained entirely by the association with one SNP, rs1494961 (P = 2.65 × 10(-) (4)), a missense mutation V306I in the second exon of HELQ gene. We also found an association between the cell cycle regulation pathway and esophagus cancer (P-corrected = 1.48 × 10(-) (2)), explained by three SNPs located within or near CSNK1E gene: rs1534891 (P = 1.27 × 10(-) (4)), rs7289981 (P = 3.37 × 10(-) (3)) and rs13054361 (P = 4.09 × 10(-) (3)). As a first attempt to investigate pathway-level associations, our results suggest a role of specific DNA repair genes/pathways in specific upper aerodigestive tract cancer sites. PMID:24658182

  8. Floral and macroecological evolution within Cyrtanthus (Amaryllidaceae) inferences from combined analyses of plastid ndhF and nrDNA ITS sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most diverse members of Amaryllidaceae is Cyrtanthus Aiton, a large, sub-Saharan Africa genus of approximately 55 species found mostly in South Africa. To investigate phylogenetic and biogeographic relationships within Cyrtanthus, sequence data from the plastid ndhF gene and the ITS nrDNA...

  9. Aberrant DNA Methylation of P16, MGMT, and hMLH1 Genes in Combination with MTHFR C677T Genetic Polymorphism in gastric cancer

    PubMed Central

    Song, Binbin; Ai, Jiang; Kong, Xianghong; Liu, Dexin; Li, Jun

    2013-01-01

    Objective: We aimed to explore the association of P16, MGMT and HMLH1 with gastric cancer and their relation with Methylenetetrahydrofolate reductase (MTHFR). Methods: 322 gastric patients who were confirmed with pathological diagnosis were included in our study. Aberrant DNA methylation of P16, MGMT and HMLH1 and polymorphisms of MTHFR C677T and A1298C were detected using PCR-RFLP. Results: The proportions of DNA hypermethylation in P16, MGMT and hMLH1 genes in gastric cancer tissues were 75.2% (242/322), 27.6% (89/322) and 5.3% (17/322), respectively. In the remote normal-appearing tissues, 29.5% (95/322) and 16.1%(52/322) showed hypermethylation in P16 and MGMT genes, respectively. We found a significantly higher proportion of DNA hypermethylation of P16 in patients with N1 TNM stage in cancer tissues and remote normal-appearing tissues (P<0.05). Similarly, we found DNA hypermethylation of MGMT had significantly higher proportion in N1 and M1 TNM stage (P<0.05). Individuals with homozygotes (TT) of MTHFR C677T had significant risk of DNA hypermethylation of MGMT in cancer tissues [OR (95% CI)=4.27(1.76-7.84)], and a significant risk was also found in those carrying MTHFR 677CT/TT genotype [OR (95% CI)= 3.27(1.21-4.77)]. Conclusion: We found the aberrant hypermethylation of cancer-related genes, such as P16, MGMT and HMLH1, could be predictive biomarkers for detection of gastric cancer. PMID:24550949

  10. Forensic DNA Profiling and Database

    PubMed Central

    Panneerchelvam, S.; Norazmi, M.N.

    2003-01-01

    The incredible power of DNA technology as an identification tool had brought a tremendous change in crimnal justice . DNA data base is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. This article discusses the essential steps in compilation of COmbined DNA Index System (CODIS) on validated polymerase chain amplified STRs and their use in crime detection. PMID:23386793