Sample records for cd8 epitope display

  1. Epitope Specificity Delimits the Functional Capabilities of Vaccine-Induced CD8 T Cell Populations

    PubMed Central

    Hill, Brenna J.; Darrah, Patricia A.; Ende, Zachary; Ambrozak, David R.; Quinn, Kylie M.; Darko, Sam; Gostick, Emma; Wooldridge, Linda; van den Berg, Hugo A.; Venturi, Vanessa; Larsen, Martin; Davenport, Miles P.; Seder, Robert A.

    2014-01-01

    Despite progress toward understanding the correlates of protective T cell immunity in HIV infection, the optimal approach to Ag delivery by vaccination remains uncertain. We characterized two immunodominant CD8 T cell populations generated in response to immunization of BALB/c mice with a replication-deficient adenovirus serotype 5 vector expressing the HIV-derived Gag and Pol proteins at equivalent levels. The Gag-AI9/H-2Kd epitope elicited high-avidity CD8 T cell populations with architecturally diverse clonotypic repertoires that displayed potent lytic activity in vivo. In contrast, the Pol-LI9/H-2Dd epitope elicited motif-constrained CD8 T cell repertoires that displayed lower levels of physical avidity and lytic activity despite equivalent measures of overall clonality. Although low-dose vaccination enhanced the functional profiles of both epitope-specific CD8 T cell populations, greater polyfunctionality was apparent within the Pol-LI9/H-2Dd specificity. Higher proportions of central memory-like cells were present after low-dose vaccination and at later time points. However, there were no noteworthy phenotypic differences between epitope-specific CD8 T cell populations across vaccine doses or time points. Collectively, these data indicate that the functional and phenotypic properties of vaccine-induced CD8 T cell populations are sensitive to dose manipulation, yet constrained by epitope specificity in a clonotype-dependent manner. PMID:25348625

  2. Influence of an immunodominant herpes simplex virus type 1 CD8+ T cell epitope on the target hierarchy and function of subdominant CD8+ T cells

    PubMed Central

    2017-01-01

    Herpes simplex virus type 1 (HSV-1) latency in sensory ganglia such as trigeminal ganglia (TG) is associated with a persistent immune infiltrate that includes effector memory CD8+ T cells that can influence HSV-1 reactivation. In C57BL/6 mice, HSV-1 induces a highly skewed CD8+ T cell repertoire, in which half of CD8+ T cells (gB-CD8s) recognize a single epitope on glycoprotein B (gB498-505), while the remainder (non-gB-CD8s) recognize, in varying proportions, 19 subdominant epitopes on 12 viral proteins. The gB-CD8s remain functional in TG throughout latency, while non-gB-CD8s exhibit varying degrees of functional compromise. To understand how dominance hierarchies relate to CD8+ T cell function during latency, we characterized the TG-associated CD8+ T cells following corneal infection with a recombinant HSV-1 lacking the immunodominant gB498-505 epitope (S1L). S1L induced a numerically equivalent CD8+ T cell infiltrate in the TG that was HSV-specific, but lacked specificity for gB498-505. Instead, there was a general increase of non-gB-CD8s with specific subdominant epitopes arising to codominance. In a latent S1L infection, non-gB-CD8s in the TG showed a hierarchy targeting different epitopes at latency compared to at acute times, and these cells retained an increased functionality at latency. In a latent S1L infection, these non-gB-CD8s also display an equivalent ability to block HSV reactivation in ex vivo ganglionic cultures compared to TG infected with wild type HSV-1. These data indicate that loss of the immunodominant gB498-505 epitope alters the dominance hierarchy and reduces functional compromise of CD8+ T cells specific for subdominant HSV-1 epitopes during viral latency. PMID:29206240

  3. CYTOMEGALOVIRUS VECTORS VIOLATE CD8+ T CELL EPITOPE RECOGNITION PARADIGMS

    PubMed Central

    Hansen, Scott G.; Sacha, Jonah B.; Hughes, Colette M.; Ford, Julia C.; Burwitz, Benjamin J.; Scholz, Isabel; Gilbride, Roxanne M.; Lewis, Matthew S.; Gilliam, Awbrey N.; Ventura, Abigail B.; Malouli, Daniel; Xu, Guangwu; Richards, Rebecca; Whizin, Nathan; Reed, Jason S.; Hammond, Katherine B.; Fischer, Miranda; Turner, John M.; Legasse, Alfred W.; Axthelm, Michael K.; Edlefsen, Paul T.; Nelson, Jay A.; Lifson, Jeffrey D.; Früh, Klaus; Picker, Louis J.

    2013-01-01

    CD8+ T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of anti-pathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing Rhesus Cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8+ T cells that recognize unusual, diverse and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8+ T cell responses is suppressed by the RhCMV-encoded Rh189 (US11) gene, and the promiscuous MHC class I- and class II-restricted CD8+ T cell responses only occur in the absence of the Rh157.4-.6 (UL128-131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8+ T cell epitope recognition. PMID:23704576

  4. Identification of Novel Avian Influenza Virus Derived CD8+ T-Cell Epitopes

    PubMed Central

    Reemers, Sylvia S. N.; van Haarlem, Daphne A.; Sijts, Alice J. A. M.; Vervelde, Lonneke; Jansen, Christine A.

    2012-01-01

    Avian influenza virus (AIV) infection is a continuing threat to both humans and poultry. Influenza virus specific CD8+ T cells are associated with protection against homologous and heterologous influenza strains. In contrast to what has been described for humans and mice, knowledge on epitope-specific CD8+ T cells in chickens is limited. Therefore, we set out to identify AIV-specific CD8+ T-cell epitopes. Epitope predictions based on anchor residues resulted in 33 candidate epitopes. MHC I inbred chickens were infected with a low pathogenic AIV strain and sacrificed at 5, 7, 10 and 14 days post infection (dpi). Lymphocytes isolated from lung, spleen and blood were stimulated ex vivo with AIV-specific pooled or individual peptides and the production of IFNγ was determined by ELIspot. This resulted in the identification of 12 MHC B12-restricted, 3 B4-restricted and 1 B19-restricted AIV- specific CD8+ T-cell epitopes. In conclusion, we have identified novel AIV-derived CD8+ T-cell epitopes for several inbred chicken strains. This knowledge can be used to study the role of CD8+ T cells against AIV infection in a natural host for influenza, and may be important for vaccine development. PMID:22384112

  5. Expression mapping using a retroviral vector for CD8+ T cell epitopes: definition of a Mycobacterium tuberculosis peptide presented by H2-Dd.

    PubMed

    Aoshi, Taiki; Suzuki, Mina; Uchijima, Masato; Nagata, Toshi; Koide, Yukio

    2005-03-01

    Identification of CD8+ T cell epitopes is important because detection of specific CD8+ T cells after infection or immunization requires prior knowledge of epitope specificity. Furthermore, identification of CD8+ T cell epitopes permits the development of specific preventive and therapeutic approaches to both infections and tumors. Thus far, CD8+ T cell epitopes have been identified either using an overlapping peptide library covering an entire protein, or using algorithms designed to identify likely peptides that bind to major histocompatibility complex (MHC) class I molecules. The synthesis of overlapping peptides can be prohibitively expensive, and the algorithm programs used to predict CD8+ T cell epitopes are not always accurate. Here we describe a retroviral expression system that specifically allows longer polypeptides and shorter peptides to be expressed in the cytoplasm, and thereby to be processed onto class I MHC molecules. T cells from mice that were immunized with a DNA vaccine encoding MPT-51 were probed against MHC-compatible cell lines retrovirally transduced with overlapping gene fragments encoding 120-140 amino acids of the MPT-51 molecule. After further testing of shorter peptide sequences, we identified a CD8+ T cell epitope using cell lines expressing a relatively small number of algorithm-predicted candidate epitopes. We found that one of the requirements for cell surface display of the 20-mer peptide was the need for cotranslational ubiquitination. The restriction molecule was identified as Dd following transduction with MHC class I genes followed by transduction with the oligonucleotide encoding the epitope. The retroviral expression system described here is cost-effective, particularly if the target molecule is large, and could be adapted to identifying T cell epitopes recognized in infectious disease and against tumor cell antigens.

  6. HLA-B*35-Restricted CD8+-T-Cell Epitope in Mycobacterium tuberculosis Rv2903c

    PubMed Central

    Klein, Michèl R.; Hammond, Abdulrahman S.; Smith, Steve M.; Jaye, Assan; Lukey, Pauline T.; McAdam, Keith P. W. J.

    2002-01-01

    Few human CD8+ T-cell epitopes in mycobacterial antigens have been described to date. Here we have identified a novel HLA-B*35-restricted CD8+ T-cell epitope in Mycobacterium tuberculosis Rv2903c based on a reverse immunogenetics approach. Peptide-specific CD8 T cells were able to kill M. tuberculosis-infected macrophages and produce gamma interferon and tumor necrosis factor alpha. PMID:11796635

  7. Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display.

    PubMed

    Leung, Carol S; Haigh, Tracey A; Mackay, Laura K; Rickinson, Alan B; Taylor, Graham S

    2010-02-02

    Whereas exogenously acquired proteins are the major source of antigens feeding the MHC class II pathway in antigen-presenting cells, some endogenously expressed antigens also access that pathway but the rules governing such access are poorly understood. Here we address this using Epstein-Barr virus (EBV)-coded nuclear antigen EBNA1, a protein naturally expressed in EBV-infected B lymphoblastoid cell lines (LCLs) and a source of multiple CD4(+) T cell epitopes. Using CD4(+) T cell clones against three indicator epitopes, we find that two epitopes are weakly displayed on the LCL surface whereas the third is undetectable, a pattern of limited epitope presentation that is maintained even when nuclear expression of EBNA1 is induced to high supraphysiological levels. Inhibitor and siRNA studies show that, of the two epitopes weakly presented under these conditions, one involves macroautophagy, and the second involves antigen delivery to the MHC II pathway by another endogenous route. In contrast, when EBNA1 is expressed as a cytoplasmic protein, all three CD4 epitopes are processed and presented much more efficiently, and all involve macroautophagy. We conclude that EBNA1's nuclear location limits its accessibility to the macroautophagy pathway and, in consequence, limits the level and range of EBNA1 CD4 epitopes naturally displayed on the infected cell surface.

  8. Variation at Extra-epitopic Amino Acid Residues Influences Suppression of Influenza Virus Replication by M158-66 Epitope-Specific CD8+ T Lymphocytes.

    PubMed

    van de Sandt, Carolien E; Pronk, Mark R; van Baalen, Carel A; Fouchier, Ron A M; Rimmelzwaan, Guus F

    2018-06-01

    Influenza virus-specific CD8 + T lymphocytes (CTLs) contribute to clearance of influenza virus infections and reduce disease severity. Variation at amino acid residues located in or outside CTL epitopes has been shown to affect viral recognition by virus-specific CTLs. In the present study, we investigated the effect of naturally occurring variation at residues outside the conserved immunodominant and HLA*0201-restricted M1 58-66 epitope, located in the influenza virus M1 protein, on the extent of virus replication in the presence of CTLs specific for the epitope. To this end, we used isogenic viruses with an M1 gene segment derived from either an avian or a human influenza virus, HLA-transgenic human epithelial cells, human T cell clones specific for the M1 58-66 epitope or a control epitope, and a novel, purposely developed in vitro system to coculture influenza virus-infected cells with T cells. We found that the M gene segment of a human influenza A/H3N2 virus afforded the virus the capacity to replicate better in the presence of M1 58-66 -specific CTLs than the M gene segment of avian viruses. These findings are in concordance with previously observed differential CTL activation, caused by variation at extra-epitopic residues, and may reflect an immune adaptation strategy of human influenza viruses that allows them to cope with potent CTL immunity to the M1 58-66 epitope in HLA-A*0201-positive individuals, resulting in increased virus replication and shedding and possibly increasing disease severity. IMPORTANCE Influenza viruses are among the leading causes of acute respiratory tract infections. CD8 + T lymphocytes display a high degree of cross-reactivity with influenza A viruses of various subtypes and are considered an important correlate of protection. Unraveling viral immune evasion strategies and identifying signs of immune adaptation are important for defining the role of CD8 + T lymphocytes in affording protection more accurately. Improving our insight

  9. Mycobacterium tuberculosis genome-wide screen exposes multiple CD8+ T cell epitopes

    PubMed Central

    Hammond, A S; Klein, M R; Corrah, T; Fox, A; Jaye, A; McAdam, K P; Brookes, R H

    2005-01-01

    Mounting evidence suggests human leucocyte antigen (HLA) class I-restricted CD8+ T cells play a role in protective immunity against tuberculosis yet relatively few epitopes specific for the causative organism, Mycobacterium tuberculosis, are reported. Here a total genome-wide screen of M. tuberculosis was used to identify putative HLA-B*3501 T cell epitopes. Of 479 predicted epitopes, 13 with the highest score were synthesized and used to restimulate lymphocytes from naturally exposed HLA-B*3501 healthy individuals in cultured and ex vivo enzyme-linked immunospot (ELISPOT) assays for interferon (IFN)-γ. All 13 peptides elicited a response that varied considerably between individuals. For three peptides CD8+ T cell lines were expanded and four of the 13 were recognized permissively through the HLA-B7 supertype family. Although further testing is required we show the genome-wide screen to be feasible for the identification of unknown mycobacterial antigens involved in immunity against natural infection. While the mechanisms of protective immunity against M. tuberculosis infection remain unclear, conventional class I-restricted CD8+ T cell responses appear to be widespread throughout the genome. PMID:15762882

  10. Superior Control of HIV-1 Replication by CD8+ T Cells Targeting Conserved Epitopes: Implications for HIV Vaccine Design

    PubMed Central

    Kunwar, Pratima; Hawkins, Natalie; Dinges, Warren L.; Liu, Yi; Gabriel, Erin E.; Swan, David A.; Stevens, Claire E.; Maenza, Janine; Collier, Ann C.; Mullins, James I.; Hertz, Tomer; Yu, Xuesong; Horton, Helen

    2013-01-01

    A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i) increasing the breadth of vaccine-induced responses or (ii) increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS) by three different methods (prevalence, entropy and conseq) on clade-B and group-M sequence alignments. The majority of CD8+ T cell responses were directed against variable epitopes (p<0.01). Interestingly, increasing breadth of CD8+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009). Moreover, subjects possessing CD8+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021). The association between viral control and the breadth of conserved CD8+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215). The associations with viral control were independent of functional avidity of CD8+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus on strategies that

  11. CD8+ T cell recognition of an endogenously processed epitope is regulated primarily by residues within the epitope

    PubMed Central

    1992-01-01

    Cytotoxic T lymphocytes (CTL) recognize short antigenic peptides associated with cell surface class I major histocompatibility complex (MHC) molecules. This association presumably occurs between newly synthesized class I MHC molecules and peptide fragments in a pre-Golgi compartment. Little is known about the factors that regulate the formation of these antigenic peptide fragments within the cell. To examine the role of residues within a core epitope and in the flanking sequences for the generation and presentation of the newly synthesized peptide fragment recognized by CD8+ CTL, we have mutagenized the coding sequence for the CTL epitope spanning residues 202-221 in the influenza A/Japan/57 hemagglutinin (HA). In this study over 60 substitution mutations in the epitope were tested for their effects on target cell sensitization using a cytoplasmic viral expression system. The HA202- 221 site contains two overlapping subsites defined by CTL clones 11-1 and 40-2. Mutations in HA residues 204-213 or residues 210-219 often abolished target cell lysis by CTL clones 11-1 and 40-2, respectively. Although residues outside the core epitope did not usually affect the ability to be lysed by CTL clones, substitution of a Gly residue for Val-214 abolished lysis by clone 11-1. These data suggest that residues within a site that affect MHC binding and T cell receptor recognition appear to play the predominant role in dictating the formation of the antigenic complex recognized by CD8+ CTL, and therefore the antigenicity of the protein antigen presented to CD8+ T cells. Most alterations in residues flanking the endogenously expressed epitope do not appreciably affect the generation and recognition of the site. PMID:1383384

  12. CD8+ T Lymphocyte Epitopes From The Herpes Simplex Virus Type 2 ICP27, VP22 and VP13/14 Proteins To Facilitate Vaccine Design And Characterization

    PubMed Central

    Platt, Rebecca J.; Khodai, Tansi; Townend, Tim J.; Bright, Helen H.; Cockle, Paul; Perez-Tosar, Luis; Webster, Rob; Champion, Brian; Hickling, Timothy P.; Mirza, Fareed

    2013-01-01

    CD8+ T cells have the potential to control HSV-2 infection. However, limited information has been available on CD8+ T cell epitopes or the functionality of antigen specific T cells during infection or following immunization with experimental vaccines. Peptide panels from HSV-2 proteins ICP27, VP22 and VP13/14 were selected from in silico predictions of binding to human HLA-A*0201 and mouse H-2Kd, Ld and Dd molecules. Nine previously uncharacterized CD8+ T cell epitopes were identified from HSV-2 infected BALB/c mice. HSV-2 specific peptide sequences stabilized HLA-A*02 surface expression with intermediate or high affinity binding. Peptide specific CD8+ human T cell lines from peripheral blood lymphocytes were generated from a HLA-A*02+ donor. High frequencies of peptide specific CD8+ T cell responses were elicited in mice by DNA vaccination with ICP27, VP22 and VP13/14, as demonstrated by CD107a mobilization. Vaccine driven T cell responses displayed a more focused immune response than those induced by viral infection. Furthermore, vaccination with ICP27 reduced viral shedding and reduced the clinical impact of disease. In conclusion, this study describes novel HSV-2 epitopes eliciting strong CD8+ T cell responses that may facilitate epitope based vaccine design and aid immunomonitoring of antigen specific T cell frequencies in preclinical and clinical settings. PMID:24709642

  13. Cytomegalovirus (CMV) Epitope-Specific CD4+ T Cells Are Inflated in HIV+ CMV+ Subjects.

    PubMed

    Abana, Chike O; Pilkinton, Mark A; Gaudieri, Silvana; Chopra, Abha; McDonnell, Wyatt J; Wanjalla, Celestine; Barnett, Louise; Gangula, Rama; Hager, Cindy; Jung, Dae K; Engelhardt, Brian G; Jagasia, Madan H; Klenerman, Paul; Phillips, Elizabeth J; Koelle, David M; Kalams, Spyros A; Mallal, Simon A

    2017-11-01

    Select CMV epitopes drive life-long CD8 + T cell memory inflation, but the extent of CD4 memory inflation is poorly studied. CD4 + T cells specific for human CMV (HCMV) are elevated in HIV + HCMV + subjects. To determine whether HCMV epitope-specific CD4 + T cell memory inflation occurs during HIV infection, we used HLA-DR7 (DRB1*07:01) tetramers loaded with the glycoprotein B DYSNTHSTRYV (DYS) epitope to characterize circulating CD4 + T cells in coinfected HLA-DR7 + long-term nonprogressor HIV subjects with undetectable HCMV plasma viremia. DYS-specific CD4 + T cells were inflated among these HIV + subjects compared with those from an HIV - HCMV + HLA-DR7 + cohort or with HLA-DR7-restricted CD4 + T cells from the HIV-coinfected cohort that were specific for epitopes of HCMV phosphoprotein-65, tetanus toxoid precursor, EBV nuclear Ag 2, or HIV gag protein. Inflated DYS-specific CD4 + T cells consisted of effector memory or effector memory-RA + subsets with restricted TCRβ usage and nearly monoclonal CDR3 containing novel conserved amino acids. Expression of this near-monoclonal TCR in a Jurkat cell-transfection system validated fine DYS specificity. Inflated cells were polyfunctional, not senescent, and displayed high ex vivo levels of granzyme B, CX 3 CR1, CD38, or HLA-DR but less often coexpressed CD38 + and HLA-DR + The inflation mechanism did not involve apoptosis suppression, increased proliferation, or HIV gag cross-reactivity. Instead, the findings suggest that intermittent or chronic expression of epitopes, such as DYS, drive inflation of activated CD4 + T cells that home to endothelial cells and have the potential to mediate cytotoxicity and vascular disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages.

    PubMed

    Machkovech, Heather M; Bedford, Trevor; Suchard, Marc A; Bloom, Jesse D

    2015-11-01

    Numerous experimental studies have demonstrated that CD8(+) T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8(+) T cells. Here we use a novel computational approach to test for selection in CD8(+) T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8(+) T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8(+) T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8(+) T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8(+) T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal

  15. Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages

    PubMed Central

    Machkovech, Heather M.; Bedford, Trevor; Suchard, Marc A.

    2015-01-01

    ABSTRACT Numerous experimental studies have demonstrated that CD8+ T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8+ T cells. Here we use a novel computational approach to test for selection in CD8+ T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8+ T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8+ T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8+ T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. IMPORTANCE There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8+ T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal

  16. Distinct Escape Pathway by Hepatitis C Virus Genotype 1a from a Dominant CD8+ T Cell Response by Selection of Altered Epitope Processing.

    PubMed

    Walker, Andreas; Skibbe, Kathrin; Steinmann, Eike; Pfaender, Stephanie; Kuntzen, Thomas; Megger, Dominik A; Groten, Svenja; Sitek, Barbara; Lauer, Georg M; Kim, Arthur Y; Pietschmann, Thomas; Allen, Todd M; Timm, Joerg

    2016-01-01

    Antiviral CD8(+) T cells are a key component of the adaptive immune response against HCV, but their impact on viral control is influenced by preexisting viral variants in important target epitopes and the development of viral escape mutations. Immunodominant epitopes highly conserved across genotypes therefore are attractive for T cell based prophylactic vaccines. Here, we characterized the CD8(+) T cell response against the highly conserved HLA-B*51-restricted epitope IPFYGKAI1373-1380 located in the helicase domain of NS3 in people who inject drugs (PWID) exposed predominantly to HCV genotypes 1a and 3a. Despite this epitope being conserved in both genotypes, the corresponding CD8(+) T cell response was detected only in PWID infected with genotype 3a and HCV-RNA negative PWID, but not in PWID infected with genotype 1a. In genotype 3a, the detection of strong CD8(+) T cell responses was associated with epitope variants in the autologous virus consistent with immune escape. Analysis of viral sequences from multiple cohorts confirmed HLA-B*51-associated escape mutations inside the epitope in genotype 3a, but not in genotype 1a. Here, a distinct substitution in the N-terminal flanking region located 5 residues upstream of the epitope (S1368P; P = 0.00002) was selected in HLA-B*51-positive individuals. Functional assays revealed that the S1368P substitution impaired recognition of target cells presenting the endogenously processed epitope. The results highlight that, despite an epitope being highly conserved between two genotypes, there are major differences in the selected viral escape pathways and the corresponding T cell responses. HCV is able to evolutionary adapt to CD8(+) T cell immune pressure in multiple ways. Beyond selection of mutations inside targeted epitopes, this study demonstrates that HCV inhibits epitope processing by modification of the epitope flanking region under T cell immune pressure. Selection of a substitution five amino acids upstream of the

  17. Immuno-informatics based approaches to identify CD8+ T cell epitopes within the Leishmania donovani 3-ectonucleotidase in cured visceral leishmaniasis subjects.

    PubMed

    Vijayamahantesh; Amit, Ajay; Dikhit, Manas R; Singh, Ashish K; Venkateshwaran, T; Das, V N R; Das, Pradeep; Bimal, Sanjiva

    2017-06-01

    Leishmaniases are vector-borne diseases for which no vaccine exists. These diseases are caused by the Leishmania species complex. Activation of the CD8 + T cell is crucial for protection against intracellular pathogens, and peptide antigens are attractive strategies for the precise activation of CD8 + T in vaccine development against intracellular infections. The traditional approach to mine the epitopes is an arduous task. However, with the advent of immunoinformatics, in silico epitope prediction tools are available to expedite epitope identification. In this study, we employ different immunoinformatics tools to predict CD8 + T cell specific 9 mer epitopes presented by HLA-A*02 and HLA-B40 within the highly conserved 3'-ectonucleotidase of Leishmania donovani. We identify five promiscuous epitopes, which have no homologs in humans, theoretically cover 85% of the world's population and are highly conserved (100%) among Leishmania species. Presentation of selected peptides was confirmed by T2 cell line based HLA-stabilization assay, and three of them were found to be strong binders. The in vitro peptide stimulation of peripheral blood mononuclear cells (PBMC) from cured HLA-A02 + visceral leishmaniasis (VL) subjects produced significantly higher IFN-γ, IL-2 and IL-12 compared to no peptide control healthy subjects. Further, CD8 + cells from treated VL subjects produced significantly higher intracellular IFN-γ, lymphocyte proliferation and cytotoxic activity against selected peptides from the PBMCs of treated HLA-A02 + VL subjects. Thus, the CD8 + T cell specific epitopes shown in this study will speed up the development of polytope vaccines for leishmaniasis. Copyright © 2017. Published by Elsevier Masson SAS.

  18. CD8 and CD4 epitope predictions in RV144: no strong evidence of a T-cell driven sieve effect in HIV-1 breakthrough sequences from trial participants.

    PubMed

    Dommaraju, Kalpana; Kijak, Gustavo; Carlson, Jonathan M; Larsen, Brendan B; Tovanabutra, Sodsai; Geraghty, Dan E; Deng, Wenjie; Maust, Brandon S; Edlefsen, Paul T; Sanders-Buell, Eric; Ratto-Kim, Silvia; deSouza, Mark S; Rerks-Ngarm, Supachai; Nitayaphan, Sorachai; Pitisuttihum, Punnee; Kaewkungwal, Jaranit; O'Connell, Robert J; Robb, Merlin L; Michael, Nelson L; Mullins, James I; Kim, Jerome H; Rolland, Morgane

    2014-01-01

    The modest protection afforded by the RV144 vaccine offers an opportunity to evaluate its mechanisms of protection. Differences between HIV-1 breakthrough viruses from vaccine and placebo recipients can be attributed to the RV144 vaccine as this was a randomized and double-blinded trial. CD8 and CD4 T cell epitope repertoires were predicted in HIV-1 proteomes from 110 RV144 participants. Predicted Gag epitope repertoires were smaller in vaccine than in placebo recipients (p = 0.019). After comparing participant-derived epitopes to corresponding epitopes in the RV144 vaccine, the proportion of epitopes that could be matched differed depending on the protein conservation (only 36% of epitopes in Env vs 84-91% in Gag/Pol/Nef for CD8 predicted epitopes) or on vaccine insert subtype (55% against CRF01_AE vs 7% against subtype B). To compare predicted epitopes to the vaccine, we analyzed predicted binding affinity and evolutionary distance measurements. Comparisons between the vaccine and placebo arm did not reveal robust evidence for a T cell driven sieve effect, although some differences were noted in Env-V2 (0.022≤p-value≤0.231). The paucity of CD8 T cell responses identified following RV144 vaccination, with no evidence for V2 specificity, considered together both with the association of decreased infection risk in RV 144 participants with V-specific antibody responses and a V2 sieve effect, lead us to hypothesize that this sieve effect was not T cell specific. Overall, our results did not reveal a strong differential impact of vaccine-induced T cell responses among breakthrough infections in RV144 participants.

  19. PD-1 Blockade Promotes Epitope Spreading in Anticancer CD8+ T Cell Responses by Preventing Fratricidal Death of Subdominant Clones To Relieve Immunodomination.

    PubMed

    Memarnejadian, Arash; Meilleur, Courtney E; Shaler, Christopher R; Khazaie, Khashayarsha; Bennink, Jack R; Schell, Todd D; Haeryfar, S M Mansour

    2017-11-01

    The interactions between programmed death-1 (PD-1) and its ligands hamper tumor-specific CD8 + T cell (T CD8 ) responses, and PD-1-based "checkpoint inhibitors" have shown promise in certain cancers, thus revitalizing interest in immunotherapy. PD-1-targeted therapies reverse T CD8 exhaustion/anergy. However, whether they alter the epitope breadth of T CD8 responses remains unclear. This is an important question because subdominant T CD8 are more likely than immunodominant clones to escape tolerance mechanisms and may contribute to protective anticancer immunity. We have addressed this question in an in vivo model of T CD8 responses to well-defined epitopes of a clinically relevant oncoprotein, large T Ag. We found that unlike other coinhibitory molecules (CTLA-4, LAG-3, TIM-3), PD-1 was highly expressed by subdominant T CD8 , which correlated with their propensity to favorably respond to PD-1/PD-1 ligand-1 (PD-L1)-blocking Abs. PD-1 blockade increased the size of subdominant T CD8 clones at the peak of their primary response, and it also sustained their presence, thus giving rise to an enlarged memory pool. The expanded population was fully functional as judged by IFN-γ production and MHC class I-restricted cytotoxicity. The selective increase in subdominant T CD8 clonal size was due to their enhanced survival, not proliferation. Further mechanistic studies utilizing peptide-pulsed dendritic cells, recombinant vaccinia viruses encoding full-length T Ag or epitope mingenes, and tumor cells expressing T Ag variants revealed that anti-PD-1 invigorates subdominant T CD8 responses by relieving their lysis-dependent suppression by immunodominant T CD8 To our knowledge, our work constitutes the first report that interfering with PD-1 signaling potentiates epitope spreading in tumor-specific responses, a finding with clear implications for cancer immunotherapy and vaccination. Copyright © 2017 by The American Association of Immunologists, Inc.

  20. Phase I Trial of a CD8+ T-Cell Peptide Epitope-Based Vaccine for Infectious Mononucleosis▿

    PubMed Central

    Elliott, Suzanne L.; Suhrbier, Andreas; Miles, John J.; Lawrence, Greg; Pye, Stephanie J.; Le, Thuy T.; Rosenstengel, Andrew; Nguyen, Tam; Allworth, Anthony; Burrows, Scott R.; Cox, John; Pye, David; Moss, Denis J.; Bharadwaj, Mandvi

    2008-01-01

    A single blind, randomized, placebo-controlled, single-center phase I clinical trial of a CD8+ T-cell peptide epitope vaccine against infectious mononucleosis was conducted with 14 HLA B*0801-positive, Epstein-Barr virus (EBV)-seronegative adults. The vaccine comprised the HLA B*0801-restricted peptide epitope FLRGRAYGL and tetanus toxoid formulated in a water-in-oil adjuvant, Montanide ISA 720. FLRGRAYGL-specific responses were detected in 8/9 peptide-vaccine recipients and 0/4 placebo vaccine recipients by gamma interferon enzyme-linked immunospot assay and/or limiting-dilution analysis. The same T-cell receptor Vβ CDR3 sequence that is found in FLRGRAYGL-specific T cells from most EBV-seropositive individuals could also be detected in the peripheral blood of vaccine recipients. The vaccine was well tolerated, with the main side effect being mild to moderate injection site reactions. After a 2- to 12-year follow-up, 1/2 placebo vaccinees who acquired EBV developed infectious mononucleosis, whereas 4/4 vaccinees who acquired EBV after completing peptide vaccination seroconverted asymptomatically. Single-epitope vaccination did not predispose individuals to disease, nor did it significantly influence development of a normal repertoire of EBV-specific CD8+ T-cell responses following seroconversion. PMID:18032491

  1. The link between CD8⁺ T-cell antigen-sensitivity and HIV-suppressive capacity depends on HLA restriction, target epitope and viral isolate.

    PubMed

    Lissina, Anna; Fastenackels, Solène; Inglesias, Maria C; Ladell, Kristin; McLaren, James E; Briceño, Olivia; Gostick, Emma; Papagno, Laura; Autran, Brigitte; Sauce, Delphine; Price, David A; Saez-Cirion, Asier; Appay, Victor

    2014-02-20

    Although it is established that CD8 T-cell immunity is critical for the control of HIV replication in vivo, the key factors that determine antiviral efficacy are yet to be fully elucidated. Antigen-sensitivity and T-cell receptor (TCR) avidity have been identified as potential determinants of CD8⁺ T-cell efficacy. However, there is no general consensus in this regard because the relationship between these parameters and the control of HIV infection has been established primarily in the context of immunodominant CD8⁺ T-cell responses against the Gag₂₆₃₋₂₇₂ KK10 epitope restricted by human leukocyte antigen (HLA)-B27. To investigate the relationship between antigen-sensitivity, TCR avidity and HIV-suppressive capacity in vitro across epitope specificities and HLA class I restriction elements, we used a variety of techniques to study CD8⁺ T-cell clones specific for Nef₇₃₋₈₂ QK10 and Gag₂₀₋₂₉ RY10, both restricted by HLA-A3, alongside CD8⁺ T-cell clones specific for Gag₂₆₃₋₂₇₂ KK10. For each targeted epitope, the linked parameters of antigen-sensitivity and TCR avidity correlated directly with antiviral efficacy. However, marked differences in HIV-suppressive capacity were observed between epitope specificities, HLA class I restriction elements and viral isolates. Collectively, these data emphasize the central role of the TCR as a determinant of CD8⁺ T-cell efficacy and demonstrate that the complexities of antigen recognition across epitope and HLA class I boundaries can confound simple relationships between TCR engagement and HIV suppression.

  2. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection.

    PubMed

    Alves-Silva, Marcus Vinícius; Nico, Dirlei; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa B

    2017-01-01

    The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably

  3. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection

    PubMed Central

    Alves-Silva, Marcus Vinícius; Nico, Dirlei; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa B.

    2017-01-01

    The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably

  4. 21-Hydroxylase epitopes are targeted by CD8 T cells in autoimmune Addison's disease.

    PubMed

    Rottembourg, Diane; Deal, Cheri; Lambert, Marion; Mallone, Roberto; Carel, Jean-Claude; Lacroix, André; Caillat-Zucman, Sophie; le Deist, Françoise

    2010-12-01

    In autoimmune adrenal deficiency, autoantibodies target the 21-hydroxylase (21OH) protein. However, it is presumed that autoreactive T cells, rather than antibodies, are the main effectors of adrenal gland destruction, but their identification is still lacking. We performed a T-cell epitope mapping study using 49 overlapping 20mer peptides covering the 21OH sequence in patients with isolated Addison's disease, Autoimmune Polyendocrine Syndrome 1 and 2. IFNγ ELISPOT responses against these peptides were stronger, broader and more prevalent among patients than in controls, whatever the disease presentation. Five peptides elicited T-cell responses in patients only (68% sensitivity, 100% specificity). Blocking experiments identified IFNγ-producing cells as CD8 T lymphocytes, with two peptides frequently recognized in HLA-B8+ patients and a third one targeted in HLA-B35+ subjects. In particular, the 21OH(431-450) peptide was highly immunodominant, as it was recognized in more than 30% of patients, all carrying the HLA-B8 restriction element. This 21OH(431-450) region contained an EPLARLEL octamer (21OH(431-438)) predicted to bind to HLA-B8 with high affinity. Indeed, circulating EPLARLEL-specific CD8 T cells were detected at significant frequencies in HLA-B8+ patients but not in controls by HLA tetramer staining. This report enlightens disease-specific T-cell biomarkers and epitopes targeted in autoimmune adrenal deficiency. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes.

    PubMed

    Khan, Arif A; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P; Pham, Thanh T; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-04-01

    Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8(+) T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8(+) T cells play a key role in the "natural" protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8(+) T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8(+) T cells (TEM cells) (CD45RA(low) CCR7(low) CD44(high) CD62L(low)). In contrast, SYMP patients had frequent less-differentiated central memory CD8(+) T cells (TCM cells) (CD45RA(low) CCR7(high) CD44(low) CD62L(high)). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8(+) T cells which responded mainly to gB342-350 and gB561-569 "ASYMP" epitopes, and simultaneously produced IFN-γ, CD107(a/b), granzyme B, and perforin. In contrast, effector CD8(+) T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17-25 and gB183-191 "SYMP" epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with "ASYMP" CD8(+) TEM cell epitopes, but not with "SYMP" CD8(+) TCM cell epitopes, induced a strong CD8(+) T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8(+) TEM cells in protection against herpes and should be considered in the development of an effective vaccine. A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8(+) T cells (TEM cells

  6. Phenotypic and Functional Characterization of Herpes Simplex Virus Glycoprotein B Epitope-Specific Effector and Memory CD8+ T Cells from Symptomatic and Asymptomatic Individuals with Ocular Herpes

    PubMed Central

    Khan, Arif A.; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P.; Pham, Thanh T.; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M.; Nesburn, Anthony B.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8+ T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8+ T cells play a key role in the “natural” protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8+ T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow). In contrast, SYMP patients had frequent less-differentiated central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8+ T cells which responded mainly to gB342–350 and gB561–569 “ASYMP” epitopes, and simultaneously produced IFN-γ, CD107a/b, granzyme B, and perforin. In contrast, effector CD8+ T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17–25 and gB183–191 “SYMP” epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong CD8+ T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8+ TEM cells in protection against herpes and should be considered in the development of an effective vaccine. IMPORTANCE A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8+ T cells (TEM

  7. Programmed death-1 expression on HIV-1-specific CD8+ T cells is shaped by epitope specificity, T-cell receptor clonotype usage and antigen load

    PubMed Central

    Kløverpris, Henrik N.; McGregor, Reuben; McLaren, James E.; Ladell, Kristin; Stryhn, Anette; Koofhethile, Catherine; Brener, Jacqui; Chen, Fabian; Riddell, Lynn; Graziano, Luzzi; Klenerman, Paul; Leslie, Alasdair; Buus, Søren; Price, David A.; Goulder, Philip

    2014-01-01

    Objectives: Although CD8+ T cells play a critical role in the control of HIV-1 infection, their antiviral efficacy can be limited by antigenic variation and immune exhaustion. The latter phenomenon is characterized by the upregulation of multiple inhibitory receptors, such as programmed death-1 (PD-1), CD244 and lymphocyte activation gene-3 (LAG-3), which modulate the functional capabilities of CD8+ T cells. Design and methods: Here, we used an array of different human leukocyte antigen (HLA)-B∗15 : 03 and HLA-B∗42 : 01 tetramers to characterize inhibitory receptor expression as a function of differentiation on HIV-1-specific CD8+ T-cell populations (n = 128) spanning 11 different epitope targets. Results: Expression levels of PD-1, but not CD244 or LAG-3, varied substantially across epitope specificities both within and between individuals. Differential expression of PD-1 on T-cell receptor (TCR) clonotypes within individual HIV-1-specific CD8+ T-cell populations was also apparent, independent of clonal dominance hierarchies. Positive correlations were detected between PD-1 expression and plasma viral load, which were reinforced by stratification for epitope sequence stability and dictated by effector memory CD8+ T cells. Conclusion: Collectively, these data suggest that PD-1 expression on HIV-1-specific CD8+ T cells tracks antigen load at the level of epitope specificity and TCR clonotype usage. These findings are important because they provide evidence that PD-1 expression levels are influenced by peptide/HLA class I antigen exposure. PMID:24906112

  8. High frequencies of circulating IFN-gamma-secreting CD8 cytotoxic T cells specific for a novel MHC class I-restricted Mycobacterium tuberculosis epitope in M. tuberculosis-infected subjects without disease.

    PubMed

    Pathan, A A; Wilkinson, K A; Wilkinson, R J; Latif, M; McShane, H; Pasvol, G; Hill, A V; Lalvani, A

    2000-09-01

    MHC class I-restricted CD8 cytotoxic T lymphocytes (CTL) are essential for protective immunity to Mycobacterium tuberculosis in animal models but their role in humans remains unclear. We therefore studied subjects who had successfully contained M. tuberculosis infection in vivo, i.e. exposed healthy household contacts and individuals with inactive self-healed pulmonary tuberculosis. Using the ELISPOT assay for IFN-gamma, we screened peptides from ESAT-6, a secreted antigen that is highly specific for M. tuberculosis. We identified a novel nonamer epitope: unstimulated peripheral blood-derived CD8 T cells displayed peptide-specific IFN-gamma release ex vivo while CD8 T cell lines and clones exhibited HLA-A68.02-restricted cytolytic activity and recognized endogenously processed antigen. The frequency of CD8 CTL specific for this single M. tuberculosis epitope, 1/2500 peripheral blood lymphocytes, was equivalent to the combined frequency of all IFN-gamma-secreting purified protein derivative-reactive T cells ex vivo. This highly focused CTL response was maintained in an asymptomatic contact over 2 years and is the most potent antigen-specific antimycobacterial CD8 CTL response hitherto described. Thus, human M. tuberculosis-specific CD8 CTL are not necessarily associated with active disease per se. Rather, our results are consistent with a protective role for these ESAT-6-specific CD8 T cells in the long-term control of M. tuberculosis in vivo in humans.

  9. Influence of flanking sequences on presentation efficiency of a CD8+ cytotoxic T-cell epitope delivered by parvovirus-like particles.

    PubMed

    Rueda, P; Morón, G; Sarraseca, J; Leclerc, C; Casal, J I

    2004-03-01

    We have previously developed an antigen-delivery system based on hybrid recombinant porcine parvovirus-like particles (PPV-VLPs) formed by the self-assembly of the VP2 protein of PPV carrying a foreign epitope at its N terminus. In this study, different constructs were made containing a CD8(+) T-cell epitope of chicken ovalbumin (OVA) to analyse the influence of the sequence inserted into VP2 on the correct processing of VLPs by antigen-presenting cells. We analysed the presentation of the OVA epitope inserted without flanking sequences or with either different natural flanking sequences or with the natural flanking sequences of a CD8(+) T-cell epitope from the lymphocytic choriomeningitis virus nucleoprotein, and as a dimer with or without linker sequences. All constructs were studied in terms of level of expression, assembly of VLPs and ability to deliver the inserted epitope into the MHC I pathway. The presentation of the OVA epitope was considerably improved by insertion of short natural flanking sequences, which indicated the relevance of the flanking sequences on the processing of PPV-VLPs. Only PPV-VLPs carrying two copies of the OVA epitope linked by two glycines were able to be properly processed, suggesting that the introduction of flexible residues between the two consecutive OVA epitopes may be necessary for the correct presentation of these dimers by PPV-VLPs. These results provide information to improve the insertion of epitopes into PPV-VLPs to facilitate their processing and presentation by MHC class I molecules.

  10. HLA-B*27 subtype specificity determines targeting and viral evolution of a hepatitis C virus-specific CD8+ T cell epitope.

    PubMed

    Nitschke, Katja; Barriga, Alejandro; Schmidt, Julia; Timm, Jörg; Viazov, Sergei; Kuntzen, Thomas; Kim, Arthur Y; Lauer, Georg M; Allen, Todd M; Gaudieri, Silvana; Rauch, Andri; Lange, Christian M; Sarrazin, Christoph; Eiermann, Thomas; Sidney, John; Sette, Alessandro; Thimme, Robert; López, Daniel; Neumann-Haefelin, Christoph

    2014-01-01

    HLA-B*27 is associated with spontaneous HCV genotype 1 clearance. HLA-B*27-restricted CD8+ T cells target three NS5B epitopes. Two of these epitopes are dominantly targeted in the majority of HLA-B*27+ patients. In chronic infection, viral escape occurs consistently in these two epitopes. The third epitope (NS5B2820) was dominantly targeted in an acutely infected patient. This was in contrast, however, to the lack of recognition and viral escape in the large majority of HLA-B*27+ patients. Here, we set out to determine the host factors contributing to selective targeting of this epitope. Four-digit HLA class I typing and viral sequence analyses were performed in 78 HLA-B*27+ patients with chronic HCV genotype 1 infection. CD8+ T cell analyses were performed in a subset of patients. In addition, HLA/peptide affinity was compared for HLA-B*27:02 and 05. The NS5B2820 epitope is only restricted by the HLA-B*27 subtype HLA-B*27:02 (that is frequent in Mediterranean populations), but not by the prototype HLA-B*27 subtype B*27:05. Indeed, the epitope is very dominant in HLA-B*27:02+ patients and is associated with viral escape mutations at the anchor position for HLA-binding in 12 out of 13 HLA-B*27:02+ chronically infected patients. The NS5B2820 epitope is immunodominant in the context of HLA-B*27:02, but is not restricted by other HLA-B*27 subtypes. This finding suggests an important role of HLA subtypes in the restriction of HCV-specific CD8+ responses. With minor HLA subtypes covering up to 39% of specific populations, these findings may have important implications for the selection of epitopes for global vaccines. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. RB4CD12 epitope expression and heparan sulfate disaccharide composition in brain vasculature.

    PubMed

    Hosono-Fukao, Tomomi; Ohtake-Niimi, Shiori; Nishitsuji, Kazuchika; Hossain, Md Motarab; van Kuppevelt, Toin H; Michikawa, Makoto; Uchimura, Kenji

    2011-11-01

    RB4CD12 is a phage display antibody that recognizes a heparan sulfate (HS) glycosaminoglycan epitope. The epitope structure is proposed to contain a trisulfated disaccharide, [-IdoA(2-OSO(3))-GlcNSO(3) (6-OSO(3))-], which supports HS binding to various macromolecules such as growth factors and cytokines in central nervous tissues. Chemically modified heparins that lack the trisulfated disaccharides failed to inhibit the RB4CD12 recognition of HS chains. To determine the localization of the RB4CD12 anti-HS epitope in the brain, we performed an immunohistochemical analysis for cryocut sections of mouse brain. The RB4CD12 staining signals were colocalized with laminin and were detected abundantly in the vascular basement membrane. Bacterial heparinases eliminated the RB4CD12 staining signals. The RB4CD12 epitope localization was confirmed by immunoelectron microscopy. Western blotting analysis revealed that the size of a major RB4CD12-positive molecule is ∼460 kDa in a vessel-enriched fraction of the mouse brain. Disaccharide analysis with reversed-phase ion-pair HPLC showed that [-IdoA(2-OSO(3))-GlcNSO(3) (6-OSO(3))-] trisulfated disaccharide residues are present in HS purified from the vessel-enriched brain fraction. These results indicated that the RB4CD12 anti-HS epitope exists in large quantities in the brain vascular basement membrane. Copyright © 2011 Wiley-Liss, Inc.

  12. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocular Herpesvirus Infection.

    PubMed

    Srivastava, Ruchi; Khan, Arif A; Garg, Sumit; Syed, Sabrina A; Furness, Julie N; Vahed, Hawa; Pham, Tiffany; Yu, Howard T; Nesburn, Anthony B; BenMohamed, Lbachir

    2017-01-15

    Herpes simplex virus 1 (HSV-1) infection is widespread among humans. The HSV-1 virion protein 13/14 (VP13/14), also known as UL47, is a tegument antigen targeted by CD8 + T cells from HSV-seropositive individuals. However, whether VP13/14-specific CD8 + T cells play a role in the natural protection seen in asymptomatic (ASYMP) individuals (individuals who have never had a clinical herpetic disease) has not been elucidated. Using predictive computer-assisted algorithms, we identified 10 potential HLA-A*02:01-restricted CD8 + T-cell epitopes from the 693-amino-acid sequence of the VP13/14 protein. Three out of 10 epitopes exhibited a high to moderate affinity of binding to soluble HLA-A*02:01 molecules. The phenotype and function of CD8 + T cells specific for each epitope were compared in HLA-A*02:01-positive ASYMP individuals and symptomatic (SYMP) individuals (individuals who have frequent clinical herpetic diseases) using determination of a combination of tetramer frequency and the levels of granzyme B, granzyme K, perforin, gamma interferon, tumor necrosis factor alpha, and interleukin-2 production and CD107 a/b cytotoxic degranulation. High frequencies of multifunctional CD8 + T cells directed against three epitopes, VP13/14 from amino acids 286 to 294 (VP13/14 286-294 ), VP13/14 from amino acids 504 to 512 (VP13/14 504-512 ), and VP13/14 from amino acids 544 to 552 (VP13/14 544-552 ), were detected in ASYMP individuals, while only low frequencies were detected in SYMP individuals. The three epitopes also predominantly recalled more CD45RA low CD44 high CCR7 low CD62L low CD8 + effector memory T cells (T EM cells) in ASYMP individuals than SYMP individuals. Moreover, immunization of HLA-A*02:01 transgenic mice with the three CD8 + T EM -cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8 + T EM cells associated with strong protective immunity against ocular herpesvirus infection and disease. Our findings outline the phenotypic

  13. Biological and immunological characterization of recombinant Yellow Fever 17D viruses expressing a Trypanosoma cruzi Amastigote Surface Protein-2 CD8+ T cell epitope at two distinct regions of the genome.

    PubMed

    Nogueira, Raquel T; Nogueira, Alanderson R; Pereira, Mirian C S; Rodrigues, Maurício M; Galler, Ricardo; Bonaldo, Myrna C

    2011-03-18

    The attenuated Yellow fever (YF) 17D vaccine virus is one of the safest and most effective viral vaccines administered to humans, in which it elicits a polyvalent immune response. Herein, we used the YF 17D backbone to express a Trypanosoma cruzi CD8+ T cell epitope from the Amastigote Surface Protein 2 (ASP-2) to provide further evidence for the potential of this virus to express foreign epitopes. The TEWETGQI CD8+ T cell epitope was cloned and expressed based on two different genomic insertion sites: in the fg loop of the viral Envelope protein and the protease cleavage site between the NS2B and NS3. We investigated whether the site of expression had any influence on immunogenicity of this model epitope. Recombinant viruses replicated similarly to vaccine virus YF 17D in cell culture and remained genetically stable after several serial passages in Vero cells. Immunogenicity studies revealed that both recombinant viruses elicited neutralizing antibodies to the YF virus as well as generated an antigen-specific gamma interferon mediated T-cell response in immunized mice. The recombinant viruses displayed a more attenuated phenotype than the YF 17DD vaccine counterpart in mice. Vaccination of a mouse lineage highly susceptible to infection by T. cruzi with a homologous prime-boost regimen of recombinant YF viruses elicited TEWETGQI specific CD8+ T cells which might be correlated with a delay in mouse mortality after a challenge with a lethal dose of T. cruzi. We conclude that the YF 17D platform is useful to express T. cruzi (Protozoan) antigens at different functional regions of its genome with minimal reduction of vector fitness. In addition, the model T. cruzi epitope expressed at different regions of the YF 17D genome elicited a similar T cell-based immune response, suggesting that both expression sites are useful. However, the epitope as such is not protective and it remains to be seen whether expression of larger domains of ASP-2, which include the TEWETGQI

  14. Mathematical modeling of ultradeep sequencing data reveals that acute CD8+ T-lymphocyte responses exert strong selective pressure in simian immunodeficiency virus-infected macaques but still fail to clear founder epitope sequences.

    PubMed

    Love, Tanzy M T; Thurston, Sally W; Keefer, Michael C; Dewhurst, Stephen; Lee, Ha Youn

    2010-06-01

    The prominent role of antiviral cytotoxic CD8(+) T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef(103-111)RM9 (RM9), Tat(28-35)SL8 (SL8), and Gag(181-189)CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day(-1) within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day(-1) within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope.

  15. Elicitation of Neutralizing Antibodies Directed against CD4-Induced Epitope(s) Using a CD4 Mimetic Cross-Linked to a HIV-1 Envelope Glycoprotein

    PubMed Central

    Dey, Antu K.; Burke, Brian; Sun, Yide; Sirokman, Klara; Nandi, Avishek; Hartog, Karin; Lian, Ying; Geonnotti, Anthony R.; Montefiori, David; Franti, Michael; Martin, Grégoire; Carfi, Andrea; Kessler, Pascal; Martin, Loïc; Srivastava, Indresh K.; Barnett, Susan W.

    2012-01-01

    The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved “CD4 induced” (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-27312/V434M and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application. PMID:22291921

  16. CD18 activation epitopes induced by leukocyte activation.

    PubMed

    Beals, C R; Edwards, A C; Gottschalk, R J; Kuijpers, T W; Staunton, D E

    2001-12-01

    The cell surface adhesion molecule LFA-1 coordinates leukocyte trafficking and is a costimulatory molecule for T cell activation. We developed a panel of mAbs that recognize activation epitopes on the CD18 subunit, and show that stimulation of T lymphocytes appears to be accompanied by a conformational change in a subpopulation of LFA-1 that does not require ligand binding. Activation epitope up-regulation requires divalent cations, is sensitive to cellular signal transduction events, and correlates with cell adhesion. In addition, the stimulated appearance of these activation epitopes is absent in cell lines from patients with leukocyte adhesion deficiency-1/variant that has previously been shown to be defective in LFA-1 activation. Thus, these activation epitope Abs can be used to dissect signal transmission to CD18. Evidence suggests that these CD18 activation epitopes are induced early in cellular activation and are independent of actin rearrangement necessary for avid adhesion. We have also determined that function-blocking CD18 Abs inhibit the induction of activation epitopes. One activation epitope Ab binds to a site on CD18 distinct from that of the blocking Abs, indicating that the blocking Abs suppress a conformational change in LFA-1. We also find that these neoepitopes are present on rLFA-1 with high affinity for ICAM-1 and their binding is modulated in parallel with the affinity of LFA-1 for ICAM-1. Collectively, these neoepitope Abs identify a subpopulation of LFA-1 most likely with high affinity for ICAM-1 and necessary for LFA-1 function.

  17. Asymptomatic HLA-A*02:01–Restricted Epitopes from Herpes Simplex Virus Glycoprotein B Preferentially Recall Polyfunctional CD8+ T Cells from Seropositive Asymptomatic Individuals and Protect HLA Transgenic Mice against Ocular Herpes

    PubMed Central

    Dervillez, Xavier; Qureshi, Huma; Chentoufi, Aziz A.; Khan, Arif A.; Kritzer, Elizabeth; Yu, David C.; Diaz, Oscar R.; Gottimukkala, Chetan; Kalantari, Mina; Villacres, Maria C.; Scarfone, Vanessa M.; McKinney, Denise M.; Sidney, John; Sette, Alessandro; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2014-01-01

    Evidence from C57BL/6 mice suggests that CD8+ T cells, specific to the immunodominant HSV-1 glycoprotein B (gB) H-2b–restricted epitope (gB498–505), protect against ocular herpes infection and disease. However, the possible role of CD8+ T cells, specific to HLA-restricted gB epitopes, in protective immunity seen in HSV-1–seropositive asymptomatic (ASYMP) healthy individuals (who have never had clinical herpes) remains to be determined. In this study, we used multiple prediction algorithms to identify 10 potential HLA-A*02:01–restricted CD8+ T cell epitopes from the HSV-1 gB amino acid sequence. Six of these epitopes exhibited high-affinity binding to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01–positive, HSV-1–seropositive ASYMP individuals, the most frequent, robust, and polyfunctional CD8+ T cell responses, as assessed by a combination of tetramer, IFN-γ-ELISPOT, CFSE proliferation, CD107a/b cytotoxic degranulation, and multiplex cytokine assays, were directed mainly against epitopes gB342–350 and gB561–569. In contrast, in 10 HLA-A*02:01–positive, HSV-1–seropositive symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent clinical herpes disease) frequent, but less robust, CD8+ T cell responses were directed mainly against nonoverlapping epitopes (gB183–191 and gB441–449). ASYMP individuals had a significantly higher proportion of HSV-gB–specific CD8+ T cells expressing CD107a/b degranulation marker and producing effector cytokines IL-2, IFN-γ, and TNF-α than did SYMP individuals. Moreover, immunization of a novel herpes-susceptible HLA-A*02:01 transgenic mouse model with ASYMP epitopes, but not with SYMP epitopes, induced strong CD8+ T cell–dependent protective immunity against ocular herpes infection and disease. These findings should guide the development of a safe and effective T cell–based herpes vaccine. PMID:24101547

  18. Identification of SIV Nef CD8(+) T cell epitopes restricted by a MHC class I haplotype associated with lower viral loads in a macaque AIDS model.

    PubMed

    Nomura, Takushi; Yamamoto, Hiroyuki; Takahashi, Naofumi; Naruse, Taeko K; Kimura, Akinori; Matano, Tetsuro

    2014-07-25

    Virus-specific CD8(+) T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206-216 and Gag241-249 epitope-specific CD8(+) T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8(+) T-cell responses induced in all the 90-120-Ia(+) macaques on SIV replication remains unknown. Here, we identified three CD8(+) T-cell epitopes, Nef9-19, Nef89-97, and Nef193-203, associated with 90-120-Ia. Nef9-19 and Nef193-203 epitope-specific CD8(+) T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8(+) T cells, indicating that these CD8(+) T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Extensive CD4 and CD8 T-cell cross-reactivity between alphaherpesviruses1

    PubMed Central

    Dong, Lichun; Russell, Ronnie M.; Barlow, Russell S.; Haas, Juergen G.; Ramchandani, Meena S.; Johnston, Christine; Buus, Soren; Redwood, Alec J.; White, Katie D.; Mallal, Simon A.; Phillips, Elizabeth J.; Posavad, Christine M.; Wald, Anna; Koelle, David M.

    2015-01-01

    The alphaherpesvirinae subfamily includes HSV types 1 and 2 and the sequence-divergent pathogen varicella zoster virus (VZV). T cells, controlled by TCR and HLA molecules that tolerate limited epitope amino acid variation, might cross-react between these microbes. We show that memory PBMC expansion with either HSV or VZV enriches for CD4 T cell lines that recognize the other agent at the whole virus, protein, and peptide levels, consistent with bi-directional cross-reactivity. HSV-specific CD4 T cells recovered from HSV seronegative persons can be partially explained by such VZV cross-reactivity. HSV-1-reactive CD8 T cells also cross-react with VZV-infected cells, full-length VZV proteins, and VZV peptides, and kill VZV-infected dermal fibroblasts. Mono- and cross-reactive CD8 T cells use distinct TCRB CDR3 sequences. Cross-reactivity to VZV is reconstituted by cloning and expressing TCRA/TCRB receptors from T-cells that are initially isolated using HSV reagents. Overall, we define 13 novel CD4 and CD8 HSV-VZV cross-reactive epitopes and strongly imply additional cross-reactive peptide sets. Viral proteins can harbor both CD4 and CD8 HSV/VZV cross-reactive epitopes. Quantitative estimates of HSV/VZV cross-reactivity for both CD4 and CD8 T cells vary from 10-50%. Based on these findings, we hypothesize host herpesvirus immune history may influence the pathogenesis and clinical outcome of subsequent infections or vaccinations for related pathogens, and that cross-reactive epitopes and TCRs may be useful for multi-alphaherpesvirus vaccine design and adoptive cellular therapy. PMID:26810224

  20. Discerning regulation of cis- and trans-presentation of CD8+ T-cell epitopes by EBV-encoded oncogene LMP-1 through self-aggregation.

    PubMed

    Smith, Corey; Wakisaka, Naohiro; Crough, Tania; Peet, Jesse; Yoshizaki, Tomokazu; Beagley, Leone; Khanna, Rajiv

    2009-06-11

    Activation of the nuclear factor-kappaB pathway by Epstein-Barr virus-encoded latent membrane protein-1 (LMP-1) leads to an up-regulation of the major histocompatibility complex class I antigen-processing pathway. Paradoxically, LMP-1 itself induces a subdominant CD8+ T-cell response and appears to have evolved to avoid immune recognition. Here we show that, although expression of LMP-1 in human cells dramatically enhanced the trans-presentation of CD8+ T-cell epitopes, cis-presentation of LMP-1-derived epitopes was severely impaired. Testing of a series of LMP-1 mutants revealed that deletion of the first transmembrane domain of LMP-1, which prevented self-aggregation, significantly enhanced cis-presentation of T-cell epitopes from this protein, whereas it lost its ability to up-regulate trans-presentation. Interestingly, we also found that cis-presentation of LMP-1 epitopes was rescued by blocking the proteasome function. Taken together, these results delineate a novel mechanism of immune evasion, which renders a virally encoded oncogene inaccessible to the conventional major histocompatibility complex class I pathway limiting its cis-presentation to effector cells.

  1. Epitope Mapping by Phage Display.

    PubMed

    Moreira, Gustavo Marçal Schmidt Garcia; Fühner, Viola; Hust, Michael

    2018-01-01

    Among the molecules of the immune system, antibodies, particularly monoclonal antibodies (mAbs), have been shown to be interesting for many biological applications. Due to their ability to recognize only a unique part of their target, mAbs are usually very specific. These targets can have many different compositions, but the most common ones are proteins or peptides that are usually from outside the host, although self-proteins can also be targeted in autoimmune diseases, or in some types of cancer. The parts of a mAb that interact with its target compose the paratope, while the recognized parts of the target compose the epitope. Knowing the epitope is valuable for the improvement of a biological product, e.g., a diagnostic assay, a therapeutic mAb, or a vaccine, as well as for the elucidation of immune responses. The current techniques for epitope mapping rely on the presentation of the target, or parts of it, in a way that it can interact with a certain mAb. Even though there are several techniques available, each has its pros and cons. Thus, the choice for one of them is usually dependent on the preference and availability of the researcher, opening possibility for improvement, or development of alternative techniques. Phage display, for example, is a versatile technology, which allows the presentation of many different oligopeptides that can be tested against different antibodies, fitting the need for an epitope mapping approach. In this chapter, a protocol for the construction of a single-target oligopeptide phage library, as well as for the panning procedure for epitope mapping using phage display is given.

  2. Therapeutic immunization with a mixture of herpes simplex virus 1 glycoprotein D-derived “asymptomatic” human CD8+ T-cell epitopes decreases spontaneous ocular shedding in latently infected HLA transgenic rabbits: association with low frequency of local PD-1+ TIM-3+ CD8+ exhausted T cells.

    PubMed

    Khan, Arif A; Srivastava, Ruchi; Chentoufi, Aziz A; Geertsema, Roger; Thai, Nhi Thi Uyen; Dasgupta, Gargi; Osorio, Nelson; Kalantari, Mina; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-07-01

    Most blinding ocular herpetic disease is due to reactivation of herpes simplex virus 1 (HSV-1) from latency rather than to primary acute infection. No herpes simplex vaccine is currently available for use in humans. In this study, we used the HLA-A*02:01 transgenic (HLA Tg) rabbit model of ocular herpes to assess the efficacy of a therapeutic vaccine based on HSV-1 gD epitopes that are recognized mainly by CD8(+) T cells from "naturally" protected HLA-A*02:01-positive, HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease). Three ASYMP CD8(+) T-cell epitopes (gD(53-61), gD(70-78), and gD(278-286)) were linked with a promiscuous CD4(+) T-cell epitope (gD(287-317)) to create 3 separate pairs of CD4-CD8 peptides, which were then each covalently coupled to an Nε-palmitoyl-lysine moiety, a Toll-like receptor 2 (TLR-2) ligand. This resulted in the construction of 3 CD4-CD8 lipopeptide vaccines. Latently infected HLA Tg rabbits were immunized with a mixture of these 3 ASYMP lipopeptide vaccines, delivered as eye drops in sterile phosphate-buffered saline (PBS). The ASYMP therapeutic vaccination (i) induced HSV-specific CD8(+) T cells that prevent HSV-1 reactivation ex vivo from latently infected explanted trigeminal ganglia (TG), (ii) significantly reduced HSV-1 shedding detected in tears, (iii) boosted the number and function of HSV-1 gD epitope-specific CD8(+) T cells in draining lymph nodes (DLN), conjunctiva, and TG, and (iv) was associated with fewer exhausted HSV-1 gD-specific PD-1(+) TIM-3+ CD8(+) T cells. The results underscore the potential of an ASYMP CD8(+) T-cell epitope-based therapeutic vaccine strategy against recurrent ocular herpes. Seventy percent to 90% of adults harbor herpes simplex virus 1 (HSV-1), which establishes lifelong latency in sensory neurons of the trigeminal ganglia. This latent state sporadically switches to spontaneous reactivation, resulting in viral shedding in tears. Most blinding

  3. CD8(+) T-cell Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated through Various Epitopes and Human Leukocyte Antigen Types.

    PubMed

    Migueles, Stephen A; Mendoza, Daniel; Zimmerman, Matthew G; Martins, Kelly M; Toulmin, Sushila A; Kelly, Elizabeth P; Peterson, Bennett A; Johnson, Sarah A; Galson, Eric; Poropatich, Kate O; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A; Jones, Sara; Hallahan, Claire W; Follmann, Dean A; Connors, Mark

    2015-01-01

    Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8(+) T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8(+) T-cell specificity and function of B*27/57(neg) LTNP/EC (n = 23), B*27/57(pos) LTNP/EC (n = 23) and B*27/57(neg) progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57(neg) LTNP/EC did not target more highly conserved epitopes, their CD8(+) T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57(pos) LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8(+) T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people.

  4. Impact of regulated secretion on anti-parasitic CD8 T cell responses

    PubMed Central

    Grover, Harshita Satija; Chu, H. Hamlet; Kelly, Felice D.; Yang, Soo Jung; Reese, Michael L.; Blanchard, Nicolas; Gonzalez, Federico; Chan, Shiao Wei; Boothroyd, John C.; Shastri, Nilabh; Robey, Ellen A.

    2014-01-01

    Summary CD8 T cells play a key role in defense against the intracellular parasite Toxoplasma but why certain CD8 responses are more potent than others is not well understood. Here, we describe a parasite antigen ROP5 that elicits a modest CD8 T cell response in genetically susceptible mice. ROP5 is secreted via parasite organelles termed rhoptries that are injected directly into host cells during invasion, whereas the protective, dense granule antigen, GRA6, is constitutively secreted into the parasitophorous vacuole. Transgenic parasites in which the ROP5 antigenic epitope was targeted for secretion through dense granules led to enhanced CD8 T cell responses, whereas targeting the GRA6 epitope to rhoptries led to reduced CD8 responses. CD8 T cell responses to the dense granule-targeted ROP5 epitope resulted in reduced parasite load in the brain. These data suggest that the mode of secretion impacts the efficacy of parasite-specific CD8 T cell responses. PMID:24857659

  5. Sterile Immunity to Malaria after DNA Prime/Adenovirus Boost Immunization Is Associated with Effector Memory CD8+T Cells Targeting AMA1 Class I Epitopes

    PubMed Central

    Sedegah, Martha; Hollingdale, Michael R.; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Kim, Yohan; Peters, Bjoern; Sette, Alessandro; Huang, Jun; McGrath, Shannon; Abot, Esteban; Limbach, Keith; Shi, Meng; Soisson, Lorraine; Diggs, Carter; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E.; Villasante, Eileen; Richie, Thomas L.

    2014-01-01

    Background Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection. Methodology/Principal Findings We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans. Conclusions/Significance We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches

  6. CD8+ T-cell Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated through Various Epitopes and Human Leukocyte Antigen Types

    PubMed Central

    Migueles, Stephen A.; Mendoza, Daniel; Zimmerman, Matthew G.; Martins, Kelly M.; Toulmin, Sushila A.; Kelly, Elizabeth P.; Peterson, Bennett A.; Johnson, Sarah A.; Galson, Eric; Poropatich, Kate O.; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A.; Jones, Sara; Hallahan, Claire W.; Follmann, Dean A.; Connors, Mark

    2014-01-01

    Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8+ T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8+ T-cell specificity and function of B*27/57neg LTNP/EC (n = 23), B*27/57pos LTNP/EC (n = 23) and B*27/57neg progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57neg LTNP/EC did not target more highly conserved epitopes, their CD8+ T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57pos LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8+ T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people. PMID:26137533

  7. A Subdominant CD8+ Cytotoxic T Lymphocyte (CTL) Epitope from the Plasmodium yoelii Circumsporozoite Protein Induces CTLs That Eliminate Infected Hepatocytes from Culture

    PubMed Central

    Franke, Eileen D.; Sette, Alessandro; Sacci, John; Southwood, Scott; Corradin, Giampietro; Hoffman, Stephen L.

    2000-01-01

    Previous studies indicated that the Plasmodium yoelii circumsporozoite protein (PyCSP) 57–70 region elicits T cells capable of eliminating infected hepatocytes in vitro. Herein, we report that the PyCSP58–67 sequence contains an H-2d binding motif, which binds purified Kd molecules in vitro with low affinity (3,267 nM) and encodes an H-2d-restricted cytotoxic T lymphocyte (CTL) epitope. Immunization of BALB/c mice with three doses of a multiple antigen peptide (MAP) construct containing four branches of amino acids 57 to 70 linked to a lysine-glycine core [MAP4(PyCSP57–70)] and Lipofectin as the adjuvant induced both T-cell proliferation and a peptide-specific CTL response that was PyCSP59–67 specific, H-2d restricted, and CD8+ T cell dependent. Immunization with either DNA encoding the PyCSP or irradiated sporozoites demonstrated that this CTL epitope is subdominant since it is not recognized in the context of whole CSP immunization. The biological relevance of this CTL response was underlined by the demonstration that it could mediate genetically restricted, CD8+- and nitric-oxide-dependent elimination of infected hepatocytes in vitro, as well as partial protection of BALB/c mice against sporozoite challenge. These findings indicate that subdominant epitopes with low major histocompatibility complex affinity can be used to engineer epitope-based vaccines and have implications for the selection of epitopes for subunit-based vaccines. PMID:10816491

  8. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic mice against ocular herpes.

    PubMed

    Srivastava, Ruchi; Khan, Arif A; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T; Huang, Jiawei; Scarfone, Vanessa M; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-03-01

    The HSV type 1 tegument virion phosphoprotein (VP) 11/12 (VP11/12) is a major Ag targeted by CD8(+) T cells from HSV-seropositive individuals. However, whether and which VP11/12 epitope-specific CD8(+) T cells play a role in the "natural" protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8(+) T cell epitopes from the 718-aa sequence of VP11/12. Three of 10 epitopes exhibited high-to-moderate binding affinity to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01-positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust, and polyfunctional effector CD8(+) T cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107(a/b) cytotoxic degranulation, IFN-γ, and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266-74, VP11/12220-228, and VP11/12702-710. Interestingly, ASYMP individuals had a significantly higher proportion of CD45RA(low)CCR7(low)CD44(high)CD62L(low)CD27(low)CD28(low)CD8(+) effector memory CD8(+) T cells (TEMs) specific to the three epitopes, compared with symptomatic individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8(+) TEM cell epitopes induced robust and polyfunctional epitope-specific CD8(+) TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8(+) T cells that should guide the development of an effective T cell-based herpes vaccine. Copyright © 2015 by The American Association of Immunologists, Inc.

  9. A Missing PD-L1/PD-1 Coinhibition Regulates Diabetes Induction by Preproinsulin-Specific CD8 T-Cells in an Epitope-Specific Manner

    PubMed Central

    Schuster, Cornelia; Brosi, Helen; Stifter, Katja; Boehm, Bernhard O.; Schirmbeck, Reinhold

    2013-01-01

    Coinhibitory PD-1/PD-L1 (B7-H1) interactions provide critical signals for the regulation of autoreactive T-cell responses. We established mouse models, expressing the costimulator molecule B7.1 (CD80) on pancreatic beta cells (RIP-B7.1 tg mice) or are deficient in coinhibitory PD-L1 or PD-1 molecules (PD-L1−/− and PD-1−/− mice), to study induction of preproinsulin (ppins)-specific CD8 T-cell responses and experimental autoimmune diabetes (EAD) by DNA-based immunization. RIP-B7.1 tg mice allowed us to identify two CD8 T-cell specificities: pCI/ppins DNA exclusively induced Kb/A12–21-specific CD8 T-cells and EAD, whereas pCI/ppinsΔA12–21 DNA (encoding ppins without the COOH-terminal A12–21 epitope) elicited Kb/B22–29-specific CD8 T-cells and EAD. Specific expression/processing of mutant ppinsΔA12–21 (but not ppins) in non-beta cells, targeted by intramuscular DNA-injection, thus facilitated induction of Kb/B22–29-specific CD8 T-cells. The A12–21 epitope binds Kb molecules with a very low avidity as compared with B22–29. Interestingly, immunization of coinhibition-deficient PD-L1−/− or PD-1−/− mice with pCI/ppins induced Kb/A12–21-monospecific CD8 T-cells and EAD but injections with pCI/ppinsΔA12–21 did neither recruit Kb/B22–29-specific CD8 T-cells into the pancreatic target tissue nor induce EAD. PpinsΔA12–21/(Kb/B22–29)-mediated EAD was efficiently restored in RIP-B7.1+/PD-L1−/− mice, differing from PD-L1−/− mice only in the tg B7.1 expression in beta cells. Alternatively, an ongoing beta cell destruction and tissue inflammation, initiated by ppins/(Kb/A12–21)-specific CD8 T-cells in pCI/ppins+pCI/ppinsΔA12–21 co-immunized PD-L1−/− mice, facilitated the expansion of ppinsΔA12–21/(Kb/B22–29)-specific CD8 T-cells. CD8 T-cells specific for the high-affinity Kb/B22–29- (but not the low-affinity Kb/A12–21)-epitope thus require stimulatory ´help from beta cells or inflamed islets to expand in PD-L1

  10. Experimental myositis inducible with transfer of dendritic cells presenting a skeletal muscle C protein-derived CD8 epitope peptide.

    PubMed

    Okiyama, Naoko; Hasegawa, Hisanori; Oida, Takatoku; Hirata, Shinya; Yokozeki, Hiroo; Fujimoto, Manabu; Miyasaka, Nobuyuki; Kohsaka, Hitoshi

    2015-07-01

    It is suggested that polymyositis, an autoimmune inflammatory myopathy, is mediated by autoaggressive CD8 T cells. Skeletal muscle C protein is a self-antigen that induces C protein-induced myositis, a murine model of polymyositis. To establish a new murine model of myositis inducible with a single CD8 T-cell epitope peptide that derives from the C protein, three internet-based prediction systems were employed to identify 24 candidate peptides of the immunogenic fragment of the C protein and bind theoretically to major histocompatibility complex class I molecules of C57BL/6 (B6) mice. RMA-S cell assay revealed that a HILIYSDV peptide, amino acid position 399-406 of the C protein, had the highest affinity to the H2-K(b) molecules. Transfer of mature bone marrow-derived dendritic cells pulsed with HILIYSDV induced myositis in naive B6 mice. This myositis was suppressed by anti-CD8-depleting antibodies but not by anti-CD4-depleting antibodies. Because this myositis model is mediated by CD8 T cells independently of CD4 T cells, it should be a useful tool to investigate pathology of polymyositis and develop therapies targeting CD8 T cells. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Noncanonical expression of a murine cytomegalovirus early protein CD8 T-cell epitope as an immediate early epitope based on transcription from an upstream gene.

    PubMed

    Fink, Annette; Büttner, Julia K; Thomas, Doris; Holtappels, Rafaela; Reddehase, Matthias J; Lemmermann, Niels A W

    2014-02-14

    Viral CD8 T-cell epitopes, represented by viral peptides bound to major histocompatibility complex class-I (MHC-I) glycoproteins, are often identified by "reverse immunology", a strategy not requiring biochemical and structural knowledge of the actual viral protein from which they are derived by antigen processing. Instead, bioinformatic algorithms predicting the probability of C-terminal cleavage in the proteasome, as well as binding affinity to the presenting MHC-I molecules, are applied to amino acid sequences deduced from predicted open reading frames (ORFs) based on the genomic sequence. If the protein corresponding to an antigenic ORF is known, it is usually inferred that the kinetic class of the protein also defines the phase in the viral replicative cycle during which the respective antigenic peptide is presented for recognition by CD8 T cells. We have previously identified a nonapeptide from the predicted ORFm164 of murine cytomegalovirus that is presented by the MHC-I allomorph H-2 Dd and that is immunodominant in BALB/c (H-2d haplotype) mice. Surprisingly, although the ORFm164 protein gp36.5 is expressed as an Early (E) phase protein, the m164 epitope is presented already during the Immediate Early (IE) phase, based on the expression of an upstream mRNA starting within ORFm167 and encompassing ORFm164.

  12. Characterization of the Fine Specificity of Bovine CD8 T-Cell Responses to Defined Antigens from the Protozoan Parasite Theileria parva▿

    PubMed Central

    Graham, Simon P.; Pellé, Roger; Yamage, Mat; Mwangi, Duncan M.; Honda, Yoshikazu; Mwakubambanya, Ramadhan S.; de Villiers, Etienne P.; Abuya, Evelyne; Awino, Elias; Gachanja, James; Mbwika, Ferdinand; Muthiani, Anthony M.; Muriuki, Cecelia; Nyanjui, John K.; Onono, Fredrick O.; Osaso, Julius; Riitho, Victor; Saya, Rosemary M.; Ellis, Shirley A.; McKeever, Declan J.; MacHugh, Niall D.; Gilbert, Sarah C.; Audonnet, Jean-Christophe; Morrison, W. Ivan; van der Bruggen, Pierre; Taracha, Evans L. N.

    2008-01-01

    Immunity against the bovine intracellular protozoan parasite Theileria parva has been shown to be mediated by CD8 T cells. Six antigens targeted by CD8 T cells from T. parva-immune cattle of different major histocompatibility complex (MHC) genotypes have been identified, raising the prospect of developing a subunit vaccine. To facilitate further dissection of the specificity of protective CD8 T-cell responses and to assist in the assessment of responses to vaccination, we set out to identify the epitopes recognized in these T. parva antigens and their MHC restriction elements. Nine epitopes in six T. parva antigens, together with their respective MHC restriction elements, were successfully identified. Five of the cytotoxic-T-lymphocyte epitopes were found to be restricted by products of previously described alleles, and four were restricted by four novel restriction elements. Analyses of CD8 T-cell responses to five of the epitopes in groups of cattle carrying the defined restriction elements and immunized with live parasites demonstrated that, with one exception, the epitopes were consistently recognized by animals of the respective genotypes. The analysis of responses was extended to animals immunized with multiple antigens delivered in separate vaccine constructs. Specific CD8 T-cell responses were detected in 19 of 24 immunized cattle. All responder cattle mounted responses specific for antigens for which they carried an identified restriction element. By contrast, only 8 of 19 responder cattle displayed a response to antigens for which they did not carry an identified restriction element. These data demonstrate that the identified antigens are inherently dominant in animals with the corresponding MHC genotypes. PMID:18070892

  13. HLA-A02:01-Restricted Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP11/12 Preferentially Recall Polyfunctional Effector Memory CD8+ T Cells from Seropositive Asymptomatic Individuals and Protect “Humanized” HLA-A*02:01 Transgenic Mice Against Ocular Herpes

    PubMed Central

    Srivastava, Ruchi; Khan, Arif A.; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P.; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T.; Huang, Jiawei; Scarfone, Vanessa M.; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2014-01-01

    The Herpes Simplex Virus type 1 virion tegument phosphoprotein 11/12 (HSV-1 VP11/12) is a major antigen targeted by CD8+ T cells from HSV-seropositive individuals. However, whether and which VP11/12-epitope-specific CD8+ T cells play a role in the “natural” protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8+ T cell epitopes from the 716 amino acids sequence of VP11/12. Three out of ten epitopes exhibited high to moderate binding affinity to HLA-A*02:01 molecules. In ten sequentially studied HLA-A*02:01 positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust and polyfunctional effector CD8+ T-cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107a/b cytotoxic degranulation, IFN-γ and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266–74, VP11/12220–228 and VP11/12702–710. Interestingly, ASYMP individuals had significantly higher proportion of CD45RAlowCCR7lowCD44highCD62LlowCD27lowCD28lowCD8+ effector memory T cells (TEM) specific to the three epitopes, compared to symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8+ TEM cell epitopes induced robust and polyfunctional epitope-specific CD8+ TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8+ T cells that should guide the development of an effective T-cell-based herpes vaccine. PMID:25617474

  14. Infection with Trypanosoma cruzi restricts the repertoire of parasite-specific CD8+ T cells leading to immunodominance.

    PubMed

    Tzelepis, Fanny; de Alencar, Bruna C G; Penido, Marcus L O; Claser, Carla; Machado, Alexandre V; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; Rodrigues, Mauricio M

    2008-02-01

    Interference or competition between CD8(+) T cells restricted by distinct MHC-I molecules can be a powerful means to establish an immunodominant response. However, its importance during infections is still questionable. In this study, we describe that following infection of mice with the human pathogen Trypanosoma cruzi, an immunodominant CD8(+) T cell immune response is developed directed to an H-2K(b)-restricted epitope expressed by members of the trans-sialidase family of surface proteins. To determine whether this immunodominance was exerted over other non-H-2K(b)-restricted epitopes, we measured during infection of heterozygote mice, immune responses to three distinct epitopes, all expressed by members of the trans-sialidase family, recognized by H-2K(b)-, H-2K(k)-, or H-2K(d)-restricted CD8(+) T cells. Infected heterozygote or homozygote mice displayed comparably strong immune responses to the H-2K(b)-restricted immunodominant epitope. In contrast, H-2K(k)- or H-2K(d)-restricted immune responses were significantly impaired in heterozygote infected mice when compared with homozygote ones. This interference was not dependent on the dose of parasite or the timing of infection. Also, it was not seen in heterozygote mice immunized with recombinant adenoviruses expressing T. cruzi Ags. Finally, we observed that the immunodominance was circumvented by concomitant infection with two T. cruzi strains containing distinct immunodominant epitopes, suggesting that the operating mechanism most likely involves competition of T cells for limiting APCs. This type of interference never described during infection with a human parasite may represent a sophisticated strategy to restrict priming of CD8(+) T cells of distinct specificities, avoiding complete pathogen elimination by host effector cells, and thus favoring host parasitism.

  15. Dynamics of Tissue-Specific CD8+ T Cell Responses during West Nile Virus Infection.

    PubMed

    Aguilar-Valenzuela, Renan; Netland, Jason; Seo, Young-Jin; Bevan, Michael J; Grakoui, Arash; Suthar, Mehul S

    2018-05-15

    The mouse model of West Nile virus (WNV), which is a leading cause of mosquito-borne encephalitis worldwide, has provided fundamental insights into the host and viral factors that regulate viral pathogenesis and infection outcome. In particular, CD8 + T cells are critical for controlling WNV replication and promoting protection against infection. Here, we present the characterization of a T cell receptor (TCR)-transgenic mouse with specificity for the immunodominant epitope in the WNV NS4B protein (here referred to as transgenic WNV-I mice). Using an adoptive-transfer model, we found that WNV-I CD8 + T cells behave similarly to endogenous CD8 + T cell responses, with an expansion phase in the periphery beginning around day 7 postinfection (p.i.) followed by a contraction phase through day 15 p.i. Through the use of in vivo intravascular immune cell staining, we determined the kinetics, expansion, and differentiation into effector and memory subsets of WNV-I CD8 + T cells within the spleen and brain. We found that red-pulp WNV-I CD8 + T cells were more effector-like than white-pulp WNV-I CD8 + T cells, which displayed increased differentiation into memory precursor cells. Within the central nervous system (CNS), we found that WNV-I CD8 + T cells were polyfunctional (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]), displayed tissue-resident characteristics (CD69 + and CD103 + ), persisted in the brain through day 15 p.i., and reduced the viral burden within the brain. The use of these TCR-transgenic WNV-I mice provides a new resource to dissect the immunological mechanisms of CD8 + T cell-mediated protection during WNV infection. IMPORTANCE West Nile Virus (WNV) is the leading cause of mosquito-borne encephalitis worldwide. There are currently no approved therapeutics or vaccines for use in humans to treat or prevent WNV infection. CD8 + T cells are critical for controlling WNV replication and protecting against infection. Here, we present a

  16. Relationship between Functional Profile of HIV-1 Specific CD8 T Cells and Epitope Variability with the Selection of Escape Mutants in Acute HIV-1 Infection

    PubMed Central

    Goonetilleke, Nilu; Liu, Michael K. P.; Turnbull, Emma L.; Salazar-Gonzalez, Jesus F.; Hawkins, Natalie; Self, Steve; Watson, Sydeaka; Betts, Michael R.; Gay, Cynthia; McGhee, Kara; Pellegrino, Pierre; Williams, Ian; Tomaras, Georgia D.; Haynes, Barton F.; Gray, Clive M.; Borrow, Persephone; Roederer, Mario; McMichael, Andrew J.; Weinhold, Kent J.

    2011-01-01

    In the present study, we analyzed the functional profile of CD8+ T-cell responses directed against autologous transmitted/founder HIV-1 isolates during acute and early infection, and examined whether multifunctionality is required for selection of virus escape mutations. Seven anti-retroviral therapy-naïve subjects were studied in detail between 1 and 87 weeks following onset of symptoms of acute HIV-1 infection. Synthetic peptides representing the autologous transmitted/founder HIV-1 sequences were used in multiparameter flow cytometry assays to determine the functionality of HIV-1-specific CD8+ T memory cells. In all seven patients, the earliest T cell responses were predominantly oligofunctional, although the relative contribution of multifunctional cell responses increased significantly with time from infection. Interestingly, only the magnitude of the total and not of the poly-functional T-cell responses was significantly associated with the selection of escape mutants. However, the high contribution of MIP-1β-producing CD8+ T-cells to the total response suggests that mechanisms not limited to cytotoxicity could be exerting immune pressure during acute infection. Lastly, we show that epitope entropy, reflecting the capacity of the epitope to tolerate mutational change and defined as the diversity of epitope sequences at the population level, was also correlated with rate of emergence of escape mutants. PMID:21347345

  17. The generation of CD8+ T-cell population specific for vaccinia virus epitope involved in the antiviral protection against ectromelia virus challenge.

    PubMed

    Gierynska, Malgorzata; Szulc-Dabrowska, Lidia; Dzieciatkowski, Tomasz; Golke, Anna; Schollenberger, Ada

    2015-12-01

    Eradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required. Discovering that orthopoxviruses, e.g. variola virus, vaccinia virus, ectromelia virus, share common immunodominant antigen, may result in the development of such a vaccine. In our study, the generation of antigen-specific CD8(+) T cells in mice during the acute and memory phase of the immune response was induced using the vaccinia virus immunodominant TSYKFESV epitope and CpG oligodeoxynucleotides as adjuvants. The role of the generated TSYKFESV-specific CD8(+) T cells was evaluated in mice during ectromelia virus infection using systemic and mucosal model. Moreover, the involvement of dendritic cells subsets in the adaptive immune response stimulation was assessed. Our results indicate that the TSYKFESV epitope/TLR9 agonist approach, delivered systemically or mucosally, generated strong CD8(+) T-cell response when measured 10 days after immunization. Furthermore, the TSYKFESV-specific cell population remained functionally active 2 months post-immunization, and gave cross-protection in virally challenged mice, even though the numbers of detectable antigen-specific T cells decreased. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. CD8 T cell response and evolutionary pressure to HIV-1 cryptic epitopes derived from antisense transcription

    PubMed Central

    Carlson, Jonathan; Yan, Jiyu; Akinsiku, Olusimidele T.; Schaefer, Malinda; Sabbaj, Steffanie; Bet, Anne; Levy, David N.; Heath, Sonya; Tang, Jianming; Kaslow, Richard A.; Walker, Bruce D.; Ndung’u, Thumbi; Goulder, Philip J.; Heckerman, David; Hunter, Eric; Goepfert, Paul A.

    2010-01-01

    Retroviruses pack multiple genes into relatively small genomes by encoding several genes in the same genomic region with overlapping reading frames. Both sense and antisense HIV-1 transcripts contain open reading frames for known functional proteins as well as numerous alternative reading frames (ARFs). At least some ARFs have the potential to encode proteins of unknown function, and their antigenic properties can be considered as cryptic epitopes (CEs). To examine the extent of active immune response to virally encoded CEs, we analyzed human leukocyte antigen class I–associated polymorphisms in HIV-1 gag, pol, and nef genes from a large cohort of South Africans with chronic infection. In all, 391 CEs and 168 conventional epitopes were predicted, with the majority (307; 79%) of CEs derived from antisense transcripts. In further evaluation of CD8 T cell responses to a subset of the predicted CEs in patients with primary or chronic infection, both sense- and antisense-encoded CEs were immunogenic at both stages of infection. In addition, CEs often mutated during the first year of infection, which was consistent with immune selection for escape variants. These findings indicate that the HIV-1 genome might encode and deploy a large potential repertoire of unconventional epitopes to enhance vaccine-induced antiviral immunity. PMID:20065064

  19. Costimulatory Effects of an Immunodominant Parasite Antigen Paradoxically Prevent Induction of Optimal CD8 T Cell Protective Immunity.

    PubMed

    Eickhoff, Christopher S; Zhang, Xiuli; Vasconcelos, Jose R; Motz, R Geoffrey; Sullivan, Nicole L; O'Shea, Kelly; Pozzi, Nicola; Gohara, David W; Blase, Jennifer R; Di Cera, Enrico; Hoft, Daniel F

    2016-09-01

    Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T

  20. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8+ T Cell Responses with Distinct Clonotype and Epitope Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; Robinson, H.; Wang, R.

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less

  1. Broadening CD4+ and CD8+ T Cell Responses against Hepatitis C Virus by Vaccination with NS3 Overlapping Peptide Panels in Cross-Priming Liposomes

    PubMed Central

    Filskov, Jonathan; Mikkelsen, Marianne; Hansen, Paul R.; Christensen, Jan P.; Thomsen, Allan R.; Andersen, Peter; Agger, Else Marie

    2017-01-01

    ABSTRACT Despite the introduction of effective drugs to treat patients with chronic hepatitis C virus (HCV) infection, a vaccine would be the only means to substantially reduce the worldwide disease burden. An incomplete understanding of how HCV interacts with its human host and evades immune surveillance has hampered vaccine development. It is generally accepted that in infected individuals, a narrow repertoire of exhausted T cells is a hallmark of persistent infection, whereas broad, vigorous CD4+ and CD8+ T cell responses are associated with control of acute hepatitis C. We employed a vaccine approach based on a mixture of peptides (pepmix) spanning the entire sequence of HCV nonstructural protein 3 (NS3) in cross-priming cationic liposomes (CAF09) to facilitate a versatile presentation of all possible T cell epitopes, regardless of the HLA background of the vaccine recipient. Here, we demonstrate that vaccination of mice with NS3 pepmix broadens the repertoire of epitope-specific T cells compared to the corresponding recombinant protein (rNS3). Moreover, vaccination with rNS3 induced only CD4+ T cells, whereas the NS3 pepmix induced a far more vigorous CD4+ T cell response and was as potent a CD8+ T cell inducer as an adenovirus-vectored vaccine expressing NS3. Importantly, the cellular responses are dominated by multifunctional T cells, such as gamma interferon-positive (IFN-γ+) tumor necrosis factor alpha-positive (TNF-α+) coproducers, and displayed cytotoxic capacity in mice. In conclusion, we present a novel vaccine approach against HCV, inducing a broadened T cell response targeting both immunodominant and potential subdominant epitopes, which may be key elements to counter T cell exhaustion and prevent chronicity. IMPORTANCE With at least 700,000 annual deaths, development of a vaccine against hepatitis C virus (HCV) has high priority, but the tremendous ability of the virus to dodge the human immune system poses great challenges. Furthermore, many

  2. Human CD4 T cell epitopes selective for Vaccinia versus Variola virus.

    PubMed

    Probst, Alicia; Besse, Aurore; Favry, Emmanuel; Imbert, Gilles; Tanchou, Valérie; Castelli, Florence Anne; Maillere, Bernard

    2013-04-01

    Due to the high degree of sequence identity between Orthopoxvirus species, the specific B and T cell responses raised against these viruses are largely cross-reactive and poorly selective. We therefore searched for CD4 T cell epitopes present in the conserved parts of the Vaccinia genome (VACV) but absent from Variola viruses (VARV), with a view to identifying immunogenic sequences selective for VACV. We identified three long peptide fragments from the B7R, B10R and E7R proteins by in silico comparisons of the poxvirus genomes, and evaluated the recognition of these fragments by VACV-specific T cell lines derived from healthy donors. For the 12 CD4 T cell epitopes identified, we assessed their binding to common HLA-DR allotypes and their capacity to induce peptide-specific CD4 T-cell lines. Four peptides from B7R and B10R displayed a broad binding specificity for HLA-DR molecules and induced multiple T cell lines from healthy donors. Besides their absence from VARV, the two B10R peptide sequences were mutated in the Cowpox virus and completely absent from the Monkeypox genome. This work contributes to the development of differential diagnosis of poxvirus infections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic CD8 + T cells and protects against herpes simplex virus type 2 challenge

    PubMed Central

    Dasgupta, G; Nesburn, AB; Wu, M; Zhu, X; Carpenter, D; Wechsler, SL; You, S; BenMohamed, L

    2015-01-01

    The next generation of needle-free mucosal vaccines is being rationally designed according to rules that govern the way in which the epitopes are recognized by and stimulate the genital mucosal immune system. We hypothesized that synthetic peptide epitopes extended with an agonist of Toll-like receptor 2 (TLR-2), that are abundantly expressed by dendritic and epithelial cells of the vaginal mucosa, would lead to induction of protective immunity against genital herpes. To test this hypothesis, we intravaginally (IVAG) immunized wild-type B6, TLR-2 (TLR2 −/−) or myeloid differentiation factor 88 deficient (MyD88 −/−) mice with a herpes simplex virus type 2 (HSV-2) CD8 + T-cell peptide epitope extended by a palmitic acid moiety (a TLR-2 agonist). IVAG delivery of the lipopeptide generated HSV-2-specific memory CD8 + cytotoxic T cells both locally in the genital tract draining lymph nodes and systemically in the spleen. Moreover, lipopeptide-immunized TLR2 −/− and MyD88 −/− mice developed significantly less HSV-specific CD8 + T-cell response, earlier death, faster disease progression, and higher vaginal HSV-2 titers compared to lipopeptide-immunized wild-type B6 mice. IVAG immunization with self-adjuvanting lipid-tailed peptides appears to be a novel mucosal vaccine approach, which has attractive practical and immunological features. PMID:19129756

  4. Persistence, immune specificity, and functional ability of murine mutant ras epitope-specific CD4(+) and CD8(+) T lymphocytes following in vivo adoptive transfer.

    PubMed

    Bristol, J A; Schlom, J; Abrams, S I

    1999-05-25

    Adoptive T-cell transfer has been shown to be a potentially effective strategy for cellular immunotherapy in some murine models of disease. However, several issues remain unresolved regarding some of the basic features involved in effective adoptive transfer, such as the influence of specific peptide antigen (Ag) boost after T-cell transfer, the addition of IL-2 post-T-cell transfer, the trafficking of transferred T cells to lymphoid and nonlymphoid tissues, and the functional stability of recoverable CD4(+) and CD8(+) T cells. We investigated several of these parameters, particularly as they relate to the persistence and maintenance of effector functions of murine CD4(+) and/or CD8(+) T lymphocytes after adoptive cellular transfer into partially gamma-irradiated syngeneic hosts. Our laboratory previously identified murine (H-2(d)) immunogenic CD4(+) and CD8(+) T-cell peptide epitopes reflecting codon 12 ras mutations as tumor-specific Ag. Therefore, the model system chosen here employed epitope-specific MHC class II-restricted CD4(+) T cells and MHC class I-restricted CD8(+) T cells produced from previously immunized BALB/c mice. Between 2 and 7 days after T-cell transfer, recipient mice received various combinations of peptide boosts and/or IL-2 treatments. At different times after the T-cell transfer, spleen and lung tissues were analyzed phenotypically to monitor the persistence of the immune T cells and functionally (via proliferation or cytotoxicity assays) to assess the maintenance of peptide specificity. The results showed that immune donor T lymphocytes (uncultured immune T cells or cloned T cells) were recoverable from the spleens and lungs of recipient mice after transfer. The recovery of Ag-specific T-cell responses was greatest from recipient mice that received peptide boosts and IL-2 treatment. However, mice that received a peptide boost without IL-2 treatment responded nearly as well, which suggested that including a peptide boost after T

  5. Sequence conservation, HLA-E-Restricted peptide, and best-defined CTL/CD8+ epitopes in gag P24 (capsid) of HIV-1 subtype B

    NASA Astrophysics Data System (ADS)

    Prasetyo, Afiono Agung; Dharmawan, Ruben; Sari, Yulia; Sariyatun, Ratna

    2017-02-01

    Human immunodeficiency virus type 1 (HIV-1) remains a cause of global health problem. Continuous studies of HIV-1 genetic and immunological profiles are important to find strategies against the virus. This study aimed to conduct analysis of sequence conservation, HLA-E-restricted peptide, and best-defined CTL/CD8+ epitopes in p24 (capsid) of HIV-1 subtype B worldwide. The p24-coding sequences from 3,557 HIV subtype B isolates were aligned using MUSCLE and analysed. Some highly conserved regions (sequence conservation ≥95%) were observed. Two considerably long series of sequences with conservation of 100% was observed at base 349-356 and 550-557 of p24 (HXB2 numbering). The consensus from all aligned isolates was precisely the same as consensus B in the Los Alamos HIV Database. The HLA-E-restricted peptide in amino acid (aa) 14-22 of HIV-1 p24 (AISPRTLNA) was found in 55.9% (1,987/3,557) of HIV-1 subtype B worldwide. Forty-four best-defined CTL/CD8+ epitopes were observed, in which VKNWMTETL epitope (aa 181-189 of p24) restricted by B*4801 was the most frequent, as found in 94.9% of isolates. The results of this study would contribute information about HIV-1 subtype B and benefits for further works willing to develop diagnostic and therapeutic strategies against the virus.

  6. Cooperation between Epstein-Barr Virus Immune Evasion Proteins Spreads Protection from CD8+ T Cell Recognition across All Three Phases of the Lytic Cycle

    PubMed Central

    Quinn, Laura L.; Zuo, Jianmin; Abbott, Rachel J. M.; Shannon-Lowe, Claire; Tierney, Rosemary J.; Hislop, Andrew D.; Rowe, Martin

    2014-01-01

    CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IEepitopes. Together, these data firstly indicate which potential immune-evasion functions are actually relevant in the context of lytic virus replication, and secondly identify lytic-cycle phase-specific effects that provide mechanistic insight

  7. Vaccine Targeting of Subdominant CD8+ T Cell Epitopes Increases the Breadth of the T Cell Response upon Viral Challenge, but May Impair Immediate Virus Control.

    PubMed

    Steffensen, Maria A; Pedersen, Louise H; Jahn, Marie L; Nielsen, Karen N; Christensen, Jan P; Thomsen, Allan R

    2016-03-15

    As a result of the difficulties in making efficient vaccines against genetically unstable viruses such as HIV, it has been suggested that future vaccines should preferentially target subdominant epitopes, the idea being that this should allow a greater breadth of the induced T cell response and, hence, a greater efficiency in controlling escape variants. However, to our knowledge the evidence supporting this concept is limited at best. To improve upon this, we used the murine lymphocytic choriomeningitis virus model and adenoviral vectors to compare a vaccine expressing unmodified Ag to a vaccine expressing the same Ag without its immunodominant epitope. We found that removal of the dominant epitope allowed the induction of CD8(+) T cell responses targeting at least two otherwise subdominant epitopes. Importantly, the overall magnitude of the induced T cell responses was similar, allowing us to directly compare the efficiency of these vaccines. Doing this, we observed that mice vaccinated with the vaccine expressing unmodified Ag more efficiently controlled an acute viral challenge. In the course of a more chronic viral infection, mice vaccinated using the vaccine targeting subdominant epitopes caught up with the conventionally vaccinated mice, and analysis of the breadth of the CD8(+) T cell response revealed that this was notably greater in the former mice. However, under the conditions of our studies, we never saw any functional advantage of this. This may represent a limitation of our model, but clearly our findings underscore the importance of carefully weighing the pros and cons of changes in epitope targeting before any implementation. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. A Novel HLA-B18 Restricted CD8+ T Cell Epitope Is Efficiently Cross-Presented by Dendritic Cells from Soluble Tumor Antigen

    PubMed Central

    Chan, Kok-Fei; Oveissi, Sara; Jackson, Heather M.; Dimopoulos, Nektaria; Guillaume, Philippe; Knights, Ashley J.; Lowen, Tamara; Robson, Neil C.; Russell, Sarah E.; Scotet, Emmanuel; Davis, Ian D.; Maraskovsky, Eugene; Cebon, Jonathan; Luescher, Immanuel F.; Chen, Weisan

    2012-01-01

    NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8+ T cell epitope, NY-ESO-188–96 (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1157–165 epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-188–96 is much more efficiently cross-presented from the soluble form, than NY-ESO-1157–165. On the other hand, NY-ESO-1157–165 is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A26–35; whereas NY-ESO-188–96 was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-188–96 is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18+ melanoma patients. Surprisingly, all the detectable responses to NY-ESO-188–96 from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8+ T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed. PMID:22970293

  9. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8plus T Cell Responses with Distinct Clonotype and Epitope Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Honda; R Wang; W Kong

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less

  10. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes

    PubMed Central

    Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  11. Of Mice and not Humans: How Reliable are Animal Models for Evaluation of Herpes CD8+-T cell-Epitopes-Based Immunotherapeutic Vaccine Candidates?

    PubMed Central

    Dasgupta, Gargi; BenMohamed, Lbachir

    2011-01-01

    Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) -specific CD8+ T cells that reside in sensory ganglia, appears to control recurrent herpetic disease by aborting or reducing spontaneous and sporadic reactivations of latent virus. A reliable animal model is the ultimate key factor to test the efficacy of therapeutic vaccines that boost the level and the quality of sensory ganglia-resident CD8+ T cells against spontaneous herpes reactivation from sensory neurons, yet its relevance has been often overlooked. Herpes vaccinologists are hesitant about using mouse as a model in pre-clinical development of therapeutic vaccines because they do not adequately mimic spontaneous viral shedding or recurrent symptomatic diseases, as occurs in human. Alternatives to mouse models are rabbits and guinea pigs in which reactivation arise spontaneously with clinical features relevant to human disease. However, while rabbits and guinea pigs develop spontaneous HSV reactivation and recurrent ocular and genital disease none of them can mount CD8+ T cell responses specific to Human Leukocyte Antigen- (HLA-) restricted epitopes. In this review, we discuss the advantages and limitations of these animal models and describe a novel “humanized” HLA transgenic rabbit, which shows spontaneous HSV-1 reactivation, recurrent ocular disease and mounts CD8+ T cell responses to HLA-restricted epitopes. Adequate investments are needed to develop reliable preclinical animal models, such as HLA class I and class II double transgenic rabbits and guinea pigs to balance the ethical and financial concerns associated with the rising number of unsuccessful clinical trials for therapeutic vaccine formulations tested in unreliable mouse models. PMID:21718746

  12. Antigen-Specific CD8+ T Cells Fail To Respond to Shigella flexneri ▿

    PubMed Central

    Jehl, Stephanie P.; Doling, Amy M.; Giddings, Kara S.; Phalipon, Armelle; Sansonetti, Philippe J.; Goldberg, Marcia B.; Starnbach, Michael N.

    2011-01-01

    CD8+ T lymphocytes often play a primary role in adaptive immunity to cytosolic microbial pathogens. Surprisingly, CD8+ T cells are not required for protective immunity to the enteric pathogen Shigella flexneri, despite the ability of Shigella to actively secrete proteins into the host cytoplasm, a location from which antigenic peptides are processed for presentation to CD8+ T cells. To determine why CD8+ T cells fail to play a role in adaptive immunity to S. flexneri, we investigated whether antigen-specific CD8+ T cells are primed during infection but are unable to confer protection or, alternatively, whether T cells fail to be primed. To test whether Shigella is capable of stimulating an antigen-specific CD8+ T-cell response, we created an S. flexneri strain that constitutively secretes a viral CD8+ T-cell epitope via the Shigella type III secretion system and characterized the CD8+ T-cell response to this strain both in mice and in cultured cells. Surprisingly, no T cells specific for the viral epitope were stimulated in mice infected with this strain, and cells infected with the recombinant strain were not targeted by epitope-specific T cells. Additionally, we found that the usually robust T-cell response to antigens artificially introduced into the cytoplasm of cultured cells was significantly reduced when the antigen-presenting cell was infected with Shigella. Collectively, these results suggest that antigen-specific CD8+ T cells are not primed during S. flexneri infection and, as a result, afford little protection to the host during primary or subsequent infection. PMID:21357720

  13. B cell cross-epitope of Propionibacterium acnes and Actinobacillus pleuropneumonia selected by phage display library can efficiently protect from Actinobacillus pleuropneumonia infection.

    PubMed

    Liu, Jianfang; Ma, Qiuyue; Yang, Feng; Zhu, Rining; Gu, Jingmin; Sun, Changjiang; Feng, Xin; Du, Chongtao; Langford, Paul R; Han, Wenyu; Yang, Junling; Lei, Liancheng

    2017-06-01

    Contagious porcine pleuropneumonia (CPP), caused by Actinobacillus pleuropneumoniae (APP), is a highly transmissible and fatal respiratory illness that causes tremendous economic losses for the pig breeding industry worldwide. Propionibacterium acnes (PA) has a strong cross-reaction with anti-APP1 and anti-APP5 serum and can efficiently prevent APP infection, which was fortuitously found in researching the differential gene between the different APP serotypes. There seems to be some natural cross-protection between PA and APP. To identify the common epitope, the phage display library of a PA whole genome was constructed, whose size is 10 5 . The DNA sequence of the positive clone was determined after three rounds of biopanning, and ten common protein types were identified and the epitope was predicted by computer software. Six peptide epitopes were selected and synthesized for further analysis. Among these epitopes, Ba1, Bb5 and C1 could bind to anti-PA serum and anti-APP1 serum and vice versa. Furthermore, the IgG and IL-4 levels and CD4 + /CD8 + T cell ratios in the Ba1, Bb5 and C1 groups were significantly higher than that in the control group, indicating that the epitopes could trigger an immune response, which was mainly humoral immunity. Moreover, Ba1 and Bb5 equally protected 80% of mice from a fatal dose of APP1 infection compared with the control group. Mice could resist APP1 and APP5 challenge after being treated with the combination of Ba1 and Bb5, with survival rates of 80% and 90%, respectively. These findings suggest that the PA epitope confers antigenicity and can heterologously resist to the APP infection. This finding provides a novel strategy for preventing APP infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2.

    PubMed

    Braendstrup, Peter; Mortensen, Bo Kok; Justesen, Sune; Osterby, Thomas; Rasmussen, Michael; Hansen, Andreas Martin; Christiansen, Claus Bohn; Hansen, Morten Bagge; Nielsen, Morten; Vindeløv, Lars; Buus, Søren; Stryhn, Anette

    2014-01-01

    Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.

  15. Identification and HLA-Tetramer-Validation of Human CD4+ and CD8+ T Cell Responses against HCMV Proteins IE1 and IE2

    PubMed Central

    Braendstrup, Peter; Mortensen, Bo Kok; Justesen, Sune; Østerby, Thomas; Rasmussen, Michael; Hansen, Andreas Martin; Christiansen, Claus Bohn; Hansen, Morten Bagge; Nielsen, Morten; Vindeløv, Lars; Buus, Søren; Stryhn, Anette

    2014-01-01

    Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy. PMID:24760079

  16. The Breadth of Synthetic Long Peptide Vaccine-Induced CD8+ T Cell Responses Determines the Efficacy against Mouse Cytomegalovirus Infection

    PubMed Central

    Panagioti, Eleni; Redeker, Anke; van Duikeren, Suzanne; Franken, Kees LMC; Drijfhout, Jan Wouter; van der Burg, Sjoerd H.

    2016-01-01

    There is an ultimate need for efficacious vaccines against human cytomegalovirus (HCMV), which causes severe morbidity and mortality among neonates and immunocompromised individuals. In this study we explored synthetic long peptide (SLP) vaccination as a platform modality to protect against mouse CMV (MCMV) infection in preclinical mouse models. In both C57BL/6 and BALB/c mouse strains, prime-booster vaccination with SLPs containing MHC class I restricted epitopes of MCMV resulted in the induction of strong and polyfunctional (i.e., IFN-γ+, TNF+, IL-2+) CD8+ T cell responses, equivalent in magnitude to those induced by the virus itself. SLP vaccination initially led to the formation of effector CD8+ T cells (KLRG1hi, CD44hi, CD127lo, CD62Llo), which eventually converted to a mixed central and effector-memory T cell phenotype. Markedly, the magnitude of the SLP vaccine-induced CD8+ T cell response was unrelated to the T cell functional avidity but correlated to the naive CD8+ T cell precursor frequency of each epitope. Vaccination with single SLPs displayed various levels of long-term protection against acute MCMV infection, but superior protection occurred after vaccination with a combination of SLPs. This finding underlines the importance of the breadth of the vaccine-induced CD8+ T cell response. Thus, SLP-based vaccines could be a potential strategy to prevent CMV-associated disease. PMID:27637068

  17. A Herpes Simplex Virus Type 1 Human Asymptomatic CD8+ T-Cell Epitopes-Based Vaccine Protects Against Ocular Herpes in a “Humanized” HLA Transgenic Rabbit Model

    PubMed Central

    Srivastava, Ruchi; Khan, Arif A.; Huang, Jiawei; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2015-01-01

    Purpose. A clinical vaccine that protects from ocular herpes simplex virus type 1 (HSV-1) infection and disease still is lacking. In the present study, preclinical vaccine trials of nine asymptomatic (ASYMP) peptides, selected from HSV-1 glycoproteins B (gB), and tegument proteins VP11/12 and VP13/14, were performed in the “humanized” HLA–transgenic rabbit (HLA-Tg rabbit) model of ocular herpes. We recently reported that these peptides are highly recognized by CD8+ T cells from “naturally” protected HSV-1–seropositive healthy ASYMP individuals (who have never had clinical herpes disease). Methods. Mixtures of three ASYMP CD8+ T-cell peptides derived from either HSV-1 gB, VP11/12, or VP13/14 were delivered subcutaneously to different groups of HLA-Tg rabbits (n = 10) in incomplete Freund's adjuvant, twice at 15-day intervals. The frequency and function of HSV-1 epitope-specific CD8+ T cells induced by these peptides and their protective efficacy, in terms of survival, virus replication in the eye, and ocular herpetic disease were assessed after an ocular challenge with HSV-1 (strain McKrae). Results. All mixtures elicited strong and polyfunctional IFN-γ– and TNF-α–producing CD107+CD8+ cytotoxic T cells, associated with a significant reduction in death, ocular herpes infection, and disease (P < 0.015). Conclusions. The results of this preclinical trial support the screening strategy used to select the HSV-1 ASYMP CD8+ T-cell epitopes, emphasize their valuable immunogenic and protective efficacy against ocular herpes, and provide a prototype vaccine formulation that may be highly efficacious for preventing ocular herpes in humans. PMID:26098469

  18. Asymptomatic memory CD8+ T cells

    PubMed Central

    Khan, Arif Azam; Srivastava, Ruchi; Lopes, Patricia Prado; Wang, Christine; Pham, Thanh T; Cochrane, Justin; Thai, Nhi Thi Uyen; Gutierrez, Lucas; BenMohamed, Lbachir

    2014-01-01

    Generation and maintenance of high quantity and quality memory CD8+ T cells determine the level of protection from viral, bacterial, and parasitic re-infections, and hence constitutes a primary goal for T cell epitope-based human vaccines and immunotherapeutics. Phenotypically and functionally characterizing memory CD8+ T cells that provide protection against herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) infections, which cause blinding ocular herpes, genital herpes, and oro-facial herpes, is critical for better vaccine design. We have recently categorized 2 new major sub-populations of memory symptomatic and asymptomatic CD8+ T cells based on their phenotype, protective vs. pathogenic function, and anatomical locations. In this report we are discussing a new direction in developing T cell-based human herpes vaccines and immunotherapeutics based on the emerging new concept of “symptomatic and asymptomatic memory CD8+ T cells.” PMID:24499824

  19. Efficient induction of CD25- iTreg by co-immunization requires strongly antigenic epitopes for T cells.

    PubMed

    Geng, Shuang; Yu, Yang; Kang, Youmin; Pavlakis, George; Jin, Huali; Li, Jinyao; Hu, Yanxin; Hu, Weibin; Wang, Shuang; Wang, Bin

    2011-05-05

    We previously showed that co-immunization with a protein antigen and a DNA vaccine coding for the same antigen induces CD40 low IL-10 high tolerogenic DCs, which in turn stimulates the expansion of antigen-specific CD4+CD25-Foxp3+ regulatory T cells (CD25- iTreg). However, it was unclear how to choose the antigen sequence to maximize tolerogenic antigen presentation and, consequently, CD25- iTreg induction. In the present study, we demonstrated the requirement of highly antigenic epitopes for CD25- iTreg induction. Firstly, we showed that the induction of CD25- iTreg by tolerogenic DC can be blocked by anti-MHC-II antibody. Next, both the number and the suppressive activity of CD25- iTreg correlated positively with the overt antigenicity of an epitope to activate T cells. Finally, in a mouse model of dermatitis, highly antigenic epitopes derived from a flea allergen not only induced more CD25- iTreg, but also more effectively prevented allergenic reaction to the allergen than did weakly antigenic epitopes. Our data thus indicate that efficient induction of CD25- iTreg requires highly antigenic peptide epitopes. This finding suggests that highly antigenic epitopes should be used for efficient induction of CD25- iTreg for clinical applications such as flea allergic dermatitis.

  20. Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of merkel cell polyomavirus large T antigen

    PubMed Central

    2012-01-01

    Background Merkel cell carcinoma (MCC) is a relatively new addition to the expanding category of oncovirus-induced cancers. Although still comparably rare, the number of cases has risen dramatically in recent years. Further complicating this trend is that MCC is an extremely aggressive neoplasm with poor patient prognosis and limited treatment options for advanced disease. The causative agent of MCC has been identified as the merkel cell polyomavirus (MCPyV). The MCPyV-encoded large T (LT) antigen is an oncoprotein that is theorized to be essential for virus-mediated tumorigenesis and is therefore, an excellent MCC antigen for the generation of antitumor immune responses. As a foreign antigen, the LT oncoprotein avoids the obstacle of immune tolerance, which normally impedes the development of antitumor immunity. Ergo, it is an excellent target for anti-MCC immunotherapy. Since tumor-specific CD8+ T cells lead to better prognosis for MCC and numerous other cancers, we have generated a DNA vaccine that is capable of eliciting LT-specific CD8+ T cells. The DNA vaccine (pcDNA3-CRT/LT) encodes the LT antigen linked to a damage-associated molecular pattern, calreticulin (CRT), as it has been demonstrated that the linkage of CRT to antigens promotes the induction of antigen-specific CD8+ T cells. Results The present study shows that DNA vaccine-induced generation of LT-specific CD8+ T cells is augmented by linking CRT to the LT antigen. This is relevant since the therapeutic effects of the pcDNA3-CRT/LT DNA vaccine is mediated by LT-specific CD8+ T cells. Mice vaccinated with the DNA vaccine produced demonstrably more LT-specific CD8+ T cells. The DNA vaccine was also able to confer LT-specific CD8+ T cell-mediated protective and therapeutic effects to prolong the survival of mice with LT-expressing tumors. In the interest of determining the LT epitope which most MCC-specific CD8+ T cells recognize, we identified the amino acid sequence of the immunodominant LT epitope

  1. Selection Pressure in CD8+ T-cell Epitopes in the pol Gene of HIV-1 Infected Individuals in Colombia. A Bioinformatic Approach

    PubMed Central

    Acevedo-Sáenz, Liliana; Ochoa, Rodrigo; Rugeles, Maria Teresa; Olaya-García, Patricia; Velilla-Hernández, Paula Andrea; Diaz, Francisco J.

    2015-01-01

    One of the main characteristics of the human immunodeficiency virus is its genetic variability and rapid adaptation to changing environmental conditions. This variability, resulting from the lack of proofreading activity of the viral reverse transcriptase, generates mutations that could be fixed either by random genetic drift or by positive selection. Among the forces driving positive selection are antiretroviral therapy and CD8+ T-cells, the most important immune mechanism involved in viral control. Here, we describe mutations induced by these selective forces acting on the pol gene of HIV in a group of infected individuals. We used Maximum Likelihood analyses of the ratio of non-synonymous to synonymous mutations per site (dN/dS) to study the extent of positive selection in the protease and the reverse transcriptase, using 614 viral sequences from Colombian patients. We also performed computational approaches, docking and algorithmic analyses, to assess whether the positively selected mutations affected binding to the HLA molecules. We found 19 positively-selected codons in drug resistance-associated sites and 22 located within CD8+ T-cell epitopes. A high percentage of mutations in these epitopes has not been previously reported. According to the docking analyses only one of those mutations affected HLA binding. However, algorithmic methods predicted a decrease in the affinity for the HLA molecule in seven mutated peptides. The bioinformatics strategies described here are useful to identify putative positively selected mutations associated with immune escape but should be complemented with an experimental approach to define the impact of these mutations on the functional profile of the CD8+ T-cells. PMID:25803098

  2. A recombinant chimeric protein composed of human and mice-specific CD4+ and CD8+ T-cell epitopes protects against visceral leishmaniasis.

    PubMed

    Martins, V T; Duarte, M C; Lage, D P; Costa, L E; Carvalho, A M R S; Mendes, T A O; Roatt, B M; Menezes-Souza, D; Soto, M; Coelho, E A F

    2017-01-01

    In this study, a recombinant chimeric protein (RCP), which was composed of specific CD4 + and CD8 + T-cell epitopes to murine and human haplotypes, was evaluated as an immunogen against Leishmania infantum infection in a murine model. BALB/c mice received saline were immunized with saponin or with RCP with or without an adjuvant. The results showed that RCP/saponin-vaccinated mice presented significantly higher levels of antileishmanial IFN-γ, IL-12 and GM-CSF before and after challenge, which were associated with the reduction of IL-4 and IL-10 mediated responses. These animals showed significant reductions in the parasite burden in all evaluated organs, when both limiting dilution and quantitative real-time PCR techniques were used. In addition, the protected animals presented higher levels of parasite-specific nitrite, as well as the presence of anti-Leishmania IgG2a isotype antibodies. In conclusion, the RCP/saponin vaccine could be considered as a prophylactic alternative to prevent against VL. © 2016 John Wiley & Sons Ltd.

  3. Identification of two novel immunodominant UreB CD4(+) T cell epitopes in Helicobacter pylori infected subjects.

    PubMed

    Yang, Wu-Chen; Chen, Li; Li, Hai-Bo; Li, Bin; Hu, Jian; Zhang, Jin-Yong; Yang, Shi-Ming; Zou, Quan-Ming; Guo, Hong; Wu, Chao

    2013-02-06

    An epitope-based vaccine is a promising option for treating Helicobacter pylori (H. pylori) infection. Epitope mapping is the first step in designing an epitope-based vaccine. A pivotal role of CD4(+) T cells in protection against H. pylori has been accepted, but few Th epitopes have been identified. In this study, two novel UreB CD4(+) T cell epitopes were identified using PBMCs obtained from two H. pylori infected subjects. We determined the restriction molecules by antibody blocking and used various Epstein-Barr virus-transformed B lymphocyte cell lines (BLCLs) with different HLA alleles as APCs to present peptides to CD4(+) T cells. These epitopes were DRB1*1404-restricted UreB(373-385) and DRB1*0803-restricted UreB(438-452). The T cells specific to these epitopes not only recognized autologous DCs loaded with recombinant UreB but also those pulsed with H. pylori whole cell lysates, suggesting that these epitope peptides are naturally processed. These epitopes have important value for designing an effective H. pylori vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Montanide, Poly I:C and nanoparticle based vaccines promote differential suppressor and effector cell expansion: a study of induction of CD8 T cells to a minimal Plasmodium berghei epitope.

    PubMed

    Wilson, Kirsty L; Xiang, Sue D; Plebanski, Magdalena

    2015-01-01

    The development of practical and flexible vaccines to target liver stage malaria parasites would benefit from an ability to induce high levels of CD8 T cells to minimal peptide epitopes. Herein we compare different adjuvant and carrier systems in a murine model for induction of interferon gamma (IFN-γ) producing CD8 T cells to the minimal immuno-dominant peptide epitope from the circumsporozoite protein (CSP) of Plasmodium berghei, pb9 (SYIPSAEKI, referred to as KI). Two pro-inflammatory adjuvants, Montanide and Poly I:C, and a non-classical, non-inflammatory nanoparticle based carrier (polystyrene nanoparticles, PSNPs), were compared side-by-side for their ability to induce potentially protective CD8 T cell responses after two immunizations. KI in Montanide (Montanide + KI) or covalently conjugated to PSNPs (PSNPs-KI) induced such high responses, whereas adjuvanting with Poly I:C or PSNPs without conjugation was ineffective. This result was consistent with an observed induction of an immunosuppressed environment by Poly I:C in the draining lymph node (dLN) 48 h post injection, which was reflected by increased frequencies of myeloid derived suppressor cells (MDSCs) and a proportion of inflammation reactive regulatory T cells (Treg) expressing the tumor necrosis factor receptor 2 (TNFR2), as well as decreased dendritic cell (DC) maturation. The other inflammatory adjuvant, Montanide, also promoted proportional increases in the TNFR2(+) Treg subpopulation, but not MDSCs, in the dLN. By contrast, injection with non-inflammatory PSNPs did not cause these changes. Induction of high CD8 T cell responses, using minimal peptide epitopes, can be achieved by non-inflammatory carrier nanoparticles, which in contrast to some conventional inflammatory adjuvants, do not expand either MDSCs or inflammation reactive Tregs at the site of priming.

  5. Identification of NY-BR-1-specific CD4(+) T cell epitopes using HLA-transgenic mice.

    PubMed

    Gardyan, Adriane; Osen, Wolfram; Zörnig, Inka; Podola, Lilli; Agarwal, Maria; Aulmann, Sebastian; Ruggiero, Eliana; Schmidt, Manfred; Halama, Niels; Leuchs, Barbara; von Kalle, Christof; Beckhove, Philipp; Schneeweiss, Andreas; Jäger, Dirk; Eichmüller, Stefan B

    2015-06-01

    Breast cancer represents the second most common cancer type worldwide and has remained the leading cause of cancer-related deaths among women. The differentiation antigen NY-BR-1 appears overexpressed in invasive mammary carcinomas compared to healthy breast tissue, thus representing a promising target antigen for T cell based tumor immunotherapy approaches. Since efficient immune attack of tumors depends on the activity of tumor antigen-specific CD4(+) effector T cells, NY-BR-1 was screened for the presence of HLA-restricted CD4(+) T cell epitopes that could be included in immunological treatment approaches. Upon NY-BR-1-specific DNA immunization of HLA-transgenic mice and functional ex vivo analysis, a panel of NY-BR-1-derived library peptides was determined that specifically stimulated IFNγ secretion among splenocytes of immunized mice. Following in silico analyses, four candidate epitopes were determined which were successfully used for peptide immunization to establish NY-BR-1-specific, HLA-DRB1*0301- or HLA-DRB1*0401-restricted CD4(+) T cell lines from splenocytes of peptide immunized HLA-transgenic mice. Notably, all four CD4(+) T cell lines recognized human HLA-DR-matched dendritic cells (DC) pulsed with lysates of NY-BR-1 expressing human tumor cells, demonstrating natural processing of these epitopes also within the human system. Finally, CD4(+) T cells specific for all four CD4(+) T cell epitopes were detectable among PBMC of breast cancer patients, showing that CD4(+) T cell responses against the new epitopes are not deleted nor inactivated by self-tolerance mechanisms. Our results present the first NY-BR-1-specific HLA-DRB1*0301- and HLA-DRB1*0401-restricted T cell epitopes that could be exploited for therapeutic intervention against breast cancer. © 2014 UICC.

  6. Epitope-dependent mechanisms of CD27 neutralization revealed by X-ray crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obmolova, Galina; Teplyakov, Alexey; Malia, Thomas J.

    CD27 is a T and B cell co-stimulatory protein of the TNF receptor superfamily dependent on the availability of the TNF-like ligand CD70. Two anti-CD27 neutralizing monoclonal antibodies were obtained from mouse hybridoma and subsequently humanized and optimized for binding the target. The two antibodies are similar in terms of their CD27-binding affinity and ability to block NF-κB signaling, however their clearance rates in monkeys are very different. The pharmacokinetics profiles could be epitope dependent. To identify the epitopes, we determined the crystal structure of the ternary complex between CD27 and the Fab fragments of these non-competing antibodies. The structuremore » reveals the binding modes of the antibodies suggesting that their mechanisms of action are distinctly different and provides a possible explanation of the in vivo data.« less

  7. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane.

    PubMed

    James, Scott E; Greenberg, Philip D; Jensen, Michael C; Lin, Yukang; Wang, Jinjuan; Till, Brian G; Raubitschek, Andrew A; Forman, Stephen J; Press, Oliver W

    2008-05-15

    We have targeted CD22 as a novel tumor-associated Ag for recognition by human CTL genetically modified to express chimeric TCR (cTCR) recognizing this surface molecule. CD22-specific cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR(+) CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR(+) CTL exhibited lower levels of maximum lysis and lower Ag sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of Ag engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope, but constructed as a truncated CD22 molecule to approximate the length of a TCR:peptide-MHC complex. The reduced sensitivity of CD22-specific cTCR(+) CTL for Ag-induced triggering of effector functions has potential therapeutic applications, because such cells selectively lysed B cell lymphoma lines expressing high levels of CD22, but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength, and consequently Ag sensitivity, can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate Ag density.

  8. HIV-1 V3 loop crown epitope-focused mimotope selection by patient serum from random phage display libraries: implications for the epitope structural features.

    PubMed

    Gazarian, Karlen G; Palacios-Rodríguez, Yadira; Gazarian, Tatiana G; Huerta, Leonor

    2013-06-01

    The crown region of the V3 loop in HIV-1 that contains the conserved amino acid sequence GPGR/G is known as the principal neutralizing determinant due to the extraordinary ability of antibodies to this region to neutralize the virus. To complement the existing peptide models of this epitope, we describe a family of 18 phage-displayed peptides, which include linear 12mer and constrained 7mer peptides that was selected by screening random libraries with serum from HIV-1 subtype B-infected patients. The 7mer constrained peptides presented two conserved amino acid sequences: PR-L in N-terminus and GPG in the C-terminus. On the basis of these peptides we propose a mimotope model of the V3 crown epitope in which the PR-L and GPG sequences represent the two known epitope binding sites. The GPG, has the same function as the V3 crown GPGR sequence but without the involvement of the "R" despite its being considered as the signature of the epitope in B-subtype viruses. The PR-L contains a proline not existing in the epitope that is postulated to induce kinks in the backbones of all peptides and create a spatial element mimicking the N-terminal conformationally variable binding site. Rabbit serum to these mimotopes recognized the V3 peptides and moderately decreased the fusion between HIV-1 Env- and CD4-expressing Jurkat cells. This study proposes the efficient generation by means of patient sera of V3 epitope mimics validated by interaction with the antibodies to contemporary viruses induced in patients. The serum antibody-selectable mimotopes are sources of novel information on the fine structure-function properties of HIV-1 principal neutralizing domain and candidate anti-HIV-1 immunogens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors.

    PubMed

    Culina, Slobodan; Lalanne, Ana Ines; Afonso, Georgia; Cerosaletti, Karen; Pinto, Sheena; Sebastiani, Guido; Kuranda, Klaudia; Nigi, Laura; Eugster, Anne; Østerbye, Thomas; Maugein, Alicia; McLaren, James E; Ladell, Kristin; Larger, Etienne; Beressi, Jean-Paul; Lissina, Anna; Appay, Victor; Davidson, Howard W; Buus, Søren; Price, David A; Kuhn, Matthias; Bonifacio, Ezio; Battaglia, Manuela; Caillat-Zucman, Sophie; Dotta, Francesco; Scharfmann, Raphael; Kyewski, Bruno; Mallone, Roberto; Carel, Jean-Claude; Tubiana-Rufi, Nadia; Martinerie, Laetitia; Poidvin, Amélie; JacqzAigrain, Evelyne; Corvez, Laurence; Berruer, Véronique; Gautier, Jean-François; Baz, Baz; Haddadi, Nassima; Andreelli, Fabrizio; Amouyal, Chloé; Jaqueminet, Sophie; Bourron, Olivier; Dasque, Eric; Hartemann, Agnès; Lemoine-Yazigi, Amal; Dubois-Laforgue, Danièle; Travert, Florence; Feron, Marilyne; Rolland, Patrice; Vignali, Valérie; Marre, Michel; Chanson, Philippe; Briet, Claire; Guillausseau, Pierre-Jean; Ait-Bachir, Leila; Collet, Carole; Beziaud, Frédéric; Desforges-Bullet, Virginie; Petit-Aubert, Gwenaelle; Christin-Maitre, Sophie; Fève, Bruno; Vatier, Camille; Bourcigaux, Nathalie; Lautridou, Céline; Lahlou, Najiba; Bakouboula, Prissile; Elie, Caroline; Morel, Hélène; Treluyer, Jean-Marc; Gagnerault, Marie-Claude; Maillard, Claire; Jones, Anna

    2018-02-02

    The human leukocyte antigen-A2 (HLA-A2)-restricted zinc transporter 8 186-194 (ZnT8 186-194 ) and other islet epitopes elicit interferon-γ secretion by CD8 + T cells preferentially in type 1 diabetes (T1D) patients compared with controls. We show that clonal ZnT8 186-194 -reactive CD8 + T cells express private T cell receptors and display equivalent functional properties in T1D and healthy individuals. Ex vivo analyses further revealed that CD8 + T cells reactive to ZnT8 186-194 and other islet epitopes circulate at similar frequencies and exhibit a predominantly naïve phenotype in age-matched T1D and healthy donors. Higher frequencies of ZnT8 186-194 -reactive CD8 + T cells with a more antigen-experienced phenotype were detected in children versus adults, irrespective of disease status. Moreover, some ZnT8 186-194 -reactive CD8 + T cell clonotypes were found to cross-recognize a Bacteroides stercoris mimotope. Whereas ZnT8 was poorly expressed in thymic medullary epithelial cells, variable thymic expression levels of islet antigens did not modulate the peripheral frequency of their cognate CD8 + T cells. In contrast, ZnT8 186-194 -reactive cells were enriched in the pancreata of T1D patients versus nondiabetic and type 2 diabetic individuals. Thus, islet-reactive CD8 + T cells circulate in most individuals but home to the pancreas preferentially in T1D patients. We conclude that the activation of this common islet-reactive T cell repertoire and progression to T1D likely require defective peripheral immunoregulation and/or a proinflammatory islet microenvironment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. A 12-residue epitope displayed on phage T7 reacts strongly with antibodies against foot-and-mouth disease virus.

    PubMed

    Wong, Chuan Loo; Yong, Chean Yeah; Muhamad, Azira; Syahir, Amir; Omar, Abdul Rahman; Sieo, Chin Chin; Tan, Wen Siang

    2018-05-01

    Foot-and-mouth disease (FMD) is a major threat to the livestock industry worldwide. Despite constant surveillance and effective vaccination, the perpetual mutations of the foot-and-mouth disease virus (FMDV) pose a huge challenge to FMD diagnosis. The immunodominant region of the FMDV VP1 protein (residues 131-170) displayed on phage T7 has been used to detect anti-FMDV in bovine sera. In the present study, the functional epitope was further delineated using amino acid sequence alignment, homology modelling and phage display. Two highly conserved regions (VP1 145-152 and VP1 159-170 ) were identified among different FMDV serotypes. The coding regions of these two epitopes were fused separately to the T7 genome and displayed on the phage particles. Interestingly, chimeric phage displaying the VP1 159-170 epitope demonstrated a higher antigenicity than that displaying the VP1 131-170 epitope. By contrast, phage T7 displaying the VP1 145-152 epitope did not react significantly with the anti-FMDV antibodies in vaccinated bovine sera. This study has successfully identified a smaller functional epitope, VP1 159-170 , located at the C-terminal end of the structural VP1 protein. The phage T7 displaying this shorter epitope is a promising diagnostic reagent to detect anti-FMDV antibodies in vaccinated animals.

  11. Identification and Localization of Minimal MHC-restricted CD8+ T Cell Epitopes within the Plasmodium falciparum AMA1 Protein

    DTIC Science & Technology

    2010-08-24

    A01/A02 B44/B44 002 A01/A02 B08/B44 005 A01/A02 B08/ B27 008 A02/A03 B27 / B27 012 A01/A03 B44/B58 Low resolution molecular HLA typing permitted...Fourteen 8-10-mer epitopes were predicted to bind to HLA supertypes A01 (3 epitopes), A02 (4 epitopes), B08 (2 epitopes) and B44 (5 epitopes). Nine...of seven HLA alleles. These HLA alleles belong to four HLA supertypes that have a phenotypic frequency between 23% - 100% in different human

  12. Ex vivo detection of adenovirus specific CD4{sup +} T-cell responses to HLA-DR-epitopes of the Hexon protein show a contracted specificity of T{sub HELPER} cells following stem cell transplantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serangeli, Celine; Bicanic, Oliver; Scheible, Michael H.

    2010-02-20

    Human adenovirus (HAdV) is a cause of significant morbidity and mortality in immunocompromised patients, especially after stem cell transplantation (SCT). Viral clearance has been attributed to CD4{sup +} T-cell responses against the Hexon-protein, but the frequency of specific T{sub HELPER} cells is extremely low or not detectable ex vivo and preference for different CD4{sup +} T-cell epitopes is variable among individuals. We therefore analyzed 44 healthy donors and 6 SCT-recipients for Hexon-specific CD4{sup +}-responses ex vivo, to identify epitopes which would be broadly applicable. We selected 19 candidate epitopes with predicted restriction to HLA-DR1/DR3/DR4/DR7; 16 were located within the highlymore » conserved regions, indicating cross-reactivity of T cells among HAdV-subspecies. Ten epitopes induced CD4{sup +}-proliferation in >50% of individuals, confirmed by intracellular IFN-gamma detection. Three SCT recipients who recovered from an infection with HAdV displayed reactivity towards only a single hexon epitope, whereas healthy individuals were responsive to two to eight epitopes (median 3). The ex vivo detection of Hexon-specific CD4{sup +} T-cells, without any long-term culture in vitro, enables the detection and generation of HAdV-specific CD4{sup +} T cells for adoptive T-cell transfer against HAdV-infection post SCT.« less

  13. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design.

    PubMed

    Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik; Hsu, Catherine; Schneemann, Anette; Manchester, Marianne; Olson, Mark; Reddy, Vijay

    2009-05-25

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NDelta52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and image reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T=1, T=3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.

  14. Identification of Relevant Conformational Epitopes on the HER2 Oncoprotein by Using Large Fragment Phage Display (LFPD)

    PubMed Central

    Gabrielli, Federico; Salvi, Roberto; Garulli, Chiara; Kalogris, Cristina; Arima, Serena; Tardella, Luca; Monaci, Paolo; Pupa, Serenella M.; Tagliabue, Elda; Montani, Maura; Quaglino, Elena; Stramucci, Lorenzo; Curcio, Claudia

    2013-01-01

    We developed a new phage-display based approach, the Large Fragment Phage Display (LFPD), that can be used for mapping conformational epitopes on target molecules of immunological interest. LFPD uses a simplified and more effective phage-display approach in which only a limited set of larger fragments (about 100 aa in length) are expressed on the phage surface. Using the human HER2 oncoprotein as a target, we identified novel B-cell conformational epitopes. The same homologous epitopes were also detected in rat HER2 and all corresponded to the epitopes predicted by computational analysis (PEPITO software), showing that LFPD gives reproducible and accurate results. Interestingly, these newly identified HER2 epitopes seem to be crucial for an effective immune response against HER2-overexpressing breast cancers and might help discriminating between metastatic breast cancer and early breast cancer patients. Overall, the results obtained in this study demonstrated the utility of LFPD and its potential application to the detection of conformational epitopes on many other molecules of interest, as well as, the development of new and potentially more effective B-cell conformational epitopes based vaccines. PMID:23555577

  15. Potential contribution of a novel Tax epitope-specific CD4+ T cells to graft-versus-Tax effect in adult T cell leukemia patients after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Tamai, Yotaro; Hasegawa, Atsuhiko; Takamori, Ayako; Sasada, Amane; Tanosaki, Ryuji; Choi, Ilseung; Utsunomiya, Atae; Maeda, Yasuhiro; Yamano, Yoshihisa; Eto, Tetsuya; Koh, Ki-Ryang; Nakamae, Hirohisa; Suehiro, Youko; Kato, Koji; Takemoto, Shigeki; Okamura, Jun; Uike, Naokuni; Kannagi, Mari

    2013-04-15

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for adult T cell leukemia/lymphoma (ATL) caused by human T cell leukemia virus type 1 (HTLV-1). We previously reported that Tax-specific CD8(+) cytotoxic T lymphocyte (CTL) contributed to graft-versus-ATL effects in ATL patients after allo-HSCT. However, the role of HTLV-1-specific CD4(+) T cells in the effects remains unclear. In this study, we showed that Tax-specific CD4(+) as well as CD8(+) T cell responses were induced in some ATL patients following allo-HSCT. To further analyze HTLV-1-specific CD4(+) T cell responses, we identified a novel HLA-DRB1*0101-restricted epitope, Tax155-167, recognized by HTLV-1-specific CD4(+) Th1-like cells, a major population of HTLV-1-specific CD4(+) T cell line, which was established from an ATL patient at 180 d after allo-HSCT from an unrelated seronegative donor by in vitro stimulation with HTLV-1-infected cells from the same patient. Costimulation of PBMCs with both the identified epitope (Tax155-167) and known CTL epitope peptides markedly enhanced the expansion of Tax-specific CD8(+) T cells in PBMCs compared with stimulation with CTL epitope peptide alone in all three HLA-DRB1*0101(+) patients post-allo-HSCT tested. In addition, direct detection using newly generated HLA-DRB1*0101/Tax155-167 tetramers revealed that Tax155-167-specific CD4(+) T cells were present in all HTLV-1-infected individuals tested, regardless of HSCT. These results suggest that Tax155-167 may be the dominant epitope recognized by HTLV-1-specific CD4(+) T cells in HLA-DRB1*0101(+)-infected individuals and that Tax-specific CD4(+) T cells may augment the graft-versus-Tax effects via efficient induction of Tax-specific CD8(+) T cell responses.

  16. Preclinical Assessment of CD171-Directed CAR T-cell Adoptive Therapy for Childhood Neuroblastoma: CE7 Epitope Target Safety and Product Manufacturing Feasibility.

    PubMed

    Künkele, Annette; Taraseviciute, Agne; Finn, Laura S; Johnson, Adam J; Berger, Carolina; Finney, Olivia; Chang, Cindy A; Rolczynski, Lisa S; Brown, Christopher; Mgebroff, Stephanie; Berger, Michael; Park, Julie R; Jensen, Michael C

    2017-01-15

    The identification and vetting of cell surface tumor-restricted epitopes for chimeric antigen receptor (CAR)-redirected T-cell immunotherapy is the subject of intensive investigation. We have focused on CD171 (L1-CAM), an abundant cell surface molecule on neuroblastomas and, specifically, on the glycosylation-dependent tumor-specific epitope recognized by the CE7 monoclonal antibody. CD171 expression was assessed by IHC using CE7 mAb in tumor microarrays of primary, metastatic, and recurrent neuroblastoma, as well as human and rhesus macaque tissue arrays. The safety of targeting the CE7 epitope of CD171 with CE7-CAR T cells was evaluated in a preclinical rhesus macaque trial on the basis of CD171 homology and CE7 cross reactivity. The feasibility of generating bioactive CAR T cells from heavily pretreated pediatric patients with recurrent/refractory disease was assessed. CD171 is uniformly and abundantly expressed by neuroblastoma tumor specimens obtained at diagnoses and relapse independent of patient clinical risk group. CD171 expression in normal tissues is similar in humans and rhesus macaques. Infusion of up to 1 × 10 8 /kg CE7-CAR + CTLs in rhesus macaques revealed no signs of specific on-target off-tumor toxicity. Manufacturing of lentivirally transduced CD4 + and CD8 + CE7-CAR T-cell products under GMP was successful in 4 out of 5 consecutively enrolled neuroblastoma patients in a phase I study. All four CE7-CAR T-cell products demonstrated in vitro and in vivo antitumor activity. Our preclinical assessment of the CE7 epitope on CD171 supports its utility and safety as a CAR T-cell target for neuroblastoma immunotherapy. Clin Cancer Res; 23(2); 466-77. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response.

    PubMed

    Akondy, Rama S; Monson, Nathan D; Miller, Joseph D; Edupuganti, Srilatha; Teuwen, Dirk; Wu, Hong; Quyyumi, Farah; Garg, Seema; Altman, John D; Del Rio, Carlos; Keyserling, Harry L; Ploss, Alexander; Rice, Charles M; Orenstein, Walter A; Mulligan, Mark J; Ahmed, Rafi

    2009-12-15

    The live yellow fever vaccine (YF-17D) offers a unique opportunity to study memory CD8(+) T cell differentiation in humans following an acute viral infection. We have performed a comprehensive analysis of the virus-specific CD8(+) T cell response using overlapping peptides spanning the entire viral genome. Our results showed that the YF-17D vaccine induces a broad CD8(+) T cell response targeting several epitopes within each viral protein. We identified a dominant HLA-A2-restricted epitope in the NS4B protein and used tetramers specific for this epitope to track the CD8(+) T cell response over a 2 year period. This longitudinal analysis showed the following. 1) Memory CD8(+) T cells appear to pass through an effector phase and then gradually down-regulate expression of activation markers and effector molecules. 2) This effector phase was characterized by down-regulation of CD127, Bcl-2, CCR7, and CD45RA and was followed by a substantial contraction resulting in a pool of memory T cells that re-expressed CD127, Bcl-2, and CD45RA. 3) These memory cells were polyfunctional in terms of degranulation and production of the cytokines IFN-gamma, TNF-alpha, IL-2, and MIP-1beta. 4) The YF-17D-specific memory CD8(+) T cells had a phenotype (CCR7(-)CD45RA(+)) that is typically associated with terminally differentiated cells with limited proliferative capacity (T(EMRA)). However, these cells exhibited robust proliferative potential showing that expression of CD45RA may not always associate with terminal differentiation and, in fact, may be an indicator of highly functional memory CD8(+) T cells generated after acute viral infections.

  18. Molecular modeling and in-silico engineering of Cardamom mosaic virus coat protein for the presentation of immunogenic epitopes of Leptospira LipL32.

    PubMed

    Kumar, Vikram; Damodharan, S; Pandaranayaka, Eswari P J; Madathiparambil, Madanan G; Tennyson, Jebasingh

    2016-01-01

    Expression of Cardamom mosaic virus (CdMV) coat protein (CP) in E. coli forms virus-like particles. In this study, the structure of CdMV CP was predicted and used as a platform to display epitopes of the most abundant surface-associated protein, LipL32 of Leptospira at C, N, and both the termini of CdMV CP. In silico, we have mapped sequential and conformational B-cell epitopes from the crystal structure of LipL32 of Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 using IEDB Elipro, ABCpred, BCPRED, and VaxiJen servers. Our results show that the epitopes displayed at the N-terminus of CdMV CP are promising vaccine candidates as compared to those displayed at the C-terminus or at both the termini. LipL32 epitopes, EP2, EP3, EP4, and EP6 are found to be promising B-cell epitopes for vaccine development. Based on the type of amino acids, length, surface accessibility, and docking energy with CdMV CP model, the order of antigenicity of the LipL32 epitopes was found to be EP4 > EP3 > EP2 > EP6.

  19. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik

    2009-05-25

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NDELTA52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and imagemore » reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T = 1, T = 3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.« less

  20. Characterization of CD8+ T-cell response in acute and resolved hepatitis A virus infection.

    PubMed

    Schulte, I; Hitziger, T; Giugliano, S; Timm, J; Gold, H; Heinemann, F M; Khudyakov, Y; Strasser, M; König, C; Castermans, E; Mok, J Y; van Esch, W J E; Bertoletti, A; Schumacher, T N; Roggendorf, M

    2011-02-01

    In contrast to the infection with other hepatotropic viruses, hepatitis A virus (HAV) always causes acute self-limited hepatitis, although the role for virus-specific CD8 T cells in viral containment is unclear. Herein, we analyzed the T cell response in patients with acute hepatitis by utilizing a set of overlapping peptides and predicted HLA-A2 binders from the polyprotein. A set of 11 predicted peptides from the HAV polyprotein, identified as potential binders, were synthesized. Peripheral blood mononuclear cells (PBMCs) from patients were tested for IFNγ secretion after stimulation with these peptides and ex vivo with HLA-A2 tetramers. Phenotyping was carried out by staining with the activation marker CD38 and the memory marker CD127. Eight out of 11 predicted HLA-A2 binders showed a high binding affinity and five of them were recognized by CD8+ T cells from patients with hepatitis A. There were significant differences in the magnitude of the responses to these five peptides. One was reproducibly immunodominant and the only one detectable ex vivo by tetramer staining of CD8+ T cells. These cells have an activated phenotype (CD38hi CD127lo) during acute infection. Three additional epitopes were identified in HLA-A2 negative patients, most likely representing epitopes restricted by other HLA-class I-alleles (HLA-A11, B35, B40). Patients with acute hepatitis A have a strong multi-specific T cell response detected by ICS. With the tetramer carrying the dominant HLA-A2 epitope, HAV-specific and activated CD8+ T cells could be detected ex vivo. This first description of the HAV specific CTL-epitopes will allow future studies on strength, breadth, and kinetics of the T-cell response in hepatitis A. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  1. Phage display peptide libraries in molecular allergology: from epitope mapping to mimotope-based immunotherapy.

    PubMed

    Luzar, J; Štrukelj, B; Lunder, M

    2016-11-01

    Identification of allergen epitopes is a key component in proper understanding of the pathogenesis of type I allergies, for understanding cross-reactivity and for the development of mimotope immunotherapeutics. Phage particles have garnered recognition in the field of molecular allergology due to their value not only in competitive immunoscreening of peptide libraries but also as immunogenic carriers of allergen mimotopes. They integrate epitope discovery technology and immunization functions into a single platform. This article provides an overview of allergen mimotopes identified through the phage display technique. We discuss the contribution of phage display peptide libraries in determining dominant B-cell epitopes of allergens, in developing mimotope immunotherapy, in understanding cross-reactivity, and in determining IgE epitope profiles of individual patients to improve diagnostics and individualize immunotherapy. We also discuss the advantages and pitfalls of the methodology used to identify and validate the mimotopes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. The molecular determinants of CD8 co-receptor function.

    PubMed

    Cole, David K; Laugel, Bruno; Clement, Mathew; Price, David A; Wooldridge, Linda; Sewell, Andrew K

    2012-10-01

    CD8(+) T cells respond to signals mediated through a specific interaction between the T-cell receptor (TCR) and a composite antigen in the form of an epitopic peptide bound between the polymorphic α1 and α2 helices of an MHC class I (MHCI) molecule. The CD8 glycoprotein 'co-receives' antigen by binding to an invariant region of the MHCI molecule and can enhance ligand recognition by up to 1 million-fold. In recent years, a number of structural and biophysical investigations have shed light on the role of the CD8 co-receptor during T-cell antigen recognition. Here, we provide a collated resource for these data, and discuss how the structural and biophysical parameters governing CD8 co-receptor function further our understanding of T-cell cross-reactivity and the productive engagement of low-affinity antigenic ligands. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  3. Enforced OX40 Stimulation Empowers Booster Vaccines to Induce Effective CD4+ and CD8+ T Cell Responses against Mouse Cytomegalovirus Infection

    PubMed Central

    Panagioti, Eleni; Boon, Louis; Arens, Ramon; van der Burg, Sjoerd H.

    2017-01-01

    There is an imperative need for effective preventive vaccines against human cytomegalovirus as it poses a significant threat to the immunologically immature, causing congenital disease, and to the immune compromised including transplant recipients. In this study, we examined the efficacy of synthetic long peptides (SLPs) as a CD4+ and CD8+ T cell-eliciting preventive vaccine approach against mouse CMV (MCMV) infection. In addition, the use of agonistic OX40 antibodies to enhance vaccine efficacy was explored. Immunocompetent C57BL/6 mice were vaccinated in a prime-boost vaccination regiment with SLPs comprising various MHC class I- and II-restricted peptide epitopes of MCMV-encoded antigens. Enforced OX40 stimulation resulted in superior MCMV-specific CD4+ as CD8+ T cell responses when applied during booster SLP vaccination. Vaccination with a mixture of SLPs containing MHC class II epitopes and OX40 agonistic antibodies resulted in a moderate reduction of the viral titers after challenge with lytic MCMV infection. Markedly, the combination of SLP vaccines containing both MHC class I and II epitopes plus OX40 activation during booster vaccination resulted in polyfunctional (i.e., IFN-γ+, TNF+, IL-2+) CD4+ and CD8+ T cell responses that were even higher in magnitude when compared to those induced by the virus, and this resulted in the best containment of virus dissemination. Our results show that the induction of strong T cell responses can be a fundamental component in the design of vaccines against persistent viral infections. PMID:28265272

  4. Antigen sensitivity of CD22-specific chimeric T cell receptors is modulated by target epitope distance from the cell membrane

    PubMed Central

    James, Scott E.; Greenberg, Philip D.; Jensen, Michael C.; Lin, Yukang; Wang, Jinjuan; Till, Brian G.; Raubitschek, Andrew A.; Forman, Stephen J.; Press, Oliver W.

    2008-01-01

    We have targeted CD22 as a novel tumor-associated antigen for recognition by human CTL genetically modified to express chimeric T cell receptors (cTCR) recognizing this surface molecule. CD22-specifc cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR+ CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR+ CTL exhibited lower levels of maximum lysis and lower antigen sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of antigen engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope but constructed as a truncated CD22 molecule to approximate the length of a TCR:pMHC complex. The reduced sensitivity of CD22-specific cTCR+ CTL for antigen-induced triggering of effector functions has potential therapeutic applications, as such cells selectively lysed B cell lymphoma lines expressing high levels of CD22 but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength – and consequently antigen sensitivity – can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate antigen density. PMID:18453625

  5. Broad-Spectrum Inhibition of HIV-1 by a Monoclonal Antibody Directed against a gp120-Induced Epitope of CD4

    PubMed Central

    Burastero, Samuele E.; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo

    2011-01-01

    To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1. PMID:21818294

  6. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    PubMed

    Burastero, Samuele E; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo

    2011-01-01

    To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  7. Human influenza viruses and CD8(+) T cell responses.

    PubMed

    Grant, Emma J; Quiñones-Parra, Sergio M; Clemens, E Bridie; Kedzierska, Katherine

    2016-02-01

    Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Upregulation of interleukin 7 receptor alpha and programmed death 1 marks an epitope-specific CD8+ T-cell response that disappears following primary Epstein-Barr virus infection.

    PubMed

    Sauce, Delphine; Larsen, Martin; Abbott, Rachel J M; Hislop, Andrew D; Leese, Alison M; Khan, Naeem; Papagno, Laura; Freeman, Gordon J; Rickinson, Alan B

    2009-09-01

    In immunocompetent individuals, the stability of the herpesvirus-host balance limits opportunities to study the disappearance of a virus-specific CD8(+) T-cell response. However, we noticed that in HLA-A 0201-positive infectious mononucleosis (IM) patients undergoing primary Epstein-Barr virus (EBV) infection, the initial CD8 response targets three EBV lytic antigen-derived epitopes, YVLDHLIVV (YVL), GLCTLVAML (GLC), and TLDYKPLSV (TLD), but only the YVL and GLC reactivities persist long-term; the TLD response disappears within 10 to 27 months. While present, TLD-specific cells remained largely indistinguishable from YVL and GLC reactivities in many phenotypic and functional respects but showed unique temporal changes in two markers of T-cell fate, interleukin 7 receptor alpha (IL-7Ralpha; CD127) and programmed death 1 (PD-1). Thus, following the antigen-driven downregulation of IL-7Ralpha seen on all populations in acute IM, in every case, the TLD-specific population recovered expression unusually quickly post-IM. As well, in four of six patients studied, TLD-specific cells showed very strong PD-1 upregulation in the last blood sample obtained before the cells' disappearance. Our data suggest that the disappearance of this individual epitope reactivity from an otherwise stable EBV-specific response (i) reflects a selective loss of cognate antigen restimulation (rather than of IL-7-dependent signals) and (ii) is immediately preceded, and perhaps mediated, by PD-1 upregulation to unprecedented levels.

  9. Epitope diversification driven by non-tumor epitope-specific Th1 and Th17 mediates potent antitumor reactivity.

    PubMed

    Ichikawa, Kosuke; Kagamu, Hiroshi; Koyama, Kenichi; Miyabayashi, Takao; Koshio, Jun; Miura, Satoru; Watanabe, Satoshi; Yoshizawa, Hirohisa; Narita, Ichiei

    2012-09-21

    MHC class I-restricted peptide-based vaccination therapies have been conducted to treat cancer patients, because CD8⁺ CTL can efficiently induce apoptosis of tumor cells in an MHC class I-restricted epitope-specific manner. Interestingly, clinical responders are known to demonstrate reactivity to epitopes other than those used for vaccination; however, the mechanism underlying how antitumor T cells with diverse specificity are induced is unclear. In this study, we demonstrated that dendritic cells (DCs) that engulfed apoptotic tumor cells in the presence of non-tumor MHC class II-restricted epitope peptides, OVA(323-339), efficiently presented tumor-associated antigens upon effector-dominant CD4⁺ T cell balance against regulatory T cells (Treg) for the OVA(323-339) epitope. Th1 and Th17 induced tumor-associated antigens presentation of DC, while Th2 ameliorated tumor-antigen presentation for CD8⁺ T cells. Blocking experiments with anti-IL-23p19 antibody and anti-IL-23 receptor indicated that an autocrine mechanism of IL-23 likely mediated the diverted tumor-associated antigens presentation of DC. Tumor-associated antigens presentation of DC induced by OVA(323-339) epitope-specific CD4⁺ T cells resulted in facilitated antitumor immunity in both priming and effector phase in vivo. Notably, this immunotherapy did not require pretreatment to reduce Treg induced by tumor. This strategy may have clinical implications for designing effective antitumor immunotherapies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. In Silico Analysis of Six Known Leishmania major Antigens and In Vitro Evaluation of Specific Epitopes Eliciting HLA-A2 Restricted CD8 T Cell Response

    PubMed Central

    Seyed, Negar; Zahedifard, Farnaz; Safaiyan, Shima; Gholami, Elham; Doustdari, Fatemeh; Azadmanesh, Kayhan; Mirzaei, Maryam; Saeedi Eslami, Nasir; Khadem Sadegh, Akbar; Eslami far, Ali; Sharifi, Iraj; Rafati, Sima

    2011-01-01

    Background As a potent CD8+ T cell activator, peptide vaccine has found its way in vaccine development against intracellular infections and cancer, but not against leishmaniasis. The first step toward a peptide vaccine is epitope mapping of different proteins according to the most frequent HLA types in a population. Methods and Findings Six Leishmania (L.) major-related candidate antigens (CPB,CPC,LmsTI-1,TSA,LeIF and LPG-3) were screened for potential CD8+ T cell activating 9-mer epitopes presented by HLA-A*0201 (the most frequent HLA-A allele). Online software including SYFPEITHI, BIMAS, EpiJen, Rankpep, nHLApred, NetCTL and Multipred were used. Peptides were selected only if predicted by almost all programs, according to their predictive scores. Pan-A2 presentation of selected peptides was confirmed by NetMHCPan1.1. Selected peptides were pooled in four peptide groups and the immunogenicity was evaluated by in vitro stimulation and intracellular cytokine assay of PBMCs from HLA-A2+ individuals recovered from L. major. HLA-A2− individuals recovered from L. major and HLA-A2+ healthy donors were included as control groups. Individual response of HLA-A2+ recovered volunteers as percent of CD8+/IFN-γ+ T cells after in vitro stimulation against peptide pools II and IV was notably higher than that of HLA-A2− recovered individuals. Based on cutoff scores calculated from the response of HLA-A2− recovered individuals, 31.6% and 13.3% of HLA-A2+ recovered persons responded above cutoff in pools II and IV, respectively. ELISpot and ELISA results confirmed flow cytometry analysis. The response of HLA-A2− recovered individuals against peptide pools I and III was detected similar and even higher than HLA-A2+ recovered individuals. Conclusion Using in silico prediction we demonstrated specific response to LmsTI-1 (pool II) and LPG-3- (pool IV) related peptides specifically presented in HLA-A*0201 context. This is among the very few reports mapping L. major epitopes for

  11. Structural Influence on the Dominance of Virus-Specific CD4 T Cell Epitopes in Zika Virus Infection.

    PubMed

    Koblischke, Maximilian; Stiasny, Karin; Aberle, Stephan W; Malafa, Stefan; Tschouchnikas, Georgios; Schwaiger, Julia; Kundi, Michael; Heinz, Franz X; Aberle, Judith H

    2018-01-01

    Zika virus (ZIKV) has recently caused explosive outbreaks in Pacific islands, South- and Central America. Like with other flaviviruses, protective immunity is strongly dependent on potently neutralizing antibodies (Abs) directed against the viral envelope protein E. Such Ab formation is promoted by CD4 T cells through direct interaction with B cells that present epitopes derived from E or other structural proteins of the virus. Here, we examined the extent and epitope dominance of CD4 T cell responses to capsid (C) and envelope proteins in Zika patients. All patients developed ZIKV-specific CD4 T cell responses, with substantial contributions of C and E. In both proteins, immunodominant epitopes clustered at sites that are structurally conserved among flaviviruses but have highly variable sequences, suggesting a strong impact of protein structural features on immunodominant CD4 T cell responses. Our data are particularly relevant for designing flavivirus vaccines and their evaluation in T cell assays and provide insights into the importance of viral protein structure for epitope selection and antigenicity.

  12. Single Insulin-Specific CD8+ T Cells Show Characteristic Gene Expression Profiles in Human Type 1 Diabetes

    PubMed Central

    Luce, Sandrine; Lemonnier, François; Briand, Jean-Paul; Coste, Joel; Lahlou, Najiba; Muller, Sylviane; Larger, Etienne; Rocha, Benedita; Mallone, Roberto; Boitard, Christian

    2011-01-01

    OBJECTIVE Both the early steps and the high recurrence of autoimmunity once the disease is established are unexplained in human type 1 diabetes. Because CD8+ T cells are central and insulin is a key autoantigen in the disease process, our objective was to characterize HLA class I–restricted autoreactive CD8+ T cells specific for preproinsulin (PPI) in recent-onset and long-standing type 1 diabetic patients and healthy control subjects. RESEARCH DESIGN AND METHODS We used HLA-A*02:01 tetramers complexed to PPI peptides to enumerate circulating PPI-specific CD8+ T cells in patients and characterize them using membrane markers and single-cell PCR. RESULTS Most autoreactive CD8+ T cells detected in recent-onset type 1 diabetic patients are specific for leader sequence peptides, notably PPI6–14, whereas CD8+ T cells in long-standing patients recognize the B-chain peptide PPI33–42 (B9–18). Both CD8+ T-cell specificities are predominantly naïve, central, and effector memory cells, and their gene expression profile differs from cytomegalovirus-specific CD8+ T cells. PPI6–14–specific CD8+ T cells detected in one healthy control displayed Il-10 mRNA expression, which was not observed in diabetic patients. CONCLUSIONS PPI-specific CD8+ T cells in type 1 diabetic patients include central memory and target different epitopes in new-onset versus long-standing disease. Our data support the hypothesis that insulin therapy may contribute to the expansion of autoreactive CD8+ T cells in the long term. PMID:21998398

  13. Application of phage peptide display technology for the study of food allergen epitopes.

    PubMed

    Chen, Xueni; Dreskin, Stephen C

    2017-06-01

    Phage peptide display technology has been used to identify IgE-binding mimotopes (mimics of natural epitopes) that mimic conformational epitopes. This approach is effective in the characterization of those epitopes that are important for eliciting IgE-mediated allergic responses by food allergens and those that are responsible for cross-reactivity among allergenic food proteins. Application of this technology will increase our understanding of the mechanisms whereby food allergens elicit allergic reactions, will facilitate the discovery of diagnostic reagents and may lead to mimotope-based immunotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improved delivery of the OVA-CD4 peptide to T helper cells by polymeric surface display on Salmonella

    PubMed Central

    2014-01-01

    Background Autotransporter proteins represent a treasure trove for molecular engineers who modify Gram-negative bacteria for the export or secretion of foreign proteins across two membrane barriers. A particularly promising direction is the development of autotransporters as antigen display or secretion systems. Immunologists have been using ovalbumin as a reporter antigen for years and have developed sophisticated tools to detect specific T cells that respond to ovalbumin. Although ovalbumin-expressing bacteria are being used to trace T cell responses to colonizing or invading pathogens, current constructs for ovalbumin presentation have not been optimized. Results The activation of T helper cells in response to ovalbumin was improved by displaying the OVA-CD4 reporter epitope as a multimer on the surface of Salmonella and fused to the autotransporter MisL. Expression was optimized by including tandem in vivo promoters and two post-segregational killing systems for plasmid stabilization. Conclusions The use of an autotransporter protein to present relevant epitope repeats on the surface of bacteria, combined with additional techniques favoring stable and efficient in vivo transcription, optimizes antigen presentation to T cells. The technique of multimeric epitope surface display should also benefit the development of new Salmonella or other enterobacterial vaccines. PMID:24898796

  15. Production and Purification of Recombinant Filamentous Bacteriophages Displaying Immunogenic Heterologous Epitopes.

    PubMed

    Deng, Lei; Linero, Florencia; Saelens, Xavier

    2016-01-01

    Viruslike particles often combine high physical stability with robust immunogenicity. Furthermore, when such particles are based on bacteriophages, they can be produced in high amounts at minimal cost and typically will require only standard biologically contained facilities. We provide protocols for the characterization and purification of recombinant viruslike particles derived from filamentous bacteriophages. As an example, we focus on filamentous Escherichia coli fd phage displaying a conserved influenza A virus epitope that is fused genetically to the N-terminus of the major coat protein of this phage. A step-by-step procedure to obtain a high-titer, pure recombinant phage preparation is provided. We also describe a quality control experiment based on a biological readout of the purified fd phage preparation. These protocols together with the highlighted critical steps may facilitate generic implementation of the provided procedures for the display of other epitopes by recombinant fd phages.

  16. CD147 contains different bioactive epitopes involving the regulation of cell adhesion and lymphocyte activation.

    PubMed

    Chiampanichayakul, Sawitree; Peng-in, Pakorn; Khunkaewla, Panida; Stockinger, Hannes; Kasinrerk, Watchara

    2006-01-01

    CD147 is a leukocyte surface molecule which belongs to the immunoglobulin superfamily. It is broadly expressed on various cell types and is a lymphocyte activation-associated molecule. In order to study the function of CD147, five CD147 monoclonal antibodies (mAbs) were generated: M6-2F9; M6-1D4; M6-1F3; M6-1B9; and M6-1E9. Biochemical characterizations and cross-blocking experiments indicated that M6-1B9 and M6-1E9 recognize the same or contiguous epitopes on CD147. By employing COS transfectants expressing CD147 membrane-distal domain (domain 1) and membrane-proximal domain (domain 2), mAbs M6-2F9, M6-1D4, M6-1B9, and M6-1E9 were shown to recognize epitopes located on domain 1 of the molecule. Functional studies indicated that engagement of CD147 by mAbs M6-1B9 and M6-1E9 strongly inhibited lymphocyte proliferation induced by a CD3 mAb. In contrast, mAbs M6-2F9, M6-1D4, and M6-1F3 induced U937 homotypic cell aggregation. The results indicate that CD147 contains at least two bioactive domains. Epitopes responsible for induction of cell aggregation are different from those regulating lymphocyte activation.

  17. Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site.

    PubMed

    Cheng, Hao D; Grimm, Sebastian K; Gilman, Morgan Sa; Gwom, Luc Christian; Sok, Devin; Sundling, Christopher; Donofrio, Gina; Hedestam, Gunilla B Karlsson; Bonsignori, Mattia; Haynes, Barton F; Lahey, Timothy P; Maro, Isaac; von Reyn, C Fordham; Gorny, Miroslaw K; Zolla-Pazner, Susan; Walker, Bruce D; Alter, Galit; Burton, Dennis R; Robb, Merlin L; Krebs, Shelly J; Seaman, Michael S; Bailey-Kellogg, Chris; Ackerman, Margaret E

    2018-03-08

    Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs-specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.

  18. Upregulation of Interleukin 7 Receptor Alpha and Programmed Death 1 Marks an Epitope-Specific CD8+ T-Cell Response That Disappears following Primary Epstein-Barr Virus Infection▿ †

    PubMed Central

    Sauce, Delphine; Larsen, Martin; Abbott, Rachel J. M.; Hislop, Andrew D.; Leese, Alison M.; Khan, Naeem; Papagno, Laura; Freeman, Gordon J.; Rickinson, Alan B.

    2009-01-01

    In immunocompetent individuals, the stability of the herpesvirus-host balance limits opportunities to study the disappearance of a virus-specific CD8+ T-cell response. However, we noticed that in HLA-A*0201-positive infectious mononucleosis (IM) patients undergoing primary Epstein-Barr virus (EBV) infection, the initial CD8 response targets three EBV lytic antigen-derived epitopes, YVLDHLIVV (YVL), GLCTLVAML (GLC), and TLDYKPLSV (TLD), but only the YVL and GLC reactivities persist long-term; the TLD response disappears within 10 to 27 months. While present, TLD-specific cells remained largely indistinguishable from YVL and GLC reactivities in many phenotypic and functional respects but showed unique temporal changes in two markers of T-cell fate, interleukin 7 receptor alpha (IL-7Rα; CD127) and programmed death 1 (PD-1). Thus, following the antigen-driven downregulation of IL-7Rα seen on all populations in acute IM, in every case, the TLD-specific population recovered expression unusually quickly post-IM. As well, in four of six patients studied, TLD-specific cells showed very strong PD-1 upregulation in the last blood sample obtained before the cells’ disappearance. Our data suggest that the disappearance of this individual epitope reactivity from an otherwise stable EBV-specific response (i) reflects a selective loss of cognate antigen restimulation (rather than of IL-7-dependent signals) and (ii) is immediately preceded, and perhaps mediated, by PD-1 upregulation to unprecedented levels. PMID:19605492

  19. Ara h 1 CD4+ T cell epitope-based peptides: candidates for a peanut allergy therapeutic.

    PubMed

    Prickett, S R; Voskamp, A L; Phan, T; Dacumos-Hill, A; Mannering, S I; Rolland, J M; O'Hehir, R E

    2013-06-01

    Peanut allergy is a life-threatening condition; there is currently no cure. While whole allergen extracts are used for specific immunotherapy for many allergies, they can cause severe reactions and even fatalities in peanut allergy. To identify short, HLA-degenerate CD4(+) T cell epitope-based peptides of the major peanut allergen Ara h 1 that target allergen-specific T cells without causing IgE-mediated inflammatory cell activation, as candidates for safe peanut-specific immunotherapy. Ara h 1-specific CD4(+) T cell lines (TCL) were generated from peripheral blood mononuclear cells (PBMC) of peanut-allergic subjects using CFSE-based methodology. T cell epitopes were identified using CFSE and thymidine-based proliferation assays. Epitope HLA-restriction was investigated using blocking antibodies, HLA-genotyping and epitope prediction algorithms. Functional peanut-specific IgE reactivity to peptides was assessed by basophil activation assay. A total of 145 Ara h 1-specific TCL were generated from 18 HLA-diverse peanut-allergic subjects. The TCL recognized 20-mer peptides throughout Ara h 1. Nine 20-mers containing the most frequently recognized epitopes were selected and their recognition confirmed in 18 additional peanut-allergic subjects. Ten core epitopes were mapped within these 20-mers. These were HLA-DQ and/or HLA-DR restricted, with each presented on at least two different HLA-molecules. Seven short (≤ 20 aa) non-basophil-reactive peptides encompassing all core epitopes were designed and validated in peanut-allergic donor PBMC T cell assays. Short CD4(+) T cell epitope-based Ara h 1 peptides were identified as novel candidates for a safe, T cell targeted peanut-specific immunotherapy for HLA-diverse populations. © 2013 John Wiley & Sons Ltd.

  20. Ara h 2 peptides containing dominant CD4+ T-cell epitopes: candidates for a peanut allergy therapeutic.

    PubMed

    Prickett, Sara R; Voskamp, Astrid L; Dacumos-Hill, April; Symons, Karen; Rolland, Jennifer M; O'Hehir, Robyn E

    2011-03-01

    Peanut allergy is a life-threatening condition; there is currently no cure. Although whole allergen extracts are used for specific immunotherapy for many allergies, they can cause severe reactions, and even fatalities, in peanut allergy. This study aimed to identify short, T-cell epitope-based peptides that target allergen-specific CD4(+) T cells but do not bind IgE as candidates for safe peanut-specific immunotherapy. Multiple CD4(+) T-cell lines specific for the major peanut allergen Ara h 2 were generated from PBMCs of 16 HLA-diverse subjects with peanut allergy by using 5,6-carboxyfluorescein diacetate succinimidylester-based methodology. Proliferation and ELISPOT assays were used to identify dominant epitopes recognized by T-cell lines and to confirm recognition by peripheral blood T cells of epitope-based peptides modified for therapeutic production. HLA restriction of core epitope recognition was investigated by using anti-HLA blocking antibodies and HLA genotyping. Serum-IgE peptide-binding was assessed by dot-blot. Five dominant CD4(+) T-cell epitopes were identified in Ara h 2. In combination, these were presented by HLA-DR, HLA-DP, and HLA-DQ molecules and recognized by T cells from all 16 subjects. Three short peptide variants containing these T-cell epitopes were designed with cysteine-to-serine substitutions to facilitate stability and therapeutic production. Variant peptides showed HLA-binding degeneracy, did not bind peanut-specific serum IgE, and could directly target T(H)2-type T cells in peripheral blood of subjects with allergy. Short CD4(+) T-cell epitope-based Ara h 2 peptides were identified as novel candidates for a T-cell-targeted peanut-specific immunotherapy for an HLA-diverse population. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  1. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum.

    PubMed

    Christiansen, Anders; Kringelum, Jens V; Hansen, Christian S; Bøgh, Katrine L; Sullivan, Eric; Patel, Jigar; Rigby, Neil M; Eiwegger, Thomas; Szépfalusi, Zsolt; de Masi, Federico; Nielsen, Morten; Lund, Ole; Dufva, Martin

    2015-08-06

    Phage display is a prominent screening technique with a multitude of applications including therapeutic antibody development and mapping of antigen epitopes. In this study, phages were selected based on their interaction with patient serum and exhaustively characterised by high-throughput sequencing. A bioinformatics approach was developed in order to identify peptide motifs of interest based on clustering and contrasting to control samples. Comparison of patient and control samples confirmed a major issue in phage display, namely the selection of unspecific peptides. The potential of the bioinformatic approach was demonstrated by identifying epitopes of a prominent peanut allergen, Ara h 1, in sera from patients with severe peanut allergy. The identified epitopes were confirmed by high-density peptide micro-arrays. The present study demonstrates that high-throughput sequencing can empower phage display by (i) enabling the analysis of complex biological samples, (ii) circumventing the traditional laborious picking and functional testing of individual phage clones and (iii) reducing the number of selection rounds.

  2. Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107+ CD8+ T Cells That Infiltrate the Cornea and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect against Ocular Herpes Challenge.

    PubMed

    Khan, Arif A; Srivastava, Ruchi; Vahed, Hawa; Roy, Soumyabrata; Walia, Sager S; Kim, Grace J; Fouladi, Mona A; Yamada, Taikun; Ly, Vincent T; Lam, Cynthia; Lou, Anthony; Nguyen, Vivianna; Boldbaatar, Undariya; Geertsema, Roger; Fraser, Nigel W; BenMohamed, Lbachir

    2018-06-13

    Herpes simplex virus 1 (HSV-1) is a prevalent human pathogen that infects the cornea causing potentially blinding herpetic disease. A clinical herpes vaccine is still lacking. In the present study, a novel prime/pull vaccine was tested in Human Leukocyte Antigen- (HLA-) transgenic rabbit model of ocular herpes (HLA Tg rabbit). Three asymptomatic (ASYMP) peptide epitopes were selected from the HSV-1 membrane glycoprotein C (UL44 400-408 ), the DNA replication binding helicase (UL9 196-204 ), and the tegument protein (UL25 572-580 ), all preferentially recognized by CD8 + T cells from "naturally protected" HSV-1-seropositive healthy ASYMP individuals (who never had recurrent corneal herpetic disease). HLA Tg rabbits were immunized with a mixture of these three ASYMP CD8 + T cell peptide epitopes (UL44 400-408 , UL9 196-204 and UL25 572-580 ), delivered subcutaneously with CpG 2007 adjuvant (prime). Fifteen days later, half of the rabbits received a topical ocular treatment with a recombinant neurotropic AAV8 vector, expressing the T cell-attracting CXCL10 chemokine (pull). The frequency, function of HSV-specific CD8 + T cells induced by the prime/pull vaccine were assessed in peripheral blood, cornea, and trigeminal ganglia (TG). Compared to peptides alone, the peptides/CXCL10 prime/pull vaccine generated frequent polyfunctional gamma interferon-positive (IFN-γ + ) CD107 + CD8 + T cells that infiltrated both the cornea and TG. CD8 + T cells mobilization into cornea and TG of prime/pull- vaccinated rabbits was associated with a significant reduction in corneal herpes infection and disease following an ocular HSV-1 challenge (McKrae). These findings draw attention to the novel prime/pull vaccine strategy to mobilize anti-viral CD8 + T cells into tissues protecting them against herpes infection and disease. IMPORTANCE There is an urgent need for a vaccine against widespread herpes simplex virus infections. The present study demonstrates that immunization of HLA

  3. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover

    PubMed Central

    Almeida, Jorge R.; Price, David A.; Papagno, Laura; Arkoub, Zaïna Aït; Sauce, Delphine; Bornstein, Ethan; Asher, Tedi E.; Samri, Assia; Schnuriger, Aurélie; Theodorou, Ioannis; Costagliola, Dominique; Rouzioux, Christine; Agut, Henri; Marcelin, Anne-Geneviève; Douek, Daniel; Autran, Brigitte; Appay, Victor

    2007-01-01

    The key attributes of CD8+ T cell protective immunity in human immunodeficiency virus (HIV) infection remain unclear. We report that CD8+ T cell responses specific for Gag and, in particular, the immunodominant p24 epitope KK10 correlate with control of HIV-1 replication in human histocompatibility leukocyte antigen (HLA)–B27 patients. To understand further the nature of CD8+ T cell–mediated antiviral efficacy, we performed a comprehensive study of CD8+ T cells specific for the HLA-B27–restricted epitope KK10 in chronic HIV-1 infection based on the use of multiparametric flow cytometry together with molecular clonotypic analysis and viral sequencing. We show that B27-KK10–specific CD8+ T cells are characterized by polyfunctional capabilities, increased clonal turnover, and superior functional avidity. Such attributes are interlinked and constitute the basis for effective control of HIV-1 replication. These data on the features of effective CD8+ T cells in HIV infection may aid in the development of successful T cell vaccines. PMID:17893201

  4. The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools.

    PubMed

    Singh, Satwinder Kaur; Meyering, Maaike; Ramwadhdoebe, Tamara H; Stynenbosch, Linda F M; Redeker, Anke; Kuppen, Peter J K; Melief, Cornelis J M; Welters, Marij J P; van der Burg, Sjoerd H

    2012-11-01

    The ability to measure antigen-specific T cells at the single-cell level by intracellular cytokine staining (ICS) is a promising immunomonitoring tool and is extensively applied in the evaluation of immunotherapy of cancer. The protocols used to detect antigen-specific CD8+ T-cell responses generally work for the detection of antigen-specific T cells in samples that have undergone at least one round of in vitro pre-stimulation. Application of a common protocol but now using long peptides as antigens was not suitable to simultaneously detect antigen-specific CD8+ and CD4+ T cells directly ex vivo in cryopreserved samples. CD8 T-cell reactivity to monocytes pulsed with long peptides as antigens ranged between 5 and 25 % of that observed against monocytes pulsed with a direct HLA class I fitting minimal CTL peptide epitope. Therefore, we adapted our ICS protocol and show that the use of tenfold higher concentration of long peptides to load APC, the use of IFN-α and poly(I:C) to promote antigen processing and improve T-cell stimulation, does allow for the ex vivo detection of low-frequency antigen-specific CD8+ and CD4+ T cells in an HLA-independent setting. While most of the improvements were related to increasing the ability to measure CD8+ T-cell reactivity following stimulation with long peptides to at least 50 % of the response detected when using a minimal peptide epitope, the final analysis of blood samples from vaccinated patients successfully showed that the adapted ICS protocol also increases the ability to ex vivo detect low-frequency p53-specific CD4+ T-cell responses in cryopreserved PBMC samples.

  5. Long-lived CD8+ T cell responses following Crimean-Congo haemorrhagic fever virus infection

    PubMed Central

    Goedhals, Dominique; Paweska, Janusz T.

    2017-01-01

    Crimean-Congo haemorrhagic fever virus (CCHFV) is a member of the Orthonairovirus genus of the Nairoviridae family and is associated with haemorrhagic fever in humans. Although T lymphocyte responses are known to play a role in protection from and clearance of viral infections, specific T cell epitopes have yet to be identified for CCHFV following infection. A panel of overlapping peptides covering the CCHFV nucleoprotein and the structural glycoproteins, GN and GC, were screened by ELISpot assay to detect interferon gamma (IFN-γ) production in vitro by peripheral blood mononuclear cells from eleven survivors with previous laboratory confirmed CCHFV infection. Reactive peptides were located predominantly on the nucleoprotein, with only one survivor reacting to two peptides from the glycoprotein GC. No single epitope was immunodominant, however all but one survivor showed reactivity to at least one T cell epitope. The responses were present at high frequency and detectable several years after the acute infection despite the absence of continued antigenic stimulation. T cell depletion studies confirmed that IFN-γ production as detected using the ELISpot assay was mediated chiefly by CD8+ T cells. This is the first description of CD8+ T cell epitopic regions for CCHFV and provides confirmation of long-lived T cell responses in survivors of CCHFV infection. PMID:29261651

  6. Epitope selection from an uncensored peptide library displayed on avian leukosis virus.

    PubMed

    Khare, Pranay D; Rosales, Ana G; Bailey, Kent R; Russell, Stephen J; Federspiel, Mark J

    2003-10-25

    Phage display libraries have provided an extraordinarily versatile technology to facilitate the isolation of peptides, growth factors, single chain antibodies, and enzymes with desired binding specificities or enzymatic activities. The overall diversity of peptides in phage display libraries can be significantly limited by Escherichia coli protein folding and processing machinery, which result in sequence censorship. To achieve an optimal diversity of displayed eukaryotic peptides, the library should be produced in the endoplasmic reticulum of eukaryotic cells using a eukaryotic display platform. In the accompanying article, we presented experiments that demonstrate that polypeptides of various sizes could be efficiently displayed on the envelope glycoproteins of a eukaryotic virus, avian leukosis virus (ALV), and the displayed polypeptides could efficiently attach to cognate receptors without interfering with viral attachment and entry into susceptible cells. In this study, methods were developed to construct a model library of randomized eight amino acid peptides using the ALV eukaryotic display platform and screen the library for specific epitopes using immobilized antibodies. A virus library with approximately 2 x 10(6) different members was generated from a plasmid library of approximately 5 x 10(6) diversity. The sequences of the randomized 24 nucleotide/eight amino acid regions of representatives of the plasmid and virus libraries were analyzed. No significant sequence censorship was observed in producing the virus display library from the plasmid library. Different populations of peptide epitopes were selected from the virus library when different monoclonal antibodies were used as the target. The results of these two studies clearly demonstrate the potential of ALV as a eukaryotic platform for the display and selection of eukaryotic polypeptides libraries.

  7. Recognition of Naegleriae ameba surface protein epitopes by anti-human CD45 antibodies.

    PubMed

    Ravine, Terrence J; Polski, Jacek M; Jenkins, James

    2010-04-01

    Phagocytosis is a highly conserved mechanism exhibited by both free-living amebas and mammalian blood cells. Similarities demonstrated by either cell type during engulfment of the same bacterial species may imply analogous surface proteins involved in receptor-mediated endocytosis. The increased availability of anti-human leukocyte antibodies or clusters of differentiation (CD) markers used in conjunction with flow cytometric (FCM) and/or immunohistochemical (IHC) analysis provides investigators with a relatively easy method to screen different cell populations for comparable plasma membrane proteins. In this study, we incubated Naegleria and Acanthamoeba amebas with several directly conjugated anti-human leukocyte monoclonal antibodies (mAb) for similarly recognized amebic epitopes. CD marker selection was based upon a recognized role of each mAb in phagocyte activation and/or uptake of bacteria. These included CD14, CD45, and CD206. In FCM, only one CD45 antibody demonstrated strong reactivity with both Naegleria fowleri and Naegleria gruberi that was not expressed in similarly tested Acanthamoeba species. Additional testing of N. gruberi by IHC demonstrated reactivity to a different CD45 antibody. Our results suggest a possible utility of using anti-human leukocyte antibodies to screen amebic cells for similarly expressed protein epitopes. In doing so, several important items must be considered when selecting potential mAbs for testing to increase the probability of a positive result.

  8. In silico design of Mycobacterium tuberculosis epitope ensemble vaccines.

    PubMed

    Shah, Preksha; Mistry, Jaymisha; Reche, Pedro A; Gatherer, Derek; Flower, Darren R

    2018-05-01

    Effective control of Mycobacterium tuberculosis is a global necessity. In 2015, tuberculosis (TB) caused more deaths than HIV. Considering the increasing prevalence of multi-drug resistant forms of M. tuberculosis, the need for effective TB vaccines becomes imperative. Currently, the only licensed TB vaccine is Bacillus Calmette-Guérin (BCG). Yet, BCG has many drawbacks limiting its efficacy and applicability. We applied advanced computational procedures to derive a universal TB vaccine and one targeting East Africa. Our approach selects an optimal set of highly conserved, experimentally validated epitopes, with high projected population coverage (PPC). Through rigorous data analysis, five different potential vaccine combinations were selected each with PPC above 80% for East Africa and above 90% for the World. Two potential vaccines only contained CD8+ epitopes, while the others included both CD4+ and CD8+ epitopes. Our prime vaccine candidate was a putative seven-epitope ensemble comprising: SRGWSLIKSVRLGNA, KPRIITLTMNPALDI, AAHKGLMNIALAISA, FPAGGSTGSL, MLLAVTVSL, QSSFYSDW and KMRCGAPRY, with a 97.4% global PPC and a 92.7% East African PPC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Human and Murine Clonal CD8+ T Cell Expansions Arise during Tuberculosis Because of TCR Selection

    PubMed Central

    Nunes-Alves, Cláudio; Booty, Matthew G.; Carpenter, Stephen M.; Rothchild, Alissa C.; Martin, Constance J.; Desjardins, Danielle; Steblenko, Katherine; Kløverpris, Henrik N.; Madansein, Rajhmun; Ramsuran, Duran; Leslie, Alasdair; Correia-Neves, Margarida; Behar, Samuel M.

    2015-01-01

    The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRβ bias. Using a retrogenic model of TB10.44-11-specific CD8+ T cells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-γ production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity. PMID:25945999

  10. Human and Murine Clonal CD8+ T Cell Expansions Arise during Tuberculosis Because of TCR Selection.

    PubMed

    Nunes-Alves, Cláudio; Booty, Matthew G; Carpenter, Stephen M; Rothchild, Alissa C; Martin, Constance J; Desjardins, Danielle; Steblenko, Katherine; Kløverpris, Henrik N; Madansein, Rajhmun; Ramsuran, Duran; Leslie, Alasdair; Correia-Neves, Margarida; Behar, Samuel M

    2015-05-01

    The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRβ bias. Using a retro genic model of TB10.44-11-specific CD8+ Tcells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-γ production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity.

  11. Distinct activation phenotype of a highly conserved novel HLA-B57-restricted epitope during dengue virus infection

    PubMed Central

    Townsley, Elizabeth; Woda, Marcia; Thomas, Stephen J; Kalayanarooj, Siripen; Gibbons, Robert V; Nisalak, Ananda; Srikiatkhachorn, Anon; Green, Sharone; Stephens, Henry AF; Rothman, Alan L; Mathew, Anuja

    2014-01-01

    Variation in the sequence of T-cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T-cell responses during second heterologous infections. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein. We predicted higher frequencies of B57-NS126–34-specific CD8+ T cells in peripheral blood mononuclear cells from individuals undergoing secondary rather than primary DENV infection. However, high tetramer-positive T-cell frequencies during acute infection were seen in only one of nine subjects with secondary infection. B57-NS126–34-specific and other DENV epitope-specific CD8+ T cells, as well as total CD8+ T cells, expressed an activated phenotype (CD69+ and/or CD38+) during acute infection. In contrast, expression of CD71 was largely limited to DENV epitope-specific CD8+ T cells. In vitro stimulation of cell lines indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides. CD71 may represent a useful marker of antigen-specific T-cell activation. PMID:23941420

  12. Distinct activation phenotype of a highly conserved novel HLA-B57-restricted epitope during dengue virus infection.

    PubMed

    Townsley, Elizabeth; Woda, Marcia; Thomas, Stephen J; Kalayanarooj, Siripen; Gibbons, Robert V; Nisalak, Ananda; Srikiatkhachorn, Anon; Green, Sharone; Stephens, Henry A F; Rothman, Alan L; Mathew, Anuja

    2014-01-01

    Variation in the sequence of T-cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T-cell responses during second heterologous infections. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein. We predicted higher frequencies of B57-NS1(26-34) -specific CD8(+) T cells in peripheral blood mononuclear cells from individuals undergoing secondary rather than primary DENV infection. However, high tetramer-positive T-cell frequencies during acute infection were seen in only one of nine subjects with secondary infection. B57-NS1(26-34) -specific and other DENV epitope-specific CD8(+) T cells, as well as total CD8(+) T cells, expressed an activated phenotype (CD69(+) and/or CD38(+)) during acute infection. In contrast, expression of CD71 was largely limited to DENV epitope-specific CD8(+) T cells. In vitro stimulation of cell lines indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides. CD71 may represent a useful marker of antigen-specific T-cell activation. © 2013 John Wiley & Sons Ltd.

  13. Broadly targeted CD8 + T cell responses restricted by major histocompatibility complex E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.

    Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β + T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides withmore » few restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8 + T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less

  14. Broadly targeted CD8 + T cell responses restricted by major histocompatibility complex E

    DOE PAGES

    Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.; ...

    2016-02-12

    Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β + T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides withmore » few restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8 + T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less

  15. Induction of CD8 T-cell responses restricted to multiple HLA class I alleles in a cancer patient by immunization with a 20-mer NY-ESO-1f (NY-ESO-1 91-110) peptide.

    PubMed

    Eikawa, Shingo; Kakimi, Kazuhiro; Isobe, Midori; Kuzushima, Kiyotaka; Luescher, Immanuel; Ohue, Yoshihiro; Ikeuchi, Kazuhiro; Uenaka, Akiko; Nishikawa, Hiroyoshi; Udono, Heiichiro; Oka, Mikio; Nakayama, Eiichi

    2013-01-15

    Immunogenicity of a long 20-mer NY-ESO-1f peptide vaccine was evaluated in a lung cancer patient TK-f01, immunized with the peptide with Picibanil OK-432 and Montanide ISA-51. We showed that internalization of the peptide was necessary to present CD8 T-cell epitopes on APC, contrasting with the direct presentation of the short epitope. CD8 T-cell responses restricted to all five HLA class I alleles were induced in the patient after the peptide vaccination. Clonal analysis showed that B*35:01 and B*52:01-restricted CD8 T-cell responses were the two dominant responses. The minimal epitopes recognized by A*24:02, B*35:01, B*52:01 and C*12:02-restricted CD8 T-cell clones were defined and peptide/HLA tetramers were produced. NY-ESO-1 91-101 on A*24:02, NY-ESO-1 92-102 on B*35:01, NY-ESO-1 96-104 on B*52:01 and NY-ESO-1 96-104 on C*12:02 were new epitopes first defined in this study. Identification of the A*24:02 epitope is highly relevant for studying the Japanese population because of its high expression frequency (60%). High affinity CD8 T-cells recognizing tumor cells naturally expressing the epitopes and matched HLA were induced at a significant level. The findings suggest the usefulness of a long 20-mer NY-ESO-1f peptide harboring multiple CD8 T-cell epitopes as an NY-ESO-1 vaccine. Characterization of CD8 T-cell responses in immunomonitoring using peptide/HLA tetramers revealed that multiple CD8 T-cell responses comprised the dominant response. Copyright © 2012 UICC.

  16. Epitope mapping of PR81 anti-MUC1 monoclonal antibody following PEPSCAN and phage display techniques.

    PubMed

    Mohammadi, Mohammad; Rasaee, Mohammad Javad; Rajabibazl, Masoumeh; Paknejad, Malihe; Zare, Mehrak; Mohammadzadeh, Sara

    2007-08-01

    PR81 is an anti-MUC1 monoclonal antibody (MAb) which was generated against human MUC1 mucin that reacted with breast cancerous tissue, MUC1 positive cell line (MCF-7, BT-20, and T-4 7 D), and synthetic peptide, including the tandem repeat sequence of MUC1. Here we characterized the binding properties of PR81 against the tandem repeat of MUC1 by two different epitope mapping techniques, namely, PEPSCAN and phage display. Epitope mapping of PR81 MAb by PEPSCAN revealed a minimal consensus binding sequence, PDTRP, which is found on MUC1 peptide as the most important epitope. Using the phage display peptide library, we identified the motif PD(T/S/G)RP as an epitope and the motif AVGLSPDGSRGV as a mimotope recognized by PR81. Results of these two methods showed that the two residues, arginine and aspartic acid, have important roles in antibody binding and threonine can be substituted by either glycine or serine. These results may be of importance in tailor making antigens used in immunoassay.

  17. Divide, Conquer, and Sense: CD8+CD28- T Cells in Perspective.

    PubMed

    Arosa, Fernando A; Esgalhado, André J; Padrão, Carolina A; Cardoso, Elsa M

    2016-01-01

    Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8 + T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the "signal 2" CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8 + T cells, also known as CD8 + CD28 - , CD8 + KIR + , NK-like CD8 + T cells, or innate CD8 + T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8 + T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis.

  18. Immunodominant epitopes in herpes simplex virus type 2 glycoprotein D are recognized by CD4 lymphocytes from both HSV-1 and HSV-2 seropositive subjects.

    PubMed

    Kim, Min; Taylor, Janette; Sidney, John; Mikloska, Zorka; Bodsworth, Neil; Lagios, Katerina; Dunckley, Heather; Byth-Wilson, Karen; Denis, Martine; Finlayson, Robert; Khanna, Rajiv; Sette, Alessandro; Cunningham, Anthony L

    2008-11-01

    In human recurrent cutaneous herpes simplex, there is a sequential infiltrate of CD4 and then CD8 lymphocytes into lesions. CD4 lymphocytes are the major producers of the key cytokine IFN-gamma in lesions. They recognize mainly structural proteins and especially glycoproteins D and B (gD and gB) when restimulated in vitro. Recent human vaccine trials using recombinant gD showed partial protection of HSV seronegative women against genital herpes disease and also, in placebo recipients, showed protection by prior HSV1 infection. In this study, we have defined immunodominant peptide epitopes recognized by 8 HSV1(+) and/or 16 HSV2(+) patients using (51)Cr-release cytotoxicity and IFN-gamma ELISPOT assays. Using a set of 39 overlapping 20-mer peptides, more than six immunodominant epitopes were defined in gD2 (two to six peptide epitopes were recognized for each subject). Further fine mapping of these responses for 4 of the 20-mers, using a panel of 9 internal 12-mers for each 20-mers, combined with MHC II typing and also direct in vitro binding assay of these peptides to individual DR molecules, showed more than one epitope per 20-mers and promiscuous binding of individual 20-mers and 12-mers to multiple DR types. All four 20-mer peptides were cross-recognized by both HSV1(+)/HSV2(-) and HSV1(-)/HSV2(+) subjects, but the sites of recognition differed within the 20-mers where their sequences were divergent. This work provides a basis for CD4 lymphocyte cross-recognition of gD2 and possibly cross-protection observed in previous clinical studies and in vaccine trials.

  19. Divide, Conquer, and Sense: CD8+CD28− T Cells in Perspective

    PubMed Central

    Arosa, Fernando A.; Esgalhado, André J.; Padrão, Carolina A.; Cardoso, Elsa M.

    2017-01-01

    Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the “signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8+ T cells, also known as CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis. PMID:28096804

  20. Characterization and phylogenetic epitope mapping of CD38 ADPR cyclase in the cynomolgus macaque

    PubMed Central

    Ferrero, Enza; Orciani, Monia; Vacca, Paola; Ortolan, Erika; Crovella, Sergio; Titti, Fausto; Saccucci, Franca; Malavasi, Fabio

    2004-01-01

    Background The CD38 transmembrane glycoprotein is an ADP-ribosyl cyclase that moonlights as a receptor in cells of the immune system. Both functions are independently implicated in numerous areas related to human health. This study originated from an inherent interest in studying CD38 in the cynomolgus monkey (Macaca fascicularis), a species closely related to humans that also represents a cogent animal model for the biomedical analysis of CD38. Results A cDNA was isolated from cynomolgus macaque peripheral blood leukocytes and is predicted to encode a type II membrane protein of 301 amino acids with 92% identity to human CD38. Both RT-PCR-mediated cDNA cloning and genomic DNA PCR surveying were possible with heterologous human CD38 primers, demonstrating the striking conservation of CD38 in these primates. Transfection of the cDNA coincided with: (i) surface expression of cynomolgus macaque CD38 by immunofluorescence; (ii) detection of ~42 and 84 kDa proteins by Western blot and (iii) the appearance of ecto-enzymatic activity. Monoclonal antibodies were raised against the cynomolgus CD38 ectodomain and were either species-specific or cross-reactive with human CD38, in which case they were directed against a common disulfide-requiring conformational epitope that was mapped to the C-terminal disulfide loop. Conclusion This multi-faceted characterization of CD38 from cynomolgus macaque demonstrates its high genetic and biochemical similarities with human CD38 while the immunological comparison adds new insights into the dominant epitopes of the primate CD38 ectodomain. These results open new prospects for the biomedical and pharmacological investigations of this receptor-enzyme. PMID:15383153

  1. Computer-Aided Design of an Epitope-Based Vaccine against Epstein-Barr Virus

    PubMed Central

    Alonso-Padilla, Julio

    2017-01-01

    Epstein-Barr virus is a very common human virus that infects 90% of human adults. EBV replicates in epithelial and B cells and causes infectious mononucleosis. EBV infection is also linked to various cancers, including Burkitt's lymphoma and nasopharyngeal carcinomas, and autoimmune diseases such as multiple sclerosis. Currently, there are no effective drugs or vaccines to treat or prevent EBV infection. Herein, we applied a computer-aided strategy to design a prophylactic epitope vaccine ensemble from experimentally defined T and B cell epitopes. Such strategy relies on identifying conserved epitopes in conjunction with predictions of HLA presentation for T cell epitope selection and calculations of accessibility and flexibility for B cell epitope selection. The T cell component includes 14 CD8 T cell epitopes from early antigens and 4 CD4 T cell epitopes, targeted during the course of a natural infection and providing a population protection coverage of over 95% and 81.8%, respectively. The B cell component consists of 3 experimentally defined B cell epitopes from gp350 plus 4 predicted B cell epitopes from other EBV envelope glycoproteins, all mapping in flexible and solvent accessible regions. We discuss the rationale for the formulation and possible deployment of this epitope vaccine ensemble. PMID:29119120

  2. Mutation in the Fas Pathway Impairs CD8+ T Cell Memory1

    PubMed Central

    Dudani, Renu; Russell, Marsha; van Faassen, Henk; Krishnan, Lakshmi; Sad, Subash

    2014-01-01

    Fas death pathway is important for lymphocyte homeostasis, but the role of Fas pathway in T cell memory development is not clear. We show that whereas the expansion and contraction of CD8+ T cell response against Listeria monocytogenes were similar for wild-type (WT) and Fas ligand (FasL) mutant mice, the majority of memory CD8+ T cells in FasL mutant mice displayed an effector memory phenotype in the long-term in comparison with the mainly central memory phenotype displayed by memory CD8+ T cells in WT mice. Memory CD8+ T cells in FasL mutant mice expressed reduced levels of IFN-γ and displayed poor homeostatic and Ag-induced proliferation. Impairment in CD8+ T cell memory in FasL mutant hosts was not due to defective programming or the expression of mutant FasL on CD8+ T cells, but was caused by perturbed cytokine environment in FasL mutant mice. Although adoptively transferred WT memory CD8+ T cells mediated protection against L. monocytogenes in either the WT or FasL mutant hosts, FasL mutant memory CD8+ T cells failed to mediate protection even in WT hosts. Thus, in individuals with mutation in Fas pathway, impairment in the function of the memory CD8+ T cells may increase their susceptibility to recurrent/latent infections. PMID:18292515

  3. Alanine-170 and proline-172 are critical determinants for extracellular CD20 epitopes; heterogeneity in the fine specificity of CD20 monoclonal antibodies is defined by additional requirements imposed by both amino acid sequence and quaternary structure.

    PubMed

    Polyak, Maria J; Deans, Julie P

    2002-05-01

    In vivo ablation of malignant B cells can be achieved using antibodies directed against the CD20 antigen. Fine specificity differences among CD20 monoclonal antibodies (mAbs) are assumed not to be a factor in determining their efficacy because evidence from antibody-blocking studies indicates limited epitope diversity with only 2 overlapping extracellular CD20 epitopes. However, in this report a high degree of heterogeneity among antihuman CD20 mAbs is demonstrated. Mutation of alanine and proline at positions 170 and 172 (AxP) (single-letter amino acid codes; x indicates the identical amino acid at the same position in the murine and human CD20 sequences) in human CD20 abrogated the binding of all CD20 mAbs tested. Introduction of AxP into the equivalent positions in the murine sequence, which is not otherwise recognized by antihuman CD20 mAbs, fully reconstituted the epitope recognized by B1, the prototypic anti-CD20 mAb. 2H7, a mAb previously thought to recognize the same epitope as B1, did not recognize the murine AxP mutant. Reconstitution of the 2H7 epitope was achieved with additional mutations replacing VDxxD in the murine sequence for INxxN (positions 162-166 in the human sequence). The integrity of the 2H7 epitope, unlike that of B1, further depends on the maintenance of CD20 in an oligomeric complex. The majority of 16 antihuman CD20 mAbs tested, including rituximab, bound to murine CD20 containing the AxP mutations. Heterogeneity in the fine specificity of these antibodies was indicated by marked differences in their ability to induce homotypic cellular aggregation and translocation of CD20 to a detergent-insoluble membrane compartment previously identified as lipid rafts.

  4. A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector1

    PubMed Central

    Bolinger, Beatrice; Sims, Stuart; O’Hara, Geraldine; de Lara, Catherine; Tchilian, Elma; Firner, Sonja; Engeler, Daniel; Ludewig, Burkhard; Klenerman, Paul

    2013-01-01

    CD8+ T cell memory inflation, first described in murine cytomegalovirus (MCMV) infection, is characterized by the accumulation of high-frequency, functional antigen-specific CD8+ T cell pools with an effector-memory phenotype and enrichment in peripheral organs. Although persistence of antigen is considered essential, the rules underpinning memory inflation are still unclear. The MCMV model is, however, complicated by the virus’s low-level persistence, and stochastic reactivation. We developed a new model of memory inflation based upon a βgal-recombinant adenovirus vector (Ad-LacZ). After i.v. administration in C57BL/6 mice we observe marked memory inflation in the βgal96 epitope, while a second epitope, βgal497, undergoes classical memory formation. The inflationary T cell responses show kinetics, distribution, phenotype and functions similar to those seen in MCMV and are reproduced using alternative routes of administration. Memory inflation in this model is dependent on MHC Class II. As in MCMV, only the inflating epitope showed immunoproteasome-independence. These data define a new model for memory inflation, which is fully replication-independent, internally controlled and reproduces the key immunologic features of the CD8+ T cell response. This model provides insight into the mechanisms responsible for memory inflation, and since it is based on a vaccine vector, also is relevant to novel T cell-inducing vaccines in humans. PMID:23509359

  5. Increased expression of activation antigens on CD8+ T lymphocytes in Myalgic Encephalomyelitis/chronic fatigue syndrome: inverse associations with lowered CD19+ expression and CD4+/CD8+ ratio, but no associations with (auto)immune, leaky gut, oxidative and nitrosative stress biomarkers.

    PubMed

    Maes, Michael; Bosmans, Eugene; Kubera, Marta

    2015-01-01

    There is now evidence that specific subgroups of patients with Myalgic Encephalomyelitis / chronic fatigue syndrome (ME/CFS) suffer from a neuro-psychiatric-immune disorder. This study was carried out to delineate the expression of the activation markers CD38 and human leukocyte antigen (HLA) DR on CD4+ and CD8+ peripheral blood lymphocytes in ME/CFS. Proportions and absolute numbers of peripheral lymphocytes expressing CD3+, CD19+, CD4+, CD8+, CD38+ and HLA-DR+ were measured in ME/CFS (n=139), chronic fatigue (CF, n=65) and normal controls (n=40). The proportions of CD3+, CD8+, CD8+CD38+ and CD8+HLA-DR+ were significantly higher in ME/CFS patients than controls, while CD38+, CD8+CD38+, CD8+HLA-DR+ and CD38+HLA-DR+ were significantly higher in ME/CFS than CF. The percentage of CD19+ cells and the CD4+/CD8+ ratio were significantly lower in ME/CFS and CF than in controls. There were highly significant inverse correlations between the increased expression of CD38+, especially that of CD8+CD38+, and the lowered CD4+/CD8+ ratio and CD19+ expression. There were no significant associations between the flow cytometric results and severity or duration of illness and peripheral blood biomarkers of oxidative and nitrosative stress (O&NS, i.e. IgM responses to O&N modified epitopes), leaky gut (IgM or IgA responses to LPS of gut commensal bacteria), cytokines (interleukin-1, tumor necrosis factor-α), neopterin, lysozyme and autoimmune responses to serotonin. The results support that a) increased CD38 and HLA-DR expression on CD8+ T cells are biomarkers of ME/CFS; b) increased CD38 antigen expression may contribute to suppression of the CD4+/CD8+ ratio and CD19+ expression; c) there are different immune subgroups of ME/CFS patients, e.g. increased CD8+ activation marker expression versus inflammation or O&NS processes; and d) viral infections or reactivation may play a role in a some ME/CFS patients.

  6. Preventing vaccinia virus class-I epitopes presentation by HSV-ICP47 enhances the immunogenicity of a TAP-independent cancer vaccine epitope.

    PubMed

    Raafat, Nermin; Sadowski-Cron, Charlotte; Mengus, Chantal; Heberer, Michael; Spagnoli, Giulio C; Zajac, Paul

    2012-09-01

    Herpes simplex virus protein ICP47, encoded by US12 gene, strongly downregulates major histocompatibility complex (MHC) class-I antigen restricted presentation by blocking transporter associated with antigen processing (TAP) protein. To decrease viral vector antigenic immunodominance and MHC class-I driven clearance, we engineered recombinant vaccinia viruses (rVV) expressing ICP47 alone (rVV-US12) or together with endoplasmic reticulum (ER)-targeted Melan-A/MART-1(27-35) model tumor epitope (rVV-MUS12). In this study, we show that antigen presenting cells (APC), infected with rVV-US12, display a decreased ability to present TAP dependent MHC class-I restricted viral antigens to CD8+ T-cells. While HLA class-I cell surface expression is strongly downregulated, other important immune related molecules such as CD80, CD44 and, most importantly, MHC class-II are unaffected. Characterization of rVV-MUS12 infected cells demonstrates that over-expression of a TAP-independent peptide, partially compensates for ICP47 induced surface MHC class-I downregulation (30% vs. 70% respectively). Most importantly, in conditions where clearance of infected APC by virus-specific CTL represents a limiting factor, a significant enhancement of CTL responses to the tumor epitope can be detected in cultures stimulated with rVV-MUS12, as compared to those stimulated by rVV-MART alone. Such reagents could become of high relevance in multiple boost protocols required for cancer immunotherapy, to limit vector-specific responsiveness. Copyright © 2011 UICC.

  7. The WT hemochromatosis protein HFE inhibits CD8⁺ T-lymphocyte activation.

    PubMed

    Reuben, Alexandre; Phénix, Mikaël; Santos, Manuela M; Lapointe, Réjean

    2014-06-01

    MHC class I (MHC I) antigen presentation is a ubiquitous process by which cells present endogenous proteins to CD8(+) T lymphocytes during immune surveillance and response. Hereditary hemochromatosis protein, HFE, is involved in cellular iron uptake but, while structurally homologous to MHC I, is unable to bind peptides. However, increasing evidence suggests a role for HFE in the immune system. Here, we investigated the impact of HFE on CD8(+) T-lymphocyte activation. Using transient HFE transfection assays in a model of APCs, we show that WT HFE (HFEWT ), but not C282Y-mutated HFE, inhibits secretion of MIP-1β from antigen-specific CD8(+) T lymphocytes. HFEWT expression also resulted in major decreases in CD8(+) T-lymphocyte activation as measured by 4-1BB expression. We further demonstrate that inhibition of CD8(+) T-lymphocyte activation was independent of MHC I surface levels, β2-m competition, HFE interaction with transferrin receptor, antigen origin, or epitope affinity. Finally, we identified the α1-2 domains of HFEWT as being responsible for inhibiting CD8(+) T-lymphocyte activation. Our data imply a new role for HFEWT in altering CD8(+) T-lymphocyte reactivity, which could modulate antigen immunogenicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Identification of epitopes recognised by mucosal CD4(+) T-cell populations from cattle experimentally colonised with Escherichia coli O157:H7.

    PubMed

    Corbishley, Alexander; Connelley, Timothy K; Wolfson, Eliza B; Ballingall, Keith; Beckett, Amy E; Gally, David L; McNeilly, Tom N

    2016-09-02

    Vaccines targeting enterohaemorrhagic Escherichia coli (EHEC) O157:H7 shedding in cattle are only partially protective. The correlates of protection of these vaccines are unknown, but it is probable that they reduce bacterial adherence at the mucosal surface via the induction of blocking antibodies. Recent studies have indicated a role for cellular immunity in cattle during colonisation, providing an impetus to understand the bacterial epitopes recognised during this response. This study mapped the epitopes of 16 EHEC O157:H7 proteins recognised by rectal lymph node CD4(+) T-cells from calves colonised with Shiga toxin producing EHEC O157:H7 strains. 20 CD4(+) T-cell epitopes specific to E. coli from 7 of the proteins were identified. The highly conserved N-terminal region of Intimin, including the signal peptide, was consistently recognised by mucosal CD4(+) T-cell populations from multiple animals of different major histocompatibility complex class II haplotypes. These T-cell epitopes are missing from many Intimin constructs used in published vaccine trials, but are relatively conserved across a range of EHEC serotypes, offering the potential to develop cross protective vaccines. Antibodies recognising H7 flagellin have been consistently identified in colonised calves; however CD4(+) T-cell epitopes from H7 flagellin were not identified in this study, suggesting that H7 flagellin may act as a T-cell independent antigen. This is the first time that the epitopes recognised by CD4(+) T-cells following colonisation with an attaching and effacing pathogen have been characterised in any species. The findings have implications for the design of antigens used in the next generation of EHEC O157:H7 vaccines.

  9. Rational design based synthetic polyepitope DNA vaccine for eliciting HIV-specific CD8+ T cell responses.

    PubMed

    Bazhan, S I; Karpenko, L I; Ilyicheva, T N; Belavin, P A; Seregin, S V; Danilyuk, N K; Antonets, D V; Ilyichev, A A

    2010-04-01

    Advances in defining HIV-1 CD8+ T cell epitopes and understanding endogenous MHC class I antigen processing enable the rational design of polyepitope vaccines for eliciting broadly targeted CD8+ T cell responses to HIV-1. Here we describe the construction and comparison of experimental DNA vaccines consisting of ten selected HLA-A2 epitopes from the major HIV-1 antigens Env, Gag, Pol, Nef, and Vpr. The immunogenicity of designed gene constructs was assessed after double DNA prime, single vaccinia virus boost immunization of HLA-A2 transgenic mice. We compared a number of parameters including different strategies for fusing ubiquitin to the polyepitope and including spacer sequences between epitopes to optimize proteasome liberation and TAP transport. It was demonstrated that the vaccine construct that induced in vitro the largest number of [peptide-MHC class I] complexes was also the most immunogenic in the animal experiments. This most immunogenic vaccine construct contained the N-terminal ubiquitin for targeting the polyepitope to the proteasome and included both proteasome liberation and TAP transport optimized spacer sequences that flanked the epitopes within the polyepitope construct. The immunogenicity of determinants was strictly related to their affinities for HLA-A2. Our finding supports the concept of rational vaccine design based on detailed knowledge of antigen processing. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages

    PubMed Central

    Cockburn, Ian A.; Amino, Rogerio; Kelemen, Reka K.; Kuo, Scot C.; Tse, Sze-Wah; Radtke, Andrea; Mac-Daniel, Laura; Ganusov, Vitaly V.; Zavala, Fidel; Ménard, Robert

    2013-01-01

    CD8+ T cells are specialized cells of the adaptive immune system capable of finding and eliminating pathogen-infected cells. To date it has not been possible to observe the destruction of any pathogen by CD8+ T cells in vivo. Here we demonstrate a technique for imaging the killing of liver-stage malaria parasites by CD8+ T cells bearing a transgenic T cell receptor specific for a parasite epitope. We report several features that have not been described by in vitro analysis of the process, chiefly the formation of large clusters of effector CD8+ T cells around infected hepatocytes. The formation of clusters requires antigen-specific CD8+ T cells and signaling by G protein-coupled receptors, although CD8+ T cells of unrelated specificity are also recruited to clusters. By combining mathematical modeling and data analysis, we suggest that formation of clusters is mainly driven by enhanced recruitment of T cells into larger clusters. We further show various death phenotypes of the parasite, which typically follow prolonged interactions between infected hepatocytes and CD8+ T cells. These findings stress the need for intravital imaging for dissecting the fine mechanisms of pathogen recognition and killing by CD8+ T cells. PMID:23674673

  11. Cryptic Nature of a Conserved, CD4-Inducible V3 Loop Neutralization Epitope in the Native Envelope Glycoprotein Oligomer of CCR5-Restricted, but Not CXCR4-Using, Primary Human Immunodeficiency Virus Type 1 Strains

    PubMed Central

    Lusso, Paolo; Earl, Patricia L.; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A.; Burastero, Samuele E.

    2005-01-01

    The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on

  12. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains.

    PubMed

    Lusso, Paolo; Earl, Patricia L; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A; Burastero, Samuele E

    2005-06-01

    The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on

  13. Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes.

    PubMed

    Murakoshi, Hayato; Akahoshi, Tomohiro; Koyanagi, Madoka; Chikata, Takayuki; Naruto, Takuya; Maruyama, Rie; Tamura, Yoshiko; Ishizuka, Naoki; Gatanaga, Hiroyuki; Oka, Shinichi; Takiguchi, Masafumi

    2015-05-01

    Identification and characterization of CD8(+) T cells effectively controlling HIV-1 variants are necessary for the development of AIDS vaccines and for studies of AIDS pathogenesis, although such CD8(+) T cells have been only partially identified. In this study, we sought to identify CD8(+) T cells controlling HIV-1 variants in 401 Japanese individuals chronically infected with HIV-1 subtype B, in which protective alleles HLA-B*57 and HLA-B*27 are very rare, by using comprehensive and exhaustive methods. We identified 13 epitope-specific CD8(+) T cells controlling HIV-1 in Japanese individuals, though 9 of these epitopes were not previously reported. The breadths of the T cell responses to the 13 epitopes were inversely associated with plasma viral load (P = 2.2 × 10(-11)) and positively associated with CD4 count (P = 1.2 × 10(-11)), indicating strong synergistic effects of these T cells on HIV-1 control in vivo. Nine of these epitopes were conserved among HIV-1 subtype B-infected individuals, whereas three out of four nonconserved epitopes were cross-recognized by the specific T cells. These findings indicate that these 12 epitopes are strong candidates for antigens for an AIDS vaccine. The present study highlighted a strategy to identify CD8(+) T cells controlling HIV-1 and demonstrated effective control of HIV-1 by those specific for 12 conserved or cross-reactive epitopes. HLA-B*27-restricted and HLA-B*57-restricted cytotoxic T lymphocytes (CTLs) play a key role in controlling HIV-1 in Caucasians and Africans, whereas it is unclear which CTLs control HIV-1 in Asian countries, where HLA-B*57 and HLA-B*27 are very rare. A recent study showed that HLA-B*67:01 and HLA-B*52:01-C*12:02 haplotypes were protective alleles in Japanese individuals, but it is unknown whether CTLs restricted by these alleles control HIV-1. In this study, we identified 13 CTLs controlling HIV-1 in Japan by using comprehensive and exhaustive methods. They included 5 HLA-B*52:01-restricted

  14. Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes

    PubMed Central

    Murakoshi, Hayato; Akahoshi, Tomohiro; Koyanagi, Madoka; Chikata, Takayuki; Naruto, Takuya; Maruyama, Rie; Tamura, Yoshiko; Ishizuka, Naoki; Gatanaga, Hiroyuki; Oka, Shinichi

    2015-01-01

    ABSTRACT Identification and characterization of CD8+ T cells effectively controlling HIV-1 variants are necessary for the development of AIDS vaccines and for studies of AIDS pathogenesis, although such CD8+ T cells have been only partially identified. In this study, we sought to identify CD8+ T cells controlling HIV-1 variants in 401 Japanese individuals chronically infected with HIV-1 subtype B, in which protective alleles HLA-B*57 and HLA-B*27 are very rare, by using comprehensive and exhaustive methods. We identified 13 epitope-specific CD8+ T cells controlling HIV-1 in Japanese individuals, though 9 of these epitopes were not previously reported. The breadths of the T cell responses to the 13 epitopes were inversely associated with plasma viral load (P = 2.2 × 10−11) and positively associated with CD4 count (P = 1.2 × 10−11), indicating strong synergistic effects of these T cells on HIV-1 control in vivo. Nine of these epitopes were conserved among HIV-1 subtype B-infected individuals, whereas three out of four nonconserved epitopes were cross-recognized by the specific T cells. These findings indicate that these 12 epitopes are strong candidates for antigens for an AIDS vaccine. The present study highlighted a strategy to identify CD8+ T cells controlling HIV-1 and demonstrated effective control of HIV-1 by those specific for 12 conserved or cross-reactive epitopes. IMPORTANCE HLA-B*27-restricted and HLA-B*57-restricted cytotoxic T lymphocytes (CTLs) play a key role in controlling HIV-1 in Caucasians and Africans, whereas it is unclear which CTLs control HIV-1 in Asian countries, where HLA-B*57 and HLA-B*27 are very rare. A recent study showed that HLA-B*67:01 and HLA-B*52:01-C*12:02 haplotypes were protective alleles in Japanese individuals, but it is unknown whether CTLs restricted by these alleles control HIV-1. In this study, we identified 13 CTLs controlling HIV-1 in Japan by using comprehensive and exhaustive methods. They included 5 HLA-B*52

  15. Identification of three novel B-cell epitopes of VMH protein from Vibrio mimicus by screening a phage display peptide library.

    PubMed

    Xiao, Ning; Cao, Ji; Zhou, Hao; Ding, Shu-Quan; Kong, Ling-Yan; Li, Jin-Nian

    2016-12-01

    Vibrio mimicus is the causative agent of ascites disease in fish. The heat-labile hemolytic toxin designated VMH is an immunoprotective antigen of V. mimicus. However, its epitopes have not been well characterized. Here, a commercially available phage displayed 12-mer peptide library was used to screen epitopes of VMH protein using polyclonal rabbit anti-rVMH protein antibodies, and then five positive phage clones were identified by sandwich and competitive ELISA. Sequences analysis showed that the motif of DPTLL displayed on phage clone 15 and the consensus motif of SLDDDST displayed on the clone 4/11 corresponded to the residues 134-138 and 238-244 of VMH protein, respectively, and the synthetic motif peptides could also be recognized by anti-rVMH-HD antibody in peptide-ELISA. Thus, both motifs DPTLL and SLDDDST were identified as minimal linear B-cell epitopes of VMH protein. Although no similarity was found between VMH protein and the consensus motif of ADGLVPR displayed on the clone 2/6, the synthetic peptide ADGLVPR could absorb anti-rVMH-HD antibody and inhibit the antibody binding to rVMH protein in enhanced chemoluminescence Western blotting, whereas irrelevant control peptide did not affect the antibody binding with rVMH. These results revealed that the peptide ADGLVPR was a mimotope of VMH protein. Taken together, three novel B-cell epitopes of VMH protein were identified, which provide a foundation for developing epitope-based vaccine against V. mimicus infection in fish. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Role of PD-1 during effector CD8 T cell differentiation.

    PubMed

    Ahn, Eunseon; Araki, Koichi; Hashimoto, Masao; Li, Weiyan; Riley, James L; Cheung, Jeanne; Sharpe, Arlene H; Freeman, Gordon J; Irving, Bryan A; Ahmed, Rafi

    2018-05-01

    PD-1 (programmed cell death-1) is the central inhibitory receptor regulating CD8 T cell exhaustion during chronic viral infection and cancer. Interestingly, PD-1 is also expressed transiently by activated CD8 T cells during acute viral infection, but the role of PD-1 in modulating T cell effector differentiation and function is not well defined. To address this question, we examined the expression kinetics and role of PD-1 during acute lymphocytic choriomeningitis virus (LCMV) infection of mice. PD-1 was rapidly up-regulated in vivo upon activation of naive virus-specific CD8 T cells within 24 h after LCMV infection and in less than 4 h after peptide injection, well before any cell division had occurred. This rapid PD-1 expression by CD8 T cells was driven predominantly by antigen receptor signaling since infection with a LCMV strain with a mutation in the CD8 T cell epitope did not result in the increase of PD-1 on antigen-specific CD8 T cells. Blockade of the PD-1 pathway using anti-PD-L1 or anti-PD-1 antibodies during the early phase of acute LCMV infection increased mTOR signaling and granzyme B expression in virus-specific CD8 T cells and resulted in faster clearance of the infection. These results show that PD-1 plays an inhibitory role during the naive-to-effector CD8 T cell transition and that the PD-1 pathway can also be modulated at this stage of T cell differentiation. These findings have implications for developing therapeutic vaccination strategies in combination with PD-1 blockade.

  17. Phenotypic Alterations Involved in CD8+ Treg Impairment in Systemic Sclerosis

    PubMed Central

    Negrini, Simone; Fenoglio, Daniela; Parodi, Alessia; Kalli, Francesca; Battaglia, Florinda; Nasi, Giorgia; Curto, Monica; Tardito, Samuele; Ferrera, Francesca; Filaci, Gilberto

    2017-01-01

    Systemic sclerosis (SSc) is a connective tissue disease characterized by tissue fibrosis, vasculopathy, and autoimmunity. Although the exact pathogenetic mechanisms behind SSc remain to be fully elucidated, a great deal of evidence suggests the existence of an unbalanced ratio between the effector and regulatory arms of the immune system. With regard to the T regulatory (Treg) compartment, we observed that CD8+ Treg subsets display functional defects in SSc-affected patients. Since CD127 down-modulation and CD39 upregulation have been observed on Treg subsets, the phenotypic expression of these molecules was analyzed on the CD8+CD28− Treg precursors and on CD8+ Treg cells generated in vitro through interleukin-10 commitment. Immunophenotypic data from SSc patients were compared to those obtained from healthy subjects. The analyses performed on ex vivo-isolated CD8+CD28− Treg precursors did not show any significant differences in CD39 or CD127 expression as compared to values obtained from healthy donors. On the contrary, in vitro-generated CD8+ Tregs obtained from SSc patients displayed reduced expression of the CD39 molecule as compared to controls. Moreover, the percentage of CD127+ cells was significantly higher in in vitro-generated CD8+ Tregs from SSc patients compared to CD8+ Tregs obtained from healthy donors. Taken together, these findings may indicate an impairment of maturation processes affecting CD8+ Treg cells in SSc patients. This impairment of maturation involves phenotypic alterations that are mainly characterized by a deficient CD39 upregulation and a lack of down-modulation of the CD127 molecule. PMID:28154567

  18. Public clonotype usage identifies protective Gag-specific CD8+ T cell responses in SIV infection

    PubMed Central

    Asher, Tedi E.; Wilson, Nancy A.; Nason, Martha C.; Brenchley, Jason M.; Metzler, Ian S.; Venturi, Vanessa; Gostick, Emma; Chattopadhyay, Pratip K.; Roederer, Mario; Davenport, Miles P.; Watkins, David I.; Douek, Daniel C.

    2009-01-01

    Despite the pressing need for an AIDS vaccine, the determinants of protective immunity to HIV remain concealed within the complexity of adaptive immune responses. We dissected immunodominant virus-specific CD8+ T cell populations in Mamu-A*01+ rhesus macaques with primary SIV infection to elucidate the hallmarks of effective immunity at the level of individual constituent clonotypes, which were identified according to the expression of distinct T cell receptors (TCRs). The number of public clonotypes, defined as those that expressed identical TCR β-chain amino acid sequences and recurred in multiple individuals, contained within the acute phase CD8+ T cell population specific for the biologically constrained Gag CM9 (CTPYDINQM; residues 181–189) epitope correlated negatively with the virus load set point. This independent molecular signature of protection was confirmed in a prospective vaccine trial, in which clonotype engagement was governed by the nature of the antigen rather than the context of exposure and public clonotype usage was associated with enhanced recognition of epitope variants. Thus, the pattern of antigen-specific clonotype recruitment within a protective CD8+ T cell population is a prognostic indicator of vaccine efficacy and biological outcome in an AIDS virus infection. PMID:19349463

  19. Diverse Epitope Specificity, Immunodominance Hierarchy, and Functional Avidity of Effector CD4 T Cells Established During Priming Is Maintained in Lung After Influenza A Virus Infection.

    PubMed

    Richards, Katherine A; DiPiazza, Anthony T; Rattan, Ajitanuj; Knowlden, Zackery A G; Yang, Hongmei; Sant, Andrea J

    2018-01-01

    One of the major contributions to protective immunity to influenza viruses that is provided by virus-specific CD4 T cells is delivery of effector function to the infected lung. However, there is little known about the selection and breadth of viral epitope-specific CD4 T cells that home to the lung after their initial priming. In this study, using a mouse model of influenza A infection and an unbiased method of epitope identification, the viral epitope-specific CD4 T cells elicited after infection were identified and quantified. We found that a very diverse specificity of CD4 T cells is primed by infection, including epitopes from hemagglutinin, neuraminidase, matrix protein, nucleoprotein, and non-structural protein-1. Using peptide-specific cytokine EliSpots, the diversity and immunodominance hierarchies established in the lung-draining lymph node were compared with specificities of CD4 T cells that home to the lung. Our studies revealed that CD4 T cells of all epitope specificities identified in peripheral lymphoid tissue home back to the lung and that most of these lung-homing cells are localized within the tissue rather than the pulmonary vasculature. There is a striking shift of CD4 T cell functionality that enriches for IFN-γ production as cells are primed in the lymph node, enter the lung vasculature, and finally establish residency in the tissue, but with no apparent shifts in their functional avidity. We conclude that CD4 T cells of broad viral epitope specificity are recruited into the lung after influenza infection, where they then have the opportunity to encounter infected or antigen-bearing antigen-presenting cells.

  20. CD4+ T Cell Help Guides Formation of CD103+ Lung-Resident Memory CD8+ T Cells during Influenza Viral Infection

    PubMed Central

    Laidlaw, Brian J.; Zhang, Nianzhi; Marshall, Heather D.; Staron, Mathew M.; Guan, Tianxia; Hu, Yinghong; Cauley, Linda S.; Craft, Joe; Kaech, Susan M.

    2014-01-01

    SUMMARY Tissue-resident memory T (Trm) cells provide enhanced protection against infection at mucosal sites. Here we found that CD4+ T cells are important for the formation of functional lung-resident CD8+ T cells after influenza virus infection. In the absence of CD4+ T cells, CD8+ T cells displayed reduced expression of CD103 (Itgae), were mislocalized away from airway epithelia, and demonstrated an impaired ability to recruit CD8+ T cells to the lung air-ways upon heterosubtypic challenge. CD4+ T cell-derived interferon-γ was necessary for generating lung-resident CD103+ CD8+ Trm CD8 T cells. Furthermore, expression of the transcription factor T-bet was increased in “unhelped” lung Trm cells, and a reduction in T-bet rescued CD103 expression in the absence of CD4+ T cell help. Thus, CD4+ T cell-dependent signals are important to limit expression of T-bet and allow for the development of CD103+ CD8+ Trm cells in the lung airways following respiratory infection. PMID:25308332

  1. Pathogenesis of NOD Diabetes is Initiated by Reactivity to the Insulin B Chain 9–23 Epitope and Involves Functional Epitope Spreading1

    PubMed Central

    Prasad, Suchitra; Kohm, Adam P.; McMahon, Jeffrey S.; Luo, Xunrong; Miller, Stephen D.

    2012-01-01

    Type 1 diabetes (T1D) is mediated by destruction of pancreatic β cells by CD4 and CD8 T cells specific for epitopes on numerous diabetogenic autoantigens resulting in loss of glucose homeostasis. Employing antigen-specific tolerance induced by i.v. administration of syngeneic splenocytes ECDI cross-linked to various diabetogenic antigens/epitopes (Ag-SP), we show that epitope spreading plays a functional role in the pathogenesis of T1D in NOD mice. Specifically, Ag-SP coupled with intact insulin, Ins B9–23 or Ins B15–23, but not GAD65509–528, GAD65524–543 or IGRP206–214, protected 4–6 week-old NOD mice from the eventual development of clinical disease; infiltration of immune cells to the pancreatic islets; and blocked the induction of DTH responses in a Treg-dependent, antigen-specific manner. However, tolerance induction in 19–21 week-old NOD mice was effectively accomplished only by Ins-SP, suggesting Ins B9–23 is a dominant initiating epitope, but autoimmune responses to insulin epitope(s) distinct from Ins B9–23 emerge during disease progression. PMID:22647732

  2. Characterization of a CD44/CD122int memory CD8 T cell subset generated under sterile inflammatory conditions.

    PubMed

    Mbitikon-Kobo, Florentin-Martial; Vocanson, Marc; Michallet, Marie-Cécile; Tomkowiak, Martine; Cottalorda, Anne; Angelov, Georgi S; Coupet, Charles-Antoine; Djebali, Sophia; Marçais, Antoine; Dubois, Bertrand; Bonnefoy-Bérard, Nathalie; Nicolas, Jean-François; Arpin, Christophe; Marvel, Jacqueline

    2009-03-15

    Most memory CD8 T cell subsets that have been hitherto defined are generated in response to infectious pathogens. In this study, we have characterized the CD8 T cells that survive priming conditions, devoid of pathogen-derived danger signals. In both a TCR-transgenic model and a model of contact hypersensitivity, we show that the priming of naive CD8 T cells under sterile inflammatory conditions generates memory. The corresponding memory CD8 T cells can be identified by their intermediate expression levels of CD44 and CD122. We also show that CD44/122(int) memory CD8 T cells spontaneously develop in wild type mice and that they display intermediate levels of several other memory traits including functional (IFN-gamma secretion capacity, CCL5 messenger stores), phenotypic, and molecular (T-bet and eomesodermin expression levels) features. We finally show that they correspond to an early differentiation stage and can further differentiate in CD44/122(high) memory T cells. Altogether, our results identify a new memory CD8 T cell subset that is generated under sterile inflammatory conditions and involved in the recall contact hypersensitivity reactions that are responsible for allergic contact dermatitis.

  3. An inducible transgenic mouse breast cancer model for the analysis of tumor antigen specific CD8+ T-cell responses

    PubMed Central

    Bruns, Michael; Wanger, Jara; Utermöhlen, Olaf; Deppert, Wolfgang

    2015-01-01

    In Simian virus 40 (SV40) transgenic BALB/c WAP-T mice tumor development and progression is driven by SV40 tumor antigens encoded by inducible transgenes. WAP-T mice constitute a well characterized mouse model for breast cancer with strong similarities to the corresponding human disease. BALB/c mice mount only a weak cellular immune response against SV40 T-antigen (T-Ag). For studying tumor antigen specific CD8+ T-cell responses against transgene expressing cells, we created WAP-TNP mice, in which the transgene additionally codes for the NP118–126-epitope contained within the nucleoprotein of lymphocytic choriomeningitis virus (LCMV), the immune-dominant T-cell epitope in BALB/c mice. We then investigated in WAP-TNP mice the immune responses against SV40 tumor antigens and the NP-epitope within the chimeric T-Ag/NP protein (T-AgNP). Analysis of the immune-reactivity against T-Ag in WAP-T and of T-AgNP in WAP-TNP mice revealed that, in contrast to wild type (wt) BALB/c mice, WAP-T and WAP-TNP mice were non-reactive against T-Ag. However, like wtBALB/c mice, WAP-T as well as WAP-TNP mice were highly reactive against the immune-dominant LCMV NP-epitope, thereby allowing the analysis of NP-epitope specific cellular immune responses in WAP-TNP mice. LCMV infection of WAP-TNP mice induced a strong, LCMV NP-epitope specific CD8+ T-cell response, which was able to specifically eliminate T-AgNP expressing mammary epithelial cells both prior to tumor formation (i.e. in cells of lactating mammary glands), as well as in invasive tumors. Elimination of tumor cells, however, was only transient, even after repeated LCMV infections. Further studies showed that already non-infected WAP-TNP tumor mice contained LCMV NP-epitope specific CD8+ T-cells, albeit with strongly reduced, though measurable activity. Functional impairment of these ‘endogenous’ NP-epitope specific T-cells seems to be caused by expression of the programmed death-1 protein (PD1), as anti-PD1 treatment of

  4. A Numerically Subdominant CD8 T Cell Response to Matrix Protein of Respiratory Syncytial Virus Controls Infection with Limited Immunopathology

    PubMed Central

    Liu, Jie; Haddad, Elias K.; Marceau, Joshua; Morabito, Kaitlyn M.; Rao, Srinivas S.; Filali-Mouhim, Ali; Sekaly, Rafick-Pierre; Graham, Barney S.

    2016-01-01

    CD8 T cells are involved in pathogen clearance and infection-induced pathology in respiratory syncytial virus (RSV) infection. Studying bulk responses masks the contribution of individual CD8 T cell subsets to protective immunity and immunopathology. In particular, the roles of subdominant responses that are potentially beneficial to the host are rarely appreciated when the focus is on magnitude instead of quality of response. Here, by evaluating CD8 T cell responses in CB6F1 hybrid mice, in which multiple epitopes are recognized, we found that a numerically subdominant CD8 T cell response against DbM187 epitope of the virus matrix protein expressed high avidity TCR and enhanced signaling pathways associated with CD8 T cell effector functions. Each DbM187 T effector cell lysed more infected targets on a per cell basis than the numerically dominant KdM282 T cells, and controlled virus replication more efficiently with less pulmonary inflammation and illness than the previously well-characterized KdM282 T cell response. Our data suggest that the clinical outcome of viral infections is determined by the integrated functional properties of a variety of responding CD8 T cells, and that the highest magnitude response may not necessarily be the best in terms of benefit to the host. Understanding how to induce highly efficient and functional T cells would inform strategies for designing vaccines intended to provide T cell-mediated immunity. PMID:26943673

  5. Diverse specificity and effector function among human antibodies to HIV-1 envelope glycoprotein epitopes exposed by CD4 binding

    DOE PAGES

    Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; ...

    2012-12-13

    The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain;more » and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.« less

  6. Escape is a more common mechanism than avidity reduction for evasion of CD8+ T cell responses in primary human immunodeficiency virus type 1 infection

    PubMed Central

    2011-01-01

    Background CD8+ T cells play an important role in control of viral replication during acute and early human immunodeficiency virus type 1 (HIV-1) infection, contributing to containment of the acute viral burst and establishment of the prognostically-important persisting viral load. Understanding mechanisms that impair CD8+ T cell-mediated control of HIV replication in primary infection is thus of importance. This study addressed the relative extent to which HIV-specific T cell responses are impacted by viral mutational escape versus reduction in response avidity during the first year of infection. Results 18 patients presenting with symptomatic primary HIV-1 infection, most of whom subsequently established moderate-high persisting viral loads, were studied. HIV-specific T cell responses were mapped in each individual and responses to a subset of optimally-defined CD8+ T cell epitopes were followed from acute infection onwards to determine whether they were escaped or declined in avidity over time. During the first year of infection, sequence variation occurred in/around 26/33 epitopes studied (79%). In 82% of cases of intra-epitopic sequence variation, the mutation was confirmed to confer escape, although T cell responses were subsequently expanded to variant sequences in some cases. In contrast, < 10% of responses to index sequence epitopes declined in functional avidity over the same time-frame, and a similar proportion of responses actually exhibited an increase in functional avidity during this period. Conclusions Escape appears to constitute a much more important means of viral evasion of CD8+ T cell responses in acute and early HIV infection than decline in functional avidity of epitope-specific T cells. These findings support the design of vaccines to elicit T cell responses that are difficult for the virus to escape. PMID:21635736

  7. Re-evaluating the generation of a "proteasome-independent" MHC class I-restricted CD8 T cell epitope.

    PubMed

    Wherry, E John; Golovina, Tatiana N; Morrison, Susan E; Sinnathamby, Gomathinayagam; McElhaugh, Michael J; Shockey, David C; Eisenlohr, Laurence C

    2006-02-15

    The proteasome is primarily responsible for the generation of MHC class I-restricted CTL epitopes. However, some epitopes, such as NP(147-155) of the influenza nucleoprotein (NP), are presented efficiently in the presence of proteasome inhibitors. The pathways used to generate such apparently "proteasome-independent" epitopes remain poorly defined. We have examined the generation of NP(147-155) and a second proteasome-dependent NP epitope, NP(50-57), using cells adapted to growth in the presence of proteasome inhibitors and also through protease overexpression. We observed that: 1) Ag processing and presentation proceeds in proteasome-inhibitor adapted cells but may become more dependent, at least in part, on nonproteasomal protease(s), 2) tripeptidyl peptidase II does not substitute for the proteasome in the generation of NP(147-155), 3) overexpression of leucine aminopeptidase, thymet oligopeptidase, puromycin-sensitive aminopeptidase, and bleomycin hydrolase, has little impact on the processing and presentation of NP(50-57) or NP(147-155), and 4) proteasome-inhibitor treatment altered the specificity of substrate cleavage by the proteasome using cell-free digests favoring NP(147-155) epitope preservation. Based on these results, we propose a central role for the proteasome in epitope generation even in the presence of proteasome inhibitors, although such inhibitors will likely alter cleavage patterns and may increase the dependence of the processing pathway on postproteasomal enzymes.

  8. Characterization of mouse CD53: epitope mapping, cellular distribution and induction by T cell receptor engagement during repertoire selection.

    PubMed

    Tomlinson, M G; Hanke, T; Hughes, D A; Barclay, A N; Scholl, E; Hünig, T; Wright, M D

    1995-08-01

    The pan-leukocyte antigen CD53 is a member of the poorly understood transmembrane 4 superfamily (TM4SF) of cell membrane glycoproteins. CD53 is proposed to play a role in thymopoiesis, since rat CD53 is expressed on immature CD4-8-thymocytes and the functionally mature single-positive subset, but is largely absent from the intermediate CD4+8+ cells. We have characterized CD53 in the mouse through the production of two new monoclonal antibodies, MRC OX-79 and OX-80, which were raised against the RAW 264 cell line and screened on recombinant CD53 fusion proteins. The epitopes recognized by both antibodies are dependent on disulfide bonding and map to the major extracellular region of CD53, requiring the presence of a single threonine residue at position 154. Mouse CD53 has a molecular mass of 35-45 kDa and is expressed on virtually all peripheral leukocytes, but not on cells outside the lymphoid or myeloid lineages. CD53 expression distinguishes subpopulations of thymocytes in the mouse and resembles the expression pattern of rat CD53. Amongst the immature CD4-8-thymocytes, mouse CD53 is clearly detectable on the earliest CD44high25- subset, but down-regulated on the later CD44high25+, CD44low25+ and CD44low25- stages. Also, the subsequent transient TcR-/low CD4-8+ cells and most CD4+8+ thymocytes express little or no CD53. This is consistent with the idea that cells which are committed to enter the selectable CD4+8+ compartment switch off CD53. The effect of T cell receptor (TcR) engagement on the re-expression of CD53 on CD4+8+ thymocytes was studied both ex vivo and in vitro using F5 mice, transgenic for the H-2b/influenza nucleoprotein-peptide-specific TcR, back-crossed onto an H-2q or H-2b background of RAG-2-deficient mice. CD4+8+ thymocytes from non-selecting H-2q F5 mice are CD53 negative, but in vitro stimulation through the TcR dramatically induces CD53 expression. In contrast, a fraction of CD4+8+ thymocytes from positively selecting H-2b F5 transgenic

  9. Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses

    PubMed Central

    da Silva Antunes, Ricardo; Paul, Sinu; Sidney, John; Weiskopf, Daniela; Dan, Jennifer M.; Phillips, Elizabeth; Mallal, Simon; Crotty, Shane; Sette, Alessandro; Lindestam Arlehamn, Cecilia S.

    2017-01-01

    Despite widespread uses of tetanus toxoid (TT) as a vaccine, model antigen and protein carrier, TT epitopes have been poorly characterized. Herein we defined the human CD4+ T cell epitope repertoire by reevaluation of previously described epitopes and evaluation of those derived from prediction of HLA Class II binding. Forty-seven epitopes were identified following in vitro TT stimulation, with 28 epitopes accounting for 90% of the total response. Despite this diverse range of epitopes, individual responses were associated with only a few immunodominant epitopes, with each donor responding on average to 3 epitopes. For the top 14 epitopes, HLA restriction could be inferred based on HLA typing of the responding donors. HLA binding predictions re-identified the vast majority of known epitopes, and identified 24 additional novel epitopes. With these epitopes, we created a TT epitope pool, which allowed us to characterize TT responses directly ex vivo using a cytokine-independent Activation Induced Marker (AIM) assay. These TT responses were highly Th1 or Th2 polarized, which was dependent upon the original priming vaccine, either the cellular DTwP or acellular DTaP formulation. This polarization remained despite the original priming having occurred decades past and a recent booster immunization with a reduced acellular vaccine formulation. While TT responses following booster vaccination were not durably increased in magnitude, they were associated with a relative expansion of CD4+ effector memory T cells. PMID:28081174

  10. Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses.

    PubMed

    da Silva Antunes, Ricardo; Paul, Sinu; Sidney, John; Weiskopf, Daniela; Dan, Jennifer M; Phillips, Elizabeth; Mallal, Simon; Crotty, Shane; Sette, Alessandro; Lindestam Arlehamn, Cecilia S

    2017-01-01

    Despite widespread uses of tetanus toxoid (TT) as a vaccine, model antigen and protein carrier, TT epitopes have been poorly characterized. Herein we defined the human CD4+ T cell epitope repertoire by reevaluation of previously described epitopes and evaluation of those derived from prediction of HLA Class II binding. Forty-seven epitopes were identified following in vitro TT stimulation, with 28 epitopes accounting for 90% of the total response. Despite this diverse range of epitopes, individual responses were associated with only a few immunodominant epitopes, with each donor responding on average to 3 epitopes. For the top 14 epitopes, HLA restriction could be inferred based on HLA typing of the responding donors. HLA binding predictions re-identified the vast majority of known epitopes, and identified 24 additional novel epitopes. With these epitopes, we created a TT epitope pool, which allowed us to characterize TT responses directly ex vivo using a cytokine-independent Activation Induced Marker (AIM) assay. These TT responses were highly Th1 or Th2 polarized, which was dependent upon the original priming vaccine, either the cellular DTwP or acellular DTaP formulation. This polarization remained despite the original priming having occurred decades past and a recent booster immunization with a reduced acellular vaccine formulation. While TT responses following booster vaccination were not durably increased in magnitude, they were associated with a relative expansion of CD4+ effector memory T cells.

  11. Lack of Original Antigenic Sin in Recall CD8+ T Cell Responses

    PubMed Central

    Zehn, Dietmar; Turner, Michael J.; Lefrançois, Leo; Bevan, Michael J.

    2010-01-01

    In the real world, mice and men are not immunologically naive, having been exposed to numerous antigenic challenges. Prior infections sometimes negatively impact the response to a subsequent infection. This can occur in serial infections with pathogens sharing cross-reactive Ags. At the T cell level it has been proposed that preformed memory T cells, which cross-react with low avidity to epitopes presented in subsequent infections, dampen the response of high-avidity T cells. We investigated this with a series of related MHC class-I restricted Ags expressed by bacterial and viral pathogens. In all cases, we find that high-avidity CD8+ T cell precursors, either naive or memory, massively expand in secondary cross-reactive infections to dominate the response over low-avidity memory T cells. This holds true even when >10% of the CD8+ T cell compartment consists of memory T cells that cross-react weakly with the rechallenge ligand. Occasionally, memory cells generated by low-avidity stimulation in a primary infection recognize a cross-reactive epitope with high avidity and contribute positively to the response to a second infection. Taken together, our data show that the phenomenon of original antigenic sin does not occur in all heterologous infections. PMID:20439913

  12. P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections.

    PubMed

    Whitacre, David C; Espinosa, Diego A; Peters, Cory J; Jones, Joyce E; Tucker, Amy E; Peterson, Darrell L; Zavala, Fidel P; Milich, David R

    2015-01-01

    In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf) sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs). Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer >1x10(6)) and provided 80-100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78), which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P. falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine.

  13. Cross-reactive influenza virus–specific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus–associated infectious mononucleosis

    PubMed Central

    Clute, Shalyn C.; Watkin, Levi B.; Cornberg, Markus; Naumov, Yuri N.; Sullivan, John L.; Luzuriaga, Katherine; Welsh, Raymond M.; Selin, Liisa K.

    2005-01-01

    The marked proliferation of activated CD8+ T cells is pathognomonic of EBV-associated infectious mononucleosis (IM), common in young adults. Since the diversity and size of the memory CD8+ T cell population increase with age, we questioned whether IM was mediated by the reactivation of memory CD8+ T cells specific to previously encountered pathogens but cross-reactive with EBV. Of 8 HLA-A2+ IM patients, 5 had activated T cells specific to another common virus, as evidenced by a significantly higher number of peripheral blood influenza A virus M158–66–specific T cells compared with healthy immune donors. Two patients with an augmented M1 response had tetramer-defined cross-reactive cells recognizing influenza M1 and EBV-BMLF1280–288, which accounted for up to one-third of their BMLF1-specific population and likely contributed to a skewed M1-specific T cell receptor repertoire. These epitopes, with only 33% sequence similarity, mediated differential effects on the function of the cross-reactive T cells, which may contribute to alterations in disease outcome. EBV could potentially encode an extensive pool of T cell epitopes that activate other cross-reactive memory T cells. Our results support the concept that cross-reactive memory CD8+ T cells activated by EBV contribute to the characteristic lymphoproliferation of IM. PMID:16308574

  14. Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus-associated infectious mononucleosis.

    PubMed

    Clute, Shalyn C; Watkin, Levi B; Cornberg, Markus; Naumov, Yuri N; Sullivan, John L; Luzuriaga, Katherine; Welsh, Raymond M; Selin, Liisa K

    2005-12-01

    The marked proliferation of activated CD8+ T cells is pathognomonic of EBV-associated infectious mononucleosis (IM), common in young adults. Since the diversity and size of the memory CD8+ T cell population increase with age, we questioned whether IM was mediated by the reactivation of memory CD8+ T cells specific to previously encountered pathogens but cross-reactive with EBV. Of 8 HLA-A2+ IM patients, 5 had activated T cells specific to another common virus, as evidenced by a significantly higher number of peripheral blood influenza A virus M1(58-66)-specific T cells compared with healthy immune donors. Two patients with an augmented M1 response had tetramer-defined cross-reactive cells recognizing influenza M1 and EBV-BMLF1(280-288), which accounted for up to one-third of their BMLF1-specific population and likely contributed to a skewed M1-specific T cell receptor repertoire. These epitopes, with only 33% sequence similarity, mediated differential effects on the function of the cross-reactive T cells, which may contribute to alterations in disease outcome. EBV could potentially encode an extensive pool of T cell epitopes that activate other cross-reactive memory T cells. Our results support the concept that cross-reactive memory CD8+ T cells activated by EBV contribute to the characteristic lymphoproliferation of IM.

  15. An MSI Tumor Specific Frameshift Mutation in a Coding Microsatellite of MSH3 Encodes for HLA-A0201-Restricted CD8+ Cytotoxic T Cell Epitopes

    PubMed Central

    Garbe, Yvette; Maletzki, Claudia; Linnebacher, Michael

    2011-01-01

    Background Microsatellite instability (MSI) resulting from inactivation of the DNA mismatch repair system (MMR) characterizes a highly immunological subtype of colorectal carcinomas. Those tumors express multiple frameshift-mutated proteins which present a unique pool of tumor-specific antigens. The DNA MMR protein MSH3 is frequently mutated in MSI+ colorectal tumors, thus making it an attractive candidate for T cell-based immunotherapies. Methodology/Principal Findings FSP-specific CD8+ T cells were generated from a healthy donor using reverse immunology. Those T cells specifically recognized T2 cells sensitized with the respective peptides. Specific recognition and killing of MSI+ colorectal carcinoma cells harbouring the mutated reading frame was observed. The results obtained with T cell bulk cultures could be reproduced with T cell clones obtained from the same cultures. Blocking experiments (using antibodies and cold target inhibition) confirmed peptide as well as HLA-A0201-specificity. Conclusions We identified two novel HLA-A0201-restricted cytotoxic T cell epitopes derived from a (-1) frameshift mutation of a coding A(8) tract within the MSH3 gene. These were 386-FLLALWECSL (FSP18) and 387-LLALWECSL (FSP19) as well as 403-IVSRTLLLV (FSP23) and 402-LIVSRTLLLV (FSP31), respectively. These results suggest that MSH3(-1) represents another promising MSI+-induced target antigen. By identifying two distinct epitopes within MSH3(-1), the sustained immunogenicity of the frameshift mutated sequence was confirmed. Our data therefore encourage further exploitation of MSH3 as a piece for peptide-based vaccines either for therapeutic or –even more important– preventive purposes. PMID:22110587

  16. An MSI tumor specific frameshift mutation in a coding microsatellite of MSH3 encodes for HLA-A0201-restricted CD8+ cytotoxic T cell epitopes.

    PubMed

    Garbe, Yvette; Maletzki, Claudia; Linnebacher, Michael

    2011-01-01

    Microsatellite instability (MSI) resulting from inactivation of the DNA mismatch repair system (MMR) characterizes a highly immunological subtype of colorectal carcinomas. Those tumors express multiple frameshift-mutated proteins which present a unique pool of tumor-specific antigens. The DNA MMR protein MSH3 is frequently mutated in MSI(+) colorectal tumors, thus making it an attractive candidate for T cell-based immunotherapies. FSP-specific CD8(+) T cells were generated from a healthy donor using reverse immunology. Those T cells specifically recognized T2 cells sensitized with the respective peptides. Specific recognition and killing of MSI(+) colorectal carcinoma cells harbouring the mutated reading frame was observed. The results obtained with T cell bulk cultures could be reproduced with T cell clones obtained from the same cultures. Blocking experiments (using antibodies and cold target inhibition) confirmed peptide as well as HLA-A0201-specificity. We identified two novel HLA-A0201-restricted cytotoxic T cell epitopes derived from a (-1) frameshift mutation of a coding A(8) tract within the MSH3 gene. These were (386)-FLLALWECSL (FSP18) and (387)-LLALWECSL (FSP19) as well as (403)-IVSRTLLLV (FSP23) and (402)-LIVSRTLLLV (FSP31), respectively. These results suggest that MSH3(-1) represents another promising MSI(+)-induced target antigen. By identifying two distinct epitopes within MSH3(-1), the sustained immunogenicity of the frameshift mutated sequence was confirmed. Our data therefore encourage further exploitation of MSH3 as a piece for peptide-based vaccines either for therapeutic or--even more important--preventive purposes.

  17. Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection.

    PubMed

    Bull, Rowena A; Leung, Preston; Gaudieri, Silvana; Deshpande, Pooja; Cameron, Barbara; Walker, Melanie; Chopra, Abha; Lloyd, Andrew R; Luciani, Fabio

    2015-05-01

    The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish

  18. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    PubMed

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins.

    PubMed

    Richard, Jonathan; Pacheco, Beatriz; Gohain, Neelakshi; Veillette, Maxime; Ding, Shilei; Alsahafi, Nirmin; Tolbert, William D; Prévost, Jérémie; Chapleau, Jean-Philippe; Coutu, Mathieu; Jia, Manxue; Brassard, Nathalie; Park, Jongwoo; Courter, Joel R; Melillo, Bruno; Martin, Loïc; Tremblay, Cécile; Hahn, Beatrice H; Kaufmann, Daniel E; Wu, Xueling; Smith, Amos B; Sodroski, Joseph; Pazgier, Marzena; Finzi, Andrés

    2016-10-01

    Human immunodeficiency virus type 1 (HIV-1) has evolved a sophisticated strategy to conceal conserved epitopes of its envelope glycoproteins (Env) recognized by antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. These antibodies, which are present in the sera of most HIV-1-infected individuals, preferentially recognize Env in its CD4-bound conformation. Accordingly, recent studies showed that small CD4-mimetics (CD4mc) able to "push" Env into this conformation sensitize HIV-1-infected cells to ADCC mediated by HIV+ sera. Here we test whether CD4mc also expose epitopes recognized by anti-cluster A monoclonal antibodies such as A32, thought to be responsible for the majority of ADCC activity present in HIV+ sera and linked to decreased HIV-1 transmission in the RV144 trial. We made the surprising observation that CD4mc are unable to enhance recognition of HIV-1-infected cells by this family of antibodies in the absence of antibodies such as 17b, which binds a highly conserved CD4-induced epitope overlapping the co-receptor binding site (CoRBS). Our results indicate that CD4mc initially open the trimeric Env enough to allow the binding of CoRBS antibodies but not anti-cluster A antibodies. CoRBS antibody binding further opens the trimeric Env, allowing anti-cluster A antibody interaction and sensitization of infected cells to ADCC. Therefore, ADCC responses mediated by cluster A antibodies in HIV-positive sera involve a sequential opening of the Env trimer on the surface of HIV-1-infected cells. The understanding of the conformational changes required to expose these vulnerable Env epitopes might be important in the design of new strategies aimed at fighting HIV-1. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. CD8+ T cells induce complete regression of advanced ovarian cancers by an interleukin (IL)-2/IL-15 dependent mechanism.

    PubMed

    Yang, Taimei; Wall, Erika M; Milne, Katy; Theiss, Patty; Watson, Peter; Nelson, Brad H

    2007-12-01

    In vitro studies suggest that ovarian cancer evades immune rejection by fostering an immunosuppressive environment within the peritoneum; however, the functional responses of ovarian cancer-specific T cells have not been directly investigated in vivo. Therefore, we developed a new murine model to enable tracking of tumor-specific CD8(+) T-cell responses to advanced ovarian tumors. The ovarian tumor cell line ID8 was transfected to stably express an epitope-tagged version of HER-2/neu (designated Neu(OT-I/OT-II)). After i.p. injection into C57BL/6 mice, ID8 cells expressing Neu(OT-I/OT-II) gave rise to disseminated serous adenocarcinomas with extensive ascites. CD8(+) T cells expressing a transgenic T-cell receptor specific for the OT-I epitope of Neu(OT-I/OT-II) were adoptively transferred into tumor-bearing mice, and functional responses were monitored. Cytokine signaling requirements were evaluated by comparing the responses of wild-type donor T cells with those with genetic deletion of the interleukin (IL)-2/IL-15 receptor beta subunit (CD122) or the IL-2 receptor alpha subunit (CD25). On adoptive transfer into tumor-bearing hosts, wild-type OT-I T cells underwent a striking proliferative response, reaching peak densities of approximately 40% and approximately 90% of CD8(+) T cells in peripheral blood and ascites, respectively. OT-I cells infiltrated and destroyed tumor tissue, and ascites completely resolved within 10 days. By contrast, CD122(-/-) OT-I cells and CD25(-/-) OT-I cells proliferated in blood but failed to accumulate in ascites or tumor tissue or induce tumor regression. Contrary to expectation, advanced ovarian cancers can support extraordinary CD8(+) T-cell proliferation and antitumor activity through an IL-2/IL-15-dependent mechanism.

  1. Dynamics of the CD8 T-cell response following yellow fever virus 17D immunization

    PubMed Central

    Co, Mary Dawn T; Kilpatrick, Elizabeth D; Rothman, Alan L

    2009-01-01

    Management of yellow fever is focused on the prevention of illness by the use of the yellow fever virus (YFV) 17D vaccine. The role of neutralizing antibodies in protection is generally accepted with YFV-specific T cells likely contributing to the control of viral replication. We studied CD8+ T-cell responses to four defined human leucocyte antigen-B35-restricted epitopes in YFV vaccine recipients as a model of the kinetics of cytotoxic T-lymphocyte responses to an acute human viral infection. Multiple features of these epitope-specific responses were analysed after vaccination including magnitude, cytokine production, phenotype and T-cell receptor repertoire. Peak peptide-specific interferon-γ (IFN-γ) responses of almost 1% of CD8+ T cells were seen as early as 2 weeks post-vaccination; however, dominant responses varied between donors. Peptide-specific responses were still detectable at 54 months post-vaccination. Tetramer-positive cells, at high frequencies, were detected as early as 7–9 days, before detectable IFN-γ-producing cells, suggesting a defect in the functional capacity of some antigen-specific cells early post-vaccination. The predominant memory phenotype of the tetramer-positive population was a differentiated effector (CD45RA+ CCR7− CD62L−) phenotype. The T-cell receptor Vβ analysis revealed a diverse oligoclonal repertoire in tetramer-positive T-cell populations in two individuals. These characteristics of the YFV-specific T-cell response could contribute to vaccine effectiveness. PMID:19740333

  2. Dynamics of the CD8 T-cell response following yellow fever virus 17D immunization.

    PubMed

    Co, Mary Dawn T; Kilpatrick, Elizabeth D; Rothman, Alan L

    2009-09-01

    Management of yellow fever is focused on the prevention of illness by the use of the yellow fever virus (YFV) 17D vaccine. The role of neutralizing antibodies in protection is generally accepted with YFV-specific T cells likely contributing to the control of viral replication. We studied CD8(+) T-cell responses to four defined human leucocyte antigen-B35-restricted epitopes in YFV vaccine recipients as a model of the kinetics of cytotoxic T-lymphocyte responses to an acute human viral infection. Multiple features of these epitope-specific responses were analysed after vaccination including magnitude, cytokine production, phenotype and T-cell receptor repertoire. Peak peptide-specific interferon-gamma (IFN-gamma) responses of almost 1% of CD8(+) T cells were seen as early as 2 weeks post-vaccination; however, dominant responses varied between donors. Peptide-specific responses were still detectable at 54 months post-vaccination. Tetramer-positive cells, at high frequencies, were detected as early as 7-9 days, before detectable IFN-gamma-producing cells, suggesting a defect in the functional capacity of some antigen-specific cells early post-vaccination. The predominant memory phenotype of the tetramer-positive population was a differentiated effector (CD45RA(+) CCR7(-) CD62L(-)) phenotype. The T-cell receptor Vbeta analysis revealed a diverse oligoclonal repertoire in tetramer-positive T-cell populations in two individuals. These characteristics of the YFV-specific T-cell response could contribute to vaccine effectiveness.

  3. Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored malaria vaccine expressing AMA1.

    PubMed

    Schwenk, Robert; Banania, Glenna; Epstein, Judy; Kim, Yohan; Peters, Bjoern; Belmonte, Maria; Ganeshan, Harini; Huang, Jun; Reyes, Sharina; Stryhn, Anette; Ockenhouse, Christian F; Buus, Soren; Richie, Thomas L; Sedegah, Martha

    2013-10-29

    Malaria is responsible for up to a 600,000 deaths per year; conveying an urgent need for the development of a malaria vaccine. Studies with whole sporozoite vaccines in mice and non-human primates have shown that sporozoite-induced CD8+ T cells targeting liver stage antigens can mediate sterile protection. There is a need for a direct method to identify and phenotype malaria vaccine-induced CD8+ T cells in humans. Fluorochrome-labelled tetramers consisting of appropriate MHC class I molecules in complex with predicted binding peptides derived from Plasmodium falciparum AMA-1 were used to label ex vivo AMA-1 epitope specific CD8+ T cells from research subjects responding strongly to immunization with the NMRC-M3V-Ad-PfCA (adenovirus-vectored) malaria vaccine. The identification of these CD8+ T cells on the basis of their expression of early activation markers was also investigated. Analyses by flow cytometry demonstrated that two of the six tetramers tested: TLDEMRHFY: HLA-A*01:01 and NEVVVKEEY: HLA-B*18:01, labelled tetramer-specific CD8+ T cells from two HLA-A*01:01 volunteers and one HLA-B*18:01 volunteer, respectively. By contrast, post-immune CD8+ T cells from all six of the immunized volunteers exhibited enhanced expression of the CD38 and HLA-DRhi early activation markers. For the three volunteers with positive tetramer staining, the early activation phenotype positive cells included essentially all of the tetramer positive, malaria epitope- specific CD8+ T cells suggesting that the early activation phenotype could identify all malaria vaccine-induced CD8+ T cells without prior knowledge of their exact epitope specificity. The results demonstrated that class I tetramers can identify ex vivo malaria vaccine antigen-specific CD8+ T cells and could therefore be used to determine their frequency, cell surface phenotype and transcription factor usage. The results also demonstrated that vaccine antigen-specific CD8+ T cells could be identified by activation markers

  4. Balance of CD8+ CD28+ / CD8+ CD28- T lymphocytes is vital for patients with ulcerative colitis.

    PubMed

    Dai, Shi-Xue; Wu, Gang; Zou, Ying; Feng, Yan-Ling; Liu, Hong-Bo; Feng, Jin-Shan; Chi, Hong-Gang; Lv, Ru-Xi; Zheng, Xue-Bao

    2013-01-01

    Immune balances are important for many diseases including ulcerative colitis (UC). This study aimed to explore the role of the balance between CD8+ CD28+ and CD8+ CD28- T lymphocytes for the immunological pathogenesis of UC. Sixteen patients with UC, 16 patients with irritable bowel syndrome (IBS) and 15 healthy volunteers were enrolled. The frequencies of CD8+ CD28+ and CD8+CD28- T lymphocytes in peripheral blood and colon tissue were tested using flow cytometry and immunofluorescent, respectively. The cytokines of the two lymphocytes were detected by protein chips and ELISA. The expression of the signal transducers, the JAK3 and STAT6, as well the transcription factors, the NFATc2 and GATA3, was all detected by both western blot and immunohistochemistry. For UC patients, the frequencies of CD8+ CD28+ T lymphocytes, together with the ratios of CD8+ CD28+ / CD8+ CD28- T lymphocytes in blood and colon tissue, were significantly lower than those in both IBS patients and healthy volunteers. But the frequencies of CD8+ CD28- T lymphocytes in blood and colon tissue of the UC patients were significantly higher than the other two groups. The concentration of IL-7 and -13, and the expression of JAK3 and STAT6 in UC patients, were significantly lower when compared with the other two groups. Conversely, the concentration of IL-12p40 and -15, and the expression of GATA3 and NFATc2 in UC patients, were significantly higher than both IBS and control group. The balance of CD8+ CD28+ / CD8+ CD28- T lymphocytes plays a vital role in UC, while the balance tilt towards CD8+ CD28+ T lymphocytes is beneficial for patients with UC.

  5. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes.

    PubMed

    Hui, Daniel J; Edmonson, Shyrie C; Podsakoff, Gregory M; Pien, Gary C; Ivanciu, Lacramioara; Camire, Rodney M; Ertl, Hildegund; Mingozzi, Federico; High, Katherine A; Basner-Tschakarjan, Etiena

    2015-01-01

    Adeno-associated virus (AAV) has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs) obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC) class I epitopes for common human leukocyte antigen (HLA) types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.

  6. Meta-analysis of immune epitope data for all Plasmodia: overview and applications for malarial immunobiology and vaccine-related issues

    PubMed Central

    Vaughan, K.; Blythe, M.; Greenbaum, J.; Zhang, Q.; Peters, B.; Doolan, D. L.; Sette, A.

    2012-01-01

    Summary We present a comprehensive meta-analysis of more than 500 references, describing nearly 5000 unique B cell and T cell epitopes derived from the Plasmodium genus, and detailing thousands of immunological assays. This is the first inventory of epitope data related to malaria-specific immunology, plasmodial pathogenesis, and vaccine performance. The survey included host and pathogen species distribution of epitopes, the number of antibody vs. CD4+ and CD8+ T cell epitopes, the genomic distribution of recognized epitopes, variance among epitopes from different parasite strains, and the characterization of protective epitopes and of epitopes associated with parasite evasion of the host immune response. The results identify knowledge gaps and areas for further investigation. This information has relevance to issues, such as the identification of epitopes and antigens associated with protective immunity, the design and development of candidate malaria vaccines, and characterization of immune response to strain polymorphisms. PMID:19149776

  7. Impact of clonal competition for peptide-MHC complexes on the CD8[superscript +] T-cell repertoire selection in a persistent viral infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wynn, Katherine K.; Fulton, Zara; Cooper, Leanne

    2008-04-29

    CD8{sup +} T-cell responses to persistent viral infections are characterized by the accumulation of an oligoclonal T-cell repertoire and a reduction in the naive T-cell pool. However, the precise mechanism for this phenomenon remains elusive. Here we show that human cytomegalovirus (HCMV)-specific CD8{sup +} T cells recognizing distinct epitopes from the pp65 protein and restricted through an identical HLA class I allele (HLA B*3508) exhibited either a highly conserved public T-cell repertoire or a private, diverse T-cell response, which was uniquely altered in each donor following in vitro antigen exposure. Selection of a public T-cell receptor (TCR) was coincident withmore » an atypical major histocompatibility complex (MHC)-peptide structure, in that the epitope adopted a helical conformation that bulged from the peptide-binding groove, while a diverse TCR profile was observed in response to the epitope that formed a flatter, more 'featureless' landscape. Clonotypes with biased TCR usage demonstrated more efficient recognition of virus-infected cells, a greater CD8 dependency, and were more terminally differentiated in their phenotype when compared with the T cells expressing diverse TCR. These findings provide new insights into our understanding on how the biology of antigen presentation in addition to the structural features of the pMHC-I might shape the T-cell repertoire and its phenotype.« less

  8. ELISPOTs Produced by CD8 and CD4 Cells Follow Log Normal Size Distribution Permitting Objective Counting

    PubMed Central

    Karulin, Alexey Y.; Karacsony, Kinga; Zhang, Wenji; Targoni, Oleg S.; Moldovan, Ioana; Dittrich, Marcus; Sundararaman, Srividya; Lehmann, Paul V.

    2015-01-01

    Each positive well in ELISPOT assays contains spots of variable sizes that can range from tens of micrometers up to a millimeter in diameter. Therefore, when it comes to counting these spots the decision on setting the lower and the upper spot size thresholds to discriminate between non-specific background noise, spots produced by individual T cells, and spots formed by T cell clusters is critical. If the spot sizes follow a known statistical distribution, precise predictions on minimal and maximal spot sizes, belonging to a given T cell population, can be made. We studied the size distributional properties of IFN-γ, IL-2, IL-4, IL-5 and IL-17 spots elicited in ELISPOT assays with PBMC from 172 healthy donors, upon stimulation with 32 individual viral peptides representing defined HLA Class I-restricted epitopes for CD8 cells, and with protein antigens of CMV and EBV activating CD4 cells. A total of 334 CD8 and 80 CD4 positive T cell responses were analyzed. In 99.7% of the test cases, spot size distributions followed Log Normal function. These data formally demonstrate that it is possible to establish objective, statistically validated parameters for counting T cell ELISPOTs. PMID:25612115

  9. BCR-ABL fusion regions as a source of multiple leukemia-specific CD8+ T-cell epitopes.

    PubMed

    Kessler, J H; Bres-Vloemans, S A; van Veelen, P A; de Ru, A; Huijbers, I J G; Camps, M; Mulder, A; Offringa, R; Drijfhout, J W; Leeksma, O C; Ossendorp, F; Melief, C J M

    2006-10-01

    For immunotherapy of residual disease in patients with Philadelphia-positive leukemias, the BCR-ABL fusion regions are attractive disease-specific T-cell targets. We analyzed these regions for the prevalence of cytotoxic T lymphocyte (CTL) epitopes by an advanced reverse immunology procedure. Seventeen novel BCR-ABL fusion peptides were identified to bind efficiently to the human lymphocyte antigen (HLA)-A68, HLA-B51, HLA-B61 or HLA-Cw4 HLA class I molecules. Comprehensive enzymatic digestion analysis showed that 10 out of the 28 HLA class I binding fusion peptides were efficiently excised after their C-terminus by the proteasome, which is an essential requirement for efficient cell surface expression. Therefore, these peptides are prime vaccine candidates. The other peptides either completely lacked C-terminal liberation or were only inefficiently excised by the proteasome, rendering them inappropriate or less suitable for inclusion in a vaccine. CTL raised against the properly processed HLA-B61 epitope AEALQRPVA from the BCR-ABL e1a2 fusion region, expressed in acute lymphoblastic leukemia (ALL), specifically recognized ALL tumor cells, proving cell surface presentation of this epitope, its applicability for immunotherapy and underlining the accuracy of our epitope identification strategy. Our study provides a reliable basis for the selection of optimal peptides to be included in immunotherapeutic BCR-ABL vaccines against leukemia.

  10. Ana o 1 and Ana o 2 cashew allergens share cross-reactive CD4+ T-cell epitopes with other tree nuts

    PubMed Central

    Archila, Luis Diego; Chow, I-Ting; McGinty, John W.; Renand, Amedee; Jeong, David; Robinson, David; Farrington, Mary L.; Kwok, William.W.

    2017-01-01

    Background Allergies to cashew are increasing in prevalence, with clinical symptoms ranging from oral pruritus to fatal anaphylactic reaction. Yet, cashew-specific T-cell epitopes and T-cell cross-reactivity amongst cashew and other tree nut allergens in humans remain uncharacterized. Objectives In this study, we characterized cashew specific T-cell responses in cashew allergic subjects and examined cross-reactivity of these cashew specific cells toward other tree nut allergens. Methods CD154 up-regulation assay was used to determine immunodominance hierarchy among cashew major allergens at the T cell level. The phenotype, magnitude and functionality of cashew-specific T-cells was determined by utilizing ex vivo staining with MHC class II tetramers. Dual tetramer staining and proliferation experiments were used to determine cross-reactivity to other tree nuts. Results CD4+ T-cell responses were directed towards cashew allergens Ana o 1 and Ana o 2. Multiple Ana o 1 and Ana o 2 T-cell epitopes were then identified. These epitopes elicited either TH2 or TH2/TH17 responses in allergic subjects, which were either cashew unique epitope or cross-reactive epitopes. For clones that recognized the cross-reactive epitope, T-cell clones responded robustly to cashew, hazelnut and/or pistachio but not to walnut. Conclusions Phylogenetically diverse tree nut allergens can activate cashew reactive T-cells and elicit a TH2 type response at an epitope specific level. Clinical relevance Lack of cross-reactivity between walnut and cashew suggest that cashew peptide immunotherapy approach may not be most effective for walnut. PMID:27129138

  11. Ana o 1 and Ana o 2 cashew allergens share cross-reactive CD4(+) T cell epitopes with other tree nuts.

    PubMed

    Archila, L D; Chow, I-T; McGinty, J W; Renand, A; Jeong, D; Robinson, D; Farrington, M L; Kwok, W W

    2016-06-01

    Allergies to cashew are increasing in prevalence, with clinical symptoms ranging from oral pruritus to fatal anaphylactic reaction. Yet, cashew-specific T cell epitopes and T cell cross-reactivity amongst cashew and other tree nut allergens in humans remain uncharacterized. In this study, we characterized cashew-specific T cell responses in cashew-allergic subjects and examined cross-reactivity of these cashew-specific cells towards other tree nut allergens. CD154 up-regulation assay was used to determine immunodominance hierarchy among cashew major allergens at the T cell level. The phenotype, magnitude and functionality of cashew-specific T cells were determined by utilizing ex vivo staining with MHC class II tetramers. Dual tetramer staining and proliferation experiments were used to determine cross-reactivity to other tree nuts. CD4(+) T cell responses were directed towards cashew allergens Ana o 1 and Ana o 2. Multiple Ana o 1 and Ana o 2 T cell epitopes were then identified. These epitopes elicited either TH 2 or TH 2/TH 17 responses in allergic subjects, which were either cashew unique epitope or cross-reactive epitopes. For clones that recognized the cross-reactive epitope, T cell clones responded robustly to cashew, hazelnut and/or pistachio but not to walnut. Phylogenetically diverse tree nut allergens can activate cashew-reactive T cells and elicit a TH 2-type response at an epitope-specific level. Lack of cross-reactivity between walnut and cashew suggests that cashew peptide immunotherapy approach may not be most effective for walnut. © 2016 John Wiley & Sons Ltd.

  12. Development of Safe and Effective RSV Vaccine by Modified CD4 Epitope in G Protein Core Fragment (Gcf)

    PubMed Central

    Park, Sung-Moo; Choi, Youngjoo; Jang, Ji Eun; Jung, Dae Im; Kim, Jae-Ouk; Chang, Jun; Yun, Cheol-Heui; Song, Man Ki

    2014-01-01

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infection in infants and young children worldwide, but currently no safe and effective vaccine is available. The RSV G glycoprotein (RSVG), a major attachment protein, is an important target for the induction of protective immune responses during RSV infection. However, it has been thought that a CD4+ T cell epitope (a.a. 183–195) within RSVG is associated with pathogenic pulmonary eosinophilia. To develop safe and effective RSV vaccine using RSV G protein core fragment (Gcf), several Gcf variants resulting from modification to CD4+ T cell epitope were constructed. Mice were immunized with each variant Gcf, and the levels of RSV-specific serum IgG were measured. At day 4 post-challenge with RSV subtype A or B, lung viral titers and pulmonary eosinophilia were determined and changes in body weight were monitored. With wild type Gcf derived from RSV A2 (wtAGcf), although RSV A subtype-specific immune responses were induced, vaccine-enhanced disease characterized by excessive pulmonary eosinophil recruitment and body weight loss were evident, whereas wtGcf from RSV B1 (wtBGcf) induced RSV B subtype-specific immune responses without the signs of vaccine-enhanced disease. Mice immunized with Th-mGcf, a fusion protein consisting CD4+ T cell epitope from RSV F (F51–66) conjugated to mGcf that contains alanine substitutions at a.a. position 185 and 188, showed higher levels of RSV-specific IgG response than mice immunized with mGcf. Both wtAGcf and Th-mGcf provided complete protection against RSV A2 and partial protection against RSV B. Importantly, mice immunized with Th-mGcf did not develop vaccine-enhanced disease following RSV challenge. Immunization of Th-mGcf provided protection against RSV infection without the symptom of vaccine-enhanced disease. Our study provides a novel strategy to develop a safe and effective mucosal RSV vaccine by manipulating the CD4+ T cell epitope within RSV G

  13. The avidity of cross-reactive virus-specific T cells for their viral and allogeneic epitopes is variable and depends on epitope expression.

    PubMed

    van den Heuvel, Heleen; Heutinck, Kirstin M; van der Meer-Prins, Ellen M W; Franke-van Dijk, Marry E I; van Miert, Paula P M C; Zhang, Xiaoqian; Ten Berge, Ineke J M; Claas, Frans H J

    2018-01-01

    Virus-specific T cells can recognize allogeneic HLA (allo-HLA) through cross-reactivity of their T-cell receptor (TCR). In a transplantation setting, such allo-HLA cross-reactivity may contribute to harmful immune responses towards the allograft, provided that the cross-reactive T cells get sufficiently activated upon recognition of the allo-HLA. An important determinant of T-cell activation is TCR avidity, which to date, has remained largely unexplored for allo-HLA-cross-reactive virus-specific T cells. For this purpose, cold target inhibition assays were performed using allo-HLA-cross-reactive virus-specific memory CD8 + T-cell clones as responders, and syngeneic cells loaded with viral peptide and allogeneic cells as hot (radioactively-labeled) and cold (non-radioactively-labeled) targets. CD8 dependency of the T-cell responses was assessed using interferon γ (IFNγ) enzyme-linked immunosorbent assay (ELISA) in the presence and absence of CD8-blocking antibodies. At high viral-peptide loading concentrations, T-cell clones consistently demonstrated lower avidity for allogeneic versus viral epitopes, but at suboptimal concentrations the opposite was observed. In line, anti-viral reactivity was CD8 independent at high, but not at suboptimal viral-peptide-loading concentrations. The avidity of allo-HLA-cross-reactive virus-specific memory CD8 + T cells is therefore highly dependent on epitope expression, and as a consequence, can be both higher and lower for allogeneic versus viral targets under different (patho)physiological conditions. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  14. Cytomegalovirus vector expressing RAE-1γ induces enhanced anti-tumor capacity of murine CD8+ T cells.

    PubMed

    Tršan, Tihana; Vuković, Kristina; Filipović, Petra; Brizić, Ana Lesac; Lemmermann, Niels A W; Schober, Kilian; Busch, Dirk H; Britt, William J; Messerle, Martin; Krmpotić, Astrid; Jonjić, Stipan

    2017-08-01

    Designing CD8 + T-cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE-1γ as CD8 + T cell-based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE-1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD-1. CMV vector expressing RAE-1γ potentiated expansion of KLRG1 + CD8 + T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long-term maintenance of epitope-specific CD8 + T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8 + T-cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8 + T-cell sensitive tumors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganusov, Vitaly V

    2009-01-01

    In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targetsmore » with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the

  16. Retinol as a micronutrients related to cervical local immunity: The expression of tumor necrosis factor-alpha specifically stimulated with E6 epitope of human papillomavirus type-16 and ratio of CD4+/CD8+ T cell in natural history of cervical cancer

    NASA Astrophysics Data System (ADS)

    Utami, T. W.; Aziz, M. F.; Ibrahim, F.; Andrijono

    2017-08-01

    Retinol is one of the antioxidant micronutrients that plays essential roles in the immune system, by preventing the persistence of modulating CD4+ and CD8+ T cells and cytokines production. Tumor Necrosis Factor-Alpha (TNF-α) is an acute pro-inflammatory cytokine which has many crucial roles in controlling HPV. In contrast, when persistent infection occurs, TNF-α induces carcinogenesis. The ratio of CD4+ cells to CD8+ T cells and adequate TNF-α production in acute HPV infection are key points for clearance. The aim of this research is to analyze the sufficiency level of retinol deposit, the expression of TNF-α, and the ratio of CD4+: CD8+ T cells in a normal cervix, clearance and persistent HPV subclinical infection, and cervical cancer group. The sufficiency level of retinol deposit was analyzed from peripheral blood using the ELISA method. The cervico-vaginal secretions, which were incubated for 24 hours, were stimulated specifically by E6 epitope HPV type-16, measuring TNF-α expression semi-quantitatively by the ELISpot method and CD4+/CD8+ T cells quantitatively by flowcytometry method. The sufficient level of retinol deposit in a normal cervix, clearance HPV subclinical infection, persistent, and cervical cancer group was 85%, 75% (OR 1.89), 33.3% (OR 11.33), and 75% (OR 1.89), respectively. The expression of TNF-α in normal cervix group was 10%, while for cervical cancer it was 75% (OR 27.00; p < 0.001). There was no expression in clearance and persistent HPV subclinical infection groups. A high ratio of CD4+: CD8+ T cells in the normal cervix and cervical cancer group was 10% and 25% (OR 0.33). There was no high ratio of CD4+: CD8+ T cells in clearance (OR 1.22) and persistent (OR 0.95) HPV subclinical infection groups. This study was able to prove that the normal cervix group has the highest retinol deposit sufficiency level and the cervical cancer group has the highest TNF-α expression (OR 27; p < 0.001). The lowest of retinol deposit sufficiency

  17. Specific Mutation of a Gammaherpesvirus-Expressed Antigen in Response to CD8 T Cell Selection In Vivo

    PubMed Central

    Loh, Joy; Popkin, Daniel L.; Droit, Lindsay; Braaten, Douglas C.; Zhao, Guoyan; Zhang, Xin; Vachharajani, Punit; Myers, Nancy; Hansen, Ted H.

    2012-01-01

    Herpesviruses are thought to be highly genetically stable, and their use as vaccine vectors has been proposed. However, studies of the human gammaherpesvirus, Epstein-Barr virus, have found viral isolates containing mutations in HLA class I-restricted epitopes. Using murine gammaherpesvirus 68 expressing ovalbumin (OVA), we examined the stability of a gammaherpesvirus antigenic locus under strong CD8 T cell selection in vivo. OVA-specific CD8 T cells selected viral isolates containing mutations in the OVA locus but minimal alterations in other genomic regions. Thus, a CD8 T cell response to a gammaherpesvirus-expressed antigen that is not essential for replication or pathogenesis can result in selective mutation of that antigen in vivo. This finding may have relevance for the use of herpesvirus vectors for chronic antigen expression in vivo. PMID:22171269

  18. Two Theileria parva CD8 T cell antigen genes are more variable in buffalo than cattle parasites, but differ in pattern of sequence diversity.

    PubMed

    Pelle, Roger; Graham, Simon P; Njahira, Moses N; Osaso, Julius; Saya, Rosemary M; Odongo, David O; Toye, Philip G; Spooner, Paul R; Musoke, Anthony J; Mwangi, Duncan M; Taracha, Evans L N; Morrison, W Ivan; Weir, William; Silva, Joana C; Bishop, Richard P

    2011-04-29

    Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection. Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (∼12%) in Tp1 and in 320 positions (∼61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle. The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.

  19. Characterization of the CD8{sup +} T cell responses directed against respiratory syncytial virus during primary and secondary infection in C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukens, Michael V.; Claassen, Erwin A.W.; Graaff, Patricia M.A. de

    2006-08-15

    The BALB/c mouse model for human respiratory syncytial virus infection has contributed significantly to our understanding of the relative role for CD4{sup +} and CD8{sup +} T cells to immune protection and pathogenic immune responses. To enable comparison of RSV-specific T cell responses in different mouse strains and allow dissection of immune mechanisms by using transgenic and knockout mice that are mostly available on a C57BL/6 background, we characterized the specificity, level and functional capabilities of CD8{sup +} T cells during primary and secondary responses in lung parenchyma, airways and spleens of C57BL/6 mice. During the primary response, epitopes weremore » recognized originating from the matrix, fusion, nucleo- and attachment proteins, whereas the secondary response focused predominantly on the matrix epitope. C57BL/6 mice are less permissive for hRSV infection than BALB/c mice, yet we found CD8{sup +} T cell responses in the lungs and bronchoalveolar lavage, comparable to the responses described for BALB/c mice.« less

  20. Globular Head-Displayed Conserved Influenza H1 Hemagglutinin Stalk Epitopes Confer Protection against Heterologous H1N1 Virus.

    PubMed

    Klausberger, Miriam; Tscheliessnig, Rupert; Neff, Silke; Nachbagauer, Raffael; Wohlbold, Teddy John; Wilde, Monika; Palmberger, Dieter; Krammer, Florian; Jungbauer, Alois; Grabherr, Reingard

    2016-01-01

    Significant genetic variability in the head region of the influenza A hemagglutinin, the main target of current vaccines, makes it challenging to develop a long-lived seasonal influenza prophylaxis. Vaccines based on the conserved hemagglutinin stalk domain might provide broader cross-reactive immunity. However, this region of the hemagglutinin is immunosubdominant to the head region. Peptide-based vaccines have gained much interest as they allow the immune system to focus on relevant but less immunogenic epitopes. We developed a novel influenza A hemagglutinin-based display platform for H1 hemagglutinin stalk peptides that we identified in an epitope mapping assay using human immune sera and synthetic HA peptides. Flow cytometry and competition assays suggest that the identified stalk sequences do not recapitulate the epitopes of already described broadly neutralizing stalk antibodies. Vaccine constructs displaying 25-mer stalk sequences provided up to 75% protection from lethal heterologous virus challenge in BALB/c mice and induced antibody responses against the H1 hemagglutinin. The developed platform based on a vaccine antigen has the potential to be either used as stand-alone or as prime-vaccine in combination with conventional seasonal or pandemic vaccines for the amplification of stalk-based cross-reactive immunity in humans or as platform to evaluate the relevance of viral peptides/epitopes for protection against influenza virus infection.

  1. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes

    PubMed Central

    Hui, Daniel J; Edmonson, Shyrie C; Podsakoff, Gregory M; Pien, Gary C; Ivanciu, Lacramioara; Camire, Rodney M; Ertl, Hildegund; Mingozzi, Federico; High, Katherine A; Basner-Tschakarjan, Etiena

    2015-01-01

    Adeno-associated virus (AAV) has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs) obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC) class I epitopes for common human leukocyte antigen (HLA) types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings. PMID:26445723

  2. Blocking Virus Replication during Acute Murine Cytomegalovirus Infection Paradoxically Prolongs Antigen Presentation and Increases the CD8+ T Cell Response by Preventing Type I IFN-Dependent Depletion of Dendritic Cells.

    PubMed

    Loo, Christopher P; Snyder, Christopher M; Hill, Ann B

    2017-01-01

    Increasing amounts of pathogen replication usually lead to a proportionate increase in size and effector differentiation of the CD8 + T cell response, which is attributed to increased Ag and inflammation. Using a murine CMV that is highly sensitive to the antiviral drug famciclovir to modulate virus replication, we found that increased virus replication drove increased effector CD8 + T cell differentiation, as expected. Paradoxically, however, increased virus replication dramatically decreased the size of the CD8 + T cell response to two immunodominant epitopes. The decreased response was due to type I IFN-dependent depletion of conventional dendritic cells and could be reproduced by specific depletion of dendritic cells from day 2 postinfection or by sterile induction of type I IFN. Increased virus replication and type I IFN specifically inhibited the response to two immunodominant epitopes that are known to be dependent on Ag cross-presented by DCs, but they did not inhibit the response to "inflationary" epitopes whose responses can be sustained by infected nonhematopoietic cells. Our results show that type I IFN can suppress CD8 + T cell responses to cross-presented Ag by depleting cross-presenting conventional dendritic cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. Trypanosoma cruzi Subverts Host Cell Sialylation and May Compromise Antigen-specific CD8+ T Cell Responses*

    PubMed Central

    Freire-de-Lima, Leonardo; Alisson-Silva, Frederico; Carvalho, Sebastião T.; Takiya, Christina M.; Rodrigues, Maurício M.; DosReis, George A.; Mendonça-Previato, Lucia; Previato, José O.; Todeschini, Adriane R.

    2010-01-01

    Upon activation, cytotoxic CD8+ T lymphocytes are desialylated exposing β-galactose residues in a physiological change that enhances their effector activity and that can be monitored on the basis of increased binding of the lectin peanut agglutinin. Herein, we investigated the impact of sialylation mediated by trans-sialidase, a specific and unique Trypanosoma transglycosylase for sialic acid, on CD8+ T cell response of mice infected with T. cruzi. Our data demonstrate that T. cruzi uses its trans-sialidase enzyme to resialylate the CD8+ T cell surface, thereby dampening antigen-specific CD8+ T cell response that might favor its own persistence in the mammalian host. Binding of the monoclonal antibody S7, which recognizes sialic acid-containing epitopes on the 115-kDa isoform of CD43, was augmented on CD8+ T cells from ST3Gal-I-deficient infected mice, indicating that CD43 is one sialic acid acceptor for trans-sialidase activity on the CD8+ T cell surface. The cytotoxic activity of antigen-experienced CD8+ T cells against the immunodominant trans-sialidase synthetic peptide IYNVGQVSI was decreased following active trans-sialidase- mediated resialylation in vitro and in vivo. Inhibition of the parasite's native trans-sialidase activity during infection strongly decreased CD8+ T cell sialylation, reverting it to the glycosylation status expected in the absence of parasite manipulation increasing mouse survival. Taken together, these results demonstrate, for the first time, that T. cruzi subverts sialylation to attenuate CD8+ T cell interactions with peptide-major histocompatibility complex class I complexes. CD8+ T cell resialylation may represent a sophisticated strategy to ensure lifetime host parasitism. PMID:20106975

  4. Weak anti-HIV CD8+ T-cell effector activity in HIV primary infection

    PubMed Central

    Dalod, Marc; Dupuis, Marion; Deschemin, Jean-Christophe; Goujard, Cécile; Deveau, Christiane; Meyer, Laurence; Ngo, Nicole; Rouzioux, Christine; Guillet, Jean-Gérard; Delfraissy, Jean-François; Sinet, Martine; Venet, Alain

    1999-01-01

    HIV-specific CD8+ T cells play a major role in the control of virus during HIV primary infection (PI) but do not completely prevent viral replication. We used IFN-γ enzyme-linked immunospot assay and intracellular staining to characterize the ex vivo CD8+ T-cell responses to a large variety of HIV epitopic peptides in 24 subjects with early HIV PI. We observed HIV-specific responses in 71% of subjects. Gag and Nef peptides were more frequently recognized than Env and Pol peptides. The number of peptides recognized was low (median 2, range 0–6). In contrast, a much broader response was observed in 30 asymptomatic subjects with chronic infection: all were responders with a median of 5 peptides recognized (range 1–13). The frequency of HIV-specific CD8+ T cells among PBMC for a given peptide was of the same order of magnitude in both groups. The proportion of HIV-specific CD8+CD28– terminally differentiated T cells was much lower in PI than at the chronic stage of infection. The weakness of the immune response during HIV PI could partially account for the failure to control HIV. These findings have potential importance for defining immunotherapeutic strategies and establishing the goals for effective vaccination. J. Clin. Invest. 104:1431–1439 (1999). PMID:10562305

  5. Gene Deletions in Mycobacterium bovis BCG Stimulate Increased CD8+ T Cell Responses

    PubMed Central

    Panas, Michael W.; Sixsmith, Jaimie D.; White, KeriAnn; Korioth-Schmitz, Birgit; Shields, Shana T.; Moy, Brian T.; Lee, Sunhee; Schmitz, Joern E.; Jacobs, William R.; Porcelli, Steven A.; Haynes, Barton F.; Letvin, Norman L.

    2014-01-01

    Mycobacteria, the etiological agents of tuberculosis and leprosy, have coevolved with mammals for millions of years and have numerous ways of suppressing their host's immune response. It has been suggested that mycobacteria may contain genes that reduce the host's ability to elicit CD8+ T cell responses. We screened 3,290 mutant Mycobacterium bovis bacillus Calmette Guerin (BCG) strains to identify genes that decrease major histocompatibility complex (MHC) class I presentation of mycobacterium-encoded epitope peptides. Through our analysis, we identified 16 mutant BCG strains that generated increased transgene product-specific CD8+ T cell responses. The genes disrupted in these mutant strains had disparate predicted functions. Reconstruction of strains via targeted deletion of genes identified in the screen recapitulated the enhanced immunogenicity phenotype of the original mutant strains. When we introduced the simian immunodeficiency virus (SIV) gag gene into several of these novel BCG strains, we observed enhanced SIV Gag-specific CD8+ T cell responses in vivo. This study demonstrates that mycobacteria carry numerous genes that act to dampen CD8+ T cell responses and suggests that genetic modification of these genes may generate a novel group of recombinant BCG strains capable of serving as more effective and immunogenic vaccine vectors. PMID:25287928

  6. Gene deletions in Mycobacterium bovis BCG stimulate increased CD8+ T cell responses.

    PubMed

    Panas, Michael W; Sixsmith, Jaimie D; White, KeriAnn; Korioth-Schmitz, Birgit; Shields, Shana T; Moy, Brian T; Lee, Sunhee; Schmitz, Joern E; Jacobs, William R; Porcelli, Steven A; Haynes, Barton F; Letvin, Norman L; Gillard, Geoffrey O

    2014-12-01

    Mycobacteria, the etiological agents of tuberculosis and leprosy, have coevolved with mammals for millions of years and have numerous ways of suppressing their host's immune response. It has been suggested that mycobacteria may contain genes that reduce the host's ability to elicit CD8(+) T cell responses. We screened 3,290 mutant Mycobacterium bovis bacillus Calmette Guerin (BCG) strains to identify genes that decrease major histocompatibility complex (MHC) class I presentation of mycobacterium-encoded epitope peptides. Through our analysis, we identified 16 mutant BCG strains that generated increased transgene product-specific CD8(+) T cell responses. The genes disrupted in these mutant strains had disparate predicted functions. Reconstruction of strains via targeted deletion of genes identified in the screen recapitulated the enhanced immunogenicity phenotype of the original mutant strains. When we introduced the simian immunodeficiency virus (SIV) gag gene into several of these novel BCG strains, we observed enhanced SIV Gag-specific CD8(+) T cell responses in vivo. This study demonstrates that mycobacteria carry numerous genes that act to dampen CD8(+) T cell responses and suggests that genetic modification of these genes may generate a novel group of recombinant BCG strains capable of serving as more effective and immunogenic vaccine vectors. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Immunogenicity of porcine P[6], P[7]-specific △VP8* rotavirus subunit vaccines with a tetanus toxoid universal T cell epitope.

    PubMed

    Wen, Xiaobo; Wei, Xiaoman; Ran, Xuhua; Ni, Hongbo; Cao, Si; Zhang, Yao

    2015-08-26

    Currently, commercial porcine rotavirus vaccines remain varied limitations. The objective of this study is to develop an alternative porcine rotavirus subunit vaccine candidate by parenteral administration, which enables to elicit robust immune responses against most prevalence porcine rotavirus strains. The bacterially-expressed porcine rotavirus P[6]- or P[7]-specific truncated VP8* (aa 64-223) recombinant protein with or without a universal tetanus toxoid CD4(+) T cell epitope P2 was generated. All the recombinant subunit proteins △VP8*s or P2-△VP8*s were of high solubility and high yields. The immunogenicity of each purified △VP8* and P2-△VP8* was evaluated in mice (10 μg/dose) or guinea pigs (20 μg/dose) immunized IM with 600 μg aluminum hydroxide three times at 2-week interval. The introduction of P2T cell epitope to P[7]-△VP8* elicited significantly higher IgG titer in mice than its absence. Comparatively, P2 epitope slightly enhanced the immunogenicity of P[6]-△VP8*. P2-P[7]△VP8* elicited high titer of neutralizing antibody against heterotypic P[7]-specific rotaviruses with varied G type combination. Our data indicated that two subunit vaccines could be plausible bivalent rotavirus vaccine candidate to provide antigenic coverage of porcine rotavirus strains of global or regional importance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Long terms trends in CD4+ cell counts, CD8+ cell counts, and the CD4+ : CD8+ ratio

    PubMed Central

    Hughes, Rachael A.; May, Margaret T.; Tilling, Kate; Taylor, Ninon; Wittkop, Linda; Reiss, Peter; Gill, John; Schommers, Philipp; Costagliola, Dominique; Guest, Jodie L.; Lima, Viviane D.; d’Arminio Monforte, Antonella; Smith, Colette; Cavassini, Matthias; Saag, Michael; Castilho, Jessica L.; Sterne, Jonathan A.C.

    2018-01-01

    Objective: Model trajectories of CD4+ and CD8+ cell counts after starting combination antiretroviral therapy (ART) and use the model to predict trends in these counts and the CD4+ : CD8+ ratio. Design: Cohort study of antiretroviral-naïve HIV-positive adults who started ART after 1997 (ART Cohort Collaboration) with more than 6 months of follow-up data. Methods: We jointly estimated CD4+ and CD8+ cell count trends and their correlation using a bivariate random effects model, with linear splines describing their population trends, and predicted the CD4+ : CD8+ ratio trend from this model. We assessed whether CD4+ and CD8+ cell count trends and the CD4+ : CD8+ ratio trend varied according to CD4+ cell count at start of ART (baseline), and, whether these trends differed in patients with and without virological failure more than 6 months after starting ART. Results: A total of 39 979 patients were included (median follow-up was 53 months). Among patients with baseline CD4+ cell count at least 50 cells/μl, predicted mean CD8+ cell counts continued to decrease between 3 and 15 years post-ART, partly driving increases in the predicted mean CD4+ : CD8+ ratio. During 15 years of follow-up, normalization of the predicted mean CD4+ : CD8+ ratio (to >1) was only observed among patients with baseline CD4+ cell count at least 200 cells/μl. A higher baseline CD4+ cell count predicted a shorter time to normalization. Conclusion: Declines in CD8+ cell count and increases in CD4+ : CD8+ ratio occurred up to 15 years after starting ART. The likelihood of normalization of the CD4+ : CD8+ ratio is strongly related to baseline CD4+ cell count. PMID:29851663

  9. A novel blocking monoclonal antibody recognizing a distinct epitope of human CD40 molecule.

    PubMed

    Zhuang, Y; Huang, J; Zhou, Z; Ge, Y; Fan, Y; Qi, C; Zhen, L; Monchatre, E; Edelman, L; Zhang, X

    2005-01-01

    CD40, a member of the tumor necrosis factor receptor superfamily, is an important costimulatory molecule during the immune response. Here, we report a blocking mouse antihuman CD40 monoclonal antibody, mAb 3G3, of which the specificity was verified by flow cytometry and Western blot. It was shown by competition test that 3G3 bound to a different site (epitope) of CD40 from the reported CD40 mAbs, including clone mAb89, 3B2, and 5C11. It was also found that mAb 3G3 could inhibit homotypic aggregation of Daudi cells induced by the agonistic anti-CD40 mAb 5C11. Furthermore, mAb 3G3 effectively inhibited the proliferation of peripheral blood mononuclear cells in mixed lymphocyte reaction assay. Finally, a sensitive and specific soluble CD40 (sCD40) ELISA kit was established by matching mAb 3G3 with 5C11, and it was found that the levels of sCD40 in sera from patients with immune disorders such as hyperthyroidism, chronic nephritis, and rheumatoid arthritis were obviously higher than those from normal individuals. Thus, this blocking anti-CD40 mAb provides a novel tool for the study of CD40.

  10. Generation of transgenic mice expressing EGFP protein fused to NP68 MHC class I epitope using lentivirus vectors.

    PubMed

    Tomkowiak, Martine; Ghittoni, Raffaella; Teixeira, Marie; Blanquier, Bariza; Szécsi, Judit; Nègre, Didier; Aubert, Denise; Coupet, Charles-Antoine; Brunner, Molly; Verhoeyen, Els; Thoumas, Jean-Louis; Cosset, François-Loïc; Leverrier, Yann; Marvel, Jacqueline

    2013-03-01

    Immune tolerance to self-antigens is a complex process that utilizes multiple mechanisms working in concert to maintain homeostasis and prevent autoimmunity. Considerable progress in deciphering the mechanisms controlling the activation or deletion of T cells has been made by using T cell receptor (TCR) transgenic mice. One such model is the F5 model in which CD8 T cells express a TCR specific for an epitope derived from the influenza NP68 protein. Our aim was to create transgenic mouse models expressing constitutively the NP68 epitope fused to enhanced green fluorescent protein (EGFP) in order to assess unambiguously the relative levels of NP68 epitope expressed by single cells. We used a lentiviral-based approach to generate two independent transgenic mouse strains expressing the fusion protein EGFP-NP68 under the control of CAG (CMV immediate early enhancer and the chicken β-actin promoter) or spleen focus-forming virus (SFFV) promoters. Analysis of the pattern of EGFP expression in the hematopoietic compartment showed that CAG and SFFV promoters are differentially regulated during T cell development. However, both promoters drove high EGFP-NP68 expression in dendritic cells (pDCs, CD8α(+) cDCs, and CD8α(-) cDCs) from spleen or generated in vitro following differentiation from bone-marrow progenitors. NP68 epitope was properly processed and successfully presented by dendritic cells (DCs) by direct presentation and cross-presentation to F5 CD8 T cells. The models presented here are valuable tools to investigate the priming of F5 CD8 T cells by different subsets of DCs. Copyright © 2013 Wiley Periodicals, Inc.

  11. Functional avidity and IL-2/perforin production is linked to the emergence of mutations within HLA-B*5701-restricted epitopes and HIV-1 disease progression

    PubMed Central

    Buggert, Marcus; Norström, Melissa M; Salemi, Marco; Hecht, Frederick M; Karlsson, Annika C

    2014-01-01

    Viral escape from HIV-1-specific CD8+ T cells has been demonstrated in numerous studies previously. However, the qualitative features driving the emergence of mutations within epitopes are still unclear. In this study, we aimed to distinguish whether specific functional characteristics of HLA-B*5701-restricted CD8+ T cells influence the emergence of mutations in high-risk progressors (HRPs) versus low-risk progressors (LRPs). Single genome sequencing was performed to detect viral mutations (variants) within seven HLA-B*5701-restricted epitopes in Gag (n = 4) and Nef (n = 3) in six untreated HLA-B*5701 subjects followed from early infection up to seven years. Several well-characterized effector markers (IFN-γ, IL-2, MIP-1β, TNF, CD107a and perforin) were identified by flow cytometry following autologous (initial and emerging variant/s) epitope stimulations. This study demonstrates that specific functional attributes may facilitate the outgrowth of mutations within HLA-B*5701-restricted epitopes. A significantly lower fraction of IL-2 producing cells and a decrease in functional avidity and polyfunctional sensitivity were evident in emerging epitope variants compared to the initial autologous epitopes. Interestingly, the HRPs mainly drove these differences, while the LRPs maintained a directed and maintained functional response against emerging epitope variants. In addition, LRPs induced improved cell cycle progression and perforin up-regulation after autologous and emerging epitope variant stimulations in contrast to HRPs. The maintained quantitative and qualitative features of the CD8+ T cell responses in LRPs toward emerging epitope variants provide insights into why HLA-B*5701 subjects have different risks of HIV-1 disease progression. PMID:24740510

  12. T Cell Receptor-Major Histocompatibility Complex Interaction Strength Defines Trafficking and CD103+ Memory Status of CD8 T Cells in the Brain.

    PubMed

    Sanecka, Anna; Yoshida, Nagisa; Kolawole, Elizabeth Motunrayo; Patel, Harshil; Evavold, Brian D; Frickel, Eva-Maria

    2018-01-01

    T cell receptor-major histocompatibility complex (TCR-MHC) affinities span a wide range in a polyclonal T cell response, yet it is undefined how affinity shapes long-term properties of CD8 T cells during chronic infection with persistent antigen. Here, we investigate how the affinity of the TCR-MHC interaction shapes the phenotype of memory CD8 T cells in the chronically Toxoplasma gondii- infected brain. We employed CD8 T cells from three lines of transnuclear (TN) mice that harbor in their endogenous loci different T cell receptors specific for the same Toxoplasma antigenic epitope ROP7. The three TN CD8 T cell clones span a wide range of affinities to MHCI-ROP7. These three CD8 T cell clones have a distinct and fixed hierarchy in terms of effector function in response to the antigen measured as proliferation capacity, trafficking, T cell maintenance, and memory formation. In particular, the T cell clone of lowest affinity does not home to the brain. The two higher affinity T cell clones show differences in establishing resident-like memory populations (CD103 + ) in the brain with the higher affinity clone persisting longer in the host during chronic infection. Transcriptional profiling of naïve and activated ROP7-specific CD8 T cells revealed that Klf2 encoding a transcription factor that is known to be a negative marker for T cell trafficking is upregulated in the activated lowest affinity ROP7 clone. Our data thus suggest that TCR-MHC affinity dictates memory CD8 T cell fate at the site of infection.

  13. Comprehensive mutational analysis of the M13 major coat protein: improved scaffolds for C-terminal phage display.

    PubMed

    Held, Heike A; Sidhu, Sachdev S

    2004-07-09

    A peptide was fused to the C terminus of the M13 bacteriophage major coat protein (P8), and libraries of P8 mutants were screened to select for variants that displayed the peptide with high efficiency. Over 600 variants were sequenced to compile a comprehensive database of P8 sequence diversity compatible with assembly into the wild-type phage coat. The database reveals that, while the alpha-helical P8 molecule was highly tolerant to mutations, certain functional epitopes were required for efficient incorporation. Three hydrophobic epitopes were located approximately equidistantly along the length of the alpha-helix. In addition, a positively charged epitope was required directly opposite the most C-terminal hydrophobic epitope and on the same side as the other two epitopes. Both ends of the protein were highly tolerant to mutations, consistent with the use of P8 as a scaffold for both N and C-terminal phage display. Further rounds of selection were used to enrich for P8 variants that supported higher levels of C-terminal peptide display. The largest improvements in display resulted from mutations around the junction between P8 and the C-terminal linker, and additional mutations in the N-terminal region were selected for further improvements in display. The best P8 variants improved C-terminal display more than 100-fold relative to the wild-type, and these variants could support the simultaneous display of N and C-terminal fusions. These finding provide information on the requirements for filamentous phage coat assembly, and provide improved scaffolds for phage display technology. Copyright 2004 Elsevier Ltd.

  14. Modulation of CD4(+) T cell-dependent specific cytotoxic CD8(+) T cells differentiation and proliferation by the timing of increase in the pathogen load.

    PubMed

    Tzelepis, Fanny; Persechini, Pedro M; Rodrigues, Mauricio M

    2007-04-25

    Following infection with viruses, bacteria or protozoan parasites, naïve antigen-specific CD8(+) T cells undergo a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation of specific effector CD8(+) T cells varies widely according to different pathogens. We hypothesized that the timing of increase in the pathogen load could be a critical parameter governing this process. Using increasing doses of the protozoan parasite Trypanosoma cruzi to infect C57BL/6 mice, we observed a significant acceleration in the timing of parasitemia without an increase in mouse susceptibility. In contrast, in CD8 deficient mice, we observed an inverse relationship between the parasite inoculum and the timing of death. These results suggest that in normal mice CD8(+) T cells became protective earlier, following the accelerated development of parasitemia. The evaluation of specific cytotoxic responses in vivo to three distinct epitopes revealed that increasing the parasite inoculum hastened the expansion of specific CD8(+) cytotoxic T cells following infection. The differentiation and expansion of T. cruzi-specific CD8(+) cytotoxic T cells is in fact dependent on parasite multiplication, as radiation-attenuated parasites were unable to activate these cells. We also observed that, in contrast to most pathogens, the activation process of T. cruzi-specific CD8(+) cytotoxic T cells was dependent on MHC class II restricted CD4(+) T cells. Our results are compatible with our initial hypothesis that the timing of increase in the pathogen load can be a critical parameter governing the kinetics of CD4(+) T cell-dependent expansion of pathogen-specific CD8(+) cytotoxic T cells.

  15. Identification of HLA-A2–restricted CD8+ Cytotoxic T Cell Responses in Primary Biliary Cirrhosis

    PubMed Central

    Kita, Hiroto; Lian, Zhe-Xiong; Van de Water, Judy; He, Xiao-Song; Matsumura, Shuji; Kaplan, Marshall; Luketic, Velimir; Coppel, Ross L.; Ansari, Aftab A.; Gershwin, M. Eric

    2002-01-01

    Primary biliary cirrhosis (PBC) is characterized by an intense biliary inflammatory CD4+ and CD8+ T cell response. Very limited information on autoantigen-specific cytotoxic T lymphocyte (CTL) responses is available compared with autoreactive CD4+ T cell responses. Using peripheral blood mononuclear cells (PBMCs) from PBC, we identified an HLA-A2–restricted CTL epitope of the E2 component of pyruvate dehydrogenase (PDC-E2), the immunodominant mitochondrial autoantigen. This peptide, amino acids 159–167 of PDC-E2, induces specific MHC class I–restricted CD8+ CTL lines from 10/12 HLA-A2+ PBC patients, but not controls, after in vitro stimulation with antigen-pulsed dendritic cells (DCs). PDC-E2–specific CTLs could also be generated by pulsing DCs with full-length recombinant PDC-E2 protein. Furthermore, using soluble PDC-E2 complexed with either PDC-E2–specific human monoclonal antibody or affinity-purified autoantibodies against PDC-E2, the generation of PDC-E2–specific CTLs, occurred at 100-fold and 10-fold less concentration, respectively, compared with soluble antigen alone. Collectively, these data demonstrate that autoantibody, helper, and CTL epitopes all contain a shared peptide sequence. The finding that autoantigen–immune complexes can not only cross-present but also that presentation of the autoantigen is of a higher relative efficiency, for the first time defines a unique role for autoantibodies in the pathogenesis of an autoimmune disease. PMID:11781370

  16. IL-2 complex treatment amplifies CD8+ T cell mediated immunity following herpes simplex virus-1 infection.

    PubMed

    Rajasagi, Naveen K; Rouse, Barry T

    2016-12-01

    CD8 + T cells play an important role in controlling numerous virus infections and some tumors and therefore several strategies have been adopted to modulate CD8 + T cell responses. One such approach includes treatment with IL-2 bound to a monoclonal antibody against IL-2 (IL-2 complex) which was shown to enhance CD8 + T cell responses and provide protection against some cancers and pathogens. This report analyses the value of IL-2 complex therapy to protect against a cutaneous virus infection as occurs with herpes simplex virus-1 (HSV-1) infection. Treatment with IL-2 complex after infection reduced virus levels and lesion severity in a zosteriform model of HSV infection in mice. Furthermore, IL-2 complex treatment expanded HSV-1-gB epitope-specific CD8 + T cells, IFN-γ and TNF-α producing CD8 + T cells as well as cells that produced more than one cytokine. In addition, IL-2 complex therapy recipients showed enhanced cytolytic activity of CD8 + T cells as shown by increased granzyme B expression and lytic granule release. Taken, together, these studies demonstrate that IL-2 complex therapy can be useful to boost protection against a cutaneous virus infection. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Identification of HLA-A2 restricted T-cell epitopes within the conserved region of the immunoglobulin G heavy-chain in patients with multiple myeloma.

    PubMed

    Belle, Sebastian; Han, Fang; Condomines, Maud; Christensen, Olaf; Witzens-Harig, Mathias; Kasper, Bernd; Kleist, Christian; Terness, Peter; Moos, Marion; Cremer, Friedrich; Hose, Dirk; Ho, Anthony D; Goldschmidt, Hartmut; Klein, Bernard; Hundemer, Michael

    2008-07-01

    The aim of this study is the identification of HLA-A2 restricted T-cell epitopes in the conserved region of the immunoglobulin-G-heavy-chain (IgGH) that can be used for immunotherapy in multiple myeloma (MM) patients. After the IgGH gene sequence was scanned for HLA-A2 restricted T-cell epitopes with a high binding affinity to the MHC-I-complex, promising nona-peptides were synthesized. Peptide specific CD8+ T-cells were generated from peripheral blood mononuclear cells (PBMC) of healthy donors (HD) and patients with MM using peptide pulsed dendritic cells (DC) in vitro. The activation and cytotoxicity of CD8+ T-cells was analyzed by IFN-alpha ELISpot-assay and 51Chromium release-assay. HLA-A2 restriction was proven by blocking T-cell activation with anti-HLA-A2 antibodies. Two HLA-A2 restricted T-cell epitopes-TLVTVSSAS derived from the IgGH-framework-region 4 (FR4) and LMISRTPEV from the constant region (CR)-induced expansion of specific CD8+ T-cells from PBMC in two of three (TLVTVSSAS) and one of three (LMISRTPEV) HD respectively. Specific T-cells were induced from PBMC in two of six (TLVTVSSAS) and eight of 19 (LMISRTPEV) patients with MM. Specific CD8+ T-cells also lysed peptide-pulsed target cells in 51Chromium release-assay. LMISRTPEV specific CD8+ T-cells from MM patients lysed specifically the HLA-A2+ IgG myeloma cell line XG-6. We identified two HLA-A2 restricted T-cell epitopes-TLVTVSSAS and LMISRTPEV--which can yield an expansion of CD8+ T-cells with the ability to kill peptide-loaded target cells and HLA-A2+ IgG+ myeloma cells. We conclude that TLVTVSSAS and LMISRTPEV could be T-cell epitopes for immunotherapy in MM patients.

  18. Comprehensive Analysis of Contributions from Protein Conformational Stability and Major Histocompatibility Complex Class II-Peptide Binding Affinity to CD4+ Epitope Immunogenicity in HIV-1 Envelope Glycoprotein

    PubMed Central

    Li, Tingfeng; Steede, N. Kalaya; Nguyen, Hong-Nam P.; Freytag, Lucy C.; McLachlan, James B.; Mettu, Ramgopal R.; Robinson, James E.

    2014-01-01

    ABSTRACT Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an

  19. Distinct CD4+CD8+ Double-Positive T Cells in the Blood and Liver of Patients during Chronic Hepatitis B and C

    PubMed Central

    Nascimbeni, Michelina; Pol, Stanislas; Saunier, Bertrand

    2011-01-01

    CD4+ and CD8+ T cells, the main effectors of adaptive cellular immune responses, differentiate from immature, non-functional CD4+CD8+ double-positive T (DPT) cells in the thymus. Increased proportions of circulating DPT lymphocytes have been observed during acute viral infections; in chronic viral diseases, the role and repartition of extra-thymic DPT cells remain largely uncharacterized. We performed a phenotypic analysis of DPT cells in blood and liver from patients chronically infected by hepatitis C (HCV) or B (HBV) viruses. The highest percentages of DPT cells, predominantly CD4highCD8low, were observed in patients infected by HCV, while HBV-infected patients mostly displayed CD4lowCD8high and CD4highCD8high DPT cells. All proportions of DPT cells were higher in liver than in blood with, for each subpopulation referred to above, a correlation between their frequencies in these two compartments. In HCV patients, intra-hepatic DPT cells displayed more heterogeneous activation, differentiation and memory phenotypes than in the blood; most of them expressed CD1a, a marker of T cell development in the thymus. Ex vivo, the inoculation of liver slices with HCV produced in cell culture was accompanied by a disappearance of CD8high cells, suggesting a direct effect of the virus on the phenotype of DPT cells in the liver. Our results suggest that, in half of the patients, chronic HCV infection promotes the production of DPT cells, perhaps by their re-induction in the thymus and selection in the liver. PMID:21647449

  20. [Immunological balance of CD8+CD28+/CD8+CD28- T lymphocytes can predict gastrointestinal hemorrhage in patients with inflammatory bowel disease].

    PubMed

    Dai, Shi-Xue; Gu, Hong-Xiang; Wu, Gang; Zhong, Tao; Jian, Hong-Jian; Zhan, Yong-le; Zhang, Min-Hai; Gao, Yong; Xu, Jun; Chen, Dong-Sheng; Liao, Guang-Jie; Feng, Yan-Ling; Liu, Hong-Bo; Zou, Ying; Chi, Hong-Gang

    2016-12-20

    To evaluate the sensitivity and specificity of CD8 + CD28 + /CD8 + CD28 - T lymphocyte balance in predicting the gastrointestinal hemorrhage (GH) in patients with inflammatory bowel disease (IBD). Forty-nine IBD patients, including 30 with ulcerous colitis (UC) and 19 with Crohn's disease (CD), were enrolled to test peripheral blood CD8 + CD28 + and CD8 + CD28 - T cells using flow cytometry. All the patients were followed up for one year. The receiver-operating characteristic (ROC) curves were used to test the efficiency of CD8 + CD28 + /CD8 + CD28 - T lymphocyte balance to predict GH. The differences in lasting time of remission (LTR) under different factors were compared using Kaplan-Meier survival analysis, and the correlation between CD8 + T lymphocytes and the factors were analyzed. The utilization rates of immunosuppressant, steroids, and biological agent (BA) were significantly higher in CD patients than in UC patients (P=0.003, 0.043 and 0.002, respectively). The frequencies of CD8 + CD28 + T cells were obviously higher in UC patients than those in CD patients (t=3.022, P=0.004). CD8 + CD28 + T cells, CD8 + CD28 - T cells, and especially CD8 + CD28 + /CD8 + CD28 - ratio (area under curve of 0.977, P=0.000; cut-off value of 1.14 [13.95%/12.24%] with a sensitivity of 93.3% and a specificity of 91.2%) showed good efficiencies in predicting GH (P<0.01). The mean and median of LTR of IBD patients who did not receive BA or surgical treatment were significantly longer (Χ 2 =9.730, P=0.002; Χ 2 =15.981, P=0.000). CD8 + CD28 + /CD8 + CD28 - ratio was significantly related to both BA (P=0.009) and surgery (P=0.038). Both decreased CD8 + CD28 + T cells and elevated CD8 + CD28 - T cells are closely correlated with GH, and their ratio can predict the occurrence of GH with a high sensitivity and specificity and is correlated with BA and surgery at the cut-off value of 1.14.

  1. Decreased CD8+CD28+/CD8+CD28- T cell ratio can sensitively predict poor outcome for patients with complicated Crohn disease.

    PubMed

    Dai, Shi-Xue; Gu, Hong-Xiang; Lin, Qian-Yi; Wu, Yan-Kun; Wang, Xiao-Yan; Huang, Shao-Zhuo; Xing, Tiao-Si; Chen, Min-Hua; Zhang, Qing-Fang; Zheng, Zhong-Wen; Sha, Wei-Hong

    2017-06-01

    Crohn disease (CD) with complications such as penetrating, stricturing, and perianal disease is called complicated CD. The aim of this study is to test the efficiency with which the CD8CD28/CD8CD28 cell balance can predict a subsequent active stage in patients with newly diagnosed complicated CD.Seventeen patients with complicated CD and 48 CD patients with no complications were enrolled. Blood CD8 T cells were tested from all of the 65 newly diagnosed CD patients upon enrollment. The potential risk factors were compared between the 2 groups. A 30-week follow-up was performed, and the efficiency of the CD8 cell balance at predicting active CD was analyzed using receiver-operating characteristic curves. The cumulative remission lasting rates (CRLRs) were analyzed using the Kaplan-Meier method.Compared with the control CD group, patients with complicated CD were predominantly male and younger in age; they also had lower body mass indices (BMIs), higher Crohn disease activity indices (CDAIs), higher immunosuppressant and steroid prescription rates, and significantly higher surgical rates. The CD8CD28/CD8CD28 balance was associated with BMI, CDAI, steroids, and surgery. The CD8CD28/CD8CD28 ratios were significantly lower at week 0 and on the 6th, 22nd, and 30th week during follow-up with a shorter lasting time of remission for the complicated CD patients. The CD8CD28/CD8CD28 ratio could accurately predict the active stage for the patients with complicated CD, and the highest sensitivity (89.2%) and specificity (85.3%) were found when the ratio was 1.03. Treatment with steroids and surgery, along with a significantly lower CD8CD28/CD8CD28 ratio and lower CRLRs, was closely related to a worse outcome for the patients with complicated CD.Patients requiring steroids and surgery experience more severe disease activity and thus a disequilibrated immunological balance, which could be the main reason for a decreased CD8CD28/CD8CD28 ratio. This ratio can sensitively predict the

  2. Putative phage-display epitopes of the porcine epidemic diarrhea virus S1 protein and their anti-viral activity

    USDA-ARS?s Scientific Manuscript database

    Porcine epidemic diarrhea virus (PEDV) is a pathogen of swine that causes severe diarrhea and dehydration resulting in substantial morbidity and mortality in newborn piglets. Phage display is a technique with wide application, in particular, the identification of key antigen epitopes for the develop...

  3. Abundant cytomegalovirus (CMV) reactive clonotypes in the CD8(+) T cell receptor alpha repertoire following allogeneic transplantation.

    PubMed

    Link, C S; Eugster, A; Heidenreich, F; Rücker-Braun, E; Schmiedgen, M; Oelschlägel, U; Kühn, D; Dietz, S; Fuchs, Y; Dahl, A; Domingues, A M J; Klesse, C; Schmitz, M; Ehninger, G; Bornhäuser, M; Schetelig, J; Bonifacio, E

    2016-06-01

    Allogeneic stem cell transplantation is potentially curative, but associated with post-transplantation complications, including cytomegalovirus (CMV) infections. An effective immune response requires T cells recognizing CMV epitopes via their T cell receptors (TCRs). Little is known about the TCR repertoire, in particular the TCR-α repertoire and its clinical relevance in patients following stem cell transplantation. Using next-generation sequencing we examined the TCR-α repertoire of CD8(+) T cells and CMV-specific CD8(+) T cells in four patients. Additionally, we performed single-cell TCR-αβ sequencing of CMV-specific CD8(+) T cells. The TCR-α composition of human leucocyte antigen (HLA)-A*0201 CMVpp65- and CMVIE -specific T cells was oligoclonal and defined by few dominant clonotypes. Frequencies of single clonotypes reached up to 11% of all CD8(+) T cells and half of the total CD8(+) T cell repertoire was dominated by few CMV-reactive clonotypes. Some TCR-α clonotypes were shared between patients. Gene expression of the circulating CMV-specific CD8(+) T cells was consistent with chronically activated effector memory T cells. The CD8(+) T cell response to CMV reactivation resulted in an expansion of a few TCR-α clonotypes to dominate the CD8(+) repertoires. These results warrant further larger studies to define the ability of oligoclonally expanded T cell clones to achieve an effective anti-viral T cell response in this setting. © 2016 British Society for Immunology.

  4. Invariant NKT Cells Regulate the CD8 T Cell Response during Theiler's Virus Infection

    PubMed Central

    Mars, Lennart T.; Mas, Magali; Beaudoin, Lucie; Bauer, Jan; Leite-de-Moraes, Maria; Lehuen, Agnès; Bureau, Jean-Francois; Liblau, Roland S.

    2014-01-01

    Invariant NKT cells are innate lymphocytes with a broad tissue distribution. Here we demonstrate that iNKT cells reside in the central nervous system (CNS) in the absence of inflammation. Their presence in the CNS dramatically augments following inoculation of C57Bl/6 mice with the neurotropic Theiler's murine encephalomyelitis virus (TMEV). At the peak of inflammation the cellular infiltrate comprises 45 000 iNKT cells for 1 250 CD8 T cells specific for the immunodominant TMEV epitope. To study the interaction between these two T cell subsets, we infected both iNKT cell deficient Jα18-/- mice and iNKT cell enriched Vα14 transgenic mice with TMEV. The CD8 T cell response readily cleared TMEV infection in the iNKT cell deficient mice. However, in the iNKT cell enriched mice TMEV infection persisted and was associated with significant mortality. This was caused by the inhibition of the CD8 T cell response in the cervical lymph nodes and spleen after T cell priming. Taken together we demonstrate that iNKT cells reside in the CNS in the absence of inflammation and that their enrichment is associated with the inhibition of the anti-viral CD8 T cell response and an augmented mortality during acute encephalomyelitis. PMID:24498175

  5. Partial reconstitution of the CD4+-T-cell compartment in CD4 gene knockout mice restores responses to tuberculosis DNA vaccines.

    PubMed

    D'Souza, Sushila; Romano, Marta; Korf, Johanna; Wang, Xiao-Ming; Adnet, Pierre-Yves; Huygen, Kris

    2006-05-01

    Reactivation tuberculosis (TB) is a serious problem in immunocompromised individuals, especially those with human immunodeficiency virus (HIV) coinfection. The adaptive immune response mediated by CD4+ and CD8+ T cells is known to confer protection against TB. Hence, vaccines against TB are designed to activate these two components of the immune system. Anti-TB DNA vaccines encoding the immunodominant proteins Ag85A, Ag85B, and PstS-3 from Mycobacterium tuberculosis are ineffective in mice lacking CD4+ T cells (CD4-/- mice). In this study, we demonstrate that reconstitution of the T-cell compartment in CD4-/- mice restores vaccine-specific antibody and gamma interferon (IFN-gamma) responses to these DNA vaccines. The magnitude of the immune responses correlated with the extent of reconstitution of the CD4+-T-cell compartment. Reconstituted mice vaccinated with DNA encoding PstS-3, known to encode a dominant D(b)-restricted CD8+-T-cell epitope, displayed CD8+-T-cell responses not observed in CD4-/- mice. M. tuberculosis challenge in reconstituted mice led to the extravasation of IFN-gamma-producing CD4+ and CD8+ T cells into lungs, the primary site of bacterial replication. Importantly, a reconstitution of 12 to 15% of the CD4+-T-cell compartment resulted in Ag85B plasmid DNA-mediated protection against a challenge M. tuberculosis infection. Our findings provide evidence that anti-TB DNA vaccines could be effective in immunodeficient individuals after CD4+-T-lymphocyte reconstitution, as may occur following antiretroviral therapy in HIV+ patients.

  6. Definition and characterization of novel HLA-*A02-restricted CD8+ T cell epitopes derived from JCV polyomavirus with clinical relevance

    PubMed Central

    Mani, Jiju; Wang, Lei; Hückelhoven, Angela G.; Schmitt, Anita; Gedvilaite, Alma; Jin, Nan; Kleist, Christian; Ho, Anthony D; Schmitt, Michael

    2017-01-01

    Human JC and BK polyomaviruses (JCV/BKV) can establish a latent infection without any clinical symptoms in healthy individuals. In immunocompromised hosts infection or reactivation of JCV and BKV can cause lethal progressive multifocal leukoencephalopathy (PML) and hemorrhagic cystitis, respectively. Vaccination with JCV/BKV derived antigen epitope peptides or adoptive transfer of virus-specific T cells would constitute an elegant approach to clear virus-infected cells. Furthermore, donor leukocyte infusion (DLI) is another therapeutic approach which could be helpful for patients with JCV/BKV infections. So far, only few immunodominant T cell epitopes of JCV and BKV have been described and therefore is a fervent need for the definition of novel epitopes. In this study, we identified novel T cell epitopes by screening libraries of overlapping peptides derived from the major capsid protein VP1 of JCV. Virus like particles (VLPs) were used to confirm naturally processing. Two human leucocyte antigen (HLA)-A*02-restricted epitopes were characterized by fine mapping with overlapping peptides and nonamer peptide sequences were identified. Cytokine release profile of the epitope-specific T cells was analyzed by enzyme-linked immunospot (ELISPOT) assays and by flow cytometry. We demonstrated that T cell responses were of polyfunctional nature with the potential of epitope-specific killing and cross-reactivity between JCV and BKV. These novel epitopes might constitute a new potential tool to design effective diagnostic and therapeutic approaches against both polyomaviruses. PMID:27705933

  7. Definition and characterization of novel HLA-*A02-restricted CD8+ T cell epitopes derived from JCV polyomavirus with clinical relevance.

    PubMed

    Mani, Jiju; Wang, Lei; Hückelhoven, Angela G; Schmitt, Anita; Gedvilaite, Alma; Jin, Nan; Kleist, Christian; Ho, Anthony D; Schmitt, Michael

    2017-01-10

    Human JC and BK polyomaviruses (JCV/BKV) can establish a latent infection without any clinical symptoms in healthy individuals. In immunocompromised hosts infection or reactivation of JCV and BKV can cause lethal progressive multifocal leukoencephalopathy (PML) and hemorrhagic cystitis, respectively. Vaccination with JCV/BKV derived antigen epitope peptides or adoptive transfer of virus-specific T cells would constitute an elegant approach to clear virus-infected cells. Furthermore, donor leukocyte infusion (DLI) is another therapeutic approach which could be helpful for patients with JCV/BKV infections.So far, only few immunodominant T cell epitopes of JCV and BKV have been described and therefore is a fervent need for the definition of novel epitopes. In this study, we identified novel T cell epitopes by screening libraries of overlapping peptides derived from the major capsid protein VP1 of JCV. Virus like particles (VLPs) were used to confirm naturally processing. Two human leucocyte antigen (HLA)-A*02-restricted epitopes were characterized by fine mapping with overlapping peptides and nonamer peptide sequences were identified. Cytokine release profile of the epitope-specific T cells was analyzed by enzyme-linked immunospot (ELISPOT) assays and by flow cytometry. We demonstrated that T cell responses were of polyfunctional nature with the potential of epitope-specific killing and cross-reactivity between JCV and BKV. These novel epitopes might constitute a new potential tool to design effective diagnostic and therapeutic approaches against both polyomaviruses.

  8. Intrinsic role of FoxO3a in the development of CD8+ T cell memory

    PubMed Central

    Tzelepis, Fanny; Joseph, Julie; Haddad, Elias K.; MacLean, Susanne; Dudani, Renu; Agenes, Fabien; Peng, Stanford L.; Sekaly, Rafick-Pierre; Sad, Subash

    2013-01-01

    CD8+ T cells undergo rapid expansion during infection with intracellular pathogens, which is followed by swift and massive culling of primed CD8+ T cells. The mechanisms that govern the massive contraction and maintenance of primed CD8+ T cells are not clear. We show here that the transcription factor, FoxO3a does not influence antigen-presentation and the consequent expansion of CD8+ T cell response during Listeria monocytogenes (LM) infection, but plays a key role in the maintenance of memory CD8+ T cells. The effector function of primed CD8+ T cells as revealed by cytokine secretion and CD107a degranulation was not influenced by inactivation of FoxO3a. Interestingly, FoxO3a-deficient CD8+ T cells displayed reduced expression of pro-apoptotic molecules BIM and PUMA during the various phases of response, and underwent reduced apoptosis in comparison to WT cells. A higher number of memory precursor effector cells (MPECs) and memory subsets were detectable in FoxO3a-deficient mice compared to WT mice. Furthermore, FoxO3a-deficient memory CD8+ T cells upon transfer into normal or RAG1-deficient mice displayed enhanced survival. These results suggest that FoxO3a acts in a cell intrinsic manner to regulate the survival of primed CD8+ T cells. PMID:23277488

  9. Protective Efficacy of Serially Up-Ranked Subdominant CD8+ T Cell Epitopes against Virus Challenges

    PubMed Central

    Roshorm, Yaowaluck; Bridgeman, Anne; Létourneau, Sven; Liljeström, Peter; Potash, Mary Jane; Volsky, David J.; McMichael, Andrew J.; Hanke, Tomáš

    2011-01-01

    Immunodominance in T cell responses to complex antigens like viruses is still incompletely understood. Some data indicate that the dominant responses to viruses are not necessarily the most protective, while other data imply that dominant responses are the most important. The issue is of considerable importance to the rational design of vaccines, particularly against variable escaping viruses like human immunodeficiency virus type 1 and hepatitis C virus. Here, we showed that sequential inactivation of dominant epitopes up-ranks the remaining subdominant determinants. Importantly, we demonstrated that subdominant epitopes can induce robust responses and protect against whole viruses if they are allowed at least once in the vaccination regimen to locally or temporally dominate T cell induction. Therefore, refocusing T cell immune responses away from highly variable determinants recognized during natural virus infection towards subdominant, but conserved regions is possible and merits evaluation in humans. PMID:21625575

  10. TCR-pMHC encounter differentially regulates transcriptomes of tissue-resident CD8 T cells.

    PubMed

    Yoshizawa, Akihiro; Bi, Kevin; Keskin, Derin B; Zhang, Guanglan; Reinhold, Bruce; Reinherz, Ellis L

    2018-01-01

    To investigate the role of TCR-pMHC interaction in regulating lung CD8 tissue-resident T cell (T R ) differentiation, polyclonal responses were compared against NP 366-374 /D b and PA 224-233 /D b , two immunodominant epitopes that arise during influenza A infection in mice. Memory niches distinct from iBALTs develop within the lamina propria, supporting CD103 + and CD103 - CD8 T R generation and intraepithelial translocation. Gene set enrichment analysis (GSEA) and weighted gene co-expression network analysis (WGCNA) identify dominant TCR, adherens junction, RIG-I-like and NOD-like pattern recognition receptor as well as TGF-β signaling pathways and memory signatures among PA 224-233 /D b T cells consistent with T resident memory (T RM ) status. In contrast, NP 366-374 /D b T cells exhibit enrichment of effector signatures, upregulating pro-inflammatory mediators even among T RM . While NP 366-374 /D b T cells manifest transcripts linked to canonical exhaustion pathways, PA 224-233 /D b T cells exploit P2rx7 purinoreceptor attenuation. The NP 366-374 /D b CD103 + subset expresses the antimicrobial lactotransferrin whereas PA 224-233 /D b CD103 + utilizes pore-forming mpeg-1, with <22% of genes correspondingly upregulated in CD103 + (or CD103 - ) subsets of both specificities. Thus, TCR-pMHC interactions among T R and antigen presenting cells in a tissue milieu strongly impact CD8 T cell biology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ΔVP8* subunit parenteral vaccines.

    PubMed

    Wen, Xiaobo; Wen, Ke; Cao, Dianjun; Li, Guohua; Jones, Ronald W; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka; Yuan, Lijuan

    2014-07-31

    Currently available live oral rotavirus vaccines, Rotarix(®) and RotaTeq(®), are highly efficacious in developed countries. However, the immunogenicity and efficacy of such vaccines in some developing countries are low. We reported previously that bacterially-expressed rotavirus ΔVP8* subunit vaccine candidates with P[8], P[4] or P[6] specificity elicited high-titer virus neutralizing antibodies in animals immunized intramuscularly. Of note was the finding that antibodies induced with the P[8]ΔVP8* vaccine neutralized both homotypic P[8] and heterotypic P[4] rotavirus strains to high titer. To further improve its vaccine potential, a tetanus toxoid universal CD4(+) T cell epitope P2 was introduced into P[8] or P[6]ΔVP8* construct. The resulting recombinant fusion proteins expressed in Escherichia coli were of high solubility and were produced with high yield. Two doses (10 or 20 μg/dose) of the P2-P[8]ΔVP8* vaccine or P2-P[6]ΔVP8* vaccine with aluminum phosphate adjuvant elicited significantly higher geometric mean homologous neutralizing antibody titers than the vaccines without P2 in intramuscularly immunized guinea pigs. Interestingly, high levels of neutralizing antibody responses induced in guinea pigs with 3 doses of the P2-P[8]ΔVP8* vaccine persisted for at least 6 months. Furthermore, in the gnotobiotic piglet challenge study, three intramuscular doses (50 μg/dose) of the P2-P[8]ΔVP8* vaccine with aluminum phosphate adjuvant significantly delayed the onset of diarrhea and significantly reduced the duration of diarrhea and the cumulative diarrhea score after oral challenge with virulent human rotavirus Wa (G1P[8]) strain. The P2-P[8]ΔVP8* vaccine induced serum virus neutralizing antibody and VP4-specific IgG antibody production prechallenge, and primed the pigs for higher antibody and intestinal and systemic virus-specific IFN-γ producing CD4(+) T cell responses postchallenge. These two subunit vaccines could be used at a minimum singly or

  12. Three novel NY-ESO-1 epitopes bound to DRB1*0803, DQB1*0401 and DRB1*0901 recognized by CD4 T cells from CHP-NY-ESO-1-vaccinated patients.

    PubMed

    Mizote, Yu; Taniguchi, Taku; Tanaka, Kei; Isobe, Midori; Wada, Hisashi; Saika, Takashi; Kita, Shoichi; Koide, Yukari; Uenaka, Akiko; Nakayama, Eiichi

    2010-07-19

    Three novel NY-ESO-1 CD4 T cell epitopes were identified using PBMC obtained from patients who were vaccinated with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1). The restriction molecules were determined by antibody blocking and using various EBV-B cells with different HLA alleles as APC to present peptides to CD4 T cells. The minimal epitope peptides were determined using various N- and C-termini truncated peptides deduced from 18-mer overlapping peptides originally identified for recognition. Those epitopes were DRB1*0901-restricted NY-ESO-1 87-100, DQB1*0401-restricted NY-ESO-1 95-107 and DRB1*0803-restricted NY-ESO-1 124-134. CD4 T cells used to determine those epitope peptides recognized EBV-B cells or DC that were treated with recombinant NY-ESO-1 protein or NY-ESO-1-expressing tumor cell lysate, suggesting that the epitope peptides are naturally processed. These CD4 T cells showed a cytokine profile with Th1 characteristics. Furthermore, NY-ESO-1 87-100 peptide/HLA-DRB1*0901 tetramer staining was observed. Multiple Th1-type CD4 T cell responses are beneficial for inducing effective anti-tumor responses after NY-ESO-1 protein vaccination. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    PubMed Central

    Pelle, Roger; Graham, Simon P.; Njahira, Moses N.; Osaso, Julius; Saya, Rosemary M.; Odongo, David O.; Toye, Philip G.; Spooner, Paul R.; Musoke, Anthony J.; Mwangi, Duncan M.; Taracha, Evans L. N.; Morrison, W. Ivan; Weir, William; Silva, Joana C.; Bishop, Richard P.

    2011-01-01

    Background Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8+ T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8+ T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8+ T-cell epitopes, and to analyse the sequences for evidence of selection. Methodology/Principal Findings Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (∼12%) in Tp1 and in 320 positions (∼61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle. Conclusions/Significance The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point. PMID:21559495

  14. Identity of the segment of human complement C8 recognized by complement regulatory protein CD59.

    PubMed

    Lockert, D H; Kaufman, K M; Chang, C P; Hüsler, T; Sodetz, J M; Sims, P J

    1995-08-25

    CD59 antigen is a membrane glycoprotein that inhibits the activity of the C5b-9 membrane attack complex (MAC), thereby protecting human cells from lysis by human complement. The inhibitory function of CD59 derives from its capacity to interact with both the C8 and C9 components of MAC, preventing assembly of membrane-inserted C9 polymer. MAC-inhibitory activity of CD59 is species-selective and is most effective when both C8 and C9 derive from human or other primate plasma. Rabbit C8 and C9, which can substitute for human C8 and C9 in MAC, mediate virtually unrestricted lysis of human cells expressing CD59. In order to identify the segment of human C8 that is recognized by CD59, recombinant peptides containing human or rabbit C8 sequence were expressed in Escherichia coli and purified. CD59 was found to specifically bind to a peptide corresponding to residues 334-385 of the human C8 alpha-subunit, and to require a disulfide bond between Cys345 and Cys369. No specific binding was observed to the corresponding sequence from rabbit C8 alpha (residues 334-386). To obtain functional evidence that this segment of human C8 alpha is selectively recognized by CD59, recombinant C8 proteins were prepared by co-transfecting COS-7 cells with human/rabbit chimeras of the C8 alpha cDNA, and cDNAs encoding the C8 beta and C8 gamma chains. Hemolytic activity of MAC formed with chimeric C8 was analyzed using target cells reconstituted with CD59. These experiments confirmed that CD59 recognizes a conformationally sensitive epitope that is within a segment of human C8 alpha internal to residues 320-415. Our data also suggest that optimal interaction of CD59 with this segment of human C8 alpha is influenced by N-terminal flanking sequence in C8 alpha and by human C8 beta, but is unaffected by C8 gamma.

  15. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection.

    PubMed

    DiPiazza, Anthony; Laniewski, Nathan; Rattan, Ajitanuj; Topham, David J; Miller, Jim; Sant, Andrea J

    2018-07-01

    Pulmonary CD4 T cells are critical in respiratory virus control, both by delivering direct effector function and through coordinating responses of other immune cells. Recent studies have shown that following influenza virus infection, virus-specific CD4 T cells are partitioned between pulmonary vasculature and lung tissue. However, very little is known about the peptide specificity or functional differences of CD4 T cells within these two compartments. Using a mouse model of influenza virus infection in conjunction with intravascular labeling in vivo , the cell surface phenotype, epitope specificity, and functional potential of the endogenous polyclonal CD4 T cell response was examined by tracking nine independent CD4 T cell epitope specificities. These studies revealed that tissue-localized CD4 cells were globally distinct from vascular cells in expression of markers associated with transendothelial migration, residency, and micropositioning. Despite these differences, there was little evidence for remodeling of the viral epitope specificity or cytokine potential as cells transition from vasculature to the highly inflamed lung tissue. Our studies also distinguished cells in the pulmonary vasculature from peripheral circulating CD4 T cells, providing support for the concept that the pulmonary vasculature does not simply reflect circulating cells that are trapped within the narrow confines of capillary vessels but rather is enriched in transitional cells primed in the draining lymph node that have specialized potential to enter the lung tissue. IMPORTANCE CD4 T cells convey a multitude of functions in immunity to influenza, including those delivered in the lymph node and others conveyed by CD4 T cells that leave the lymph node, enter the blood, and extravasate into the lung tissue. Here, we show that the transition of recently primed CD4 cells detected in the lung vasculature undergo profound changes in expression of markers associated with tissue localization as

  16. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells

    PubMed Central

    Edelson, Brian T.; KC, Wumesh; Juang, Richard; Kohyama, Masako; Benoit, Loralyn A.; Klekotka, Paul A.; Moon, Clara; Albring, Jörn C.; Ise, Wataru; Michael, Drew G.; Bhattacharya, Deepta; Stappenbeck, Thaddeus S.; Holtzman, Michael J.; Sung, Sun-Sang J.; Murphy, Theresa L.; Hildner, Kai

    2010-01-01

    Although CD103-expressing dendritic cells (DCs) are widely present in nonlymphoid tissues, the transcription factors controlling their development and their relationship to other DC subsets remain unclear. Mice lacking the transcription factor Batf3 have a defect in the development of CD8α+ conventional DCs (cDCs) within lymphoid tissues. We demonstrate that Batf3−/− mice also lack CD103+CD11b− DCs in the lung, intestine, mesenteric lymph nodes (MLNs), dermis, and skin-draining lymph nodes. Notably, Batf3−/− mice displayed reduced priming of CD8 T cells after pulmonary Sendai virus infection, with increased pulmonary inflammation. In the MLNs and intestine, Batf3 deficiency resulted in the specific lack of CD103+CD11b− DCs, with the population of CD103+CD11b+ DCs remaining intact. Batf3−/− mice showed no evidence of spontaneous gastrointestinal inflammation and had a normal contact hypersensitivity (CHS) response, despite previous suggestions that CD103+ DCs were required for immune homeostasis in the gut and CHS. The relationship between CD8α+ cDCs and nonlymphoid CD103+ DCs implied by their shared dependence on Batf3 was further supported by similar patterns of gene expression and their shared developmental dependence on the transcription factor Irf8. These data provide evidence for a developmental relationship between lymphoid organ–resident CD8α+ cDCs and nonlymphoid CD103+ DCs. PMID:20351058

  17. A Conserved Epitope Mapped with a Monoclonal Antibody against the VP3 Protein of Goose Parvovirus by Using Peptide Screening and Phage Display Approaches.

    PubMed

    Li, Chenxi; Liu, Hongyu; Li, Jinzhe; Liu, Dafei; Meng, Runze; Zhang, Qingshan; Shaozhou, Wulin; Bai, Xiaofei; Zhang, Tingting; Liu, Ming; Zhang, Yun

    2016-01-01

    Waterfowl parvovirus (WPV) infection causes high mortality and morbidity in both geese (Anser anser) and Muscovy ducks (Cairina moschata), resulting in significant losses to the waterfowl industries. The VP3 protein of WPV is a major structural protein that induces neutralizing antibodies in the waterfowl. However, B-cell epitopes on the VP3 protein of WPV have not been characterized. To understand the antigenic determinants of the VP3 protein, we used the monoclonal antibody (mAb) 4A6 to screen a set of eight partially expressed overlapping peptides spanning VP3. Using western blotting and an enzyme-linked immunosorbent assay (ELISA), we localized the VP3 epitope between amino acids (aa) 57 and 112. To identify the essential epitope residues, a phage library displaying 12-mer random peptides was screened with mAb 4A6. Phage clone peptides displayed a consensus sequence of YxRFHxH that mimicked the sequence 82Y/FNRFHCH88, which corresponded to amino acid residues 82 to 88 of VP3 protein of WPVs. mAb 4A6 binding to biotinylated fragments corresponding to amino acid residues 82 to 88 of the VP3 protein verified that the 82FxRFHxH88 was the VP3 epitope and that amino acids 82F is necessary to retain maximal binding to mAb 4A6. Parvovirus-positive goose and duck sera reacted with the epitope peptide by dot blotting assay, revealing the importance of these amino acids of the epitope in antibody-epitope binding reactivity. We identified the motif FxRFHxH as a VP3-specific B-cell epitope that is recognized by the neutralizing mAb 4A6. This finding might be valuable in understanding of the antigenic topology of VP3 of WPV.

  18. Design and evaluation of a multi-epitope assembly Peptide (MEAP) against herpes simplex virus type 2 infection in BALB/c mice

    PubMed Central

    2011-01-01

    Background Human herpes simplex virus (HSV) 1 and 2 causes oral, ocular, or genital infections, which remains a significant health problem worldwide. HSV-1 and -2 infections in humans range from localized skin infections of the oral, ocular, and genital regions to severe and often disseminated infections in immunocompromised hosts. Epitope based vaccination is a promising mean to achieve protective immunity and to avoid infections with Human herpes simplex virus type 2 (HSV-2). Methods The twelve selected epitopes, six B cell epitopes from different glycoprotein of HSV-2 (amino acid residues 466-473 (EQDRKPRN) from envelope glycoprotein B, 216-223 (GRTDRPSA) from C, 6-18 (DPSLKMADPNRFR) from D, 483-491 (DPPERPDSP) from E, 572-579 (EPPDDDDS) from G and 286-295 (CRRRYRRPRG) from I glycoprotein of HSV-2), four CD4+ T cell epitopes (amino acid residues 21-28 (NLPVLDQL) from D, 162-177 (KDVTVSQVWFGHRYSQ) from B, 205-224 (KAYQQGVTVDSIGMLPRFIP) from D and 245-259 (KPPYTSTLLPPELSD) from D) and two CD8+ T cell epitopes (amino acid residues 10-20 (KMADPNRFRGK) from D and 268-276 (ALLEDPAGT) from D), are responsible for the elicitation of the neutralizing antibodies and cytotoxic T lymphocytes (CTLs) that impart protective immunity to the host. In this study, all above epitopes were inserted into the extracellular fragment (amino acid residues 1-290) of HSV-2 glycoprotein D to construct multi-epitope assembly peptides (MEAPs) by replacing some non-epitope amino acid sequences. The epitope independency of the MEAPs was predicted by three-dimensional software algorithms. The gene of the selected MEAP was expressed in E.coli BL21(DE3), and its protective efficacy against HSV-2 infection was assessed in BALB/c mice. Results The MEAP, with each inserted epitopes independently displayed on the molecule surface, was selected as candidate proteins. The results showed that the MEAP was highly immunogenic and could elicit high titer neutralizing antibodies and cell-mediated immune

  19. Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens.

    PubMed

    Sette, Alessandro; Grey, Howard; Oseroff, Carla; Peters, Bjoern; Moutaftsi, Magdalini; Crotty, Shane; Assarsson, Erika; Greenbaum, Jay; Kim, Yohan; Kolla, Ravi; Tscharke, David; Koelle, David; Johnson, R Paul; Blum, Janice; Head, Steven; Sidney, John

    2009-12-30

    In the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate that both cellular and humoral responses target a large number of antigens and epitopes. This broad spectrum of targets is detected in both mice and humans. CD4(+) T cell responses target late and structural antigens, while CD8(+) T cells preferentially recognize early antigens. While both CD4(+) and CD8(+) T cell responses target different types of antigens, the antigens recognized by T(H) cells are highly correlated with those recognized by antibody responses. We further show that protein abundance and antibody recognition can be used to predict antigens recognized by CD4(+) T cell responses, while early expression at the mRNA level predicts antigens targeted by CD8(+) T cells. Finally, we find that the vast majority of VACV epitopes are conserved in variola virus (VARV), thus suggesting that the epitopes defined herein also have relevance for the efficacy of VACV as a smallpox vaccine.

  20. Pathogen Proliferation Governs the Magnitude but Compromises the Function of CD8 T Cells1

    PubMed Central

    Sad, Subash; Dudani, Renu; Gurnani, Komal; Russell, Marsha; van Faassen, Henk; Finlay, Brett; Krishnan, Lakshmi

    2014-01-01

    CD8+ T cell memory is critical for protection against many intracellular pathogens. However, it is not clear how pathogen virulence influences the development and function of CD8+ T cells. Salmonella typhimurium (ST) is an intracellular bacterium that causes rapid fatality in susceptible mice and chronic infection in resistant strains. We have constructed recombinant mutants of ST, expressing the same immunodominant Ag OVA, but defective in various key virulence genes. We show that the magnitude of CD8+ T cell response correlates directly to the intracellular proliferation of ST. Wild-type ST displayed efficient intracellular proliferation and induced increased numbers of OVA-specific CD8+ T cells upon infection in mice. In contrast, mutants with defective Salmonella pathogenicity island II genes displayed poor intracellular proliferation and induced reduced numbers of OVA-specific CD8+ T cells. However, when functionality of the CD8+ T cell response was measured, mutants of ST induced a more functional response compared with the wild-type ST. Infection with wild-type ST, in contrast to mutants defective in pathogenicity island II genes, induced the generation of mainly effector-memory CD8+ T cells that expressed little IL-2, failed to mediate efficient cytotoxicity, and proliferated poorly in response to Ag challenge in vivo. Taken together, these results indicate that pathogens that proliferate rapidly and chronically in vivo may evoke functionally inferior memory CD8+ T cells which may promote the survival of the pathogen. PMID:18424704

  1. Epitope mapping: the first step in developing epitope-based vaccines.

    PubMed

    Gershoni, Jonathan M; Roitburd-Berman, Anna; Siman-Tov, Dror D; Tarnovitski Freund, Natalia; Weiss, Yael

    2007-01-01

    Antibodies are an effective line of defense in preventing infectious diseases. Highly potent neutralizing antibodies can intercept a virus before it attaches to its target cell and, thus, inactivate it. This ability is based on the antibodies' specific recognition of epitopes, the sites of the antigen to which antibodies bind. Thus, understanding the antibody/epitope interaction provides a basis for the rational design of preventive vaccines. It is assumed that immunization with the precise epitope, corresponding to an effective neutralizing antibody, would elicit the generation of similarly potent antibodies in the vaccinee. Such a vaccine would be a 'B-cell epitope-based vaccine', the implementation of which requires the ability to backtrack from a desired antibody to its corresponding epitope. In this article we discuss a range of methods that enable epitope discovery based on a specific antibody. Such a reversed immunological approach is the first step in the rational design of an epitope-based vaccine. Undoubtedly, the gold standard for epitope definition is x-ray analyses of crystals of antigen:antibody complexes. This method provides atomic resolution of the epitope; however, it is not readily applicable to many antigens and antibodies, and requires a very high degree of sophistication and expertise. Most other methods rely on the ability to monitor the binding of the antibody to antigen fragments or mutated variations. In mutagenesis of the antigen, loss of binding due to point modification of an amino acid residue is often considered an indication of an epitope component. In addition, computational combinatorial methods for epitope mapping are also useful. These methods rely on the ability of the antibody of interest to affinity isolate specific short peptides from combinatorial phage display peptide libraries. The peptides are then regarded as leads for the definition of the epitope corresponding to the antibody used to screen the peptide library. For

  2. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8+ and CD4+ T cells.

    PubMed

    Boudousquie, Caroline; Bossi, Giovanna; Hurst, Jacob M; Rygiel, Karolina A; Jakobsen, Bent K; Hassan, Namir J

    2017-11-01

    The success of immune system-based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti-CD3 scFv antibody) were previously shown to redirect CD8 + and CD4 + T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma-specific protein, gp100, presented by HLA-A*0201) efficiently redirects and activates effector and memory cells from both CD8 + and CD4 + repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8 + T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4 + effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8 + and CD4 + repertoires secrete key pro-inflammatory cytokines (tumour necrosis factor-α, interferon-γ, interleukin-6) and chemokines (macrophage inflammatory protein-1α-β, interferon-γ-inducible protein-10, monocyte chemoattractant protein-1). At an individual cell level, IMCgp100-redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti-cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8 + T cell-mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  3. Clonotype and repertoire changes drive the functional improvement of HIV-specific CD8 T cell populations under conditions of limited antigenic stimulation

    PubMed Central

    Janbazian, Loury; Price, David A.; Canderan, Glenda; Filali-Mouhim, Abdelali; Asher, Tedi E.; Ambrozak, David R.; Scheinberg, Phillip; Boulassel, Mohamad Rachid; Routy, Jean-Pierre; Koup, Richard A.; Douek, Daniel C.; Sekaly, Rafick-Pierre; Trautmann, Lydie

    2011-01-01

    Persistent exposure to cognate antigen leads to the functional impairment and exhaustion of HIV-specific CD8 T cells. Antigen withdrawal, due either to antiretroviral treatment or the emergence of epitope escape mutations, causes HIV-specific CD8 T cell responses to wane over time. However, this process does not continue to extinction, and residual CD8 T cells likely play an important role in the control of HIV replication. Here, we conducted a longitudinal analysis of clonality, phenotype and function to define the characteristics of HIV-specific CD8 T cell populations that persist under conditions of limited antigenic stimulation. Antigen decay was associated with dynamic changes in the TCR repertoire, increased expression of CD45RA and CD127, decreased expression of PD-1 and the emergence of poly-functional HIV-specific CD8 T cells. High definition analysis of individual clonotypes revealed that the antigen loss-induced gain of function within HIV-specific CD8 T cell populations could be attributed to two non-exclusive mechanisms: (i) functional improvement of persisting clonotypes; and, (ii) recruitment of particular clonotypes endowed with superior functional capabilities. PMID:22210916

  4. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis.

    PubMed

    Musson, Julie A; Reynolds, Catherine J; Rinchai, Darawan; Nithichanon, Arnone; Khaenam, Prasong; Favry, Emmanuel; Spink, Natasha; Chu, Karen K Y; De Soyza, Anthony; Bancroft, Gregory J; Lertmemongkolchai, Ganjana; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M; Robinson, John H

    2014-12-15

    Burkholderia pseudomallei is the causative agent of melioidosis characterized by pneumonia and fatal septicemia and prevalent in Southeast Asia. Related Burkholderia species are strong risk factors of mortality in cystic fibrosis (CF). The B. pseudomallei flagellar protein FliC is strongly seroreactive and vaccination protects challenged mice. We assessed B. pseudomallei FliC peptide binding affinity to multiple HLA class II alleles and then assessed CD4 T cell immunity in HLA class II transgenic mice and in seropositive individuals in Thailand. T cell hybridomas were generated to investigate cross-reactivity between B. pseudomallei and the related Burkholderia species associated with Cepacia Complex CF. B. pseudomallei FliC contained several peptide sequences with ability to bind multiple HLA class II alleles. Several peptides were shown to encompass strong CD4 T cell epitopes in B. pseudomallei-exposed individuals and in HLA transgenic mice. In particular, the p38 epitope is robustly recognized by CD4 T cells of seropositive donors across diverse HLA haplotypes. T cell hybridomas against an immunogenic B. pseudomallei FliC epitope also cross-reacted with orthologous FliC sequences from Burkholderia multivorans and Burkholderia cenocepacia, important pathogens in CF. Epitopes within FliC were accessible for processing and presentation from live or heat-killed bacteria, demonstrating that flagellin enters the HLA class II Ag presentation pathway during infection of macrophages with B. cenocepacia. Collectively, the data support the possibility of incorporating FliC T cell epitopes into vaccination programs targeting both at-risk individuals in B. pseudomallei endemic regions as well as CF patients. Copyright © 2014 by The American Association of Immunologists, Inc.

  5. Distinct Mechanisms Regulate Exposure of Neutralizing Epitopes in the V2 and V3 Loops of HIV-1 Envelope

    PubMed Central

    Upadhyay, Chitra; Mayr, Luzia M.; Zhang, Jing; Kumar, Rajnish; Gorny, Miroslaw K.; Nádas, Arthur; Zolla-Pazner, Susan

    2014-01-01

    ABSTRACT Broadly neutralizing antibodies targeting the HIV-1 envelope (Env) are key components for protection against HIV-1. However, many cross-reactive epitopes are often occluded. This study investigates the mechanisms contributing to the masking of V2i (variable loop V2 integrin) epitopes compared to the accessibility of V3 epitopes. V2i are conformation-dependent epitopes encompassing the integrin α4β7-binding motif on the V1V2 loop of HIV-1 Env gp120. The V2i monoclonal antibodies (MAbs) display extensive cross-reactivity with gp120 monomers from many subtypes but neutralize only few viruses, indicating V2i's cryptic nature. First, we asked whether CD4-induced Env conformational changes affect V2i epitopes similarly to V3. CD4 treatment of BaL and JRFL pseudoviruses increased their neutralization sensitivity to V3 MAbs but not to the V2i MAbs. Second, the contribution of N-glycans in masking V2i versus V3 epitopes was evaluated by testing the neutralization of pseudoviruses produced in the presence of a glycosidase inhibitor, kifunensine. Viruses grown in kifunensine were more sensitive to neutralization by V3 but not V2i MAbs. Finally, we evaluated the time-dependent dynamics of the V2i and V3 epitopes. Extending the time of virus-MAb interaction to 18 h before adding target cells increased virus neutralization by some V2i MAbs and all V3 MAbs tested. Consistent with this, V2i MAb binding to Env on the surface of transfected cells also increased in a time-dependent manner. Hence, V2i and V3 epitopes are highly dynamic, but distinct factors modulate the antibody accessibility of these epitopes. The study reveals the importance of the structural dynamics of V2i and V3 epitopes in determining HIV-1 neutralization by antibodies targeting these sites. IMPORTANCE Conserved neutralizing epitopes are present in the V1V2 and V3 regions of HIV-1 Env, but these epitopes are often occluded from Abs. This study reveals that distinct mechanisms contribute to the masking

  6. Identification and characterization of epitopes on Plasmodium knowlesi merozoite surface protein-142 (MSP-142) using synthetic peptide library and phage display library.

    PubMed

    Cheong, Fei Wen; Fong, Mun Yik; Lau, Yee Ling

    2016-02-01

    Plasmodium knowlesi can cause potentially life threatening human malaria. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential target for malaria blood stage vaccine, and for diagnosis of malaria. Two epitope mapping techniques were used to identify the potential epitopes within P. knowlesi MSP-142. Nine and 14 potential epitopes were identified using overlapping synthetic peptide library and phage display library, respectively. Two regions on P. knowlesi MSP-142 (amino acid residues 37-95 and residues 240-289) were identified to be the potential dominant epitope regions. Two of the prominent epitopes, P10 (TAKDGMEYYNKMGELYKQ) and P31 (RCLLGFKEVGGKCVPASI), were evaluated using mouse model. P10- and P31-immunized mouse sera reacted with recombinant P. knowlesi MSP-142, with the IgG isotype distribution of IgG2b>IgG1>IgG2a>IgG3. Significant higher level of cytokines interferon-gamma and interleukin-2 was detected in P31-immunized mice. Both P10 and P31 could be the suitable epitope candidates to be used in malaria vaccine designs and immunodiagnostic assays, provided further evaluation is needed to validate the potential uses of these epitopes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. In vivo immunogenicity of Tax 11-19 epitope in HLA-A2/DTR transgenic mice: implication for dendritic cell-based anti-HTLV-1 vaccine

    PubMed Central

    Sagar, Divya; Masih, Shet; Schell, Todd; Jacobson, Steven; Comber, Joseph D.; Philip, Ramila; Wigdahl, Brian; Jain, Pooja; Khan, Zafar K.

    2014-01-01

    Viral oncoprotein Tax plays key roles in transformation of human T-cell leukemia virus (HTLV-1)-infected T cells leading to adult T-cell leukemia (ATL), and is the key antigen recognized during HTLV-associated myelopathy (HAM). In HLA-A2+ asymptomatic carriers as well as ATL and HAM patients, Tax(11-19) epitope exhibits immunodominance. Here, we evaluate CD8 T-cell immune response against this epitope in the presence and absence of dendritic cells (DCs) given the recent encouraging observations made with Phase 1 DC-based vaccine trial for ATL. To facilitate these studies, we first generated an HLA-A2/DTR hybrid mouse strain carrying the HLA-A2.1 and CD11c-DTR genes. We then studied CD8 T-cell immune response against Tax(11-19) epitope delivered in the absence or presence of Freund’s adjuvant and/or DCs. Overall results demonstrate that naturally presented Tax epitope could initiate an antigen-specific CD8 T cell response in vivo but failed to do so upon DC depletion. Presence of adjuvant potentiated Tax(11-19)-specific response. Elevated serum IL-6 levels coincided with depletion of DCs whereas decreased TGF-β was associated with adjuvant use. Thus, Tax(11-19) epitope is a potential candidate for the DC-based anti-HTLV-1 vaccine and the newly hybrid mouse strain could be used for investigating DC involvement in human class-I-restricted immune responses. PMID:24739247

  8. Involvement and prognosis value of CD8(+) T cells in giant cell arteritis.

    PubMed

    Samson, Maxime; Ly, Kim Heang; Tournier, Benjamin; Janikashvili, Nona; Trad, Malika; Ciudad, Marion; Gautheron, Alexandrine; Devilliers, Hervé; Quipourt, Valérie; Maurier, François; Meaux-Ruault, Nadine; Magy-Bertrand, Nadine; Manckoundia, Patrick; Ornetti, Paul; Maillefert, Jean-Francis; Besancenot, Jean-François; Ferrand, Christophe; Mesturoux, Laura; Labrousse, François; Fauchais, Anne-Laure; Saas, Philippe; Martin, Laurent; Audia, Sylvain; Bonnotte, Bernard

    2016-08-01

    CD8(+) T cells participate in the pathogenesis of some vasculitides. However, little is known about their role in Giant Cell Arteritis (GCA). This study was conducted to investigate CD8(+) T cell involvement in the pathogenesis of GCA. Analyses were performed at diagnosis and after 3 months of glucocorticoid treatment in 34 GCA patients and 26 age-matched healthy volunteers. Percentages of CD8(+) T-cell subsets, spectratype analysis of the TCR Vβ families of CD8(+) T cells, levels of cytokines and chemokines and immunohistochemistry of temporal artery biopsies (TAB) were assessed. Among total CD8(+) T cells, percentages of circulating cytotoxic CD8 T lymphocytes (CTL, CD3(+)CD8(+)perforin(+)granzymeB(+)), Tc17 (CD3(+)CD8(+)IL-17(+)), CD63(+)CD8(+) T cells and levels of soluble granzymes A and B were higher in patients than in controls, whereas the percentage of Tc1 cells (CD3(+)CD8(+)IFN-γ(+)) was similar. Moreover, CD8(+) T cells displayed a restricted TCR repertoire in GCA patients. Percentages of circulating CTL, Tc17 and soluble levels of granzymes A and B decreased after treatment. CXCR3 expression on CD8(+) T cells and its serum ligands (CXCL9, -10, -11) were higher in patients. Analyses of TAB revealed high expression of CXCL9 and -10 associated with infiltration by CXCR3(+)CD8(+) T cells expressing granzyme B and TiA1. The intensity of the CD8 T-cell infiltrate in TAB was predictive of the severity of the disease. This study demonstrates the implication and the prognostic value of CD8(+) T-cells in GCA and suggests that CD8(+) T-cells are recruited within the vascular wall through an interaction between CXCR3 and its ligands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Immunologic hierarchy, class II MHC promiscuity, and epitope spreading of a melanoma helper peptide vaccine.

    PubMed

    Hu, Yinin; Petroni, Gina R; Olson, Walter C; Czarkowski, Andrea; Smolkin, Mark E; Grosh, William W; Chianese-Bullock, Kimberly A; Slingluff, Craig L

    2014-08-01

    Immunization with a combination melanoma helper peptide (6MHP) vaccine has been shown to induce CD4(+) T cell responses, which are associated with patient survival. In the present study, we define the relative immunogenicity and HLA allele promiscuity of individual helper peptides and identify helper peptide-mediated augmentation of specific CD8(+) T cell responses. Thirty-seven participants with stage IIIB-IV melanoma were vaccinated with 6MHP in incomplete Freund's adjuvant. The 6MHP vaccine is comprised of 6 peptides representing melanocytic differentiation proteins gp100, tyrosinase, Melan-A/MART-1, and cancer testis antigens from the MAGE family. CD4(+) and CD8(+) T cell responses were assessed in peripheral blood and in sentinel immunized nodes (SIN) by thymidine uptake after exposure to helper peptides and by direct interferon-γ ELIspot assay against 14 MHC class I-restricted peptides. Vaccine-induced CD4(+) T cell responses to individual epitopes were detected in the SIN of 63 % (22/35) and in the peripheral blood of 38 % (14/37) of participants for an overall response rate of 65 % (24/37). The most frequently immunogenic peptides were MAGE-A3281-295 (49 %) and tyrosinase386-406 (32 %). Responses were not limited to HLA restrictions originally described. Vaccine-associated CD8(+) T cell responses against class I-restricted peptides were observed in 45 % (5/11) of evaluable participants. The 6MHP vaccine induces both CD4(+) and CD8(+) T cell responses against melanoma antigens. CD4(+) T cell responses were detected beyond reported HLA-DR restrictions. Induction of CD8(+) T cell responses suggests epitope spreading and systemic activity mediated at the tumor site.

  10. Initial HIV-1 Antigen-Specific CD8+ T Cells in Acute HIV-1 Infection Inhibit Transmitted/Founder Virus Replication

    PubMed Central

    Freel, Stephanie A.; Picking, Ralph A.; Ferrari, Guido; Ding, Haitao; Ochsenbauer, Christina; Kappes, John C.; Kirchherr, Jennifer L.; Soderberg, Kelly A.; Weinhold, Kent J.; Cunningham, Coleen K.; Denny, Thomas N.; Crump, John A.; Cohen, Myron S.; McMichael, Andrew J.; Haynes, Barton F.

    2012-01-01

    CD8-mediated virus inhibition can be detected in HIV-1-positive subjects who naturally control virus replication. Characterizing the inhibitory function of CD8+ T cells during acute HIV-1 infection (AHI) can elucidate the nature of the CD8+ responses that can be rapidly elicited and that contribute to virus control. We examined the timing and HIV-1 antigen specificity of antiviral CD8+ T cells during AHI. Autologous and heterologous CD8+ T cell antiviral functions were assessed longitudinally during AHI in five donors from the CHAVI 001 cohort using a CD8+ T cell-mediated virus inhibition assay (CD8 VIA) and transmitted/founder (T/F) viruses. Potent CD8+ antiviral responses against heterologous T/F viruses appeared during AHI at the first time point sampled in each of the 5 donors (Fiebig stages 1/2 to 5). Inhibition of an autologous T/F virus was durable to 48 weeks; however, inhibition of heterologous responses declined concurrent with the resolution of viremia. HIV-1 viruses from 6 months postinfection were more resistant to CD8+-mediated virus inhibition than cognate T/F viruses, demonstrating that the virus escapes early from CD8+ T cell-mediated inhibition of virus replication. CD8+ T cell antigen-specific subsets mediated inhibition of T/F virus replication via soluble components, and these soluble responses were stimulated by peptide pools that include epitopes that were shown to drive HIV-1 escape during AHI. These data provide insights into the mechanisms of CD8-mediated virus inhibition and suggest that functional analyses will be important for determining whether similar antigen-specific virus inhibition can be induced by T cell-directed vaccine strategies. PMID:22514337

  11. Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies.

    PubMed

    Clement, Mathew; Pearson, James A; Gras, Stephanie; van den Berg, Hugo A; Lissina, Anya; Llewellyn-Lacey, Sian; Willis, Mark D; Dockree, Tamsin; McLaren, James E; Ekeruche-Makinde, Julia; Gostick, Emma; Robertson, Neil P; Rossjohn, Jamie; Burrows, Scott R; Price, David A; Wong, F Susan; Peakman, Mark; Skowera, Ania; Wooldridge, Linda

    2016-10-17

    CD8 + T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8 + T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8 + T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8 + T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, "blocking" anti-CD8 antibodies can suppress autoreactive CD8 + T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8 + T-cell compartment.

  12. Exploring the induction of preproinsulin-specific Foxp3+ CD4+ Treg cells that inhibit CD8+ T cell-mediated autoimmune diabetes by DNA vaccination

    PubMed Central

    Stifter, Katja; Schuster, Cornelia; Schlosser, Michael; Boehm, Bernhard Otto; Schirmbeck, Reinhold

    2016-01-01

    DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3+ CD25+ CD4+ Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8+ T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced Kb/A12-21-monospecific CD8+ T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical Kb/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3+ CD25+ Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3+ CD25+ Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1−/− hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76–90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8+ T cells in this diabetes model. PMID:27406624

  13. Description of an elasmobranch TCR coreceptor: CD8α from Rhinobatos productus

    USGS Publications Warehouse

    Hansen, J.D.; Farrugia, T.J.; Woodson, J.; Laing, K.J.

    2011-01-01

    Cell-mediated immunity plays an essential role for the control and eradication of intracellular pathogens. To learn more about the evolutionary origins of the first signal (Signal 1) for T-cell activation, we cloned CD8α from an elasmobranch, Rhinobatos productus. Similar to full-length CD8α cDNAs from other vertebrates, Rhpr-CD8α (1800 bp) encodes a 219 amino acid open reading frame composed of a signal peptide, an extracellular IgSF V domain and a stalk/hinge region followed by a well-conserved transmembrane domain and cytoplasmic tail. Overall, the mature Rhpr-CD8α protein (201 aa) displays ~30% amino acid identity with mammalian CD8α including absolute conservation of cysteine residues involved in the IgSf V domain fold and dimerization of CD8αα and CD8αβ. One prominent feature is the absence of the LCK association motif (CXC) that is needed for achieving signal 1 in tetrapods. Both elasmobranch and teleost CD8α protein sequences possess a similar but distinctly different motif (CXH) in the cytoplasmic tail. The overall genomic structure of CD8α has been conserved during the course of vertebrate evolution both for the number of exons and phase of splicing. Finally, quantitative RTPCR demonstrated that elasmobranch CD8α is expressed in lymphoid-rich tissues similar to CD8 in other vertebrates. The results from this study indicate the existence of CD8 prior to the emergence of the gnathostomes (>450 MYA) while providing evidence that the canonical LCK association motif in mammals is likely a derived characteristic of tetrapod CD8α, suggesting potential differences for T-cell education and activation in the various gnathostomes.

  14. Quantitative and qualitative features of heterologous virus-vector-induced antigen-specific CD8+ T cells against Trypanosoma cruzi infection.

    PubMed

    Takayama, Eiji; Ono, Takeshi; Carnero, Elena; Umemoto, Saori; Yamaguchi, Yoko; Kanayama, Atsuhiro; Oguma, Takemi; Takashima, Yasuhiro; Tadakuma, Takushi; García-Sastre, Adolfo; Miyahira, Yasushi

    2010-11-01

    We studied some aspects of the quantitative and qualitative features of heterologous recombinant (re) virus-vector-induced, antigen-specific CD8(+) T cells against Trypanosoma cruzi. We used three different, highly attenuated re-viruses, i.e., influenza virus, adenovirus and vaccinia virus, which all expressed a single, T. cruzi antigen-derived CD8(+) T-cell epitope. The use of two out of three vectors or the triple virus-vector vaccination regimen not only confirmed that the re-vaccinia virus, which was placed last in order for sequential immunisation, was an effective booster for the CD8(+) T-cell immunity in terms of the number of antigen-specific CD8(+) T cells, but also demonstrated that (i) the majority of cells exhibit the effector memory (T(EM)) phenotype, (ii) robustly secrete IFN-γ, (iii) express higher intensity of the CD122 molecule and (iv) present protective activity against T. cruzi infection. In contrast, placing the re-influenza virus last in sequential immunisation had a detrimental effect on the quantitative and qualitative features of CD8(+) T cells. The triple virus-vector vaccination was more effective at inducing a stronger CD8(+) T-cell immunity than using two re-viruses. The different quantitative and qualitative features of CD8(+) T cells induced by different immunisation regimens support the notion that the refinement of the best choice of multiple virus-vector combinations is indispensable for the induction of a maximum number of CD8(+) T cells of high quality. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.

  15. Cytotoxic T lymphocytes and CD4 epitope mutations in the pre-core/core region of hepatitis B virus in chronic hepatitis B carriers in Northeast Iran.

    PubMed

    Zhand, Sareh; Tabarraei, Alijan; Nazari, Amineh; Moradi, Abdolvahab

    2017-07-01

    Hepatitis B virus (HBV) is vulnerable to many various mutations. Those within epitopes recognized by sensitized T cells may influence the re-emergence of the virus. This study was designed to investigate the mutation in immune epitope regions of HBV pre-core/core among chronic HBV patients of Golestan province, Northeast Iran. In 120 chronic HBV carriers, HBV DNA was extracted from blood plasma samples and PCR was done using specific primers. Direct sequencing and alignment of the pre-core/core region were applied using reference sequence from Gene Bank database (Accession Number AB033559). The study showed 27 inferred amino acid substitutions, 9 of which (33.3%) were in CD4 and 2 (7.4%) in cytotoxic T lymphocytes' (CTL) epitopes and 16 other mutations (59.2%) were observed in other regions. CTL escape mutations were not commonly observed in pre-core/core sequences of chronic HBV carriers in the locale of study. It can be concluded that most of the inferred amino acid substitutions occur in different immune epitopes other than CTL and CD4.

  16. CD4/CD8/Dendritic cell complexes in the spleen: CD8+ T cells can directly bind CD4+ T cells and modulate their response

    PubMed Central

    Barinov, Aleksandr; Galgano, Alessia; Krenn, Gerald; Tanchot, Corinne; Vasseur, Florence

    2017-01-01

    CD4+ T cell help to CD8+ T cell responses requires that CD4+ and CD8+ T cells interact with the same antigen presenting dendritic cell (Ag+DC), but it remains controversial whether helper signals are delivered indirectly through a licensed DC and/or involve direct CD4+/CD8+ T cell contacts and/or the formation of ternary complexes. We here describe the first in vivo imaging of the intact spleen, aiming to evaluate the first interactions between antigen-specific CD4+, CD8+ T cells and Ag+DCs. We show that in contrast to CD4+ T cells which form transient contacts with Ag+DC, CD8+ T cells form immediate stable contacts and activate the Ag+DC, acquire fragments of the DC membranes by trogocytosis, leading to their acquisition of some of the DC properties. They express MHC class II, and become able to present the specific Marilyn peptide to naïve Marilyn CD4+ T cells, inducing their extensive division. In vivo, these CD8+ T cells form direct stable contacts with motile naïve CD4+ T cells, recruiting them to Ag+DC binding and to the formation of ternary complexes, where CD4+ and CD8+ T cells interact with the DC and with one another. The presence of CD8+ T cells during in vivo immune responses leads to the early activation and up-regulation of multiple functions by CD4+ T lymphocytes. Thus, while CD4+ T cell help is important to CD8+ T cell responses, CD8+ T cells can interact directly with naïve CD4+ T cells impacting their recruitment and differentiation. PMID:28686740

  17. Parameters determining the efficacy of adoptive CD8 T-cell therapy of cytomegalovirus infection.

    PubMed

    Ebert, Stefan; Podlech, Jürgen; Gillert-Marien, Dorothea; Gergely, Kerstin M; Büttner, Julia K; Fink, Annette; Freitag, Kirsten; Thomas, Doris; Reddehase, Matthias J; Holtappels, Rafaela

    2012-11-01

    Reactivation of latent cytomegalovirus (CMV) in the transient state of immunodeficiency after hematopoietic cell transplantation (HCT) is the most frequent and severe viral complication endangering leukemia therapy success. By infecting the bone marrow (BM) stroma of the transplantation recipient, CMV can directly interfere with BM repopulation by the transplanted donor-derived hematopoietic cells and thus delay immune reconstitution of the recipient. Cytopathogenic virus spread in tissues can result in CMV disease with multiple organ manifestations of which interstitial pneumonia is the most feared. There exists a 'window of risk' between hematoablative treatment and reconstitution of antiviral immunity after HCT, whereby timely reconstitution of antiviral CD8 T cells is a recognized positive prognostic parameter for the control of reactivated CMV infection and prevention of CMV disease. Supplementation of endogenous reconstitution by adoptive cell transfer of 'ready-to-go' effector and/or memory virus epitope-specific CD8 T cells is a therapeutic option to bridge the 'window of risk.' Preclinical research in murine models of CMV disease has been pivotal by providing 'proof of concept' for a benefit from CD8 T-cell therapy of HCT-associated CMV disease (reviewed in Holtappels et al. Med Microbiol Immunol 197:125-134, 2008). Here, we give an update of our previous review with focus on parameters that determine the efficacy of adoptive immunotherapy of CMV infection by antiviral CD8 T cells in the murine model.

  18. Cell-autonomous CCL5 transcription by memory CD8 T cells is regulated by IL-4.

    PubMed

    Marçais, Antoine; Coupet, Charles-Antoine; Walzer, Thierry; Tomkowiak, Martine; Ghittoni, Raffaella; Marvel, Jacqueline

    2006-10-01

    Immunological memory is associated with the display of improved effector functions. The maintenance by CD8 memory cells of high levels of untranslated CCL5 mRNA allows these cells to immediately secrete this chemokine upon Ag stimulation. Untranslated mRNA storage is a newly described process supporting the immediate display of an effector function by memory lymphocytes. We have tested the capacity of different cytokines to regulate the memorization of CCL5 by memory CD8 T cells. We found that IL-4 treatment of murine CD8 T cells impairs immediate CCL5 secretion capacity by inhibiting CCL5 mRNA transcription through a STAT6-dependent pathway. The inhibition by IL-4 is reversible, as memory CD8 T cells reconstitute their CCL5 mRNA stores and reacquire their immediate CCL5 secretion capacity when IL-4 is withdrawn. This recovery is cell autonomous because it proceeds in culture medium in the absence of exogenous growth factors, suggesting that CCL5 expression by memory CD8 T cells is a default process. Overall, these results indicate that the expression of CCL5 is an intrinsic property acquired by memory CD8 T cells that is regulated by environmental factors.

  19. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes

    PubMed Central

    Jespersen, Martin Closter; Peters, Bjoern

    2017-01-01

    Abstract Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex task. Despite substantial effort, limited advancement has been achieved over the last decade in the accuracy of epitope prediction methods, especially for those that rely on the sequence of the antigen only. Here, we present BepiPred-2.0 (http://www.cbs.dtu.dk/services/BepiPred/), a web server for predicting B-cell epitopes from antigen sequences. BepiPred-2.0 is based on a random forest algorithm trained on epitopes annotated from antibody-antigen protein structures. This new method was found to outperform other available tools for sequence-based epitope prediction both on epitope data derived from solved 3D structures, and on a large collection of linear epitopes downloaded from the IEDB database. The method displays results in a user-friendly and informative way, both for computer-savvy and non-expert users. We believe that BepiPred-2.0 will be a valuable tool for the bioinformatics and immunology community. PMID:28472356

  20. Empty conformers of HLA-B preferentially bind CD8 and regulate CD8+ T cell function.

    PubMed

    Geng, Jie; Altman, John D; Krishnakumar, Sujatha; Raghavan, Malini

    2018-05-09

    When complexed with antigenic peptides, human leukocyte antigen (HLA) class I (HLA-I) molecules initiate CD8 + T cell responses via interaction with the T cell receptor (TCR) and co-receptor CD8. Peptides are generally critical for the stable cell surface expression of HLA-I molecules. However, for HLA-I alleles such as HLA-B*35:01, peptide-deficient (empty) heterodimers are thermostable and detectable on the cell surface. Additionally, peptide-deficient HLA-B*35:01 tetramers preferentially bind CD8 and to a majority of blood-derived CD8 + T cells via a CD8-dependent binding mode. Further functional studies reveal that peptide-deficient conformers of HLA-B*35:01 do not directly activate CD8 + T cells, but accumulate at the immunological synapse in antigen-induced responses, and enhance cognate peptide-induced cell adhesion and CD8 + T cell activation. Together, these findings indicate that HLA-I peptide occupancy influences CD8 binding affinity, and reveal a new set of regulators of CD8 + T cell activation, mediated by the binding of empty HLA-I to CD8. © 2018, Geng et al.

  1. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site

    PubMed Central

    Crooks, Ema T.; Tong, Tommy; Chakrabarti, Bimal; Narayan, Kristin; Georgiev, Ivelin S.; Menis, Sergey; Huang, Xiaoxing; Kulp, Daniel; Osawa, Keiko; Muranaka, Janelle; Stewart-Jones, Guillaume; Destefano, Joanne; O’Dell, Sijy; LaBranche, Celia; Robinson, James E.; Montefiori, David C.; McKee, Krisha; Du, Sean X.; Doria-Rose, Nicole; Kwong, Peter D.; Mascola, John R.; Zhu, Ping; Schief, William R.; Wyatt, Richard T.; Whalen, Robert G.; Binley, James M.

    2015-01-01

    Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative “glycan fence” that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine. PMID:26023780

  2. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site.

    PubMed

    Crooks, Ema T; Tong, Tommy; Chakrabarti, Bimal; Narayan, Kristin; Georgiev, Ivelin S; Menis, Sergey; Huang, Xiaoxing; Kulp, Daniel; Osawa, Keiko; Muranaka, Janelle; Stewart-Jones, Guillaume; Destefano, Joanne; O'Dell, Sijy; LaBranche, Celia; Robinson, James E; Montefiori, David C; McKee, Krisha; Du, Sean X; Doria-Rose, Nicole; Kwong, Peter D; Mascola, John R; Zhu, Ping; Schief, William R; Wyatt, Richard T; Whalen, Robert G; Binley, James M

    2015-05-01

    Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.

  3. Identification of epitopes on nonstructural protein 7 of porcine reproductive and respiratory syndrome virus recognized by monoclonal antibodies using phage-display technology.

    PubMed

    Wang, Heng; Liu, Rongchang; Zhang, Weidong; Sun, Lingshuang; Ning, Zhangyong; Ji, Fangxiao; Cui, Jin; Zhang, Guihong

    2017-08-01

    Nonstructural protein 7 (nsp7) of porcine reproductive and respiratory syndrome virus (PRRSV) is considered to be a suitable reagent for the development of serological diagnostic assays. It can be expressed as a soluble recombinant protein in Escherichia coli, and its antibody response may continue up to 202 days post-infection. Furthermore, the region encoded by nsp7 is highly homologous among various strains within the genotype, and the results of nsp7-based enzyme-linked immunosorbent assay (ELISA) showed high agreement with previous Idexx ELISA results. All these evidences suggest the existence of important epitopes on nsp7, though the characteristics of these epitopes remain unclear. In the present study, we prepared three monoclonal antibodies against nsp7 protein and used them to screen the epitope-distribution characteristics of PRRSV nsp7 protein by phage-display technology. We identified a linear epitope NAWGDEDRLN at amino acids 153-162 type II PRRSV nsp7β subunit. This newly defined epitope showed excellent reactivity with PRSSV-positive serum samples. These results further our understanding of the antigenic structure of nsp7 protein, and provide efficient reagents for PRRSV serological tests.

  4. Distinctive CD8+ T cell and MHC class I signatures in polycythemia vera patients.

    PubMed

    Cardoso, Elsa M; Esgalhado, André J; Patrão, Luís; Santos, Mónica; Neves, Vasco Pinto; Martinez, Jorge; Patto, Maria Assunção Vaz; Silva, Helena; Arosa, Fernando A

    2018-05-22

    Polycythemia vera (PV) is a myeloproliferative neoplasm characterized by overproduction of red blood cells. We have performed a comprehensive characterization of blood immune cells for expression of naïve and memory receptors as well as β 2 m-associated and β 2 m-free MHC class I heavy chains, also known as closed and open conformers, respectively, in PV patients and age-matched controls (CTR). We show that the peripheral CD3 + CD8 + T cell pool in PV patients is clearly divided into two discrete populations, a more granular CD3 + CD8 high T cell population enriched in effector-memory CD45RA + T cells (CD8 + TEMRA) when compared to CTR (P < 0.001), and a less granular CD3 + CD8 int T cell population that is completely absent in the CTR group (78 vs. 0%, P < 0.001) and is a mixture of naïve (CD8 + T N ) and CD8 + TEMRA cells expressing intermediate levels of CD28, i.e., CD3 + CD8 int CD28 int . While the percentage of CD3 + CD8 int TN cells correlated positively with the number of erythrocytes, the percentage of CD3 + CD8 int TEMRA correlated negatively with the number of platelets. Finally, we report that PV patients' lymphocytes and monocytes display lower levels of closed (W6/32 + ) MHC-I conformers at the cell surface while exhibiting increased amounts of open (HC-10 + ) MHC-I conformers. The implications of this distinctive immune signature are discussed.

  5. Eliciting Epitope-Specific CD8+ T Cell Response by Immunization with Microbial Protein Antigens Formulated with α-Galactosylceramide: Theory, Practice, and Protocols.

    PubMed

    Gilchuk, Pavlo; Knight, Frances C; Wilson, John T; Joyce, Sebastian

    2017-01-01

    CD8+ cytotoxic T lymphocytes confer protection against infectious diseases caused by viruses, bacteria, and parasites. Hence, significant efforts have been invested into devising ways to generate CD8+ T cell-targeted vaccines. Generation of microbe-free protein subunit vaccines requires a thorough knowledge of protective target antigens. Such antigens are proteolytically processed peptides presented by MHC class I molecules. To induce a robust antigen-specific CD8+ T cell response through vaccination, it is essential to formulate the antigen with an effective adjuvant. Here, we describe a versatile method for generating high-frequency antigen-specific CD8+ T cells through immunization of mice using the invariant natural killer T cell agonist α-galactosylceramide as the adjuvant.

  6. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response.

    PubMed

    Charles-Niño, Claudia; Pedroza-Roldan, Cesar; Viveros, Monica; Gevorkian, Goar; Manoutcharian, Karen

    2011-07-18

    The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. A novel vaccination strategy mediating the induction of lung-resident memory CD8 T cells confers heterosubtypic immunity against future pandemic influenza virus

    PubMed Central

    Lee, Yu-Na; Lee, Young-Tae; Kim, Min-Chul; Gewirtz, Andrew T.; Kang, Sang-Moo

    2016-01-01

    The currently used vaccine strategy to combat influenza A virus (IAV) aims to provide highly specific immunity to circulating seasonal IAV strains. However, the outbreak of 2009 influenza pandemic highlights the danger in this strategy. Here, we tested the hypothesis that universal vaccination that offers broader but weaker protection would result in cross protective T-cell responses after primary IAV infection, which would subsequently provide protective immunity against future pandemic strains. Specifically, we used tandem repeat M2e epitopes on virus-like particles (M2e5x VLP) that induced heterosubtypic immunity by eliciting antibodies to a conserved M2e epitope. M2e5x VLP was found to be superior to strain-specific current split vaccine in conferring heterosubtypic cross protection and in equipping the host with cross-protective lung-resident nucleoprotein-specific memory CD8+ T cell responses to a subsequent secondary infection with a new pandemic potential strain. Immune correlates for subsequent heterosubtypic immunity by M2e5x VLP vaccination were found to be virus-specific CD8+ T cells secreting IFN-γ and expressing lung-resident memory phenotypic markers CD69+ and CD103+ as well as M2e antibodies. Hence, vaccination with M2e5x VLP may be developable as a new strategy to combat future pandemic outbreaks. PMID:26864033

  8. Chimeric Rhinoviruses Displaying MPER Epitopes Elicit Anti-HIV Neutralizing Responses

    PubMed Central

    Yi, Guohua; Lapelosa, Mauro; Bradley, Rachel; Mariano, Thomas M.; Dietz, Denise Elsasser; Hughes, Scott; Wrin, Terri; Petropoulos, Chris; Gallicchio, Emilio; Levy, Ronald M.; Arnold, Eddy; Arnold, Gail Ferstandig

    2013-01-01

    Background The development of an effective AIDS vaccine has been a formidable task, but remains a critical necessity. The well conserved membrane-proximal external region (MPER) of the HIV-1 gp41 glycoprotein is one of the crucial targets for AIDS vaccine development, as it has the necessary attribute of being able to elicit antibodies capable of neutralizing diverse isolates of HIV. Methodology/Principle Findings Guided by X-ray crystallography, molecular modeling, combinatorial chemistry, and powerful selection techniques, we designed and produced six combinatorial libraries of chimeric human rhinoviruses (HRV) displaying the MPER epitopes corresponding to mAbs 2F5, 4E10, and/or Z13e1, connected to an immunogenic surface loop of HRV via linkers of varying lengths and sequences. Not all libraries led to viable chimeric viruses with the desired sequences, but the combinatorial approach allowed us to examine large numbers of MPER-displaying chimeras. Among the chimeras were five that elicited antibodies capable of significantly neutralizing HIV-1 pseudoviruses from at least three subtypes, in one case leading to neutralization of 10 pseudoviruses from all six subtypes tested. Conclusions Optimization of these chimeras or closely related chimeras could conceivably lead to useful components of an effective AIDS vaccine. While the MPER of HIV may not be immunodominant in natural infection by HIV-1, its presence in a vaccine cocktail could provide critical breadth of protection. PMID:24039745

  9. Epitope topography controls bioactivity in supramolecular nanofibers

    PubMed Central

    Sur, Shantanu; Tantakitti, Faifan; Matson, John B.; Stupp, Samuel I.

    2015-01-01

    Incorporating bioactivity into artificial scaffolds using peptide epitopes present in the extracellular matrix (ECM) is a well-known approach. A common strategy has involved epitopes that provide cells with attachment points and external cues through interaction with integrin receptors. Although a variety of bioactive sequences have been identified so far, less is known about their optimal display in a scaffold. We report here on the use of self-assembled peptide amphiphile (PA) nanofiber matrices to investigate the impact of spatial presentation of the fibronectin derived epitope RGDS on cell response. Using one, three, or five glycine residues, RGDS epitopes were systematically spaced out from the surface of the rigid nanofibers. We found that cell morphology was strongly affected by the separation of the epitope from the nanofiber surface, with the longest distance yielding the most cell-spreading, bundling of actin filaments, and a round-to-polygonal transformation of cell shape. Cell response to this type of epitope display was also accompanied with activated integrin-mediated signaling and formation of stronger adhesions between cells and substrate. Interestingly, unlike length, changing the molecular flexibility of the linker had minimal influence on cell behavior on the substrate for reasons that remain poorly understood. The use in this study of high persistence length nanofibers rather than common flexible polymers allows us to conclude that epitope topography at the nanoscale structure of a scaffold influences its bioactive properties independent of epitope density and mechanical properties. PMID:25745558

  10. Bordetella pertussis proteins dominating the major histocompatibility complex class II-presented epitope repertoire in human monocyte-derived dendritic cells.

    PubMed

    Stenger, Rachel M; Meiring, Hugo D; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A M; Boog, Claire J P; de Jong, Ad P J M; van Els, Cécile A C M

    2014-05-01

    Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4(+) T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4(+) T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies.

  11. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes.

    PubMed

    Jespersen, Martin Closter; Peters, Bjoern; Nielsen, Morten; Marcatili, Paolo

    2017-07-03

    Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex task. Despite substantial effort, limited advancement has been achieved over the last decade in the accuracy of epitope prediction methods, especially for those that rely on the sequence of the antigen only. Here, we present BepiPred-2.0 (http://www.cbs.dtu.dk/services/BepiPred/), a web server for predicting B-cell epitopes from antigen sequences. BepiPred-2.0 is based on a random forest algorithm trained on epitopes annotated from antibody-antigen protein structures. This new method was found to outperform other available tools for sequence-based epitope prediction both on epitope data derived from solved 3D structures, and on a large collection of linear epitopes downloaded from the IEDB database. The method displays results in a user-friendly and informative way, both for computer-savvy and non-expert users. We believe that BepiPred-2.0 will be a valuable tool for the bioinformatics and immunology community. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Multi-scale modeling of the CD8 immune response

    NASA Astrophysics Data System (ADS)

    Barbarroux, Loic; Michel, Philippe; Adimy, Mostafa; Crauste, Fabien

    2016-06-01

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  13. A novel CD4-CD8alpha+CD205+CD11b- murine spleen dendritic cell line: establishment, characterization and functional analysis in a model of vaccination to toxoplasmosis.

    PubMed

    Ruiz, Sophie; Beauvillain, Céline; Mévélec, Marie-Noëlle; Roingeard, Philippe; Breton, Pascal; Bout, Daniel; Dimier-Poisson, Isabelle

    2005-11-01

    Dendritic cells (DCs) play an essential role in the induction of immune responses to pathogen infections. Native DCs are difficult to obtain in large numbers and consequently the vast majority of DCs employed in all experiments are derived from bone marrow progenitors. In an attempt to solve this problem, we have established a novel CD8alpha(+) DC line (H-2(k)) from spleen, which we have named SRDC line, and which is easy to culture in vitro. These cells display similar morphology, phenotype and activity to CD4(-)CD8alpha(+)CD205(+)CD11b(-) DCs purified ex vivo. Toxoplasma gondii antigen was shown to be taken up by these cells and to increase class I and class II major histocompatibility complex (MHC), CD40, CD80 and CD86 surface expression. We report that vaccination with T. gondii antigen-pulsed SRDCs, which synthesize large amounts of interleukin-12, induced protective immune responses against this intracellular pathogen in syngeneic CBA/J mice. This protection was associated with strong cellular and humoral immune responses at systemic and intestinal levels. Spleen and mesenteric lymph node cell proliferations were correlated with a Th1/Th2-type response and a specific SRDC homing to spleen and intestine was observed. The SRDC or CD4(-)CD8alpha(+)CD205(+)CD11b(-) DC line can be expected to be a very useful tool for immunobiology studies of DC.

  14. Cutting edge: the relative distribution of T cells responding to chemically dominant or minor epitopes of lysozyme is not affected by CD40-CD40 ligand and B7-CD28-CTLA-4 costimulatory pathways.

    PubMed

    DiPaolo, Richard J; Unanue, Emil R

    2002-09-15

    We examined the frequencies and specificities of the CD4+ T cell responses to the protein hen egg white lysozyme in mice deficient in the CD40-CD40 ligand or B7-CD28 costimulatory pathways. The frequency of T cells was decreased by between 3- and 4-fold in CD40-/- mice, and 12-fold in B7-1/B7-2-/- mice, but surprisingly, the relative distribution of T cells responding to peptides that were presented at levels that differed by >250-fold was similar. We also examined the CD4 response after blocking the regulatory molecule CTLA-4 during immunization. We observed no difference in either the frequency or specificity of the CD4+ T cell response if CTLA-4 was blocking during priming. Thus, the T cell response was generated toward the constellation of chemically dominant and subdominant epitopes as a whole, and did not discriminate among them based on their relative abundance.

  15. Delayed Expansion and Contraction of CD8+ T Cell Response during Infection with Virulent Salmonella typhimurium1

    PubMed Central

    Luu, Rachel A.; Gurnani, Komal; Dudani, Renu; Kammara, Rajagopal; van Faassen, Henk; Sirard, Jean-Claude; Krishnan, Lakshmi; Sad, Subash

    2014-01-01

    Ag presentation to CD8+ T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (~7 days), resistant mice (129×1SvJ) harbor a chronic infection lasting ~60–90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8+ T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62LhighIL-7RαhighCD44high) CD8+ T cells. However, by day 14–21, majority of the primed CD8+ T cells display an effector phenotype (CD62LlowIL-7RαlowCD44high). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62LlowIL-7RαhighCD44high) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8+ T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8+ T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8+ T cell recognition, conferring a survival advantage to the pathogen. PMID:16849458

  16. Anomalies of the CD8+ T cell pool in haemochromatosis: HLA-A3-linked expansions of CD8+CD28- T cells.

    PubMed

    Arosa, F A; Oliveira, L; Porto, G; da Silva, B M; Kruijer, W; Veltman, J; de Sousa, M

    1997-03-01

    The present study consists of a phenotypic and functional characterization of peripheral blood T lymphocytes in a group of 21 patients with hereditary haemochromatosis (HH), an MHC class I-linked genetic disease resulting in iron overload, and a group of 30 healthy individuals, both HLA-phenotyped. The HH patients studied showed an increased percentage of CD8+ CD28- T cells with a corresponding reduction in the percentage of CD8+ CD28+ T cells in peripheral blood relative to healthy blood donors. No anomalies of CD28 expression were found in the CD4+ subset. The presence of the HLA-A3 antigen but not age accounted for these imbalances. Thus, an apparent failure of the CD8+ CD28+ T cell population 'to expand', coinciding with an 'expansion' of CD8+ CD28- T cells in peripheral blood of HLA-A3+ but not HLA-A3- HH patients was observed when compared with the respective HLA-A3-matched control group. A significantly higher percentage of HLA-DR+ but not CD45RO+ cells was also found within the peripheral CD8+ T cell subset in HH patients relative to controls. Phytohaemagglutinin (PHA) stimulation of peripheral blood mononuclear cells (PBMC) for 5 days showed: (i) that CD8+ CD28+ T cells both in controls and HH were able to expand in vitro; (ii) that CD8+ CD28- T cells decreased markedly after activation in controls but not in HH patients. Moreover, functional studies showed that CD8+ cytotoxic T lymphocytes (CTL) from HH patients exhibited a diminished cytotoxic activity (approx. two-fold) in standard 51Cr-release assays when compared with CD8+ CTL from healthy controls. The present results provide additional evidence for the existence of phenotypic and functional anomalies of the peripheral CD8+ T cell pool that may underlie the clinical heterogeneity of this iron overload disease. They are of particular relevance given the recent discovery of a novel mutated MHC class I-like gene in HH.

  17. CD8+T cells expressing both PD-1 and TIGIT but not CD226 are dysfunctional in acute myeloid leukemia (AML) patients.

    PubMed

    Wang, Mengjie; Bu, Jin; Zhou, Maohua; Sido, Jessica; Lin, Yu; Liu, Guanfang; Lin, Qiwen; Xu, Xiuzhang; Leavenworth, Jianmei W; Shen, Erxia

    2018-05-01

    Acute myeloid leukemia (AML) is one of the most common types of leukemia among adults with an overall poor prognosis and very limited treatment management. Immune checkpoint blockade of PD-1 alone or combined with other immune checkpoint blockade has gained impressive results in murine AML models by improving anti-leukemia CD8 + T cell function, which has greatly promoted the strategy to utilize combined immune checkpoint inhibitors to treat AML patients. However, the expression profiles of these immune checkpoint receptors, such as co-inhibitory receptors PD-1 and TIGIT and co-stimulatory receptor CD226, in T cells from AML patients have not been clearly defined. Here we have defined subsets of CD8 + and CD4 + T cells in the peripheral blood (PB) from newly diagnosed AML patients and healthy controls (HCs). We have observed increased frequencies of PD-1- and TIGIT- expressing CD8 + T cells but decreased occurrence of CD226-expressing CD8 + T cells in AML patients. Further analysis of these CD8 + T cells revealed a unique CD8 + T cell subset that expressed PD-1 and TIGIT but displayed lower levels of CD226 was associated with failure to achieve remission after induction chemotherapy and FLT3-ITD mutations which predict poor clinical prognosis in AML patients. Importantly, these PD-1 + TIGIT + CD226 - CD8 + T cells are dysfunctional with lower expression of intracellular IFN-γ and TNF-α than their counterparts in HCs. Therefore, our studies revealed that an increased frequency of a unique CD8 + T cell subset, PD-1 + TIGIT + CD226 - CD8 + T cells, is associated with CD8 + T cell dysfunction and poor clinical prognosis of AML patients, which may reveal critical diagnostic or prognostic biomarkers and direct more efficient therapeutic strategies. Copyright © 2017. Published by Elsevier Inc.

  18. Expansions of CD8+CD28- and CD8+TcRVbeta5.2+ T cells in peripheral blood of heavy alcohol drinkers.

    PubMed

    Arosa, F A; Porto, G; Cabeda, J M; Lacerda, R; Resende, D; Cruz, E; Cardoso, C; Fonseca, M; Simões, C; Rodrigues, P; Bravo, F; Oliveira, J C; Alves, H; Fraga, J; Justiça, B; de Sousa, M

    2000-04-01

    Despite heavy alcohol consumption, only a low percentage of heavy drinkers develop liver disease. Imbalances in T-cell subsets and iron metabolism parameters are common findings in heavy drinkers, yet the possible role played by discrete T-lymphocyte subsets under heavy alcohol consumption remains unclear. To gain new insights into the possible role played by T lymphocytes during alcohol consumption, characterization of CD28 expression and TcR repertoire in peripheral blood CD4+ and CD8+ T cells by two and three-color flow cytometry was performed. A group of heavy alcohol drinkers (AHD, n = 71) and a group of age-matched controls (n = 81), both HLA-phenotyped and HFE-genotyped, constituted the groups under study. Marked expansions of CD28- T cells within the CD8+ but not the CD4+ T-cell pool were observed in AHD compared with controls. These CD8+CD28- expansions were paralleled by expansions of CD8+ T cells bearing specific TcR Valpha/beta chains, namely VP5.2. Moreover, AHD, but not controls, carrying the H63D mutation in the HFE gene showed significantly higher percentages of CD28- T cells within the CD8+ T-cell pool than AHD carrying the normal HFE gene. Finally, high numbers of CD8+CD28- T cells in AHD were associated with lower levels of the liver-related enzymes ALT and GGT. This study showed that under active ethanol consumption, expansions of discrete CD8+ T-cell subsets occur within the CD8+ T-cell pool, that molecules of the MHC-class I locus seem to influence the extent of the expansions, and that high numbers of CD8+CD28- T cells are associated with low levels of liver enzymes in AHD.

  19. Designing Probes for Immunodiagnostics: Structural Insights into an Epitope Targeting Burkholderia Infections.

    PubMed

    Capelli, Riccardo; Matterazzo, Elena; Amabili, Marco; Peri, Claudio; Gori, Alessandro; Gagni, Paola; Chiari, Marcella; Lertmemongkolchai, Ganjana; Cretich, Marina; Bolognesi, Martino; Colombo, Giorgio; Gourlay, Louise J

    2017-10-13

    Structure-based epitope prediction drives the design of diagnostic peptidic probes to reveal specific antibodies elicited in response to infections. We previously identified a highly immunoreactive epitope from the peptidoglycan-associated lipoprotein (Pal) antigen from Burkholderia pseudomallei, which could also diagnose Burkholderia cepacia infections. Here, considering the high phylogenetic conservation within Burkholderia species, we ask whether cross-reactivity can be reciprocally displayed by the synthetic epitope from B. cenocepacia. We perform comparative analyses of the conformational preferences and diagnostic performances of the corresponding epitopes from the two Burkholderia species when presented in the context of the full-length proteins or as isolated peptides. The effects of conformation on the diagnostic potential and cross-reactivity of Pal peptide epitopes are rationalized on the basis of the 1.8 Å crystal structure of B. cenocepacia Pal and through computational analyses. Our results are discussed in the context of designing new diagnostic molecules for the early detection of infectious diseases.

  20. Aryl hydrocarbon receptor activation impairs the priming but not the recall of influenza virus-specific CD8+ T cells in the lung.

    PubMed

    Lawrence, B Paige; Roberts, Alan D; Neumiller, Joshua J; Cundiff, Jennifer A; Woodland, David L

    2006-11-01

    The response of CD8+ T cells to influenza virus is very sensitive to modulation by aryl hydrocarbon receptor (AhR) agonists; however, the mechanism underlying AhR-mediated alterations in CD8+ T cell function remains unclear. Moreover, very little is known regarding how AhR activation affects anamnestic CD8+ T cell responses. In this study, we analyzed how AhR activation by the pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the in vivo distribution and frequency of CD8+ T cells specific for three different influenza A virus epitopes during and after the resolution of a primary infection. We then determined the effects of TCDD on the expansion of virus-specific memory CD8+ T cells during recall challenge. Adoptive transfer of AhR-null CD8+ T cells into congenic AhR(+/+) recipients, and the generation of CD45.2AhR(-/-)-->CD45.1AhR(+/+) chimeric mice demonstrate that AhR-regulated events within hemopoietic cells, but not directly within CD8+ T cells, underlie suppressed expansion of virus-specific CD8+ T cells during primary infection. Using a dual-adoptive transfer approach, we directly compared the responsiveness of virus-specific memory CD8+ T cells created in the presence or absence of TCDD, which revealed that despite profound suppression of the primary response to influenza virus, the recall response of virus-specific CD8+ T cells that form in the presence of TCDD is only mildly impaired. Thus, the delayed kinetics of the recall response in TCDD-treated mice reflects the fact that there are fewer memory cells at the time of reinfection rather than an inherent defect in the responsive capacity of virus-specific memory CD8+ cells.

  1. Immunogenicity of Recombinant Classic Swine Fever Virus CD8+ T Lymphocyte Epitope and Porcine Parvovirus VP2 Antigen Coexpressed by Lactobacillus casei in Swine via Oral Vaccination ▿

    PubMed Central

    Xu, Yigang; Cui, Lichun; Tian, Changyong; Zhang, Guocai; Huo, Guicheng; Tang, Lijie; Li, Yijing

    2011-01-01

    Classical swine fever virus (CSFV) and porcine parvovirus (PPV) are highly contagious pathogens, resulting in enormous economic losses in pig industries worldwide. Because vaccines play an important role in disease control, researchers are seeking improved vaccines that could induce antiviral immune responses against CSFV and PPV at the mucosal and systemic levels simultaneously. In this study, a genetically engineered Lactobacillus strain coexpressing the CSFV-specific cytotoxic T lymphocyte (CTL) epitope 290 and the VP2 antigen of PPV was developed, and its immunopotentiating capacity as an oral vaccine in pigs was analyzed. The data demonstrated that in the absence of any adjuvant, the recombinant Lactobacillus strain can efficiently stimulate mucosal and systemic CSFV-specific CD8+ CTL responses to protect pigs against CSFV challenge. Moreover, anti-PPV-VP2 serum IgG and mucosal IgA were induced in pigs immunized orally with the recombinant Lactobacillus strain, showing a neutralizing effect on PPV infection. The results suggest that the recombinant Lactobacillus microecological agent may be a valuable component of a strategy for development of a vaccine against CSFV and PPV. PMID:21940406

  2. Long term persistence of herpes simplex virus-specific CD8+ CTL in persons with frequently recurring genital herpes.

    PubMed

    Posavad, C M; Huang, M L; Barcy, S; Koelle, D M; Corey, L

    2000-07-15

    Herpes simplex virus (HSV) establishes a lifelong infection in humans. Reactivation of latent virus occurs intermittently so that the immune system is frequently exposed to viral Ag, providing an opportunity to evaluate memory T cells to a persistent human pathogen. We studied the persistence of genital herpes lesion-derived HSV-specific CD8+ CTL from three immunocompetent individuals with frequently recurring genital HSV-2 infection. All CTL clones were HSV-2 type specific and only one to three unique clonotypes were identified from any single biopsy specimen. The TCRBV genes utilized by these clonotypes were sequenced, and clonotype-specific probes were used to longitudinally track these clonotypes in PBMC and genital lesions. CTL clonotypes were consistently detected in PBMC and lesions for at least 2 and up to 7 years, and identical clonotypes infiltrated herpes lesions spaced as long as 7.5 years apart. Moreover, these clones were functionally lytic in vivo over these time periods. Additionally, CTL clones killed target cells infected with autologous viral isolates obtained 6.5 years after CTL clones were established, suggesting that selective pressure by these CTL did not result in the mutation of CTL epitopes. Thus, HSV recurs in the face of persistent CD8+ CTL with no evidence of clonal exhaustion or mutation of CTL epitopes as mechanisms of viral persistence.

  3. IL-15 induces CD8+ T cells to acquire functional NK receptors capable of modulating cytotoxicity and cytokine secretion.

    PubMed

    Correia, Margareta P; Costa, Alexandra V; Uhrberg, Markus; Cardoso, Elsa M; Arosa, Fernando A

    2011-05-01

    During the last years several authors have described a small population of CD8+ T cells expressing NK receptors (NKRs). Although their origin remains largely unknown, we have recently demonstrated that IL-15 is capable of inducing NKR expression in purified human CD8+CD56- T cells. In this study we show that IL-15-driven NKR induction in CD8+ T cells was linked with CD56 de novo acquisition, consistent with an effector-memory phenotype, increased anti-apoptotic levels, high granzyme B/perforin expression and with the ability of displaying in vitro NK-like cytotoxicity. Interestingly, dissection of NKR functional outcome in IL-15-cultured CD8+ T cells revealed: (i) that NKG2D cross-linking was able per se to upregulate degranulation levels and (ii) that KIR and NKG2A cross-linking upregulated secretion of cytokines such as IFN-γ, TNF-α, IL-1β and IL-10. These results suggest that IL-15 is capable of differentiating CD8+ T cells into NK-like T cells displaying a regulatory phenotype. Copyright © 2010 Elsevier GmbH. All rights reserved.

  4. Theileria parva antigens recognized by CD8+ T cells show varying degrees of diversity in buffalo-derived infected cell lines.

    PubMed

    Sitt, Tatjana; Pelle, Roger; Chepkwony, Maurine; Morrison, W Ivan; Toye, Philip

    2018-05-06

    The extent of sequence diversity among the genes encoding 10 antigens (Tp1-10) known to be recognized by CD8+ T lymphocytes from cattle immune to Theileria parva was analysed. The sequences were derived from parasites in 23 buffalo-derived cell lines, three cattle-derived isolates and one cloned cell line obtained from a buffalo-derived stabilate. The results revealed substantial variation among the antigens through sequence diversity. The greatest nucleotide and amino acid diversity were observed in Tp1, Tp2 and Tp9. Tp5 and Tp7 showed the least amount of allelic diversity, and Tp5, Tp6 and Tp7 had the lowest levels of protein diversity. Tp6 was the most conserved protein; only a single non-synonymous substitution was found in all obtained sequences. The ratio of non-synonymous: synonymous substitutions varied from 0.84 (Tp1) to 0.04 (Tp6). Apart from Tp2 and Tp9, we observed no variation in the other defined CD8+ T cell epitopes (Tp4, 5, 7 and 8), indicating that epitope variation is not a universal feature of T. parva antigens. In addition to providing markers that can be used to examine the diversity in T. parva populations, the results highlight the potential for using conserved antigens to develop vaccines that provide broad protection against T. parva.

  5. Characterization and functional analyses of a novel chicken CD8a variant X1 (CD8a1)

    USDA-ARS?s Scientific Manuscript database

    We provide the first description of cloning, as well as structural and functional analysis of a novel variant in the chicken CD8alpha family, termed the CD8-alpha X1 (CD8alpha1) gene. Multiple alignment of CD8alpha1 with known CD8alpha and beta sequences of other species revealed relatively low con...

  6. Identification of conserved and HLA-A*2402-restricted epitopes in Dengue virus serotype 2.

    PubMed

    Duan, Zhi-Liang; Liu, Hui-Fang; Huang, Xi; Wang, Si-Na; Yang, Jin-Lin; Chen, Xin-Yu; Li, De-Zhou; Zhong, Xiao-Zhi; Chen, Bo-Kun; Wen, Jin-Sheng

    2015-01-22

    In this study, we set out to identify dengue virus serotype 2 (DENV-2)-specific HLA-A*2402-restricted epitopes and determine the characteristics of T cells generated to these epitopes. We screened the full-length amino-acid sequence of DENV-2 to find potential epitopes using the SYFPEITHI algorithm. Twelve putative HLA-A*2402-binding peptides conserved in hundreds of DENV-2 strains were synthesized, and the HLA restriction of peptides was tested in HLA-A*2402 transgenic mice. Nine peptides (NS4b(228-237), NS2a(73-81), E(298-306), M(141-149), NS4a(96-105), NS4b(159-168), NS5(475-484), NS1(162-171), and NS5(611-620)) induced high levels of peptide-specific IFN-γ-secreting cells in HLA-A*2402 transgenic mice. Apart from IFN-γ, NS4b(228-237-), NS2a(73-81-) and E(298-306)-specific CD8(+) cells produced TNF-α and IL-6 simultaneously, whereas M(141-149-) and NS5(475-484-) CD8(+) cells produced only IL-6. Moreover, splenic mononuclear cells (SMCs) efficiently recognized and killed peptide-pulsed splenocytes. Furthermore, each of nine peptides could be recognized by splenocytes from DENV-2-infected HLA-A*2402 transgenic mice. The SMCs from HLA-A*2402 transgenic mice immunized with nine immunogenic peptides efficiently killed DENV-2-infected splenic monocytes. The present identified epitopes have the potential to be new diagnostic tools for characterization of T-cell immunity in DENV infection and may serve as part of a universal epitope-based vaccine. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Bordetella pertussis Proteins Dominating the Major Histocompatibility Complex Class II-Presented Epitope Repertoire in Human Monocyte-Derived Dendritic Cells

    PubMed Central

    Stenger, Rachel M.; Meiring, Hugo D.; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A. M.; Boog, Claire J. P.; de Jong, Ad P. J. M.

    2014-01-01

    Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4+ T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4+ T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies. PMID:24599530

  8. Multi-scale modeling of the CD8 immune response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbarroux, Loic, E-mail: loic.barbarroux@doctorant.ec-lyon.fr; Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully; Michel, Philippe, E-mail: philippe.michel@ec-lyon.fr

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself inmore » case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.« less

  9. Anomalies of the CD8+ T cell pool in haemochromatosis: HLA-A3-linked expansions of CD8+CD28− T cells

    PubMed Central

    AROSA, F A; OLIVEIRA, L; PORTO, G; DA SILVA, B M; KRUIJER, W; VELTMAN, J; DE SOUSA, M

    1997-01-01

    The present study consists of a phenotypic and functional characterization of peripheral blood T lymphocytes in a group of 21 patients with hereditary haemochromatosis (HH), an MHC class I-linked genetic disease resulting in iron overload, and a group of 30 healthy individuals, both HLA-phenotyped. The HH patients studied showed an increased percentage of CD8+ CD28− T cells with a corresponding reduction in the percentage of CD8+ CD28+ T cells in peripheral blood relative to healthy blood donors. No anomalies of CD28 expression were found in the CD4+ subset. The presence of the HLA-A3 antigen but not age accounted for these imbalances. Thus, an apparent failure of the CD8+ CD28+ T cell population ‘to expand’, coinciding with an ‘expansion’ of CD8+ CD28− T cells in peripheral blood of HLA-A3+ but not HLA-A3− HH patients was observed when compared with the respective HLA-A3-matched control group. A significantly higher percentage of HLA-DR+ but not CD45RO+ cells was also found within the peripheral CD8+ T cell subset in HH patients relative to controls. Phytohaemagglutinin (PHA) stimulation of peripheral blood mononuclear cells (PBMC) for 5 days showed: (i) that CD8+ CD28+ T cells both in controls and HH were able to expand in vitro; (ii) that CD8+ CD28− T cells decreased markedly after activation in controls but not in HH patients. Moreover, functional studies showed that CD8+ cytotoxic T lymphocytes (CTL) from HH patients exhibited a diminished cytotoxic activity (approx. two-fold) in standard 51Cr-release assays when compared with CD8+ CTL from healthy controls. The present results provide additional evidence for the existence of phenotypic and functional anomalies of the peripheral CD8+ T cell pool that may underlie the clinical heterogeneity of this iron overload disease. They are of particular relevance given the recent discovery of a novel mutated MHC class I-like gene in HH. PMID:9067531

  10. A gene expression signature that correlates with CD8+T cell expansion in acute Epstein Barr virus infection1

    PubMed Central

    Greenough, Thomas C.; Straubhaar, Juerg R.; Kamga, Larisa; Weiss, Eric R.; Brody, Robin M.; McManus, Margaret M.; Lambrecht, Linda K.; Somasundaran, Mohan; Luzuriaga, Katherine F.

    2015-01-01

    Virus specific CD8+ T cells expand dramatically during acute Epstein Barr virus (EBV) infection, and their persistence is important for lifelong control of EBV-related disease. To better define the generation and maintenance of these effective CD8+ T cell responses, we used microarrays to characterize gene expression in total and EBV-specific CD8+ T cells isolated from the peripheral blood of ten individuals followed from acute infectious mononucleosis (AIM) into convalescence (CONV). In total CD8+ T cells, differential expression of genes in AIM and CONV was most pronounced among those encoding proteins important in T cell activation/differentiation, cell division/metabolism, chemokines/cytokines and receptors, signaling and transcription factors (TF), immune effector functions, and negative regulators. Within these categories, we identified 28 genes that correlated with CD8+ T cell expansion in response to an acute EBV infection. In EBV-specific CD8+ T cells, we identified 33 genes that were differentially expressed in AIM and CONV. Two important TF, T-bet and Eomesodermin (Eomes), were upregulated and maintained at similar levels in both AIM and CONV; by contrast, protein expression declined from AIM to CONV. Expression of these TF varied among cells with different epitope specificities. Altogether, gene and protein expression patterns suggest that a large proportion, if not a majority of CD8+ T cells in AIM are virus-specific, activated, dividing, and primed to exert effector activities. High expression of T-bet and Eomes may help to maintain effector mechanisms in activated cells, and to enable proliferation and transition to earlier differentiation states in CONV. PMID:26416268

  11. Sequential CD4-Coreceptor Interactions in Human Immunodeficiency Virus Type 1 Env Function: Soluble CD4 Activates Env for Coreceptor-Dependent Fusion and Reveals Blocking Activities of Antibodies against Cryptic Conserved Epitopes on gp120

    PubMed Central

    Salzwedel, Karl; Smith, Erica D.; Dey, Barna; Berger, Edward A.

    2000-01-01

    We devised an experimental system to examine sequential events by which the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) interacts with CD4 and coreceptor to induce membrane fusion. Recombinant soluble CD4 (sCD4) activated fusion between effector cells expressing Env and target cells expressing coreceptor (CCR5 or CXCR4) but lacking CD4. sCD4-activated fusion was dose dependent, occurred comparably with two- and four-domain proteins, and demonstrated Env-coreceptor specificities parallel to those reported in conventional fusion and infectivity systems. Fusion activation occurred upon sCD4 preincubation and washing of the Env-expressing effector cells but not the coreceptor-bearing target cells, thereby demonstrating that sCD4 exerts its effects by acting on Env. These findings provide direct functional evidence for a sequential two-step model of Env-receptor interactions, whereby gp120 binds first to CD4 and becomes activated for subsequent functional interaction with coreceptor, leading to membrane fusion. We used the sCD4-activated system to explore neutralization by the anti-gp120 human monoclonal antibodies 17b and 48d. These antibodies reportedly bind conserved CD4-induced epitopes involved in coreceptor interactions but neutralize HIV-1 infection only weakly. We found that 17b and 48d had minimal effects in the standard cell fusion system using target cells expressing both CD4 and coreceptor but potently blocked sCD4-activated fusion with target cells expressing coreceptor alone. Both antibodies strongly inhibited sCD4-activated fusion by Envs from genetically diverse HIV-1 isolates. Thus, the sCD4-activated system reveals conserved Env-blocking epitopes that are masked in native Env and hence not readily detected by conventional systems. PMID:10590121

  12. The Closely Related CD103+ Dendritic Cells (DCs) and Lymphoid-Resident CD8+ DCs Differ in Their Inflammatory Functions

    PubMed Central

    Jiao, Zhijun; Bedoui, Sammy; Brady, Jamie L.; Walter, Anne; Chopin, Michael; Carrington, Emma M.; Sutherland, Robyn M.; Nutt, Stephen L.; Zhang, Yuxia; Ko, Hyun-Ja; Wu, Li

    2014-01-01

    Migratory CD103+ and lymphoid-resident CD8+ dendritic cells (DCs) share many attributes, such as dependence on the same transcription factors, cross-presenting ability and expression of certain surface molecules, such that it has been proposed they belong to a common sub-lineage. The functional diversity of the two DC types is nevertheless incompletely understood. Here we reveal that upon skin infection with herpes simplex virus, migratory CD103+ DCs from draining lymph nodes were more potent at inducing Th17 cytokine production by CD4+ T cells than CD8+ DCs. This superior capacity to drive Th17 responses was also evident in CD103+ DCs from uninfected mice. Their differential potency to induce Th17 differentiation was reflected by higher production of IL-1β and IL-6 by CD103+ DCs compared with CD8+ DCs upon stimulation. The two types of DCs from isolated lymph nodes also differ in expression of certain pattern recognition receptors. Furthermore, elevated levels of GM-CSF, typical of those found in inflammation, substantially increased the pool size of CD103+ DCs in lymph nodes and skin. We argue that varied levels of GM-CSF may explain the contrasting reports regarding the positive role of GM-CSF in regulating development of CD103+ DCs. Together, we find that these two developmentally closely-related DC subsets display functional differences and that GM-CSF has differential effect on the two types of DCs. PMID:24637385

  13. Postthymic maturation influences the CD8 T cell response to antigen.

    PubMed

    Makaroff, Lydia E; Hendricks, Deborah W; Niec, Rachel E; Fink, Pamela J

    2009-03-24

    Complete T cell development requires postthymic maturation, and we investigated the influence of this ontological period on the CD8 T cell response to infection by comparing responses of mature CD8 T cells with those of recent thymic emigrants (RTEs). When activated with a noninflammatory stimulus or a bacterial or viral pathogen, CD8 RTEs generated a lower proportion of cytokine-producing effector cells and long-lived memory precursors compared with their mature counterparts. Although peripheral T cell maturation is complete within several weeks after thymic egress, RTE-derived memory cells continued to express inappropriate levels of memory cell markers and display an altered pattern of cytokine production, even 8 weeks after infection. When rechallenged, RTE-derived memory cells generated secondary effector cells that were phenotypically and functionally equivalent to those generated by their mature counterparts. The defects at the effector and memory stages were not associated with differences in the expression of T cell receptor-, costimulation-, or activation-associated cell surface markers yet were associated with lower Ly6C expression levels at the effector stage. This work demonstrates that the stage of postthymic maturation influences cell fate decisions and cytokine profiles of stimulated CD8 T cells, with repercussions that are apparent long after cells have progressed from the RTE compartment.

  14. Recombinant Yellow Fever Viruses Elicit CD8+ T Cell Responses and Protective Immunity against Trypanosoma cruzi

    PubMed Central

    Nogueira, Raquel Tayar; Nogueira, Alanderson Rocha; Pereira, Mirian Claudia Souza; Rodrigues, Maurício Martins; Neves, Patrícia Cristina da Costa; Galler, Ricardo; Bonaldo, Myrna Cristina

    2013-01-01

    Chagas’ disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF) 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2). The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc) was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ) producing-cells against the YF virus. Also, it was able to prime a CD8+ T cell directed against the transgenic T. cruzi epitope (TEWETGQI) which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8+ cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general. PMID:23527169

  15. Recombinant yellow fever viruses elicit CD8+ T cell responses and protective immunity against Trypanosoma cruzi.

    PubMed

    Nogueira, Raquel Tayar; Nogueira, Alanderson Rocha; Pereira, Mirian Claudia Souza; Rodrigues, Maurício Martins; Neves, Patrícia Cristina da Costa; Galler, Ricardo; Bonaldo, Myrna Cristina

    2013-01-01

    Chagas' disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF) 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2). The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc) was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ) producing-cells against the YF virus. Also, it was able to prime a CD8(+) T cell directed against the transgenic T. cruzi epitope (TEWETGQI) which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8(+) cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general.

  16. A novel Minimalist Cell-Free MHC Class II Antigen Processing System Identifies Immunodominant Epitopes

    PubMed Central

    Hartman, Isamu Z.; Kim, AeRyon; Cotter, Robert J.; Walter, Kimberly; Dalai, Sarat K.; Boronina, Tatiana; Griffith, Wendell; Schwenk, Robert; Lanar, David E.; Krzych, Urszula; Cole, Robert N.; Sadegh-Nasseri, Scheherazade

    2010-01-01

    Immunodominance is defined as restricted responsiveness of T cells to a few selected epitopes from complex antigens. Strategies currently used for elucidating CD4+ T cell epitopes are inadequate. To understand the mechanism of epitope selection for helper T cells, we established a cell-free antigen processing system composed of defined proteins: MHC class II, cathepsins, and HLA-DM. Our minimalist system successfully identified the physiologically selected immunodominant epitopes of model antigens, HA1 from influenza virus (A/Texas/1/77) and type II collagen. When applied for de novo epitope identification to a malaria antigen, or HA1 from H5N1 virus (Avian Flu), the system selected a single epitope from each protein that were confirmed to be immunodominant by their capacity to activate CD4+ T cells in HLA-DR1 positive human volunteers or transgenic mice immunized with the corresponding proteins. Thus, we provide a powerful new tool for the identification of physiologically relevant helper T cell epitopes from antigens. PMID:21037588

  17. CD8+ TCR repertoire formation is guided primarily by the peptide component of the antigenic complex.

    PubMed

    Koning, Dan; Costa, Ana I; Hoof, Ilka; Miles, John J; Nanlohy, Nening M; Ladell, Kristin; Matthews, Katherine K; Venturi, Vanessa; Schellens, Ingrid M M; Borghans, Jose A M; Kesmir, Can; Price, David A; van Baarle, Debbie

    2013-02-01

    CD8(+) T cells recognize infected or dysregulated cells via the clonotypically expressed αβ TCR, which engages Ag in the form of peptide bound to MHC class I (MHC I) on the target cell surface. Previous studies have indicated that a diverse Ag-specific TCR repertoire can be beneficial to the host, yet the determinants of clonotypic diversity are poorly defined. To better understand the factors that govern TCR repertoire formation, we conducted a comprehensive clonotypic analysis of CD8(+) T cell populations directed against epitopes derived from EBV and CMV. Neither pathogen source nor the restricting MHC I molecule were linked with TCR diversity; indeed, both HLA-A and HLA-B molecules were observed to interact with an overlapping repertoire of expressed TRBV genes. Peptide specificity, however, markedly impacted TCR diversity. In addition, distinct peptides sharing HLA restriction and viral origin mobilized TCR repertoires with distinct patterns of TRBV gene usage. Notably, no relationship was observed between immunodominance and TCR diversity. These findings provide new insights into the forces that shape the Ag-specific TCR repertoire in vivo and highlight a determinative role for the peptide component of the peptide-MHC I complex on the molecular frontline of CD8(+) T cell-mediated immune surveillance.

  18. Peripheral self-reactivity regulates antigen-specific CD8 T-cell responses and cell division under physiological conditions.

    PubMed

    Swee, Lee Kim; Tan, Zhen Wei; Sanecka, Anna; Yoshida, Nagisa; Patel, Harshil; Grotenbreg, Gijsbert; Frickel, Eva-Maria; Ploegh, Hidde L

    2016-11-01

    T-cell identity is established by the expression of a clonotypic T-cell receptor (TCR), generated by somatic rearrangement of TCRα and β genes. The properties of the TCR determine both the degree of self-reactivity and the repertoire of antigens that can be recognized. For CD8 T cells, the relationship between TCR identity-hence reactivity to self-and effector function(s) remains to be fully understood and has rarely been explored outside of the H-2 b haplotype. We measured the affinity of three structurally distinct CD8 T-cell-derived TCRs that recognize the identical H-2 L d -restricted epitope, derived from the Rop7 protein of Toxoplasma gondii We used CD8 T cells obtained from mice generated by somatic cell nuclear transfer as the closest approximation of primary T cells with physiological TCR rearrangements and TCR expression levels. First, we demonstrate the common occurrence of secondary rearrangements in endogenously rearranged loci. Furthermore, we characterized and compared the response of Rop7-specific CD8 T-cell clones upon Toxoplasma gondii infection as well as effector function and TCR signalling upon antigenic stimulation in vitro Antigen-independent TCR cross-linking in vitro uncovered profound intrinsic differences in the effector functions between T-cell clones. Finally, by assessing the degree of self-reactivity and comparing the transcriptomes of naive Rop7 CD8 T cells, we show that lower self-reactivity correlates with lower effector capacity, whereas higher self-reactivity is associated with enhanced effector function as well as cell cycle entry under physiological conditions. Altogether, our data show that potential effector functions and basal proliferation of CD8 T cells are set by self-reactivity thresholds. © 2016 The Authors.

  19. Association between CD8 T-cell subsets and CD4/CD8 ratio with HS-CRP level in HIV-infected patients on antiretroviral therapy

    NASA Astrophysics Data System (ADS)

    Isabela, S.; Nugroho, A.; Harijanto, P. N.

    2018-03-01

    Due to improved access and adherence to antiretroviral therapy (ART), most HIV-infected persons worldwide are predicted to live longer. Nowadays the cause of death for most HIV-infected persons has changed to serious non-AIDS events (SNAEs) which is due to low-grade viremia. HIV patients with ART who had undergone CD4 cell count above 500/uL and there is an increase in hs-CRP despite an undetectable viral load. Some conditions CD8 cells count do not decrease with CD4 cells repairs. We researched in Prof Kandou General Hospital with a total sample of 35 HIV patients who had received ART with the level of CD4>350/uL. CD8 levels, CD4/CD8 ratio, and hs-CRP were assessed. This research is analytic descriptive with cross-sectional study design and analysis uses Spearman correlation. The mean CD8 during the study was 1291.8 (IQR 319-2610cells/uL), the mean ratio of CD4:CD8 was 0.57 (IQR 0.16-1.24) and median hs-CRP is 2.18 (IQR 0.3-6.6mg/dL). There was a significant positive correlation between CD8 and increased hs-CRP (r=0.369, p<0.05). There was a negative correlation between CD4/CD8 ratio and hs-CRP (r=-0.370, p<0.05).

  20. The Length Distribution of Class I-Restricted T Cell Epitopes Is Determined by Both Peptide Supply and MHC Allele-Specific Binding Preference.

    PubMed

    Trolle, Thomas; McMurtrey, Curtis P; Sidney, John; Bardet, Wilfried; Osborn, Sean C; Kaever, Thomas; Sette, Alessandro; Hildebrand, William H; Nielsen, Morten; Peters, Bjoern

    2016-02-15

    HLA class I-binding predictions are widely used to identify candidate peptide targets of human CD8(+) T cell responses. Many such approaches focus exclusively on a limited range of peptide lengths, typically 9 aa and sometimes 9-10 aa, despite multiple examples of dominant epitopes of other lengths. In this study, we examined whether epitope predictions can be improved by incorporating the natural length distribution of HLA class I ligands. We found that, although different HLA alleles have diverse length-binding preferences, the length profiles of ligands that are naturally presented by these alleles are much more homogeneous. We hypothesized that this is due to a defined length profile of peptides available for HLA binding in the endoplasmic reticulum. Based on this, we created a model of HLA allele-specific ligand length profiles and demonstrate how this model, in combination with HLA-binding predictions, greatly improves comprehensive identification of CD8(+) T cell epitopes. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Polyomavirus BK-specific CD8+ T cell responses in patients after allogeneic stem cell transplant.

    PubMed

    Schneidawind, Dominik; Schmitt, Anita; Wiesneth, Markus; Mertens, Thomas; Bunjes, Donald; Freund, Mathias; Schmitt, Michael

    2010-06-01

    Polyomavirus BK (BKV) is known as an important etiologic agent in the development of hemorrhagic cystitis (HC) after allogeneic stem cell transplant (SCT). To define T cell epitopes of the BKV proteins VP1 and sT, eight potential HLA-A2-binding peptides were synthesized based on computer algorithms. These peptides were co-incubated with CD8 + T cells from the peripheral blood (PB) of 25 healthy volunteers and seven patients suffering from HC after allogeneic SCT in a mixed-lymphocyte peptide culture (MLPC), which were subsequently screened by enzyme-linked immunospot (ELISPOT) assays and fluorescence-activated cell sorting (FACS) analysis. We found that CD8 + T cells from five of seven (71%) patients with HC presensitized with the BKV peptide VP1 p108 (LLMWEAVTV) specifically recognized T2 cells pulsed with VP1 p108. In contrast, only seven of 25 (28%) healthy volunteers had CD8 + T cells reactive with VP1 p108-pulsed T2 cells. The presence of VP1 p108-specific T cells could be confirmed by FACS analysis. The BKV peptide VP1 p108 seems to play an important role as an immunodominant peptide in the pathogenesis of HC in patients after allogeneic SCT, and might be a promising target for immunotherapies or even strategies to prevent the development of BKV-associated HC.

  2. Terminally differentiated CD8+ T cells and CD57−FOXP3+CD8+ T cells are highly associated with the efficacy of immunotherapy using activated autologous lymphocytes

    PubMed Central

    Akagi, Junji; Baba, Hideo; Sekine, Teruaki; Ogawa, Kenji

    2018-01-01

    Treatment with activated autologous lymphocytes (AALs) has demonstrated mixed results for cancer treatment. Preliminary results revealed that the proportion of cluster of differentiation (CD)8+CD57+ T cells is significantly increased in AALs, indicating that they are able to determine treatment outcome. Therefore, the role of CD8+CD57+ T cells in AAL efficacy was investigated. T lymphocytes were isolated from 35 patients with stage IV gastric carcinomas (17 men and 18 women; aged 41–84 years) receiving immunotherapy using AALs (IAAL). Using fluorescence activated cell sorting, CD8, CD27, CD57, and forkhead box protein 3 (FOXP3) expression was investigated on CD8+ T cell populations in CD8+ T cell differentiation prior to and following in vitro culture. The association between these populations and progression-free survival (PFS) was analyzed using Cox univariate, and multivariate analyses and Kaplan-Meier survival analysis. CD57 expression was negative in early-differentiated CD8+ T cells (CD27+CD8+CD57−), and positive in intermediate- (CD27+CD8+CD57+) and terminal- (CD27−CD8+CD57+) differentiated CD8+ T cells. Univariate analysis revealed a significant association between terminal-CD8+ T cells and longer PFS times (P=0.035), whereas CD57−FOXP3+CD8+ T cells were associated with shorter PFS times. Multivariate analysis revealed that CD57−FOXP3+CD8+ T cells was an independent poor prognostic factor, whereas CD57+FOXP3+CD8+ T cells were not associated with PFS. Although IAAL increased the proportion of terminal-CD8+ T cells relative to the pre-culture proportions, patients with a high CD57−FOXP3+CD8+ T cell percentage exhibited repressed terminal-CD8+ T cell induction, leading to poor patient prognosis. Terminally differentiated CD27−CD8+CD57+ T cells were responsible for the effectiveness of AALs; however, CD57−FOXP3+CD8+ T cells abrogated their efficacy, possibly by inhibiting their induction.

  3. Future of an “Asymptomatic” T-cell Epitope-Based Therapeutic Herpes Simplex Vaccine

    PubMed Central

    Dervillez, Xavier; Gottimukkala, Chetan; Kabbara, Khaled W.; Nguyen, Chelsea; Badakhshan, Tina; Kim, Sarah M.; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2012-01-01

    Summary Considering the limited success of the recent herpes clinical vaccine trial [1], new vaccine strategies are needed. Infections with herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) in the majority of men and women are usually asymptomatic and results in lifelong viral latency in neurons of sensory ganglia (SG). However, in a minority of men and women HSV spontaneous reactivation can cause recurrent disease (i.e., symptomatic individuals). Our recent findings show that T cells from symptomatic and asymptomatic men and women (i.e. those with and without recurrences, respectively) recognize different herpes epitopes. This finding breaks new ground and opens new doors to assess a new vaccine strategy: mucosal immunization with HSV-1 & HSV-2 epitopes that induce strong in vitro CD4 and CD8 T cell responses from PBMC derived from asymptomatic men and women (designated here as “asymptomatic” protective epitopes”) could boost local and systemic “natural” protective immunity, induced by wild-type infection. Here we highlight the rationale and the future of our emerging “asymptomatic” T cell epitope-based mucosal vaccine strategy to decrease recurrent herpetic disease. PMID:22701511

  4. Antibody Production and Th1-biased Response Induced by an Epitope Vaccine Composed of Cholera Toxin B Unit and Helicobacter pylori Lpp20 Epitopes.

    PubMed

    Li, Yan; Chen, Zhongbiao; Ye, Jianbin; Ning, Lijun; Luo, Jun; Zhang, Lili; Jiang, Yin; Xi, Yue; Ning, Yunshan

    2016-06-01

    The epitope vaccine is an attractive potential for prophylactic and therapeutic vaccination against Helicobacter pylori (H. pylori) infection. Lpp20 is one of major protective antigens which trigger immune response after H. pylori invades host and has been considered as an excellent vaccine candidate for the control of H. pylori infection. In our previous study, one B-cell epitope and two CD4(+) T-cell epitopes of Lpp20 were identified. In this study, an epitope vaccine composed of mucosal adjuvant cholera toxin B subunit (CTB) and these three identified Lpp20 epitopes were constructed to investigate the efficacy of this epitope vaccine in mice. The epitope vaccine including CTB, one B-cell, and two CD4(+) T-cell epitopes of Lpp20 was constructed and named CTB-Lpp20, which was then expressed in Escherichia coli and used for intraperitoneal immunization in BALB/c mice. The immunogenicity, specificity, and ability to induce antibodies against Lpp20 and cytokine secretion were evaluated. After that, CTB-Lpp20 was intragastrically immunized to investigate the prophylactic and therapeutic efficacy in infected mice. The results indicated that the epitope vaccine CTB-Lpp20 possessed good immunogenicity and immunoreactivity and could elicit specific high level of antibodies against Lpp20 and the cytokine of IFN-γ and IL-17. Additionally, CTB-Lpp20 significantly decreased H. pylori colonization in H. pylori challenging mice, and the protection was correlated with IgG, IgA, and sIgA antibody and Th1-type cytokines. This study will be better for understanding the protective immunity of epitope vaccine, and CTB-Lpp20 may be an alternative strategy for combating H. pylori invasion. © 2015 John Wiley & Sons Ltd.

  5. Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes.

    PubMed

    Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S; Taube, Ran; Engel, Stanislav

    2015-01-01

    Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.

  6. Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes

    PubMed Central

    Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S.; Taube, Ran

    2015-01-01

    Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential. PMID:26629902

  7. Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses.

    PubMed

    Zhao, Jincun; Zhao, Jingxian; Mangalam, Ashutosh K; Channappanavar, Rudragouda; Fett, Craig; Meyerholz, David K; Agnihothram, Sudhakar; Baric, Ralph S; David, Chella S; Perlman, Stanley

    2016-06-21

    Two zoonotic coronaviruses (CoVs)-SARS-CoV and MERS-CoV-have crossed species to cause severe human respiratory disease. Here, we showed that induction of airway memory CD4(+) T cells specific for a conserved epitope shared by SARS-CoV and MERS-CoV is a potential strategy for developing pan-coronavirus vaccines. Airway memory CD4(+) T cells differed phenotypically and functionally from lung-derived cells and were crucial for protection against both CoVs in mice. Protection was dependent on interferon-γ and required early induction of robust innate and virus-specific CD8(+) T cell responses. The conserved epitope was also recognized in SARS-CoV- and MERS-CoV-infected human leukocyte antigen DR2 and DR3 transgenic mice, indicating potential relevance in human populations. Additionally, this epitope was cross-protective between human and bat CoVs, the progenitors for many human CoVs. Vaccine strategies that induce airway memory CD4(+) T cells targeting conserved epitopes might have broad applicability in the context of new CoVs and other respiratory virus outbreaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Production and characterization of monoclonal antibodies against conserved epitopes of P-selectin (CD62P).

    PubMed

    Massaguer, A; Engel, P; Pérez-del-Pulgar, S; Bosch, J; Pizcueta, P

    2000-08-01

    P-selectin (CD62P) is an adhesion molecule expressed on the activated endothelium and activated platelets that is involved in the initial attachment of leukocytes to inflamed vascular endothelium. Blocking monoclonal antibodies (mAbs) and P-selectin-deficient mice have shown that P-selectin is a potential target in anti-inflammatory therapy. Most mAbs against P-selectin do not bind to conserved epitopes, including the ligand-binding region, since P-selectin from mammalian species shares high amino acid sequence homology. The aim of this study was to generate a novel panel of anti-P-selectin mAbs against the conserved epitopes present in several animal species. To produce these mAbs, P-selectin-deficient mice were immunized with a pre-B-cell line transfected with human P-selectin cDNA. Twelve mouse mAbs that recognize human P-selectin were obtained. Individual mAbs that bound to human, rat, mouse, rabbit and pig activated platelets were characterized by flow-cytometry, immunohistochemistry, adhesion assays and immunoprecipitation. Four of these mAbs (P-sel.KO.2.3, P-sel.KO.2.4, P-sel.KO.2.7 and P-sel.KO.2.12) cross-reacted with human, rat and mouse P-selectin. Another three mAbs (P-sel.KO.2.2, P-sel.KO.2.11 and P-sel.KO.2.12) blocked the attachment of HL60 cells to P-selectin-transfected COS cells, demonstrating that these mAbs inhibit P-selectin-mediated adhesion. MAb cross-blocking experiments showed that these three mAbs bind to very close and overlapping epitopes. An ELISA assay using mAbs P-sel.KO.2.3 and P-sel.KO.2.12 was designed to measure soluble rat, mouse and human P-selectin. These anti-P-selectin mAbs are unique since they recognize common epitopes conserved during mammalian evolution and they may be useful for studying P-selectin function in inflammatory models in various species.

  9. Characterization of circulating CD4+ CD8+ double positive and CD4- CD8- double negative T-lymphocyte in children with β-thalassemia major.

    PubMed

    Zahran, Asmaa M; Saad, Khaled; Elsayh, Khalid I; Alblihed, Mohamd A

    2017-03-01

    Infectious complications represent the second most common cause of mortality and a major cause of morbidity in β-thalassemia major (BTM), with a prevalence of 12-13%. The data on unconventional T-lymphocyte subsets in BTM children are limited. The aim of the present study was to investigate and evaluate phenotypic alterations in CD4 + CD8 + double positive (DP), CD4 - CD8 - double negative (DN), and natural killer T-lymphocytes (NKT) in BTM children in comparison to healthy controls. Our case control study included 80 children with BTM and 40 healthy children as controls. Assessment of unconventional T-lymphocyte populations was done using sensitive four-color flow cytometry (FACSCalibur). Our analysis of the data showed a significantly higher frequency CD4 + CD8 + (double-positive) T cells, CD4 - CD8 - (double negative) T cells, and natural killer T cells in the peripheral blood of both BTM groups (splenectomized and non-splenectomized) as compared to healthy controls, suggesting that these cells may play a role in the clinical course of BTM. The relationship of the unconventional T-lymphocytes to immune disorders in BTM children remains to be determined. Further longitudinal study with a larger sample size is warranted to elucidate the role these cells in BTM. TRIAL NUMBER: UMIN000018950.

  10. Expression of N-acetyl-D-galactosamine associated epitope in synovium: a potential marker of glycoprotein production.

    PubMed

    El-Gabalawy, H; King, R; Bernstein, C; Ma, G; Mou, Y; Alguacil-Garcia, A; Fritzler, M; Wilkins, J

    1997-07-01

    To investigate synovial glycoprotein production in situ, a novel monoclonal antibody (Mab), A13D8, was used to evaluate the expression of an epitope containing N-acetyl-D-galactosamine (GalNAc) in normal and pathological synovium. Immunohistological and cytochemical analysis of synovial tissue samples was undertaken with single and double staining techniques using the A13D8 Mab, anti-CD68, vascular cell adhesion molecule-1 (VCAM-1), the hyaluronan associated enzyme uridine diphosphoglucose dehydrogenase (UDPGD), and the anti-Golgi Mab SSN/HR-1992. The specificity of the A13D8 Mab was established through blocking studies using carbohydrate residues, including GalNAc and N-acetylglucosamine (GlcNAc). A13D8 is expressed intensely in the cytoplasm of normal type B lining cells, which coexpress VCAM-1 and UDPGD, and is not expressed by CD68+ type A lining cells. In the lining layer of RA synovium, there is a negative correlation between A13D8 expression and the level of lymphocytic infiltration in the sublining areas (r = -0.43, p < 0.001). The endothelium of a subset of venules, typically in lymphocyte-rich aggregates, also stains intensely for A13D8. Pretreatment of the Mab with GalNAc completely eliminates the tissue staining, as well as the 110 kDa band seen on immunoblot, whereas pretreatment of A13D8 with GlcNAc and lactose has no effect. Double staining of HEp-2 cells with A13D8 and the anti-Golgi Mab SSN/HR-1992 reveals co-localization of the A13D8 epitope to the Golgi apparatus. Type B synovial lining cells and selected synovial endothelium express GalNAc containing epitope identified by Mab A13D8. Marked reduction in the expression of this epitope in the lining layer of inflamed RA synovium suggests that the synovial production of GalNAc containing glycoproteins, such as mucins, may be altered in this disorder.

  11. Identification of human leukemia antigen A*0201-restricted epitopes derived from epidermal growth factor pathway substrate number 8.

    PubMed

    Tang, Baishan; Zhou, Weijun; Du, Jingwen; He, Yanjie; Li, Yuhua

    2015-08-01

    T-cell-mediated immunotherapy of hematological malignancies requires selection of targeted tumor-associated antigens and T-cell epitopes contained in these tumor proteins. Epidermal growth factor receptor pathway substrate 8 (EPS8), whose function is pivotal for tumor proliferation, progression and metastasis, has been found to be overexpressed in most human tumor types, while its expression in normal tissue is low. The aim of the present study was to identify human leukemia antigen (HLA)-A*0201-restricted epitopes of EPS8 by using a reverse immunology approach. To achieve this, computer algorithms were used to predict HLA-A*0201 molecular binding, proteasome cleavage patterns as well as translocation of transporters associated with antigen processing. Candidate peptides were experimentally validated by T2 binding affinity assay and brefeldin-A decay assay. The functional avidity of peptide-specific cytotoxic T lymphocytes (CTLs) induced from peripheral blood mononuclear cells of healthy volunteers were evaluated by using an enzyme-linked immunosorbent spot assay and a cytotoxicity assay. Four peptides, designated as P455, P92, P276 and P360, had high affinity and stability of binding towards the HLA-A*0201 molecule, and specific CTLs induced by them significantly responded to the corresponding peptides and secreted IFN-γ. At the same time, the CTLs were able to specifically lyse EPS8-expressing cell lines in an HLA-A*0201-restricted manner. The present study demonstrated that P455, P92, P276 and P360 were CTL epitopes of EPS8, and were able to be used for epitope-defined adoptive T-cell transfer and multi-epitope-based vaccine design.

  12. Phage display antibodies against ectromelia virus that neutralize variola virus: Selection and implementation for p35 neutralizing epitope mapping.

    PubMed

    Khlusevich, Yana; Matveev, Andrey; Baykov, Ivan; Bulychev, Leonid; Bormotov, Nikolai; Ilyichev, Ivan; Shevelev, Georgiy; Morozova, Vera; Pyshnyi, Dmitrii; Tikunova, Nina

    2018-04-01

    In this study, five phage display antibodies (pdAbs) against ectromelia virus (ECTV) were selected from vaccinia virus (VACV)-immune phage-display library of human single chain variable fragments (scFv). ELISA demonstrated that selected pdAbs could recognize ECTV, VACV, and cowpox virus (CPXV). Atomic force microscopy visualized binding of the pdAbs to VACV. Three of the selected pdAbs neutralized variola virus (VARV) in the plaque reduction neutralization test. Western blot analysis of ECTV, VARV, VACV, and CPXV proteins indicated that neutralizing pdAbs bound orthopoxvirus 35 kDa proteins, which are encoded by the open reading frames orthologous to the ORF H3L in VACV. The fully human antibody fh1A was constructed on the base of the VH and VL domains of pdAb, which demonstrated a dose-dependent inhibition of plaque formation after infection with VARV, VACV, and CPXV. To determine the p35 region responsible for binding to neutralizing pdAbs, a panel of truncated p35 proteins was designed and expressed in Escherichia coli cells, and a minimal p35 fragment recognized by selected neutralizing pdAbs was identified. In addition, peptide phage-display combinatorial libraries were applied to localize the epitope. The obtained data indicated that the epitope responsible for recognition by the neutralizing pdAbs is discontinuous and amino acid residues located within two p35 regions, 15-19 aa and 232-237 aa, are involved in binding with neutralizing anti-p35 antibodies. Copyright © 2018. Published by Elsevier B.V.

  13. Processing of two latent membrane protein 1 MHC class I epitopes requires tripeptidyl peptidase II involvement.

    PubMed

    Diekmann, Jan; Adamopoulou, Eleni; Beck, Olaf; Rauser, Georg; Lurati, Sarah; Tenzer, Stefan; Einsele, Hermann; Rammensee, Hans-Georg; Schild, Hansjörg; Topp, Max S

    2009-08-01

    The EBV Ag latent membrane protein 1 (LMP1) has been described as a potential target for T cell immunotherapy in EBV-related malignancies. However, only a few CD8(+) T cell epitopes are known, and the benefit of LMP1-specific T cell immunotherapy has not yet been proven. In this work, we studied the processing of the two LMP1 HLA-A02-restricted epitopes, YLLEMLRWL and YLQQNWWTL. We found that target cells endogenously expressing the native LMP1 are not recognized by CTLs specific for these epitopes because the N-terminal part of LMP1 limits the efficiency of epitope generation. We further observed that the proteasome is not required for the generation of both epitopes and that the YLLEMLRWL epitope seems to be destroyed by the proteasome, because blocking of proteasomal activities enhanced specific CTL activation. Activation of LMP1-specific CTLs could be significantly reduced after inhibition of the tripeptidyl peptidase II, suggesting a role for this peptidase in the processing of both epitopes. Taken together, our results demonstrate that the MHC class I-restricted LMP1 epitopes studied in this work are two of very few epitopes known to date to be processed proteasome independently by tripeptidyl peptidase II.

  14. The resistance mutation R155K in the NS3/4A protease of hepatitis C virus also leads the virus to escape from HLA-A*68-restricted CD8 T cells.

    PubMed

    Salloum, Shadi; Kluge, Silvia F; Kim, Arthur Y; Roggendorf, Michael; Timm, Joerg

    2010-08-01

    The NS3/4A serine protease of the hepatitis C virus (HCV) is one of the most attractive targets for specific antiviral agents. However, mutations conferring resistance may decrease the efficacy of these drugs. Although the level of resistance associated with specific mutations differs between different compounds, substitutions R155K and A156T reduce susceptibility to all protease inhibitors published so far. Interestingly, variants harboring the resistant mutation R155K were also detected as the predominant quasispecies in some treatment-naïve patients. Of note, key positions for resistance overlap with the HLA-A*68-restricted epitope HAVGIFRAAV(1175-1184). The aim of our study was to analyze the impact of protease inhibitor resistance mutations on the replication level and the antiviral CD8 T cell response against this HCV epitope. Our findings suggest that the R155K variant is associated with a relatively high replication level and with a substantial loss of cross-recognition by specific CD8 T cells targeting the epitope HAVGIFRAAV(1175-1184), providing a possible explanation for its existence in the absence of drug selection pressure. Copyright 2010 Elsevier B.V. All rights reserved.

  15. β-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure

    PubMed Central

    McLaren, James E.; Dolton, Garry; Matthews, Katherine K.; Gostick, Emma; Kronenberg-Versteeg, Deborah; Eichmann, Martin; Knight, Robin R.; Heck, Susanne; Powrie, Jake; Bingley, Polly J.; Dayan, Colin M.; Miles, John J.; Sewell, Andrew K.

    2015-01-01

    Autoreactive CD8 T cells play a central role in the destruction of pancreatic islet β-cells that leads to type 1 diabetes, yet the key features of this immune-mediated process remain poorly defined. In this study, we combined high definition polychromatic flow cytometry with ultrasensitive peptide-human leukocyte antigen class I (pHLAI) tetramer staining to quantify and characterize β-cell-specific CD8 T cell populations in patients with recent onset type 1 diabetes and healthy controls. Remarkably, we found that β-cell-specific CD8 T cell frequencies in peripheral blood were similar between subject groups. In contrast to healthy controls, however, patients with newly diagnosed type 1 diabetes displayed hallmarks of antigen-driven expansion uniquely within the β-cell-specific CD8 T cell compartment. Molecular analysis of selected β-cell-specific CD8 T cell populations further revealed highly skewed oligoclonal T cell receptor (TCR) repertoires comprising exclusively private clonotypes. Collectively, these data identify novel and distinctive features of disease-relevant CD8 T cells that inform the immunopathogenesis of type 1 diabetes. PMID:25249579

  16. CD8+ memory T-cell inflation renders compromised CD4+ T-cell-dependent CD8+ T-cell immunity via naïve T-cell anergy.

    PubMed

    Xu, Aizhang; Freywald, Andrew; Xie, Yufeng; Li, Zejun; Xiang, Jim

    2017-01-01

    Whether inflation of CD8 + memory T (mT) cells, which is often derived from repeated prime-boost vaccinations or chronic viral infections in the elderly, would affect late CD8 + T-cell immunity is a long-standing paradox. We have previously established an animal model with mT-cell inflation by transferring ConA-stimulated monoclonal CD8 + T cells derived from Ova-specific T-cell-receptor transgenic OTI mice into irradiation-induced lymphopenic B6 mice. In this study, we also established another two animal models with mT-cell inflation by transferring, 1) ConA-stimulated monoclonal CD8 + T cells derived from lymphocytic choriomeningitis virus glycoprotein-specific T-cell-receptor transgenic P14 mice, and 2) ConA-stimulated polyclonal CD8 + T cells derived from B6.1 mice into B6 mice with irradiation-induced lymphopenia. We vaccinated these mice with recombinant Ova-expressing Listeria monocytogenes and Ova-pulsed dendritic cells, which stimulated CD4 + T cell-independent and CD4 + T-cell-dependent CD8 + T-cell responses, respectively, and assessed Ova-specific CD8 + T-cell responses by flow cytometry. We found that Ova-specific CD8 + T-cell responses derived from the latter but not the former vaccination were significantly reduced in mice with CD8 + mT-cell inflation compared to wild-type B6 mice. We determined that naïve CD8 + T cells purified from splenocytes of mice with mT-cell inflation had defects in cell proliferation upon stimulation in vitro and in vivo and upregulated T-cell anergy-associated Itch and GRAIL molecules. Taken together, our data reveal that CD8 + mT-cell inflation renders compromised CD4 + T-cell-dependent CD8 + T-cell immunity via naïve T-cell anergy, and thus show promise for the design of efficient vaccines for elderly patients with CD8 + mT-cell inflation.

  17. CD4+, CD8+, CD3+ cell counts and CD4+/CD8+ ratio among patients with mycobacterial diseases (leprosy, tuberculosis), HIV infections, and normal healthy adults: a comparative analysis of studies in different regions of India.

    PubMed

    Hussain, Tahziba; Kulshreshtha, K K; Yadav, V S; Katoch, Kiran

    2015-01-01

    In this study, we estimated the CD4+, CD8+, CD3+ cell counts and the CD4/CD8 ratio among normal healthy controls (adults and children), leprosy patients (without any complications and during reactional states), TB patients (with and without HIV), and HIV-positive patients (early infection and full-blown AIDS) and correlated the changes with disease progression. In our study, it was observed that among adults, CD4+ cell counts ranged from 518-1098, CD8+ from 312-952, whereas CD4/CD8 ratio from 0.75-2.30. Among children, both CD4+ and CD8+ cells were more and the CD4/CD8 ratio varied from 0.91-3.17. With regard to leprosy patients, we observed that CD4+ and CD8+ cell counts were lower among PB (pauci-bacillary) and MB (multi-bacillary) patients. CD4/CD8 ratio was 0.99 ± 0.28 among PB patients while the ratio was lower, 0.78 ± 0.20, among MB patients. CD4+ cell counts were raised during RR (reversal reactions) and ENL (erythema nodosum leprosum) among the PB and MB patients whereas the CD8+ cell counts were lower among PB and MB patients. CD4/CD8 ratio doubled during reactional episodes of RR and ENL. Among the HIV-negative tuberculosis (TB) patients, both the CD4+ and CD8+ cell counts were found to be less and the CD4/CD8 ratio varied between 0.53-1.75. Among the HIV-positive TB patients and HIV-positive patients, both the CD4+ and CD8+ cells were very less and ratio drops significantly. In the initial stages of infection, as CD4+ counts drop, an increase in the CD8+ cell counts was observed and the ratio declines. In full-blown cases, CD4+ cell counts were very low, 3-4 to 54 cells, CD8+ cells from 12-211 and the ratio drops too low. This study is the first of its kind in this region of the country and assumes importance since no other study has reported the values of CD4+ and CD8+ T-lymphocyte counts among patients with mycobacterial diseases (leprosy and TB), HIV infections along with normal healthy individuals of the region, and correlation with clinical

  18. Identification of the immunogenic epitopes of the whole venom component of the Hemiscorpius lepturus scorpion using the phage display peptide library.

    PubMed

    Jahdasani, Roghaye; Jamnani, Fatemeh Rahimi; Behdani, Mahdi; Habibi-Anbouhi, Mahdi; Yardehnavi, Najmeh; Shahbazzadeh, Delavar; Kazemi-Lomedasht, Fatemeh

    2016-12-15

    The venom of the Hemiscorpius lepturus scorpion contains mixtures of bioactive compounds that disturb biochemical and physiological functions of the victims. Hemiscorpius lepturus envenomation is recognized as a serious health concern in tropical regions. So far, there is no preventive procedure, and the main focus is on treatment of victims with an antiserum purified from hyper-immunized horses. Although antisera can neutralize the venom, they, in some cases, lead to anaphylactic shock and even death. Selection of peptides mimicking antigenic and immunogenic epitopes of toxins from random peptide libraries is a novel approach for the development of recombinant toxins and poly-epitopic vaccine. To achieve this aim, a phage display peptide library and three rounds of biopanning were performed on immobilized antibodies (IgGs) purified from the sera of hyper-immunized horses. The results show that the highest binding of the phage to immobilized horse antibodies occurred in the third round of biopanning. Over 125 individual clones carrying mimotopes of Hemiscorpius lepturus toxins were selected and subjected for sequencing. The sequencing results identified unique peptides mimicking the antigenic and immunogenic epitopes of Hemiscorpius lepturus toxins. The results of this study provide a basis for further studies and the development of a putative epitopic vaccine and a recombinant toxin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characteristics of CD8+ T cell subsets in Chinese patients with chronic HIV infection during initial ART.

    PubMed

    Jiao, Yanmei; Hua, Wei; Zhang, Tong; Zhang, Yonghong; Ji, Yunxia; Zhang, Hongwei; Wu, Hao

    2011-03-25

    CD8+ T cells may play an important role in protecting against HIV. However, the changes of CD8+ T cell subsets during early period of ART have not been fully studied. Twenty-one asymptomatic treatment-naive HIV-infected patients with CD4 T+ cells less than 350 cells/μl were enrolled in the study. Naïve, central memory(CM), effective memory(EM) and terminally differentiated effector (EMRA) CD8+ cell subsets and their activation and proliferation subsets were evaluated in blood samples collected at base line, and week 2, 4, 8 and 12 of ART. The total CD8+ T cells declined and the Naïve and CM subsets had a tendency of increase. Activation levels of all CD8+ T cell subsets except EMRA subset decreased after ART. However, proliferation levels of total CD8+ T cells, EMRA, EM and CM subsets increased at the first 4 weeks of ART, then decreased. Proliferation level of the naïve cells decreased after ART. The changes of CD8+ T cell subsets during initial ART are complex. Our results display a complete phenotypical picture of CD8+ cell subsets during initial ART and provide insights for understanding of immune status during ART.

  20. Characteristics of CD8+ T cell subsets in Chinese patients with chronic HIV infection during initial ART

    PubMed Central

    2011-01-01

    Background CD8+ T cells may play an important role in protecting against HIV. However, the changes of CD8+ T cell subsets during early period of ART have not been fully studied. Methods Twenty-one asymptomatic treatment-naive HIV-infected patients with CD4 T+ cells less than 350 cells/μl were enrolled in the study. Naïve, central memory(CM), effective memory(EM) and terminally differentiated effector (EMRA) CD8+ cell subsets and their activation and proliferation subsets were evaluated in blood samples collected at base line, and week 2, 4, 8 and 12 of ART. Results The total CD8+ T cells declined and the Naïve and CM subsets had a tendency of increase. Activation levels of all CD8+ T cell subsets except EMRA subset decreased after ART. However, proliferation levels of total CD8+ T cells, EMRA, EM and CM subsets increased at the first 4 weeks of ART, then decreased. Proliferation level of the naïve cells decreased after ART. Conclusion The changes of CD8+ T cell subsets during initial ART are complex. Our results display a complete phenotypical picture of CD8+ cell subsets during initial ART and provide insights for understanding of immune status during ART. PMID:21435275

  1. The CD14+CD16+ Inflammatory Monocyte Subset Displays Increased Mitochondrial Activity and Effector Function During Acute Plasmodium vivax Malaria

    PubMed Central

    Antonelli, Lis R. V.; Leoratti, Fabiana M. S.; Costa, Pedro A. C.; Rocha, Bruno C.; Diniz, Suelen Q.; Tada, Mauro S.; Pereira, Dhelio B.; Teixeira-Carvalho, Andrea; Golenbock, Douglas T.; Gonçalves, Ricardo; Gazzinelli, Ricardo T.

    2014-01-01

    Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax–infected patients display significant increase in circulating monocytes, which were defined as CD14+CD16− (classical), CD14+CD16+ (inflammatory), and CD14loCD16+ (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16+ cells, in particular the CD14+CD16+ monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14+ were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14+CD16+ monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14+CD16+ cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection. PMID:25233271

  2. Mapping of epitopes for autoantibodies to the type 1 diabetes autoantigen IA-2 by peptide phage display and molecular modeling: overlap of antibody and T cell determinants.

    PubMed

    Dromey, James A; Weenink, Sarah M; Peters, Günther H; Endl, Josef; Tighe, Patrick J; Todd, Ian; Christie, Michael R

    2004-04-01

    IA-2 is a major target of autoimmunity in type 1 diabetes. IA-2 responsive T cells recognize determinants within regions represented by amino acids 787-817 and 841-869 of the molecule. Epitopes for IA-2 autoantibodies are largely conformational and not well defined. In this study, we used peptide phage display and homology modeling to characterize the epitope of a monoclonal IA-2 Ab (96/3) from a human type 1 diabetic patient. This Ab competes for IA-2 binding with Abs from the majority of patients with type 1 diabetes and therefore binds a region close to common autoantibody epitopes. Alignment of peptides obtained after screening phage-displayed peptide libraries with purified 96/3 identified a consensus binding sequence of Asn-x-Glu-x-x-(aromatic)-x-x-Gly. The predicted surface on a three-dimensional homology model of the tyrosine phosphatase domain of IA-2 was analyzed for clusters of Asn, Glu, and aromatic residues and amino acids contributing to the epitope investigated using site-directed mutagenesis. Mutation of each of amino acids Asn(858), Glu(836), and Trp(799) reduced 96/3 Ab binding by >45%. Mutations of these residues also inhibited binding of serum autoantibodies from IA-2 Ab-positive type 1 diabetic patients. This study identifies a region commonly recognized by autoantibodies in type 1 diabetes that overlaps with dominant T cell determinants.

  3. Cooperativity Between CD8+ T Cells, Non-Neutralizing Antibodies, and Alveolar Macrophages Is Important for Heterosubtypic Influenza Virus Immunity

    PubMed Central

    Laidlaw, Brian J.; Decman, Vilma; Ali, Mohammed-Alkhatim A.; Abt, Michael C.; Wolf, Amaya I.; Monticelli, Laurel A.; Mozdzanowska, Krystyna; Angelosanto, Jill M.; Artis, David; Erikson, Jan; Wherry, E. John

    2013-01-01

    Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential “universal” vaccine. PMID:23516357

  4. Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus.

    PubMed

    Nhan, Nguyen Thanh; Gonzalez de Valdivia, Ernesto; Gustavsson, Martin; Hai, Truong Nam; Larsson, Gen

    2011-04-11

    Salmonella enterica serotype Enteritidis (SE) is considered to be one of the most potent pathogenic Salmonella serotypes causing food-borne disease in humans. Since a live bacterial vaccine based on surface display of antigens has many advantages over traditional vaccines, we have studied the surface display of the SE antigenic proteins, H:gm and SefA in Escherichia coli by the β-autotransporter system, AIDA. This procedure was compared to protein translocation in Staphylococcus carnosus, using a staphylococci hybrid vector earlier developed for surface display of other vaccine epitopes. Both SefA and H:gm were translocated to the outer membrane in Escherichia coli. SefA was expressed to full length but H:gm was shorter than expected, probably due to a proteolytic cleavage of the N-terminal during passage either through the periplasm or over the membrane. FACS analysis confirmed that SefA was facing the extracellular environment, but this could not be conclusively established for H:gm since the N-terminal detection tag (His6) was cleaved off. Polyclonal salmonella antibodies confirmed the sustained antibody-antigen binding towards both proteins. The surface expression data from Staphylococcus carnosus suggested that the H:gm and SefA proteins were transported to the cell wall since the detection marker was displayed by FACS analysis. Apart from the accumulated knowledge and the existence of a wealth of equipment and techniques, the results indicate the selection of E. coli for further studies for surface expression of salmonella antigens. Surface expression of the full length protein facing the cell environment was positively proven by standard analysis, and the FACS signal comparison to expression in Staphylococcus carnosus shows that the distribution of the surface protein on each cell was comparatively very narrow in E. coli, the E. coli outer membrane molecules can serve as an adjuvant for the surface antigenic proteins and multimeric forms of the SefA protein

  5. Display of the Viral Epitopes on Lactococcus lactis: A Model for Food Grade Vaccine against EV71

    PubMed Central

    Varma, Nadimpalli Ravi S.; Toosa, Haryanti; Foo, Hooi Ling; Alitheen, Noorjahan Banu Mohamed; Nor Shamsudin, Mariana; Arbab, Ali S.; Yusoff, Khatijah; Abdul Rahim, Raha

    2013-01-01

    In this study, we have developed a system for display of antigens of Enterovirus type 71 (EV71) on the cell surface of L. lactis. The viral capsid protein (VP1) gene from a local viral isolate was utilized as the candidate vaccine for the development of oral live vaccines against EV71 using L. lactis as a carrier. We expressed fusion proteins in E. coli and purified fusion proteins were incubated with L. lactis. We confirmed that mice orally fed with L. lactis displaying these fusion proteins on its surface were able to mount an immune response against the epitopes of EV71. This is the first example of an EV71 antigen displayed on the surface of a food grade organism and opens a new perspective for alternative vaccine strategies against the EV71. We believe that the method of protein docking utilized in this study will allow for more flexible presentations of short peptides and proteins on the surface of L. lactis to be useful as a delivery vehicle. PMID:23476790

  6. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells

    NASA Astrophysics Data System (ADS)

    Bertoletti, Antonio; Sette, Alessandro; Chisari, Francis V.; Penna, Amalia; Levrero, Massimo; Carli, Marco De; Fiaccadori, Franco; Ferrari, Carlo

    1994-06-01

    IT has been suggested that mutations within immunodominant cytotoxic T-lymphocyte (CTL) epitopes may be exploited by viruses to evade protective immune responses critical for clearance1-4. Viral escape could originate from passive mechanisms, such as mutations within crucial CTL epitopes, either affecting major histocompatibility complex binding or T-cell antigen receptor (TCR) recognition. Additionally, it has recently been shown that substitutions of TCR contact sites can yield analogue peptides that can still interact with the T-cell receptor but be unable to deliver a full stimulatory signal, thus inducing anergy5 or acting as an antagonist for the TCR6-8. We report here that hepatitis B virus isolates derived from two chronically infected patients display variant epitopes that act as natural TCR antagonists with the capacity to inhibit the CTL response to the wild-type epitope. During natural infection, TCR antagonist mutations of CTL epitopes could contribute to the development of viral persistence, especially if the antiviral CTL response is monospecific or the epitope is strongly immunodominant.

  7. Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance.

    PubMed

    Rogel, Anne; Willoughby, Jane E; Buchan, Sarah L; Leonard, Henry J; Thirdborough, Stephen M; Al-Shamkhani, Aymen

    2017-02-14

    Memory CD8 + T cells confer long-term immunity against tumors, and anticancer vaccines therefore should maximize their generation. Multiple memory CD8 + T-cell subsets with distinct functional and homing characteristics exist, but the signaling pathways that regulate their development are ill defined. Here we examined the role of the serine/threonine kinase Akt in the generation of protective immunity by CD8 + T cells. Akt is known to be activated by the T-cell antigen receptor and the cytokine IL-2, but its role in T-cell immunity in vivo has not been explored. Using CD8 + T cells from pdk1 K465E/K465E knockin mice, we found that decreased Akt activity inhibited the survival of T cells during the effector-to-memory cell transition and abolished their differentiation into C-X-C chemokine receptor 3 (CXCR3) lo CD43 lo effector-like memory cells. Consequently, antitumor immunity by CD8 + T cells that display defective Akt signaling was substantially diminished during the memory phase. Reduced memory T-cell survival and altered memory cell differentiation were associated with up-regulation of the proapoptotic protein Bim and the T-box transcription factor eomesodermin, respectively. These findings suggest an important role for effector-like memory CD8 + T cells in tumor immune surveillance and identify Akt as a key signaling node in the development of protective memory CD8 + T-cell responses.

  8. Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance

    PubMed Central

    Rogel, Anne; Willoughby, Jane E.; Buchan, Sarah L.; Leonard, Henry J.; Thirdborough, Stephen M.; Al-Shamkhani, Aymen

    2017-01-01

    Memory CD8+ T cells confer long-term immunity against tumors, and anticancer vaccines therefore should maximize their generation. Multiple memory CD8+ T-cell subsets with distinct functional and homing characteristics exist, but the signaling pathways that regulate their development are ill defined. Here we examined the role of the serine/threonine kinase Akt in the generation of protective immunity by CD8+ T cells. Akt is known to be activated by the T-cell antigen receptor and the cytokine IL-2, but its role in T-cell immunity in vivo has not been explored. Using CD8+ T cells from pdk1K465E/K465E knockin mice, we found that decreased Akt activity inhibited the survival of T cells during the effector-to-memory cell transition and abolished their differentiation into C-X-C chemokine receptor 3 (CXCR3)loCD43lo effector-like memory cells. Consequently, antitumor immunity by CD8+ T cells that display defective Akt signaling was substantially diminished during the memory phase. Reduced memory T-cell survival and altered memory cell differentiation were associated with up-regulation of the proapoptotic protein Bim and the T-box transcription factor eomesodermin, respectively. These findings suggest an important role for effector-like memory CD8+ T cells in tumor immune surveillance and identify Akt as a key signaling node in the development of protective memory CD8+ T-cell responses. PMID:28137869

  9. Immunotherapy of murine retrovirus-induced acquired immunodeficiency by CD4 T regulatory cell depletion and PD-1 blockade.

    PubMed

    Li, Wen; Green, William R

    2011-12-01

    LP-BM5 retrovirus induces a complex disease featuring an acquired immunodeficiency syndrome termed murine AIDS (MAIDS) in susceptible strains of mice, such as C57BL/6 (B6). CD4 T helper effector cells are required for MAIDS induction and progression of viral pathogenesis. CD8 T cells are not needed for viral pathogenesis, but rather, are essential for protection from disease in resistant strains, such as BALB/c. We have discovered an immunodominant cytolytic T lymphocyte (CTL) epitope encoded in a previously unrecognized LP-BM5 retroviral alternative (+1 nucleotide [nt]) gag translational open reading frame. CTLs specific for this cryptic gag epitope are the basis of protection from LP-BM5-induced immunodeficiency in BALB/c mice, and the inability of B6 mice to mount an anti-gag CTL response appears critical to the initiation and progression of LP-BM5-induced MAIDS. However, uninfected B6 mice primed by LP-BM5-induced tumors can generate CTL responses to an LP-BM5 retrovirus infection-associated epitope(s) that is especially prevalent on such MAIDS tumor cells, indicating the potential to mount a protective CD8 T-cell response. Here, we utilized this LP-BM5 retrovirus-induced disease system to test whether modulation of normal immune down-regulatory mechanisms can alter retroviral pathogenesis. Thus, following in vivo depletion of CD4 T regulatory (Treg) cells and/or selective interruption of PD-1 negative signaling in the CD8 T-cell compartment, retroviral pathogenesis was significantly decreased, with the combined treatment of CD4 Treg cell depletion and PD-1 blockade working in a synergistic fashion to substantially reduce the induction of MAIDS.

  10. Specific CD8+ T Cell Responses Correlate with Control of Simian Immunodeficiency Virus Replication in Mauritian Cynomolgus Macaques

    PubMed Central

    Budde, Melisa L.; Greene, Justin M.; Chin, Emily N.; Ericsen, Adam J.; Scarlotta, Matthew; Cain, Brian T.; Pham, Ngoc H.; Becker, Ericka A.; Harris, Max; Weinfurter, Jason T.; O'Connor, Shelby L.; Piatak, Michael; Lifson, Jeffrey D.; Gostick, Emma; Price, David A.; Friedrich, Thomas C.

    2012-01-01

    Specific major histocompatibility complex (MHC) class I alleles are associated with an increased frequency of spontaneous control of human and simian immunodeficiency viruses (HIV and SIV). The mechanism of control is thought to involve MHC class I-restricted CD8+ T cells, but it is not clear whether particular CD8+ T cell responses or a broad repertoire of epitope-specific CD8+ T cell populations (termed T cell breadth) are principally responsible for mediating immunologic control. To test the hypothesis that heterozygous macaques control SIV replication as a function of superior T cell breadth, we infected MHC-homozygous and MHC-heterozygous cynomolgus macaques with the pathogenic virus SIVmac239. As measured by a gamma interferon enzyme-linked immunosorbent spot assay (IFN-γ ELISPOT) using blood, T cell breadth did not differ significantly between homozygotes and heterozygotes. Surprisingly, macaques that controlled SIV replication, regardless of their MHC zygosity, shared durable T cell responses against similar regions of Nef. While the limited genetic variability in these animals prevents us from making generalizations about the importance of Nef-specific T cell responses in controlling HIV, these results suggest that the T cell-mediated control of virus replication that we observed is more likely the consequence of targeting specificity rather than T cell breadth. PMID:22573864

  11. Interplanetary space science data base and access/display tool on the NSSDC heliospheric CD-ROM

    NASA Technical Reports Server (NTRS)

    Papitashvili, N. E.; King, J. H.

    1995-01-01

    The National Space Science Data Center (NSSDC) has accumulated a rich archive of heliospheric, magnetospheric, and ionospheric data, as well as data from most other NASA-involved science disciplines. To facilitate access to and use of these data, NSSDC has begun to put selected data onto CD-ROM's. This paper describes one such CD-ROM, and the access and display software developed at NSSDC to support its use. The data on the CD-ROM consist primarily of hourly solar wind magnetic field and plasma data from many near-Earth spacecraft (OMNI) and deep space spacecraft (Voyagers, Pioneers, Helios, Pioneer Venus Orbiter). In addition, 5-minute resolution IMP-8 and ISEE-3 magnetic field and plasma data are also included. Data are stored in both ASCII and CDF formats.

  12. Analysis of circulating CD14+/CD16+ monocyte-derived macrophages (MDMs) in the peripheral blood of patients with oral squamous cell carcinoma.

    PubMed

    Grimm, Martin; Feyen, Oliver; Coy, Johannes F; Hofmann, Heiko; Teriete, Peter; Reinert, Siegmar

    2016-03-01

    Monocytes/macrophages are regarded as the first line of defense in tumors. Therefore, analyzing monocyte subtypes in oral squamous cell carcinoma (OSCC) may be of value in disease monitoring and to explore immunotherapeutic strategies for cancer patients. Circulating peripheral blood CD14+/CD16+ monocyte-derived macrophages (MDMs) were evaluated in OSCC patients with oral squamous cell carcinoma (n = 44) compared with controls (n = 85). Moreover, epitope detection in monocytes (EDIM) technology was used to detect biomarkers Apo10 and transketolase-like-1 in CD14+/CD16+ MDMs. Compared with controls, no significant (P = .3646) difference (control group 9.8%, OSCC group 8.8%) in CD14+/CD16+ MDM were noted in OSCC. However, EDIM-Apo10 and EDIM-TKTL1 scores detected in the CD14+/CD16+ MDMs were increased in OSCC compared with controls (P < .0001). Analyzing CD14+/CD16+ MDMs represents a stable cell population for detecting biomarkers in cancer disease monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Modified Vaccinia Virus Ankara-Infected Dendritic Cells Present CD4+ T-Cell Epitopes by Endogenous Major Histocompatibility Complex Class II Presentation Pathways

    PubMed Central

    Thiele, Frank; Tao, Sha; Zhang, Yi; Muschaweckh, Andreas; Zollmann, Tina; Protzer, Ulrike; Abele, Rubert

    2014-01-01

    ABSTRACT CD4+ T lymphocytes play a central role in the immune system and mediate their function after recognition of their respective antigens presented on major histocompatibility complex II (MHCII) molecules on antigen-presenting cells (APCs). Conventionally, phagocytosed antigens are loaded on MHCII for stimulation of CD4+ T cells. Certain epitopes, however, can be processed directly from intracellular antigens and are presented on MHCII (endogenous MHCII presentation). Here we characterized the MHCII antigen presentation pathways that are possibly involved in the immune response upon vaccination with modified vaccinia virus Ankara (MVA), a promising live viral vaccine vector. We established CD4+ T-cell lines specific for MVA-derived epitopes as tools for in vitro analysis of MHCII antigen processing and presentation in MVA-infected APCs. We provide evidence that infected APCs are able to directly transfer endogenous viral proteins into the MHCII pathway to efficiently activate CD4+ T cells. By using knockout mice and chemical inhibitory compounds, we further elucidated the molecular basis, showing that among the various subcellular pathways investigated, proteasomes and autophagy are key players in the endogenous MHCII presentation during MVA infection. Interestingly, although proteasomal processing plays an important role, neither TAP nor LAMP-2 was found to be involved in the peptide transport. Defining the molecular mechanism of MHCII presentation during MVA infection provides a basis for improving MVA-based vaccination strategies by aiming for enhanced CD4+ T-cell activation by directing antigens into the responsible pathways. IMPORTANCE This work contributes significantly to our understanding of the immunogenic properties of pathogens by deciphering antigen processing pathways contributing to efficient activation of antigen-specific CD4+ T cells. We identified autophagosome formation, proteasomal activity, and lysosomal integrity as being crucial for

  14. Upregulation of CD94 on CD8+T Cells in Anterior Chamber-Associated Immune Deviation

    PubMed Central

    He, Hao; Yang, Peizeng; Jiang, Liqiong; Zhang, Junfeng; Zhao, Changlin; Chen, Lina; Lin, Xiaomin; Zhou, Hongyan; Kijlstra, Aize

    2008-01-01

    Background CD8+ regulatory T cells (Treg) have been considered to be involved in a model of ocular-induced tolerance, known as anterior chamber-associated immune deviation (ACAID). The phenotype and characteristics of CD8+Treg in ACAID remain only poorly understood. Recent studies have reported that the CD94-Qa-1 system is implicated in the induction of ACAID CD8+Treg, but the functions and characteristics of CD8+CD94+T cells remain unclear. Results Both mRNA and protein of CD94 and NKG2A were markedly up-regulated on splenic CD8+T cells of ACAID mice compared with controls. Flow cytometric analysis showed that very few CD8+CD94+T cells express granzyme B, perforin and Foxp3. CD8+CD94+T cells, but not CD8+CD94-T cells, magnetically isolated from the spleens of ACAID mice, produced large amounts of TGF-beta1 and exhibited suppressive activity in vitro. Neutralization of TGF-beta1 caused reversal of suppression mediated by CD8+CD94+T cells. Conclusion CD8+CD94+T cells from ACAID mice exhibited suppressive activity in association with enhanced expression of TGF-beta1, suggesting that CD8+Treg are mainly distributed in CD94+T cell subpopulations. PMID:18816417

  15. Acute virus control mediated by licensed NK cells sets primary CD8+ T cell dependence on CD27 costimulation1,2,3

    PubMed Central

    Teoh, Jeffrey J.; Gamache, Awndre E.; Gillespie, Alyssa L.; Stadnisky, Michael D.; Yagita, Hideo; Bullock, Timothy N.J.; Brown, Michael G.

    2016-01-01

    Natural killer (NK) cells represent a critical first-line of immune defense against a bevy of viral pathogens, and infection can provoke them to mediate both supportive and suppressive effects on virus-specific adaptive immunity. In mice expressing MHC I Dk, a major MCMV resistance factor and self-ligand of the inhibitory Ly49G2 (G2) receptor, licensed G2+ NK cells provide essential host resistance against murine (M)CMV infection. Additionally G2+ NK cell responses to MCMV increase the rate and extent of dendritic cell (DC) recovery, as well as early priming of CD8+ T-cell effectors in response to MCMV. However, relatively little is known about the NK-cell effect on co-stimulatory ligand patterns displayed by DCs, or ensuing effector and memory T-cell responses. Here we found that CD27-dependent CD8+ T-cell priming and differentiation is shaped by the efficiency of NK responses to virus infection. Surprisingly, differences in specific NK responses to MCMV in Dk-disparate mice failed to distinguish early DC co-stimulatory patterns. Nonetheless, while CD27 deficiency did not impede licensed NK-mediated resistance, both CD70 and CD27 were required to efficiently prime and regulate effector CD8+ T-cell differentiation in response to MCMV, which eventually resulted in biased memory T-cell precursor formation in Dk mice. In contrast, CD8+ T-cells accrued more slowly in non-Dk mice, and eventually differentiated into terminal effector cells regardless of CD27 stimulation. Disparity in this requirement for CD27 signaling indicates that specific virus control mediated by NK cells can shape DC co-stimulatory signals needed to prime CD8+ T cells and eventual T-cell fate decisions. PMID:27798162

  16. Monoclonal antibodies to molluskan hemocyanin from Concholepas concholepas demonstrate common and specific epitopes among subunits.

    PubMed

    Oliva, Harold; Moltedo, Bruno; De Ioannes, Pablo; Faunes, Fernando; De Ioannes, Alfredo E; Becker, María Inés

    2002-10-01

    We studied the reactivity of mouse monoclonal antibodies (MAbs) against the hemocyanin from the Chilean marine gastropod Concholepas concholepas (CCH). This protein has been successfully used as a carrier to produce antibodies to haptens and peptides. All MAbs (13) belonging to IgG subclass exhibit dissociation constants (K(d)) from 1 x 10(-7) M to 1 x 10(-9) M. MAbs were characterized by enzyme-linked immunosorbant assay (ELISA) using CCH treated with different procedures, including dissociation into CCH-A and CCH-B subunits, Western blot, enzymatic digestion, chemical deglycosylation, and thermal denaturation. MAbs were classified into three categories, according to subunit specificity by ELISA. The epitope distribution shows that CCH subunits display common epitopes (group I, 5 MAbs, 1H5, 2A8, 3A5, 3B3, and 3E3), as well as specific epitopes for CCH-A subunits (group II, 3 MAbs, 1B8, 4D8, and 8E5) and for CCH-B subunits (group III, 5 MAbs, 1A4, 1E4, 2H10, 3B7, and 7B4). The results can be summarized as follows: (1). six antibodies react with thermal denatured CCH, suggesting that they recognize linear epitopes, whereas seven recognize conformational epitopes; (2). oxidation of carbohydrate moieties does not affect the binding of the MAbs; (3). enzymatic digestion of CCH decreases the reactivity of all antibodies irrespective of the protease used (elastase or trypsin); (4). bringing together the above data, in addition to epitopic complementarity analysis, we identified 12 different epitopes on the CCH molecule recognized by these MAbs. The anti-CCH MAbs presented here can be useful tools to understand the subunit organization of the CCH and its complex structure, which can explain its immunogenic and immunostimulating properties in mammals.

  17. Parasite Fate and Involvement of Infected Cells in the Induction of CD4+ and CD8+ T Cell Responses to Toxoplasma gondii

    PubMed Central

    Dupont, Christopher D.; Christian, David A.; Selleck, Elizabeth M.; Pepper, Marion; Leney-Greene, Michael; Harms Pritchard, Gretchen; Koshy, Anita A.; Wagage, Sagie; Reuter, Morgan A.; Sibley, L. David; Betts, Michael R.; Hunter, Christopher A.

    2014-01-01

    During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had phagocytosed the parasite, thus suggesting a role for these cells in priming naïve T cells. Indeed, dendritic cells were required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but not those that had phagocytosed the parasite) to naïve mice potently induced CD4+ and CD8+ T cell responses, and conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses. PMID:24722202

  18. Identification of a gag-encoded cytotoxic T-lymphocyte epitope from FBL-3 leukemia shared by Friend, Moloney, and Rauscher murine leukemia virus-induced tumors.

    PubMed Central

    Chen, W; Qin, H; Chesebro, B; Cheever, M A

    1996-01-01

    FBL-3 is a highly immunogenic murine leukemia of C57BL/6 origin induced by Friend murine leukemia virus (MuLV). Immunization of C57BL/6 mice with FBL-3 readily elicits CD8+ cytotoxic T lymphocytes (CTL) capable of lysing FBL-3 as well as syngeneic leukemias induced by Moloney and Rauscher MuLV. The aim of this current study was to identify the immunogenic epitope(s) recognized by the FBL-3-specific CD8+ CTL. A series of FBL-3-specific CD8+ CTL clones were generated from C57BL/6 mice immunized to FBL-3. The majority of CTL clones (32 of 38) were specific for F-MuLV gag-encoded antigen. By using a series of recombinant vaccinia viruses expressing full-length and truncated F-MuLV gag genes, the antigenic epitope recognized by the FBL-3 gag-specific CTL clones, as well as by bulk-cultured CTL from spleens of mice immune to FBL-3, was localized to the leader sequence of gPr80gag protein. The precise amino acid sequence of the CTL epitope in the leader sequence was identified as CCLCLTVFL (positions 85-93) by examining lysis of targets incubated with a series of synthetic leader sequence peptides. No evidence of other CTL epitopes in the gPr80gag or Pr65gag core virion structural polyproteins was found. The identity of CCLCLTVFL as the target peptide was validated by showing that immunization with the peptide elicited CTL that lysed FBL-3. The CTL elicited by the Gag peptide also specifically lysed syngeneic leukemia cells induced by Moloney and Rauscher MuLV (MBL-2 and RBL-5). The transmembrane peptide was shown to be the major gag-encoded antigenic epitope recognized by bulk-cultured CTL derived from C57BL/6 mice immunized to MBL-2 or RBL-5. Thus, the CTL epitope of FBL-3 is localized to the transmembrane anchor domain of the nonstructural Gag polyprotein and is shared by leukemia/lymphoma cell lines induced by Friend, Moloney, and Rauscher MuLV. PMID:8892898

  19. Construction and characterization of 3A-epitope-tagged foot-and-mouth disease virus.

    PubMed

    Ma, Xueqing; Li, Pinghua; Sun, Pu; Bai, Xingwen; Bao, Huifang; Lu, Zengjun; Fu, Yuanfang; Cao, Yimei; Li, Dong; Chen, Yingli; Qiao, Zilin; Liu, Zaixin

    2015-04-01

    Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids (aa) in most FMDVs examined to date. Specific deletion in the FMDV 3A protein has been associated with the inability of FMDV to grow in primary bovine cells and cause disease in cattle. However, the aa residues playing key roles in these processes are poorly understood. In this study, we constructed epitope-tagged FMDVs containing an 8 aa FLAG epitope, a 9 aa haemagglutinin (HA) epitope, and a 10 aa c-Myc epitope to substitute residues 94-101, 93-101, and 93-102 of 3A protein, respectively, using a recently developed O/SEA/Mya-98 FMDV infectious cDNA clone. Immunofluorescence assay (IFA), Western blot and sequence analysis showed that the epitope-tagged viruses stably maintained and expressed the foreign epitopes even after 10 serial passages in BHK-21 cells. The epitope-tagged viruses displayed growth properties and plaque phenotypes similar to those of the parental virus in BHK-21 cells. However, the epitope-tagged viruses exhibited lower growth rates and smaller plaque size phenotypes than those of the parental virus in primary fetal bovine kidney (FBK) cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the decreased ability of FMDV to replicate in primary bovine cells was not associated with the length of 3A, and the genetic determinant thought to play key role in decreased ability to replicate in primary bovine cells could be reduced from 93-102 residues to 8 aa residues at positions 94-101 in 3A protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity

    PubMed Central

    Almeida, Jorge R.; Sauce, Delphine; Price, David A.; Papagno, Laura; Shin, So Youn; Moris, Arnaud; Larsen, Martin; Pancino, Gianfranco; Douek, Daniel C.; Autran, Brigitte; Sáez-Cirión, Asier

    2009-01-01

    CD8+ T cells are major players in the immune response against HIV. However, recent failures in the development of T cell–based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell–mediated efficacy. CD8+ T cells from HIV-1–infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8+ T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8+ T cells from infected donors. We report that attributes of CD8+ T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8+ T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8+ T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy. PMID:19389882

  1. Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity.

    PubMed

    Almeida, Jorge R; Sauce, Delphine; Price, David A; Papagno, Laura; Shin, So Youn; Moris, Arnaud; Larsen, Martin; Pancino, Gianfranco; Douek, Daniel C; Autran, Brigitte; Sáez-Cirión, Asier; Appay, Victor

    2009-06-18

    CD8(+) T cells are major players in the immune response against HIV. However, recent failures in the development of T cell-based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell-mediated efficacy. CD8(+) T cells from HIV-1-infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8(+) T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8(+) T cells from infected donors. We report that attributes of CD8(+) T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8(+) T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8(+) T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy.

  2. Mosaic vaccines elicit CD8+ T cell responses in monkeys that confer immune coverage of diverse HIV strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Will; Korber, Bette

    2009-01-01

    Creation of a successful HIV vaccine will require the development of a strategy to generate cellular immunity with sufficient cross-clade breadth to deal with the extreme genetic diversity of the virus. Polyvalent mosaic immunogens derived from in silica recombination of natural strains of HIV are designed to induce cellular immune responses that maximally cover the sequence diversity of circulating virus isolates. Immunization of rhesus monkeys with plasmid DNA and recombinant vaccinia virus vaccine constructs expressing either consensus immunogens or polyvalent mosaic immunogens elicited a CD4+ T lymphocyte-biased response with comparably broad epitope-specific total T lymphocyte specificities. However, immunization with themore » mosaic immunogens induced HIV-specific CD8+ T lymphocyte responses with markedly greater depth and breadth. Therefore, the use of polyvalent mosaic immunogens is a promising strategy for a global vaccine for HIV.« less

  3. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves’ Disease

    PubMed Central

    Inaba, Hidefumi; De Groot, Leslie J.; Akamizu, Takashi

    2016-01-01

    Graves’ disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments. PMID:27602020

  4. [In silico identification of molecular mimicry between T-cell epitopes of Neisseria meningitidis B and the human proteome].

    PubMed

    Batista-Duharte, Alexander; Téllez, Bruno; Tamayo, Maybia; Portuondo, Deivys; Cabrera, Osmir; Sierra, Gustavo; Pérez, Oliver

    2013-07-01

    The objective of the study was to determine the T-cell epitopes of four of the most frequent antigenic proteins of the outer membrane of Neisseria meningitidis B, and to identify the most relevant sites for molecular mimicry with T-cell epitopes in humans. In order to do so, an in silico study -a type of study that uses bioinformatic tools- was carried out using SWISS-PROT/TrEMBL, SYFPEITHI and FASTA databases, which helped to determine the protein sequences, CD4 and CD8 T-cell epitope prediction, as well as the molecular mimicry with humans, respectively. Molecular similarity was found in several human proteins present in different organs and tissues such as: liver, skin and epithelial tissues, brain, lymphatic system and testicles. Of these, those found in testicles were more similar, showing the highest frequency of mimetic sequences. This finding shed light on the success of N. meningitidis B to colonize human tissues and the failure of certain vaccines against this bacterium, and it even helps to explain possible autoimmune reactions associated with the infection or vaccination.

  5. Plasmacytoid Dendritic Cells Require Direct Infection To Sustain the Pulmonary Influenza A Virus-Specific CD8 T Cell Response

    PubMed Central

    Hemann, Emily A.; Sjaastad, Louisa E.; Langlois, Ryan A.

    2015-01-01

    ABSTRACT Following influenza A virus (IAV) infection, development of a robust IAV-specific CD8 T cell response is required for clearance of primary infection and enhances memory protection. Following IAV infection, plasmacytoid dendritic cells (pDC) or CD8α+ DC regulate pulmonary effector CD8 T cell responses within the lung. Without this DC-T cell interaction, insufficient effector CD8 T cells are maintained in the lungs, leading to enhanced morbidity and mortality. Previous studies have demonstrated that pDC are capable of classical presentation or cross-presentation of IAV antigens and could potentially regulate IAV-specific CD8 T cell responses through either mechanism. Our results demonstrate that pDC from the lungs of donor mice infected with an IAV that is not able to replicate in hematopoietic cells (142t-IAV), unlike donor pDC isolated from the lungs of control infected mice, are not able to rescue the host IAV-specific CD8 T cell response from apoptosis. This indicates that pDC must utilize the direct presentation pathway for this rescue. This inability of pDC from 142t-IAV donors to rescue the IAV-specific CD8 T cell response is not due to differences in the overall ability of 142t-IAV to replicate within the lungs or generate defective viral genomes or to differences in levels of costimulatory molecules required for this interaction. We further demonstrate that bypassing the antigen presentation pathway by coating the 142t-IAV pDC with IAV peptide epitopes restores their ability to rescue the IAV-specific CD8 T cell response. IMPORTANCE IAV continues to be a global health burden, infecting 5 to 20% of the global population annually. Continued investigation into the mechanisms that mediate protective immune responses against IAV is important to improving current vaccination and antiviral strategies antagonistic toward IAV. Our findings presented herein demonstrate a key requirement for pDC promotion of effector CD8 T cell survival: that rather than

  6. Plasmacytoid Dendritic Cells Require Direct Infection To Sustain the Pulmonary Influenza A Virus-Specific CD8 T Cell Response.

    PubMed

    Hemann, Emily A; Sjaastad, Louisa E; Langlois, Ryan A; Legge, Kevin L

    2015-12-30

    Following influenza A virus (IAV) infection, development of a robust IAV-specific CD8 T cell response is required for clearance of primary infection and enhances memory protection. Following IAV infection, plasmacytoid dendritic cells (pDC) or CD8α(+) DC regulate pulmonary effector CD8 T cell responses within the lung. Without this DC-T cell interaction, insufficient effector CD8 T cells are maintained in the lungs, leading to enhanced morbidity and mortality. Previous studies have demonstrated that pDC are capable of classical presentation or cross-presentation of IAV antigens and could potentially regulate IAV-specific CD8 T cell responses through either mechanism. Our results demonstrate that pDC from the lungs of donor mice infected with an IAV that is not able to replicate in hematopoietic cells (142t-IAV), unlike donor pDC isolated from the lungs of control infected mice, are not able to rescue the host IAV-specific CD8 T cell response from apoptosis. This indicates that pDC must utilize the direct presentation pathway for this rescue. This inability of pDC from 142t-IAV donors to rescue the IAV-specific CD8 T cell response is not due to differences in the overall ability of 142t-IAV to replicate within the lungs or generate defective viral genomes or to differences in levels of costimulatory molecules required for this interaction. We further demonstrate that bypassing the antigen presentation pathway by coating the 142t-IAV pDC with IAV peptide epitopes restores their ability to rescue the IAV-specific CD8 T cell response. IAV continues to be a global health burden, infecting 5 to 20% of the global population annually. Continued investigation into the mechanisms that mediate protective immune responses against IAV is important to improving current vaccination and antiviral strategies antagonistic toward IAV. Our findings presented herein demonstrate a key requirement for pDC promotion of effector CD8 T cell survival: that rather than utilizing cross

  7. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    PubMed

    Sandalova, Elena; Laccabue, Diletta; Boni, Carolina; Tan, Anthony T; Fink, Katja; Ooi, Eng Eong; Chua, Robert; Shafaeddin Schreve, Bahar; Ferrari, Carlo; Bertoletti, Antonio

    2010-08-19

    Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza) pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR), proliferation (Ki-67/Bcl-2(low)) and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV). CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza) were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  8. Collaborative Enhancement of Endothelial Targeting of Nanocarriers by Modulating Platelet-Endothelial Cell Adhesion Molecule-1/CD31 Epitope Engagement.

    PubMed

    Chacko, Ann-Marie; Han, Jingyan; Greineder, Colin F; Zern, Blaine J; Mikitsh, John L; Nayak, Madhura; Menon, Divya; Johnston, Ian H; Poncz, Mortimer; Eckmann, David M; Davies, Peter F; Muzykantov, Vladimir R

    2015-07-28

    Nanocarriers (NCs) coated with antibodies (Abs) to extracellular epitopes of the transmembrane glycoprotein PECAM (platelet endothelial cell adhesion molecule-1/CD31) enable targeted drug delivery to vascular endothelial cells. Recent studies revealed that paired Abs directed to adjacent, yet distinct epitopes of PECAM stimulate each other's binding to endothelial cells in vitro and in vivo ("collaborative enhancement"). This phenomenon improves targeting of therapeutic fusion proteins, yet its potential role in targeting multivalent NCs has not been addressed. Herein, we studied the effects of Ab-mediated collaborative enhancement on multivalent NC spheres coated with PECAM Abs (Ab/NC, ∼180 nm diameter). We found that PECAM Abs do mutually enhance endothelial cell binding of Ab/NC coated by paired, but not "self" Ab. In vitro, collaborative enhancement of endothelial binding of Ab/NC by paired Abs is modulated by Ab/NC avidity, epitope selection, and flow. Cell fixation, but not blocking of endocytosis, obliterated collaborative enhancement of Ab/NC binding, indicating that the effect is mediated by molecular reorganization of PECAM molecules in the endothelial plasmalemma. The collaborative enhancement of Ab/NC binding was affirmed in vivo. Intravascular injection of paired Abs enhanced targeting of Ab/NC to pulmonary vasculature in mice by an order of magnitude. This stimulatory effect greatly exceeded enhancement of Ab targeting by paired Abs, indicating that '"collaborative enhancement"' effect is even more pronounced for relatively large multivalent carriers versus free Abs, likely due to more profound consequences of positive alteration of epitope accessibility. This phenomenon provides a potential paradigm for optimizing the endothelial-targeted nanocarrier delivery of therapeutic agents.

  9. Preexisting CD4+ T-Cell Immunity in Human Population to Avian Influenza H7N9 Virus: Whole Proteome-Wide Immunoinformatics Analyses

    PubMed Central

    Duvvuri, Venkata R.; Duvvuri, Bhargavi; Alice, Christilda; Wu, Gillian E.; Gubbay, Jonathan B.; Wu, Jianhong

    2014-01-01

    In 2013, a novel avian influenza H7N9 virus was identified in human in China. The antigenically distinct H7N9 surface glycoproteins raised concerns about lack of cross-protective neutralizing antibodies. Epitope-specific preexisting T-cell immunity was one of the protective mechanisms in pandemic 2009 H1N1 even in the absence of cross-protective antibodies. Hence, the assessment of preexisting CD4+ T-cell immunity to conserved epitopes shared between H7N9 and human influenza A viruses (IAV) is critical. A comparative whole proteome-wide immunoinformatics analysis was performed to predict the CD4+ T-cell epitopes that are commonly conserved within the proteome of H7N9 in reference to IAV subtypes (H1N1, H2N2, and H3N2). The CD4+ T-cell epitopes that are commonly conserved (∼556) were further screened against the Immune Epitope Database (IEDB) to validate their immunogenic potential. This analysis revealed that 45.5% (253 of 556) epitopes are experimentally proven to induce CD4+ T-cell memory responses. In addition, we also found that 23.3% of CD4+ T-cell epitopes have ≥90% of sequence homology with experimentally defined CD8+ T-cell epitopes. We also conducted the population coverage analysis across different ethnicities using commonly conserved CD4+ T-cell epitopes and corresponding HLA-DRB1 alleles. Interestingly, the indigenous populations from Canada, United States, Mexico and Australia exhibited low coverage (28.65% to 45.62%) when compared with other ethnicities (57.77% to 94.84%). In summary, the present analysis demonstrate an evidence on the likely presence of preexisting T-cell immunity in human population and also shed light to understand the potential risk of H7N9 virus among indigenous populations, given their high susceptibility during previous pandemic influenza events. This information is crucial for public health policy, in targeting priority groups for immunization programs. PMID:24609014

  10. HIV-TB coinfection impairs CD8(+) T-cell differentiation and function while dehydroepiandrosterone improves cytotoxic antitubercular immune responses.

    PubMed

    Suarez, Guadalupe V; Angerami, Matías T; Vecchione, María B; Laufer, Natalia; Turk, Gabriela; Ruiz, Maria J; Mesch, Viviana; Fabre, Bibiana; Maidana, Patricia; Ameri, Diego; Cahn, Pedro; Sued, Omar; Salomón, Horacio; Bottasso, Oscar A; Quiroga, María F

    2015-09-01

    Tuberculosis (TB) is the leading cause of death among HIV-positive patients. The decreasing frequencies of terminal effector (TTE ) CD8(+) T cells may increase reactivation risk in persons latently infected with Mycobacterium tuberculosis (Mtb). We have previously shown that dehydroepiandrosterone (DHEA) increases the protective antitubercular immune responses in HIV-TB patients. Here, we aimed to study Mtb-specific cytotoxicity, IFN-γ secretion, memory status of CD8(+) T cells, and their modulation by DHEA during HIV-TB coinfection. CD8(+) T cells from HIV-TB patients showed a more differentiated phenotype with diminished naïve and higher effector memory and TTE T-cell frequencies compared to healthy donors both in total and Mtb-specific CD8(+) T cells. Notably, CD8(+) T cells from HIV-TB patients displayed higher Terminal Effector (TTE ) CD45RA(dim) proportions with lower CD45RA expression levels, suggesting a not fully differentiated phenotype. Also, PD-1 expression levels on CD8(+) T cells from HIV-TB patients increased although restricted to the CD27(+) population. Interestingly, DHEA plasma levels positively correlated with TTE in CD8(+) T cells and in vitro DHEA treatment enhanced Mtb-specific cytotoxic responses and terminal differentiation in CD8(+) T cells from HIV-TB patients. Our data suggest that HIV-TB coinfection promotes a deficient CD8(+) T-cell differentiation, whereas DHEA may contribute to improving antitubercular immunity by enhancing CD8(+) T-cell functions during HIV-TB coinfection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Gene transfer of Hodgkin cell lines via multivalent anti-CD30 scFv displaying bacteriophage.

    PubMed

    Chung, Yoon-Suk A; Sabel, Katja; Krönke, Martin; Klimka, Alexander

    2008-04-16

    The display of binding ligands, such as recombinant antibody fragments, on the surface of filamentous phage makes it possible to specifically attach these phage particles to target cells. After uptake of the phage, their internal single-stranded DNA is processed by the host cell, which allows transient expression of an encoded eukaryotic gene cassette. This opens the possibility to use bacteriophage as vectors for targeted gene therapy, although the transduction efficiency is very low. Here we demonstrate the display of an anti-CD30 single chain variable fragment fused to the major coat protein pVIII on the surface of bacteriophage. These phage particles showed an improved binding and transduction efficiency of CD30 positive Hodgkin-lymphoma cells, compared to bacteriophage with the anti-CD30 single chain variable fragment fused to the minor coat protein pIII. We can conclude from the results that the postulated multivalency of the anti-CD30-pVIII displaying bacteriophage combined with disseminated display of the anti-CD30 scFv on the whole particle surface is responsible for the improved gene transfer rate. These results mark an important step towards the use of phage particles as a cheap and safe gene transfer vehicle for the gene delivery of the desired target cells via their specific surface receptors.

  12. CD8{sup +}CD25{sup +} T cells reduce atherosclerosis in apoE(−/−) mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning

    2014-01-17

    Highlights: •The role of a sub-population of CD8{sup +} T cells with suppressor functions was investigated in atherosclerosis. •CD8{sup +}CD25{sup +} T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8{sup +}CD25{sup +} T cells reduced CD4{sup +} T cell proliferation and CD8{sup +} cytotoxic activity in vitro. •Adoptive transfer of CD8{sup +}CD25{sup +} T cells significantly reduced atherosclerosis. •CD8{sup +}CD25{sup +} T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8{sup +} T cells are involved in atherosclerosis but the specific subtypes have yet to be defined.more » CD8{sup +}CD25{sup +} T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8{sup +}CD25{sup +} T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8{sup +}CD25{sup +} T cells from apoE(−/−) mice. Depletion of CD8{sup +}CD25{sup +} from total CD8{sup +} T cells rendered higher cytolytic activity of the remaining CD8{sup +}CD25{sup −} T cells. Adoptive transfer of CD8{sup +}CD25{sup +} T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4{sup +} T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis.« less

  13. CD3-T cell receptor modulation is selectively induced in CD8 but not CD4 lymphocytes cultured in agar.

    PubMed Central

    Oudrhiri, N; Farcet, J P; Gourdin, M F; M'Bemba, E; Gaulard, P; Katz, A; Divine, M; Galazka, A; Reyes, F

    1990-01-01

    The CD3-T cell receptor (TcR) complex is central to the immune response. Upon binding by specific ligands, internalized CD3-TcR molecules increase, and either T cell response or unresponsiveness may ensue depending on the triggering conditions. Using semi-solid agar culture, we have shown previously that quiescent CD4 but not CD8 lymphocytes generate clonal colonies under phytohaemagglutinin stimulation. Here we have demonstrated that the agar induces selective CD3-TcR modulation in the CD8 and not in the CD4 subset. CD8 lymphocytes preactivated in liquid culture and recultured in agar with exogenous recombinant interleukin-2 generate colonies with a modulated CD3-TcR surface expression. The peptides composing the CD3-TcR complex are synthesized in CD8 colonies as well as in CD4; however, the CD3 gamma chain is phosphorylated at a higher level in CD8 colonies. A component of the agar polymer, absent in agarose, appears to be the ligand that induces differential CD3-TcR modulation in the CD8 subset. In contrast to agar culture, CD8 colonies can be derived from quiescent CD8 lymphocytes in agarose. These CD8 colonies express unmodulated CD-TcR. CD3-TcR modulation with anti-CD3 monoclonal antibody prior to culturing in agarose inhibits the colony formation. We conclude that given triggering conditions can result in both CD3-TcR modulation and inhibition of the proliferative response selectively in the CD8 lymphocyte subset and not in the CD4. Images Fig. 3 Fig. 4 Fig. 5 PMID:2146997

  14. Requirement for CD4 T Cell Help in Generating Functional CD8 T Cell Memory

    NASA Astrophysics Data System (ADS)

    Shedlock, Devon J.; Shen, Hao

    2003-04-01

    Although primary CD8 responses to acute infections are independent of CD4 help, it is unknown whether a similar situation applies to secondary responses. We show that depletion of CD4 cells during the recall response has minimal effect, whereas depletion during the priming phase leads to reduced responses by memory CD8 cells to reinfection. Memory CD8 cells generated in CD4+/+ mice responded normally when transferred into CD4-/- hosts, whereas memory CD8 cells generated in CD4-/- mice mounted defective recall responses in CD4+/+ adoptive hosts. These results demonstrate a previously undescribed role for CD4 help in the development of functional CD8 memory.

  15. Functional and phenotypic characterization of CD8+CD28+ and CD28- T cells in atopic individuals sensitized to Dermatophagoides pteronyssinus.

    PubMed

    Lourenço, O; Fonseca, A M; Paiva, A; Arosa, F A; Taborda-Barata, L

    2006-01-01

    CD8+ T suppressor cells may play a role in immunoregulation. Recent studies have characterized this population by the lack of the CD28 molecule. These CD8+CD28 T cells differ phenotypically and functionally from CD8 + CD28 + T cells. Little is known about CD8 + CD28 cells in atopy. Our aim was to analyze the phenotype and functional properties of CD8 + CD28T cells in atopic and non-atopic individuals. Peripheral blood mononuclear cells (PBMC) were obtained after density gradient centrifugation. CD8 + CD28 and CD8 + CD28 + T cells were isolated using immunomagnetic beads. Relative percentages of these cells and expression of several phenotypic markers were analyzed by flow cytometry. Proliferation was assessed by thymidine incorporation in isolated populations and in co-cultures with PBMC using Dermatophagoides pteronyssinus as stimulus. Cytokine synthesis was evaluated in culture supernatants by cytometric bead array. The relative percentages of CD8+CD28 T cells and their phenotypic expression in atopic and non-atopic volunteers were not significantly different. However, CD8 + CD28 T cells showed greater proliferation than did CD8+CD28+ T cells when stimulated with D. pteronyssinus, although cytokine synthesis patterns were similar. CD8+CD28 co-cultures with PBMC showed greater proliferation than CD8+CD28+ T cell co-cultures, but cytokine synthesis patterns were not different. Our data confirm phenotypic and functional differences between CD28+ and CD28 T cells, irrespective of atopic status. Purified human CD8+CD28 T cells, freshly isolated from peripheral blood, do not have suppressor properties on allergen-specific proliferation or on cytokine synthesis in PBMC.

  16. Vaccination potential of B and T epitope-enriched NP and M2 against Influenza A viruses from different clades and hosts

    PubMed Central

    Esmagambetov, Ilias; Bagaev, Alexander; Pichugin, Alexey; Lysenko, Andrey; Shcherbinin, Dmitry; Sedova, Elena; Logunov, Denis; Shmarov, Maxim; Ataullakhanov, Ravshan; Naroditsky, Boris; Gintsburg, Alexander

    2018-01-01

    To avoid outbreaks of influenza virus epidemics and pandemics among human populations, modern medicine requires the development of new universal vaccines that are able to provide protection from a wide range of influenza A virus strains. In the course of development of a universal vaccine, it is necessary to consider that immunity must be generated even against viruses from different hosts because new human epidemic virus strains have their origins in viruses of birds and other animals. We have enriched conserved viral proteins–nucleoprotein (NP) and matrix protein 2 (M2)—by B and T-cell epitopes not only human origin but also swine and avian origin. For this purpose, we analyzed M2 and NP sequences with respect to changes in the sequences of known T and B-cell epitopes and chose conserved and evolutionarily significant epitopes. Eventually, we found consensus sequences of M2 and NP that have the maximum quantity of epitopes that are 100% coincident with them. Consensus epitope-enriched amino acid sequences of M2 and NP proteins were included in a recombinant adenoviral vector. Immunization with Ad5-tet-M2NP induced strong CD8 and CD4 T cells responses, specific to each of the encoded antigens, i.e. M2 and NP. Eight months after immunization with Ad5-tet-M2NP, high numbers of M2- and NP-responding “effector memory” CD44posCD62neg T cells were found in the mouse spleens, which revealed a long-term T cell immune memory conferred by the immunization. In all, the challenge experiments showed an extraordinarily wide-ranging efficacy of protection by the Ad5-tet-M2NP vaccine, covering 5 different heterosubtypes of influenza A virus (2 human, 2 avian and 1 swine). PMID:29377916

  17. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer

    PubMed Central

    Severson, Jill J.; Serracino, Hilary S.; Mateescu, Valerica; Raeburn, Christopher D.; C.McIntyre, Robert; Sams, Sharon B.; Haugen, Bryan R.; French, Jena D.

    2015-01-01

    Regional metastatic differentiated thyroid cancer (mDTC) provides a unique model in which to study the tumor-immune interface. These lymph node (LN) metastases persist for years, generally without progression to distant metastases. While the immune system likely impedes disease progression, it is unsuccessful in eliminating disease. Our previous studies revealed that programmed death-1 (PD-1)+ T cells were enriched in tumor-involved lymph nodes (TILN). Tumor-associated leukocytes and tumor cells were collected from grossly involved LNs from 12 patients to further characterize the phenotype and functional potential of mDTC-associated PD-1+ T cells. PD-1+CD4+ and PD-1+CD8+ T cells were enriched in 8/12 TILN samples. PD-1+ T cells co-expressed Tim-3 and CD69 and failed to down-regulate CD27. CD8+ T cells, but not CD4+ T cells, from these samples were variably deficient in their ability to produce effector cytokines when compared to control TILNs that lacked resident PD-1+ T cells. PD-1+CD8+ T cells were capable of exocytosis but lacked intracellular perforin. Surprisingly, T-cell proliferative capacity was largely maintained in all samples. Thus, while PD-1 expression by mDTC-associated CD8+ T cells was associated with dysfunction, exhaustion was not complete. Notably, molecular markers of exhaustion did not translate to dysfunction in all samples or in CD4+ T cells. Regulatory T (Treg) cells, PD-L1, and galectin-9 were commonly found in mDTC and likely contributed to the initiation of T-cell exhaustion and disease progression. Therapies that release the effects of PD-1 and Tim-3 and reduce the suppressive effects of Tregs may encourage tumor elimination in patients with mDTC. PMID:25701326

  18. Specificities of Human CD4+ T Cell Responses to an Inactivated Flavivirus Vaccine and Infection: Correlation with Structure and Epitope Prediction

    PubMed Central

    Schwaiger, Julia; Aberle, Judith H.; Stiasny, Karin; Knapp, Bernhard; Schreiner, Wolfgang; Fae, Ingrid; Fischer, Gottfried; Scheinost, Ondrej; Chmelik, Vaclav

    2014-01-01

    ABSTRACT Tick-borne encephalitis (TBE) virus is endemic in large parts of Europe and Central and Eastern Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to the mosquito-borne yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated whole-virus vaccine can effectively prevent clinical disease. Neutralizing antibodies are directed to the viral envelope protein (E) and an accepted correlate of immunity. However, data on the specificities of CD4+ T cells that recognize epitopes in the viral structural proteins and thus can provide direct help to the B cells producing E-specific antibodies are lacking. We therefore conducted a study on the CD4+ T cell response against the virion proteins in vaccinated people in comparison to TBE patients. The data obtained with overlapping peptides in interleukin-2 (IL-2) enzyme-linked immunosorbent spot (ELISpot) assays were analyzed in relation to the three-dimensional structures of the capsid (C) and E proteins as well as to epitope predictions based on major histocompatibility complex (MHC) class II peptide affinities. In the C protein, peptides corresponding to two out of four alpha helices dominated the response in both vaccinees and patients, whereas in the E protein concordance of immunodominance was restricted to peptides of a single domain (domain III). Epitope predictions were much better for C than for E and were especially erroneous for the transmembrane regions. Our data provide evidence for a strong impact of protein structural features that influence peptide processing, contributing to the discrepancies observed between experimentally determined and computer-predicted CD4+ T cell epitopes. IMPORTANCE Tick-borne encephalitis virus is endemic in large parts of Europe and Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to yellow fever, dengue, Japanese encephalitis, and

  19. The CD4+/CD8+ Ratio in Pulmonary Tuberculosis: Systematic and Meta-Analysis Article.

    PubMed

    Yin, Yongmei; Qin, Jie; Dai, Yaping; Zeng, Fanwei; Pei, Hao; Wang, Jun

    2015-02-01

    The ratio of CD4+/CD8+ has been used as a clinically index to evaluate patients' immunity. Numerous researchers have studied CD4+/CD8+ ratio in pulmonary tuberculosis (PTB) patients. However, the change of CD4+/CD8+ ratio remains controversial. We present a meta-analysis of 15 case-control studies to identify the change of CD4+/CD8+ ratio in PTB patients. We assessed heterogeneity of effect estimates within each group using I(2) test. Subgroup analysis was performed to explore the potential source of heterogeneity. To investigate further the potential publication bias, we visually examined the funnel plots. For robustness of results, we performed sensitivity analysis by removing studies. Data entry and analyses were carried out with RevMan 5.2 (The Nordic Cochrane Centre). Twelve peripheral blood studies were categorized into two subgroups. Eight studies presented a significant decrease of CD4+/CD8+ ratio in PTB cases compared to healthy subjects (SMD: -0.45; 95% CI -0.65--0.25; I(2) = 7%). Other four studies researched on the newly diagnosed patients presented a more seriously and significantly decrease (SMD: -2.17; 95% CI -2.61--1.74; I(2) = 37%). The pooled analysis of bronchoalveolar lavage fluid (BALF) studies showed a significant increase of CD4+/CD8+ ratio using Flow Cytometry (FCM) (SMD: 4.75; 95% CI 3.44-6.05; I(2) =0%). The present meta-analysis indicated that there was a synthetic evidence for the reduced CD4+/CD8+ ratio in peripheral blood of PTB patients, especially newly diagnosed cases. However, the CD4+/CD8+ ratio in BALF was increased using method of FCM.

  20. CD8+ T Cells Primed in the Periphery Provide Time-Bound Immune-Surveillance to the Central Nervous System

    PubMed Central

    Young, Kevin G.; MacLean, Susanne; Dudani, Renu; Krishnan, Lakshmi; Sad, Subash

    2016-01-01

    After vaccination, memory CD8+ T cells migrate to different organs to mediate immune surveillance. In most nonlymphoid organs, following an infection, CD8+ T cells differentiate to become long-lived effector-memory cells, thereby providing long-term protection against a secondary infection. In this study, we demonstrated that Ag-specific CD8+ T cells that migrate to the mouse brain following a systemic Listeria infection do not display markers reminiscent of long-term memory cells. In contrast to spleen and other nonlymphoid organs, none of the CD8+ T cells in the brain reverted to a memory phenotype, and all of the cells were gradually eliminated. These nonmemory phenotype CD8+ T cells were found primarily within the choroid plexus, as well as in the cerebrospinal fluid-filled spaces. Entry of these CD8+ T cells into the brain was governed primarily by CD49d/VCAM-1, with the majority of entry occurring in the first week postinfection. When CD8+ T cells were injected directly into the brain parenchyma, cells that remained in the brain retained a highly activated (CD69hi) phenotype and were gradually lost, whereas those that migrated out to the spleen were CD69low and persisted long-term. These results revealed a mechanism of time-bound immune surveillance to the brain by CD8+ T cells that do not reside in the parenchyma. PMID:21715683

  1. Characterization of the CD4+ and CD8+ tumor infiltrating lymphocytes propagated with bispecific monoclonal antibodies.

    PubMed

    Wong, J T; Pinto, C E; Gifford, J D; Kurnick, J T; Kradin, R L

    1989-11-15

    To study the CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) in the antitumor response, we propagated these subsets directly from tumor tissues with anti-CD3:anti-CD8 (CD3,8) and anti-CD3:anti-CD4 (CD3,4) bispecific mAb (BSMAB). CD3,8 BSMAB cause selective cytolysis of CD8+ lymphocytes by bridging the CD8 molecules of target lymphocytes to the CD3 molecular complex of cytolytic T lymphocytes with concurrent activation and proliferation of residual CD3+CD4+ T lymphocytes. Similarly, CD3,4 BSMAB cause selective lysis of CD4+ lymphocytes whereas concurrently activating the residual CD3+CD8+ T cells. Small tumor fragments from four malignant melanoma and three renal cell carcinoma patients were cultured in medium containing CD3,8 + IL-2, CD3,4 + IL-2, or IL-2 alone. CD3,8 led to selective propagation of the CD4+ TIL whereas CD3,4 led to selective propagation of the CD8+ TIL from each of the tumors. The phenotypes of the TIL subset cultures were generally stable when assayed over a 1 to 3 months period and after further expansion with anti-CD3 mAb or lectins. Specific 51Cr release of labeled target cells that were bridged to the CD3 molecular complexes of TIL suggested that both CD4+ and CD8+ TIL cultures have the capacity of mediating cytolysis via their Ti/CD3 TCR complexes. In addition, both CD4+ and CD8+ TIL cultures from most patients caused substantial (greater than 20%) lysis of the NK-sensitive K562 cell line. The majority of CD4+ but not CD8+ TIL cultures also produced substantial lysis of the NK-resistant Daudi cell line. Lysis of the autologous tumor by the TIL subsets was assessed in two patients with malignant melanoma. The CD8+ TIL from one tumor demonstrated cytotoxic activity against the autologous tumor but negligible lysis of allogeneic melanoma targets. In conclusion, immunocompetent CD4+ and CD8+ TIL subsets can be isolated and expanded directly from small tumor fragments of malignant melanoma and renal cell carcinoma using BSMAB. The resultant

  2. Diverse cross-reactive potential and Vbeta gene usage of an epitope-specific cytotoxic T-lymphocyte population in monkeys immunized with diverse human immunodeficiency virus type 1 Env immunogens.

    PubMed

    Hulot, Sandrine L; Seaman, Michael S; Sen, Pritha; Autissier, Patrick A; Manuel, Edwin R; Letvin, Norman L

    2009-10-01

    An ideal human immunodeficiency virus type 1 (HIV-1) vaccine would elicit potent cellular and humoral immune responses that recognize diverse strains of the virus. In the present study, combined methodologies (flow cytometry, Vbeta repertoire analysis, and complementarity-determining region 3 sequencing) were used to determine the clonality of CD8(+) T lymphocytes taking part in the recognition of variant epitope peptides elicited in Mamu-A*01-positive rhesus monkeys immunized with vaccines encoding diverse HIV-1 envelopes (Envs). Monkeys immunized with clade B Envs generated CD8(+) T lymphocytes that cross-recognized both clade B- and clade C-p41A epitope peptides using a large degree of diversity in Vbeta gene usage. However, with two monkeys immunized with clade C Env, one monkey exhibited p41A-specific cytotoxic T-lymphocytes (CTL) with the capacity for cross-recognition of variant epitopes, while the other monkey did not. These studies demonstrate that the cross-reactive potential of variant p41A epitope peptide-specific CTL populations can differ between monkeys that share the same restricting major histocompatibility complex class I molecule and receive the same vaccine immunogens.

  3. CD8 T cells and Mycobacterium tuberculosis infection

    PubMed Central

    Lin, Philana Ling; Flynn, JoAnne L.

    2015-01-01

    Tuberculosis is primarily a respiratory disease that is caused by Mycobacterium tuberculosis. M. tuberculosis can persist and replicate in macrophages in vivo, usually in organized cellular structures called granulomas. There is substantial evidence for the importance of CD4 T cells in control of tuberculosis, but the evidence for a requirement for CD8 T cells in this infection has not been proven in humans. However, animal model data support a non-redundant role for CD8 T cells in control of M. tuberculosis infection, and in humans, infection with this pathogen leads to generation of specific CD8 T cell responses. These responses include classical (MHC Class I restricted) and non-classical CD8 T cells. Here, we discuss the potential roles of CD8 T cells in defense against tuberculosis, and our current understanding of the wide range of CD8 T cell types seen in M. tuberculosis infection. PMID:25917388

  4. Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease

    PubMed Central

    de Jong, Hein C.; Salentijn, Elma M. J.; Dekking, Liesbeth; Bosch, Dirk; Hamer, Rob J.; Gilissen, Ludovicus J. W. J.; van der Meer, Ingrid M.; Smulders, Marinus J. M.

    2010-01-01

    Gluten proteins from wheat can induce celiac disease (CD) in genetically susceptible individuals. Specific gluten peptides can be presented by antigen presenting cells to gluten-sensitive T-cell lymphocytes leading to CD. During the last decades, a significant increase has been observed in the prevalence of CD. This may partly be attributed to an increase in awareness and to improved diagnostic techniques, but increased wheat and gluten consumption is also considered a major cause. To analyze whether wheat breeding contributed to the increase of the prevalence of CD, we have compared the genetic diversity of gluten proteins for the presence of two CD epitopes (Glia-α9 and Glia-α20) in 36 modern European wheat varieties and in 50 landraces representing the wheat varieties grown up to around a century ago. Glia-α9 is a major (immunodominant) epitope that is recognized by the majority of CD patients. The minor Glia-α20 was included as a technical reference. Overall, the presence of the Glia-α9 epitope was higher in the modern varieties, whereas the presence of the Glia-α20 epitope was lower, as compared to the landraces. This suggests that modern wheat breeding practices may have led to an increased exposure to CD epitopes. On the other hand, some modern varieties and landraces have been identified that have relatively low contents of both epitopes. Such selected lines may serve as a start to breed wheat for the introduction of ‘low CD toxic’ as a new breeding trait. Large-scale culture and consumption of such varieties would considerably aid in decreasing the prevalence of CD. PMID:20664999

  5. Engineering parvovirus-like particles for the induction of B-cell, CD4(+) and CTL responses.

    PubMed

    Rueda, P; Martínez-Torrecuadrada, J L; Sarraseca, J; Sedlik, C; del Barrio, M; Hurtado, A; Leclerc, C; Casal, J I

    1999-09-01

    An antigen delivery system based on hybrid recombinant parvovirus-like particles (VLPs) formed by the self-assembly of the capsid VP2 protein of porcine (PPV) or canine parvovirus (CPV) expressed in insect cells with the baculovirus system has been developed. PPV:VLPs containing a CD8(+) epitope from the LCMV nucleoprotein evoked a potent CTL response and were able to protect mice against a lethal infection with the virus. Also, PPV:VLPs containing the C3:T epitope from poliovirus elicited a CD4(+)3 log(10) units) against poliovirus. The possibility of combining different types of epitopes in different positions of a single particle to stimulate different branches of the immune system paves the way to the production of more potent vaccines in a simple and cheap way.

  6. Identification of an HLA-DPB1*0501 Restricted Melan-A/MART-1 Epitope Recognized by CD4+ T Lymphocytes: Prevalence for Immunotherapy in Asian Populations

    PubMed Central

    Meng, Zhaoting; Wang, Yadong; Zhang, Guanzhong; Ke, Yuehua; Yan, Yanfeng; Wu, Liangliang; Huang, Qianrong; Zeng, Gang; Wang, Yu; Ying, Han; Jiao, Shunchang

    2015-01-01

    Summary CD4+ T lymphocytes play a central role in orchestrating an efficient antitumor immune response. Much effort has been devoted in the identification of major histocompatibility complex class II eptiopes from different tumor-associated antigens. Melan-A/ MART-1 is expressed specifically in normal melanocytes and tumor cells of 75% to 100% of melanoma patients. Melan-A/MART-1 is considered as an attractive target for cancer immunotherapy. In the past, several human leukocyte antigen (HLA) class II restricted epitopes have been identified and characterized, including Melan-A/ MART-11-20 (HLA-DR11 restricted),Melan-A/MART-125-36 (HLA-DQ6 and HLA-DR3 restricted), Melan-A/MART-127-40 (HLA-DR1 restricted), Melan-A/MART-151-73 (HLA-DR4 restricted), Melan-A/ MART-191-110 (HLA-DR52 restricted), and Melan-A/MART-1100-111 (HLA-DR1 restricted). Owing to the infrequent expression of the above HLA class II alleles in Asian populations, immunotherapy using these defined Melan-A/MART-1 peptides could potentially only benefit a very small percentage of Asian melanoma patients. In this study, we established several CD4+ T-cell clones by in vitro stimulation of peripheral blood mononuclear cells from a healthy donor by a peptide pool of 28 to 30 amino acid long peptides spanning the entire Melan-A/MART-1 protein. These CD4+ T-cell clones recognized a peptide that is embedded within Melan-A/ MART-121-50, in a HLA-DPB1*0501 restricted manner. Finally, we demonstrated that this epitope is naturally processed and presented by dendritic cells. HLA-DPB1*0501 is frequently expressed in Asian population (44.9% to 73.1%). Therefore, this epitope could provide a new tool and could significantly increase the percentage of melanoma patients that can benefit from cancer immunotherapy. PMID:21760531

  7. Defining the expression hierarchy of latent T-cell epitopes in Epstein-Barr virus infection with TCR-like antibodies

    PubMed Central

    Sim, Adrian Chong Nyi; Too, Chien Tei; Oo, Min Zin; Lai, Junyun; Eio, Michelle Yating; Song, Zhenying; Srinivasan, Nalini; Tan, Diane Ai Lin; Pang, Shyue Wei; Gan, Shu Uin; Lee, Kok Onn; Loh, Thomas Kwok Seng; Chen, Jianzhu; Chan, Soh Ha; MacAry, Paul Anthony

    2013-01-01

    Epstein-Barr virus (EBV) is a gamma herpesvirus that causes a life-long latent infection in human hosts. The latent gene products LMP1, LMP2A and EBNA1 are expressed by EBV-associated tumors and peptide epitopes derived from these can be targeted by CD8 Cytotoxic T-Lymphocyte (CTL) lines. Whilst CTL-based methodologies can be utilized to infer the presence of specific latent epitopes, they do not allow a direct visualization or quantitation of these epitopes. Here, we describe the characterization of three TCR-like monoclonal antibodies (mAbs) targeting the latent epitopes LMP1125–133, LMP2A426–434 or EBNA1562–570 in association with HLA-A0201. These are employed to map the expression hierarchy of endogenously generated EBV epitopes. The dominance of EBNA1562–570 in association with HLA-A0201 was consistently observed in cell lines and EBV-associated tumor biopsies. These data highlight the discordance between MHC-epitope density and frequencies of associated CTL with implications for cell-based immunotherapies and/or vaccines for EBV-associated disease. PMID:24240815

  8. Laser Adjuvant-Assisted Peptide Vaccine Promotes Skin Mobilization of Dendritic Cells and Enhances Protective CD8+ TEM and TRM Cell Responses against Herpesvirus Infection and Disease.

    PubMed

    Lopes, Patricia P; Todorov, George; Pham, Thanh T; Nesburn, Anthony B; Bahraoui, Elmostafa; BenMohamed, Lbachir

    2018-04-15

    There is an urgent need for chemical-free and biological-free safe adjuvants to enhance the immunogenicity of vaccines against widespread viral pathogens, such as herpes simplex virus 2 (HSV-2), that infect a large proportion of the world human population. In the present study, we investigated the safety, immunogenicity, and protective efficacy of a laser adjuvant-assisted peptide (LAP) vaccine in the B6 mouse model of genital herpes. This LAP vaccine and its laser-free peptide (LFP) vaccine analog contain the immunodominant HSV-2 glycoprotein B CD8 + T cell epitope (HSV-gB 498-505 ) covalently linked with the promiscuous glycoprotein D CD4 + T helper cell epitope (HSV-gD 49-89 ). Prior to intradermal delivery of the LAP vaccine, the lower-flank shaved skin of B6 or CD11c/eYFP transgenic mice received a topical skin treatment with 5% imiquimod cream and then was exposed for 60 s to a laser, using the FDA-approved nonablative diode. Compared to the LFP vaccine, the LAP vaccine (i) triggered mobilization of dendritic cells (DCs) in the skin, which formed small spots along the laser-treated areas, (ii) induced phenotypic and functional maturation of DCs, (iii) stimulated long-lasting HSV-specific effector memory CD8 + T cells (T EM cells) and tissue-resident CD8 + T cells (T RM cells) locally in the vaginal mucocutaneous tissues (VM), and (iv) induced protective immunity against genital herpes infection and disease. As an alternative to currently used conventional adjuvants, the chemical- and biological-free laser adjuvant offers a well-tolerated, simple-to-produce method to enhance mass vaccination for widespread viral infections. IMPORTANCE Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect a large proportion of the world population. There is an urgent need for chemical-free and biological-free safe adjuvants that would advance mass vaccination against the widespread herpes infections. The present study demonstrates that immunization with a laser

  9. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells

    PubMed Central

    Witkover, Aviva; Tanaka, Yuetsu; Fields, Paul; Bangham, Charles R. M.

    2016-01-01

    There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL) responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL), human T lymphotropic virus type-1 (HTLV-1), contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1) to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease. PMID:27893842

  10. Charge-carrier mobilities in Cd(0.8)Zn(0.2)Te single crystals used as nuclear radiation detectors

    NASA Technical Reports Server (NTRS)

    Burshtein, Z.; Jayatirtha, H. N.; Burger, A.; Butler, J. F.; Apotovsky, B.; Doty, F. P.

    1993-01-01

    Charge-carrier mobilities were measured for the first time in Cd(0.8)Zn(0.2)Te single crystals using time-of-flight measurements of charge carriers produced by short (10 ns) light pulses from a frequency-doubled Nd:YAG laser (532 nm). The electron mobility displayed a T exp -1.1 dependence on the absolute temperature T in the range 200-320 K, with a room-temperature mobility of 1350 sq cm/V s. The hole mobility displayed a T exp -2.0 dependence in the same temperature range, with a room-temperature mobility of 120 sq cm/V s. Cd(0.8)Zn(0.2)Te appears to be a very favorable material for a room-temperature electronic nuclear radiation detector.

  11. Providence of CD25+ KIR+ CD127- FOXP3- CD8+ T cell subset determines the dynamics of tumor immune surveillance.

    PubMed

    Chakraborty, Sreeparna; Bhattacharjee, Pushpak; Panda, Abir K; Kajal, Kirti; Bose, Sayantan; Sa, Gaurisankar

    2018-05-16

    CD8 + T-regulatory cells are progressively emerging as crucial components of immune system. The previous report suggests the presence of FOXP3-positive CD8 + Treg cells, similar to CD4 + Tregs, in cancer patients which produce high levels of IL10 and TGFβ for its immunosuppressive activities. At an early stage of tumor development, we have identified a subset of FOXP3-negative CD8 + CD25 + KIR + CD127 - a Treg-like subset which is essentially IFNγ-positive. However, this early induced CD8 + CD25 + CD127 - T cell subset certainly distinct from the IFNγ + CD8 + T-effecter cells. This CD8 + CD25 + CD127 - T cells are equipped with other FOXP3 - CD8 + Treg cell signature markers and can selectively suppress HLA-E-positive T FH cells in autoimmune condition as well as tumor-induced CD4 + Treg cells. Contrasting to FOXP3-positive CD8 + Tregs, this subset does not inhibit effector T cell proliferation or their functions as they are HLA-E-negative. Adoptive transfer of this early-CD8 + Treg-like subset detained tumor growth and inhibited CD4 + Treg generation that obstacles the immune surveillance and impairs cancer immunotherapy. At the late stage of tumor development, when CD4 + Treg cells dominate tumor-microenvironment, CD4 + Tregs mediate the clonal deletion of this tumor-suppressive FOXP3 - IFNγ + CD8 + CD25 + CD127 - T cells and ensures tumor immune evasion. Our findings suggest that at an early stage of the tumor, this tumor-induced IFNγ-producing FOXP3-negative CD8 + CD25 + CD127 - T cell subset can potentiate immune surveillance by targeting HLA-E-restricted CD4 + Treg cells whereas leaving the effector T cell population unaffected, and hence maneuvering their profile can open up a new avenue in cancer immunotherapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Potent CD4+ T-cell epitope P30 enhances HER2/neu-engineered dendritic cell-induced immunity against Tg1-1 breast cancer in transgenic FVBneuN mice by enhanced CD4+ T-cell-stimulated CTL responses.

    PubMed

    Xie, Y; Chen, Y; Ahmed, K A; Li, W; Ahmed, S; Sami, A; Chibbar, R; Tang, X; Tao, M; Xu, J; Xiang, J

    2013-10-01

    One of the major obstacles in human epidermal growth factor receptor (HER)-2/neu-specific trastuzumab immunotherapy of HER2/neu-positive breast cancer is the development of trastuzumab resistance, warranting the search for other therapeutic strategies. Although dendritic cell (DC) vaccines have been extensively applied in clinical trials for cancer treatment, the vaccination efficacy is still limited, mostly because DC vaccines are not sufficient to break tumor-associated antigen-specific self-immune tolerance in cancer patients. P30 (FNNFTVSFWLRVPKVSASHLE) derived from tetanus toxin is a universally potent CD4(+) T helper epitope capable of enhancing CD8(+) cytotoxic T-lymphocyte (CTL) responses. In this study, we constructed two recombinant adenoviral vectors (AdVs), AdVOVA-P30 and AdVHER2/neu-P30, expressing ovalbumin (OVA)-P30 and HER2/neu-P30. In order to enhance DC vaccine efficacy, we transfected mouse bone marrow (BM)-derived DCs with AdVOVA-P30 and AdVHER2/neu-P30 to generate engineered DCOVA-P30 and DCHER2/neu-P30 vaccines, respectively. We, then, compared CD4(+) and CD8(+) T-cell responses and antitumor immunity derived from DCOVA-P30 and DCHER2/neu-P30 vaccination in wild-type C57BL/6 and transgenic FVBneuN mice, respectively. We demonstrate that engineered DCOVA-P30 vaccine stimulates more efficient CD4(+) and CD8(+) T-cell responses than DCOVA in C57BL/6 mice. Interestingly, the increased DCOVA-P30-induced CTL responses are mainly contributed by enhanced CD4(+) T-cell-stimulated CTL proliferation. We show that DCOVA-P30 vaccine also stimulates more efficient therapeutic immunity against OVA-expressing BL6-10OVA melanoma than DCOVA in C57BL/6 mice. In addition, we demonstrate that DCHER2/neu-P30 vaccine stimulates more efficient CD4(+) and CD8(+) T-cell responses and protective immunity against HER2/neu-expressing Tg1-1 breast cancer than DCHER2/neu in transgenic FVBneuN mice with HER2/neu-specific self-immune tolerance. Therefore, the engineered DCHER

  13. Ex Vivo Restimulation of Human PBMC Expands a CD3+CD4−CD8− γδ + T Cell Population That Can Confound the Evaluation of CD4 and CD8 T Cell Responses to Vaccination

    PubMed Central

    Sedgmen, B. J.; Papalia, L.; Wang, L.; Dyson, A. R.; McCallum, H. A.; Simson, C. M.; Pearse, M. J.; Maraskovsky, E.; Hung, D.; Eomois, P. P.; Hartel, G.; Barnden, M. J.; Rockman, S. P.

    2013-01-01

    The measurement of vaccine-induced humoral and CD4+ and CD8+ cellular immune responses represents an important correlate of vaccine efficacy. Accurate and reliable assays evaluating such responses are therefore critical during the clinical development phase of vaccines. T cells play a pivotal role both in coordinating the adaptive and innate immune responses and as effectors. During the assessment of cell-mediated immunity (CMI) in subjects participating in a large-scale influenza vaccine trial, we identified the expansion of an IFN-γ-producing CD3+CD4−CD8− γδ + T cell population in the peripheral blood of 90/610 (15%) healthy subjects. The appearance of CD3+CD4−CD8− γδ + T cells in the blood of subjects was transient and found to be independent of the study cohort, vaccine group, subject gender and ethnicity, and ex vivo restimulation conditions. Although the function of this population and relevance to vaccination are unclear, their inclusion in the total vaccine-specific T-cell response has the potential to confound data interpretation. It is thus recommended that when evaluating the induction of IFN-γ-producing CD4+ and CD8+ immune responses following vaccination, the CD3+CD4−CD8− γδ + T cells are either excluded or separately enumerated from the overall frequency determination. PMID:24066003

  14. CD8+CD28+ T cells might mediate injury of cardiomyocytes in acute myocardial infarction.

    PubMed

    Zhang, Lili; Wang, Zhiyan; Wang, Di; Zhu, Jumo; Wang, Yi

    2018-06-07

    CD8 + T cells accumulate in the necrotic myocardium of acute myocardial infarction (AMI). It is unclear whether CD8 + CD28 + T cells, a specific subset of CD8 + T cells, contribute to myocardial injury. In this study, 92 consecutive patients with AMI and 28 healthy control subjects were enrolled. The frequency of CD8 + CD28 + T cells in peripheral blood samples was assayed by flow cytometry. Plasma cardiac troponin I (TNI) and left ventricular ejection fraction (LVEF) were determined. Long-term prognosis of the patients was evaluated by major adverse cardiac and cerebrovascular events (MACCE) over a 12-month follow-up period. Our findings indicated that patients with AMI who presented with high numbers of CD8 + CD28 + T cells had an increased infarction size and aggravated ventricular function. We proposed that cytotoxic CD8 + CD28 + T cell-mediated myocardial necrosis may act as a novel and alternative pathway of AMI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The Herpes Simplex Virus Latency-Associated Transcript Gene Is Associated with a Broader Repertoire of Virus-Specific Exhausted CD8+ T Cells Retained within the Trigeminal Ganglia of Latently Infected HLA Transgenic Rabbits

    PubMed Central

    Srivastava, Ruchi; Dervillez, Xavier; Khan, Arif A.; Chentoufi, Aziz A.; Chilukuri, Sravya; Shukr, Nora; Fazli, Yasmin; Ong, Nicolas N.; Afifi, Rasha E.; Osorio, Nelson; Geertsema, Roger; Nesburn, Anthony B.

    2016-01-01

    ABSTRACT Persistent pathogens, such as herpes simplex virus 1 (HSV-1), have evolved a variety of immune evasion strategies to avoid being detected and destroyed by the host's immune system. A dynamic cross talk appears to occur between the HSV-1 latency-associated transcript (LAT), the only viral gene that is abundantly transcribed during latency, and the CD8+ T cells that reside in HSV-1 latently infected human and rabbit trigeminal ganglia (TG). The reactivation phenotype of TG that are latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT+ TG) is significantly higher than TG latently infected with LAT-null mutant (i.e., LAT− TG). Whether LAT promotes virus reactivation by selectively shaping a unique repertoire of HSV-specific CD8+ T cells in LAT+ TG is unknown. In the present study, we assessed the frequency, function, and exhaustion status of TG-resident CD8+ T cells specific to 40 epitopes derived from HSV-1 gB, gD, VP11/12, and VP13/14 proteins, in human leukocyte antigen (HLA-A*0201) transgenic rabbits infected ocularly with LAT+ versus LAT– virus. Compared to CD8+ T cells from LAT– TG, CD8+ T cells from LAT+ TG (i) recognized a broader selection of nonoverlapping HSV-1 epitopes, (ii) expressed higher levels of PD-1, TIM-3, and CTLA-4 markers of exhaustion, and (iii) produced less tumor necrosis factor alpha, gamma interferon, and granzyme B. These results suggest a novel immune evasion mechanism by which the HSV-1 LAT may contribute to the shaping of a broader repertoire of exhausted HSV-specific CD8+ T cells in latently infected TG, thus allowing for increased viral reactivation. IMPORTANCE A significantly larger repertoire of dysfunctional (exhausted) HSV-specific CD8+ T cells were found in the TG of HLA transgenic rabbits latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT+ TG) than in a more restricted repertoire of functional HSV-specific CD8+ T cells in the TG of HLA transgenic rabbits latently

  16. Discovery of novel targets for multi-epitope vaccines: Screening of HIV-1 genomes using association rule mining

    PubMed Central

    Paul, Sinu; Piontkivska, Helen

    2009-01-01

    Background Studies have shown that in the genome of human immunodeficiency virus (HIV-1) regions responsible for interactions with the host's immune system, namely, cytotoxic T-lymphocyte (CTL) epitopes tend to cluster together in relatively conserved regions. On the other hand, "epitope-less" regions or regions with relatively low density of epitopes tend to be more variable. However, very little is known about relationships among epitopes from different genes, in other words, whether particular epitopes from different genes would occur together in the same viral genome. To identify CTL epitopes in different genes that co-occur in HIV genomes, association rule mining was used. Results Using a set of 189 best-defined HIV-1 CTL/CD8+ epitopes from 9 different protein-coding genes, as described by Frahm, Linde & Brander (2007), we examined the complete genomic sequences of 62 reference HIV sequences (including 13 subtypes and sub-subtypes with approximately 4 representative sequences for each subtype or sub-subtype, and 18 circulating recombinant forms). The results showed that despite inclusion of recombinant sequences that would be expected to break-up associations of epitopes in different genes when two different genomes are recombined, there exist particular combinations of epitopes (epitope associations) that occur repeatedly across the world-wide population of HIV-1. For example, Pol epitope LFLDGIDKA is found to be significantly associated with epitopes GHQAAMQML and FLKEKGGL from Gag and Nef, respectively, and this association rule is observed even among circulating recombinant forms. Conclusion We have identified CTL epitope combinations co-occurring in HIV-1 genomes including different subtypes and recombinant forms. Such co-occurrence has important implications for design of complex vaccines (multi-epitope vaccines) and/or drugs that would target multiple HIV-1 regions at once and, thus, may be expected to overcome challenges associated with viral escape

  17. TLR4 ligands LPS and MPLA differentially regulate effector and memory CD8+ T cell differentiation

    PubMed Central

    Cui, Weiguo; Joshi, Nikhil S.; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M.

    2014-01-01

    Vaccines formulated with non-replicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in antibody production has been well studied, but how they influence memory CD8+ T cell differentiation remains poorly defined. Here we implemented dendritic cell (DC)-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8+ T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8+ T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8+ T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8+ T cells, but also promoted their terminal differentiation and contraction; thus, fewer memory CD8+ T cells formed and MPLA-primed animals were less protected against secondary infection compared to those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8+ T cells. Lastly, we demonstrated that the LPS-TLR4-derived “pro-memory” signals were MyD88, but not Trif, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8+ T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection. PMID:24659688

  18. Protective immunity provided by HLA-A2 epitopes for fusion and hemagglutinin proteins of measles virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sang Kon; Stegman, Brian; Pendleton, C. David

    2006-09-01

    Natural infection and vaccination with a live-attenuated measles virus (MV) induce CD8{sup +} T-cell-mediated immune responses that may play a central role in controlling MV infection. In this study, we show that newly identified human HLA-A2 epitopes from MV hemagglutinin (H) and fusion (F) proteins induced protective immunity in HLA-A2 transgenic mice challenged with recombinant vaccinia viruses expressing F or H protein. HLA-A2 epitopes were predicted and synthesized. Five and four peptides from H and F, respectively, bound to HLA-A2 molecules in a T2-binding assay, and four from H and two from F could induce peptide-specific CD8{sup +} T cellmore » responses in HLA-A2 transgenic mice. Further experiments proved that three peptides from H (H9-567, H10-250, and H10-516) and one from F protein (F9-57) were endogenously processed and presented on HLA-A2 molecules. All peptides tested in this study are common to 5 different strains of MV including Edmonston. In both A2K{sup b} and HHD-2 mice, the identified peptide epitopes induced protective immunity against recombinant vaccinia viruses expressing H or F. Because F and H proteins induce neutralizing antibodies, they are major components of new vaccine strategies, and therefore data from this study will contribute to the development of new vaccines against MV infection.« less

  19. Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8+ T cell response.

    PubMed

    Culshaw, Abigail; Ladell, Kristin; Gras, Stephanie; McLaren, James E; Miners, Kelly L; Farenc, Carine; van den Heuvel, Heleen; Gostick, Emma; Dejnirattisai, Wanwisa; Wangteeraprasert, Apirath; Duangchinda, Thaneeya; Chotiyarnwong, Pojchong; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida; Dong, Tao; Rossjohn, Jamie; Mongkolsapaya, Juthathip; Price, David A; Screaton, Gavin R

    2017-11-01

    Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8 + T cell populations specific for variants of the nonstructural protein epitope NS3 133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3 133 -DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2 + TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2 + TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs.

  20. A Low Peripheral Blood CD4/CD8 Ratio Is Associated with Pulmonary Emphysema in HIV.

    PubMed

    Triplette, Matthew; Attia, Engi F; Akgün, Kathleen M; Soo Hoo, Guy W; Freiberg, Matthew S; Butt, Adeel A; Wongtrakool, Cherry; Goetz, Matthew Bidwell; Brown, Sheldon T; Graber, Christopher J; Huang, Laurence; Crothers, Kristina

    2017-01-01

    The prevalence of emphysema is higher among HIV-infected (HIV+) individuals compared to HIV-uninfected persons. While greater tobacco use contributes, HIV-related effects on immunity likely confer additional risk. Low peripheral blood CD4+ to CD8+ T-lymphocyte (CD4/CD8) ratio may reflect chronic inflammation in HIV and may be a marker of chronic lung disease in this population. Therefore, we sought to determine whether the CD4/CD8 ratio was associated with chronic obstructive pulmonary disease (COPD), particularly the emphysema subtype, in a cohort of HIV+ subjects. We performed a cross-sectional analysis of 190 HIV+ subjects enrolled in the Examinations of HIV Associated Lung Emphysema (EXHALE) study. Subjects underwent baseline laboratory assessments, pulmonary function testing and chest computed tomography (CT) analyzed for emphysema severity and distribution. We determined the association between CD4/CD8 ratio and emphysema, and the association between CD4/CD8 ratio and pulmonary function markers of COPD. Mild or greater emphysema (>10% lung involvement) was present in 31% of subjects. Low CD4/CD8 ratio was associated with >10% emphysema in multivariable models, adjusting for risk factors including smoking, current and nadir CD4 count and HIV RNA level. Those with CD4/CD8 ratio <0.4 had 6.3 (1.1-39) times the odds of >10% emphysema compared to those with a ratio >1.0 in fully adjusted models. A low CD4/CD8 ratio was also associated with reduced diffusion capacity (DLCO). A low CD4/CD8 ratio was associated with emphysema and low DLCO in HIV+ subjects, independent of other risk factors and clinical markers of HIV. The CD4/CD8 ratio may be a useful, clinically available, marker for risk of emphysema in HIV+ subjects in the antiretroviral therapy (ART) era.

  1. A Low Peripheral Blood CD4/CD8 Ratio Is Associated with Pulmonary Emphysema in HIV

    PubMed Central

    Attia, Engi F.; Akgün, Kathleen M.; Soo Hoo, Guy W.; Freiberg, Matthew S.; Butt, Adeel A.; Wongtrakool, Cherry; Goetz, Matthew Bidwell; Brown, Sheldon T.; Graber, Christopher J.; Huang, Laurence; Crothers, Kristina

    2017-01-01

    Objectives The prevalence of emphysema is higher among HIV-infected (HIV+) individuals compared to HIV-uninfected persons. While greater tobacco use contributes, HIV-related effects on immunity likely confer additional risk. Low peripheral blood CD4+ to CD8+ T-lymphocyte (CD4/CD8) ratio may reflect chronic inflammation in HIV and may be a marker of chronic lung disease in this population. Therefore, we sought to determine whether the CD4/CD8 ratio was associated with chronic obstructive pulmonary disease (COPD), particularly the emphysema subtype, in a cohort of HIV+ subjects. Methods We performed a cross-sectional analysis of 190 HIV+ subjects enrolled in the Examinations of HIV Associated Lung Emphysema (EXHALE) study. Subjects underwent baseline laboratory assessments, pulmonary function testing and chest computed tomography (CT) analyzed for emphysema severity and distribution. We determined the association between CD4/CD8 ratio and emphysema, and the association between CD4/CD8 ratio and pulmonary function markers of COPD. Results Mild or greater emphysema (>10% lung involvement) was present in 31% of subjects. Low CD4/CD8 ratio was associated with >10% emphysema in multivariable models, adjusting for risk factors including smoking, current and nadir CD4 count and HIV RNA level. Those with CD4/CD8 ratio <0.4 had 6.3 (1.1–39) times the odds of >10% emphysema compared to those with a ratio >1.0 in fully adjusted models. A low CD4/CD8 ratio was also associated with reduced diffusion capacity (DLCO). Conclusions A low CD4/CD8 ratio was associated with emphysema and low DLCO in HIV+ subjects, independent of other risk factors and clinical markers of HIV. The CD4/CD8 ratio may be a useful, clinically available, marker for risk of emphysema in HIV+ subjects in the antiretroviral therapy (ART) era. PMID:28122034

  2. Origin and fate of lymphocytic choriomeningitis virus-specific CD8+ T cells coexpressing the inhibitory NK cell receptor Ly49G2.

    PubMed

    Peacock, Craig D; Welsh, Raymond M

    2004-07-01

    CD8+ T cells that coexpress the inhibitory NK cell receptor, Ly49G2 (G2), are present in immunologically naive C57BL/6 mice but display Ags found on memory T cells. To assess how G2+CD8+ cells relate to bona fide memory cells, we examined the origin and fate of lymphocytic choriomeningitis virus (LCMV)-induced G2+CD8+ cells. During early (day 4) acute LCMV infection, both G2+ and G2-CD8+ T cell subsets underwent an attrition in number and displayed an activation (CD69(high)1B11(high)CD62L(low)) phenotype. By day 8, both subsets synthesized IFN-gamma in response to immunodominant LCMV peptides, though the expansion of G2+ cells was less than that of G2- cells. Adoptive transfer experiments with purified G2- or G2+CD8+ cells from naive mice indicated that the LCMV-specific G2+ subset was derived from a pre-existing G2+ population and not generated from G2- cells responding to LCMV infection. Their participation in the LCMV-specific T cell response increased with age, reflecting an increase in the size of the pre-existing G2+ pool. Following establishment of stable LCMV memory, the proportion of CD8+ cells coexpressing G2 was reduced in comparison to naive controls, presumably due to displacement by G2- LCMV-specific memory cells. LCMV-specific G2+ cells were present in the memory pool, but at low frequencies, and they did not exhibit the typical phenotypic changes of reactivation during secondary challenge. We suggest that G2+CD8+ cells represent a cell lineage distinct from bona fide memory T cells, but that they can participate in an acute virus-specific T cell response.

  3. Cytotoxic activities of CD8+ T cells collaborate with macrophages to protect against blood-stage murine malaria

    PubMed Central

    Imai, Takashi; Ishida, Hidekazu; Suzue, Kazutomo; Taniguchi, Tomoyo; Okada, Hiroko; Shimokawa, Chikako; Hisaeda, Hajime

    2015-01-01

    The protective immunity afforded by CD8+ T cells against blood-stage malaria remains controversial because no MHC class I molecules are displayed on parasite-infected human erythrocytes. We recently reported that rodent malaria parasites infect erythroblasts that express major histocompatibility complex (MHC) class I antigens, which are recognized by CD8+ T cells. In this study, we demonstrate that the cytotoxic activity of CD8+ T cells contributes to the protection of mice against blood-stage malaria in a Fas ligand (FasL)-dependent manner. Erythroblasts infected with malarial parasites express the death receptor Fas. CD8+ T cells induce the externalization of phosphatidylserine (PS) on the infected erythroblasts in a cell-to-cell contact-dependent manner. PS enhances the engulfment of the infected erythroid cells by phagocytes. As a PS receptor, T-cell immunoglobulin-domain and mucin-domain-containing molecule 4 (Tim-4) contributes to the phagocytosis of malaria-parasite-infected cells. Our findings provide insight into the molecular mechanisms underlying the protective immunity exerted by CD8+ T cells in collaboration with phagocytes. DOI: http://dx.doi.org/10.7554/eLife.04232.001 PMID:25760084

  4. Limited Variation in BK Virus T-Cell Epitopes Revealed by Next-Generation Sequencing

    PubMed Central

    Sahoo, Malaya K.; Tan, Susanna K.; Chen, Sharon F.; Kapusinszky, Beatrix; Concepcion, Katherine R.; Kjelson, Lynn; Mallempati, Kalyan; Farina, Heidi M.; Fernández-Viña, Marcelo; Tyan, Dolly; Grimm, Paul C.; Anderson, Matthew W.; Concepcion, Waldo

    2015-01-01

    BK virus (BKV) infection causing end-organ disease remains a formidable challenge to the hematopoietic cell transplant (HCT) and kidney transplant fields. As BKV-specific treatments are limited, immunologic-based therapies may be a promising and novel therapeutic option for transplant recipients with persistent BKV infection. Here, we describe a whole-genome, deep-sequencing methodology and bioinformatics pipeline that identify BKV variants across the genome and at BKV-specific HLA-A2-, HLA-B0702-, and HLA-B08-restricted CD8 T-cell epitopes. BKV whole genomes were amplified using long-range PCR with four inverse primer sets, and fragmentation libraries were sequenced on the Ion Torrent Personal Genome Machine (PGM). An error model and variant-calling algorithm were developed to accurately identify rare variants. A total of 65 samples from 18 pediatric HCT and kidney recipients with quantifiable BKV DNAemia underwent whole-genome sequencing. Limited genetic variation was observed. The median number of amino acid variants identified per sample was 8 (range, 2 to 37; interquartile range, 10), with the majority of variants (77%) detected at a frequency of <5%. When normalized for length, there was no statistical difference in the median number of variants across all genes. Similarly, the predominant virus population within samples harbored T-cell epitopes similar to the reference BKV strain that was matched for the BKV genotype. Despite the conservation of epitopes, low-level variants in T-cell epitopes were detected in 77.7% (14/18) of patients. Understanding epitope variation across the whole genome provides insight into the virus-immune interface and may help guide the development of protocols for novel immunologic-based therapies. PMID:26202116

  5. Distorted leukocyte migration, angiogenesis, wound repair and metastasis in Tspan8 and Tspan8/CD151 double knockout mice indicate complementary activities of Tspan8 and CD51.

    PubMed

    Zhao, Kun; Erb, Ulrike; Hackert, Thilo; Zöller, Margot; Yue, Shijing

    2018-02-01

    The tetraspanin Tspan8 supports via associated integrins and proteases tumor progression and angiogenesis. To shed light on its activities in non-transformed cells, we generated a Tspan8 knockout (ko) mouse, comparing leukocyte migration, angiogenesis, wound healing and tumor growth with wild type, CD151ko and Tspan8/CD151ko (dbko) mice. CD151ko mice were included as CD151 activities resemble that of Tspan8, and dbko mice to exclude mutual substitution. Tspan8ko and dbko mice show no pathological phenotype. However, delayed type hypersensitivity reactions are mitigated in Tspan8ko mice, angiogenesis is severely impaired in Tspan8ko, CD151ko and dbko mice, with Tspan8 mostly affecting lymphangiogenesis. Distinct contributions of CD151 and Tspan8 to skin wound healing rely on preferentially CD151 anchoring basal keratinocytes and Tspan8 promoting motility. Proliferation of wounded skin keratinocytes is not affected. Metastasis formation of a melanoma and a Tspan8-expressing pancreatic cancer line was impaired in Tspan8ko and dbko mice, pointing towards a contribution of host Tspan8 to tumor progression. In line with the importance of tetraspanins in exosome-mediated intercellular communication, defects became mitigated by Tspan8/CD151-competent serum exosomes, which offers a most promising therapeutic option for chronic wounds and arteriosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The HIV hide and seek game: an immunogenomic analysis of the HIV epitope repertoire.

    PubMed

    Vider-Shalit, Tal; Almani, Michal; Sarid, Ronit; Louzoun, Yoram

    2009-07-17

    Viruses employ various means to evade immune detection. One common evasion strategy is the removal of CD8 cytotoxic T-lymphocyte (CTL) epitopes. Here, we use bioinformatic tools to compute the HIV CTL epitope repertoire presented by over 8000 HIV sequences in multiple Human Leukocyte Antigen alleles. We define the 'Size of Immune Repertoire' (SIR) score, which represents the ratio between the number of the predicted epitopes within a protein and their expected number within a scrambled version of the same protein. We show that HIV proteins present less epitopes than expected and that the number of epitopes gradually decreases from SIV to recent HIV sequences. The decrease of the SIR score of HIV is accompanied by a high frequency of replacement mutations within epitopes. The SIR score of the different HIV proteins is not uniform. The regulatory proteins, Tat and Rev, expressed early during cellular infection have a low SIR score, whereas virion-associated genes that are expressed later, such as Env, Pol and Gag, have a higher SIR score. Actually, the SIR score of Gag keeps increasing over time. We hypothesize that our results reflect an HIV immune evasion strategy. This involves the targeting of the CTL immune response to viral structural and enzyme proteins, allowing the virus a time interval to propagate before its host cells are destroyed by CTLs. An efficient anti-HIV CTL response against HIV should thus also target the regulatory genes that HIV seeks to hide from the immune system.

  7. How much of virus-specific CD8 T cell reactivity is detected with a peptide pool when compared to individual peptides?

    PubMed

    Zhang, Wenji; Moldovan, Ioana; Targoni, Oleg S; Subbramanian, Ramu A; Lehmann, Paul V

    2012-10-29

    Immune monitoring of T cell responses increasingly relies on the use of peptide pools. Peptides, when restricted by the same HLA allele, and presented from within the same peptide pool, can compete for HLA binding sites. What impact such competition has on functional T cell stimulation, however, is not clear. Using a model peptide pool that is comprised of 32 well-defined viral epitopes from Cytomegalovirus, Epstein-Barr virus, and Influenza viruses (CEF peptide pool), we assessed peptide competition in PBMC from 42 human subjects. The magnitude of the peptide pool-elicited CD8 T cell responses was a mean 79% and a median 77% of the sum of the CD8 T cell responses elicited by the individual peptides. Therefore, while the effect of peptide competition was evident, it was of a relatively minor magnitude. By studying the dose-response curves for individual CEF peptides, we show that several of these peptides are present in the CEF-pool at concentrations that are orders of magnitude in excess of what is needed for the activation threshold of the CD8 T cells. The presence of such T cells with very high functional avidity for the viral antigens can explain why the effect of peptide competition is relatively minor within the CEF-pool.

  8. Cancer-associated CD43 glycoforms as target of immunotherapy

    PubMed Central

    Tuccillo, Franca Maria; Palmieri, Camillo; Fiume, Giuseppe; de Laurentiis, Annamaria; Schiavone, Marco; Falcone, Cristina; Iaccino, Enrico; Galandrini, Ricciarda; Capuano, Cristina; Santoni, Angela; D'Armiento, Francesco Paolo; Arra, Claudio; Barbieri, Antonio; Piaz, Fabrizio Dal; Venzon, David; Bonelli, Patrizia; Buonaguro, Franco Maria; Scala, Iris; Mallardo, Massimo; Quinto, Ileana; Scala, Giuseppe

    2014-01-01

    CD43 is a sialoglycosylated membrane protein that is involved in cell proliferation and differentiation. CD43 glycoforms that are recognized by the UN1 monoclonal antibody (mAb) were expressed in lymphoblastoid T-cell lines and solid tumors, such as breast, colon, gastric, and squamous cell lung carcinomas, while unexpressed in the normal counterparts. The cancer–association of UN1/CD43 epitope suggested the possibility to use the UN1 mAb for tumor diagnosis and therapy. In this study, we show that the UN1 mAb was endowed with anti-tumor activity in vivo since its passive transfer inhibited the growth of UN1-positive HPB-ALL lymphoblastoid T-cells in mice. Further, we demonstrate that tumor inhibition was due to UN1 mAb-dependent NK-mediated cytotoxicity. By screening a phage displayed random peptide library we identified the phagotope 2/165 as a mimotope of the UN1 antigen, as it harboured a peptide sequence that was specifically recognized by the UN1 mAb and inhibited the binding of the UN1 mAb to UN1-positive tumour cells. Based on sequence homology with the extracellular region of CD43 (amino acids 64 to 83), the 2/165 peptide sequence was likely mimicking the protein core of the UN1/CD43 epitope. When used as vaccine in mice, the 2/165 phagotope raised antibodies against the UN1/CD43 antigen, indicating that the 2/165 phagotope mimicked the UN1 antigen structure, and could represent a novel immunogen for cancer immunotherapy. These findings support the feasibility to use monoclonal antibodies to identify cancer-associated mimotopes for immunotherapy. PMID:24356816

  9. Methods of Controlling Invasive Fungal Infections Using CD8+ T Cells.

    PubMed

    Kumaresan, Pappanaicken R; da Silva, Thiago Aparecido; Kontoyiannis, Dimitrios P

    2017-01-01

    Invasive fungal infections (IFIs) cause high rates of morbidity and mortality in immunocompromised patients. Pattern-recognition receptors present on the surfaces of innate immune cells recognize fungal pathogens and activate the first line of defense against fungal infection. The second line of defense is the adaptive immune system which involves mainly CD4 + T cells, while CD8 + T cells also play a role. CD8 + T cell-based vaccines designed to prevent IFIs are currently being investigated in clinical trials, their use could play an especially important role in acquired immune deficiency syndrome patients. So far, none of the vaccines used to treat IFI have been approved by the FDA. Here, we review current and future antifungal immunotherapy strategies involving CD8 + T cells. We highlight recent advances in the use of T cells engineered using a Sleeping Beauty vector to treat IFIs. Recent clinical trials using chimeric antigen receptor (CAR) T-cell therapy to treat patients with leukemia have shown very promising results. We hypothesized that CAR T cells could also be used to control IFI. Therefore, we designed a CAR that targets β-glucan, a sugar molecule found in most of the fungal cell walls, using the extracellular domain of Dectin-1, which binds to β-glucan. Mice treated with D-CAR + T cells displayed reductions in hyphal growth of Aspergillus compared to the untreated group. Patients suffering from IFIs due to primary immunodeficiency, secondary immunodeficiency (e.g., HIV), or hematopoietic transplant patients may benefit from bioengineered CAR T cell therapy.

  10. Methods of Controlling Invasive Fungal Infections Using CD8+ T Cells

    PubMed Central

    Kumaresan, Pappanaicken R.; da Silva, Thiago Aparecido; Kontoyiannis, Dimitrios P.

    2018-01-01

    Invasive fungal infections (IFIs) cause high rates of morbidity and mortality in immunocompromised patients. Pattern-recognition receptors present on the surfaces of innate immune cells recognize fungal pathogens and activate the first line of defense against fungal infection. The second line of defense is the adaptive immune system which involves mainly CD4+ T cells, while CD8+ T cells also play a role. CD8+ T cell-based vaccines designed to prevent IFIs are currently being investigated in clinical trials, their use could play an especially important role in acquired immune deficiency syndrome patients. So far, none of the vaccines used to treat IFI have been approved by the FDA. Here, we review current and future antifungal immunotherapy strategies involving CD8+ T cells. We highlight recent advances in the use of T cells engineered using a Sleeping Beauty vector to treat IFIs. Recent clinical trials using chimeric antigen receptor (CAR) T-cell therapy to treat patients with leukemia have shown very promising results. We hypothesized that CAR T cells could also be used to control IFI. Therefore, we designed a CAR that targets β-glucan, a sugar molecule found in most of the fungal cell walls, using the extracellular domain of Dectin-1, which binds to β-glucan. Mice treated with D-CAR+ T cells displayed reductions in hyphal growth of Aspergillus compared to the untreated group. Patients suffering from IFIs due to primary immunodeficiency, secondary immunodeficiency (e.g., HIV), or hematopoietic transplant patients may benefit from bioengineered CAR T cell therapy. PMID:29358941

  11. Parallel Immunizations of Rabbits Using the Same Antigen Yield Antibodies with Similar, but Not Identical, Epitopes

    PubMed Central

    Hjelm, Barbara; Forsström, Björn; Löfblom, John; Rockberg, Johan; Uhlén, Mathias

    2012-01-01

    A problem for the generation of polyclonal antibodies is the potential difficulties for obtaining a renewable resource due to batch-to-batch variations when the same antigen is immunized into several separate animals. Here, we have investigated this issue by determining the epitopes of antibodies generated from parallel immunizations of rabbits with recombinant antigens corresponding to ten human protein targets. The epitopes were mapped by both a suspension bead array approach using overlapping synthetic 15-mer peptides and a bacterial display approach using expression of random fragments of the antigen on the surface of bacteria. Both methods determined antibody binding with the aid of fluorescent-based analysis. In addition, one polyclonal antibody was fractionated by peptide-specific affinity capture for in-depth comparison of epitopes. The results show that the same antigen immunized in several rabbits yields polyclonal antibodies with similar epitopes, but with larger differences in the relative amounts of antibodies to the different epitopes. In some cases, unique epitopes were observed for one of the immunizations. The results suggest that polyclonal antibodies generated by repeated immunizations do not display an identical epitope pattern, although many of the epitopes are similar. PMID:23284606

  12. An anti-CD30 single-chain Fv selected by phage display and fused to Pseudomonas exotoxin A (Ki-4(scFv)-ETÁ) is a potent immunotoxin against a Hodgkin-derived cell line

    PubMed Central

    Klimka, A; Barth, S; Matthey, B; Roovers, R C; Lemke, H; Hansen, H; Arends, J-W; Diehl, V; Hoogenboom, H R; Engert, A

    1999-01-01

    The human CD30 receptor is highly overexpressed on the surface of Hodgkin Reed-Sternberg cells and has been shown to be an excellent target for selective immunotherapy using monoclonal antibody-based agents such as immunotoxins. To construct a new recombinant immunotoxin for possible clinical use in patients with Hodgkin's lymphoma, we have chosen the murine anti-CD30 hybridoma Ki-4 to generate a high-affinity Ki-4 single-chain variable fragment (scFv). Hybridoma V-genes were polymerase chain reaction-amplified, assembled, cloned and expressed as a mini-library for display on filamentous phage. Functional Ki-4 scFv were obtained by selection of binding phage on the Hodgkin lymphoma-derived, CD30-expressing cell line L540Cy. The selected recombinant Ki-4 scFv was shown to specifically bind to an overlapping epitope on the CD30 antigen with binding kinetics similar to those of the original antibody. The Ki-4 scFv was subsequently fused to a deletion mutant of Pseudomonas exotoxin A (ETÁ). The resulting immunotoxin Ki-4(scFv)-ETÁ specifically binds to CD30+ L540Cy cells and inhibits the protein synthesis by 50% at a concentration (IC50) of 43 pM. This recombinant immunotoxin is a promising candidate for further clinical evaluation in patients with Hodgkin's lymphoma or other CD30+ malignancies. © 1999 Cancer Research Campaign PMID:10376974

  13. Epigenetic control of CD8+ T cell differentiation.

    PubMed

    Henning, Amanda N; Roychoudhuri, Rahul; Restifo, Nicholas P

    2018-05-01

    Upon stimulation, small numbers of naive CD8 + T cells proliferate and differentiate into a variety of memory and effector cell types. CD8 + T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8 + T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8 + T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8 + T cell function in individuals with chronic infections and cancer.

  14. Human mesenchymal stromal cells enhance the immunomodulatory function of CD8+CD28− regulatory T cells

    PubMed Central

    Liu, Qiuli; Zheng, Haiqing; Chen, Xiaoyong; Peng, Yanwen; Huang, Weijun; Li, Xiaobo; Li, Gang; Xia, Wenjie; Sun, Qiquan; Xiang, Andy Peng

    2015-01-01

    One important aspect of mesenchymal stromal cells (MSCs)-mediated immunomodulation is the recruitment and induction of regulatory T (Treg) cells. However, we do not yet know whether MSCs have similar effects on the other subsets of Treg cells. Herein, we studied the effects of MSCs on CD8+CD28− Treg cells and found that the MSCs could not only increase the proportion of CD8+CD28− T cells, but also enhance CD8+CD28−T cells' ability of hampering naive CD4+ T-cell proliferation and activation, decreasing the production of IFN-γ by activated CD4+ T cells and inducing the apoptosis of activated CD4+ T cells. Mechanistically, the MSCs affected the functions of the CD8+CD28− T cells partially through moderate upregulating the expression of IL-10 and FasL. The MSCs had no distinct effect on the shift from CD8+CD28+ T cells to CD8+CD28− T cells, but did increase the proportion of CD8+CD28− T cells by reducing their rate of apoptosis. In summary, this study shows that MSCs can enhance the regulatory function of CD8+CD28− Treg cells, shedding new light on MSCs-mediated immune regulation. PMID:25482073

  15. Donor CD8+ T Cells Prevent Toxoplasma gondii De-Encystation but Fail To Rescue the Exhausted Endogenous CD8+ T Cell Population

    PubMed Central

    Bhadra, Rajarshi; Cobb, Dustin A.

    2013-01-01

    Functional exhaustion of CD8+ T cells due to increased expression of inhibitory molecule PD-1 (Programmed Death-1) causes reactivation of latent disease during later phases of chronic toxoplasmosis. Onset of disease recrudescence results in decreased parasite cyst burden concomitant with parasites undergoing stage conversion from a primarily encysted, quiescent bradyzoite to a fast-replicating, highly motile tachyzoite. Thus, reduced cyst burden is one of the early hallmarks of disease recrudescence. This was further validated by depleting gamma interferon (IFN-γ), a cytokine known to control latent toxoplasmosis, in chronically infected prerecrudescent mice. Since CD8+ T cells (an important source of IFN-γ) lose their functionality during the later phases of chronic toxoplasmosis, we next examined if adoptive transfer of functional CD8+ T cells from acutely infected donors to the chronically infected prerecrudescent hosts could impede parasite de-encystation and rescue exhausted CD8+ T cells. While the transfer of immune CD8+ T cells temporarily restricted the breakdown of cysts, the exhausted endogenous CD8+ T cell population was not rescued. Over time, the donor population got deleted, resulting in parasite de-encystation and host mortality. Considering that donor CD8+ T cells fail to become long-lived, one of the cardinal features of memory CD8+ T cells, it bears the implication that memory CD8 differentiation is impaired during chronic toxoplasmosis. Moreover, our data strongly suggest that while adoptive immunotherapy can prevent parasite de-encystation transiently, reduced antigen burden in the chronic phase by itself is insufficient for rescue of exhausted CD8+ T cells. The conclusions of this study have profound ramifications in designing immunotherapeutics against chronic toxoplasmosis. PMID:23817617

  16. Recent advances in CD8+ regulatory T cell research

    PubMed Central

    Yu, Yating; Ma, Xinbo; Gong, Rufei; Zhu, Jianmeng; Wei, Lihua; Yao, Jinguang

    2018-01-01

    Various subgroups of CD8+ T lymphocytes do not only demonstrate cytotoxic effects, but also serve important regulatory roles in the body's immune response. In particular, CD8+ regulatory T cells (CD8+ Tregs), which possess important immunosuppressive functions, are able to effectively block the overreacting immune response and maintain the body's immune homeostasis. In recent years, studies have identified a small set of special CD8+ Tregs that can recognize major histocompatibility complex class Ib molecules, more specifically Qa-1 in mice and HLA-E in humans, and target the self-reactive CD4+ T ce lls. These findings have generated broad implications in the scientific community and attracted general interest to CD8+ Tregs. The present study reviews the recent research progress on CD8+ Tregs, including their origin, functional classification, molecular markers and underlying mechanisms of action.

  17. Masked Selection: A Straightforward and Flexible Approach for the Selection of Binders Against Specific Epitopes and Differentially Expressed Proteins by Phage Display*

    PubMed Central

    Even-Desrumeaux, Klervi; Nevoltris, Damien; Lavaut, Marie Noelle; Alim, Karima; Borg, Jean-Paul; Audebert, Stéphane; Kerfelec, Brigitte; Baty, Daniel; Chames, Patrick

    2014-01-01

    Phage display is a well-established procedure to isolate binders against a wide variety of antigens that can be performed on purified antigens, but also on intact cells. As selection steps are performed in vitro, it is possible to focus the outcome of the selection on relevant epitopes by performing some additional steps, such as depletion or competitive elutions. However in practice, the efficiency of these steps is often limited and can lead to inconsistent results. We have designed a new selection method named masked selection, based on the blockade of unwanted epitopes to favor the targeting of relevant ones. We demonstrate the efficiency and flexibility of this method by selecting single-domain antibodies against a specific portion of a fusion protein, by selecting binders against several members of the seven transmembrane receptor family using transfected HEK cells, or by selecting binders against unknown breast cancer markers not expressed on normal samples. The relevance of this approach for antibody-based therapies was further validated by the identification of four of these markers, Epithelial cell adhesion molecule, Transferrin receptor 1, Metastasis cell adhesion molecule, and Sushi containing domain 2, using immunoprecipitation and mass spectrometry. This new phage display strategy can be applied to any type of antibody fragments or alternative scaffolds, and is especially suited for the rapid discovery and identification of cell surface markers. PMID:24361863

  18. Dendritic cell internalization of α-galactosylceramide from CD8 T cells induces potent antitumor CD8 T-cell responses.

    PubMed

    Choi, Dong Hoon; Kim, Kwang Soon; Yang, Se Hwan; Chung, Doo Hyun; Song, Boyeong; Sprent, Jonathan; Cho, Jae Ho; Sung, Young Chul

    2011-12-15

    Dendritic cells (DC) present α-galactosylceramide (αGalCer) to invariant T-cell receptor-expressing natural killer T cells (iNKT) activating these cells to secrete a variety of cytokines, which in turn results in DC maturation and activation of other cell types, including NK cells, B cells, and conventional T cells. In this study, we showed that αGalCer-pulsing of antigen-activated CD8 T cells before adoptive transfer to tumor-bearing mice caused a marked increase in donor T-cell proliferation, precursor frequency, and cytotoxic lymphocyte activity. This effect was interleukin (IL)-2 dependent and involved both natural killer T cells (NKT) and DCs, as mice lacking IL-2, NKTs, and DCs lacked any enhanced response to adoptively transferred αGalCer-loaded CD8 T cells. iNKT activation was mediated by transfer of αGalCer from the cell membrane of the donor CD8 T cells onto the αGalCer receptor CD1d which is present on host DCs. αGalCer transfer was increased by prior activation of the donor CD8 T cells and required AP-2-mediated endocytosis by host DCs. In addition, host iNKT cell activation led to strong IL-2 synthesis, thereby increasing expansion and differentiation of donor CD8 T cells. Transfer of these cells led to improved therapeutic efficacy against established solid tumors in mice. Thus, our findings illustrate how αGalCer loading of CD8 T cells after antigen activation in vitro may leverage the therapeutic potential of adoptive T-cell therapies.

  19. Virological Outcome after Structured Interruption of Antiretroviral Therapy for Human Immunodeficiency Virus Infection Is Associated with the Functional Profile of Virus-Specific CD8+ T Cells▿

    PubMed Central

    Daucher, Marybeth; Price, David A.; Brenchley, Jason M.; Lamoreaux, Laurie; Metcalf, Julia A.; Rehm, Catherine; Nies-Kraske, Elizabeth; Urban, Elizabeth; Yoder, Christian; Rock, Diane; Gumkowski, Julie; Betts, Michael R.; Dybul, Mark R.; Douek, Daniel C.

    2008-01-01

    A clear understanding of the antiviral effects of CD8+ T cells in the context of chronic human immunodeficiency virus (HIV) infection is critical for the development of prophylactic vaccines and therapeutics designed to support T-cell-mediated immunity. However, defining the potential correlates of effective CD8+ T-cell immunity has proven difficult; notably, comprehensive analyses have demonstrated that the size and shape of the CD8+ T-cell response are not necessarily indicative of efficacy determined by measures of plasma viral load. Here, we conducted a detailed quantitative and qualitative analysis of CD8+ T-cell responses to autologous virus in a cohort of six HIV-infected individuals with a history of structured interruption of antiretroviral therapy (ART) (SIT). The magnitude and breadth of the HIV-specific response did not, by themselves, explain the changes observed in plasma virus levels after the cessation of ART. Furthermore, mutational escape from targeted epitopes could not account for the differential virological outcomes in this cohort. However, the functionality of HIV-specific CD8+ T-cell populations upon antigen encounter, determined by the simultaneous and independent measurement of five CD8+ T-cell functions (degranulation and gamma interferon, macrophage inflammatory protein 1β, tumor necrosis factor alpha, and interleukin-2 levels) reflected the emergent level of plasma virus, with multiple functions being elicited in those individuals with lower levels of viremia after SIT. These data show that the quality of the HIV-specific CD8+ T-cell response, rather than the quantity, is associated with the dynamics of viral replication in the absence of ART and suggest that the effects of SIT can be assessed by measuring the functional profile of HIV-specific CD8+ T cells. PMID:18234797

  20. Virological outcome after structured interruption of antiretroviral therapy for human immunodeficiency virus infection is associated with the functional profile of virus-specific CD8+ T cells.

    PubMed

    Daucher, Marybeth; Price, David A; Brenchley, Jason M; Lamoreaux, Laurie; Metcalf, Julia A; Rehm, Catherine; Nies-Kraske, Elizabeth; Urban, Elizabeth; Yoder, Christian; Rock, Diane; Gumkowski, Julie; Betts, Michael R; Dybul, Mark R; Douek, Daniel C

    2008-04-01

    A clear understanding of the antiviral effects of CD8(+) T cells in the context of chronic human immunodeficiency virus (HIV) infection is critical for the development of prophylactic vaccines and therapeutics designed to support T-cell-mediated immunity. However, defining the potential correlates of effective CD8(+) T-cell immunity has proven difficult; notably, comprehensive analyses have demonstrated that the size and shape of the CD8(+) T-cell response are not necessarily indicative of efficacy determined by measures of plasma viral load. Here, we conducted a detailed quantitative and qualitative analysis of CD8(+) T-cell responses to autologous virus in a cohort of six HIV-infected individuals with a history of structured interruption of antiretroviral therapy (ART) (SIT). The magnitude and breadth of the HIV-specific response did not, by themselves, explain the changes observed in plasma virus levels after the cessation of ART. Furthermore, mutational escape from targeted epitopes could not account for the differential virological outcomes in this cohort. However, the functionality of HIV-specific CD8(+) T-cell populations upon antigen encounter, determined by the simultaneous and independent measurement of five CD8(+) T-cell functions (degranulation and gamma interferon, macrophage inflammatory protein 1beta, tumor necrosis factor alpha, and interleukin-2 levels) reflected the emergent level of plasma virus, with multiple functions being elicited in those individuals with lower levels of viremia after SIT. These data show that the quality of the HIV-specific CD8(+) T-cell response, rather than the quantity, is associated with the dynamics of viral replication in the absence of ART and suggest that the effects of SIT can be assessed by measuring the functional profile of HIV-specific CD8(+) T cells.

  1. Human CD4+ T-cell response to hepatitis delta virus: identification of multiple epitopes and characterization of T-helper cytokine profiles.

    PubMed Central

    Nisini, R; Paroli, M; Accapezzato, D; Bonino, F; Rosina, F; Santantonio, T; Sallusto, F; Amoroso, A; Houghton, M; Barnaba, V

    1997-01-01

    The T-cell-mediated immune response plays a crucial role in defense against hepatotropic viruses as well as in the pathogenesis of viral chronic hepatitides. However, very little is known about the role of specific T cells during hepatitis delta virus (HDV) infection in humans. In this study, the T-cell response to HDV in chronic hepatitis B virus (HBV) carriers with HDV superinfection was investigated at different levels. Analysis of peripheral blood mononuclear cell (PBMC) proliferation in response to a recombinant form of large hepatitis delta antigen (HDAg) revealed that 8 of 30 patients studied (27%) specifically responded to HDAg. By employing synthetic peptides spanning the entire HDAg sequence, we found that T-cell recognition was directed against different antigenic determinants, with patient-to-patient variation in the pattern of response to peptides. Interestingly, all responders had signs of inactive HDV-induced disease, while none of the patients with active disease and none of the control subjects showed any significant proliferation. More accurate information about the specific T-cell response was obtained at the clonal level. A panel of HDAg-specific CD4+ T-cell clones from three HDV-infected individuals and fine-specificity analysis revealed that the clones tested individually recognized four epitopes corresponding to amino acids (aa) 26 to 41, 50 to 65, 66 to 81, or 106 to 121 of HDAg sequence. The study of human leukocyte antigen (HLA) restriction revealed that peptides 50 to 65 and 106 to 121 were presented to specific T cells in association with multiple class II molecules. In addition, peptide 26 to 41 was efficiently generated after processing of HDAg through the endogenous processing pathway. Cytokine secretion analysis showed that all the CD4+ T-cell clones assayed were able to produce high levels of gamma interferon (IFN-gamma), belonging either to T helper-1 (Th1) or Th0 subsets and that some of them were cytotoxic in a specific assay

  2. Identification of antigenic regions on VP2 of African horsesickness virus serotype 3 by using phage-displayed epitope libraries.

    PubMed

    Bentley, L; Fehrsen, J; Jordaan, F; Huismans, H; du Plessis, D H

    2000-04-01

    VP2 is an outer capsid protein of African horsesickness virus (AHSV) and is recognized by serotype-discriminatory neutralizing antibodies. With the objective of locating its antigenic regions, a filamentous phage library was constructed that displayed peptides derived from the fragmentation of a cDNA copy of the gene encoding VP2. Peptides ranging in size from approximately 30 to 100 amino acids were fused with pIII, the attachment protein of the display vector, fUSE2. To ensure maximum diversity, the final library consisted of three sub-libraries. The first utilized enzymatically fragmented DNA encoding only the VP2 gene, the second included plasmid sequences, while the third included a PCR step designed to allow different peptide-encoding sequences to recombine before ligation into the vector. The resulting composite library was subjected to immunoaffinity selection with AHSV-specific polyclonal chicken IgY, polyclonal horse immunoglobulins and a monoclonal antibody (MAb) known to neutralize AHSV. Antigenic peptides were located by sequencing the DNA of phages bound by the antibodies. Most antigenic determinants capable of being mapped by this method were located in the N-terminal half of VP2. Important binding areas were mapped with high resolution by identifying the minimum overlapping areas of the selected peptides. The MAb was also used to screen a random 17-mer epitope library. Sequences that may be part of a discontinuous neutralization epitope were identified. The amino acid sequences of the antigenic regions on VP2 of serotype 3 were compared with corresponding regions on three other serotypes, revealing regions with the potential to discriminate AHSV serotypes serologically.

  3. A Poly(Lactic-co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8+ T Cells Essential for the Protection against Experimental Visceral Leishmaniasis.

    PubMed

    Athanasiou, Evita; Agallou, Maria; Tastsoglou, Spyros; Kammona, Olga; Hatzigeorgiou, Artemis; Kiparissides, Costas; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis, caused by Leishmania ( L .) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4 + T H1 and CD8 + T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic- co -glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4 + and CD8 + T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8 + T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that

  4. A Poly(Lactic-co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8+ T Cells Essential for the Protection against Experimental Visceral Leishmaniasis

    PubMed Central

    Athanasiou, Evita; Agallou, Maria; Tastsoglou, Spyros; Kammona, Olga; Hatzigeorgiou, Artemis; Kiparissides, Costas; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis, caused by Leishmania (L.) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4+ TH1 and CD8+ T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic-co-glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4+ and CD8+ T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8+ T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that encapsulation

  5. F-8 SCW on display stand

    NASA Image and Video Library

    1995-03-13

    A Vought F-8A Crusader was selected by NASA as the testbed aircraft (designated TF-8A) to install an experimental Supercritical Wing (SCW) in place of the conventional wing. The unique design of the Supercritical Wing reduces the effect of shock waves on the upper surface near Mach 1, which in turn reduces drag. In the photograph the TF-8A Crusader with the Supercritical Wing is shown on static display in front of the NASA Dryden Flight Research Center, Edwards, California. The F-8 SCW aircraft, along with the F-8 Digital Fly-By-Wire aircraft were placed on display on May 27, 1992, at a conference marking the 20th anniversary of the start of the two programs.

  6. Development of TaqMan probes targeting the four major celiac disease epitopes found in α-gliadin sequences of spelt (Triticum aestivum ssp. spelta) and bread wheat (Triticum aestivum ssp. aestivum).

    PubMed

    Dubois, Benjamin; Bertin, Pierre; Muhovski, Yordan; Escarnot, Emmanuelle; Mingeot, Dominique

    2017-01-01

    Celiac disease (CD) is caused by specific sequences of gluten proteins found in cereals such as bread wheat ( Triticum aestivum ssp. aestivum ) and spelt ( T. aestivum ssp. spelta ). Among them, the α-gliadins display the highest immunogenicity, with four T-cell stimulatory epitopes. The toxicity of each epitope sequence can be reduced or even suppressed according to the allelic form of each sequence. One way to address the CD problem would be to make use of this allelic variability in breeding programs to develop safe varieties, but tools to track the presence of toxic epitopes are required. The objective of this study was to develop a tool to accurately detect and quantify the immunogenic content of expressed α-gliadins of spelt and bread wheat. Four TaqMan probes that only hybridize to the canonical-i.e. toxic-form of each of the four epitopes were developed and their specificity was demonstrated. Six TaqMan probes targeting stable reference genes were also developed and constitute a tool to normalize qPCR data. The probes were used to measure the epitope expression levels of 11 contrasted spelt accessions and three ancestral diploid accessions of bread wheat and spelt. A high expression variability was highlighted among epitopes and among accessions, especially in Asian spelts, which showed lower epitope expression levels than the other spelts. Some discrepancies were identified between the canonical epitope expression level and the global amount of expressed α-gliadins, which makes the designed TaqMan probes a useful tool to quantify the immunogenic potential independently of the global amount of expressed α-gliadins. The results obtained in this study provide useful tools to study the immunogenic potential of expressed α-gliadin sequences from Triticeae accessions such as spelt and bread wheat. The application of the designed probes to contrasted spelt accessions revealed a high variability and interesting low canonical epitope expression levels in the

  7. HSP90 inhibitor 17-DMAG enhances EphA2+ tumor cell recognition by specific CD8+ T cells

    PubMed Central

    Kawabe, Mayumi; Mandic, Maja; Taylor, Jennifer L.; Vasquez, Cecilia A.; Wesa, Amy K.; Neckers, Leonard M.; Storkus, Walter J.

    2009-01-01

    EphA2, a member of the receptor tyrosine kinase (RTK) family, is commonly expressed by a broad range of cancer types, where its level of (over)expression correlates with poor clinical outcome. Since tumor cell expressed EphA2 is a non-mutated “self” protein, specific CD8+ T cells are subject to self-tolerance mechanisms and typically exhibit only moderate-to-low functional avidity, rendering them marginally competent to recognize EphA2+ tumor cells in vitro or in vivo. We have recently reported that the ability of specific CD8+ T cells to recognize EphA2+ tumor cells can be augmented after the cancer cells are pretreated with EphA2 agonists that promote proteasomal degradation and upregulated expression of EphA2/class I complexes on the tumor cell membrane (Wesa et al., J. Immunol. 2008;181:7721-7). In the current study we show that treatment of EphA2+ tumor cells with the irreversible HSP90 inhibitor, 17-DMAG, similarly enhances their recognition by EphA2-specific CD8+ T cell lines and clones in vitro via a mechanism that is dependent on proteasome and TAP function, as well as, the retrotranslocation of EphA2 into the tumor cytoplasm. When 17-DMAG and agonist anti-EphA2 mAb are co-applied, T cell recognition of tumor cells is further increased over that observed for either agent alone. These studies suggest that EphA2 represents a novel HSP90 client protein and that the treatment of cancer patients with 17-DMAG-based “pulse” therapy may improve the anti-tumor efficacy of CD8+ T effector cells reactive against EphA2-derived epitopes. PMID:19690146

  8. 4-1BB-Enhanced Expansion of CD8+ TIL from Triple-Negative Breast Cancer Unveils Mutation-Specific CD8+ T Cells.

    PubMed

    Harao, Michiko; Forget, Marie-Andrée; Roszik, Jason; Gao, Hui; Babiera, Gildy V; Krishnamurthy, Savitri; Chacon, Jessica A; Li, Shumin; Mittendorf, Elizabeth A; DeSnyder, Sarah M; Rockwood, Korrene F; Bernatchez, Chantale; Ueno, Naoto T; Radvanyi, Laszlo G; Vence, Luis; Haymaker, Cara; Reuben, James M

    2017-06-01

    Triple-negative breast cancer (TNBC) highly infiltrated with CD8 + tumor-infiltrating lymphocytes (TIL) has been associated with improved prognosis. This observation led us to hypothesize that CD8 + TIL could be utilized in autologous adoptive cell therapy for TNBC, although this concept has proven to be challenging, given the difficulty in expanding CD8 + TILs in solid cancers other than in melanoma. To overcome this obstacle, we used an agonistic antibody (urelumab) to a TNFR family member, 4-1BB/CD137, which is expressed by recently activated CD8 + T cells. This approach was first utilized in melanoma and, in this study, led to advantageous growth of TILs for the majority of TNBC tumors tested. The agonistic antibody was only added in the initial setting of the culture and yet favored the propagation of CD8 + TILs from TNBC tumors. These expanded CD8 + TILs were capable of cytotoxic functions and were successfully utilized to demonstrate the presence of immunogenic mutations in autologous TNBC tumor tissue without recognition of the wild-type counterpart. Our findings open the way for a successful adoptive immunotherapy for TNBC. Cancer Immunol Res; 5(6); 439-45. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Expression of recombinant CD59 with an N-terminal peptide epitope facilitates analysis of residues contributing to its complement-inhibitory function.

    PubMed

    Zhou, Q; Zhao, J; Hüsler, T; Sims, P J

    1996-10-01

    CD59 is a plasma membrane-anchored glycoprotein that serves to protect human cells from lysis by the C5b-9 complex of complement. The immunodominant epitopes of CD59 are known to be sensitive to disruption of native tertiary structure, complicating immunological measurement of expressed mutant constructs for structure function analysis. In order to quantify cell-surface expression of wild-type and mutant forms of this complement inhibitor, independent of CD59 antigen, an 11-residue peptide (TAG) recognized by monoclonal antibody (mAb) 9E10 was inserted before the N-terminal codon (L1) of mature CD59, in a pcDNA3 expression plasmid. SV-T2 cells were transfected with this plasmid, yielding cell lines expressing 0 to > 10(5) CD59/cell. The TAG-CD59 fusion protein was confirmed to be GPI-anchored, N-glycosylated and showed identical complement-inhibitory function to wild-type CD59, lacking the TAG peptide sequence. Using this construct, the contribution of each of four surface-localized aromatic residues (4Y, 47F, 61Y, and 62Y) to CD59's complement-inhibitory function was examined. These assays revealed normal surface expression with complete loss of complement-inhibitory function in the 4Y --> S, 47F --> G and 61Y --> S mutants. By contrast, 62Y --> S mutants retained approximately 40% of function of wild-type CD59. These studies confirmed the utility of the TAG-CD59 construct for quantifying CD59 surface expression and activity, and implicate surface aromatic residues 4Y, 47F, 61Y and 62Y as essential to maintenance of CD59's normal complement-regulatory function.

  10. Increased Numbers of CD4+CD25+ and CD8+CD25+ T-Cells in Peripheral Blood of Patients with Rheumatoid Arthritis with Parvovirus B19 Infection.

    PubMed

    Naciute, Milda; Maciunaite, Gabriele; Mieliauskaite, Diana; Rugiene, Rita; Zinkeviciene, Aukse; Mauricas, Mykolas; Murovska, Modra; Girkontaite, Irute

    2017-01-01

    To investigate T-cell subpopulations in peripheral blood of human parvovirus B19 DNA-positive (B19 + ) and -negative (B19 - ) patients with rheumatoid arthritis (RA) and healthy persons. Blood samples were collected from 115 patients with RA and 47 healthy volunteers; 27 patients with RA and nine controls were B19 + Cluster of differentiation (CD) 4, 8, 25 and 45RA were analyzed on blood cells. CD25 expression on CD4 + CD45RA + , CD4 + CD45RA - , CD8 + CD45RA + , CD8 + CD45RA - subsets were analyzed by flow cytometry. The percentage of CD25 low and CD25 hi cells was increased on CD4 + CD45RA + , CD4 + CD45RA - T-cells and the percentage of CD25 + cells was increased on CD8 + CD45RA + , CD8 + CD45RA - T-cells of B19 + patients with RA in comparison with B19 - patients and controls. Raised levels of CD4 and CD8 regulatory T-cells in B19 + RA patients could cause down-regulation of antiviral clearance mechanisms and lead to activation of persistent human parvovirus B19 infection in patients with RA. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Reactive glia promote development of CD103+ CD69+ CD8+ T-cells through programmed cell death-ligand 1 (PD-L1).

    PubMed

    Prasad, Sujata; Hu, Shuxian; Sheng, Wen S; Chauhan, Priyanka; Lokensgard, James R

    2018-06-01

    Previous work from our laboratory has demonstrated in vivo persistence of CD103 + CD69 + brain resident memory CD8 + T-cells (bT RM ) following viral infection, and that the PD-1: PD-L1 pathway promotes development of these T RM cells within the brain. Although glial cells express low basal levels of PD-L1, its expression is upregulated upon IFN-γ-treatment, and they have been shown to modulate antiviral T-cell effector responses through the PD-1: PD-L1 pathway. We performed flow cytometric analysis of cells from co-cultures of mixed glia and CD8 + T-cells obtained from wild type mice to investigate the role of glial cells in the development of bT RM . In this study, we show that interactions between reactive glia and anti-CD3 Ab-stimulated CD8 + T-cells promote development of CD103 + CD69 + CD8 + T-cells through engagement of the PD-1: PD-L1 pathway. These studies used co-cultures of primary murine glial cells obtained from WT animals along with CD8 + T-cells obtained from either WT or PD-1 KO mice. We found that αCD3 Ab-stimulated CD8 + T-cells from WT animals increased expression of CD103 and CD69 when co-cultured with primary murine glial cells. In contrast, significantly reduced expression of CD103 and CD69 was observed using CD8 + T-cells from PD-1 KO mice. We also observed that reactive glia promoted high levels of CD127, a marker of memory precursor effector cells (MPEC), on CD69 + CD8 + T-cells, which promotes development of T RM cells. Interestingly, results obtained using T-cells from PD-1 KO animals showed significantly reduced expression of CD127 on CD69 + CD8 + cells. Additionally, blocking of glial PD-L1 resulted in decreased expression of CD103, along with reduced CD127 on CD69 + CD8 + T-cells. Taken together, these results demonstrate a role for activated glia in promoting development of bT RM through the PD-1: PD-L1 pathway. © 2018 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  12. CD4 cells can be more efficient at tumor rejection than CD8 cells.

    PubMed

    Perez-Diez, Ainhoa; Joncker, Nathalie T; Choi, Kyungho; Chan, William F N; Anderson, Colin C; Lantz, Olivier; Matzinger, Polly

    2007-06-15

    Researchers designing antitumor treatments have long focused on eliciting tumor-specific CD8 cytotoxic T lymphocytes (CTL) because of their potent killing activity and their ability to reject transplanted organs. The resulting treatments, however, have generally been surprisingly poor at inducing complete tumor rejection, both in experimental models and in the clinic. Although a few scattered studies suggested that CD4 T "helper" cells might also serve as antitumor effectors, they have generally been studied mostly for their ability to enhance the activity of CTL. In this mouse study, we compared monoclonal populations of tumor-specific CD4 and CD8 T cells as effectors against several different tumors, and found that CD4 T cells eliminated tumors that were resistant to CD8-mediated rejection, even in cases where the tumors expressed major histocompatibility complex (MHC) class I molecules but not MHC class II. MHC class II expression on host tissues was critical, suggesting that the CD4 T cells act indirectly. Indeed, the CD4 T cells partnered with NK cells to obtain the maximal antitumor effect. These findings suggest that CD4 T cells can be powerful antitumor effector cells that can, in some cases, outperform CD8 T cells, which are the current "gold standard" effector cell in tumor immunotherapy.

  13. Diversification of the celiac disease α-gliadin complex in wheat: a 33-mer peptide with six overlapping epitopes, evolved following polyploidization.

    PubMed

    Ozuna, Carmen V; Iehisa, Julio C M; Giménez, María J; Alvarez, Juan B; Sousa, Carolina; Barro, Francisco

    2015-06-01

    The gluten proteins from wheat, barley and rye are responsible both for celiac disease (CD) and for non-celiac gluten sensitivity, two pathologies affecting up to 6-8% of the human population worldwide. The wheat α-gliadin proteins contain three major CD immunogenic peptides: p31-43, which induces the innate immune response; the 33-mer, formed by six overlapping copies of three highly stimulatory epitopes; and an additional DQ2.5-glia-α3 epitope which partially overlaps with the 33-mer. Next-generation sequencing (NGS) and Sanger sequencing of α-gliadin genes from diploid and polyploid wheat provided six types of α-gliadins (named 1-6) with strong differences in their frequencies in diploid and polyploid wheat, and in the presence and abundance of these CD immunogenic peptides. Immunogenic variants of the p31-43 peptide were found in most of the α-gliadins. Variants of the DQ2.5-glia-α3 epitope were associated with specific types of α-gliadins. Remarkably, only type 1 α-gliadins contained 33-mer epitopes. Moreover, the full immunodominant 33-mer fragment was only present in hexaploid wheat at low abundance, probably as the result of allohexaploidization events from subtype 1.2 α-gliadins found only in Aegilops tauschii, the D-genome donor of hexaploid wheat. Type 3 α-gliadins seem to be the ancestral type as they are found in most of the α-gliadin-expressing Triticeae species. These findings are important for reducing the incidence of CD by the breeding/selection of wheat varieties with low stimulatory capacity of T cells. Moreover, advanced genome-editing techniques (TALENs, CRISPR) will be easier to implement on the small group of α-gliadins containing only immunogenic peptides. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd.

  14. CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?

    PubMed Central

    dos Santos Virgilio, Fernando; Pontes, Camila; Dominguez, Mariana Ribeiro; Ersching, Jonatan; Rodrigues, Mauricio Martins; Vasconcelos, José Ronnie

    2014-01-01

    MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine. PMID:25104879

  15. Characterisation of the epitope for a herpes simplex virus glycoprotein B-specific monoclonal antibody with high protective capacity.

    PubMed

    Däumer, Martin P; Schneider, Beate; Giesen, Doris M; Aziz, Sheriff; Kaiser, Rolf; Kupfer, Bernd; Schneweis, Karl E; Schneider-Mergener, Jens; Reineke, Ulrich; Matz, Bertfried; Eis-Hübinger, Anna M

    2011-05-01

    Monoclonal antibody (MAb) 2c, specific for glycoprotein B of herpes simplex virus (HSV), had been shown to mediate clearance of infection from the mucous membranes of mice, thereby completely inhibiting mucocutaneous inflammation and lethality, even in mice depleted of both CD4(+) and CD8(+) cells. Additionally, ganglionic infection was highly restricted. In vitro, MAb 2c exhibits a potent complement-independent neutralising activity against HSV type 1 and 2, completely inhibits the viral cell-to-cell spread as well as the syncytium formation induced by syncytial HSV strains (Eis-Hübinger et al. in Intervirology 32:351-360, 1991; Eis-Hübinger et al. in J Gen Virol 74:379-385, 1993). Here, we describe the mapping of the epitope for MAb 2c. The antibody was found to recognise a discontinuous epitope comprised of the HSV type 1 glycoprotein B residues 299 to 305 and one or more additional discontinuous regions that can be mimicked by the sequence FEDF. Identification of the epitope was confirmed by loss of antibody binding to mutated glycoprotein B with replacement of the epitopic key residues, expressed in COS-1 cells. Similarly, MAb 2c was not able to neutralise HSV mutants with altered key residues, and MAb 2c was ineffective in mice inoculated with such mutants. Interestingly, identification and fine-mapping of the discontinuous epitope was not achieved by binding studies with truncated glycoprotein B variants expressed in COS cells but by peptide scanning with synthetic overlapping peptides and peptide key motif analysis. Reactivity of MAb 2c was immensely increased towards a peptide composed of the glycoprotein B residues 299 to 305, a glycine linker, and a C-terminal FEDF motif. If it could be demonstrated that antibodies of the specificity and bioactivity of MAb 2c can be induced by the epitope or a peptide mimicking the epitope, strategies for active immunisation might be conceivable.

  16. Rapid Fine Conformational Epitope Mapping Using Comprehensive Mutagenesis and Deep Sequencing*

    PubMed Central

    Kowalsky, Caitlin A.; Faber, Matthew S.; Nath, Aritro; Dann, Hailey E.; Kelly, Vince W.; Liu, Li; Shanker, Purva; Wagner, Ellen K.; Maynard, Jennifer A.; Chan, Christina; Whitehead, Timothy A.

    2015-01-01

    Knowledge of the fine location of neutralizing and non-neutralizing epitopes on human pathogens affords a better understanding of the structural basis of antibody efficacy, which will expedite rational design of vaccines, prophylactics, and therapeutics. However, full utilization of the wealth of information from single cell techniques and antibody repertoire sequencing awaits the development of a high throughput, inexpensive method to map the conformational epitopes for antibody-antigen interactions. Here we show such an approach that combines comprehensive mutagenesis, cell surface display, and DNA deep sequencing. We develop analytical equations to identify epitope positions and show the method effectiveness by mapping the fine epitope for different antibodies targeting TNF, pertussis toxin, and the cancer target TROP2. In all three cases, the experimentally determined conformational epitope was consistent with previous experimental datasets, confirming the reliability of the experimental pipeline. Once the comprehensive library is generated, fine conformational epitope maps can be prepared at a rate of four per day. PMID:26296891

  17. Identification of an epitope derived from the cancer testis antigen HOM-TES-14/SCP1 and presented by dendritic cells to circulating CD4+ T cells.

    PubMed

    Neumann, Frank; Wagner, Claudia; Preuss, Klaus-Dieter; Kubuschok, Boris; Schormann, Claudia; Stevanovic, Stefan; Pfreundschuh, Michael

    2005-11-01

    Because of their frequent expression in a wide spectrum of malignant tumors but not in normal tissue except testis, cancer testis antigens are promising targets. However, except for HOM-TES-14/SCP1, their expression in malignant lymphomas is rare. SCP1 (synaptonemal complex protein 1) has been shown to elicit antibody responses in the autologous host, but no T-cell responses against HOM-TES-14/SCP1 have been reported. Using the SYFPEITHI algorithm, we selected peptides with a high binding affinity to major histocompatibility complex class 2 (MHC 2) molecules. The pentadecamer epitope p635-649 induced specific CD4+ T-cell responses that were shown to be restricted by HLA-DRB1*1401. The responses could be blocked by preincubation of T cells with anti-CD4 and antigen-presenting cells with anti-HLA-DR, respectively, proving the HLA-DR-restricted presentation of p635-649 and a CD4+ T-cell-mediated effector response. Responding CD4+ cells did not secrete interleukin-5 (IL-5), indicating that they belong to the T(H)1 subtype. The natural processing and presentation of p635-649 were demonstrated by pulsing autologous and allogeneic dendritic cells with a protein fragment covering p635-649. Thus, p635-649 is the first HOM-TES-14/SCP1-derived epitope to fulfill all prerequisites for use as a peptide vaccine in patients with HOM-TES-14/SCP1-expressing tumors, which is the case in two thirds of peripheral T-cell lymphomas.

  18. Prognostic value of CD8CD45RO tumor infiltrating lymphocytes in patients with extrahepatic cholangiocarcinoma

    PubMed Central

    Kim, Richard; Coppola, Domenico; Wang, Emilie; Chang, Young Doo; Kim, Yuhree; Anaya, Daniel; Kim, Dae Won

    2018-01-01

    Cholangiocarcinoma is a malignancy arising from the biliary tract epithelial cells with poor prognosis. Tumor infiltrating lymphocytes (TIL)s and programmed cell death receptor ligand 1 (PD-L1) have a prognostic impact in various solid tumors. We aimed to investigate TILs and PD-L1 expression and their clinical relevance in cholangiocarcinoma. Tumor samples from 44 patients with resected and histologically verified extrahepatic cholangiocarcinoma were evaluated for CD8, CD45RO and PD-L1 expression, and their correlations with clinicopathological data and survival data were analyzed. Total 44 extrahepatic cholangiocarcinoma tissues were evaluated. CD8+ tumor infiltrating lymphocytes (TIL)s were observed in 30 (68%) tumors. Among them, 14 had CD8+CD45RO+ TILs. PD-L1 was expressed on cancer cells in 10 (22.7%) tumors in 34 evaluable extrahepatic cholangiocarciniomas. The presence of CD8+ TILs or CD8+CD45RO+ TILs was not associated with clinical staging or tumor differentiation. Extrahepatic cholangiocarcinoma with CD8+CD45RO+ TILs had longer overall survival (OS) on univariate (P = 0.013) and multivariate (P = 0.012) analysis. Neither CD8+TIL nor PD-L1 expression on cancer cells correlated significantly with OS. These results add to the understanding of the clinical features associated with CD8 TILs and PD-L1 expression in extrahepatic cholangiocarcinoma, and they support the potential rationale of using PD-1 blockade immunotherapy in cholangiocarcinoma.

  19. Increased Numbers of CD4+CD25+ and CD8+CD25+ T-Cells in Peripheral Blood of Patients with Rheumatoid Arthritis with Parvovirus B19 Infection

    PubMed Central

    NACIUTE, MILDA; MACIUNAITE, GABRIELE; MIELIAUSKAITE, DIANA; RUGIENE, RITA; ZINKEVICIENE, AUKSE; MAURICAS, MYKOLAS; MUROVSKA, MODRA; GIRKONTAITE, IRUTE

    2017-01-01

    Aim: To investigate T-cell subpopulations in peripheral blood of human parvovirus B19 DNA-positive (B19+) and -negative (B19−) patients with rheumatoid arthritis (RA) and healthy persons. Patients and Methods: Blood samples were collected from 115 patients with RA and 47 healthy volunteers; 27 patients with RA and nine controls were B19+. Cluster of differentiation (CD) 4, 8, 25 and 45RA were analyzed on blood cells. CD25 expression on CD4+CD45RA+, CD4+CD45RA−, CD8+CD45RA+, CD8+CD45RA− subsets were analyzed by flow cytometry. Results: The percentage of CD25low and CD25hi cells was increased on CD4+CD45RA+, CD4+CD45RA− T-cells and the percentage of CD25+ cells was increased on CD8+CD45RA+, CD8+CD45RA− T-cells of B19+ patients with RA in comparison with B19− patients and controls. Conclusion: Raised levels of CD4 and CD8 regulatory T-cells in B19+ RA patients could cause down-regulation of antiviral clearance mechanisms and lead to activation of persistent human parvovirus B19 infection in patients with RA PMID:28358698

  20. Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig

    PubMed Central

    Morgan, Sophie B.; Attaf, Meriem; Szomolay, Barbara; Miles, John J.; Townsend, Alain; Bailey, Mick; Charleston, Bryan; Tchilian, Elma

    2018-01-01

    There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory

  1. Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig.

    PubMed

    Tungatt, Katie; Dolton, Garry; Morgan, Sophie B; Attaf, Meriem; Fuller, Anna; Whalley, Thomas; Hemmink, Johanneke D; Porter, Emily; Szomolay, Barbara; Montoya, Maria; Hammond, John A; Miles, John J; Cole, David K; Townsend, Alain; Bailey, Mick; Rizkallah, Pierre J; Charleston, Bryan; Tchilian, Elma; Sewell, Andrew K

    2018-05-01

    There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory

  2. The Chemokine Receptor CXCR6 Is Required for the Maintenance of Liver Memory CD8+ T Cells Specific for Infectious Pathogens

    PubMed Central

    Tse, Sze-Wah; Radtke, Andrea J.; Espinosa, Diego A.; Cockburn, Ian A.; Zavala, Fidel

    2014-01-01

    It is well established that immunization with attenuated malaria sporozoites induces CD8+ T cells that eliminate parasite-infected hepatocytes. Liver memory CD8+ T cells induced by immunization with parasites undergo a unique differentiation program and have enhanced expression of CXCR6. Following immunization with malaria parasites, CXCR6-deficient memory CD8+ T cells recovered from the liver display altered cell-surface expression markers as compared to their wild-type counterparts, but they exhibit normal cytokine secretion and expression of cytotoxic mediators on a per-cell basis. Most importantly, CXCR6-deficient CD8+ T cells migrate to the liver normally after immunization with Plasmodium sporozoites or vaccinia virus, but a few weeks later their numbers severely decrease in this organ, losing their capacity to inhibit malaria parasite development in the liver. These studies are the first to show that CXCR6 is critical for the development and maintenance of protective memory CD8+ T cells in the liver. PMID:24823625

  3. Genes encoding two Theileria parva antigens recognized by CD8+ T-cells exhibit sequence diversity in South Sudanese cattle populations but the majority of alleles are similar to the Muguga component of the live vaccine cocktail

    PubMed Central

    Pelle, Roger; Mwacharo, Joram M.; Njahira, Moses N.; Marcellino, Wani L.; Kiara, Henry; Malak, Agol K.; EL Hussein, Abdel Rahim M.; Bishop, Richard; Skilton, Robert A.

    2017-01-01

    East Coast fever (ECF), caused by Theileria parva infection, is a frequently fatal disease of cattle in eastern, central and southern Africa, and an emerging disease in South Sudan. Immunization using the infection and treatment method (ITM) is increasingly being used for control in countries affected by ECF, but not yet in South Sudan. It has been reported that CD8+ T-cell lymphocytes specific for parasitized cells play a central role in the immunity induced by ITM and a number of T. parva antigens recognized by parasite-specific CD8+ T-cells have been identified. In this study we determined the sequence diversity among two of these antigens, Tp1 and Tp2, which are under evaluation as candidates for inclusion in a sub-unit vaccine. T. parva samples (n = 81) obtained from cattle in four geographical regions of South Sudan were studied for sequence polymorphism in partial sequences of the Tp1 and Tp2 genes. Eight positions (1.97%) in Tp1 and 78 positions (15.48%) in Tp2 were shown to be polymorphic, giving rise to four and 14 antigen variants in Tp1 and Tp2, respectively. The overall nucleotide diversity in the Tp1 and Tp2 genes was π = 1.65% and π = 4.76%, respectively. The parasites were sampled from regions approximately 300 km apart, but there was limited evidence for genetic differentiation between populations. Analyses of the sequences revealed limited numbers of amino acid polymorphisms both overall and in residues within the mapped CD8+ T-cell epitopes. Although novel epitopes were identified in the samples from South Sudan, a large number of the samples harboured several epitopes in both antigens that were similar to those in the T. parva Muguga reference stock, which is a key component in the widely used live vaccine cocktail. PMID:28231338

  4. Human CD1c+ dendritic cells drive the differentiation of CD103+ CD8+ mucosal effector T cells via the cytokine TGF-β

    PubMed Central

    Yu, Chun I; Becker, Christian; Wang, Yuanyuan; Marches, Florentina; Helft, Julie; Leboeuf, Marylene; Anguiano, Esperanza; Pourpe, Stephane; Goller, Kristina; Pascual, Virginia; Banchereau, Jacques; Merad, Miriam; Palucka, Karolina

    2013-01-01

    Summary In comparison to murine dendritic cells (DCs), less is known about the function of human DCs in tissues. Here, we analyzed, using lung tissues from humans and humanized mice, the role of human CD1c+ and CD141+ DCs in determining the type of CD8+ T cell immunity generated to live-attenuated influenza virus (LAIV) vaccine. We found that both lung DC subsets acquired influenza antigens in vivo and expanded specific cytotoxic CD8+ T cells in vitro. However, lung-tissue-resident CD1c+ DCs but not CD141+ DCs were able to drive CD103 expression on CD8+ T cells and promoted CD8+ T cell accumulation in lung epithelia in vitro and in vivo. CD1c+ DCs induction of CD103 expression was dependent on membrane-bound cytokine TGF-β1. Thus, CD1c+ and CD141+ DCs generate CD8+ T cells with different properties, and CD1c+ DCs specialize in the regulation of mucosal CD8+ T cells. PMID:23562160

  5. HIV-1 epitopes presented by MHC class I types associated with superior immune containment of viremia have highly constrained fitness landscapes.

    PubMed

    Gorin, Aleksandr M; Du, Yushen; Liu, Franklin Y; Zhang, Tian-Hao; Ng, Hwee L; Hofmann, Christian; Cumberland, William G; Sun, Ren; Yang, Otto O

    2017-08-01

    Certain Major Histocompatibility-I (MHC-I) types are associated with superior immune containment of HIV-1 infection by CD8+ cytotoxic T lymphocytes (CTLs), but the mechanisms mediating this containment are difficult to elucidate in vivo. Here we provide controlled assessments of fitness landscapes and CTL-imposed constraints for immunodominant epitopes presented by two protective (B*57 and B*27) and one non-protective (A*02) MHC-I types. Libraries of HIV-1 with saturation mutagenesis of CTL epitopes are propagated with and without CTL selective pressure to define the fitness landscapes for epitope mutation and escape from CTLs via deep sequencing. Immunodominant B*57- and B*27- present epitopes are highly limited in options for fit mutations, with most viable variants recognizable by CTLs, whereas an immunodominant A*02 epitope-presented is highly permissive for mutation, with many options for CTL evasion without loss of viability. Generally, options for evasion overlap considerably between CTL clones despite highly distinct T cell receptors. Finally, patterns of variant recognition suggest population-wide CTL selection for the A*02-presented epitope. Overall, these findings indicate that these protective MHC-I types yield CTL targeting of highly constrained epitopes, and underscore the importance of blocking public escape pathways for CTL-based interventions against HIV-1.

  6. Differential usage of T-cell receptor V beta gene families by CD4+ and CD8+ T cells in patients with CD8hi common variable immunodeficiency: evidence of a post-thymic effect.

    PubMed Central

    Duchmann, R; Jaffe, J; Ehrhardt, R; Alling, D W; Strober, W

    1996-01-01

    In this study, we report that differences between T-cell receptor (TCR) V beta gene family usage in CD4+ and CD8+ T cells are significantly greater in a subgroup of patients with common variable immunodeficiency (CVI) and high levels of activated CD8+ T cells (CD8hi CVI) than in controls (P < 0.001). In CD8hi CVI patients, such differences were also significantly greater for V beta 12 than for other V beta families. As the causes of the differential usage of V beta gene families by CD4+ and CD8+ T cells are under investigation, it was interesting that the combined differences between V beta gene family usage in the CD4+ and CD8+ T-cell subpopulations as a whole were significantly lower than the combined differences between individual V beta gene family usage in either CD4+ or CD8+ T-cell subpopulations (P < 0.001 in both control and CD8hi CVI patients). Further, the pattern of V beta gene family usage in CD4+ T cells was remarkably similar to that in CD8+ T cells in both groups. These data strongly suggest that differences in V beta gene family usage arising from coselection by major histocompatibility complex (MHC) class I versus MHC class II restriction elements do not fundamentally distort 'basic' V beta gene family usage patterns. They also support the concept that differences in CD4+ and CD8+ T-cell V beta gene family usage, which were increased in CD8hi CVI, can arise from high-affinity interactions between disease-associated antigens or superantigens and T cells in the post-thymic T-cell compartment. Images Figure 6 PMID:8666443

  7. A Rapid-Response Humoral Vaccine Platform Exploiting Pre-Existing Non-Cognate Populations of Anti-Vaccine or Anti-Viral CD4+ T Helper Cells to Confirm B Cell Activation.

    PubMed

    Hills, Thomas; Jakeman, Phillip G; Carlisle, Robert C; Klenerman, Paul; Seymour, Leonard W; Cawood, Ryan

    2016-01-01

    The need for CD4+ T cell responses to arise de novo following vaccination can limit the speed of B cell responses. Populations of pre-existing vaccine-induced or anti-viral CD4+ T cells recognising distinct antigens could be exploited to overcome this limitation. We hypothesise that liposomal vaccine particles encapsulating epitopes that are recognised, after processing and B cell MHCII presentation, by pre-existing CD4+ T cells will exploit this pre-existing T cell help and result in improved antibody responses to distinct target antigens displayed on the particle surface. Liposomal vaccine particles were engineered to display the malaria circumsporozoite (CSP) antigen on their surface, with helper CD4+ epitopes from distinct vaccine or viral antigens contained within the particle core, ensuring the B cell response is raised but focused against CSP. In vivo vaccination studies were then conducted in C57Bl/6 mice as models of either vaccine-induced pre-existing CD4+ T cell immunity (using ovalbumin-OVA) or virus-induced pre-existing CD4+ T cell immunity (murine cytomegalovirus-MCMV). Following the establishment of pre-existing by vaccination (OVA in the adjuvant TiterMax® Gold) or infection with MCMV, mice were administered CSP-coated liposomal vaccines containing the relevant OVA or MCMV core CD4+ T cell epitopes. In mice with pre-existing anti-OVA CD4+ T cell immunity, these vaccine particles elicited rapid, high-titre, isotype-switched CSP-specific antibody responses-consistent with the involvement of anti-OVA T helper cells in confirming activation of anti-CSP B cells. Responses were further improved by entrapping TLR9 agonists, combining humoral vaccination signals 'one', 'two' and 'three' within one particle. Herpes viruses can establish chronic infection and elicit significant, persistent cellular immune responses. We then demonstrate that this principle can be extended to re-purpose pre-existing anti-MCMV immunity to enhance anti-CSP vaccine responses

  8. Increased loss of CCR5+ CD45RA- CD4+ T cells in CD8+ lymphocyte-depleted Simian immunodeficiency virus-infected rhesus monkeys.

    PubMed

    Veazey, Ronald S; Acierno, Paula M; McEvers, Kimberly J; Baumeister, Susanne H C; Foster, Gabriel J; Rett, Melisa D; Newberg, Michael H; Kuroda, Marcelo J; Williams, Kenneth; Kim, Eun-Young; Wolinsky, Steven M; Rieber, E Peter; Piatak, Michael; Lifson, Jeffrey D; Montefiori, David C; Brown, Charles R; Hirsch, Vanessa M; Schmitz, Jörn E

    2008-06-01

    Previously we have shown that CD8(+) T cells are critical for containment of simian immunodeficiency virus (SIV) viremia and that rapid and profound depletion of CD4(+) T cells occurs in the intestinal tract of acutely infected macaques. To determine the impact of SIV-specific CD8(+) T-cell responses on the magnitude of the CD4(+) T-cell depletion, we investigated the effect of CD8(+) lymphocyte depletion during primary SIV infection on CD4(+) T-cell subsets and function in peripheral blood, lymph nodes, and intestinal tissues. In peripheral blood, CD8(+) lymphocyte-depletion changed the dynamics of CD4(+) T-cell loss, resulting in a more pronounced loss 2 weeks after infection, followed by a temporal rebound approximately 2 months after infection, when absolute numbers of CD4(+) T cells were restored to baseline levels. These CD4(+) T cells showed a markedly skewed phenotype, however, as there were decreased levels of memory cells in CD8(+) lymphocyte-depleted macaques compared to controls. In intestinal tissues and lymph nodes, we observed a significantly higher loss of CCR5(+) CD45RA(-) CD4(+) T cells in CD8(+) lymphocyte-depleted macaques than in controls, suggesting that these SIV-targeted CD4(+) T cells were eliminated more efficiently in CD8(+) lymphocyte-depleted animals. Also, CD8(+) lymphocyte depletion significantly affected the ability to generate SIV Gag-specific CD4(+) T-cell responses and neutralizing antibodies. These results reemphasize that SIV-specific CD8(+) T-cell responses are absolutely critical to initiate at least partial control of SIV infection.

  9. Detailed analysis of Epstein–Barr virus-specific CD4+ and CD8+ T cell responses during infectious mononucleosis

    PubMed Central

    Scherrenburg, J; Piriou, E R W A N; Nanlohy, N M; van Baarle, D

    2008-01-01

    We studied simultaneously Epstein–Barr virus (EBV)-specific CD4+ and CD8+ T cell responses during and after infectious mononucleosis (IM), using a previously described 12-day stimulation protocol with EBNA1 or BZLF1 peptide pools. Effector function of EBV-specific T cells was determined after restimulation by measuring intracellular interferon-γ production. During IM, BZLF1-specifc CD4+ T cell responses were dominant compared with CD8+ T cell responses. EBNA1-specific CD4+ and CD8+ T cell responses were low and remained similar for 6 months. However, 6 months after IM, BZLF1-specific CD4+ T cell responses had declined, but CD8+ T cell responses had increased. At diagnosis, EBV-specific CD8+ T cells as studied by human leucocyte antigen class I tetramer staining comprised a tetramerbrightCD8bright population consisting mainly of CD27+ memory T cells and a tetramerdimCD8dim population consisting primarily of CD27- effector T cells. The remaining EBV-specific CD8+ T cell population 6 months after the diagnosis of IM consisted mainly of tetramerbrightCD8bright CD27+ T cells, suggesting preferential preservation of memory T cells after contraction of the EBV-specific T cell pool. PMID:18549439

  10. T inflammatory memory CD8 T cells participate to antiviral response and generate secondary memory cells with an advantage in XCL1 production.

    PubMed

    Jubin, Virginie; Ventre, Erwan; Leverrier, Yann; Djebali, Sophia; Mayol, Katia; Tomkowiak, Martine; Mafille, Julien; Teixeira, Marie; Teoh, Denise Y-L; Lina, Bruno; Walzer, Thierry; Arpin, Christophe; Marvel, Jacqueline

    2012-06-01

    Besides the classically described subsets of memory CD8 T cells generated under infectious conditions, are T inflammatory memory cells generated under sterile priming conditions, such as sensitization to allergens. Although not fully differentiated as pathogen-induced memory cells, they display memory properties that distinguish them from naive CD8 T cells. Given these memory cells are generated in an antigen-specific context that is devoid of pathogen-derived danger signals and CD4 T cell help, we herein questioned whether they maintained their activation and differentiation potential, could be recruited in an immune response directed against a pathogen expressing their cognate antigen and further differentiate in fully competent secondary memory cells. We show that T inflammatory memory cells can indeed take part to the immune response triggered by a viral infection, differentiate into secondary effectors and further generate typical central memory CD8 T cells and effector memory CD8 T cells. Furthermore, the secondary memory cells they generate display a functional advantage over primary memory cells in their capacity to produce TNF-α and the XCL1 chemokine. These results suggest that cross-reactive stimulations and differentiation of cells directed against allergens or self into fully competent pathogen-induced memory cells might have incidences in inflammatory immuno-pathologies.

  11. Deep Surveying of the Transcriptional and Alternative Splicing Signatures for Decidual CD8+ T Cells at the First Trimester of Human Healthy Pregnancy.

    PubMed

    Zeng, Weihong; Liu, Xinmei; Liu, Zhicui; Zheng, Ying; Yu, Tiantian; Fu, Shaliu; Li, Xiao; Zhang, Jing; Zhang, Siming; Ma, Xiaoling; Liu, Xiao-Rui; Qin, Xiaoli; Khanniche, Asma; Zhang, Yan; Tian, Fuju; Lin, Yi

    2018-01-01

    Decidual CD8 + (dCD8) T cells have been proposed to play important roles in immune protection against the invading pathogens and in tolerance toward the growing semi-allogeneic fetus during early pregnancy. However, their phenotypic and functional characteristics remain poorly defined. Here, we performed the first analysis of the transcriptional and alternative splicing (AS) signatures for human first-trimester dCD8 T cells using high-throughput mRNA sequencing. Our data revealed that dCD8 T cells have distinct transcriptional and AS landscapes when compared with their autologous peripheral blood CD8 + (pCD8) T counterparts. Furthermore, human dCD8 T cells were observed to contain CD8-Treg and effector-memory T-cell subsets, and display enhanced functionality in terms of degranulation and cytokine production on a per-cell basis. Additionally, we have identified the novel splice junctions that use a high ratio of the non-canonical splicing motif GC-AG and found that AS is not a major contributor to the gene expression-level changes between paired pCD8 and dCD8 T cells. Together, our findings not only provide a comprehensive framework of the transcriptional and AS landscapes but also reveal the functional feature of human dCD8 T cells, which are of great importance in understanding the biology of these cells and the physiology of human healthy pregnancy.

  12. Significant CD4, CD8, and CD19 lymphopenia in peripheral blood of sarcoidosis patients correlates with severe disease manifestations.

    PubMed

    Sweiss, Nadera J; Salloum, Rafah; Gandhi, Seema; Ghandi, Seema; Alegre, Maria-Luisa; Sawaqed, Ray; Badaracco, Maria; Pursell, Kenneth; Pitrak, David; Baughman, Robert P; Moller, David R; Garcia, Joe G N; Niewold, Timothy B

    2010-02-05

    Sarcoidosis is a poorly understood chronic inflammatory condition. Infiltration of affected organs by lymphocytes is characteristic of sarcoidosis, however previous reports suggest that circulating lymphocyte counts are low in some patients with the disease. The goal of this study was to evaluate lymphocyte subsets in peripheral blood in a cohort of sarcoidosis patients to determine the prevalence, severity, and clinical features associated with lymphopenia in major lymphocyte subsets. Lymphocyte subsets in 28 sarcoid patients were analyzed using flow cytometry to determine the percentage of CD4, CD8, and CD19 positive cells. Greater than 50% of patients had abnormally low CD4, CD8, or CD19 counts (p<4x10(-10)). Lymphopenia was profound in some cases, and five of the patients had absolute CD4 counts below 200. CD4, CD8, and CD19 lymphocyte subset counts were significantly correlated (Spearman's rho 0.57, p = 0.0017), and 10 patients had low counts in all three subsets. Patients with severe organ system involvement including neurologic, cardiac, ocular, and advanced pulmonary disease had lower lymphocyte subset counts as a group than those patients with less severe manifestations (CD4 p = 0.0043, CD8 p = 0.026, CD19 p = 0.033). No significant relationships were observed between various medical therapies and lymphocyte counts, and lymphopenia was present in patients who were not receiving any medical therapy. Significant lymphopenia involving CD4, CD8, and CD19 positive cells was common in sarcoidosis patients and correlated with disease severity. Our findings suggest that lymphopenia relates more to disease pathology than medical treatment.

  13. Significant CD4, CD8, and CD19 Lymphopenia in Peripheral Blood of Sarcoidosis Patients Correlates with Severe Disease Manifestations

    PubMed Central

    Sweiss, Nadera J.; Salloum, Rafah; Ghandi, Seema; Alegre, Maria-Luisa; Sawaqed, Ray; Badaracco, Maria; Pursell, Kenneth; Pitrak, David; Baughman, Robert P.; Moller, David R.; Garcia, Joe G. N.; Niewold, Timothy B.

    2010-01-01

    Background Sarcoidosis is a poorly understood chronic inflammatory condition. Infiltration of affected organs by lymphocytes is characteristic of sarcoidosis, however previous reports suggest that circulating lymphocyte counts are low in some patients with the disease. The goal of this study was to evaluate lymphocyte subsets in peripheral blood in a cohort of sarcoidosis patients to determine the prevalence, severity, and clinical features associated with lymphopenia in major lymphocyte subsets. Methodology/Principal Findings Lymphocyte subsets in 28 sarcoid patients were analyzed using flow cytometry to determine the percentage of CD4, CD8, and CD19 positive cells. Greater than 50% of patients had abnormally low CD4, CD8, or CD19 counts (p<4×10−10). Lymphopenia was profound in some cases, and five of the patients had absolute CD4 counts below 200. CD4, CD8, and CD19 lymphocyte subset counts were significantly correlated (Spearman's rho 0.57, p = 0.0017), and 10 patients had low counts in all three subsets. Patients with severe organ system involvement including neurologic, cardiac, ocular, and advanced pulmonary disease had lower lymphocyte subset counts as a group than those patients with less severe manifestations (CD4 p = 0.0043, CD8 p = 0.026, CD19 p = 0.033). No significant relationships were observed between various medical therapies and lymphocyte counts, and lymphopenia was present in patients who were not receiving any medical therapy. Conclusions/Significance Significant lymphopenia involving CD4, CD8, and CD19 positive cells was common in sarcoidosis patients and correlated with disease severity. Our findings suggest that lymphopenia relates more to disease pathology than medical treatment. PMID:20140091

  14. CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells

    PubMed Central

    Tay, Neil Q.; Lee, Debbie C. P.; Chua, Yen Leong; Prabhu, Nayana; Gascoigne, Nicholas R. J.; Kemeny, David M.

    2017-01-01

    CD8+ T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs) by CD4+ T cells is known to be necessary for the generation of a robust CD8+ T cell response, the contribution of CD8+ T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8+ T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8+ T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8+ T cell responses, we generated and characterized CD40L-expressing CD8+ T cells both in vitro and in vivo. We found that CD40L was expressed on 30–50% of effector CD8+ T cells when stimulated and that this expression was transient. The expression of CD40L on CD8+ T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8+ T cells and the bystander effector CD8+ T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8+ T cells and DCs cooperate to maximize CD8+ T cell responses. PMID:29163545

  15. Identification of vaccinia virus epitope-specific HLA-A*0201-restricted T cells and comparative analysis of smallpox vaccines

    PubMed Central

    Drexler, Ingo; Staib, Caroline; Kastenmüller, Wolfgang; Stevanović, Stefan; Schmidt, Burkhard; Lemonnier, François A.; Rammensee, Hans-Georg; Busch, Dirk H.; Bernhard, Helga; Erfle, Volker; Sutter, Gerd

    2003-01-01

    Despite worldwide eradication of naturally occurring variola virus, smallpox remains a potential threat to both civilian and military populations. New, safe smallpox vaccines are being developed, and there is an urgent need for methods to evaluate vaccine efficacy after immunization. Here we report the identification of an immunodominant HLA-A*0201-restricted epitope that is recognized by cytotoxic CD8+ T cells and conserved among Orthopoxvirus species including variola virus. This finding has permitted analysis and monitoring of epitope-specific T cell responses after immunization and demonstration of the identified T cell specificity in an A*0201-positive human donor. Vaccination of transgenic mice allowed us to compare the immunogenicity of several vaccinia viruses including highly attenuated, replication-deficient modified vaccinia virus Ankara (MVA). MVA vaccines elicited levels of CD8+ T cell responses that were comparable to those induced by the replication-competent vaccinia virus strains. Finally, we demonstrate that MVA vaccination is fully protective against a lethal respiratory challenge with virulent vaccinia virus strain Western Reserve. Our data provide a basis to rationally estimate immunogenicity of safe, second-generation poxvirus vaccines and suggest that MVA may be a suitable candidate. PMID:12518065

  16. IL-21 sustains CD28 expression on IL-15-activated human naive CD8+ T cells.

    PubMed

    Alves, Nuno L; Arosa, Fernando A; van Lier, René A W

    2005-07-15

    Human naive CD8+ T cells are able to respond in an Ag-independent manner to IL-7 and IL-15. Whereas IL-7 largely maintains CD8+ T cells in a naive phenotype, IL-15 drives these cells to an effector phenotype characterized, among other features, by down-regulation of the costimulatory molecule CD28. We evaluated the influence of the CD4+ Th cell-derived common gamma-chain cytokine IL-21 on cytokine-induced naive CD8+ T cell activation. Stimulation with IL-21 did not induce division and only slightly increased IL-15-induced proliferation of naive CD8+ T cells. Strikingly, however, IL-15-induced down-modulation of CD28 was completely prevented by IL-21 at the protein and transcriptional level. Subsequent stimulation via combined TCR/CD3 and CD28 triggering led to a markedly higher production of IL-2 and IFN-gamma in IL-15/IL-21-stimulated cells compared with IL-15-stimulated T cells. Our data show that IL-21 modulates the phenotype of naive CD8+ T cells that have undergone IL-15 induced homeostatic proliferation and preserves their responsiveness to CD28 ligands.

  17. Identification of an immunodominant region of Fel d 1 and characterization of constituent epitopes.

    PubMed

    Bateman, E A L; Ardern-Jones, M R; Ogg, G S

    2008-11-01

    Characterization of T cell epitopes restricted by common HLA alleles is a powerful tool in the understanding of the immune responses to allergens and for the identification of potential peptides for future peptide immunotherapy (PIT). One important requirement is the identification and use of peptides that will bind to HLA molecules covering a large proportion of the population. To identify commonly recognized CD4(+) T cell epitopes in Fel d 1, restricted through frequently expressed HLA molecules for potential future use in PIT. HLA matched antigen presenting cells, HLA blocking antibodies, and peptide truncations were used in ELISpot assays to establish HLA-restricted T cell epitopes. Cytokine responses were measured by ex vivo and cultured IFN-gamma, IL-4, and IL-10 ELISpots. Responses to an immunodominant region of chain 2 were identified in the majority of atopic individuals and epitopes restricted by HLA-DQB1(*)06 and -DPB1(*)0401 were characterized in detail. Significantly higher ex vivo IL-4 and lower IFN-gamma responses were observed to both epitopes in individuals with atopic dermatitis (AD) compared with those without disease. IL-10 responses were significantly lower in those with AD in the individuals with HLA-DPB1(*)0401. We have identified an immunodominant region of Fel d 1 which is frequently recognized by CD4(+) T cells from atopic individuals and contains epitopes that are restricted by very common HLA alleles.

  18. PGV04, an HIV-1 gp120 CD4 Binding Site Antibody, Is Broad and Potent in Neutralization but Does Not Induce Conformational Changes Characteristic of CD4

    PubMed Central

    Falkowska, Emilia; Ramos, Alejandra; Feng, Yu; Zhou, Tongqing; Moquin, Stephanie; Walker, Laura M.; Wu, Xueling; Seaman, Michael S.; Wrin, Terri; Kwong, Peter D.; Wyatt, Richard T.; Mascola, John R.; Poignard, Pascal

    2012-01-01

    Recently, several broadly neutralizing monoclonal antibodies (bnMAbs) directed to the CD4-binding site (CD4bs) of gp120 have been isolated from HIV-1-positive donors. These include VRC01, 3BNC117, and NIH45-46, all of which are capable of neutralizing about 90% of circulating HIV-1 isolates and all of which induce conformational changes in the HIV-1 gp120 monomer similar to those induced by the CD4 receptor. In this study, we characterize PGV04 (also known as VRC-PG04), a MAb with potency and breadth that rivals those of the prototypic VRC01 and 3BNC117. When screened on a large panel of viruses, the neutralizing profile of PGV04 was distinct from those of CD4, b12, and VRC01. Furthermore, the ability of PGV04 to neutralize pseudovirus containing single alanine substitutions exhibited a pattern distinct from those of the other CD4bs MAbs. In particular, substitutions D279A, I420A, and I423A were found to abrogate PGV04 neutralization. In contrast to VRC01, PGV04 did not enhance the binding of 17b or X5 to their epitopes (the CD4-induced [CD4i] site) in the coreceptor region on the gp120 monomer. Furthermore, in contrast to CD4, none of the anti-CD4bs MAbs induced the expression of the 17b epitope on cell surface-expressed cleaved Env trimers. We conclude that potent CD4bs bnMAbs can display differences in the way they recognize and access the CD4bs and that mimicry of CD4, as assessed by inducing conformational changes in monomeric gp120 that lead to enhanced exposure of the CD4i site, is not uniquely correlated with effective neutralization at the site of CD4 binding on HIV-1. PMID:22345481

  19. Loss of the ex vivo but not the reinducible CD8+ T-cell response to Tax in human T-cell leukemia virus type 1-infected patients with adult T-cell leukemia/lymphoma.

    PubMed

    Arnulf, B; Thorel, M; Poirot, Y; Tamouza, R; Boulanger, E; Jaccard, A; Oksenhendler, E; Hermine, O; Pique, C

    2004-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy (HAM). In asymptomatic carriers and HAM patients, HTLV-1 infection leads to a vigorous cytotoxic T-cell (CTL) response mainly directed to the regulatory Tax protein. In contrast, initial studies showed that anti-HTLV-1 CTL activities were not reproductively detected in ATLL patients, neither ex vivo, nor after in vitro restimulation. To better understand this discrepancy, we explored the anti-HTLV-1 CD8+ T-cell response of eight ATLL patients by using in vitro restimulated or freshly isolated CD8+ T cells. In all the ATLL patients, we found that mitogenic activation allowed the induction of CD8+ T cells able to lyse autologous HTLV-1-infected cells and/or to produce IFNgamma in response to Tax peptides. In contrast, only a minority of the patients possessed CD8+ cells able to respond ex vivo to the same epitopes. These findings indicate that although a restimulatable anti-HTLV-1 CTL activity persists during ATLL, the specific ex vivo response is not constantly maintained. This provides definitive evidence that the CD8+ T-cell response to HTLV-1 is affected by ATLL development and reveals that a major defect concerns the generation and/or the functionality of CD8+ effectors.

  20. CD8+CD28- T cells: certainties and uncertainties of a prevalent human T-cell subset.

    PubMed

    Arosa, Fernando A

    2002-02-01

    Human peripheral blood CD8+ T cells comprise cells that are in different states of differentiation and under the control of complex homeostatic processes. In a number of situations ranging from chronic inflammatory conditions and infectious diseases to ageing, immunodeficiency, iron overload and heavy alcohol intake, major phenotypic changes, usually associated with an increase in CD8+ T cells lacking CD28 expression, take place. CD8+CD28- T cells are characterized by a low proliferative capacity to conventional stimulation in vitro and by morphological and functional features of activated/memory T cells. Although the nature of the signals that give origin to this T-cell subset is uncertain, growing evidence argues for the existence of an interplay between epithelial cells, molecules with the MHC-class I fold and CD8+ T cells. The possibility that the generation of CD8+CD28- T cells is the combination of TCR/CD3zeta- and regulatory factor-mediated signals as a result of the sensing of modifications of the internal environment is discussed.

  1. CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection

    NASA Astrophysics Data System (ADS)

    Kitchen, Scott G.; Jones, Nicole R.; Laforge, Stuart; Whitmire, Jason K.; Vu, Bien-Aimee; Galic, Zoran; Brooks, David G.; Brown, Stephen J.; Kitchen, Christina M. R.; Zack, Jerome A.

    2004-06-01

    Costimulation of purified CD8+ T lymphocytes induces de novo expression of CD4, suggesting a previously unrecognized function for this molecule in the immune response. Here, we report that the CD4 molecule plays a direct role in CD8+ T cell function by modulating expression of IFN- and Fas ligand, two important CD8+ T cell effector molecules. CD4 expression also allows infection of CD8 cells by HIV, which results in down-regulation of the CD4 molecule and impairs the induction of IFN-, Fas ligand, and the cytotoxic responses of activated CD8+ T cells. Thus, the CD4 molecule plays a direct role in CD8 T cell function, and infection of these cells by HIV provides an additional reservoir for the virus and also may contribute to the immunodeficiency seen in HIV disease.

  2. Peripheral Blood CD38 Bright CD8+ Effector Memory T Cells Predict Acute Graft-versus-Host Disease.

    PubMed

    Khandelwal, Pooja; Lane, Adam; Chaturvedi, Vijaya; Owsley, Erika; Davies, Stella M; Marmer, Daniel; Filipovich, Alexandra H; Jordan, Michael B; Marsh, Rebecca A

    2015-07-01

    Acute graft-versus-host disease (aGVHD) is mediated by allogeneic T cell responses. We hypothesized that increases of peripheral blood-activated CD8+ effector memory T (TEM) cells would be observed after hematopoietic stem cell transplantation (HSCT) before onset of aGVHD symptoms. Blood was collected twice weekly after HSCT for 7 weeks in 49 consecutive pediatric and adult HSCT recipients. Samples were incubated with fluorochrome-conjugated antibodies against CD45, CD3, CD8, CD38, CD45RA, and CCR7 and analyzed using flow cytometry. TEM cells were defined as CD3+ CD8+ CCR7- CD45RA(-) lymphocytes. CD38 expression was used as a marker of T cell activation. Patients were followed for 100 days for development of aGVHD. Twenty-three patients developed grade 1 to 4 aGVHD at a median of 37 days (range, 15 to 79 days) after HCST. Absolute CD38 bright CD8+ TEM of > 35 cells/μL predicted aGVHD at a median of 8 days (range, 1 to 34) before aGVHD onset with a sensitivity of 82.6% and specificity of 91.6%. The cumulative incidence of aGVHD was 90% in patients with absolute CD38 bright CD8+ TEM >35 cells/μL and 15% in patients without (P < .0001). Quantification of CD38 bright CD8+ TEM cells may predict aGVHD in children and young adult HSCT recipients. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  3. MicroRNA Expression Patterns of CD8+ T Cells in Acute and Chronic Brucellosis

    PubMed Central

    Budak, Ferah; Bal, S. Haldun; Tezcan, Gulcin; Guvenc, Furkan; Akalin, E. Halis; Goral, Guher; Deniz, Gunnur

    2016-01-01

    Although our knowledge about Brucella virulence factors and the host response increase rapidly, the mechanisms of immune evasion by the pathogen and causes of chronic disease are still unknown. Here, we aimed to investigate the immunological factors which belong to CD8+ T cells and their roles in the transition of brucellosis from acute to chronic infection. Using miRNA microarray, more than 2000 miRNAs were screened in CD8+ T cells of patients with acute or chronic brucellosis and healthy controls that were sorted from peripheral blood with flow cytometry and validated through qRT-PCR. Findings were evaluated using GeneSpring GX (Agilent) 13.0 software and KEGG pathway analysis. Expression of two miRNAs were determined to display a significant fold change in chronic group when compared with acute or control groups. Both miRNAs (miR-126-5p and miR-4753-3p) were decreased (p <0.05 or fold change > 2). These miRNAs have the potential to be the regulators of CD8+ T cell-related marker genes for chronic brucellosis infections. The differentially expressed miRNAs and their predicted target genes are involved in MAPK signaling pathway, cytokine-cytokine receptor interactions, endocytosis, regulation of actin cytoskeleton, and focal adhesion indicating their potential roles in chronic brucellosis and its progression. It is the first study of miRNA expression analysis of human CD8+ T cells to clarify the mechanism of inveteracy in brucellosis. PMID:27824867

  4. HIV-Infected Individuals with Low CD4/CD8 Ratio despite Effective Antiretroviral Therapy Exhibit Altered T Cell Subsets, Heightened CD8+ T Cell Activation, and Increased Risk of Non-AIDS Morbidity and Mortality

    PubMed Central

    Serrano-Villar, Sergio; Sainz, Talia; Lee, Sulggi A.; Hunt, Peter W.; Sinclair, Elizabeth; Shacklett, Barbara L.; Ferre, April L.; Hayes, Timothy L.; Somsouk, Ma; Hsue, Priscilla Y.; Van Natta, Mark L.; Meinert, Curtis L.; Lederman, Michael M.; Hatano, Hiroyu; Jain, Vivek; Huang, Yong; Hecht, Frederick M.; Martin, Jeffrey N.; McCune, Joseph M.; Moreno, Santiago; Deeks, Steven G.

    2014-01-01

    A low CD4/CD8 ratio in elderly HIV-uninfected adults is associated with increased morbidity and mortality. A subset of HIV-infected adults receiving effective antiretroviral therapy (ART) fails to normalize this ratio, even after they achieve normal CD4+ T cell counts. The immunologic and clinical characteristics of this clinical phenotype remain undefined. Using data from four distinct clinical cohorts and three clinical trials, we show that a low CD4/CD8 ratio in HIV-infected adults during otherwise effective ART (after CD4 count recovery above 500 cells/mm3) is associated with a number of immunological abnormalities, including a skewed T cell phenotype from naïve toward terminally differentiated CD8+ T cells, higher levels of CD8+ T cell activation (HLADR+CD38+) and senescence (CD28− and CD57+CD28−), and higher kynurenine/tryptophan ratio. Changes in the peripheral CD4/CD8 ratio are also reflective of changes in gut mucosa, but not in lymph nodes. In a longitudinal study, individuals who initiated ART within six months of infection had greater CD4/CD8 ratio increase compared to later initiators (>2 years). After controlling for age, gender, ART duration, nadir and CD4 count, the CD4/CD8 ratio predicted increased risk of morbidity and mortality. Hence, a persistently low CD4/CD8 ratio during otherwise effective ART is associated with increased innate and adaptive immune activation, an immunosenescent phenotype, and higher risk of morbidity/mortality. This ratio may prove useful in monitoring response to ART and could identify a unique subset of individuals needed of novel therapeutic interventions. PMID:24831517

  5. Circulating CD4+CD28null and extra-thymic CD4+CD8+ double positive T cells are independently associated with disease damage in systemic lupus erythematosus patients.

    PubMed

    Ugarte-Gil, M F; Sánchez-Zúñiga, C; Gamboa-Cárdenas, R V; Aliaga-Zamudio, M; Zevallos, F; Tineo-Pozo, G; Cucho-Venegas, J M; Mosqueira-Riveros, A; Medina, M; Perich-Campos, R A; Alfaro-Lozano, J L; Rodriguez-Bellido, Z; Alarcón, G S; Pastor-Asurza, C A

    2016-03-01

    To determine whether circulating CD4+CD28null and extra-thymic CD4+CD8+ double positive (DP) T cells are independently associated with damage accrual in systemic lupus erythematosus (SLE) patients. This cross-sectional study was conducted between September 2013 and April 2014 in consecutive SLE patients from our Rheumatology Department. CD4+CD28null and CD4+CD8+ DP T-cell frequencies were analyzed by flow-cytometry. The association of damage (SLICC/ACR Damage Index, SDI) and CD4+CD28null and CD4+CD8+ DP T cells was examined by univariable and multivariable Poisson regression models, adjusting for possible confounders. All analyses were performed using SPSS 21.0. Patients' (n = 133) mean (SD) age at diagnosis was 35.5 (16.8) years, 124 (93.2%) were female; all were mestizo (mixed Caucasian and Amerindian ancestry). Disease duration was 7.4 (6.8) years. The SLE Disease Activity Index was 5.5 (4.2), and the SDI 0.9 (1.2). The percentages of CD4+CD28null and CD4+CD8+ DP T cells were 17.1 (14.4) and 0.4 (1.4), respectively. The percentage of CD4+CD28null and CD4+CD8+ DP T cells were positively associated with a higher SDI in both univariable (rate ratio (RR) 1.02, 95% confidence interval (CI): 1.01-1.03 and 1.17, 95% CI: 1.07-1.27, respectively; p < 0.001 for both) and multivariable analyses RR 1.02, 95% CI: 1.01-1.03, p = 0.001 for CD4+CD28null T cells and 1.28, 95% CI: 1.13-1.44, p < 0.001 for CD4+CD8+ DP T cells). Only the renal domain remained associated with CD4+CD28null in multivariable analyses (RR 1.023 (1.002-1.045); p = 0.034). In SLE patients, CD4+CD28null and CD4+CD8+ DP T cells are independently associated with disease damage. Longitudinal studies are warranted to determine the predictive value of these associations. © The Author(s) 2015.

  6. Maintenance of CCL5 mRNA stores by post-effector and memory CD8 T cells is dependent on transcription and is coupled to increased mRNA stability.

    PubMed

    Marçais, Antoine; Tomkowiak, Martine; Walzer, Thierry; Coupet, Charles-Antoine; Ravel-Chapuis, Aymeric; Marvel, Jacqueline

    2006-10-01

    Immunological memory is associated with the display of improved effector functions by cells of the adaptive immune system. The storage of untranslated mRNA coding for the CCL5 chemokine by CD8 memory cells is a new process supporting the immediate display of an effector function. Here, we show that, after induction during the primary response, high CCL5 mRNA levels are specifically preserved in CD8 T cells. We have investigated the mechanisms involved in the long-term maintenance of CCL5 mRNA levels by memory CD8 T cells. We demonstrate that the CCL5 mRNA half-life is increased in memory CD8 T cells and that these cells constitutively transcribe ccl5 gene. By inhibiting ccl5 transcription using IL-4, we demonstrate the essential role of transcription in the maintenance of CCL5 mRNA stores. Finally, we show that these stores are spontaneously reconstituted when the inhibitory signal is removed, indicating that the transcription of ccl5 is a default feature of memory CD8 T cells imprinted in their genetic program.

  7. Detection of CD4+ and CD8 + T-lymphocytes with the optofluidic ring resonator (OFRR) biosensor

    NASA Astrophysics Data System (ADS)

    Gohring, John T.; Fan, Xudong

    2009-05-01

    We have demonstrated the use of the Opto-Fluidic ring resonator (OFRR) to achieve the label-free detection of CD4+ and CD8+ T-Lymphocytes. The OFRR sensing technology combines microfluidics and optical sensing in a small platform that achieves rapid detection. In this work, white blood cells were obtained from healthy blood and the concentration altered to reflect CD4 and CD8 concentrations of HIV infected individuals. The OFRR was modified to effectively capture these receptors located on T-Lymphocytes and obtain a sensing signal through interaction with an evanescent field. Results show isolation of CD4+ and CD8+ T-Lymphocytes at medically significant levels. This work will lead to a device that can provide a CD4 and CD8 count to measure HIV progression in a low cost sensing setup.

  8. Immune Escape Mutations Detected within HIV-1 Epitopes Associated with Viral Control During Treatment Interruption

    PubMed Central

    Schweighardt, Becky; Wrin, Terri; Meiklejohn, Duncan A.; Spotts, Gerald; Petropoulos, Christos J.; Nixon, Douglas F.; Hecht, Frederick M.

    2010-01-01

    We analyzed immune responses in chronically HIV-infected individuals who took part in a treatment interruption (TI) trial designed for patients who initiated anti-retroviral therapy within 6 months of seroconversion. In the two subjects that exhibited the best viral control, we detected CD8+ T cell responses against 1-2 Gag epitopes during the early weeks of TI and a subsequent increase in the number of epitopes recognized by the later time points. Each of these subjects developed mutations within the epitopes targeted by the highest magnitude responses. In the subject with the worst viral control, we detected responses against two Gag epitopes throughout the entire TI and no Gag mutations. The magnitude of these responses increased dramatically with time, greatly exceeding those detected in the virologic controllers. The highest levels of contemporaneous autologous neutralizing antibody activity were detected in the virologic controllers, and a subsequent escape mutation developed within the envelope gene of one controller that abrogated the response. These data suggest that immune escape mutations are a sign of viral control during TI, and that the absence of immune escape mutations in the presence of high-levels of viral replication indicates the lack of an effective host immune response. PMID:19910798

  9. CD4 and CD8 T-Cell Responses to Mycobacterial Antigens in African Children

    PubMed Central

    Tena-Coki, Nontobeko G.; Scriba, Thomas J.; Peteni, Nomathemba; Eley, Brian; Wilkinson, Robert J.; Andersen, Peter; Hanekom, Willem A.; Kampmann, Beate

    2010-01-01

    Rationale: The current tuberculosis (TB) vaccine, bacille Calmette-Guérin (BCG), does not provide adequate protection against TB disease in children. Furthermore, more efficacious TB vaccines are needed for children with immunodeficiencies such as HIV infection, who are at highest risk of disease. Objectives: To characterize mycobacteria-specific T cells in children who might benefit from vaccination against TB, focusing on responses to antigens contained in novel TB vaccines. Methods: Whole blood was collected from three groups of BCG-vaccinated children: HIV-seronegative children receiving TB treatment (n = 30), HIV-infected children (n = 30), and HIV-unexposed healthy children (n = 30). Blood was stimulated with Ag85B and TB10.4, or purified protein derivative, and T-cell cytokine production by CD4 and CD8 was determined by flow cytometry. The memory phenotype of antigen-specific CD4 and CD8 T cells was also determined. Measurements and Main Results: Mycobacteria-specific CD4 and CD8 T-cell responses were detectable in all three groups of children. Children receiving TB treatment had significantly higher frequencies of antigen-specific CD4 T cells compared with HIV-infected children (P = 0.0176). No significant differences in magnitude, function, or phenotype of specific T cells were observed in HIV-infected children compared with healthy control subjects. CD4 T cells expressing IFN-γ, IL-2, or both expressed a CD45RA−CCR7−CD27+/− effector memory phenotype. Mycobacteria-specific CD8 T cells expressed mostly IFN-γ in all groups of children; these cells expressed CD45RA−CCR7−CD27+/− or CD45RA+CCR7−CD27+/− effector memory phenotypes. Conclusions: Mycobacteria-specific T-cell responses could be demonstrated in all groups of children, suggesting that the responses could be boosted by new TB vaccines currently in clinical trials. PMID:20224065

  10. Comprehensive definition of human immunodominant CD8 antigens in tuberculosis.

    PubMed

    Lewinsohn, Deborah A; Swarbrick, Gwendolyn M; Park, Byung; Cansler, Meghan E; Null, Megan D; Toren, Katelynne G; Baseke, Joy; Zalwango, Sarah; Mayanja-Kizza, Harriet; Malone, LaShaunda L; Nyendak, Melissa; Wu, Guanming; Guinn, Kristi; McWeeney, Shannon; Mori, Tomi; Chervenak, Keith A; Sherman, David R; Boom, W Henry; Lewinsohn, David M

    2017-01-01

    Despite widespread use of the Bacillus Calmette-Guerin vaccine, tuberculosis, caused by infection with Mycobacterium tuberculosis , remains a leading cause of morbidity and mortality worldwide. As CD8 + T cells are critical to tuberculosis host defense and a phase 2b vaccine trial of modified vaccinia Ankara expressing Ag85a that failed to demonstrate efficacy, also failed to induce a CD8 + T cell response, an effective tuberculosis vaccine may need to induce CD8 + T cells. However, little is known about CD8, as compared to CD4, antigens in tuberculosis. Herein, we report the results of the first ever HLA allele independent genome-wide CD8 antigen discovery program. Using CD8 + T cells derived from humans with latent tuberculosis infection or tuberculosis and an interferon-γ ELISPOT assay, we screened a synthetic peptide library representing 10% of the Mycobacterium tuberculosis proteome, selected to be enriched for Mycobacterium tuberculosis antigens. We defined a set of immunodominant CD8 antigens including part or all of 74 Mycobacterium tuberculosis proteins, only 16 of which are previously known CD8 antigens. Immunogenicity was associated with the degree of expression of mRNA and protein. Immunodominant antigens were enriched in cell wall proteins with preferential recognition of Esx protein family members, and within proteins comprising the Mycobacterium tuberculosis secretome. A validation study of immunodominant antigens demonstrated that these antigens were strongly recognized in Mycobacterium tuberculosis -infected individuals from a tuberculosis endemic region in Africa. The tuberculosis vaccine field will likely benefit from this greatly increased known repertoire of CD8 immunodominant antigens and definition of properties of Mycobacterium tuberculosis proteins important for CD8 antigenicity.

  11. HIV-specific cytotoxic T lymphocyte precursors exist in a CD28-CD8+ T cell subset and increase with loss of CD4 T cells.

    PubMed

    Lewis, D E; Yang, L; Luo, W; Wang, X; Rodgers, J R

    1999-06-18

    To determine whether the CD28-CD8+ T cells that develop during HIV infection contain HIV-specific cytotoxic precursor cells. CD8 subpopulations from six asymptomatic HIV-positive adults, with varying degrees of CD4 T cell loss, were sorted by flow cytometry and HIV-specific precursor cytotoxic T lymphocyte frequencies were measured. Three populations of CD8 T cells were tested: CD28+CD5-- T cells, CD28-CD57+ T cells (thought to be memory cells) and CD28-CD57- T cells (function unknown). Sorted CD8 subsets were stimulated with antigen presenting cells expressing HIV-1 Gag/Pol molecules. Cytotoxic T cell assays on Gag/Pol expressing 51Cr-labeled Epstein-Barr virus transformed autologous B cells lines or control targets were performed after 2 weeks. Specific lysis and precursor frequencies were calculated. Both CD28 positive and CD28-CD57+ populations contained appreciable numbers of precursors (9-1720 per 10(6) CD8+ T cells). However, the CD28-CD57- population had fewer precursors in five out of six people studied. More CD28 positive HIV-specific cytotoxic T lymphocyte precursors were found in patients with CD4:CD8 ratios > 1, whereas more CD28-CD57+ precursors were found in patients whose CD4:CD8 ratios were < 1 (r2, 0.68). Memory HIV-specific precursor cytotoxic T lymphocytes are found in both CD28 positive and CD28-CD8+ cells, however, a CD28-CD57- subpopulation had fewer. Because CD28-CD57+ cells are antigen-driven with limited diversity, the loss of CD28 on CD8 T cells during disease progression may reduce the response to new HIV mutations; this requires further testing.

  12. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection.

    PubMed

    Holst, Peter J; Jensen, Benjamin A H; Ragonnaud, Emeline; Thomsen, Allan R; Christensen, Jan P

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilitates potent virus-induced T-cell responses against immunodominant epitopes during subsequent challenge with highly invasive virus. In contrast, when an immunodominant epitope was included in the vaccine, the T-cell response associated with viral challenge remained focussed on that epitope. Early after challenge with live virus, the CD8+ T cells specific for vaccine-encoded epitopes, displayed a phenotype typically associated with prolonged/persistent antigenic stimulation marked by high levels of KLRG-1, as compared to T cells reacting to epitopes not included in the vaccine. Notably, this association was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted by vaccination. In addition, our findings suggest that prior adenoviral vaccination is not likely to negatively impact the long-term and protective immune response induced and maintained by a vaccine-attenuated chronic viral infection.

  13. Requirement for sustained MAPK signaling in both CD4 and CD8 lineage commitment: a threshold model.

    PubMed

    Wilkinson, B; Kaye, J

    2001-08-01

    Although there is general agreement that the RAS/MAPK signaling pathway is required for positive selection of CD4 T cells in the thymus, the role of this pathway in CD8 lineage commitment remains controversial. We show here that the differentiation of isolated cultured thymocytes to the CD8 as well as CD4 T cell lineage is sensitive to MEK inhibition and that both CD4 and CD8 thymocyte differentiation requires sustained MEK signaling. However, CD4 lineage commitment is promoted by a stronger stimulus for longer duration than required for CD8 lineage commitment. Interestingly, CD4 lineage commitment is not irreversibly set even after 10 h of signaling, well past early changes in gene expression. These findings are presented in the context of a model of lineage commitment in which a default pathway of CD8 lineage commitment is altered to CD4 commitment if the thymocyte achieves a threshold level of active MAPK within a certain time frame. Copyright 2001 Academic Press.

  14. Incomplete Recovery of CD4 count, CD4 Percentage, and CD4/CD8 ratio in HIV-Infected Patients on Long-Term Antiretroviral Therapy with Suppressed Viremia.

    PubMed

    Mutoh, Yoshikazu; Nishijima, Takeshi; Inaba, Yosuke; Tanaka, Noriko; Kikuchi, Yoshimi; Gatanaga, Hiroyuki; Oka, Shinichi

    2018-03-02

    The extent and duration of long-term recovery of CD4 count, CD4%, and CD4/CD8 ratio after initiation of combination antiretroviral therapy (cART) in patients with suppressed viral load are largely unknown. HIV-1 infected patients who started cART between January 2004 and January 2012 and showed persistent viral suppression (<200 copies/mL) for at least 4 years were followed up at AIDS Clinical Center, Tokyo. Change point analysis was used to determine the time point where CD4 count recovery shows a plateau, and linear mixed model was applied to estimate CD4 count at the change point. Data of 752 patients were analyzed [93% males, median age 38, median baseline CD4 count 172/µL (IQR, 62-253), CD4% 13.8% (IQR, 7.7-18.5), and CD4/8 ratio 0.23 (IQR, 0.12-0.35)]. The median follow-up period was 81.2 months and 91 (12.1%) patients were followed for >10 years. Change point analysis showed that CD4 count, CD4%, and CD4/CD8 ratio, continued to increase until 78.6, 62.2, and 64.3 months, respectively, with adjusted mean of 590 /µL (95%CI 572-608), 29.5% (29-30.1), and 0.89 (0.86-0.93), respectively, at the change point. Although 73.8% of the study patients achieved CD4 count ≥500 /μL, 48.2% of the patients with baseline CD4 count <100 /μL did not achieve CD4 count ≥500 /μL. Neither CD4% nor CD4/CD8 ratio normalized in a majority of patients. The results showed lack of normalization of CD4 count, CD4%, and CD4/CD8 ratio to the levels seen in healthy individuals even after long-term successful cART in patients with suppressed viral load.

  15. Low numbers of CD8+ T lymphocytes in hereditary haemochromatosis are explained by a decrease of the most mature CD8+ effector memory T cells.

    PubMed

    Macedo, M F; Porto, G; Costa, M; Vieira, C P; Rocha, B; Cruz, E

    2010-03-01

    Low CD8(+) T lymphocyte numbers have long been described in hereditary haemochromatosis (HH). Recently, two conserved haplotypes localized near the microsatellite D6S105 at the major histocompatibility complex (MHC) class I region were described predicting the clinical expression of HH and the CD8(+) T lymphocyte numbers. The A-A-T haplotype was associated with a severe clinical expression of HH and low CD8(+) T lymphocyte numbers, while the G-G-G haplotype was associated with a milder clinical expression of HH and high CD8(+) T lymphocyte numbers. As CD8(+) T lymphocytes are a very heterogeneous population, in this study we analysed the CD8(+) subpopulations of naive, central memory (T(CM)) and effector memory (T(EM)), and further subsets of CD8(+) T(EM) cells in 47 HH patients and 68 controls. In addition, association studies were conducted between the conserved haplotypes and the CD8(+) T cell subpopulations in HH. Variations of the numbers of naive and central memory cells with age were similar between HH patients and controls. For T(EM) cells and the T(EM) CD27(-)CD28(-) subset no effect of age was observed in HH [R(2) = 0.001, not significant (n.s.) and R(2) = 0.01, n.s., respectively] contrasting with the increasing of these subpopulations with age in controls (R(2) = 0.09, P = 0.017 and R(2) = 0.22, P = 0.0005, respectively). Interestingly, patients homozygous for the A-A-T haplotype have lower numbers of CD8(+) T(EM) cells due especially to lower numbers of T(EM) CD27(-)CD28(-) (0.206 +/- 0.119 and 0.066 +/- 0.067 x 10(6) cells/ml, respectively) than patients carrying the G-G-G haplotype (0.358 +/- 0.195 and 0.246 +/- 0.202 x 10(6) cells/ml, respectively). This may suggest an inability of HH patients to differentiate the CD8(+) T cells into the most mature phenotype.

  16. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism.

    PubMed

    Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S; Tellides, George; Lakkis, Fadi G

    2004-01-01

    CD4(+)CD25(+) regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8(+) T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8(+) T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8(+) T cells was observed when Treg cells lacked CD30 or when CD30 ligand-CD30 interaction was blocked with anti-CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses.

  17. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism

    PubMed Central

    Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S.; Tellides, George; Lakkis, Fadi G.

    2004-01-01

    CD4+CD25+ regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8+ T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8+ T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8+ T cells was observed when Treg cells lacked CD30 or when CD30 ligand–CD30 interaction was blocked with anti–CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses. PMID:14722622

  18. TLR4 ligands lipopolysaccharide and monophosphoryl lipid a differentially regulate effector and memory CD8+ T Cell differentiation.

    PubMed

    Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M

    2014-05-01

    Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.

  19. Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T-cell-dependent manner.

    PubMed

    Moliva, J I; Hossfeld, A P; Canan, C H; Dwivedi, V; Wewers, M D; Beamer, G; Turner, J; Torrelles, J B

    2018-05-01

    Current tuberculosis (TB) treatments include chemotherapy and preventative vaccination with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In humans, however, BCG vaccination fails to fully protect against pulmonary TB. Few studies have considered the impact of the human lung mucosa (alveolar lining fluid (ALF)), which modifies the Mycobacterium tuberculosis (M.tb) cell wall, revealing alternate antigenic epitopes on the bacterium surface that alter its pathogenicity. We hypothesized that ALF-induced modification of BCG would induce better protection against aerosol infection with M.tb. Here we vaccinated mice with ALF-exposed BCG, mimicking the mycobacterial cell surface properties that would be present in the lung during M.tb infection. ALF-exposed BCG-vaccinated mice were more effective at reducing M.tb bacterial burden in the lung and spleen, and had reduced lung inflammation at late stages of M.tb infection. Improved BCG efficacy was associated with increased numbers of memory CD8 + T cells, and CD8 + T cells with the potential to produce interferon-γ in the lung in response to M.tb challenge. Depletion studies confirmed an essential role for CD8 + T cells in controlling M.tb bacterial burden. We conclude that ALF modifications to the M.tb cell wall in vivo are relevant in the context of vaccine design.

  20. Identification of a conserved B-cell epitope on the GapC protein of Streptococcus dysgalactiae.

    PubMed

    Zhang, Limeng; Zhou, Xue; Fan, Ziyao; Tang, Wei; Chen, Liang; Dai, Jian; Wei, Yuhua; Zhang, Jianxin; Yang, Xuan; Yang, Xijing; Liu, Daolong; Yu, Liquan; Zhang, Hua; Wu, Zhijun; Yu, Yongzhong; Sun, Hunan; Cui, Yudong

    2015-01-01

    Streptococcus dysgalactiae (S. dysgalactia) GapC is a highly conserved surface dehydrogenase among the streptococcus spp., which is responsible for inducing protective antibody immune responses in animals. However, the B-cell epitope of S. dysgalactia GapC have not been well characterized. In this study, a monoclonal antibody 1F2 (mAb1F2) against S. dysgalactiae GapC was generated by the hybridoma technique and used to screen a phage-displayed 12-mer random peptide library (Ph.D.-12) for mapping the linear B-cell epitope. The mAb1F2 recognized phages displaying peptides with the consensus motif TRINDLT. Amino acid sequence of the motif exactly matched (30)TRINDLT(36) of the S. dysgalactia GapC. Subsequently, site-directed mutagenic analysis further demonstrated that residues R31, I32, N33, D34 and L35 formed the core of (30)TRINDLT(36), and this core motif was the minimal determinant of the B-cell epitope recognized by the mAb1F2. The epitope (30)TRINDLT(36) showed high homology among different streptococcus species. Overall, our findings characterized a conserved B-cell epitope, which will be useful for the further study of epitope-based vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers.

    PubMed Central

    Pennell, RI; Janniche, L; Kjellbom, P; Scofield, GN; Peart, JM; Roberts, K

    1991-01-01

    We have identified and characterized the temporal and spatial regulation of a plasma membrane arabinogalactan protein epitope during development of the aerial parts of oilseed rape using the monoclonal antibody JIM8. The JIM8 epitope is expressed by the first cells of the embryo and by certain cells in the sexual organs of flowers. During embryogenesis, the JIM8 epitope ceases to be expressed by the embryo proper but is still found in the suspensor. During differentiation of the stamens and carpels, expression of the JIM8 epitope progresses from one cell type to another, ultimately specifying the endothecium and sperm cells, the nucellar epidermis, synergid cells, and the egg cell. This complex temporal sequence demonstrates rapid turnover of the JIM8 epitope. There is no direct evidence for any cell-inductive process in plant development. However, if cell-cell interactions exist in plants and participate in flower development, the JIM8 epitope may be a marker for one set of them. PMID:12324592

  2. Early events governing memory CD8+ T-cell differentiation.

    PubMed

    Obar, Joshua J; Lefrançois, Leo

    2010-08-01

    Understanding the regulation of the CD8(+) T-cell response and how protective memory cells are generated has been intensely studied. It is now appreciated that a naive CD8(+) T cell requires at least three signals to mount an effective immune response: (i) TCR triggering, (ii) co-stimulation and (iii) inflammatory cytokines. Only recently have we begun to understand the molecular integration of those signals and how early events regulate the fate decisions of the responding CD8(+) T cells. This review will discuss the recent findings about both the extracellular and intracellular factors that regulate the destiny of responding CD8(+) T cells.

  3. Early and Partial Reduction in CD4+Foxp3+ Regulatory T Cells during Colitis-Associated Colon Cancer Induces CD4+ and CD8+ T Cell Activation Inhibiting Tumorigenesis

    PubMed Central

    Olguín, Jonadab E.; Medina-Andrade, Itzel; Molina, Emmanuel; Vázquez, Armando; Pacheco-Fernández, Thalia; Saavedra, Rafael; Pérez-Plasencia, Carlos; Chirino, Yolanda I.; Vaca-Paniagua, Felipe; Arias-Romero, Luis E.; Gutierrez-Cirlos, Emma B.; León-Cabrera, Sonia A.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.

    2018-01-01

    Colorectal cancer (CRC) is the second most commonly diagnosed cancer in women and the third in men in North America and Europe. CRC is associated with inflammatory responses in which intestinal pathology is caused by different cell populations including a T cell dysregulation that concludes in an imbalance between activated T (Tact) and regulatory T (Treg) cells. Treg cells are CD4+Foxp3+ cells that actively suppress pathological and physiological immune responses, contributing to the maintenance of immune homeostasis. A tumor-promoting function for Treg cells has been suggested in CRC, but the kinetics of Treg cells during CRC development are poorly known. Therefore, using a mouse model of colitis-associated colon cancer (CAC) induced by azoxymethane and dextran sodium sulfate, we observed the dynamic and differential kinetics of Treg cells in blood, spleen and mesenteric lymph nodes (MLNs) as CAC progresses, highlighting a significant reduction in Treg cells in blood and spleen during early CAC development, whereas increasing percentages of Treg cells were detected in late stages in MLNs. Interestingly, when Treg cells were decreased, Tact cells were increased and vice versa. Treg cells from late stages of CAC displayed an activated phenotype by expressing PD1, CD127 and Tim-3, suggesting an increased suppressive capacity. Suppression assays showed that T-CD4+ and T-CD8+ cells were suppressed more efficiently by MLN Treg cells from CAC animals. Finally, an antibody-mediated reduction in Treg cells during early CAC development resulted in a better prognostic value, because animals showed a reduction in tumor progression associated with an increased percentage of activated CD4+CD25+Foxp3- and CD8+CD25+ T cells in MLNs, suggesting that Treg cells suppress T cell activation at early steps during CAC development. PMID:29344269

  4. Increased Coexpression of PD-1, TIGIT, and KLRG-1 on Tumor-Reactive CD8+ T Cells During Relapse after Allogeneic Stem Cell Transplantation.

    PubMed

    Hutten, Tim J A; Norde, Wieger J; Woestenenk, Rob; Wang, Ruo Chen; Maas, Frans; Kester, Michel; Falkenburg, J H Frederik; Berglund, Sofia; Luznik, Leo; Jansen, Joop H; Schaap, Nicolaas; Dolstra, Harry; Hobo, Willemijn

    2018-04-01

    Allogeneic stem cell transplantation (allo-SCT) can be a curative treatment for patients with a hematologic malignancy due to alloreactive T cell responses recognizing minor histocompatibility antigens (MiHA). Yet tumor immune escape mechanisms can cause failure of T cell immunity, leading to relapse. Tumor cells display low expression of costimulatory molecules and can up-regulate coinhibitory molecules that inhibit T cell functionality on ligation with their counter-receptors on the tumor-reactive T cells. The aim of this explorative study was to evaluate immune checkpoint expression profiles on T cell subsets and on cytomegalovirus (CMV)- and/or MiHA-reactive CD8 + T cells of allo-SCT recipients using a 13-color flow cytometry panel, and to correlate these expression patterns to clinical outcomes. MiHA-reactive CD8 + T cells exhibited an early differentiated CD27 ++ /CD28 ++ phenotype with low KLRG-1 and CD57 expression. These T cells also displayed increased expression of PD-1, TIM-3, and TIGIT compared with total effector memory T cells and CMV-specific CD8 + T cells in healthy donors and allo-SCT recipients. Remarkably, high coexpression of PD-1, TIGIT, and KLRG-1 on MiHA-reactive CD8 + T cells was associated with relapse after allo-SCT. Taken together, these findings indicate that MiHA-specific CD8 + T cells of relapsed patients have a distinctive coinhibitory expression signature compared with patients who stay in remission. This phenotype may serve as a potential monitoring tool in patients. Moreover, these findings suggest that PD-1 and TIGIT play important roles in regulating T cell-mediated tumor control, providing a rationale for immunotherapy with blocking antibodies to treat relapse after allo-SCT. Copyright © 2017 The American Society for Blood and Marrow Transplantation. All rights reserved.

  5. A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2.

    PubMed

    Tumban, Ebenezer; Peabody, Julianne; Peabody, David S; Chackerian, Bryce

    2011-01-01

    Current human papillomavirus (HPV) vaccines that are based on virus-like particles (VLPs) of the major capsid protein L1 largely elicit HPV type-specific antibody responses. In contrast, immunization with the HPV minor capsid protein L2 elicits antibodies that are broadly cross-neutralizing, suggesting that a vaccine targeting L2 could provide more comprehensive protection against infection by diverse HPV types. However, L2-based immunogens typically elicit much lower neutralizing antibody titers than L1 VLPs. We previously showed that a conserved broadly neutralizing epitope near the N-terminus of L2 is highly immunogenic when displayed on the surface of VLPs derived from the bacteriophage PP7. Here, we report the development of a panel of PP7 VLP-based vaccines targeting L2 that protect mice from infection with carcinogenic and non-carcinogenic HPV types that infect the genital tract and skin. L2 peptides from eight different HPV types were displayed on the surface of PP7 bacteriophage VLPs. These recombinant L2 VLPs, both individually and in combination, elicited high-titer anti-L2 IgG serum antibodies. Immunized mice were protected from high dose infection with HPV pseudovirus (PsV) encapsidating a luciferase reporter. Mice immunized with 16L2 PP7 VLPs or 18L2 PP7 VLPs were nearly completely protected from both PsV16 and PsV18 challenge. Mice immunized with the mixture of eight L2 VLPs were strongly protected from genital challenge with PsVs representing eight diverse HPV types and cutaneous challenge with HPV5 PsV. VLP-display of a cross-neutralizing HPV L2 epitope is an effective approach for inducing high-titer protective neutralizing antibodies and is capable of offering protection from a spectrum of HPVs associated with cervical cancer as well as genital and cutaneous warts.

  6. Tomatine adjuvantation of protective immunity to a major pre-erythrocytic vaccine candidate of malaria is mediated via CD8+ T cell release of IFN-gamma.

    PubMed

    Heal, Karen G; Taylor-Robinson, Andrew W

    2010-01-01

    The glycoalkaloid tomatine, derived from the wild tomato, can act as a powerful adjuvant to elicit an antigen-specific cell-mediated immune response to the circumsporozoite (CS) protein, a major pre-erythrocytic stage malaria vaccine candidate antigen. Using a defined MHC-class-I-restricted CS epitope in a Plasmodium berghei rodent model, antigen-specific cytotoxic T lymphocyte activity and IFN-gamma secretion ex vivo were both significantly enhanced compared to responses detected from similarly stimulated splenocytes from naive and tomatine-saline-immunized mice. Further, through lymphocyte depletion it is demonstrated that antigen-specific IFN-gamma is produced exclusively by the CD8(+) T cell subset. We conclude that the processing of the P. berghei CS peptide as an exogenous antigen and its presentation via MHC class I molecules to CD8(+) T cells leads to an immune response that is an in vitro correlate of protection against pre-erythrocytic malaria. Further characterization of tomatine as an adjuvant in malaria vaccine development is indicated.

  7. Low numbers of CD8+ T lymphocytes in hereditary haemochromatosis are explained by a decrease of the most mature CD8+ effector memory T cells

    PubMed Central

    Macedo, M F; Porto, G; Costa, M; Vieira, C P; Rocha, B; Cruz, E

    2010-01-01

    Low CD8+ T lymphocyte numbers have long been described in hereditary haemochromatosis (HH). Recently, two conserved haplotypes localized near the microsatellite D6S105 at the major histocompatibility complex (MHC) class I region were described predicting the clinical expression of HH and the CD8+ T lymphocyte numbers. The A-A-T haplotype was associated with a severe clinical expression of HH and low CD8+ T lymphocyte numbers, while the G-G-G haplotype was associated with a milder clinical expression of HH and high CD8+ T lymphocyte numbers. As CD8+ T lymphocytes are a very heterogeneous population, in this study we analysed the CD8+ subpopulations of naive, central memory (TCM) and effector memory (TEM), and further subsets of CD8+ TEM cells in 47 HH patients and 68 controls. In addition, association studies were conducted between the conserved haplotypes and the CD8+ T cell subpopulations in HH. Variations of the numbers of naive and central memory cells with age were similar between HH patients and controls. For TEM cells and the TEM CD27−CD28− subset no effect of age was observed in HH [R2 = 0·001, not significant (n.s.) and R2 = 0·01, n.s., respectively] contrasting with the increasing of these subpopulations with age in controls (R2 = 0·09, P = 0·017 and R2 = 0·22, P = 0·0005, respectively). Interestingly, patients homozygous for the A-A-T haplotype have lower numbers of CD8+ TEM cells due especially to lower numbers of TEM CD27−CD28− (0·206 ± 0·119 and 0·066 ± 0·067 × 106 cells/ml, respectively) than patients carrying the G-G-G haplotype (0·358 ± 0·195 and 0·246 ± 0·202 × 106 cells/ml, respectively). This may suggest an inability of HH patients to differentiate the CD8+ T cells into the most mature phenotype. PMID:20015273

  8. Functional heterogeneity of human effector CD8+ T cells.

    PubMed

    Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi

    2012-02-09

    Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.

  9. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL.

    PubMed

    Bellantuono, Ilaria; Gao, Liquan; Parry, Suzanne; Marley, Steve; Dazzi, Francesco; Apperley, Jane; Goldman, John M; Stauss, Hans J

    2002-11-15

    Using the allo-restricted T-cell approach to circumvent tolerance, we have previously identified a cytotoxic T-lymphocyte (CTL) epitope in the transcription factor Wilms tumor antigen 1 (WT1) presented by HLA-A0201 (A2) class I molecules. Here we describe an additional A2-presented epitope and show that CTLs against both epitopes kill WT1-expressing leukemia cell lines. Colony-forming assays demonstrated that both types of CTL killed CD34(+) progenitor cells from A2(+) leukemia patients, but not from A2(+) healthy individuals. The long-term culture-initiating cell (LTC-IC) assay was used to analyze the killing activity of WT1-specific CTLs against the more immature fraction of CD34(+) cells. The CTLs killed LTC-ICs of patients with chronic myelogenous leukemia (CML), whereas the function of normal CD34(+) progenitor/stem cells was not inhibited. Together, the data show that CTLs specific for 2 distinct peptide epitopes of WT1 can discriminate between normal and leukemia LTC-ICs, suggesting that such CTLs have the potential to selectively kill CML progenitor/stem cells.

  10. Blimp-1–mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis

    PubMed Central

    Cobb, Dustin A.; Bhadra, Rajarshi

    2016-01-01

    CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)–susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell–intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches. PMID:27481131

  11. Yersinia pestis YopE contains a dominant CD8 T cell epitope that confers protection in a mouse model of pneumonic plague.

    PubMed

    Lin, Jr-Shiuan; Szaba, Frank M; Kummer, Lawrence W; Chromy, Brett A; Smiley, Stephen T

    2011-07-15

    Septic bacterial pneumonias are a major cause of death worldwide. Several of the highest priority bioterror concerns, including anthrax, tularemia, and plague, are caused by bacteria that acutely infect the lung. Bacterial resistance to multiple antibiotics is increasingly common. Although vaccines may be our best defense against antibiotic-resistant bacteria, there has been little progress in the development of safe and effective vaccines for pulmonary bacterial pathogens. The Gram-negative bacterium Yersinia pestis causes pneumonic plague, an acutely lethal septic pneumonia. Historic pandemics of plague caused millions of deaths, and the plague bacilli's potential for weaponization sustains an ongoing quest for effective countermeasures. Subunit vaccines have failed, to date, to fully protect nonhuman primates. In mice, they induce the production of Abs that act in concert with type 1 cytokines to deliver high-level protection; however, the Y. pestis Ags recognized by cytokine-producing T cells have yet to be defined. In this study, we report that Y. pestis YopE is a dominant Ag recognized by CD8 T cells in C57BL/6 mice. After vaccinating with live attenuated Y. pestis and challenging intranasally with virulent plague, nearly 20% of pulmonary CD8 T cells recognize this single, highly conserved Ag. Moreover, immunizing mice with a single peptide, YopE(69-77), suffices to confer significant protection from lethal pulmonary challenge. These findings suggest YopE could be a valuable addition to subunit plague vaccines and provide a new animal model in which sensitive, pathogen-specific assays can be used to study CD8 T cell-mediated defense against acutely lethal bacterial infections of the lung.

  12. Antigen-specific and non-specific CD4{sup +} T cell recruitment and proliferation during influenza infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Timothy J.; Castrucci, Maria R.; Padrick, Ryan C.

    To track epitope-specific CD4{sup +} T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA{sub 323-339} epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA{sub II}, replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4{sup +} T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4{sup +} T cells were recruited to the infected lung both in the presence and absence of the OVA{submore » 323-339} epitope. These data show that, when primed, CD4{sup +} T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection.« less

  13. CD8+ T cells induce thyroid epithelial cell hyperplasia and fibrosis.

    PubMed

    Yu, Shiguang; Fang, Yujiang; Sharav, Tumenjargal; Sharp, Gordon C; Braley-Mullen, Helen

    2011-02-15

    CD8(+) T cells can be important effector cells in autoimmune inflammation, generally because they can damage target cells by cytotoxicity. This study shows that activated CD8(+) T cells induce thyroid epithelial cell hyperplasia and proliferation and fibrosis in IFN-γ(-/-) NOD.H-2h4 SCID mice in the absence of CD4(+) T cells. Because CD8(+) T cells induce proliferation rather than cytotoxicity of target cells, these results describe a novel function for CD8(+) T cells in autoimmune disease. In contrast to the ability of purified CD8(+) T cells to induce thyrocyte proliferation, CD4(+) T cells or CD8 T cell-depleted splenocytes induced only mild thyroid lesions in SCID recipients. T cells in both spleens and thyroids highly produce TNF-α. TNF-α promotes proliferation of thyrocytes in vitro, and anti-TNF-α inhibits development of thyroid epithelial cell hyperplasia and proliferation in SCID recipients of IFN-γ(-/-) splenocytes. This suggests that targeting CD8(+) T cells and/or TNF-α may be effective for treating epithelial cell hyperplasia and fibrosis.

  14. The CD4/CD8 ratio is associated with coronary artery disease (CAD) in elderly Chinese patients.

    PubMed

    Gao, Pan; Rong, Hong-Hui; Lu, Ting; Tang, Gang; Si, Liang-Yi; Lederer, James A; Xiong, Wei

    2017-01-01

    The aim of this study was to investigate the relationship between number of circulating T cells and coronary artery disease (CAD) in an elderly Chinese population. A total of 295 elderly inpatients (age≥60) were included in this cross-sectional study. Their clinical and biochemical characteristics were recorded. Patients were divided to two groups: control patients and CAD patients. The risk factors of CAD were explored by binary logistic regression analysis. Compared with control patients, the ratio of CD4 to CD8 T cells was significantly increased in CAD patients. There was no difference in the number of CD3, CD4, and CD8 T cells between the two groups. Multiple logistic regression analysis showed that CAD was independently associated with age, gender, body mass index (BMI), systolic blood pressure (SBP), chronic heart failure (CHF) and the CD4/CD8 ratio. In addition, after adjusting for different clinical parameters (including gender, age, CHF, hypertension, arrhythmia, SBP, and BMI), the risk of CAD was significantly increased in patients with a CD4/CD8 ratio>1.5. There was a strong and independent association between the ratio of CD4/CD8 and CAD in elderly Chinese population. Copyright © 2016. Published by Elsevier B.V.

  15. Kinetics of HIV-1 CTL epitopes recognized by HLA I alleles in HIV-infected individuals at times near primary infection: the Provir/Latitude45 study.

    PubMed

    Papuchon, Jennifer; Pinson, Patricia; Guidicelli, Gwenda-Line; Bellecave, Pantxika; Thomas, Réjean; LeBlanc, Roger; Reigadas, Sandrine; Taupin, Jean-Luc; Baril, Jean Guy; Routy, Jean Pierre; Wainberg, Mark; Fleury, Hervé

    2014-01-01

    In patients responding successfully to ART, the next therapeutic step is viral cure. An interesting strategy is antiviral vaccination, particularly involving CD8 T cell epitopes. However, attempts at vaccination are dependent on the immunogenetic background of individuals. The Provir/Latitude 45 project aims to investigate which CTL epitopes in proviral HIV-1 will be recognized by the immune system when HLA alleles are taken into consideration. A prior study (Papuchon et al, PLoS ONE 2013) showed that chronically-infected patients under successful ART exhibited variations of proviral CTL epitopes compared to a reference viral strain (HXB2) and that a generic vaccine may not be efficient. Here, we investigated viral and/or proviral CTL epitopes at different time points in recently infected individuals of the Canadian primary HIV infection cohort and assessed the affinity of these epitopes for HLA alleles during the study period. An analysis of the results confirms that it is not possible to fully predict which epitopes will be recognized by the HLA alleles of the patients if the reference sequences and epitopes are taken as the basis of simulation. Epitopes may be seen to vary in circulating RNA and proviral DNA. Despite this confirmation, the overall variability of the epitopes was low in these patients who are temporally close to primary infection.

  16. Kinetics of HIV-1 CTL Epitopes Recognized by HLA I Alleles in HIV-Infected Individuals at Times near Primary Infection: The Provir/Latitude45 Study

    PubMed Central

    Papuchon, Jennifer; Pinson, Patricia; Guidicelli, Gwenda-Line; Bellecave, Pantxika; Thomas, Réjean; LeBlanc, Roger; Reigadas, Sandrine; Taupin, Jean-Luc; Baril, Jean Guy; Routy, Jean Pierre; Wainberg, Mark; Fleury, Hervé

    2014-01-01

    In patients responding successfully to ART, the next therapeutic step is viral cure. An interesting strategy is antiviral vaccination, particularly involving CD8 T cell epitopes. However, attempts at vaccination are dependent on the immunogenetic background of individuals. The Provir/Latitude 45 project aims to investigate which CTL epitopes in proviral HIV-1 will be recognized by the immune system when HLA alleles are taken into consideration. A prior study (Papuchon et al, PLoS ONE 2013) showed that chronically-infected patients under successful ART exhibited variations of proviral CTL epitopes compared to a reference viral strain (HXB2) and that a generic vaccine may not be efficient. Here, we investigated viral and/or proviral CTL epitopes at different time points in recently infected individuals of the Canadian primary HIV infection cohort and assessed the affinity of these epitopes for HLA alleles during the study period. An analysis of the results confirms that it is not possible to fully predict which epitopes will be recognized by the HLA alleles of the patients if the reference sequences and epitopes are taken as the basis of simulation. Epitopes may be seen to vary in circulating RNA and proviral DNA. Despite this confirmation, the overall variability of the epitopes was low in these patients who are temporally close to primary infection. PMID:24964202

  17. Normalized Synergy Predicts That CD8 Co-Receptor Contribution to T Cell Receptor (TCR) and pMHC Binding Decreases As TCR Affinity Increases in Human Viral-Specific T Cells

    PubMed Central

    Williams, Chad M.; Schonnesen, Alexandra A.; Zhang, Shu-Qi; Ma, Ke-Yue; He, Chenfeng; Yamamoto, Tori; Eckhardt, S. Gail; Klebanoff, Christopher A.; Jiang, Ning

    2017-01-01

    The discovery of naturally occurring T cell receptors (TCRs) that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC) has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D) system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds) rather than synergy (total CD8 cooperation) alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D) analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our previously

  18. Identification of anti-CD98 antibody mimotopes for inducing antibodies with antitumor activity by mimotope immunization.

    PubMed

    Saito, Misa; Kondo, Masahiro; Ohshima, Motohiro; Deguchi, Kazuki; Hayashi, Hideki; Inoue, Kazuyuki; Tsuji, Daiki; Masuko, Takashi; Itoh, Kunihiko

    2014-04-01

    A mimotope is an antibody-epitope-mimicking peptide retrieved from a phage display random peptide library. Immunization with antitumor antibody-derived mimotopes is promising for inducing antitumor immunity in hosts. In this study, we isolated linear and constrained mimotopes from HBJ127, a tumor-suppressing anti-CD98 heavy chain mAb, and determined their abilities for induction of antitumor activity equal to that of the parent antibody. We detected elevated levels of antipeptide responses, but failed to detect reactivity against native CD98-expressing HeLa cells in sera of immunized mice. Phage display panning and selection of mimotope-immunized mouse spleen-derived antibody Fab library showed that HeLa cell-reactive Fabs were successfully retrieved from the library. This finding indicates that native antigen-reactive Fab clones represented an undetectable minor population in mimotope-induced antibody repertoire. Functional and structural analysis of retrieved Fab clones revealed that they were almost identical to the parent antibody. From these results, we confirmed that mimotope immunization was promising for retrieving antitumor antibodies equivalent to the parent antibody, although the co-administration of adjuvant compounds such as T-cell epitope peptides and Toll-like receptor 4 agonist peptides is likely to be necessary for inducing stronger antitumor immunity than mimotope injection alone. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  19. CD4/CD8 ratio, age, and risk of serious non-communicable diseases in HIV-infected adults on antiretroviral therapy

    PubMed Central

    CASTILHO, Jessica L.; SHEPHERD, Bryan E.; KOETHE, John; TURNER, Megan; BEBAWY, Sally; LOGAN, James; ROGERS, William B.; RAFFANTI, Stephen; STERLING, Timothy R.

    2015-01-01

    Objective In virologically suppressed HIV-infected adults, non-communicable diseases (NCDs) have been associated with immune senescence and low CD4/CD8 lymphocyte ratio. Age differences in the relationship between CD4/CD8 ratio and NCDs have not been described. Design Observational cohort study. Methods We assessed CD4/CD8 ratio and incident NCDs (cardiovascular, cancer, liver, and renal diseases) in HIV-infected adults started on antiretroviral therapy between 1998–2012. Study inclusion began once patients maintained virologic suppression for 12 months (defined as baseline). We examined age and baseline CD4/CD8 ratio and used Cox proportional hazard models to assess baseline CD4/CD8 ratio and NCDs. Results This study included 2,006 patients. Low baseline CD4/CD8 ratio was associated with older age, male sex, and low CD4 lymphocyte counts. In models adjusting for CD4 lymphocyte count, CD4/CD8 ratio was inversely associated with age (p <0.01). Among all patients, 182 had incident NCDs, including 46 with coronary artery disease (CAD) events. CD4/CD8 ratio was inversely associated with risk of CAD events (adjusted HR per 0.1 increase in CD4/CD8 ratio = 0.87, 95% CI: 0.76–0.99, p=0.03). This association was driven by those under age 50 years (adjusted HR 0.83 [0.70–0.97], p = 0.02) versus those over age 50 years (adjusted HR = 0.96 [0.79–1.18], p = 0.71). CD4/CD8 ratio was not significantly associated with incident non-cardiac NCDs. Conclusions Higher CD4/CD8 ratio after one year of HIV virologic suppression was independently predictive of decreased CAD risk, particularly among younger adults. Advanced immune senescence may contribute to CAD events in younger HIV patients on antiretroviral therapy. PMID:26959354

  20. Analysis of CD57+ natural killer cells and CD8+ T lymphocytes in periapical granulomas and radicular cysts.

    PubMed

    Silva, Luiz Arthur Barbosa da; Sá, Maria Alice Ramalho; Melo, Rafaela Albuquerque; Pereira, Joabe Dos Santos; Silveira, Éricka Janine Dantas da; Miguel, Márcia Cristina da Costa

    2017-12-18

    The aim of this study was to compare the number of CD57+ natural killer (NK) cells and CD8+ T lymphocytes between periapical granulomas (PGs) and radicular cysts (RCs). Twenty-fives cases of PGs and 25 of RCs were submitted to histological analysis and immunohistochemistry using anti-CD57 and anti-CD8 biomarkers. Positive cells were counted in 10 fields (400× magnification) and the median value was calculated for each case. Statistical tests were used to evaluate differences in the number of CD57+ NK cells and CD8+ T lymphocytes according to type of lesion, intensity of the infiltrate and thickness of the lining epithelium. The number of CD57+ NK cells and CD8+ T lymphocytes was higher in PGs than in RCs (p = 0.129 and p = 0.541, respectively). Comparison of the number of CD57+ NK cells in atrophic and hyperplastic epithelium revealed a larger number of cells in the atrophic epithelium (p = 0.042). A larger number of CD57+ NK cells and CD8+ T lymphocytes were observed in grade III infiltrates compared to grade I/II (p = 0.145 and p = 0.725, respectively). CD8+ T lymphocytes were more prevalent than CD57+ NK cells in most cases when PGs and RCs were analyzed separately or in combination (p < 0.0001). CD57+ NK cells and CD8+ T lymphocytes play a key role in antiviral defense and the presence of these cells supports evidence suggesting the participation of these microorganisms in the pathogenesis of PGs and RCs. The response mediated by CD8+ T lymphocytes was more frequent, indicating greater participation of the adaptive immunity in these chronic lesions.

  1. CD8+ T cells of chronic HCV-infected patients express multiple negative immune checkpoints following stimulation with HCV peptides.

    PubMed

    Barathan, Muttiah; Mohamed, Rosmawati; Vadivelu, Jamuna; Chang, Li Yen; Vignesh, Ramachandran; Krishnan, Jayalakshmi; Sigamani, Panneer; Saeidi, Alireza; Ram, M Ravishankar; Velu, Vijayakumar; Larsson, Marie; Shankar, Esaki M

    2017-03-01

    Hepatitis C virus (HCV)-specific CD4+ and CD8+ T cells are key to successful viral clearance in HCV disease. Accumulation of exhausted HCV-specific T cells during chronic infection results in considerable loss of protective functional immune responses. The role of T-cell exhaustion in chronic HCV disease remains poorly understood. Here, we studied the frequency of HCV peptide-stimulated T cells expressing negative immune checkpoints (PD-1, CTLA-4, TRAIL, TIM-3 and BTLA) by flow cytometry, and measured the levels of Th1/Th2/Th17 cytokines secreted by T cells by a commercial Multi-Analyte ELISArray™ following in vitro stimulation of T cells using HCV peptides and phytohemagglutinin (PHA). HCV peptide-stimulated CD4+ and CD8+ T cells of chronic HCV (CHC) patients showed significant increase of CTLA-4. Furthermore, HCV peptide-stimulated CD4+ T cells of CHC patients also displayed relatively higher levels of PD-1 and TRAIL, whereas TIM-3 was up-regulated on HCV peptide-stimulated CD8+ T cells. Whereas the levels of IL-10 and TGF-β1 were significantly increased, the levels of pro-inflammatory cytokines IL-2, TNF-α, IL-17A and IL-6 were markedly decreased in the T cell cultures of CHC patients. Chronic HCV infection results in functional exhaustion of CD4+ and CD8+ T cells likely contributing to viral persistence. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. IL-12 is required for differentiation of pathogenic CD8+ T cell effectors that cause myocarditis

    PubMed Central

    Grabie, Nir; Delfs, Michael W.; Westrich, Jason R.; Love, Victoria A.; Stavrakis, George; Ahmad, Ferhaan; Seidman, Christine E.; Seidman, Jonathan G.; Lichtman, Andrew H.

    2003-01-01

    Cardiac antigen–specific CD8+ T cells are involved in the autoimmune component of human myocarditis. Here, we studied the differentiation and migration of pathogenic CD8+ T cell effector cells in a new mouse model of autoimmune myocarditis. A transgenic mouse line was derived that expresses cardiac myocyte restricted membrane-bound ovalbumin (CMy-mOva). The endogenous adaptive immune system of CMy-mOva mice displays tolerance to ovalbumin. Adoptive transfer of naive CD8+ T cells from the ovalbumin-specific T cell receptor–transgenic (TCR-transgenic) OT-I strain induces myocarditis in CMy-mOva mice only after subsequent inoculation with ovalbumin-expressing vesicular stomatitis virus (VSV-Ova). OT-I effector T cells derived in vitro in the presence or absence of IL-12 were adoptively transferred into CMy-mOva mice, and the consequences were compared. Although IL-12 was not required for the generation of cytolytic and IFN-γ–producing effector T cells, only effectors primed in the presence of IL-12 infiltrated CMy-mOva hearts in significant numbers, causing lethal myocarditis. Furthermore, analysis of OT-I effectors collected from a mediastinal draining lymph node indicated that only effectors primed in vitro in the presence of IL-12 proliferated in vivo. These data demonstrate the importance of IL-12 in the differentiation of pathogenic CD8+ T cells that can cause myocarditis. PMID:12618521

  3. B cells regulate thymic CD8+T cell differentiation in lupus-prone mice.

    PubMed

    Xing, Chen; Zhu, Gaizhi; Xiao, He; Fang, Ying; Liu, Xiaoling; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Shen, Beifen; Li, Yan; Ma, Ning; Wang, Renxi

    2017-10-27

    Previous studies have shown that under normal physiological conditions thymic B cells play a critical function in T cell negative selection. We tested the effect of thymic B cells on thymic T-cell differentiation in autoimmune diseases including systemic lupus erythematosus (SLE). We found that thymic B cells and CD8 - CD4 + and CD4 - CD8 + T cells increased, whereas CD4 + CD8 + T cells decreased in lupus-prone mice. Once B cells were reduced, the change was reversed. Furthermore, we found that B cells blocked thymic immature single positive (ISP) CD4 - CD8 + CD3 lo/- RORγt - T cells progression into CD4 + CD8 + T cells. Interestingly, we found a novel population of thymic immature T cells (CD4 - CD8 + CD3 lo RORγt + ) that were induced into mature CD4 - CD8 + CD3 + RORγt + T cells by B cells in lupus-prone mice. Importantly, we found that IgG, produced by thymic B cells, played a critical role in the differentiation of thymic CD8 + ISP and mature RORγt + CD8 + T cells in lupus-prone mice. In conclusion, B cells blocked the differentiation from thymic CD8 + ISP and induced the differentiation of a novel immature CD4 - CD8 + CD3 lo RORγt + T cells into mature RORγt + CD8 + T cells by secreting IgG antibody in lupus-prone mice.

  4. High affinity soluble ILT2 receptor: a potent inhibitor of CD8(+) T cell activation.

    PubMed

    Moysey, Ruth K; Li, Yi; Paston, Samantha J; Baston, Emma E; Sami, Malkit S; Cameron, Brian J; Gavarret, Jessie; Todorov, Penio; Vuidepot, Annelise; Dunn, Steven M; Pumphrey, Nicholas J; Adams, Katherine J; Yuan, Fang; Dennis, Rebecca E; Sutton, Deborah H; Johnson, Andy D; Brewer, Joanna E; Ashfield, Rebecca; Lissin, Nikolai M; Jakobsen, Bent K

    2010-12-01

    Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t(1/2)) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8(+) cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8(+) CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.

  5. NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs

    PubMed Central

    Wen, Zhenke; Shimojima, Yasuhiro; Shirai, Tsuyoshi; Li, Yinyin; Ju, Jihang; Yang, Zhen; Tian, Lu; Goronzy, Jörg J.

    2016-01-01

    Immune aging results in progressive loss of both protective immunity and T cell–mediated suppression, thereby conferring susceptibility to a combination of immunodeficiency and chronic inflammatory disease. Here, we determined that older individuals fail to generate immunosuppressive CD8+CCR7+ Tregs, a defect that is even more pronounced in the age-related vasculitic syndrome giant cell arteritis. In young, healthy individuals, CD8+CCR7+ Tregs are localized in T cell zones of secondary lymphoid organs, suppress activation and expansion of CD4 T cells by inhibiting the phosphorylation of membrane-proximal signaling molecules, and effectively inhibit proliferative expansion of CD4 T cells in vitro and in vivo. We identified deficiency of NADPH oxidase 2 (NOX2) as the molecular underpinning of CD8 Treg failure in the older individuals and in patients with giant cell arteritis. CD8 Tregs suppress by releasing exosomes that carry preassembled NOX2 membrane clusters and are taken up by CD4 T cells. Overexpression of NOX2 in aged CD8 Tregs promptly restored suppressive function. Together, our data support NOX2 as a critical component of the suppressive machinery of CD8 Tregs and suggest that repairing NOX2 deficiency in these cells may protect older individuals from tissue-destructive inflammatory disease, such as large-vessel vasculitis. PMID:27088800

  6. High-throughput identification and dendritic cell-based functional validation of MHC class I-restricted Mycobacterium tuberculosis epitopes

    PubMed Central

    Nair, Smita K.; Tomaras, Georgia D.; Sales, Ana Paula; Boczkowski, David; Chan, Cliburn; Plonk, Kelly; Cai, Yongting; Dannull, Jens; Kepler, Thomas B.; Pruitt, Scott K.; Weinhold, Kent J.

    2014-01-01

    Emergence of drug-resistant strains of the pathogen Mycobacterium tuberculosis (Mtb) and the ineffectiveness of BCG in curtailing Mtb infection makes vaccine development for tuberculosis an important objective. Identifying immunogenic CD8+ T cell peptide epitopes is necessary for peptide-based vaccine strategies. We present a three-tiered strategy for identifying and validating immunogenic peptides: first, identify peptides that form stable complexes with class I MHC molecules; second, determine whether cytotoxic T lymphocytes (CTLs) raised against the whole protein antigen recognize and lyse target cells pulsed with peptides that passed step 1; third, determine whether peptides that passed step 2, when administered in vivo as a vaccine in HLA-A2 transgenic mice, elicit CTLs that lyse target cells expressing the whole protein antigen. Our innovative approach uses dendritic cells transfected with Mtb antigen-encoding mRNA to drive antigen expression. Using this strategy, we have identified five novel peptide epitopes from the Mtb proteins Apa, Mtb8.4 and Mtb19. PMID:24755960

  7. Adoptive cell therapy with CD4+ T helper 1 cells and CD8+ cytotoxic T cells enhances complete rejection of an established tumour, leading to generation of endogenous memory responses to non-targeted tumour epitopes.

    PubMed

    Li, Kunyu; Donaldson, Braeden; Young, Vivienne; Ward, Vernon; Jackson, Christopher; Baird, Margaret; Young, Sarah

    2017-10-01

    The results of adoptive T-cell therapies (ACTs) are very encouraging and show clinical evidence that ACT can provide a cure for patients with metastatic disease. However, various response rates and long-term cancer remission have been observed in different ACT trials. The types of T cells, prior treatment with chemotherapy and co-administration of other immune-target therapies have been found to influence the efficacy of ACT. In this study, we investigate the ability of ACT using CD4 + T helper 1 (Th1) cells and CD8 + cytotoxic T lymphocytes (CTLs) to reject the growth of established B16-ovalbumin (OVA) melanoma. CD8 + CTLs were found to be the main effector T cells that mediated tumour regression. However, low tumour-free survival rates were observed in ACT with CD8 + CTLs only. Co-transferring CD4 + Th1 cells and CD8 + CTLs has been observed to induce a synergistic antitumour response, resulting in complete regression in 80% of the tumour-bearing mice. We also examined a prior Dacarbazine (DTIC) and after virus-like particle (VLP)-OVA vaccine treatment to enhance ACT, but no therapeutic benefit was observed during primary B16-OVA tumour growth. Nevertheless, the ACT-mediated antitumour response was able to generate memory responses to both B16-OVA and B16-gp33 tumours. VLP-OVA vaccination following ACT enhances the memory responses to tumours that express a heterogenic population of both B16-OVA and B16-gp33 cells; however, it abolished the memory response to tumours consisting of only gp33-expressing cells. These findings provide important information for designing therapeutic treatments for patients with metastatic disease and cancer relapse to achieve durable cancer remission.

  8. Adoptive cell therapy with CD4+ T helper 1 cells and CD8+ cytotoxic T cells enhances complete rejection of an established tumour, leading to generation of endogenous memory responses to non-targeted tumour epitopes

    PubMed Central

    Li, Kunyu; Donaldson, Braeden; Young, Vivienne; Ward, Vernon; Jackson, Christopher; Baird, Margaret; Young, Sarah

    2017-01-01

    The results of adoptive T-cell therapies (ACTs) are very encouraging and show clinical evidence that ACT can provide a cure for patients with metastatic disease. However, various response rates and long-term cancer remission have been observed in different ACT trials. The types of T cells, prior treatment with chemotherapy and co-administration of other immune-target therapies have been found to influence the efficacy of ACT. In this study, we investigate the ability of ACT using CD4+ T helper 1 (Th1) cells and CD8+ cytotoxic T lymphocytes (CTLs) to reject the growth of established B16-ovalbumin (OVA) melanoma. CD8+ CTLs were found to be the main effector T cells that mediated tumour regression. However, low tumour-free survival rates were observed in ACT with CD8+ CTLs only. Co-transferring CD4+ Th1 cells and CD8+ CTLs has been observed to induce a synergistic antitumour response, resulting in complete regression in 80% of the tumour-bearing mice. We also examined a prior Dacarbazine (DTIC) and after virus-like particle (VLP)-OVA vaccine treatment to enhance ACT, but no therapeutic benefit was observed during primary B16-OVA tumour growth. Nevertheless, the ACT-mediated antitumour response was able to generate memory responses to both B16-OVA and B16-gp33 tumours. VLP-OVA vaccination following ACT enhances the memory responses to tumours that express a heterogenic population of both B16-OVA and B16-gp33 cells; however, it abolished the memory response to tumours consisting of only gp33-expressing cells. These findings provide important information for designing therapeutic treatments for patients with metastatic disease and cancer relapse to achieve durable cancer remission. PMID:29114389

  9. Lineage-specific T-cell reconstitution following in vivo CD4+ and CD8+ lymphocyte depletion in nonhuman primates.

    PubMed

    Engram, Jessica C; Cervasi, Barbara; Borghans, Jose A M; Klatt, Nichole R; Gordon, Shari N; Chahroudi, Ann; Else, James G; Mittler, Robert S; Sodora, Donald L; de Boer, Rob J; Brenchley, Jason M; Silvestri, Guido; Paiardini, Mirko

    2010-08-05

    Many features of T-cell homeostasis in primates are still unclear, thus limiting our understanding of AIDS pathogenesis, in which T-cell homeostasis is lost. Here, we performed experiments of in vivo CD4(+) or CD8(+) lymphocyte depletion in 2 nonhuman primate species, rhesus macaques (RMs) and sooty mangabeys (SMs). Whereas RMs develop AIDS after infection with simian immunodeficiency virus (SIV), SIV-infected SMs are typically AIDS-resistant. We found that, in both species, most CD4(+) or CD8(+) T cells in blood and lymph nodes were depleted after treatment with their respective antibodies. These CD4(+) and CD8(+) lymphocyte depletions were followed by a largely lineage-specific CD4(+) and CD8(+) T-cell proliferation, involving mainly memory T cells, which correlated with interleukin-7 plasma levels. Interestingly, SMs showed a faster repopulation of naive CD4(+) T cells than RMs. In addition, in both species CD8(+) T-cell repopulation was faster than that of CD4(+) T cells, with CD8(+) T cells reconstituting a normal pool within 60 days and CD4(+) T cells remaining below baseline levels up to day 180 after depletion. While this study revealed subtle differences in CD4(+) T-cell repopulation in an AIDS-sensitive versus an AIDS-resistant species, such differences may have particular relevance in the presence of active SIV repli cation, where CD4(+) T-cell destruction is chronic.

  10. Lineage-specific T-cell reconstitution following in vivo CD4+ and CD8+ lymphocyte depletion in nonhuman primates

    PubMed Central

    Engram, Jessica C.; Cervasi, Barbara; Borghans, Jose A. M.; Klatt, Nichole R.; Gordon, Shari N.; Chahroudi, Ann; Else, James G.; Mittler, Robert S.; Sodora, Donald L.; de Boer, Rob J.; Brenchley, Jason M.; Silvestri, Guido

    2010-01-01

    Many features of T-cell homeostasis in primates are still unclear, thus limiting our understanding of AIDS pathogenesis, in which T-cell homeostasis is lost. Here, we performed experiments of in vivo CD4+ or CD8+ lymphocyte depletion in 2 nonhuman primate species, rhesus macaques (RMs) and sooty mangabeys (SMs). Whereas RMs develop AIDS after infection with simian immunodeficiency virus (SIV), SIV-infected SMs are typically AIDS-resistant. We found that, in both species, most CD4+ or CD8+ T cells in blood and lymph nodes were depleted after treatment with their respective antibodies. These CD4+ and CD8+ lymphocyte depletions were followed by a largely lineage-specific CD4+ and CD8+ T-cell proliferation, involving mainly memory T cells, which correlated with interleukin-7 plasma levels. Interestingly, SMs showed a faster repopulation of naive CD4+ T cells than RMs. In addition, in both species CD8+ T-cell repopulation was faster than that of CD4+ T cells, with CD8+ T cells reconstituting a normal pool within 60 days and CD4+ T cells remaining below baseline levels up to day 180 after depletion. While this study revealed subtle differences in CD4+ T-cell repopulation in an AIDS-sensitive versus an AIDS-resistant species, such differences may have particular relevance in the presence of active SIV repli cation, where CD4+ T-cell destruction is chronic. PMID:20484087

  11. Cluster Chemistry in Electron-Poor Ae-Pt-Cd Systems (Ae=Ca, Sr, Ba): (Sr,Ba)Pt2Cd4, Ca6Pt8Cd16, and Its Known Antitype Er6Pd16Sb8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, Saroj L.; Gulo, Fakhili; Corbett, John D.

    Three new ternary polar intermetallic compounds, cubic Ca6Pt8Cd16, and tetragonal (Sr, Ba)Pt2Cd4 have been discovered during explorations of the Ae–Pt–Cd systems. Cubic Ca6Pt8Cd16 (Fm-3m, Z = 4, a = 13.513(1) Å) contains a 3D array of separate Cd8 tetrahedral stars (TS) that are both face capped along the axes and diagonally bridged by Pt atoms to generate the 3D anionic network Cd8[Pt(1)]6/2[Pt(2)]4/8. The complementary cationic surface of the cell consists of a face-centered cube of Pt(3)@Ca6 octahedra. This structure is an ordered ternary variant of Sc11Ir4 (Sc6Ir8Sc16), a stuffed version of the close relative Na6Au7Cd16, and a network inverse ofmore » the recent Er6Sb8Pd16 (compare Ca6Pt8Cd16). The three groups of elements each occur in only one structural version. The new AePt2Cd4, Ae = Sr, Ba, are tetragonal (P42/mnm,Z = 2, a ≈ 8.30 Å, c ≈ 4.47 Å) and contain chains of edge-sharing Cd4 tetrahedra along c that are bridged by four-bonded Ba/Sr. LMTO-ASA and ICOHP calculation results and comparisons show that the major bonding (Hamilton) populations in Ca6Pt8Cd16 and Er6Sb8Pd16 come from polar Pt–Cd and Pd–Sb interactions, that Pt exhibits larger relativistic contributions than Pd, that characteristic size and orbital differences are most evident for Sb 5s, Pt8, and Pd16, and that some terms remain incomparable, Ca–Cd versus Er–Pd.« less

  12. Sanger and Next-Generation Sequencing data for characterization of CTL epitopes in archived HIV-1 proviral DNA.

    PubMed

    Tumiotto, Camille; Riviere, Lionel; Bellecave, Pantxika; Recordon-Pinson, Patricia; Vilain-Parce, Alice; Guidicelli, Gwenda-Line; Fleury, Hervé

    2017-01-01

    One of the strategies for curing viral HIV-1 is a therapeutic vaccine involving the stimulation of cytotoxic CD8-positive T cells (CTL) that are Human Leucocyte Antigen (HLA)-restricted. The lack of efficiency of previous vaccination strategies may have been due to the immunogenic peptides used, which could be different from a patient's virus epitopes and lead to a poor CTL response. To counteract this lack of specificity, conserved epitopes must be targeted. One alternative is to gather as many data as possible from a large number of patients on their HIV-1 proviral archived epitope variants, taking into account their genetic background to select the best presented CTL epitopes. In order to process big data generated by Next-Generation Sequencing (NGS) of the DNA of HIV-infected patients, we have developed a software package called TutuGenetics. This tool combines an alignment derived either from Sanger or NGS files, HLA typing, target gene and a CTL epitope list as input files. It allows automatic translation after correction of the alignment obtained between the HxB2 reference and the reads, followed by automatic calculation of the MHC IC50 value for each epitope variant and the HLA allele of the patient by using NetMHCpan 3.0, resulting in a csv file as output result. We validated this new tool by comparing Sanger and NGS (454, Roche) sequences obtained from the proviral DNA of patients at success of ART included in the Provir Latitude 45 study and showed a 90% correlation between the quantitative results of NGS and Sanger. This automated analysis combined with complementary samples should yield more data regarding the archived CTL epitopes according to the patients' HLA alleles and will be useful for screening epitopes that in theory are presented efficiently to the HLA groove, thus constituting promising immunogenic peptides for a therapeutic vaccine.

  13. Mapping of melanin-concentrating hormone receptor 1 B cell epitopes predicts two major binding sites for vitiligo patient autoantibodies.

    PubMed

    Gavalas, Nikos G; Gottumukkala, Raju V S R K; Gawkrodger, David J; Watson, Philip F; Weetman, Anthony P; Kemp, E Helen

    2009-05-01

    The melanin-concentrating hormone receptor 1 (MCHR1) has been identified as a B cell autoantigen in vitiligo with antibodies to the receptor detectable in binding and function-blocking assays. Two epitope domains (amino acids 1-138 and 139-298) have been previously identified. In this study, we aimed to further define the epitope specificity of MCHR1 antibodies using phage-display technology and to identify the epitopes recognised by receptor antibodies detected in MCHR1 function-blocking assays. Antibody reactivity to MCHR1 peptides 51-80, 85-98, 154-158 and 254-260 was identified by phage-display and subsequently confirmed in phage ELISA in 2/12, 5/12, 3/12 and 6/12 of vitiligo patients, respectively. The results suggest that major autoantibody epitopes are localised in the 85-98 and 254-260 amino acid regions of MCHR1 with minor epitopes in amino acid sequences 51-80 and 154-158. Antibodies with MCHR1 function-blocking activity were determined to recognise epitope 254-260, this being the first epitope to be reported as a target site for antibodies that block the function of the receptor.

  14. IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells

    PubMed Central

    Ben-Sasson, Shlomo Z.; Hogg, Alison; Hu-Li, Jane; Wingfield, Paul; Chen, Xi; Crank, Michelle; Caucheteux, Stephane; Ratner-Hurevich, Maya; Berzofsky, Jay A.; Nir-Paz, Ran

    2013-01-01

    Here, we show that interleukin-1 (IL-1) enhances antigen-driven CD8 T cell responses. When administered to recipients of OT-I T cell receptor transgenic CD8 T cells specific for an ovalbumin (OVA) peptide, IL-1 results in an increase in the numbers of wild-type but not IL1R1−/− OT-I cells, particularly in spleen, liver, and lung, upon immunization with OVA and lipopolysaccharide. IL-1 administration also results in an enhancement in the frequency of antigen-specific cells that are granzyme B+, have cytotoxic activity, and/ or produce interferon γ (IFN-γ). Cells primed in the presence of IL-1 display enhanced expression of granzyme B and increased capacity to produce IFN-γ when rechallenged 2 mo after priming. In three in vivo models, IL-1 enhances the protective value of weak immunogens. Thus, IL-1 has a marked enhancing effect on antigen-specific CD8 T cell expansion, differentiation, migration to the periphery, and memory. PMID:23460726

  15. Functional impairment of Tax-specific but not cytomegalovirus-specific CD8+ T lymphocytes in a minor population of asymptomatic human T-cell leukemia virus type 1-carriers

    PubMed Central

    2011-01-01

    Background Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a small percentage of infected individuals. ATL is often associated with general immune suppression and an impaired HTLV-1-specific T-cell response, an important host defense system. We previously found that a small fraction of asymptomatic HTLV-1-carriers (AC) already showed impaired T-cell responses against the major target antigen, Tax. However, it is unclear whether the impaired HTLV-1 Tax-specific T-cell response in these individuals is an HTLV-1-specific phenomenon, or merely reflects general immune suppression. In this study, in order to characterize the impaired HTLV-1-specific T-cell response, we investigated the function of Tax-specific CD8+ T-cells in various clinical status of HTLV-1 infection. Results By using tetramers consisting of HLA-A*0201, -A*2402, or -A*1101, and corresponding Tax epitope peptides, we detected Tax-specific CD8+ T-cells in the peripheral blood from 87.0% of ACs (n = 20/23) and 100% of HAM/TSP patients (n = 18/18) tested. We also detected Tax-specific CD8+ T-cells in 38.1% of chronic type ATL (cATL) patients (n = 8/21), although its frequencies in peripheral blood CD8+ T cells were significantly lower than those of ACs or HAM/TSP patients. Tax-specific CD8+ T-cells detected in HAM/TSP patients proliferated well in culture and produced IFN-γ when stimulated with Tax peptides. However, such functions were severely impaired in the Tax-specific CD8+ T-cells detected in cATL patients. In ACs, the responses of Tax-specific CD8+ T-cells were retained in most cases. However, we found one AC sample whose Tax-specific CD8+ T-cells hardly produced IFN-γ, and failed to proliferate and express activation (CD69) and degranulation (CD107a) markers in response to Tax peptide. Importantly, the same AC sample contained cytomegalovirus (CMV) pp65-specific CD8+ T-cells that possessed

  16. Selection and maturation of antibodies by phage display through fusion to pIX.

    PubMed

    Tornetta, Mark; Reddy, Ramachandra; Wheeler, John C

    2012-09-01

    Antibody discovery and optimization by M13 phage display have evolved significantly over the past twenty years. Multiple methods of antibody display and selection have been developed - direct display on pIII or indirect display through a Cysteine disulfide linkage or a coiled-coil adapter protein. Here we describe display of Fab libraries on the smaller pIX protein at the opposite end of the virion and its application to discovery of novel antibodies from naive libraries. Antibody selection based on pIX-mediated display produces results comparable to other in vitro methods and uses an efficient direct infection of antigen-bound phages, eliminating any chemical dissociation step(s). Additionally, some evidence suggests that pIX-mediated display can be more efficient than pIII-mediated display in affinity selections. Functional assessment of phage-derived antibodies can be hindered by insufficient affinities or lack of epitopic diversity. Here we describe an approach to managing primary hits from our Fab phage libraries into epitope bins and subsequent high-throughput maturation of clones to isolate epitope- and sequence-diverse panels of high affinity binders. Use of the Octet biosensor was done to examine Fab binding in a facile label-free method and determine epitope competition groups. A receptor extracellular domain and chemokine were subjected to this method of binning and affinity maturation. Parental clones demonstrated improvement in affinity from 1-100nM to 10-500pM. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Cross-sectional study of CD4: CD8 ratio recovery in young adults with perinatally acquired HIV-1 infection.

    PubMed

    Pollock, Katrina M; Pintilie, Hannah; Foster, Caroline; Fidler, Sarah

    2018-02-01

    Antiretroviral therapy (ART) has improved survival into adulthood for young people with perinatally acquired HIV-1 (yp-PaHIV), but long-term prognosis remains unclear. We hypothesized that on-going immune activation, reflected in the failure of CD4:CD8 ratio normalization would be observed in yp-PaHIV, despite ART.A cross-sectional study of routinely collected clinical data from a cohort of yp-PaHIV (≥16 years).Data were collected from records of individuals attending a specialist clinic for yp-PaHIV transitioning to adult care. CD4:CD8 ratio and proportion with CD4:CD8 ratio ≥1, demographic data and viral parameters, including HIV-1 viral load (VL) and human cytomegalovirus (CMV) IgG, were analyzed with IBM SPSS Statistics v22.A total of 115 yp-PaHIV, median (IQR) age 22.0 (20.0-24.0) years, were studied, of whom 59 were females, and the majority were Black African 75/115 (65.2%). Where measured, CMV antibodies were frequently detected (71/74, 95.9%) and CMV IgG titre was inversely associated with CD4:CD8 ratio, (Rho -0.383, P = .012). Of those taking ART, 69 out of 90 (76.7%) yp-PaHIV had suppressed HIV viremia (<50 RNA copies/mL) and recovery of CD4:CD8 ratio to ≥1 was seen in 26 out of 69 (37.7%) with suppressed HIV viremia. Persistence of low CD4:CD8 ratio was observed even in those with a CD4 count ≥500 cells/μL, where 28/52 (53.8%) had a CD4:CD8 ratio <1. Of those with suppressed viremia, the median (IQR) age for starting ART was 8.0 (5.0-12.8) years and CD4:CD8 ratio was inversely associated with age at ART start, Rho -0.348, (P = .028).In this cohort of yp-PaHIV, despite lifelong HIV infection and widespread CMV coinfection, CD4:CD8 ratio recovery rate was comparable to adults treated in acute infection. Where persistence of CD4:CD8 ratio abnormality was observed, on-going immune activation may have significance for non-AIDS outcomes. Taken together our findings indicate immune resilience to be a feature of these adult survivors of

  18. Understanding the biology of ex vivo-expanded CD8 T cells for adoptive cell therapy: role of CD62L.

    PubMed

    Díaz-Montero, C Marcela; Zidan, Abdel-Aziz; Pallin, Maria F; Anagnostopoulos, Vasileios; Salem, Mohamed L; Wieder, Eric; Komanduri, Krishna; Montero, Alberto J; Lichtenheld, Mathias G

    2013-12-01

    CD62L governs the circulation of CD8(+) T cells between lymph nodes and peripheral tissues, whereby the expression of CD62L by CD8(+) T cells promotes their recirculation through lymph nodes. As such, CD62L participates in the fate of adoptively transferred CD8(+) T cells and may control their effectiveness for cancer immunotherapy, including settings in which host preconditioning results in the acute lymphopenia-induced proliferation of the transferred cells. Indeed, previous studies correlated CD62L expression by donor CD8(+) cells with the success rate of adoptive cell therapy (ACT). Here, we analyzed the functions and fate of ex vivo-activated, tumor-specific CD62L(-/-) CD8(+) T cells in a mouse melanoma model for ACT. Unexpectedly, we observed that CD62L(-/-) CD8(+) T cells were functionally indistinguishable from CD62L(+/+) CD8(+) T cells, i.e., both greatly expanded in cyclophosphamide preconditioned animals, controlled subcutaneously and hematogenously spreading tumors, and generated anti-tumor-specific CD8(+) T cell memory. Moreover, even in hosts with rudimentary secondary lymphoid organs (LT(-/-) animals), CD8(+) T cells with and without CD62L expanded equivalently to those adoptively transferred into wild-type animals. These results put into question the utility of CD62L as a predictive biomarker for the efficacy of ex vivo-expanded T cells after ACT in lymphopenic conditions and also offer new insights into the homing, engraftment, and memory generation of adoptively transferred ex vivo-activated CD8(+) T cells.

  19. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches.

    PubMed

    Saadi, Mahdiye; Karkhah, Ahmad; Nouri, Hamid Reza

    2017-07-01

    Current investigations have demonstrated that a multi-epitope peptide vaccine targeting multiple antigens could be considered as an ideal approach for prevention and treatment of brucellosis. According to the latest findings, the most effective immunogenic antigens of brucella to induce immune responses are included Omp31, BP26, BLS, DnaK and L7-L12. Therefore, in the present study, an in silico approach was used to design a novel multi-epitope vaccine to elicit a desirable immune response against brucellosis. First, five novel T-cell epitopes were selected from Omp31, BP26, BLS, DnaK and L7-L12 proteins using different servers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Selected epitopes were fused together by GPGPG linkers to facilitate the immune processing and epitope presentation. Moreover, cholera toxin B (CTB) was linked to N terminal of vaccine construct as an adjuvant by using EAAAK linker. A multi-epitope vaccine was designed based on predicted epitopes which was 377 amino acid residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this multi-epitope vaccine were assessed using immunoinformatics tools and servers. Based on obtained results, a soluble, and non-allergic protein with 40.59kDa molecular weight was constructed. Expasy ProtParam classified this chimeric protein as a stable protein and also 89.8% residues of constructed vaccine were located in favored regions of the Ramachandran plot. Furthermore, this multi-epitope peptide vaccine was able to strongly induce T cell and B-cell mediated immune responses. In conclusion, immunoinformatics analysis indicated that this multi-epitope peptide vaccine can be effectively expressed and potentially be used for prophylactic or therapeutic usages against brucellosis. Copyright © 2017 Elsevier B.V. All

  20. Epitope Capsid-Incorporation: New Effective Approach for Vaccine Development for Chagas Disease

    PubMed Central

    Matthews, Qiana L.; Farrow, Anitra L.; Rachakonda, Girish; Gu, Linlin; Nde, Pius; Krendelchtchikov, Alexandre; Pratap, Siddharth; Sakhare, Shruti S.; Sabbaj, Steffanie; Lima, Maria F.; Villalta, Fernando

    2016-01-01

    Background Previously we reported that a hexon-modified adenovirus (Ad) vector containing the invasive neutralizing epitope of Trypanosoma cruzi (T. cruzi) trypomastigote gp83 (Ad5-gp83) provided immunoprotection against T. cruzi infection. The purpose of this work was to design an improved vaccine for T. cruzi using a novel epitope capsid incorporation strategy. Thus, we evaluated the immunoprotection raised by co-immunization with Ad5-gp83 and an Ad vector containing an epitope (ASP-M) of the T. cruzi amastigote surface protein 2. Methods Protein IX (pIX)-modified Ad vector (Ad5-pIX-ASP-M) was generated, characterized, and validated. C3H/He mice were immunized with Ad5-pIX-ASP-M and Ad5-gp83 and the cell-mediated responses were evaluated by enzyme-linked immunospot (ELISPOT) assay and intracellular staining. Immunized mice were challenged with T. cruzi to evaluate the vaccine efficacy. Results Our findings indicate that Ad5-pIX-ASP-M was viable. Specific CD8+ T-cell mediated responses prior to the challenge show an increase in IFNγ and TNFα production. A single immunization with Ad5-pIX-ASP-M provided protection from T. cruzi infection, but co-immunizations with Ad5-pIX-ASP-M and Ad5-gp83 provided a higher immunoprotection and increased survival rate of mice. Conclusions Overall, these results suggest that the combination of gp83 and ASP-M specific epitopes onto the capsid-incorporated adenoviruses would provide superior protection against Chagas disease as compared with Ad5-gp83 alone. PMID:27709126