Science.gov

Sample records for cdk2 associating protein

  1. Binding of HTm4 to cyclin-dependent kinase (Cdk)-associated phosphatase (KAP).Cdk2.cyclin A complex enhances the phosphatase activity of KAP, dissociates cyclin A, and facilitates KAP dephosphorylation of Cdk2.

    PubMed

    Chinami, Masanobu; Yano, Yoshihiko; Yang, Xing; Salahuddin, Saira; Moriyama, Kosei; Shiroishi, Mitsunori; Turner, Helen; Shirakawa, Taro; Adra, Chaker N

    2005-04-29

    Cyclin-dependent kinase 2 (cdk2) activation requires phosphorylation of Thr160 and dissociation from cyclin A. The T-loop of cdk2 contains a regulatory phosphorylation site at Thr160. An interaction between cdc-associated phosphatase (KAP) and cdk2 compromises the interaction between cdk2 and cyclin A, which permits access of KAP, a Thr160-directed phosphatase, to its substrate, cdk2. We have reported that KAP is bound and activated by a nuclear membrane protein, HTm4. Here, we present in vitro data showing the direct interaction between the HTm4 C terminus and KAP Tyr141. We show that this interaction not only facilitates access of KAP to Thr160 and accelerates KAP kinetics, but also forces exclusion of cyclin A from the KAP.cdk2 complex. PMID:15671017

  2. Association of Bcl-2 with cyclin a/Cdk-2 complex and its effects on Cdk-2 activity.

    PubMed

    Crescenzi, Elvira; Sannino, Maria; Tonziello, Gilda; Palumbo, Giuseppe

    2002-11-01

    In the human endometrial carcinoma cell line HEC1B, the overexpression of Bcl-2 leads to a G2/M cell cycle arrest. The experiments presented in this work suggest a direct interaction between the antiapoptotic protein Bcl-2 and the cyclin-dependent kinase Cdk-2 and suggest that such interaction is cell cycle dependent. While further experiments are currently under way in our laboratory to elucidate the significance of Cdk-2/Bcl-2 complexes in PCD and cell cycle regulation, we demonstrate also a specific inhibitory function of Bcl-2 on the activity of the coprecipitated kinase. PMID:12485875

  3. Caco-2 intestinal cell differentiation is associated with G1 arrest and suppression of CDK2 and CDK4.

    PubMed

    Ding, Q M; Ko, T C; Evers, B M

    1998-11-01

    The cellular mechanisms regulating intestinal proliferation and differentiation remain largely undefined. Previously, we showed an early induction of the cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1) in Caco-2 cells, a human colon cancer line that spontaneously differentiates into a small bowel phenotype. The purpose of our present study was to assess the timing of cell cycle arrest in relation to differentiation in Caco-2 cells and to examine the mechanisms responsible for CDK inactivation. Caco-2 cells undergo a relative G1/S block and cease to proliferate at day 3 postconfluency; an increase in the activity of terminally differentiated brush-border enzymes (sucrase and alkaline phosphatase) was noted at day 6 postconfluency. Cell cycle block was associated with suppression of both CDK2 and CDK4 activities, which are important for G1/S progression. Treatment of the CDK immune complexes with the detergent deoxycholate (DOC) resulted in restoration of CDK2, but not CDK4, activity at day 3 postconfluency, suggesting the presence of inhibitory protein(s) binding to the cyclin/CDK2 complex at this time point. An increased binding of p21(Waf1/Cip1) to CDK2 complexes at day 3 postconfluency was noted, suggesting a potential role for p21(Waf1/Cip1) in CDK2 inactivation; however, immunodepletion of p21(Waf1/Cip1) from Caco-2 protein extracts demonstrated that p21(Waf1/Cip1) is only partially responsible for CDK2 suppression at day 3 postconfluency. A decrease in the cyclin E/CDK2 complex appears to contribute to the CDK2 inactivation noted at days 6 and 12 postconfluency. Taken together, our results suggest that multiple mechanisms contribute to CDK suppression during Caco-2 cell differentiation. Inhibition of CDK2 and CDK4 leads to G1 arrest and inhibition of proliferation that precede Caco-2 cell differentiation. PMID:9814966

  4. CDK2 Inhibition Causes Anaphase Catastrophe in Lung Cancer through the Centrosomal Protein CP110

    PubMed Central

    Hu, Shanhu; Danilov, Alexey V.; Godek, Kristina; Orr, Bernardo; Tafe, Laura J.; Rodriguez-Canales, Jaime; Behrens, Carmen; Mino, Barbara; Moran, Cesar A.; Memoli, Vincent A.; Mustachio, Lisa Maria; Galimberti, Fabrizio; Ravi, Saranya; DeCastro, Andrew; Lu, Yun; Sekula, David; Andrew, Angeline S; Wistuba, Ignacio I.; Freemantle, Sarah; Compton, Duane A.; Dmitrovsky, Ethan

    2015-01-01

    Aneuploidy is frequently detected in human cancers and is implicated in carcinogenesis. Pharmacological targeting of aneuploidy is an attractive therapeutic strategy as this would preferentially eliminate malignant over normal cells. We previously discovered that CDK2 inhibition causes lung cancer cells with more than two centrosomes to undergo multipolar cell division leading to apoptosis, defined as anaphase catastrophe. Cells with activating KRAS mutations were especially sensitive to CDK2 inhibition. Mechanisms of CDK2-mediated anaphase catastrophe and how activated KRAS enhances this effect were investigated. Live-cell imaging provided direct evidence that following CDK2 inhibition, lung cancer cells develop multipolar anaphase and undergo multipolar cell division with the resulting progeny apoptotic. Small interfering RNA (siRNA)-mediated repression of the CDK2 target and centrosome protein CP110 induced anaphase catastrophe of lung cancer cells. In contrast, CP110 overexpression antagonized CDK2 inhibitor-mediated anaphase catastrophe. Furthermore, activated KRAS mutations sensitized lung cancer cells to CDK2 inhibition by deregulating CP110 expression. Thus, CP110 is a critical mediator of CDK2-inhibition-driven anaphase catastrophe. Independent examination of murine and human paired normal-malignant lung tissues revealed marked upregulation of CP110 in malignant versus normal lung. Human lung cancers with KRAS mutations had significantly lower CP110 expression as compared to KRAS wild-type cancers. Thus, a direct link was found between CP110 and CDK2 inhibitor antineoplastic response. CP110 plays a mechanistic role in response of lung cancer cells to CDK2 inhibition, especially in the presence of activated KRAS mutations. PMID:25808870

  5. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication.

    PubMed

    Kodani, Andrew; Yu, Timothy W; Johnson, Jeffrey R; Jayaraman, Divya; Johnson, Tasha L; Al-Gazali, Lihadh; Sztriha, Lāszló; Partlow, Jennifer N; Kim, Hanjun; Krup, Alexis L; Dammermann, Alexander; Krogan, Nevan J; Walsh, Christopher A; Reiter, Jeremy F

    2015-01-01

    Primary microcephaly (MCPH) associated proteins CDK5RAP2, CEP152, WDR62 and CEP63 colocalize at the centrosome. We found that they interact to promote centriole duplication and form a hierarchy in which each is required to localize another to the centrosome, with CDK5RAP2 at the apex, and CEP152, WDR62 and CEP63 at sequentially lower positions. MCPH proteins interact with distinct centriolar satellite proteins; CDK5RAP2 interacts with SPAG5 and CEP72, CEP152 with CEP131, WDR62 with MOONRAKER, and CEP63 with CEP90 and CCDC14. These satellite proteins localize their cognate MCPH interactors to centrosomes and also promote centriole duplication. Consistent with a role for satellites in microcephaly, homozygous mutations in one satellite gene, CEP90, may cause MCPH. The satellite proteins, with the exception of CCDC14, and MCPH proteins promote centriole duplication by recruiting CDK2 to the centrosome. Thus, centriolar satellites build a MCPH complex critical for human neurodevelopment that promotes CDK2 centrosomal localization and centriole duplication. PMID:26297806

  6. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication

    PubMed Central

    Kodani, Andrew; Yu, Timothy W; Johnson, Jeffrey R; Jayaraman, Divya; Johnson, Tasha L; Al-Gazali, Lihadh; Sztriha, Lāszló; Partlow, Jennifer N; Kim, Hanjun; Krup, Alexis L; Dammermann, Alexander; Krogan, Nevan J; Walsh, Christopher A; Reiter, Jeremy F

    2015-01-01

    Primary microcephaly (MCPH) associated proteins CDK5RAP2, CEP152, WDR62 and CEP63 colocalize at the centrosome. We found that they interact to promote centriole duplication and form a hierarchy in which each is required to localize another to the centrosome, with CDK5RAP2 at the apex, and CEP152, WDR62 and CEP63 at sequentially lower positions. MCPH proteins interact with distinct centriolar satellite proteins; CDK5RAP2 interacts with SPAG5 and CEP72, CEP152 with CEP131, WDR62 with MOONRAKER, and CEP63 with CEP90 and CCDC14. These satellite proteins localize their cognate MCPH interactors to centrosomes and also promote centriole duplication. Consistent with a role for satellites in microcephaly, homozygous mutations in one satellite gene, CEP90, may cause MCPH. The satellite proteins, with the exception of CCDC14, and MCPH proteins promote centriole duplication by recruiting CDK2 to the centrosome. Thus, centriolar satellites build a MCPH complex critical for human neurodevelopment that promotes CDK2 centrosomal localization and centriole duplication. DOI: http://dx.doi.org/10.7554/eLife.07519.001 PMID:26297806

  7. Transforming growth factor beta 1 increases the stability of p21/WAF1/CIP1 protein and inhibits CDK2 kinase activity in human colon carcinoma FET cells.

    PubMed

    Gong, JianGen; Ammanamanchi, Sudhakar; Ko, Tien C; Brattain, Michael G

    2003-06-15

    We examined transforming growth factor-beta 1 (TGF-beta 1) effects on cell cycle progression of human colon carcinoma FET cells. TGF-beta 1 inhibited DNA synthesis and cyclin-dependent kinase (CDK) activity after release from growth arrest in association with induction of the p21 CDK inhibitor, whereas cyclins, CDKs, and p27 protein levels remained relatively unchanged. The decrease in CDK2 kinase activity was the result of increased p21 association with cyclin A-CDK2 and cyclin E-CDK2. TGF-beta 1 treatment in late G(1) showed reduced induction of p21 protein levels in association with increased DNA synthesis. Consequently, p21 induction in early G(1) is critical for TGF-beta 1 inhibition of CDK2 kinase activity. Although TGF-beta 1 treatments in late G(1) failed to induce p21 protein, p21 mRNA induction was observed in late G(1) and in S phase. Further analysis showed that TGF-beta 1 treatment in early G(1) increases p21 protein stability throughout the G(1) and S phases of the cell cycle. Our results demonstrate that TGF-beta 1 stimulation of p21 is regulated at the posttranscriptional and transcriptional levels. This is a novel mechanism of TGF-beta 1 inhibition requiring early G(1) induction and stabilization of p21 protein, which binds to and inhibits cyclin E-CDK2 and cyclin A-CDK2 kinase activity rather than direct modulation of cyclin or CDK protein levels as seen in other systems. PMID:12810668

  8. HIV-1 Tat interaction with RNA polymerase II C-terminal domain (CTD) and a dynamic association with CDK2 induce CTD phosphorylation and transcription from HIV-1 promoter.

    PubMed

    Deng, Longwen; Ammosova, Tatyana; Pumfery, Anne; Kashanchi, Fatah; Nekhai, Sergei

    2002-09-13

    Human immunodeficiency virus, type 1 (HIV-1), Tat protein activates viral gene expression through promoting transcriptional elongation by RNA polymerase II (RNAPII). In this process Tat enhances phosphorylation of the C-terminal domain (CTD) of RNAPII by activating cell cycle-dependent kinases (CDKs) associated with general transcription factors of the promoter complex, specifically CDK7 and CDK9. We reported a Tat-associated T-cell-derived kinase, which contained CDK2. Here, we provide further evidence that CDK2 is involved in Tat-mediated CTD phosphorylation and in HIV-1 transcription in vitro. Tat-mediated CTD phosphorylation by CDK2 required cysteine 22 in the activation domain of Tat and amino acids 42-72 of Tat. CDK2 phosphorylated Tat itself, apparently by forming dynamic contacts with amino acids 15-24 and 36-49 of Tat. Also, amino acids 24-36 and 45-72 of Tat interacted with CTD. CDK2 associated with RNAPII and was found in elongation complexes assembled on HIV-1 long-terminal repeat template. Recombinant CDK2/cyclin E stimulated Tat-dependent HIV-1 transcription in reconstituted transcription assay. Immunodepletion of CDK2/cyclin E in HeLa nuclear extract blocked Tat-dependent transcription. We suggest that CDK2 is part of a transcription complex that is required for Tat-dependent transcription and that interaction of Tat with CTD and a dynamic association of Tat with CDK2/cyclin E stimulated CTD phosphorylation by CDK2. PMID:12114499

  9. C-reactive protein promotes acute kidney injury via Smad3-dependent inhibition of CDK2/cyclin E.

    PubMed

    Lai, Weiyan; Tang, Ying; Huang, Xiao R; Ming-Kuen Tang, Patrick; Xu, Anping; Szalai, Alexander J; Lou, Tan-Qi; Lan, Hui Y

    2016-09-01

    Acute kidney injury (AKI) is exacerbated in C-reactive protein transgenic mice but alleviated in Smad3 knockout mice. Here we used C-reactive protein transgenic/Smad3 wild-type and C-reactive protein transgenic/Smad3 knockout mice to investigate the signaling mechanisms by which C-reactive protein promotes AKI. Serum creatinine was elevated, and the extent of tubular epithelial cell necrosis following ischemia/reperfusion-induced AKI was greater in C-reactive protein transgenics but was blunted when Smad3 was deleted. Exacerbation of AKI in C-reactive protein transgenics was associated with increased TGF-β/Smad3 signaling and expression of the cyclin kinase inhibitor p27, but decreased phosphorylated CDK2 and expression of cyclin E. Concomitantly, tubular epithelial cell proliferation was arrested at the G1 phase in C-reactive protein transgenics with fewer cells entering the S-phase cell cycle as evidenced by fewer bromodeoxyuridine-positive cells. In contrast, the protection from AKI in C-reactive protein transgenic/Smad3 knockout mice was associated with decreased expression of p27 and promotion of CDK2/cyclin E-dependent G1/S transition of tubular epithelial cells. In vitro studies using tubular epithelial cells showed that C-reactive protein activates Smad3 via both TGF-β-dependent and ERK/MAPK cross talk mechanisms, Smad3 bound directly to p27, and blockade of Smad3 or the Fc receptor CD32 prevented C-reactive protein-induced p27-dependent G1 cell cycle arrest. In vivo, treatment of C-reactive protein transgenics with a Smad3 inhibitor largely improved AKI outcomes. Thus, C-reactive protein may promote AKI by impairing tubular epithelial cell regeneration via the CD32-Smad3-p27-driven inhibition of the CDK2/cyclin E complex. Targeting Smad3 may offer a new treatment approach for AKI. PMID:27470679

  10. Cdc6 Protein Activates p27KIP1-bound Cdk2 Protein Only after the Bound p27 Protein Undergoes C-terminal Phosphorylation*

    PubMed Central

    Uranbileg, Baasanjav; Yamamoto, Hanako; Park, Jung-ha; Mohanty, Atish R.; Arakawa-Takeuchi, Shiho; Jinno, Shigeki; Okayama, Hiroto

    2012-01-01

    In mammalian cells Cdk2 activity during the G1-S transition is mainly controlled by p27KIP1. Although the amount and subcellular localization of p27 influence Cdk2 activity, how Cdk2 activity is regulated during this phase transition still remains virtually unknown. Here we report an entirely new mechanism for this regulation. Cdc6 the AAA+ ATPase, known to assemble prereplicative complexes on chromosomal replication origins and activate p21CIP1-bound Cdk2, also activated p27-bound Cdk2 in its ATPase and cyclin binding motif-dependent manner but only after the p27 bound to the Cdk2 was phosphorylated at the C terminus. ROCK, which mediates a signal for cell anchorage to the extracellular matrix and activates the mTORC1 cascade as well as controls cytoskeleton assembly, was partly responsible for C-terminal phosphorylation of the p27. In vitro reconstitution demonstrated ROCK (Rho-associated kinase)-mediated phosphorylation of Cdk2-bound p27 at the C terminus and subsequent activation of the Cdk2 by Cdc6. PMID:22223646

  11. HIV-1 Tat-associated RNA polymerase C-terminal domain kinase, CDK2, phosphorylates CDK7 and stimulates Tat-mediated transcription.

    PubMed

    Nekhai, Sergei; Zhou, Meisheng; Fernandez, Anne; Lane, William S; Lamb, Ned J C; Brady, John; Kumar, Ajit

    2002-06-15

    HIV-1 gene expression is regulated by a viral transactivator protein (Tat) which induces transcriptional elongation of HIV-1 long tandem repeat (LTR). This induction requires hyperphosphorylation of the C-terminal domain (CTD) repeats of RNA polymerase II (Pol II). To achieve CTD hyperphosphorylation, Tat stimulates CTD kinases associated with general transcription factors of the promoter complex, specifically TFIIH-associated CDK7 and positive transcription factor b-associated CDK9 (cyclin-dependent kinase 9). Other studies indicate that Tat may bind an additional CTD kinase that regulates the target-specific phosphorylation of RNA Pol II CTD. We previously reported that Tat-associated T-cell-derived kinase (TTK), purified from human primary T-cells, stimulates Tat-dependent transcription of HIV-1 LTR in vivo [Nekhai, Shukla, Fernandez, Kumar and Lamb (2000) Virology 266, 246-256]. In the work presented here, we characterized the components of TTK by biochemical fractionation and the function of TTK in transcription assays in vitro. TTK uniquely co-purified with CDK2 and not with either CDK9 or CDK7. Tat induced the TTK-associated CDK2 kinase to phosphorylate CTD, specifically at Ser-2 residues. The TTK fraction restored Tat-mediated transcription activation of HIV-1 LTR in a HeLa nuclear extract immunodepleted of CDK9, but not in the HeLa nuclear extract double-depleted of CDK9 and CDK7. Direct microinjection of the TTK fraction augmented Tat transactivation of HIV-1 LTR in human primary HS68 fibroblasts. The results argue that TTK-associated CDK2 may function to maintain target-specific phosphorylation of RNA Pol II that is essential for Tat transactivation of HIV-1 promoter. They are also consistent with the observed cell-cycle-specific induction of viral gene transactivation. PMID:12049628

  12. MIF4G domain containing protein regulates cell cycle and hepatic carcinogenesis by antagonizing CDK2-dependent p27 stability.

    PubMed

    Wan, C; Hou, S; Ni, R; Lv, L; Ding, Z; Huang, X; Hang, Q; He, S; Wang, Y; Cheng, C; Gu, X X; Xu, G; Shen, A

    2015-01-01

    The CDK inhibitor p27(kip1) plays crucial roles in cell cycle regulation and cancer progression. Through yeast two-hybrid screening, we identified MIF4G domain containing protein (MIF4GD) as a novel binding partner for p27. The association of MIF4GD and p27 was verified using immunoprecipitation and glutathione S-transferase (GST) pull-down assays. Interaction with MIF4GD led to the stabilization of p27 both in the nucleus and in the cytoplasm in hepatocellular carcinoma (HCC) cells as a result of suppressed phosphorylation of p27 by CDK2 at threonine187. Serum stimulation decreased the levels of MIF4GD and p27 simultaneously. In addition, MIF4GD overexpression resulted in increased p27 levels and reduced cell proliferation, while knockdown of MIF4GD promoted cell cycle progression with decreased p27 levels in cells. Furthermore, overexpression of MIF4GD reduced colony formation and inhibited xenograft tumor growth in nude mice. Finally, we found that both MIF4GD and p27 were expressed at low levels in HCC tissues compared to non-cancerous tissues, and that low expression levels of MIF4GD and p27 were associated with significantly worse prognosis in HCC patients. Our results suggest that MIF4GD is a potential regulator of p27-dependent cell proliferation in HCC. These findings provide a rational framework for the development of potential HCC therapy by targeting the MIF4GD-p27 interaction. PMID:24336329

  13. Association of Germline Variation in CCNE1 and CDK2 with Breast Cancer Risk, Progression and Survival among Chinese Han Women

    PubMed Central

    Han, Ji-Yuan; Wang, Hui; Xie, Yun-Tao; Li, Yan; Zheng, Li-Yuan; Ruan, Yuan; Song, Ai-Ping; Tian, Xin-Xia; Fang, Wei-Gang

    2012-01-01

    Background Somatic alterations of cyclin-dependent kinase 2 (CDK2)-cyclin E complex have been shown to contribute to breast cancer (BC) development and progression. This study aimed to explore the effects of single nucleotide polymorphisms (SNPs) in CDK2 and CCNE1 (a gene encoding G1/S specific cyclin E1 protein, formerly called cyclin E) on BC risk, progression and survival in a Chinese Han population. Methodology/Principal Findings We herein genotyped 6 haplotype-tagging SNPs (htSNPs) of CCNE1 and 2 htSNPs of CDK2 in 1207 BC cases and 1207 age-matched controls among Chinese Han women, and then reconstructed haplotype blocks according to our genotyping data and linkage disequilibrium status of these htSNPs. For CCNE1, the minor allele homozygotes of three htSNPs were associated with BC risk (rs3218035: adjusted odds ratio [aOR] = 3.35, 95% confidence interval [CI] = 1.69–6.67; rs3218038: aOR = 1.81, 95% CI = 1.22–2.70; rs3218042: aOR = 2.64, 95% CI = 1.31–5.34), and these three loci showed a dose-dependent manner in increasing BC risk (Ptrend = 0.0001). Moreover, the 5-SNP haplotype CCGTC, which carried none of minor alleles of the 3 at-risk SNPs, was associated with a favorable event-free survival (hazard ratio [HR] = 0.53, 95% CI = 0.32–0.90). Stratified analysis suggested that the minor-allele homozygote carriers of rs3218038 had a worse event-free survival among patients with aggressive tumours (in tumour size>2 cm group: HR = 2.06, 95% CI = 1.06–3.99; in positive lymph node metastasis group: HR = 2.41, 95% CI = 1.15–5.03; in stage II–IV group: HR = 2.03, 95% CI = 1.09–3.79). For CDK2, no significant association was found. Conclusions/Significance This study indicates that genetic variants in CCNE1 may contribute to BC risk and survival in Chinese Han population. They may become molecular markers for individual evaluation of BC susceptibility and prognosis. Nevertheless, further

  14. Interaction of Heat Shock Protein Cpn10 with the Cyclin E/Cdk2 Substrate Nuclear Protein Ataxia-Telangiectasia (NPAT) Is Involved in Regulating Histone Transcription*

    PubMed Central

    Ling Zheng, Li; Wang, Fei Ya; Cong, Xiao Xia; Shen, Yue; Rao, Xi Sheng; Huang, Dao Sheng; Fan, Wei; Yi, Peng; Wang, Xin Bao; Zheng, Lei; Zhou, Yi Ting; Luo, Yan

    2015-01-01

    Precise modulation of histone gene transcription is critical for cell cycle progression. As a direct substrate of Cyclin E/CDK2, nuclear protein ataxia-telangiectasia (NPAT) is a crucial factor in regulating histone transcription and cell cycle progression. Here we identified that Cpn10/HSPE, a 10-kDa heat shock protein, is a novel interacting partner of NPAT. A pool of Cpn10 is colocalized with NPAT foci during G1 and S phases in nuclei. Gain- and loss-of-function experiments unraveled an essential role of Cpn10 in histone transcription. A conserved DLFD motif within Cpn10 was critical for targeting NPAT and modulating histone transcription. More importantly, knockdown of Cpn10 disrupted the focus formation of both NPAT and FADD-like interleukin-1β-converting enzyme-associated huge protein without affecting Coilin-positive Cajal bodies. Finally, Cpn10 is important for S phase progression and cell proliferation. Taken together, our finding revealed a novel role of Cpn10 in the spatial regulation of NPAT signaling and disclosed a previously unappreciated link between the heat shock protein and histone transcription regulation. PMID:26429916

  15. After portal branch ligation in the rat, cellular proliferation in associated with selective induction of c-Ha-ras, p53, cyclin E, and Cdk2

    PubMed Central

    Starkel, P; Lambotte, L; Sempoux, C; De Saeger, C; Saliez, A; Maiter, D; Horsmans, Y

    2001-01-01

    BACKGROUND—In liver regeneration after portal branch ligation we previously showed that early cellular changes are observed in both the proliferating and atrophying liver lobes. They are therefore not indicative of future proliferative response. In this study we attempted to define precisely, in the same model, the time at which the cellular processes diverge between the lobes by measuring various parameters associated with cellular proliferation. We also investigated the possible role of inhibitors of cell proliferation in the absence of progression towards the S phase in the atrophying lobes.
AIMS—Expression of p53, c-Ha-ras, cyclin E, cyclin dependent kinase (Cdk2), transforming growth factor (TGF)-β, and interleukin (IL)-1α and IL-1β were assessed in relation to their potential role in proliferating and atrophying cellular phenomenons.
METHODS—Immunohistochemistry, northern blotting, western blotting, and reverse transcription-polymerase chain reaction were performed, mainly at time points corresponding to mid-G1/S phase progression (8-24 hours after surgery).
RESULTS—The common and thus most likely non-specific response was still evident 5-8 hours after surgery and included an increase in IL-1 mRNA as well as p53 and cyclin E proteins. From 12 hours onwards, p53, c-Ha-ras, cyclin E, and Cdk2 were selectively induced in proliferating lobes whereas IL-1β was predominantly activated in atrophying lobes. No changes in TGF-β or IL-1α expression were observed at the same time points in any of the liver lobes.
CONCLUSIONS—The initial response to portal branch ligation and thus probably to partial hepatectomy seems to be non-specific for at least eight hours. Thereafter, p53, c-Ha-ras, cyclin E, and Cdk2 seem to drive cellular proliferation while IL-1β is associated with cellular atrophy. In contrast, TGF-β and IL-1α do not seem to play a role in determining the commitment of cells towards atrophy or proliferation.


Keywords: portal

  16. Mechanism of p27 Unfolding for CDK2 Reactivation

    PubMed Central

    Rath, Soumya Lipsa; Senapati, Sanjib

    2016-01-01

    Cell-cycle regulatory protein, CDK2 is active when bound to its complementary partner protein, CyclinA or E. Recent discovery of the Kip/Cip family of proteins has indicated that the activity of CDK2 is also regulated by a member protein, p27. Although, the mechanism of CDK2 inhibition by p27 binding is known from crystal structure, little is known about the mechanism of CDK2 reactivation. Here, we execute classical and accelerated molecular dynamics simulations of unphosphorylated- and phosphorylated-p27 bound CDK2/CyclinA to unravel the CDK2 reactivation mechanism at molecular-to-atomic detail. Results suggest that the phosphorylation of p27 Y88 residue (pY88-p27) first disrupts the p27/CDK2 hybrid β-sheet and subsequently ejects the p27 310 helix from CDK2 catalytic cleft. The unbinding of p27 from CDK2/CyclinA complex, thus, follows a two-step unfolding mechanism, where the 310 helix ejection constitutes the rate-limiting step. Interestingly, the unfolding of p27 leaves CDK2/CyclinA in an active state, where the prerequisite CDK2-CyclinA interfacial contacts were regained and ATP achieved its native position for smooth transfer of phosphate. Our findings match very well with NMR chemical shift data that indicated the flip-out of p27 310 helix from CDK2 pocket and kinetic experiments that exhibited significant kinase activity of CDK2 when saturated with pY88-p27. PMID:27211815

  17. Mechanism of p27 Unfolding for CDK2 Reactivation.

    PubMed

    Rath, Soumya Lipsa; Senapati, Sanjib

    2016-01-01

    Cell-cycle regulatory protein, CDK2 is active when bound to its complementary partner protein, CyclinA or E. Recent discovery of the Kip/Cip family of proteins has indicated that the activity of CDK2 is also regulated by a member protein, p27. Although, the mechanism of CDK2 inhibition by p27 binding is known from crystal structure, little is known about the mechanism of CDK2 reactivation. Here, we execute classical and accelerated molecular dynamics simulations of unphosphorylated- and phosphorylated-p27 bound CDK2/CyclinA to unravel the CDK2 reactivation mechanism at molecular-to-atomic detail. Results suggest that the phosphorylation of p27 Y88 residue (pY88-p27) first disrupts the p27/CDK2 hybrid β-sheet and subsequently ejects the p27 310 helix from CDK2 catalytic cleft. The unbinding of p27 from CDK2/CyclinA complex, thus, follows a two-step unfolding mechanism, where the 310 helix ejection constitutes the rate-limiting step. Interestingly, the unfolding of p27 leaves CDK2/CyclinA in an active state, where the prerequisite CDK2-CyclinA interfacial contacts were regained and ATP achieved its native position for smooth transfer of phosphate. Our findings match very well with NMR chemical shift data that indicated the flip-out of p27 310 helix from CDK2 pocket and kinetic experiments that exhibited significant kinase activity of CDK2 when saturated with pY88-p27. PMID:27211815

  18. ING5 Is Phosphorylated by CDK2 and Controls Cell Proliferation Independently of p53

    PubMed Central

    Linzen, Ulrike; Lilischkis, Richard; Pandithage, Ruwin; Schilling, Britta; Ullius, Andrea; Lüscher-Firzlaff, Juliane; Kremmer, Elisabeth; Lüscher, Bernhard; Vervoorts, Jörg

    2015-01-01

    Inhibitor of growth (ING) proteins have multiple functions in the control of cell proliferation, mainly by regulating processes associated with chromatin regulation and gene expression. ING5 has been described to regulate aspects of gene transcription and replication. Moreover deregulation of ING5 is observed in different tumors, potentially functioning as a tumor suppressor. Gene transcription in late G1 and in S phase and replication is regulated by cyclin-dependent kinase 2 (CDK2) in complex with cyclin E or cyclin A. CDK2 complexes phosphorylate and regulate several substrate proteins relevant for overcoming the restriction point and promoting S phase. We have identified ING5 as a novel CDK2 substrate. ING5 is phosphorylated at a single site, threonine 152, by cyclin E/CDK2 and cyclin A/CDK2 in vitro. This site is also phosphorylated in cells in a cell cycle dependent manner, consistent with it being a CDK2 substrate. Furthermore overexpression of cyclin E/CDK2 stimulates while the CDK2 inhibitor p27KIP1 represses phosphorylation at threonine 152. This site is located in a bipartite nuclear localization sequence but its phosphorylation was not sufficient to deregulate the subcellular localization of ING5. Although ING5 interacts with the tumor suppressor p53, we could not establish p53-dependent regulation of cell proliferation by ING5 and by phospho-site mutants. Instead we observed that the knockdown of ING5 resulted in a strong reduction of proliferation in different tumor cell lines, irrespective of the p53 status. This inhibition of proliferation was at least in part due to the induction of apoptosis. In summary we identified a phosphorylation site at threonine 152 of ING5 that is cell cycle regulated and we observed that ING5 is necessary for tumor cell proliferation, without any apparent dependency on the tumor suppressor p53. PMID:25860957

  19. p12CDK2-AP1 interacts with CD82 to regulate the proliferation and survival of human oral squamous cell carcinoma cells.

    PubMed

    Chai, Juan; Ju, Jun; Zhang, Shao-Wu; Shen, Zhi-Yuan; Liang, Liang; Yang, Xiang-Ming; Ma, Chao; Ni, Qian-Wei; Sun, Mo-Yi

    2016-08-01

    p12 cyclin-dependent kinase 2 (CDK2)-associating protein 1 (p12CDK2-AP1) has been demonstrated to negatively regulate the activity of CDK2. However, the underlying molecular mechanism remains largely unknown. We aimed to determine the potential binding proteins of p12CDK2-AP1 and to elucidate the role of p12CDK2-AP1 in the regulation of the proliferation, invasion, apoptosis, and in vivo growth of human oral squamous cell carcinoma cells. The protein-protein interaction was predicted using computational decision templates. The predicted p12CDK2‑AP1 interacting proteins were overexpressed in human oral squamous cell carcinoma OSCC-15 cells, and the protein binding was examined using co-precipitation (Co-IP). Cell proliferation and invasion were determined via MTT assay and Transwell system, respectively. Cell apoptosis was evaluated using Annexin V-FITC/PI double staining followed by flow cytometric analysis. The in vivo growth of OSCC-15 cells was examined in nude mouse tumor xenografts. We found that overexpression of either p12CDK2-AP1 or CD82 significantly suppressed the proliferation and invasion but promoted the apoptosis of OSCC-15 cells (P<0.05). Importantly, combined overexpression of p12CDK2-AP1 and CD82 showed synergistic antitumor activity compared with the overexpression of a single protein alone (P<0.05). Additionally, the simultaneous overexpression of p12CDK2-AP1 and CD82 significantly suppressed the in vivo tumor growth of OSCC-15 cells in nude mice compared with the negative control (P<0.05). Our findings indicate that p12CDK2-AP1 interacts with CD82 to play a functional role in suppressing the in vitro and in vivo growth of OSCC-15 cells. PMID:27349208

  20. c-Jun induces apoptosis of starved BM2 monoblasts by activating cyclin A-CDK2

    SciTech Connect

    Vanhara, Petr; Bryja, Vitezslav; Horvath, Viktor; Kozubik, Alois; Hampl, Ales; Smarda, Jan . E-mail: smarda@sci.muni.cz

    2007-02-02

    c-Jun is one of the major components of the activating protein-1 (AP-1), the transcription factor that participates in regulation of proliferation, differentiation, and apoptosis. In this study, we explored functional interactions of the c-Jun protein with several regulators of the G1/S transition in serum-deprived v-myb-transformed chicken monoblasts BM2. We show that the c-Jun protein induces expression of cyclin A, thus up-regulating activity of cyclin A-associated cyclin-dependent kinase 2 (CDK2), and causing massive programmed cell death of starved BM2cJUN cells. Specific inhibition of CDK2 suppresses frequency of apoptosis of BM2cJUN cells. We conclude that up-regulation of cyclin A expression and CDK2 activity can represent important link between the c-Jun protein, cell cycle machinery, and programmed cell death pathway in leukemic cells.

  1. CDK2 activation in mouse epidermis induces keratinocyte proliferation but does not affect skin tumor development.

    PubMed

    Macias, Everardo; Miliani de Marval, Paula L; De Siervi, Adriana; Conti, Claudio J; Senderowicz, Adrian M; Rodriguez-Puebla, Marcelo L

    2008-08-01

    It has been widely assumed that elevated CDK2 kinase activity plays a contributory role in tumorigenesis. We have previously shown that mice overexpressing CDK4 under control of the keratin 5 promoter (K5CDK4 mice) develop epidermal hyperplasia and increased susceptibility to squamous cell carcinomas. In this model, CDK4 overexpression results in increased CDK2 activity associated with the noncatalytic function of CDK4, sequestration of p21(Cip1) and p27(Kip1). Furthermore, we have shown that ablation of Cdk2 reduces Ras-Cdk4 tumorigenesis, suggesting that increased CDK2 activity plays an important role in Ras-mediated tumorigenesis. To investigate this hypothesis, we generated two transgenic mouse models of elevated CDK2 kinase activity, K5Cdk2 and K5Cdk4(D158N) mice. The D158N mutation blocks CDK4 kinase activity without interfering with its binding capability. CDK2 activation via overexpression of CDK4(D158N), but not of CDK2, resulted in epidermal hyperplasia. We observed elevated levels of p21(Cip1) in K5Cdk2, but not in K5Cdk4(D158N), epidermis, suggesting that CDK2 overexpression elicits a p21(Cip1) response to maintain keratinocyte homeostasis. Surprisingly, we found that neither CDK2 overexpression nor the indirect activation of CDK2 enhanced skin tumor development. Thus, although the indirect activation of CDK2 is sufficient to induce keratinocyte hyperproliferation, activation of CDK2 alone does not induce malignant progression in Ras-mediated tumorigenesis. PMID:18599613

  2. Expression of NPAT, a novel substrate of cyclin E–CDK2, promotes S-phase entry

    PubMed Central

    Zhao, Jiyong; Dynlacht, Brian; Imai, Takashi; Hori, Tada-aki; Harlow, Ed

    1998-01-01

    To understand the mechanisms by which CDKs regulate cell cycle progression, it is necessary to identify and characterize the physiological substrates of these kinases. We have developed a screening method to identify novel CDK substrates. One of the cDNAs identified in the screen is identical to the recently isolated NPAT gene. Here we show that NPAT associates with cyclin E–CDK2 in vivo and can be phosphorylated by this CDK. The protein level of NPAT peaks at the G1/S boundary. Overexpression of NPAT accelerates S-phase entry, and this effect is enhanced by coexpression of cyclin E–CDK2. These results suggest that NPAT is a substrate of cyclin E–CDK2 and plays a role in S-phase entry. PMID:9472014

  3. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2

    PubMed Central

    Du, William W.; Yang, Weining; Liu, Elizabeth; Yang, Zhenguo; Dhaliwal, Preet; Yang, Burton B.

    2016-01-01

    Most RNAs generated by the human genome have no protein-coding ability and are termed non-coding RNAs. Among these include circular RNAs, which include exonic circular RNAs (circRNA), mainly found in the cytoplasm, and intronic RNAs (ciRNA), predominantly detected in the nucleus. The biological functions of circular RNAs remain largely unknown, although ciRNAs have been reported to promote gene transcription, while circRNAs may function as microRNA sponges. We demonstrate that the circular RNA circ-Foxo3 was highly expressed in non-cancer cells and were associated with cell cycle progression. Silencing endogenous circ-Foxo3 promoted cell proliferation. Ectopic expression of circ-Foxo3 repressed cell cycle progression by binding to the cell cycle proteins cyclin-dependent kinase 2 (also known as cell division protein kinase 2 or CDK2) and cyclin-dependent kinase inhibitor 1 (or p21), resulting in the formation of a ternary complex. Normally, CDK2 interacts with cyclin A and cyclin E to facilitate cell cycle entry, while p21works to inhibit these interactions and arrest cell cycle progression. The formation of this circ-Foxo3-p21-CDK2 ternary complex arrested the function of CDK2 and blocked cell cycle progression. PMID:26861625

  4. Cables enhances cdk2 tyrosine 15 phosphorylation by Wee1, inhibits cell growth, and is lost in many human colon and squamous cancers.

    PubMed

    Wu, C L; Kirley, S D; Xiao, H; Chuang, Y; Chung, D C; Zukerberg, L R

    2001-10-01

    Cyclin-dependent kinase 2 (cdk2) is a small serine/threonine kinase that regulates cell cycle progression. Cdk2 activity is tightly controlled by several mechanisms, including phosphorylation and dephosphorylation events. Cables is a recently described novel cdk-interacting protein. In proliferating cells, Cables was predominantly localized in the nucleus by cell fractionation and immunostaining. Expression of Cables in HeLa cells inhibited cell growth and colony formation. Cables enhanced cdk2 tyrosine 15 phosphorylation by the Wee1 protein kinase, an inhibitory phosphorylation, which led to decreased cdk2 kinase activity. The gene encoding Cables is located on human chromosome 18q11-12, a site that is frequently lost in squamous, colon, and pancreas cancers. We found that Cables was strongly expressed in normal human epithelial cells including squamous and glandular mucosa. Breast and pancreatic cancers show strong Cables expression; however, loss of Cables expression was found in approximately 50-60% of primary colon and head and neck cancer specimens. Lack of Cables expression was associated with loss of heterozygosity on chromosome 18q11. The data provide evidence for a Cables-mediated interplay between cdk2 and Wee1 that leads to inhibition of cell growth. Conversely, loss of Cables may cause uncontrolled cell growth and enhance tumor formation. PMID:11585773

  5. Nerve growth factor regulates the expression and activity of p33cdk2 and p34cdc2 kinases in PC12 pheochromocytoma cells.

    PubMed Central

    Buchkovich, K J; Ziff, E B

    1994-01-01

    In the absence of serum, nerve growth factor (NGF) promotes the survival and differentiation of the PC12 pheochromocytoma cell line. In the presence of serum, NGF acts primarily as a differentiation factor and negative regulator of cell cycling. To investigate NGF control of cell cycling, we have analyzed the regulation of cyclin dependent kinases during PC12 cell differentiation. NGF treatment leads to a reduction in the steady-state protein levels of p33cdk2 and p34cdc2, two key regulators of cell cycle progression. The decrease in p33cdk2 and p34cdc2 coincides with a decrease in the enzymatic activity of cyclinA-p34cdc2, cyclinB-p34cdc2, cyclinE-p33cdk2, and cyclinA-p33cdk2 kinases. The decline in p33cdk2 and p34cdc2 kinase activity in response to NGF is accelerated in cells that over-express the p140trk NGF receptor, suggesting that the timing of the down- regulation is dependent on the level of p140trk and the strength of the NGF signal. The level of cyclin A, a regulatory subunit of p33cdk2 and p34cdc2, is relatively constant during PC12 differentiation. Nevertheless, the DNA binding activity of the cyclinA-associated transcription factor E2F/DP decreases. Thus, NGF down-regulates the activity of cyclin dependent kinases and cyclin-transcription factor complexes during PC12 differentiation. Images PMID:7865886

  6. Cyclin E/Cdk2-dependent phosphorylation of Mcl-1 determines its stability and cellular sensitivity to BH3 mimetics

    PubMed Central

    Choudhary, Gaurav S.; Tat, Trinh T.; Misra, Saurav; Hill, Brian T.; Smith, Mitchell R.; Almasan, Alexandru; Mazumder, Suparna

    2015-01-01

    Cyclin E/Cdk2 kinase activity is frequently deregulated in human cancers, resulting in impaired apoptosis. Here, we show that cyclin E/Cdk2 phosphorylates and stabilizes the pro-survival Bcl-2 family protein Mcl-1, a key cell death resistance determinant to the small molecule Bcl-2 family inhibitors ABT-199 and ABT-737, mimetics of the Bcl-2 homology domain 3 (BH3). Cyclin E levels were elevated and there was increased association of cyclin E/Cdk2 with Mcl-1 in ABT-737-resistant compared to parental cells. Cyclin E depletion in various human tumor cell-lines and cyclin E−/− mouse embryo fibroblasts showed decreased levels of Mcl-1 protein, with no change in Mcl-1 mRNA levels. In the absence of cyclin E, Mcl-1 ubiquitination was enhanced, leading to decreased protein stability. Studies with Mcl-1 phosphorylation mutants show that cyclin E/Cdk2-dependent phosphorylation of Mcl-1 residues on its PEST domain resulted in increased Mcl-1 stability (Thr92, and Thr163) and Bim binding (Ser64). Cyclin E knock-down restored ABT-737 sensitivity to acquired and inherently resistant Mcl-1-dependent tumor cells. CDK inhibition by dinaciclib resulted in Bim release from Mcl-1 in ABT-737-resistant cells. Dinaciclib in combination with ABT-737 and ABT-199 resulted in robust synergistic cell death in leukemic cells and primary chronic lymphocytic leukemia patient samples. Collectively, our findings identify a novel mechanism of cyclin E-mediated Mcl-1 regulation that provides a rationale for clinical use of Bcl-2 family and Cdk inhibitors for Mcl-1-dependent tumors. PMID:26219338

  7. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2

    PubMed Central

    Li, Yan; Zhang, Jingxiao; Gao, Weimin; Zhang, Lilei; Pan, Yanqiu; Zhang, Shuwei; Wang, Yonghua

    2015-01-01

    Cyclin-dependent kinase 2 (CDK2) is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP) binding site (Site I) and two non-competitive binding sites (Site II and III). In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV). All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate). In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2. PMID:25918937

  8. SUMOylation of Rb enhances its binding with CDK2 and phosphorylation at early G1 phase

    PubMed Central

    Meng, Fengxi; Qian, Jiang; Yue, Han; Li, Xiaofeng; Xue, Kang

    2016-01-01

    ABSTRACT Retinoblastoma protein (Rb) is a prototypical tumor suppressor that is vital to the negative regulation of the cell cycle and tumor progression. Hypo-phosphorylated Rb is associated with G0/G1 arrest by suppressing E2F transcription factor activity, whereas Rb hyper-phosphorylation allows E2F release and cell cycle progression from G0/G1 to S phase. However, the factors that regulate cyclin-dependent protein kinase (CDK)-dependent hyper-phosphorylation of Rb during the cell cycle remain obscure. In this study, we show that throughout the cell cycle, Rb is specifically small ubiquitin-like modifier (SUMO)ylated at early G1 phase. SUMOylation of Rb stimulates its phosphorylation level by recruiting a SUMO-interaction motif (SIM)-containing kinase CDK2, leading to Rb hyper-phosphorylation and E2F-1 release. In contrast, a SUMO-deficient Rb mutant results in reduced SUMOylation and phosphorylation, weakened CDK2 binding, and attenuated E2F-1 sequestration. Furthermore, we reveal that Rb SUMOylation is required for cell proliferation. Therefore, our study describes a novel mechanism that regulates Rb phosphorylation during cell cycle progression. PMID:27163259

  9. SUMOylation of Rb enhances its binding with CDK2 and phosphorylation at early G1 phase.

    PubMed

    Meng, Fengxi; Qian, Jiang; Yue, Han; Li, Xiaofeng; Xue, Kang

    2016-07-01

    Retinoblastoma protein (Rb) is a prototypical tumor suppressor that is vital to the negative regulation of the cell cycle and tumor progression. Hypo-phosphorylated Rb is associated with G0/G1 arrest by suppressing E2F transcription factor activity, whereas Rb hyper-phosphorylation allows E2F release and cell cycle progression from G0/G1 to S phase. However, the factors that regulate cyclin-dependent protein kinase (CDK)-dependent hyper-phosphorylation of Rb during the cell cycle remain obscure. In this study, we show that throughout the cell cycle, Rb is specifically small ubiquitin-like modifier (SUMO)ylated at early G1 phase. SUMOylation of Rb stimulates its phosphorylation level by recruiting a SUMO-interaction motif (SIM)-containing kinase CDK2, leading to Rb hyper-phosphorylation and E2F-1 release. In contrast, a SUMO-deficient Rb mutant results in reduced SUMOylation and phosphorylation, weakened CDK2 binding, and attenuated E2F-1 sequestration. Furthermore, we reveal that Rb SUMOylation is required for cell proliferation. Therefore, our study describes a novel mechanism that regulates Rb phosphorylation during cell cycle progression. PMID:27163259

  10. [Expression of cyclin-dependent kinase 2-associated protein 1 in chicken embryos of different sexes].

    PubMed

    Yang, Yu; Feng, Yan-Ping; Gong, Ping; Huang, Pan; Li, Shi-Jun; Peng, Xiu-Li; Gong, Yan-Zhang

    2009-09-01

    To investigate the expression and functions of cyclin-dependent kinase 2-associated protein 1 (cdk2ap1) screened by suppression subtractive hybridization in chicken embryo development, a pair of primers was designed to amplify the cdk2ap1 fragment by RT-PCR and subsequently the fragment obtained was cloned into the plasmid pGEM-T. Sense and antisense probes labeled with digoxigenin were generated using SP6 and T7 RNA polymerases, respectively, and used to examine cdk2ap1 expression in chicken embryos of both sexes by whole-mount in situ hybridization. In both sexes, cdk2ap1 was expressed in the head mesenchyme, rhombencephalon, optic vesicles, spinal neural tube, and forelimb of 4.0-day-old embryos and the expression in males was significantly higher than that in females. In addition, in the genital ridge and hindlimb of the 4.0-day-old chicken embryo, cdk2ap1 was obviously expressed in the males but not in females. It is supposed that cdk2ap1 may play a role in the sexual differentiation and development of gonad of chicken embryo. PMID:19819846

  11. Cdk2 phosphorylation of Bcl-xL after stress converts it to a pro-apoptotic protein mimicking Bax/Bak

    PubMed Central

    Megyesi, J; Tarcsafalvi, A; Seng, NSHL; Hodeify, R; Price, PM

    2016-01-01

    Apoptosis is a regulated form of cell death that proceeds by defined biochemical pathways. Most apoptosis is controlled by interactions between pro-survival and pro-apoptotic Bcl-2 family proteins in which death is often the consequence of permeabilization of the mitochondrial outer membrane. Many drugs affect this equilibrium to favor apoptosis but this process is not completely understood. We show that the chemotherapeutic drug cisplatin initiates an apoptotic pathway by phosphorylation of a pro-survival Bcl-2 family member, Bcl-xL, by cyclin-dependent kinase 2. The phosphorylation occurred at a previously unreported site and its biologic significance was demonstrated by a phosphomimetic modification of Bcl-xL that was able to induce apoptosis without addition of cisplatin. The mechanism of cell death induction was similar to that initiated by pro-apoptotic Bcl-2 family proteins, that is, phosphorylated Bcl-xL translocated to the mitochondrial membrane, and formed pores in the membrane. This initiated cytochrome c release and caspase activation that resulted in cell death. PMID:27226901

  12. Essential role of the Cdk2 activator RingoA in meiotic telomere tethering to the nuclear envelope

    PubMed Central

    Mikolcevic, Petra; Isoda, Michitaka; Shibuya, Hiroki; del Barco Barrantes, Ivan; Igea, Ana; Suja, José A.; Shackleton, Sue; Watanabe, Yoshinori; Nebreda, Angel R.

    2016-01-01

    Cyclin-dependent kinases (CDKs) play key roles in cell cycle regulation. Genetic analysis in mice has revealed an essential role for Cdk2 in meiosis, which renders Cdk2 knockout (KO) mice sterile. Here we show that mice deficient in RingoA, an atypical activator of Cdk1 and Cdk2 that has no amino acid sequence homology to cyclins, are sterile and display meiotic defects virtually identical to those observed in Cdk2 KO mice including non-homologous chromosome pairing, unrepaired double-strand breaks, undetectable sex-body and pachytene arrest. Interestingly, RingoA is required for Cdk2 targeting to telomeres and RingoA KO spermatocytes display severely affected telomere tethering as well as impaired distribution of Sun1, a protein essential for the attachment of telomeres to the nuclear envelope. Our results identify RingoA as an important activator of Cdk2 at meiotic telomeres, and provide genetic evidence for a physiological function of mammalian Cdk2 that is not dependent on cyclins. PMID:27025256

  13. Free-energy-based methods for binding profile determination in a congeneric series of CDK2 inhibitors.

    PubMed

    Fidelak, Jérémy; Juraszek, Jarek; Branduardi, Davide; Bianciotto, Marc; Gervasio, Francesco Luigi

    2010-07-29

    Free-energy pathway methods show great promise in computing the mode of action and the free energy profile associated with the binding of small molecules with proteins, but are generally very computationally demanding. Here we apply a novel approach based on metadynamics and path collective variables. We show that this combination is able to find an optimal reaction coordinate and the free energy profile of binding with explicit solvent and full flexibility, while minimizing human intervention and computational costs. We apply it to predict the binding affinity of a congeneric series of 5 CDK2 inhibitors. The predicted binding free energy profiles are in accordance with experiment. PMID:20593892

  14. Molecular Dynamics Simulations and Classical Multidimensional Scaling Unveil New Metastable States in the Conformational Landscape of CDK2.

    PubMed

    Pisani, Pasquale; Caporuscio, Fabiana; Carlino, Luca; Rastelli, Giulio

    2016-01-01

    Protein kinases are key regulatory nodes in cellular networks and their function has been shown to be intimately coupled with their structural flexibility. However, understanding the key structural mechanisms of large conformational transitions remains a difficult task. CDK2 is a crucial regulator of cell cycle. Its activity is finely tuned by Cyclin E/A and the catalytic segment phosphorylation, whereas its deregulation occurs in many types of cancer. ATP competitive inhibitors have failed to be approved for clinical use due to toxicity issues raised by a lack of selectivity. However, in the last few years type III allosteric inhibitors have emerged as an alternative strategy to selectively modulate CDK2 activity. In this study we have investigated the conformational variability of CDK2. A low dimensional conformational landscape of CDK2 was modeled using classical multidimensional scaling on a set of 255 crystal structures. Microsecond-scale plain and accelerated MD simulations were used to populate this landscape by using an out-of-sample extension of multidimensional scaling. CDK2 was simulated in the apo-form and in complex with the allosteric inhibitor 8-anilino-1-napthalenesulfonic acid (ANS). The apo-CDK2 landscape analysis showed a conformational equilibrium between an Src-like inactive conformation and an active-like form. These two states are separated by different metastable states that share hybrid structural features with both forms of the kinase. In contrast, the CDK2/ANS complex landscape is compatible with a conformational selection picture where the binding of ANS in proximity of the αC helix causes a population shift toward the inactive conformation. Interestingly, the new metastable states could enlarge the pool of candidate structures for the development of selective allosteric CDK2 inhibitors. The method here presented should not be limited to the CDK2 case but could be used to systematically unmask similar mechanisms throughout the human

  15. Molecular Dynamics Simulations and Classical Multidimensional Scaling Unveil New Metastable States in the Conformational Landscape of CDK2

    PubMed Central

    Pisani, Pasquale; Rastelli, Giulio

    2016-01-01

    Protein kinases are key regulatory nodes in cellular networks and their function has been shown to be intimately coupled with their structural flexibility. However, understanding the key structural mechanisms of large conformational transitions remains a difficult task. CDK2 is a crucial regulator of cell cycle. Its activity is finely tuned by Cyclin E/A and the catalytic segment phosphorylation, whereas its deregulation occurs in many types of cancer. ATP competitive inhibitors have failed to be approved for clinical use due to toxicity issues raised by a lack of selectivity. However, in the last few years type III allosteric inhibitors have emerged as an alternative strategy to selectively modulate CDK2 activity. In this study we have investigated the conformational variability of CDK2. A low dimensional conformational landscape of CDK2 was modeled using classical multidimensional scaling on a set of 255 crystal structures. Microsecond-scale plain and accelerated MD simulations were used to populate this landscape by using an out-of-sample extension of multidimensional scaling. CDK2 was simulated in the apo-form and in complex with the allosteric inhibitor 8-anilino-1-napthalenesulfonic acid (ANS). The apo-CDK2 landscape analysis showed a conformational equilibrium between an Src-like inactive conformation and an active-like form. These two states are separated by different metastable states that share hybrid structural features with both forms of the kinase. In contrast, the CDK2/ANS complex landscape is compatible with a conformational selection picture where the binding of ANS in proximity of the αC helix causes a population shift toward the inactive conformation. Interestingly, the new metastable states could enlarge the pool of candidate structures for the development of selective allosteric CDK2 inhibitors. The method here presented should not be limited to the CDK2 case but could be used to systematically unmask similar mechanisms throughout the human

  16. Cyclin dependent kinase 2 (CDK2) is a key mediator for EGF-induced cell transformation mediated through the ELK4/c-Fos signaling pathway

    PubMed Central

    Peng, Cong; Zeng, Weiqi; Su, Juan; Kuang, Yehong; He, Yijin; Zhao, Shuang; Zhang, Jianglin; Ma, Weiya; Bode, Ann M.; Dong, Zigang; Chen, Xiang

    2015-01-01

    Cyclin dependent kinase 2 (CDK2) is a known regulator in the cell cycle control of the G1/S and S/G2 transitions. However, the role of CDK2 in tumorigenesis is controversial. Evidence from knockout mice as well as colon cancer cell lines indicated that CDK2 is dispensable for cell proliferation. In this study, we found that ectopic CDK2 enhances Ras (G12V)-induced foci formation and knocking down CDK2 expression dramatically decreases EGF-induced cell transformation mediated through the down-regulation of c-fos expression. Interestingly, CDK2 directly phosphorylates ELK4 at Thr194 and Ser387 and regulates ELK4 transcriptional activity, which serves as a mechanism to regulate c-fos expression. In addition, ELK4 is over-expressed in melanoma and knocking down ELK4 or CDK2 expression significantly attenuated the malignant phenotype of melanoma cells. Taken together, our study reveals a novel function of CDK2 in EGF-induced cell transformation and the associated signal transduction pathways. This indicates that CDK2 is a useful molecular target for chemoprevention and therapy against skin cancer. PMID:26028036

  17. Kaposi's sarcoma-associated herpesvirus K8beta is derived from a spliced intermediate of K8 pre-mRNA and antagonizes K8alpha (K-bZIP) to induce p21 and p53 and blocks K8alpha-CDK2 interaction.

    PubMed

    Yamanegi, Koji; Tang, Shuang; Zheng, Zhi-Ming

    2005-11-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a lymphotropic DNA tumor virus that induces Kaposi's sarcoma and AIDS-related primary effusion lymphoma. KSHV open reading frame 50 and K8 genes in early viral lytic infection express, respectively, a tricistronic and a bicistronic pre-mRNA, which undergo alternative splicing to create two major spliced mRNA isoforms, alpha and beta, by inclusion (beta) or exclusion (alpha) of an intron at nucleotides 75563 to 75645. This intron contains some suboptimal features, which cause the intron 5' splice site (ss) to interact weakly with U1 snRNA and the 3' ss to bind a U2 auxiliary factor, U2AF, with low affinity. Optimization of this intron in K8 (K8 intron 2) promoted the interaction of the 5' ss with U1 and the 3' ss with U2AF, resulting in a substantial increase in intron splicing. Splicing of K8 intron 2 has also been shown to be stimulated by the splicing of a downstream intron. This was confirmed by the insertion of a human beta-globin intron into the K8beta exon 3-exon 4 splice junction, which promoted splicing of K8beta intron 2 and conversion of the K8beta mRNA to the K8alpha mRNA that encodes a K-bZIP protein. Intron 2 contains a premature termination codon, yet the K8beta mRNA is insensitive to nonsense-mediated mRNA decay, suggesting that the truncated K8beta protein may have a biological function. Indeed, although the truncated K8beta protein is missing only a C-terminal leucine zipper domain from the K-bZIP, its expression antagonizes the ability of the K-bZIP to induce p53 and p21 and blocks K-bZIP-CDK2 interaction through interfering K8alpha mRNA production. PMID:16254356

  18. A novel cdk2-selective inhibitor, SU9516, induces apoptosis in colon carcinoma cells.

    PubMed

    Lane, M E; Yu, B; Rice, A; Lipson, K E; Liang, C; Sun, L; Tang, C; McMahon, G; Pestell, R G; Wadler, S

    2001-08-15

    Recent studies have indicated that the development of cyclin-dependent kinase (cdk)2 inhibitors that deregulate E2F are a plausible pharmacological strategy for novel antineoplastic agents. We show here that 3-[1-(3H-Imidazol-4-yl)-meth-(Z)-ylidene]-5-methoxy-1,3-dihydro-indol-2-one (SU9516), a novel 3-substituted indolinone compound, binds to and selectively inhibits the activity of cdk2. This inhibition results in a time-dependent decrease (4-64%) in the phosphorylation of the retinoblastoma protein pRb, an increase in caspase-3 activation (5-84%), and alterations in cell cycle resulting in either a G(0)-G(1) or a G(2)-M block. We also report here cell line differences in the cdk-dependent phosphorylation of pRb. These findings demonstrate that SU9516 is a selective cdk2 inhibitor and support the theory that compounds that inhibit cdk2 are viable resources in the development of new antineoplastic agents. PMID:11507069

  19. Amygdalin Blocks Bladder Cancer Cell Growth In Vitro by Diminishing Cyclin A and cdk2

    PubMed Central

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Reiter, Michael; Tsaur, Igor; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A.

    2014-01-01

    Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25–10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug. PMID:25136960

  20. Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins.

    PubMed

    Karaiskou, A; Perez, L H; Ferby, I; Ozon, R; Jessus, C; Nebreda, A R

    2001-09-21

    Cyclin-dependent kinases (Cdks) are key regulators of the eukaryotic cell division cycle. Cdk1 (Cdc2) and Cdk2 should be bound to regulatory subunits named cyclins as well as phosphorylated on a conserved Thr located in the T-loop for full enzymatic activity. Cdc2- and Cdk2-cyclin complexes can be inactivated by phosphorylation on the catalytic cleft-located Thr-14 and Tyr-15 residues or by association with inhibitory subunits such as p21(Cip1). We have recently identified a novel Cdc2 regulator named RINGO that plays an important role in the meiotic cell cycle of Xenopus oocytes. RINGO can bind and activate Cdc2 but has no sequence homology to cyclins. Here we report that, in contrast with Cdc2- cyclin complexes, the phosphorylation of Thr-161 is not required for full activation of Cdc2 by RINGO. We also show that RINGO can directly stimulate the kinase activity of Cdk2 independently of Thr-160 phosphorylation. Moreover, RINGO-bound Cdc2 and Cdk2 are both less susceptible to inhibition by p21(Cip1), whereas the Thr-14/Tyr-15 kinase Myt1 can negatively regulate the activity of Cdc2-RINGO with reduced efficiency. Our results indicate that Cdk-RINGO complexes may be active under conditions in which cyclin-bound Cdks are inhibited and can therefore play different regulatory roles. PMID:11461916

  1. Mimicking Cdk2 phosphorylation of Bcl-xL at Ser73 results in caspase activation and Bcl-xL cleavage

    PubMed Central

    Seng, NS; Megyesi, J; Tarcsafalvi, A; Price, PM

    2016-01-01

    Cisplatin is a widely used chemotherapeutic agent, yet its efficacy is limited by nephrotoxicity. The severity of nephrotoxicity is associated with the extent of kidney cell death. Previously, we found that cisplatin-induced kidney cell death was dependent on Cdk2 activation, and inhibition of Cdk2 protected cells from cisplatin-induced apoptosis. Using an in vitro kination assay, we showed that Cdk2 phosphorylated Bcl-xL, an anti-apoptotic member of Bcl-2 family proteins, at serine 73. We also found that this phosphorylated Bcl-xL participated in cell death, as a phosphomimetic mutant of Bcl-xL at the serine 73 site (S73D-Bcl-xL) activated caspases. We now find that S73D-Bcl-xL was cleaved at D61 and D76, which are putative caspase cleavage sites, to generate 15-kDa and 12-kDa fragments. Unlike full-length Bcl-xL, these cleavage products of Bcl-xL were previously reported to be pro-apoptotic. We sought to determine whether these Bcl-xL fragments were necessary for the induction of cell death by S73D-Bcl-xL. Mutation of these caspase cleavage sites prevented the formation of the 15-kDa and 12-kDa Bcl-xL cleavage products, but apoptosis still persisted in a S73D modified Bcl-xL. Our findings show that Cdk2 phosphorylation of Bcl-xL at Ser73, but not the Bcl-xL cleavage products, is necessary and sufficient to induce cell death.

  2. MEN1 tumorigenesis in the pituitary and pancreatic islet requires Cdk4 but not Cdk2.

    PubMed

    Gillam, M P; Nimbalkar, D; Sun, L; Christov, K; Ray, D; Kaldis, P; Liu, X; Kiyokawa, H

    2015-02-12

    Recent studies suggest that physiological and tumorigenic proliferation of mammalian cells is controlled by multiple cyclin-dependent kinases (CDKs) largely in tissue-specific manners. We and others previously demonstrated that adult mice deficient for the Cyclin D partner CDK4 (Cdk4(-/-) mice) exhibit hypoplasia in the pituitary and pancreatic islet due to primary postnatal defects in proliferation. Intriguingly, those neuroendocrine tissues affected in Cdk4(-/-) mice are the primary targets of tumorigenesis in the syndrome of multiple endocrine neoplasia type-1 (MEN1). Mice with heterozygous disruption of the tumor suppressor Men1 gene (Men1(+/-)) develop tumors in the pituitary, pancreatic islets and other neuroendocrine tissues, which is analogous to humans with MEN1 mutations. To explore the genetic interactions between loss of Men1 and activation of CDKs, we examined the impact of Cdk4 or Cdk2 disruption on tumorigenesis in Men1(+/-) mice. A majority of Men1(+/-) mice with wild-type CDKs developed pituitary and islet tumors by 15 months of age. Strikingly, Men1(+/-); Cdk4(-/-) mice did not develop any tumors, and their islets and pituitaries remained hypoplastic with decreased proliferation. In contrast, Men1(+/-); Cdk2(-/-) mice showed pituitary and islet tumorigenesis comparable to those in Men1(+/-) mice. Pituitaries of Men1(+/-); Cdk4(-/-) mice showed no signs of loss of heterozygosity (LOH) in the Men1 locus, whereas tumors in Men1(+/-) mice and Men1(+/-); Cdk2(-/-) mice exhibited LOH. Consistently, CDK4 knockdown in INS-1 insulinoma cells inhibited glucose-stimulated cell cycle progression with a significant decrease in phosphorylation of retinoblastoma protein (RB) at specific sites including Ser780. CDK2 knockdown had minimum effects on RB phosphorylation and cell cycle progression. These data suggest that CDK4 is a critical downstream target of MEN1-dependent tumor suppression and is required for tumorigenic proliferation in the pituitary and

  3. RNA interference directed to CDK2 inhibits HIV-1 transcription.

    PubMed

    Ammosova, Tatyana; Berro, Reem; Kashanchi, Fatah; Nekhai, Sergei

    2005-10-25

    We previously reported that cell cycle-dependent kinase 2 (CDK2) is required for human immunodeficiency virus-1 (HIV-1) Tat-dependent transcription in vitro. In the present study, CDK2-specific RNA interference in cultured HEK293T cells inhibited CDK2 expression and Tat-induced HIV-1 transcription from non-integrated HIV-1 promoter but not basal HIV-1 transcription or transcription from CMV or beta-actin promoters. Also, CDK2-specific RNA interference inhibited Tat-induced transcription from the integrated HIV-1 promoter in HeLa-CD4-LTR-beta-gal cells and potently blocked TNFalpha-induced HIV-1 viral replication in OM10.1 cells. CDK2-specific RNA interference did not have an effect on cell cycle progression, but it augmented TNFalpha-induced apoptosis of OM10.1 cells. Our results indicate that CDK2 participates in Tat-mediated HIV-1 transcription and may serve as a potential therapeutic target. PMID:16085226

  4. 6,7,4'-trihydroxyisoflavone inhibits HCT-116 human colon cancer cell proliferation by targeting CDK1 and CDK2.

    PubMed

    Lee, Dong Eun; Lee, Ki Won; Jung, Sung Keun; Lee, Eun Jung; Hwang, Jung A; Lim, Tae-Gyu; Kim, Bo Yeon; Bode, Ann M; Lee, Hyong Joo; Dong, Zigang

    2011-04-01

    Colon cancer is a common epithelial malignancies worldwide. Epidemiologic evidence has shown that nutrition and dietary components are important environmental factors involved in the development of this disease. We investigated the biological activity of 6,7,4'-trihydroxyisoflavone (6,7,4'-THIF, a metabolite of daidzein) in in vitro and in vivo models of human colon cancer. 6,7,4'-THIF suppressed anchorage-dependent and -independent growth of HCT-116 and DLD1 human colon cancer cells more effectively than daidzein. In addition, 6,7,4'-THIF induced cell cycle arrest at the S and G2/M phases in HCT-116 human colon cancer cells. Western blot analysis revealed that 6,7,4'-THIF effectively suppressed the expression of cyclin-dependent kinase (CDK) 2, but had no effect on other S- or G2/M-phase regulatory proteins such as cyclin A, cyclin B1 or CDK1. Daidzein did not affect the expression of any of these proteins. In kinase and pull-down assays, 6,7,4'-THIF, but not daidzein, inhibited CDK1 and CDK2 activities in HCT-116 cells by directly interacting with CDK1 and CDK2. In a xenograft mouse model, 6,7,4'-THIF significantly decreased tumor growth, volume and weight of HCT-116 xenografts. 6,7,4'-THIF bound directly to CDK1 and CDK2 in vivo, resulting in the suppression of CDK1 and CDK2 activity in tumors corresponding with our in vitro results. Collectively, these results suggest that CDK1 and CDK2 are potential molecular targets of 6,7,4'-THIF to suppress HCT-116 cell proliferation in vitro and in vivo. These findings provide insight into the biological actions of 6,7,4'-THIF and might establish a molecular basis for the development of new cancer therapeutic agents. PMID:21258042

  5. Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors.

    PubMed

    Tripathi, Sunil Kumar; Muttineni, Ravikumar; Singh, Sanjeev Kumar

    2013-10-01

    Molecular docking, free energy calculation and molecular dynamics (MD) simulation studies have been performed, to explore the putative binding modes of 3,5-diaminoindazoles, imidazo(1,2-b)pyridazines and triazolo(1,5-a) pyridazines series of Cyclin-dependent kinase (CDK2) inhibitors. To evaluate the effectiveness of docking protocol in flexible docking, we have selected crystallographic bound compound to validate our docking procedure as evident from root mean square deviations (RMSDs). We found different binding sites namely catalytic, inhibitory phosphorylation, cyclin binding and CKS-binding site of the CDK2 contributing towards the binding of these compounds. Moreover, correlation between free energy of binding and biological activity yielded a statistically significant correlation coefficient. Finally, three representative protein-ligand complexes were subjected to molecular dynamics simulation to determine the stability of the predicted conformations. The low value of the RMSDs between the initial complex structure and the energy minimized final average complex structure suggests that the derived docked complexes are close to equilibrium. We suggest that the phenylacetyl type of substituents and cyclohexyl moiety make the favorable interactions with a number of residues in the active site, and show better inhibitory activity to improve the pharmacokinetic profile of compounds against CDK2. The structure-based drug design strategy described in this study will be highly useful for the development of new inhibitors with high potency and selectivity. PMID:23727278

  6. Direct interactions with both p27 and Cdk2 regulate Spy1-mediated proliferation in vivo and in vitro.

    PubMed

    Al Sorkhy, Mohammad; Fifield, Bre-Anne; Myers, Dorothy; Porter, Lisa A

    2016-01-01

    Families of cyclin-like proteins have emerged that bind and activate cyclin dependent kinases (Cdk)s, directing the phosphorylation of noncanonical Cdk substrates. One of these proteins, Spy1, has demonstrated the unique ability to directly bind and activate both Cdk1 and Cdk2, as well as binding and promoting the degradation of at least one Cdk inhibitor, p27(Kip1). Spy1 accelerates somatic cell growth and proliferation and is implicated in a number of human cancers including the breast, brain and liver. Herein we isolate key residues mediating the direct interaction with p27. We use mutants of Spy1 to determine the physiological role of direct interactions with distinct binding partners Cdk2 and p27. We demonstrate that disrupting the direct interaction with either Spy1 binding partner decreased endogenous activity of Cdk2, as well as Spy1-mediated proliferation. However, only the direct interaction with p27 was essential for Spy1-mediated effects on p27 stability. In vivo neither mutation completely prevented tumorigenesis, although each mutation slowed the rate of Spy1-mediated tumorigenesis and decreased overall tumor volumes. This work supports the conclusion that direct interaction with both p27 and Cdk2 contribute to Spy1-mediated effects on cell growth. It is important to elucidate the dynamics of these interactions and to consider these data when assessing functional outcomes. PMID:26771716

  7. Molecular modelling on small molecular CDK2 inhibitors: an integrated approach using a combination of molecular docking, 3D-QSAR and pharmacophore modelling.

    PubMed

    Yuan, H; Liu, H; Tai, W; Wang, F; Zhang, Y; Yao, S; Ran, T; Lu, S; Ke, Z; Xiong, X; Xu, J; Chen, Y; Lu, T

    2013-10-01

    Cyclin-dependent kinase 2 (CDK2) has been identified as an important target for developing novel anticancer agents. Molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR) and pharmacophore modelling were combined with the ultimate goal of studying the structure-activity relationship of CDK2 inhibitors. The comparative molecular similarity indices analysis (CoMSIA) model constructed based on a set of 3-aminopyrazole derivatives as CDK2 inhibitors gave statistically significant results (q (2) = 0.700; r (2) = 0.982). A HypoGen pharmacophore model, constructed using diverse CDK2 inhibitors, also showed significant statistics ([Formula: see text]Cost = 61.483; RMSD = 0.53; Correlation coefficient = 0.98). The small residues and error values between the estimated and experimental activities of the training and test set compounds proved their strong capability of activity prediction. The structural insights obtained from these two models were consistent with each other. The pharmacophore model summarized the important pharmacophoric features required for protein-ligand binding. The 3D contour maps in combination with the comprehensive pharmacophoric features helped to better interpret the structure-activity relationship. The results will be beneficial for the discovery and design of novel CDK2 inhibitors. The simplicity of this approach provides expansion to its applicability in optimizing other classes of small molecular CDK2 inhibitors. PMID:23941641

  8. Cell cycle sibling rivalry: Cdc2 vs. Cdk2.

    PubMed

    Kaldis, Philipp; Aleem, Eiman

    2005-11-01

    It has been long believed that the cyclin-dependent kinase 2 (Cdk2) binds to cyclin E or cyclin A and exclusively promotes the G1/S phase transition and that Cdc2/cyclin B complexes play a major role in mitosis. We now provide evidence that Cdc2 binds to cyclin E (in addition to cyclin A and B) and is able to promote the G1/S transition. This new concept indicates that both Cdk2 and/or Cdc2 can drive cells through G1/S phase in parallel. In this review we discuss the classic cell cycle model and how results from knockout mice provide new evidence that refute this model. We focus on the roles of Cdc2 and p27 in regulating the mammalian cell cycle and propose a new model for cell cycle regulation that accommodates these novel findings. PMID:16258277

  9. CDK2 Is Required for the DNA Damage Response During Porcine Early Embryonic Development.

    PubMed

    Wang, HaiYang; Kim, Nam-Hyung

    2016-08-01

    Cyclin-dependent kinase (CDK) 2 inhibition plays a central role in DNA damage-induced cell cycle arrest and DNA repair. However, whether CDK2 also influences early porcine embryo development is unknown. In this study, we examined whether CDK2 is involved in the regulation of oocyte meiosis and early embryonic development of porcine embryos. We found that disrupting CDK2 activity with RNAi or an inhibitor did not affect meiotic resumption or meiosis II arrest. However, CDK2 inhibitor-treated embryos showed delayed cleavage and ceased development before the blastocyst stage. Disrupting CDK2 activity is able to induce sustained DNA damage, as demonstrated by the formation of distinct gammaH2AX foci in nuclei of Day-3 and Day-5 embryos. Inhibiting CDK2 triggers a DNA damage checkpoint by activation of the ataxia telangiectasia mutated (ATM)-P53-P21 pathway. However, the mRNA expression of genes involved in nonhomologous end joining or homologous recombination pathways for double-strand break repair were reduced after administering CDK2 inhibitor to 5-day-old embryos. Furthermore, CDK2 inhibition caused apoptosis in Day-7 blastocysts. Thus, our results indicate that an ATM-P53-P21 DNA damage checkpoint is intact in the absence of CDK2; however, CDK2 is important for proper repair of the damaged DNA by either directly or indirectly influencing DNA repair-related gene expression. PMID:27307074

  10. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription.

    PubMed

    Zhao, J; Kennedy, B K; Lawrence, B D; Barbie, D A; Matera, A G; Fletcher, J A; Harlow, E

    2000-09-15

    In eukaryotic cells, histone gene expression is one of the major events that mark entry into S phase. While this process is tightly linked to cell cycle position, how it is regulated by the cell cycle machinery is not known. Here we show that NPAT, a substrate of the cyclin E-Cdk2 complex, is associated with human replication-dependent histone gene clusters on both chromosomes 1 and 6 in S phase. We demonstrate that NPAT activates histone gene transcription and that this activation is dependent on the promoter elements (SSCSs) previously proposed to mediate cell cycle-dependent transcription. Cyclin E is also associated with the histone gene loci, and cyclin E-Cdk2 stimulates the NPAT-mediated activation of histone gene transcription. Thus, our results both show that NPAT is involved in a key S phase event and provide a link between the cell cycle machinery and activation of histone gene transcription. PMID:10995386

  11. Analysis of p107-associated proteins: p107 associates with a form of E2F that differs from pRB-associated E2F-1.

    PubMed Central

    Dyson, N; Dembski, M; Fattaey, A; Ngwu, C; Ewen, M; Helin, K

    1993-01-01

    The binding of viral oncogenes to cellular proteins is thought to modulate the activities of these cellular targets. The p107 protein is targeted by many viral proteins, including adenovirus E1A, simian virus 40 large T antigen, and human papillomavirus type 16 E7 protein. A panel of monoclonal antibodies against p107 was raised and used to identify cellular proteins that interact with the p107 protein in vivo. p107-associated proteins included cyclin A, cyclin E, and cdk2. In addition, p107 was found to associate with 62- to 65- and 50-kDa phosphoproteins in ML-1 cells, a human myeloid leukemia cell line. The 62- to 65-kDa proteins have many of the properties of the transcription factor E2F but were distinguished from pRB-associated E2F-1 by both immunologic and biochemical properties. Images PMID:8230483

  12. Targeting the cyclin-binding groove site to inhibit the catalytic activity of CDK2/cyclin A complex using p27(KIP1)-derived peptidomimetic inhibitors.

    PubMed

    Karthiga, Arumugasamy; Tripathi, Sunil Kumar; Shanmugam, Ramasamy; Suryanarayanan, Venkatesan; Singh, Sanjeev Kumar

    2015-01-01

    Functionally activated cyclin-dependent kinase 2 (CDK2)/cyclin A complex has been validated as an interesting therapeutic target to develop the efficient antineoplastic drug based on the cell cycle arrest. Cyclin A binds to CDK2 and activates the kinases as well as recruits the substrate and inhibitors using a hydrophobic cyclin-binding groove (CBG). Blocking the cyclin substrate recruitment on CBG is an alternative approach to override the specificity hurdle of the currently available ATP site targeting CDK2 inhibitors. Greater understanding of the interaction of CDK2/cyclin A complex with p27 (negative regulator) reveals that the Leu-Phe-Gly (LFG) motif region of p27 binds with the CBG site of cyclin A to arrest the malignant cell proliferation that induces apoptosis. In the present study, Replacement with Partial Ligand Alternatives through Computational Enrichment (REPLACE) drug design strategies have been applied to acquire LFG peptide-derived peptidomimetics library. The peptidomimetics function is equivalent with respect to substrate p27 protein fashion but does not act as an ATP antagonist. The combined approach of molecular docking, molecular dynamics (MD), and molecular electrostatic potential and ADME/T prediction were carried out to evaluate the peptidomimetics. Resultant interaction and electrostatic potential maps suggested that smaller substituent is desirable at the position of phenyl ring to interact with Trp217, Arg250, and Gln254 residues in the active site. The best docked poses were refined by the MD simulations which resulted in conformational changes. After equilibration, the structure of the peptidomimetic and receptor complex was stable. The results revealed that the various substrate protein-derived peptidomimetics could serve as perfect leads against CDK2 protein. PMID:25584078

  13. Conformational Adaption May Explain the Slow Dissociation Kinetics of Roniciclib (BAY 1000394), a Type I CDK Inhibitor with Kinetic Selectivity for CDK2 and CDK9.

    PubMed

    Ayaz, Pelin; Andres, Dorothee; Kwiatkowski, Dennis A; Kolbe, Carl-Christian; Lienau, Philip; Siemeister, Gerhard; Lücking, Ulrich; Stegmann, Christian M

    2016-06-17

    Roniciclib (BAY 1000394) is a type I pan-CDK (cyclin-dependent kinase) inhibitor which has revealed potent efficacy in xenograft cancer models. Here, we show that roniciclib displays prolonged residence times on CDK2 and CDK9, whereas residence times on other CDKs are transient, thus giving rise to a kinetic selectivity of roniciclib. Surprisingly, variation of the substituent at the 5-position of the pyrimidine scaffold results in changes of up to 3 orders of magnitude of the drug-target residence time. CDK2 X-ray cocrystal structures have revealed a DFG-loop adaption for the 5-(trifluoromethyl) substituent, while for hydrogen and bromo substituents the DFG loop remains in its characteristic type I inhibitor position. In tumor cells, the prolonged residence times of roniciclib on CDK2 and CDK9 are reflected in a sustained inhibitory effect on retinoblastoma protein (RB) phosphorylation, indicating that the target residence time on CDK2 may contribute to sustained target engagement and antitumor efficacy. PMID:27090615

  14. CDK2 and mTOR are direct molecular targets of isoangustone A in the suppression of human prostate cancer cell growth

    SciTech Connect

    Lee, Eunjung; Son, Joe Eun; Byun, Sanguine; Lee, Seung Joon; Kim, Yeong A; Liu, Kangdong; Kim, Jiyoung; Lim, Soon Sung; Park, Jung Han Yoon; Dong, Zigang; Lee, Ki Won; Lee, Hyong Joo

    2013-10-01

    Licorice extract which is used as a natural sweetener has been shown to possess inhibitory effects against prostate cancer, but the mechanisms responsible are poorly understood. Here, we report a compound, isoangustone A (IAA) in licorice that potently suppresses the growth of aggressive prostate cancer and sought to clarify its mechanism of action. We analyzed its inhibitory effects on the growth of PTEN-deleted human prostate cancer cells, in vitro and in vivo. Administration of IAA significantly attenuated the growth of prostate cancer cell cultures and xenograft tumors. These effects were found to be attributable to inhibition of the G1/S phase cell cycle transition and the accumulation of p27{sup kip1}. The elevated p27{sup kip1} expression levels were concurrent with the decrease of its phosphorylation at threonine 187 through suppression of CDK2 kinase activity and the reduced phosphorylation of Akt at Serine 473 by diminishing the kinase activity of the mammalian target of rapamycin (mTOR). Further analysis using recombinant proteins and immunoprecipitated cell lysates determined that IAA exerts suppressive effects against CDK2 and mTOR kinase activity by direct binding with both proteins. These findings suggested that the licorice compound IAA is a potent molecular inhibitor of CDK2 and mTOR, with strong implications for the treatment of prostate cancer. Thus, licorice-derived extracts with high IAA content warrant further clinical investigation for nutritional sources for prostate cancer patients. - Highlights: • Isoangustone A suppresses growth of PC3 and LNCaP prostate cancer cells. • Administration of isoangustone A inhibits tumor growth in mice. • Treatment of isoangustone A induces cell cycle arrest and accumulation of p27{sup kip1}. • Isoangustone A inhibits CDK2 and mTOR activity. • Isoangustone A directly binds with CDK2 and mTOR complex in prostate cancer cells.

  15. Interfacial Protein-Protein Associations

    PubMed Central

    Langdon, Blake B.; Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.

    2014-01-01

    While traditional models of protein adsorption focus primarily on direct protein-surface interactions, recent findings suggest that protein-protein interactions may play a central role. Using high-throughput intermolecular resonance energy transfer (RET) tracking, we directly observed dynamic, protein-protein associations of bovine serum albumin on poly(ethylene glycol) modified surfaces. The associations were heterogeneous and reversible, and associating molecules resided on the surface for longer times. The appearance of three distinct RET states suggested a spatially heterogeneous surface – with areas of high protein density (i.e. strongly-interacting clusters) coexisting with mobile monomers. Distinct association states exhibited characteristic behavior, i.e. partial-RET (monomer-monomer) associations were shorter-lived than complete-RET (protein-cluster) associations. While the fractional surface area covered by regions with high protein density (i.e. clusters) increased with increasing concentration, the distribution of contact times between monomers and clusters was independent of solution concentration, suggesting that associations were a local phenomenon, and independent of the global surface coverage. PMID:24274729

  16. Phenyl-1-Pyridin-2yl-Ethanone-Based Iron Chelators Increase IκB-α Expression, Modulate CDK2 and CDK9 Activities, and Inhibit HIV-1 Transcription

    PubMed Central

    Kumari, Namita; Iordanskiy, Sergey; Kovalskyy, Dmytro; Breuer, Denitra; Niu, Xiaomei; Lin, Xionghao; Xu, Min; Gavrilenko, Konstantin; Kashanchi, Fatah; Dhawan, Subhash

    2014-01-01

    HIV-1 transcription is activated by the Tat protein, which recruits CDK9/cyclin T1 to the HIV-1 promoter. CDK9 is phosphorylated by CDK2, which facilitates formation of the high-molecular-weight positive transcription elongation factor b (P-TEFb) complex. We previously showed that chelation of intracellular iron inhibits CDK2 and CDK9 activities and suppresses HIV-1 transcription, but the mechanism of the inhibition was not understood. In the present study, we tested a set of novel iron chelators for the ability to inhibit HIV-1 transcription and elucidated their mechanism of action. Novel phenyl-1-pyridin-2yl-ethanone (PPY)-based iron chelators were synthesized and examined for their effects on cellular iron, HIV-1 inhibition, and cytotoxicity. Activities of CDK2 and CDK9, expression of CDK9-dependent and CDK2-inhibitory mRNAs, NF-κB expression, and HIV-1- and NF-κB-dependent transcription were determined. PPY-based iron chelators significantly inhibited HIV-1, with minimal cytotoxicity, in cultured and primary cells chronically or acutely infected with HIV-1 subtype B, but they had less of an effect on HIV-1 subtype C. Iron chelators upregulated the expression of IκB-α, with increased accumulation of cytoplasmic NF-κB. The iron chelators inhibited CDK2 activity and reduced the amount of CDK9/cyclin T1 in the large P-TEFb complex. Iron chelators reduced HIV-1 Gag and Env mRNA synthesis but had no effect on HIV-1 reverse transcription. In addition, iron chelators moderately inhibited basal HIV-1 transcription, equally affecting HIV-1 and Sp1- or NF-κB-driven transcription. By virtue of their involvement in targeting several key steps in HIV-1 transcription, these novel iron chelators have the potential for the development of new therapeutics for the treatment of HIV-1 infection. PMID:25155598

  17. Phenyl-1-Pyridin-2yl-ethanone-based iron chelators increase IκB-α expression, modulate CDK2 and CDK9 activities, and inhibit HIV-1 transcription.

    PubMed

    Kumari, Namita; Iordanskiy, Sergey; Kovalskyy, Dmytro; Breuer, Denitra; Niu, Xiaomei; Lin, Xionghao; Xu, Min; Gavrilenko, Konstantin; Kashanchi, Fatah; Dhawan, Subhash; Nekhai, Sergei

    2014-11-01

    HIV-1 transcription is activated by the Tat protein, which recruits CDK9/cyclin T1 to the HIV-1 promoter. CDK9 is phosphorylated by CDK2, which facilitates formation of the high-molecular-weight positive transcription elongation factor b (P-TEFb) complex. We previously showed that chelation of intracellular iron inhibits CDK2 and CDK9 activities and suppresses HIV-1 transcription, but the mechanism of the inhibition was not understood. In the present study, we tested a set of novel iron chelators for the ability to inhibit HIV-1 transcription and elucidated their mechanism of action. Novel phenyl-1-pyridin-2yl-ethanone (PPY)-based iron chelators were synthesized and examined for their effects on cellular iron, HIV-1 inhibition, and cytotoxicity. Activities of CDK2 and CDK9, expression of CDK9-dependent and CDK2-inhibitory mRNAs, NF-κB expression, and HIV-1- and NF-κB-dependent transcription were determined. PPY-based iron chelators significantly inhibited HIV-1, with minimal cytotoxicity, in cultured and primary cells chronically or acutely infected with HIV-1 subtype B, but they had less of an effect on HIV-1 subtype C. Iron chelators upregulated the expression of IκB-α, with increased accumulation of cytoplasmic NF-κB. The iron chelators inhibited CDK2 activity and reduced the amount of CDK9/cyclin T1 in the large P-TEFb complex. Iron chelators reduced HIV-1 Gag and Env mRNA synthesis but had no effect on HIV-1 reverse transcription. In addition, iron chelators moderately inhibited basal HIV-1 transcription, equally affecting HIV-1 and Sp1- or NF-κB-driven transcription. By virtue of their involvement in targeting several key steps in HIV-1 transcription, these novel iron chelators have the potential for the development of new therapeutics for the treatment of HIV-1 infection. PMID:25155598

  18. TNFα Signaling Regulates Cystic Epithelial Cell Proliferation through Akt/mTOR and ERK/MAPK/Cdk2 Mediated Id2 Signaling

    PubMed Central

    Zhou, Julie X.; Fan, Lucy X.; Li, Xiaoyan; Calvet, James P.; Li, Xiaogang

    2015-01-01

    Tumor necrosis factor alpha (TNFα) is present in cyst fluid and promotes cyst growth in autosomal dominant polycystic kidney disease (ADPKD). However, the cross-talk between TNFα and PKD associated signaling pathways remains elusive. In this study, we found that stimulation of renal epithelial cells with TNFα or RANKL (receptor activator of NF-κB ligand), a member of the TNFα cytokine family, activated either the PI3K pathway, leading to AKT and mTOR mediated the increase of Id2 protein, or MAPK and Cdk2 to induce Id2 nuclear translocation. The effects of TNFα/RANKL on increasing Id2 protein and its nuclear translocation caused significantly decreased mRNA and protein levels of the Cdk inhibitor p21, allowing increased cell proliferation. TNFα levels increase in cystic kidneys in response to macrophage infiltration and thus might contribute to cyst growth and enlargement during the progression of disease. As such, this study elucidates a novel mechanism for TNFα signaling in regulating cystic renal epithelial cell proliferation in ADPKD. PMID:26110849

  19. Chloroquine alleviates etoposide-induced centrosome amplification by inhibiting CDK2 in adrenocortical tumor cells

    PubMed Central

    Chen, T-Y; Syu, J-S; Lin, T-C; Cheng, H-l; Lu, F-l; Wang, C-Y

    2015-01-01

    The antitumor drug etoposide (ETO) is widely used in treating several cancers, including adrenocortical tumor (ACT). However, when used at sublethal doses, tumor cells still survive and are more susceptible to the recurring tumor due to centrosome amplification. Here, we checked the effect of sublethal dose of ETO in ACT cells. Sublethal dose of ETO treatment did not induce cell death but arrested the ACT cells in G2/M phase. This resulted in centrosome amplification and aberrant mitotic spindle formation leading to genomic instability and cellular senescence. Under such conditions, Chk2, cyclin A/CDK2 and ERK1/2 were aberrantly activated. Pharmacological inactivation of Chk2, CDK2 or ERK1/2 or depletion of CDK2 or Chk2 inhibited the centrosome amplification in ETO-treated ACT cells. In addition, autophagy was activated by ETO and was required for ACT cell survival. Chloroquine, the autophagy inhibitor, reduced ACT cell growth and inhibited ETO-induced centrosome amplification. Chloroquine alleviated CDK2 and ERK, but not Chk2, activation and thus inhibited centrosome amplification in either ETO- or hydroxyurea-treated ACT cells. In addition, chloroquine also inhibited centrosome amplification in osteosarcoma U2OS cell lines when treated with ETO or hydroxyurea. In summary, we have demonstrated that chloroquine inhibited ACT cell growth and alleviated DNA damage-induced centrosome amplification by inhibiting CDK2 and ERK activity, thus preventing genomic instability and recurrence of ACT. PMID:26690546

  20. Designed protein-protein association.

    PubMed

    Grueninger, Dirk; Treiber, Nora; Ziegler, Mathias O P; Koetter, Jochen W A; Schulze, Monika-Sarah; Schulz, Georg E

    2008-01-11

    The analysis of natural contact interfaces between protein subunits and between proteins has disclosed some general rules governing their association. We have applied these rules to produce a number of novel assemblies, demonstrating that a given protein can be engineered to form contacts at various points of its surface. Symmetry plays an important role because it defines the multiplicity of a designed contact and therefore the number of required mutations. Some of the proteins needed only a single side-chain alteration in order to associate to a higher-order complex. The mobility of the buried side chains has to be taken into account. Four assemblies have been structurally elucidated. Comparisons between the designed contacts and the results will provide useful guidelines for the development of future architectures. PMID:18187656

  1. CDK2 and mTOR are direct molecular targets of isoangustone A in the suppression of human prostate cancer cell growth.

    PubMed

    Lee, Eunjung; Son, Joe Eun; Byun, Sanguine; Lee, Seung Joon; Kim, Yeong A; Liu, Kangdong; Kim, Jiyoung; Lim, Soon Sung; Park, Jung Han Yoon; Dong, Zigang; Lee, Ki Won; Lee, Hyong Joo

    2013-10-01

    Licorice extract which is used as a natural sweetener has been shown to possess inhibitory effects against prostate cancer, but the mechanisms responsible are poorly understood. Here, we report a compound, isoangustone A (IAA) in licorice that potently suppresses the growth of aggressive prostate cancer and sought to clarify its mechanism of action. We analyzed its inhibitory effects on the growth of PTEN-deleted human prostate cancer cells, in vitro and in vivo. Administration of IAA significantly attenuated the growth of prostate cancer cell cultures and xenograft tumors. These effects were found to be attributable to inhibition of the G1/S phase cell cycle transition and the accumulation of p27(kip1). The elevated p27(kip1) expression levels were concurrent with the decrease of its phosphorylation at threonine 187 through suppression of CDK2 kinase activity and the reduced phosphorylation of Akt at Serine 473 by diminishing the kinase activity of the mammalian target of rapamycin (mTOR). Further analysis using recombinant proteins and immunoprecipitated cell lysates determined that IAA exerts suppressive effects against CDK2 and mTOR kinase activity by direct binding with both proteins. These findings suggested that the licorice compound IAA is a potent molecular inhibitor of CDK2 and mTOR, with strong implications for the treatment of prostate cancer. Thus, licorice-derived extracts with high IAA content warrant further clinical investigation for nutritional sources for prostate cancer patients. PMID:23707764

  2. A novel approach to the discovery of small molecule ligands of CDK2

    PubMed Central

    Martin, Mathew P.; Alam, Riazul; Betzi, Stephane; Ingles, Donna J.; Zhu, Jin-Yi

    2012-01-01

    In an attempt to identify novel small molecule ligands of CDK2 with potential as allosteric inhibitors, we devised a robust and cost-effective fluorescence-based high-throughput screening assay. The assay is based on the specific interaction of CDK2 with the extrinsic fluorophore 8-anilino-1-naphthalene sulfonate (ANS), which binds to a large allosteric pocket adjacent to the ATP site. Hit compounds which displace ANS directly or indirectly from CDK2 are readily classified as ATP site binders or allosteric ligands through the use of staurosporine, which blocks the ATP site without displacing ANS. Pilot screening of 1,453 compounds led to the discovery of 12 compounds with displacement activities (EC50 values) ranging from 6 to 44 μM, all of which were classified as ATP site-directed ligands. Four new Type I inhibitor scaffolds were confirmed by X-ray crystallography. While this small compound library contained only ATP-site directed ligands, the application of this assay to large compound libraries has the potential to reveal previously unrecognized chemical scaffolds suitable for structure-based design of CDK2 inhibitors with new mechanisms of action. PMID:22893598

  3. The Proliferation-Quiescence Decision Is Controlled by a Bifurcation in CDK2 Activity at Mitotic Exit

    PubMed Central

    Spencer, Sabrina L.; Cappell, Steven D.; Tsai, Feng-Chiao; Overton, K. Wesley; Wang, Clifford L.; Meyer, Tobias

    2014-01-01

    SUMMARY Tissue homeostasis in metazoans is regulated by transitions of cells between quiescence and proliferation. The hallmark of proliferating populations is progression through the cell cycle, which is driven by cyclin-dependent kinase (CDK) activity. Here, we introduce a live-cell sensor for CDK2 activity and unexpectedly found that proliferating cells bifurcate into two populations as they exit mitosis. Many cells immediately commit to the next cell cycle by building up CDK2 activity from an intermediate level, while other cells lack CDK2 activity and enter a transient state of quiescence. This bifurcation is directly controlled by the CDK inhibitor p21 and is regulated by mitogens during a restriction window at the end of the previous cell cycle. Thus, cells decide at the end of mitosis to either start the next cell cycle by immediately building up CDK2 activity or to enter a transient G0-like state by suppressing CDK2 activity. PMID:24075009

  4. Cdk2 deficiency decreases ras/CDK4-dependent malignant progression, but not myc-induced tumorigenesis.

    PubMed

    Macias, Everardo; Kim, Yongbaek; Miliani de Marval, Paula L; Klein-Szanto, Andres; Rodriguez-Puebla, Marcelo L

    2007-10-15

    We have previously shown that forced expression of CDK4 in mouse skin (K5CDK4 mice) results in increased susceptibility to squamous cell carcinoma (SCC) development in a chemical carcinogenesis protocol. This protocol induces skin papilloma development, causing a selection of cells bearing activating Ha-ras mutations. We have also shown that myc-induced epidermal proliferation and oral tumorigenesis (K5Myc mice) depends on CDK4 expression. Biochemical analysis of K5CDK4 and K5Myc epidermis as well as skin tumors showed that keratinocyte proliferation is mediated by CDK4 sequestration of p27Kip1 and p21Cip1, and activation of CDK2. Here, we studied the role of CDK2 in epithelial tumorigenesis. In normal skin, loss of CDK2 rescues CDK4-induced, but not myc-induced epidermal hyperproliferation. Ablation of CDK2 in K5CDK4 mice results in decreased incidences and multiplicity of skin tumors as well as malignant progression to SCC. Histopathologic analysis showed that K5CDK4 tumors are drastically more aggressive than K5CDK4/CDK2-/- tumors. On the other hand, we show that CDK2 is dispensable for myc-induced tumorigenesis. In contrast to our previous report of K5Myc/CDK4-/-, K5Myc/CDK2-/- mice developed oral tumors with the same frequency as K5Myc mice. Overall, we have established that ras-induced tumors are more susceptible to CDK2 ablation than myc-induced tumors, suggesting that the efficacy of targeting CDK2 in tumor development and malignant progression is dependent on the oncogenic pathway involved. PMID:17942901

  5. Benzamide capped peptidomimetics as non-ATP competitive inhibitors of CDK2 using the REPLACE strategy.

    PubMed

    Premnath, Padmavathy Nandha; Craig, Sandra N; Liu, Shu; McInnes, Campbell

    2016-08-01

    Inhibition of cyclin dependent kinase 2 (CDK2) in complex with cyclin A in G1/S phase of the cell cycle has been shown to promote selective apoptosis of cancer cells through the E2F1 pathway. An alternative approach to catalytic inhibition is to target the substrate recruitment site also known as the cyclin binding groove (CBG) to generate selective non-ATP competitive inhibitors. The REPLACE strategy has been applied to identify fragment alternatives and substituted benzoic acid derivatives were evaluated as a promising scaffold to present appropriate functionality to mimic key peptide determinants. Fragment Ligated Inhibitory Peptides (FLIPs) are described which potently inhibit both CDK2/cyclin A and CDK4/cyclin D1 and have preliminary anti-tumor activity. A structural rationale for binding was obtained through molecular modeling further demonstrating their potential for further development as next generation non ATP competitive CDK inhibitors. PMID:27297568

  6. Discovery of a novel class of 2-aminopyrimidines as CDK1 and CDK2 inhibitors.

    PubMed

    Lee, Jinho; Kim, Kyoung-Hee; Jeong, Shinwu

    2011-07-15

    A series of new 2-(2-aminopyrimidin-4-yl)phenol derivatives were synthesized as potential antitumor compounds. Substitution with pyrrolidine-3,4-diol at the 4-position of phenol provided potent inhibitory activity against CDK1 and CDK2. X-ray crystal structural studies were performed to account for the effect of the substituent on both the enzymatic and cell growth inhibitory activities. PMID:21684737

  7. Multiple CDK inhibitor dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity

    PubMed Central

    Chen, Zhenghu; Wang, Zhenyu; Pang, Jonathan C.; Yu, Yang; Bieerkehazhi, Shayahati; Lu, Jiaxiong; Hu, Ting; Zhao, Yanling; Xu, Xin; Zhang, Hong; Yi, Joanna S.; Liu, Shangfeng; Yang, Jianhua

    2016-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, is responsible for approximately 15% of cancer-related mortality in children. Aberrant activation of cyclin-dependent kinases (CDKs) has been shown to contribute to tumor cell progression in many cancers including NB. Therefore, small molecule inhibitors of CDKs comprise a strategic option in cancer therapy. Here we show that a novel multiple-CDK inhibitor, dinaciclib (SCH727965, MK-7965), exhibits potent anti-proliferative effects on a panel of NB cell lines by blocking the activity of CDK2 and CDK9. Dinaciclib also significantly sensitized NB cell lines to the treatment of chemotherapeutic agents such as doxorubicin (Dox) and etoposide (VP-16). Furthermore, dinaciclib revealed in vivo antitumor efficacy in an orthotopic xenograft mouse model of two NB cell lines and blocked tumor development in the TH-MYCN transgenic NB mouse model. Taken together, this study suggests that CDK2 and CDK9 are potential therapeutic targets in NB and that abrogating CDK2 and CDK9 activity by small molecules like dinaciclib is a promising strategy and a treatment option for NB patients. PMID:27378523

  8. Discovery and evaluation of dual CDK1 and CDK2 inhibitors.

    PubMed

    Payton, Marc; Chung, Grace; Yakowec, Peter; Wong, Andrew; Powers, Dave; Xiong, Ling; Zhang, Nancy; Leal, Juan; Bush, Tammy L; Santora, Vincent; Askew, Ben; Tasker, Andrew; Radinsky, Robert; Kendall, Richard; Coats, Steve

    2006-04-15

    In eukaryotic cells, cyclin-dependent kinase (CDK) complexes regulate the temporal progression of cells through the cell cycle. Deregulation in the cell cycle is an essential component in the evolution of cancer. Here, we validate CDK1 and CDK2 as potential therapeutic targets using novel selective small-molecule inhibitors of cyclin B1/CDK1 and cyclin E2/CDK2 enzyme complexes (CDKi). Flow cytometry-based methods were developed to assess intracellular retinoblastoma (Rb) phosphorylation to show inhibition of the CDK pathway. Tumor cells treated with CDK inhibitors showed an overall decrease in cell proliferation, accumulation of cells in G1 and G2, and apoptosis in a cell line-specific manner. Although CDK inhibitors activate p53, the inhibitors were equipotent in arresting the cell cycle in isogenic breast and colon tumor cells lacking p53, suggesting the response is independent of p53. In vivo, the CDK inhibitors prevented the growth of colon and prostate tumors, blocked proliferation of tumor cells, and inhibited Rb phosphorylation. The discovery and evaluation of novel potent and selective CDK1 and CDK2 inhibitors will help delineate the role that CDK complexes play in regulating tumorigenesis. PMID:16618755

  9. Multiple CDK inhibitor dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity.

    PubMed

    Chen, Zhenghu; Wang, Zhenyu; Pang, Jonathan C; Yu, Yang; Bieerkehazhi, Shayahati; Lu, Jiaxiong; Hu, Ting; Zhao, Yanling; Xu, Xin; Zhang, Hong; Yi, Joanna S; Liu, Shangfeng; Yang, Jianhua

    2016-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, is responsible for approximately 15% of cancer-related mortality in children. Aberrant activation of cyclin-dependent kinases (CDKs) has been shown to contribute to tumor cell progression in many cancers including NB. Therefore, small molecule inhibitors of CDKs comprise a strategic option in cancer therapy. Here we show that a novel multiple-CDK inhibitor, dinaciclib (SCH727965, MK-7965), exhibits potent anti-proliferative effects on a panel of NB cell lines by blocking the activity of CDK2 and CDK9. Dinaciclib also significantly sensitized NB cell lines to the treatment of chemotherapeutic agents such as doxorubicin (Dox) and etoposide (VP-16). Furthermore, dinaciclib revealed in vivo antitumor efficacy in an orthotopic xenograft mouse model of two NB cell lines and blocked tumor development in the TH-MYCN transgenic NB mouse model. Taken together, this study suggests that CDK2 and CDK9 are potential therapeutic targets in NB and that abrogating CDK2 and CDK9 activity by small molecules like dinaciclib is a promising strategy and a treatment option for NB patients. PMID:27378523

  10. Caenorhabditis elegans cyclin D/CDK4 and cyclin E/CDK2 induce distinct cell cycle re-entry programs in differentiated muscle cells.

    PubMed

    Korzelius, Jerome; The, Inge; Ruijtenberg, Suzan; Prinsen, Martine B W; Portegijs, Vincent; Middelkoop, Teije C; Groot Koerkamp, Marian J; Holstege, Frank C P; Boxem, Mike; van den Heuvel, Sander

    2011-11-01

    Cell proliferation and differentiation are regulated in a highly coordinated and inverse manner during development and tissue homeostasis. Terminal differentiation usually coincides with cell cycle exit and is thought to engage stable transcriptional repression of cell cycle genes. Here, we examine the robustness of the post-mitotic state, using Caenorhabditis elegans muscle cells as a model. We found that expression of a G1 Cyclin and CDK initiates cell cycle re-entry in muscle cells without interfering with the differentiated state. Cyclin D/CDK4 (CYD-1/CDK-4) expression was sufficient to induce DNA synthesis in muscle cells, in contrast to Cyclin E/CDK2 (CYE-1/CDK-2), which triggered mitotic events. Tissue-specific gene-expression profiling and single molecule FISH experiments revealed that Cyclin D and E kinases activate an extensive and overlapping set of cell cycle genes in muscle, yet failed to induce some key activators of G1/S progression. Surprisingly, CYD-1/CDK-4 also induced an additional set of genes primarily associated with growth and metabolism, which were not activated by CYE-1/CDK-2. Moreover, CYD-1/CDK-4 expression also down-regulated a large number of genes enriched for catabolic functions. These results highlight distinct functions for the two G1 Cyclin/CDK complexes and reveal a previously unknown activity of Cyclin D/CDK-4 in regulating metabolic gene expression. Furthermore, our data demonstrate that many cell cycle genes can still be transcriptionally induced in post-mitotic muscle cells, while maintenance of the post-mitotic state might depend on stable repression of a limited number of critical cell cycle regulators. PMID:22102824

  11. Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells.

    PubMed

    Pauls, Eduardo; Ruiz, Alba; Badia, Roger; Permanyer, Marc; Gubern, Albert; Riveira-Muñoz, Eva; Torres-Torronteras, Javier; Alvarez, Mar; Mothe, Beatriz; Brander, Christian; Crespo, Manel; Menéndez-Arias, Luis; Clotet, Bonaventura; Keppler, Oliver T; Martí, Ramon; Posas, Francesc; Ballana, Ester; Esté, José A

    2014-08-15

    Proliferating cells are preferentially susceptible to infection by retroviruses. Sterile α motif and HD domain-containing protein-1 (SAMHD1) is a recently described deoxynucleotide phosphohydrolase controlling the size of the intracellular deoxynucleotide triphosphate (dNTP) pool, a limiting factor for retroviral reverse transcription in noncycling cells. Proliferating (Ki67(+)) primary CD4(+) T cells or macrophages express a phosphorylated form of SAMHD1 that corresponds with susceptibility to infection in cell culture. We identified cyclin-dependent kinase (CDK) 6 as an upstream regulator of CDK2 controlling SAMHD1 phosphorylation in primary T cells and macrophages susceptible to infection by HIV-1. In turn, CDK2 was strongly linked to cell cycle progression and coordinated SAMHD1 phosphorylation and inactivation. CDK inhibitors specifically blocked HIV-1 infection at the reverse transcription step in a SAMHD1-dependent manner, reducing the intracellular dNTP pool. Our findings identify a direct relationship between control of the cell cycle by CDK6 and SAMHD1 activity, which is important for replication of lentiviruses, as well as other viruses whose replication may be regulated by intracellular dNTP availability. PMID:25015816

  12. Centrosomal Localization of Cyclin E-Cdk2 is Required for Initiation of DNA Synthesis

    PubMed Central

    Ferguson, Rebecca L.; Maller, James L.

    2010-01-01

    Summary Cyclin E-Cdk2 is known to regulate both DNA replication and centrosome duplication during the G1-S transition in the cell cycle [1–4], and disruption of centrosomes results in a G1 arrest in some cell types [5–7]. Localization of cyclin E on centrosomes is mediated by a 20 amino acid domain termed the centrosomal localization sequence (CLS), and expression of the GFP-tagged CLS displaces both cyclin E and cyclin A from the centrosome [8]. In asynchronous cells CLS expression inhibits the incorporation of bromodeoxyuridine (BrdU) into DNA, an effect proposed to reflect a G1 arrest. Here we show in synchronized cells that the reduction in BrdU incorporation reflects not a G1 arrest but rather direct inhibition of the initiation of DNA replication in S phase. The loading of essential DNA replication factors such as Cdc45 and PCNA onto chromatin is blocked by CLS expression, but DNA synthesis can be rescued by retargeting active cyclin E-Cdk2 to the centrosome. These results suggest that initial steps of DNA replication require centrosomally localized Cdk activity and link the nuclear cycle with the centrosome cycle at the G1-S transition. PMID:20399658

  13. Expression of cell cycle regulator cdk2ap1 suppresses tumor cell phenotype by non-cell autonomous mechanisms

    PubMed Central

    Zolochevska, Olga; Figueiredo, Marxa L.

    2009-01-01

    We evaluated the effect of expressing the cell cycle regulator cdk2ap1 in epithelial or stromal cell compartments to reduce SCC growth in vitro and in vivo. Cell autonomous and/or non-cell autonomous expression of cdk2ap1 reduced tumor growth and invasion and altered cell cycle, adhesion, invasion, angiogenesis, and apoptotic gene expression, as assessed by several in vitro phenotype assays, quantitative real time PCR, and in vivo molecular imaging using a novel three-way xenograft animal model. Our findings suggest that the interactions between cancer cells and fibroblasts that promote abnormal growth can be minimized by expressing cdk2ap1, supporting a novel concept by which tumor/growth suppressor genes can impact tumorigenesis phenotypes from non-cell autonomous interactions within the tumor microenvironment. PMID:19515604

  14. CDK2 differentially controls normal cell senescence and cancer cell proliferation upon exposure to reactive oxygen species

    SciTech Connect

    Hwang, Chae Young; Lee, Seung-Min; Park, Sung Sup; Kwon, Ki-Sun

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} differently adjusted senescence and proliferation in normal and cancer cells. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} exposure transiently decreased PCNA levels in normal cells. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} exposure transiently increased CDK2 activity in cancer cells. Black-Right-Pointing-Pointer p21{sup Cip1} is likely dispensable when H{sub 2}O{sub 2} induces senescence in normal cells. Black-Right-Pointing-Pointer Suggestively, CDK2 and PCNA play critical roles in H{sub 2}O{sub 2}-induced cell fate decision. -- Abstract: Reactive oxygen species modulate cell fate in a context-dependent manner. Sublethal doses of H{sub 2}O{sub 2} decreased the level of proliferating cell nuclear antigen (PCNA) in normal cells (including primary human dermal fibroblasts and IMR-90 cells) without affecting cyclin-dependent kinase 2 (CDK2) activity, leading to cell cycle arrest and subsequent senescence. In contrast, exposure of cancer cells (such as HeLa and MCF7 cells) to H{sub 2}O{sub 2} increased CDK2 activity with no accompanying change in the PCNA level, leading to cell proliferation. A CDK2 inhibitor, CVT-313, prevented H{sub 2}O{sub 2}-induced cancer cell proliferation. These results support the notion that the cyclin/CDK2/p21{sup Cip1}/PCNA complex plays an important role as a regulator of cell fate decisions.

  15. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with bromodomain protein Brd4 on host mitotic chromosomes.

    PubMed

    You, Jianxin; Srinivasan, Viswanathan; Denis, Gerald V; Harrington, William J; Ballestas, Mary E; Kaye, Kenneth M; Howley, Peter M

    2006-09-01

    The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is required for viral episome maintenance in host cells during latent infection. Two regions of the protein have been implicated in tethering LANA/viral episomes to the host mitotic chromosomes, and LANA chromosome-binding sites are subjects of high interest. Because previous studies had identified bromodomain protein Brd4 as the mitotic chromosome anchor for the bovine papillomavirus E2 protein, which tethers the viral episomes to host mitotic chromosomes (J. You, J. L. Croyle, A. Nishimura, K. Ozato, and P. M. Howley, Cell 117:349-360, 2004, and J. You, M. R. Schweiger, and P. M. Howley, J. Virol. 79:14956-14961, 2005), we examined whether KSHV LANA interacts with Brd4. We found that LANA binds Brd4 in vivo and in vitro and that the binding is mediated by a direct protein-protein interaction between the ET (extraterminal) domain of Brd4 and a carboxyl-terminal region of LANA previously implicated in chromosome binding. Brd4 associates with mitotic chromosomes throughout mitosis and demonstrates a strong colocalization with LANA and the KSHV episomes on host mitotic chromosomes. Although another bromodomain protein, RING3/Brd2, binds to LANA in a similar fashion in vitro, it is largely excluded from the mitotic chromosomes in KSHV-uninfected cells and is partially recruited to the chromosomes in KSHV-infected cells. These data identify Brd4 as an interacting protein for the carboxyl terminus of LANA on mitotic chromosomes and suggest distinct functional roles for the two bromodomain proteins RING3/Brd2 and Brd4 in LANA binding. Additionally, because Brd4 has recently been shown to have a role in transcription, we examined whether Brd4 can regulate the CDK2 promoter, which can be transactivated by LANA. PMID:16940503

  16. Microtubules, Tubulins and Associated Proteins.

    ERIC Educational Resources Information Center

    Raxworthy, Michael J.

    1988-01-01

    Reviews much of what is known about microtubules, which are biopolymers consisting predominantly of subunits of the globular protein, tubulin. Describes the functions of microtubules, their structure and assembly, microtube associated proteins, and microtubule-disrupting agents. (TW)

  17. CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer cells

    PubMed Central

    Wright, Roni H.G.; Castellano, Giancarlo; Bonet, Jaume; Le Dily, Francois; Font-Mateu, Jofre; Ballaré, Cecilia; Nacht, A. Silvina; Soronellas, Daniel; Oliva, Baldo; Beato, Miguel

    2012-01-01

    Eukaryotic gene regulation implies that transcription factors gain access to genomic information via poorly understood processes involving activation and targeting of kinases, histone-modifying enzymes, and chromatin remodelers to chromatin. Here we report that progestin gene regulation in breast cancer cells requires a rapid and transient increase in poly-(ADP)-ribose (PAR), accompanied by a dramatic decrease of cellular NAD that could have broad implications in cell physiology. This rapid increase in nuclear PARylation is mediated by activation of PAR polymerase PARP-1 as a result of phosphorylation by cyclin-dependent kinase CDK2. Hormone-dependent phosphorylation of PARP-1 by CDK2, within the catalytic domain, enhances its enzymatic capabilities. Activated PARP-1 contributes to the displacement of histone H1 and is essential for regulation of the majority of hormone-responsive genes and for the effect of progestins on cell cycle progression. Both global chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) and gene expression analysis show a strong overlap between PARP-1 and CDK2. Thus, progestin gene regulation involves a novel signaling pathway that connects CDK2-dependent activation of PARP-1 with histone H1 displacement. Given the multiplicity of PARP targets, this new pathway could be used for the pharmacological management of breast cancer. PMID:22948662

  18. Nuclear accumulation of cyclin E/Cdk2 triggers a concentration-dependent switch for the destruction of p27Xic1

    PubMed Central

    Swanson, Craig; Ross, John; Jackson, Peter K.

    2000-01-01

    The action of cyclin-dependent kinases (CDKs) is regulated by phosphorylation, cyclin levels, the abundance of CDK inhibitors, and, as recently has been shown for cyclin B/cdc2, their localization. It is unclear how localization regulates the action of cyclin E/Cdk2 and its inhibitors. Here, we show that the closest known Xenopus laevis homolog of mammalian Cdk2 inhibitors p27Kip1 and p21CIP1, Xic1, is concentrated, ubiquitinated, and destroyed in the nucleus. Furthermore, Xic1 destruction requires nuclear import, but not nuclear export, and requires the formation of a transport-competent nuclear envelope, but not interactions between the lamina and chromatin. We show that (i) cyclin E/Cdk2 and Xic1 are transported into the nucleus as a complex and that Xic1 destruction requires the activity of cyclin E, (ii) that phosphorylation of Xic1 by cyclin E/Cdk2 bypasses the requirement for nuclear formation, and (iii) that the phosphorylation of Xic1 by cyclin E/Cdk2 is concentration dependent and likely realized through second-order interactions between stable cyclin E/Cdk2/Xic1 ternary complexes. Based on these results we propose a model wherein nuclear accumulation of the cyclin E/Cdk2/Xic1 complex triggers a concentration-dependent switch that promotes the phosphorylation of Xic1 and, consequently, its ubiquitination and destruction, thus allowing subsequent activation of cyclin E/Cdk2. PMID:10884410

  19. Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors.

    PubMed

    Dobeš, Petr; Fanfrlík, Jindřich; Rezáč, Jan; Otyepka, Michal; Hobza, Pavel

    2011-03-01

    A semiempirical quantum mechanical PM6-DH2 method accurately covering the dispersion interaction and H-bonding was used to score fifteen structurally diverse CDK2 inhibitors. The geometries of all the complexes were taken from the X-ray structures and were reoptimised by the PM6-DH2 method in continuum water. The total scoring function was constructed as an estimate of the binding free energy, i.e., as a sum of the interaction enthalpy, interaction entropy and the corrections for the inhibitor desolvation and deformation energies. The applied scoring function contains a clear thermodynamical terms and does not involve any adjustable empirical parameter. The best correlations with the experimental inhibition constants (ln K (i)) were found for bare interaction enthalpy (r (2) = 0.87) and interaction enthalpy corrected for ligand desolvation and deformation energies (r (2) = 0.77); when the entropic term was considered, however, the correlation becomes worse but still acceptable (r (2) = 0.52). The resulting correlation based on the PM6-DH2 scoring function is better than previously published function based on various docking/scoring, SAR studies or advanced QM/MM approach, however, the robustness is limited by number of available experimental data used in the correlation. Since a very similar correlation between the experimental and theoretical results was found also for a different system of the HIV-1 protease, the suggested scoring function based on the PM6-DH2 method seems to be applicable in drug design, even if diverse protein-ligand complexes have to be ranked. PMID:21286784

  20. Exploring the selectivity of a ligand complex with CDK2/CDK1: a molecular dynamics simulation approach.

    PubMed

    Tripathi, Sunil Kumar; Singh, Sanjeev Kumar; Singh, Poonam; Chellaperumal, Palanisamy; Reddy, Karnati Konda; Selvaraj, Chandrabose

    2012-10-01

    Cyclin-dependent kinases (CDKs) are core components of the cell cycle machinery that govern the transition between phases during cell cycle progression. Abnormalities in CDKs activity and regulation are common features of cancer, making CDK family members attractive targets for the development of anticancer drugs. Their inhibitors have entered in clinical trials to treat cancer. Very recently, Heathcote et al. (J. Med. Chem. 2010, 53:8508-8522) have found a ligand BS194 that has a high affinity with CDK2 (IC(50) = 3 nM) but shows low affinity with CDK1 (IC(50) = 30 nM). To understand the selectivity, we used homology modeling, molecular docking, molecular dynamics, and free-energy calculation to analyze the interactions. A rational three-dimensional model of the CDK1/BS194 complex is built. We found that Leu83 is a key residue that recognizes BS194 more effectively with CDK2 with good binding free energies rather than CDK1. Energetic analysis reveals that van der Waals interaction and non-polar contributions to solvent are favorable in the formation of complexes and amine group of the ligand, which plays a crucial role for binding selectivity between CDK2 and CDK1. PMID:22996593

  1. Water extract of Hedyotis Diffusa Willd suppresses proliferation of human HepG2 cells and potentiates the anticancer efficacy of low-dose 5-fluorouracil by inhibiting the CDK2-E2F1 pathway.

    PubMed

    Chen, Xu-Zheng; Cao, Zhi-Yun; Chen, Tuan-Sheng; Zhang, You-Quan; Liu, Zhi-Zhen; Su, Yin-Tao; Liao, Lian-Ming; Du, Jian

    2012-08-01

    Hedyotis Diffusa Willd (HDW), a Chinese herbal medicine, has been widely used as an adjuvant therapy against various cancers, including hepatocellular carcinoma (HCC). However, the underlying anticancer mechanisms are yet to be elucidated. In the present study, the anticancer effects of HDW were evaluated and the efficacy and safety of HDW combined with low-dose 5-fluorouracil (5-FU) were investigated. HepG2 cells were cultured in vitro and nude mouse xenografts were established in vivo. The proliferation of HepG2 cells was measured using the MTT method and flow cytometry. The mRNA and protein expression levels of cyclin-dependent kinase 2 (CDK2), cyclin E and E2F1 were examined using relative quantitative real-time PCR and western blot analysis, respectively. The results showed that water extract of HDW remarkably inhibited HepG2 cell proliferation in a dose-dependent manner via arrest of HepG2 cells at the G0/G1 phase and induction of S phase delay. This suppression was accompanied by a great decrease of E2F1 and CDK2 mRNA expression. In addition, HDW remarkably potentiated the anticancer effect of low-dose 5-FU in the absence of overt toxicity by downregulating the mRNA and protein levels of CDK2, cyclin E and E2F1. Our findings support the use of HDW as adjuvant therapy of chemotherapy and suggest that HDW may potentiate the efficiency of low-dose 5-FU in treating HCC. PMID:22641337

  2. RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53–Fbxw7 pathway

    SciTech Connect

    Wang, Haihe; Yang, Zhanchun; Liu, Chunbo; Huang, Shishun; Wang, Hongzhi; Chen, Yingli; Chen, Guofu

    2014-11-07

    Highlights: • RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. • RITA can significantly inhibit the in vitro growth of SMMC7721 and HepG2 cells. • RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC. - Abstract: Aberrant Notch signaling is observed in human hepatocellular carcinoma (HCC) and has been associated with the modulation of cell growth. However, the role of Notch signaling in HCC and its underlying mechanism remain elusive. RBP-J-interacting and tubulin-associated (RITA) mediates the nuclear export of RBP-J to tubulin fibers and downregulates Notch-mediated transcription. In this study, we found that RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. These changes led to growth inhibition and induced G0/G1 cell cycle arrest and apoptosis in SMMC7721 and HepG2 cells. Our findings indicate that RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC.

  3. Infection of primary cells by adeno-associated virus type 2 results in a modulation of cell cycle-regulating proteins.

    PubMed Central

    Hermanns, J; Schulze, A; Jansen-Db1urr, P; Kleinschmidt, J A; Schmidt, R; zur Hausen, H

    1997-01-01

    It has been demonstrated that infection of primary human cells with adeno-associated viruses (AAV) leads to a decrease in cellular proliferation and to growth arrest. We analyzed the molecular basis of this phenomenon and observed that infection with AAV type 2 (AAV2) had an effect on several factors engaged in the control of the mammalian cell cycle. In particular, all of the pRB family members, pRB, p107, and p130, which are involved in G1 cell cycle checkpoint control, were affected. After infection, a shift from hyper- to hypophosphorylated forms was observed. Cyclins A and B1, which are required for G1/S transition and progression into mitosis, respectively, were downregulated at the transcriptional level as well as at the protein level, whereas the G1 cyclins D1 and E remained unaffected. In addition, the steady-state levels of cyclin-dependent kinases CDK1 and CDK2 and of transcription factor E2F-1 were diminished. Of all the factors known to be involved in phosphorylation of pRB family proteins, only the CDK inhibitor p21WAF1 exhibited a response to AAV2 infection. p21WAF1 mRNA was quickly and progressively upregulated in a p53-independent manner over at least 72 h. Consistent with the increased p21WAF1 protein levels, cyclin E- and cyclin A-dependent kinase activities declined to low levels and E2F-p130-cyclin-CDK2 complexes were disrupted. From these data, we conclude that the major effect of AAV2 infection on primary human fibroblasts appears to be upregulation of p21WAF1 gene expression and thus cell cycle arrest by the suppression of pRB family protein phosphorylation. PMID:9223493

  4. Iron chelators of the di-2-pyridylketone thiosemicarbazone and 2-benzoylpyridine thiosemicarbazone series inhibit HIV-1 transcription: identification of novel cellular targets--iron, cyclin-dependent kinase (CDK) 2, and CDK9.

    PubMed

    Debebe, Zufan; Ammosova, Tatyana; Breuer, Denitra; Lovejoy, David B; Kalinowski, Danuta S; Kumar, Krishna; Jerebtsova, Marina; Ray, Patricio; Kashanchi, Fatah; Gordeuk, Victor R; Richardson, Des R; Nekhai, Sergei

    2011-01-01

    HIV-1 transcription is activated by HIV-1 Tat protein, which recruits cyclin-dependent kinase 9 (CDK9)/cyclin T1 and other host transcriptional coactivators to the HIV-1 promoter. Tat itself is phosphorylated by CDK2, and inhibition of CDK2 by small interfering RNA, the iron chelator 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), and the iron chelator deferasirox (ICL670) inhibits HIV-1 transcription. Here we have analyzed a group of novel di-2-pyridylketone thiosemicarbazone- and 2-benzoylpyridine thiosemicarbazone-based iron chelators that exhibit marked anticancer activity in vitro and in vivo (Proc Natl Acad Sci USA 103:7670-7675, 2006; J Med Chem 50:3716-3729, 2007). Several of these iron chelators, in particular 2-benzoylpyridine 4-allyl-3-thiosemicarbazone (Bp4aT) and 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), inhibited HIV-1 transcription and replication at much lower concentrations than did 311 and ICL670. Neither Bp4aT nor Bp4eT were toxic after a 24-h incubation. However, longer incubations for 48 h or 72 h resulted in cytotoxicity. Analysis of the molecular mechanism of HIV-1 inhibition showed that the novel iron chelators inhibited basal HIV-1 transcription, but not the nuclear factor-κB-dependent transcription or transcription from an HIV-1 promoter with inactivated SP1 sites. The chelators inhibited the activities of CDK2 and CDK9/cyclin T1, suggesting that inhibition of CDK9 may contribute to the inhibition of HIV-1 transcription. Our study suggests the potential usefulness of Bp4aT or Bp4eT in antiretroviral regimens, particularly where resistance to standard treatment occurs. PMID:20956357

  5. Iron Chelators of the Di-2-pyridylketone Thiosemicarbazone and 2-Benzoylpyridine Thiosemicarbazone Series Inhibit HIV-1 Transcription: Identification of Novel Cellular Targets—Iron, Cyclin-Dependent Kinase (CDK) 2, and CDK9S⃞

    PubMed Central

    Debebe, Zufan; Ammosova, Tatyana; Breuer, Denitra; Lovejoy, David B.; Kalinowski, Danuta S.; Karla, Pradeep K.; Kumar, Krishna; Jerebtsova, Marina; Ray, Patricio; Kashanchi, Fatah; Gordeuk, Victor R.; Richardson, Des R.

    2011-01-01

    HIV-1 transcription is activated by HIV-1 Tat protein, which recruits cyclin-dependent kinase 9 (CDK9)/cyclin T1 and other host transcriptional coactivators to the HIV-1 promoter. Tat itself is phosphorylated by CDK2, and inhibition of CDK2 by small interfering RNA, the iron chelator 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), and the iron chelator deferasirox (ICL670) inhibits HIV-1 transcription. Here we have analyzed a group of novel di-2-pyridylketone thiosemicarbazone- and 2-benzoylpyridine thiosemicarbazone-based iron chelators that exhibit marked anticancer activity in vitro and in vivo (Proc Natl Acad Sci USA 103:7670–7675, 2006; J Med Chem 50:3716–3729, 2007). Several of these iron chelators, in particular 2-benzoylpyridine 4-allyl-3-thiosemicarbazone (Bp4aT) and 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), inhibited HIV-1 transcription and replication at much lower concentrations than did 311 and ICL670. Neither Bp4aT nor Bp4eT were toxic after a 24-h incubation. However, longer incubations for 48 h or 72 h resulted in cytotoxicity. Analysis of the molecular mechanism of HIV-1 inhibition showed that the novel iron chelators inhibited basal HIV-1 transcription, but not the nuclear factor-κB-dependent transcription or transcription from an HIV-1 promoter with inactivated SP1 sites. The chelators inhibited the activities of CDK2 and CDK9/cyclin T1, suggesting that inhibition of CDK9 may contribute to the inhibition of HIV-1 transcription. Our study suggests the potential usefulness of Bp4aT or Bp4eT in antiretroviral regimens, particularly where resistance to standard treatment occurs. PMID:20956357

  6. Insights into the structural basis of 3,5-diaminoindazoles as CDK2 inhibitors: prediction of binding modes and potency by QM-MM interaction, MESP and MD simulation.

    PubMed

    Tripathi, Sunil Kumar; Singh, Sanjeev Kumar

    2014-08-01

    The novel 3,5-diaminoindazole derivatives are well-known as potent and anti-proliferative cyclin-dependent kinase 2 inhibitors. We report a combined quantum mechanics/molecular mechanics study to determine the protein-ligand interaction energy, and some quantum chemical descriptors to successfully rank these inhibitors. The results in this work show that the QM-MM interaction energy is strongly correlated to the biological activity and can be used as a predictor, which was further validated by Spearman's rank correlation coefficient. An exhaustive analysis of the protein-ligand structures obtained from molecular dynamics simulations shows specific interactions within the active site. Furthermore, the docking study was supported by electronic property analysis using density functional theory at the B3LYP/3-21*G level. The results obtained from molecular docking and surface analysis shed some insight on steric and electronic complementarities of these molecules to CDK2. Aqueous solvation energy values give an indication of the solubility and can be used as a guide for the pharmacokinetic optimization of these molecules. Furthermore, ADME/T properties calculated are in the desirable range, so these compounds are predicted to be drug like with low toxicity potential. Overall, the approach was successful in the cases considered, and it could be useful for the design of inhibitors in the lead optimization phase of drug discovery against CDK2. PMID:24909777

  7. Cyclin E and CDK-2 regulate proliferative cell fate and cell cycle progression in the C. elegans germline

    PubMed Central

    Fox, Paul M.; Vought, Valarie E.; Hanazawa, Momoyo; Lee, Min-Ho; Maine, Eleanor M.; Schedl, Tim

    2011-01-01

    The C. elegans germline provides an excellent model for analyzing the regulation of stem cell activity and the decision to differentiate and undergo meiotic development. The distal end of the adult hermaphrodite germline contains the proliferative zone, which includes a population of mitotically cycling cells and cells in meiotic S phase, followed by entry into meiotic prophase. The proliferative fate is specified by somatic distal tip cell (DTC) niche-germline GLP-1 Notch signaling through repression of the redundant GLD-1 and GLD-2 pathways that promote entry into meiosis. Here, we describe characteristics of the proliferative zone, including cell cycle kinetics and population dynamics, as well as the role of specific cell cycle factors in both cell cycle progression and the decision between the proliferative and meiotic cell fate. Mitotic cell cycle progression occurs rapidly, continuously, with little or no time spent in G1, and with cyclin E (CYE-1) levels and activity high throughout the cell cycle. In addition to driving mitotic cell cycle progression, CYE-1 and CDK-2 also play an important role in proliferative fate specification. Genetic analysis indicates that CYE-1/CDK-2 promotes the proliferative fate downstream or in parallel to the GLD-1 and GLD-2 pathways, and is important under conditions of reduced GLP-1 signaling, possibly corresponding to mitotically cycling proliferative zone cells that are displaced from the DTC niche. Furthermore, we find that GLP-1 signaling regulates a third pathway, in addition to the GLD-1 and GLD-2 pathways and also independent of CYE-1/CDK-2, to promote the proliferative fate/inhibit meiotic entry. PMID:21558371

  8. Cyclin E and CDK-2 regulate proliferative cell fate and cell cycle progression in the C. elegans germline.

    PubMed

    Fox, Paul M; Vought, Valarie E; Hanazawa, Momoyo; Lee, Min-Ho; Maine, Eleanor M; Schedl, Tim

    2011-06-01

    The C. elegans germline provides an excellent model for analyzing the regulation of stem cell activity and the decision to differentiate and undergo meiotic development. The distal end of the adult hermaphrodite germline contains the proliferative zone, which includes a population of mitotically cycling cells and cells in meiotic S phase, followed by entry into meiotic prophase. The proliferative fate is specified by somatic distal tip cell (DTC) niche-germline GLP-1 Notch signaling through repression of the redundant GLD-1 and GLD-2 pathways that promote entry into meiosis. Here, we describe characteristics of the proliferative zone, including cell cycle kinetics and population dynamics, as well as the role of specific cell cycle factors in both cell cycle progression and the decision between the proliferative and meiotic cell fate. Mitotic cell cycle progression occurs rapidly, continuously, with little or no time spent in G1, and with cyclin E (CYE-1) levels and activity high throughout the cell cycle. In addition to driving mitotic cell cycle progression, CYE-1 and CDK-2 also play an important role in proliferative fate specification. Genetic analysis indicates that CYE-1/CDK-2 promotes the proliferative fate downstream or in parallel to the GLD-1 and GLD-2 pathways, and is important under conditions of reduced GLP-1 signaling, possibly corresponding to mitotically cycling proliferative zone cells that are displaced from the DTC niche. Furthermore, we find that GLP-1 signaling regulates a third pathway, in addition to the GLD-1 and GLD-2 pathways and also independent of CYE-1/CDK-2, to promote the proliferative fate/inhibit meiotic entry. PMID:21558371

  9. Bufalin induces G0/G1 phase arrest through inhibiting the levels of cyclin D, cyclin E, CDK2 and CDK4, and triggers apoptosis via mitochondrial signaling pathway in T24 human bladder cancer cells.

    PubMed

    Huang, Wen-Wen; Yang, Jai-Sing; Pai, Shu-Jen; Wu, Ping-Ping; Chang, Shu-Jen; Chueh, Fu-Shin; Fan, Ming-Jen; Chiou, Shang-Ming; Kuo, Hsiu-Maan; Yeh, Chin-Chung; Chen, Po-Yuan; Tsuzuki, Minoru; Chung, Jing-Gung

    2012-04-01

    Most of the chemotherapy treatments for bladder cancer aim to kill the cancer cells, but a high recurrence rate after medical treatments is still occurred. Bufalin from the skin and parotid venom glands of toad has been shown to induce apoptotic cell death in many types of cancer cell lines. However, there is no report addressing that bufalin induced cell death in human bladder cancer cells. The purpose of this study was investigated the mechanisms of bufalin-induced apoptosis in a human bladder cancer cell line (T24). We demonstrated the effects of bufalin on the cell growth and apoptosis in T24 cells by using DAPI/TUNEL double staining, a PI exclusion and flow cytometric analysis. The effects of bufalin on the production of reactive oxygen species (ROS), the level of mitochondrial membrane potential (ΔΨ(m)), and DNA content including sub-G1 (apoptosis) in T24 cells were also determined by flow cytometry. Western blot analysis was used to examine the expression of G(0)/G(1) phase-regulated and apoptosis-associated protein levels in bufalin-treated T24 cells. The results indicated that bufalin significantly decreased the percentage of viability, induced the G(0)/G(1) phase arrest and triggered apoptosis in T24 cells. The down-regulation of the protein levels for cyclin D, CDK4, cyclin E, CDK2, phospho-Rb, phospho-AKT and Bcl-2 with the simultaneous up-regulation of the cytochrome c, Apaf-1, AIF, caspase-3, -7 and -9 and Bax protein expressions and caspase activities were observed in T24 cells after bufalin treatment. Based on our results, bufalin induces apoptotic cell death in T24 cells through suppressing AKT activity and anti-apoptotic Bcl-2 protein as well as inducing pro-apoptotic Bax protein. The levels of caspase-3, -7 and -9 are also mediated apoptosis in bufalin-treated T24 cells. Therefore, bufalin might be used as a therapeutic agent for the treatment of human bladder cancer in the future. PMID:22285700

  10. HBx-upregulated lncRNA UCA1 promotes cell growth and tumorigenesis by recruiting EZH2 and repressing p27Kip1/CDK2 signaling

    PubMed Central

    Hu, Jiao-Jiao; Song, Wei; Zhang, Shao-Dan; Shen, Xiao-Hui; Qiu, Xue-Mei; Wu, Hua-Zhang; Gong, Pi-Hai; Lu, Sen; Zhao, Zhu-Jiang; He, Ming-Liang; Fan, Hong

    2016-01-01

    It is well accepted that HBx plays the major role in hepatocarcinogenesis associated with hepatitis B virus (HBV) infections. However, little was known about its role in regulating long noncoding RNAs (lncRNAs), a large group of transcripts regulating a variety of biological processes including carcinogenesis in mammalian cells. Here we report that HBx upregulates UCA1 genes and downregulates p27 genes in hepatic LO2 cells. Further studies show that the upregulated UCA1 promotes cell growth by facilitating G1/S transition through CDK2 in both hepatic and hepatoma cells. Knock down of UCA1 in HBx-expressing hepatic and hepatoma cells resulted in markedly increased apoptotic cells by elevating the cleaved caspase-3 and caspase-8. More importantly, UCA1 is found to be physically associated with enhancer of zeste homolog 2 (EZH2), which suppresses p27Kip1 through histone methylation (H3K27me3) on p27Kip1 promoter. We also show that knockdown of UCA1 in hepatoma cells inhibits tumorigenesis in nude mice. In a clinic study, UCA1 is found to be frequently up-regulated in HBx positive group tissues in comparison with the HBx negative group, and exhibits an inverse correlation between UCA1 and p27Kip1 levels. Our findings demonstrate an important mechanism of hepatocarcinogenesis through the signaling of HBx-UCA1/EZH2-p27Kip1 axis, and a potential target of HCC. PMID:27009634

  11. HBx-upregulated lncRNA UCA1 promotes cell growth and tumorigenesis by recruiting EZH2 and repressing p27Kip1/CDK2 signaling.

    PubMed

    Hu, Jiao-Jiao; Song, Wei; Zhang, Shao-Dan; Shen, Xiao-Hui; Qiu, Xue-Mei; Wu, Hua-Zhang; Gong, Pi-Hai; Lu, Sen; Zhao, Zhu-Jiang; He, Ming-Liang; Fan, Hong

    2016-01-01

    It is well accepted that HBx plays the major role in hepatocarcinogenesis associated with hepatitis B virus (HBV) infections. However, little was known about its role in regulating long noncoding RNAs (lncRNAs), a large group of transcripts regulating a variety of biological processes including carcinogenesis in mammalian cells. Here we report that HBx upregulates UCA1 genes and downregulates p27 genes in hepatic LO2 cells. Further studies show that the upregulated UCA1 promotes cell growth by facilitating G1/S transition through CDK2 in both hepatic and hepatoma cells. Knock down of UCA1 in HBx-expressing hepatic and hepatoma cells resulted in markedly increased apoptotic cells by elevating the cleaved caspase-3 and caspase-8. More importantly, UCA1 is found to be physically associated with enhancer of zeste homolog 2 (EZH2), which suppresses p27Kip1 through histone methylation (H3K27me3) on p27Kip1 promoter. We also show that knockdown of UCA1 in hepatoma cells inhibits tumorigenesis in nude mice. In a clinic study, UCA1 is found to be frequently up-regulated in HBx positive group tissues in comparison with the HBx negative group, and exhibits an inverse correlation between UCA1 and p27Kip1 levels. Our findings demonstrate an important mechanism of hepatocarcinogenesis through the signaling of HBx-UCA1/EZH2-p27Kip1 axis, and a potential target of HCC. PMID:27009634

  12. Novel miR-5582-5p functions as a tumor suppressor by inducing apoptosis and cell cycle arrest in cancer cells through direct targeting of GAB1, SHC1, and CDK2.

    PubMed

    An, Hyun-Ju; Kwak, Seo-Young; Yoo, Je-Ok; Kim, Jae-Sung; Bae, In-Hwa; Park, Myung-Jin; Cho, Mee-Yon; Kim, Joon; Han, Young-Hoon

    2016-10-01

    MicroRNAs (miRNAs) play pivotal roles in tumorigenesis as either tumor suppressors or oncogenes. In the present study, we discovered and demonstrated the tumor suppressive function of a novel miRNA miR-5582-5p. miR-5582-5p induced apoptosis and cell cycle arrest in cancer cells, but not in normal cells. GAB1, SHC1, and CDK2 were identified as direct targets of miR-5582-5p. Knockdown of GAB1/SHC1 or CDK2 phenocopied the apoptotic or cell cycle arrest-inducing function of miR-5582-5p, respectively. The expression of miR-5582-5p was lower in tumor tissues than in adjacent normal tissues of colorectal cancer patients, while the expression of the target proteins exhibited patterns opposite to that of miR-5582-5p. Intratumoral injection of a miR-5582-5p mimic or induced expression of miR-5582-5p in tumor cells suppressed tumor growth in HCT116 xenografts. Collectively, our results suggest a novel tumor suppressive function for miR-5582-5p and its potential applicability for tumor control. PMID:27475256

  13. Interphase APC/C–Cdc20 inhibition by cyclin A2–Cdk2 ensures efficient mitotic entry

    PubMed Central

    Hein, Jamin B.; Nilsson, Jakob

    2016-01-01

    Proper cell-cycle progression requires tight temporal control of the Anaphase Promoting Complex/Cyclosome (APC/C), a large ubiquitin ligase that is activated by one of two co-activators, Cdh1 or Cdc20. APC/C and Cdc20 are already present during interphase but APC/C–Cdc20 regulation during this window of the cell cycle, if any, is unknown. Here we show that cyclin A2–Cdk2 binds and phosphorylates Cdc20 in interphase and this inhibits APC/C–Cdc20 activity. Preventing Cdc20 phosphorylation results in pre-mature activation of the APC/C–Cdc20 and several substrates, including cyclin B1 and A2, are destabilized which lengthens G2 and slows mitotic entry. Expressing non-degradable cyclin A2 but not cyclin B1 restores mitotic entry in these cells. We have thus uncovered a novel positive feedback loop centred on cyclin A2–Cdk2 inhibition of interphase APC/C–Cdc20 to allow further cyclin A2 accumulation and mitotic entry. PMID:26960431

  14. A Bayesian Estimator of Protein-Protein Association Probabilities

    SciTech Connect

    Gilmore, Jason M.; Auberry, Deanna L.; Sharp, Julia L.; White, Amanda M.; Anderson, Kevin K.; Daly, Don S.

    2008-07-01

    The Bayesian Estimator of Protein-Protein Association Probabilities (BEPro3) is a software tool for estimating probabilities of protein-protein association between bait and prey protein pairs using data from multiple-bait, multiple-replicate, protein pull-down LC-MS assay experiments. BEPro3 is open source software that runs on both Windows XP and Mac OS 10.4 or newer versions, and is freely available from http://www.pnl.gov/statistics/BEPro3.

  15. The Role of Cdkn1A-Interacting Zinc Finger Protein 1 (CIZ1) in DNA Replication and Pathophysiology

    PubMed Central

    Liu, Qiang; Niu, Na; Wada, Youichiro; Liu, Ju

    2016-01-01

    Cdkn1A-interacting zinc finger protein 1 (CIZ1) was first identified in a yeast-2-hybrid system searching for interacting proteins of CDK2 inhibitor p21Cip1/Waf1. Ciz1 also binds to CDK2, cyclin A, cyclin E, CDC6, PCNA, TCF4 and estrogen receptor-α. Recent studies reveal numerous biological functions of CIZ1 in DNA replication, cell proliferation, and differentiation. In addition, splicing variants of CIZ1 mRNA is associated with a variety of cancers and Alzheimer’s disease, and mutations of the CIZ1 gene lead to cervical dystonia. CIZ1 expression is increased in cancers and rheumatoid arthritis. In this review, we will summarize the biological functions and molecular mechanisms of CIZ1 in these physiological and pathological processes. PMID:26861296

  16. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase

    PubMed Central

    Sakurikar, Nandini; Thompson, Ruth; Montano, Ryan; Eastman, Alan

    2016-01-01

    DNA damage activates Checkpoint kinase 1 (Chk1) to halt cell cycle progression thereby preventing further DNA replication and mitosis until the damage has been repaired. Consequently, Chk1 inhibitors have emerged as promising anticancer therapeutics in combination with DNA damaging drugs, but their single agent activity also provides a novel approach that may be particularly effective in a subset of patients. From analysis of a large panel of cell lines, we demonstrate that 15% are very sensitive to the Chk1 inhibitor MK-8776. Upon inhibition of Chk1, sensitive cells rapidly accumulate DNA double-strand breaks in S phase in a CDK2- and cyclin A-dependent manner. In contrast, resistant cells can continue to grow for at least 7 days despite continued inhibition of Chk1. Resistance can be circumvented by inhibiting Wee1 kinase and thereby directly activating CDK2. Hence, sensitivity to Chk1 inhibition is regulated upstream of CDK2 and correlates with accumulation of CDC25A. We conclude that cells poorly tolerate CDK2 activity in S phase and that a major function of Chk1 is to ensure it remains inactive. Indeed, inhibitors of CDK1 and CDK2 arrest cells in G1 or G2, respectively, but do not prevent progression through S phase demonstrating that neither kinase is required for S phase progression. Inappropriate activation of CDK2 in S phase underlies the sensitivity of a subset of cell lines to Chk1 inhibitors, and this may provide a novel therapeutic opportunity for appropriately stratified patients. PMID:26595527

  17. Bayesian Estimator of Protein-Protein Association Probabilities

    Energy Science and Technology Software Center (ESTSC)

    2008-05-28

    The Bayesian Estimator of Protein-Protein Association Probabilities (BEPro3) is a software tool for estimating probabilities of protein-protein association between bait and prey protein pairs using data from multiple-bait, multiple-replicate, protein LC-MS/MS affinity isolation experiments. BEPro3 is public domain software, has been tested on Windows XP and version 10.4 or newer of the Mac OS 10.4, and is freely available. A user guide, example dataset with analysis and additional documentation are included with the BEPro3 download.

  18. Design, synthesis and biological evaluation of N-alkyl or aryl substituted isoindigo derivatives as potential dual cyclin-dependent kinase 2 (CDK2)/glycogen synthase kinase 3β (GSK-3β) phosphorylation inhibitors.

    PubMed

    Zhao, Ping; Li, Yanzhong; Gao, Guangwei; Wang, Shuai; Yan, Yun; Zhan, Xiaoping; Liu, Zenglu; Mao, Zhenmin; Chen, Shaoxiong; Wang, Liqun

    2014-10-30

    A series of N-alkyl or aryl substituted isoindigo derivatives have been synthesized and their anti-proliferative activity was evaluated by Sulforhodamine B (SRB) assay. Some of the target compounds exhibited significant antitumor activity, including compounds 6h and 6k (against K562 cells), 6i (against HeLa cells) and 6j (against A549 cells). N-(p-methoxy-phenyl)-isoindigo (6k) exhibited a high and selective anti-proliferative activity against K562 cells (IC50 7.8 μM) and induced the apoptosis of K562 cells in a dose-dependent manner. Compound 6k arrested the cell cycle at S phase in K562 cells by decreasing the expression of cyclin A and CDK2, which played critical roles in DNA replication and passage through G2 phase. Moreover, compound 6k down-regulated the expression of p-GSK-3β (Ser9), β-catenin and c-myc proteins, up-regulated the expression of GSK-3β, consequently, suppressed Wnt/β-catenin signaling pathway and induced the apoptosis of K562 cells. The binding mode of compound 6k with GSK-3β was simulated using molecular docking tools. All of these studies gave a better understanding to the molecular mechanisms of this class of agents and clues to develop dual CDK2/GSK-3β (Ser9) phosphorylation inhibitors applied in cancer chemotherapy. PMID:25151579

  19. A human primary T-lymphocyte-derived human immunodeficiency virus type 1 Tat-associated kinase phosphorylates the C-terminal domain of RNA polymerase II and induces CAK activity.

    PubMed

    Nekhai, S; Shukla, R R; Kumar, A

    1997-10-01

    Tat protein mediates transactivation of human immunodeficiency virus type 1 (HIV-1), which results in more-efficient transcript elongation. Since phosphorylation of C-terminal domain (CTD) of RNA polymerase II correlates with its enhanced processivity, we studied the properties of a Tat-associated CTD kinase derived from mitogenically stimulated human primary T lymphocytes (TTK). TTK binds to full-length Tat and specifically phosphorylates CTD and CDK2. This dual kinase activity is characteristic of CDK-activating kinase (CAK). The CTD kinase activity is induced upon mitogenic stimulation of primary T lymphocytes. Fractionation of T-cell lysate demonstrates that Tat-associated CTD kinase activity elutes in two peaks. About 60% of Tat-associated CTD kinase copurifies with CDK2 kinase activity and contains the CAK components CDK7 and cyclin H. The rest of Tat-associated kinase is free of CDK2 kinase activity and the CAK components and thus may represent a novel CTD kinase. The kinase activities of TTK are blocked by the adenosine analog 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB) as well as by the kinase inhibitor H8 at concentrations known to block transcript elongation. Importantly, the Tat-associated kinase markedly induced CAK. We suggest that the mechanism of Tat-mediated processive transcription of the HIV-1 promoter includes a Tat-associated CAK activator. PMID:9311822

  20. Inhibition of CDC25B Phosphatase Through Disruption of Protein-Protein Interaction

    SciTech Connect

    Lund, George; Dudkin, Sergii; Borkin, Dmitry; Ni, Wendi; Grembecka, Jolanta; Cierpicki, Tomasz

    2015-04-29

    CDC25 phosphatases are key cell cycle regulators and represent very attractive but challenging targets for anticancer drug discovery. Here, we explored whether fragment-based screening represents a valid approach to identify inhibitors of CDC25B. This resulted in identification of 2-fluoro-4-hydroxybenzonitrile, which directly binds to the catalytic domain of CDC25B. Interestingly, NMR data and the crystal structure demonstrate that this compound binds to the pocket distant from the active site and adjacent to the protein–protein interaction interface with CDK2/Cyclin A substrate. Furthermore, we developed a more potent analogue that disrupts CDC25B interaction with CDK2/Cyclin A and inhibits dephosphorylation of CDK2. Based on these studies, we provide a proof of concept that targeting CDC25 phosphatases by inhibiting their protein–protein interactions with CDK2/Cyclin A substrate represents a novel, viable opportunity to target this important class of enzymes.

  1. Cyclin E/Cdk2, P/CAF, and E1A regulate the transactivation of the c-myc promoter by FOXM1

    SciTech Connect

    Wierstra, Inken Alves, Juergen

    2008-03-28

    FOXM1c transactivates the c-myc promoter by binding directly to its TATA-boxes. The present study demonstrates that the transactivation of the c-myc promoter by FOXM1c is enhanced by the key proliferation signal cyclin E/Cdk2, but repressed by P/CAF and the adenoviral oncoprotein E1A. Furthermore, FOXM1c interacts with the coactivator and histone acetyltransferase P/CAF. This study shows that, on the c-myc-P1 TATA-box, FOXM1c does not function simply as normal transcription factor just binding to an unusual site. Moreover, the inhibitory N-terminus of FOXM1c does not inhibit its transrepression domain or its EDA. Others reported that a cyclin/Cdk-binding LXL-motif of the splice variant FoxM1b is required for its interaction with Cdk2, Cdk1, and p27, its phosphorylation by Cdk1 and its activation by Cdc25B. In contrast, we now demonstrate that this LXL-motif is not required for the activation of FOXM1c by cyclin D1/Cdk4, cyclin E/Cdk and cyclin A/Cdk2 or for the repression of FOXM1c by p27.

  2. Briefly Bound to Activate: Transient Binding of a Second Catalytic Magnesium Activates the Structure and Dynamics of CDK2 Kinase for Catalysis

    SciTech Connect

    Bao, Zhao Qin; Jacobsen, Douglas M.; Young, Matthew A.

    2014-10-02

    We have determined high-resolution crystal structures of a CDK2/Cyclin A transition state complex bound to ADP, substrate peptide, and MgF{sub 3}{sup -}. Compared to previous structures of active CDK2, the catalytic subunit of the kinase adopts a more closed conformation around the active site and now allows observation of a second Mg{sup 2+} ion in the active site. Coupled with a strong [Mg{sup 2+}] effect on in vitro kinase activity, the structures suggest that the transient binding of the second Mg{sup 2+} ion is necessary to achieve maximum rate enhancement of the chemical reaction, and Mg{sup 2+} concentration could represent an important regulator of CDK2 activity in vivo. Molecular dynamics simulations illustrate how the simultaneous binding of substrate peptide, ATP, and two Mg{sup 2+} ions is able to induce a more rigid and closed organization of the active site that functions to orient the phosphates, stabilize the buildup of negative charge, and shield the subsequently activated {gamma}-phosphate from solvent.

  3. DAPD: A Knowledgebase for Diabetes Associated Proteins.

    PubMed

    Gopinath, Krishnasamy; Jayakumararaj, Ramaraj; Karthikeyan, Muthusamy

    2015-01-01

    Recent advancements in genomics and proteomics provide a solid foundation for understanding the pathogenesis of diabetes. Proteomics of diabetes associated pathways help to identify the most potent target for the management of diabetes. The relevant datasets are scattered in various prominent sources which takes much time to select the therapeutic target for the clinical management of diabetes. However, additional information about target proteins is needed for validation. This lacuna may be resolved by linking diabetes associated genes, pathways and proteins and it will provide a strong base for the treatment and planning management strategies of diabetes. Thus, a web source "Diabetes Associated Proteins Database (DAPD)" has been developed to link the diabetes associated genes, pathways and proteins using PHP, MySQL. The current version of DAPD has been built with proteins associated with different types of diabetes. In addition, DAPD has been linked to external sources to gain the access to more participatory proteins and their pathway network. DAPD will reduce the time and it is expected to pave the way for the discovery of novel anti-diabetic leads using computational drug designing for diabetes management. DAPD is open accessed via following url www.mkarthikeyan.bioinfoau.org/dapd. PMID:26357271

  4. Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins.

    PubMed

    Zi, X; Feyes, D K; Agarwal, R

    1998-04-01

    There is an increasing interest in identifying potent cancer preventive and therapeutic agents against breast cancer. Silymarin, a flavonoid antioxidant isolated from milk thistle, exerts exceptionally high to complete anticarcinogenic effects in tumorigenesis models of epithelial origin. In this study, we investigated the anticarcinogenic effect of silymarin and associated molecular mechanisms, using human breast carcinoma cells MDA-MB 468. Silymarin treatment resulted in a significantly high to complete inhibition of both anchorage-dependent and anchorage-independent cell growth in a dose- and time-dependent manner. The inhibitory effects of silymarin on cell growth and proliferation were associated with a G1 arrest in cell cycle progression concomitant with an induction of up to 19-fold in the protein expression of cyclin-dependent kinase (CDK) inhibitor Cip1/p21. Following silymarin treatment of cells, an incremental binding of Cip1/p21 with CDK2 and CDK6 paralleled a significant decrease in CDK2-, CDK6-, cyclin D1-, and cyclin E-associated kinase activity with no change in CDK2 and CDK6 expression but a decrease in G1 cyclins D1 and E. Taken together, these results suggest that silymarin may exert a strong anticarcinogenic effect against breast cancer and that this effect possibly involves an induction of Cip1/p21 by silymarin, which inhibits the threshold kinase activities of CDKs and associated cyclins, leading to a G1 arrest in cell cycle progression. PMID:9563902

  5. Established and New Mouse Models Reveal E2f1 and Cdk2 Dependency of Retinoblastoma and Expose Strategies to Block Tumor Initiation

    PubMed Central

    Sangwan, Monika; McCurdy, Sean R.; Livne-bar, Izzy; Ahmad, Mohammad; Wrana, Jeffery L.; Chen, Danian; Bremner, Rod

    2016-01-01

    RB +/− individuals develop retinoblastoma and, subsequently, many other tumors. The Rb relatives p107 and p130 protect the tumor-resistant Rb−/− mouse retina. Determining the mechanism underlying this tumor suppressor function may expose novel strategies to block Rb-pathway cancers. p107/p130 are best known as E2f inhibitors, but here we implicate E2f-independent Cdk2 inhibition as the critical p107 tumor suppressor function in vivo. Like p107 loss, deleting p27 or inactivating its Cdk inhibitor (CKI) function (p27CK−) cooperated with Rb loss to induce retinoblastoma. Genetically, p107 behaved like a CKI because inactivating Rb and one allele each of p27 and p107 was tumorigenic. While Rb loss induced canonical E2f targets, unexpectedly p107 loss did not further induce these genes but instead caused post-transcriptional Skp2-induction and Cdk2 activation. Strikingly, Cdk2 activity correlated with tumor penetrance across all the retinoblastoma models. Therefore, Rb restrains E2f, but p107 inhibits cross-talk to Cdk. While removing either E2f2 or E2f3 genes had little effect, removing only one E2f1 allele blocked tumorigenesis. More importantly, exposing retinoblastoma-prone fetuses to small molecule E2f or Cdk inhibitors for merely one week dramatically inhibited subsequent tumorigenesis in adult mice. Protection was achieved without disrupting normal proliferation. Thus, exquisite sensitivity of the cell-of-origin to E2f and Cdk activity can be exploited to prevent Rb pathway-induced cancer in vivo without perturbing normal cell division. These data suggest that E2f inhibitors, never before tested in vivo, or Cdk inhibitors, largely disappointing as therapeutics, may be effective preventive agents. PMID:22286767

  6. Tracking Membrane Protein Association in Model Membranes

    PubMed Central

    Reffay, Myriam; Gambin, Yann; Benabdelhak, Houssain; Phan, Gilles; Taulier, Nicolas; Ducruix, Arnaud; Hodges, Robert S.; Urbach, Wladimir

    2009-01-01

    Membrane proteins are essential in the exchange processes of cells. In spite of great breakthrough in soluble proteins studies, membrane proteins structures, functions and interactions are still a challenge because of the difficulties related to their hydrophobic properties. Most of the experiments are performed with detergent-solubilized membrane proteins. However widely used micellar systems are far from the biological two-dimensions membrane. The development of new biomimetic membrane systems is fundamental to tackle this issue. We present an original approach that combines the Fluorescence Recovery After fringe Pattern Photobleaching technique and the use of a versatile sponge phase that makes it possible to extract crucial informations about interactions between membrane proteins embedded in the bilayers of a sponge phase. The clear advantage lies in the ability to adjust at will the spacing between two adjacent bilayers. When the membranes are far apart, the only possible interactions occur laterally between proteins embedded within the same bilayer, whereas when membranes get closer to each other, interactions between proteins embedded in facing membranes may occur as well. After validating our approach on the streptavidin-biotinylated peptide complex, we study the interactions between two membrane proteins, MexA and OprM, from a Pseudomonas aeruginosa efflux pump. The mode of interaction, the size of the protein complex and its potential stoichiometry are determined. In particular, we demonstrate that: MexA is effectively embedded in the bilayer; MexA and OprM do not interact laterally but can form a complex if they are embedded in opposite bilayers; the population of bound proteins is at its maximum for bilayers separated by a distance of about 200 Å, which is the periplasmic thickness of Pseudomonas aeruginosa. We also show that the MexA-OprM association is enhanced when the position and orientation of the protein is restricted by the bilayers. We

  7. Multifunctional Microtubule-Associated Proteins in Plants

    PubMed Central

    Krtková, Jana; Benáková, Martina; Schwarzerová, Kateřina

    2016-01-01

    Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes. PMID:27148302

  8. Inhibition of CDC25B Phosphatase Through Disruption of Protein–Protein Interaction

    PubMed Central

    2015-01-01

    CDC25 phosphatases are key cell cycle regulators and represent very attractive but challenging targets for anticancer drug discovery. Here, we explored whether fragment-based screening represents a valid approach to identify inhibitors of CDC25B. This resulted in identification of 2-fluoro-4-hydroxybenzonitrile, which directly binds to the catalytic domain of CDC25B. Interestingly, NMR data and the crystal structure demonstrate that this compound binds to the pocket distant from the active site and adjacent to the protein–protein interaction interface with CDK2/Cyclin A substrate. Furthermore, we developed a more potent analogue that disrupts CDC25B interaction with CDK2/Cyclin A and inhibits dephosphorylation of CDK2. Based on these studies, we provide a proof of concept that targeting CDC25 phosphatases by inhibiting their protein–protein interactions with CDK2/Cyclin A substrate represents a novel, viable opportunity to target this important class of enzymes. PMID:25423142

  9. Mesalazine negatively regulates CDC25A protein expression and promotes accumulation of colon cancer cells in S phase.

    PubMed

    Stolfi, Carmine; Fina, Daniele; Caruso, Roberta; Caprioli, Flavio; Fantini, Massimo Claudio; Rizzo, Angelamaria; Sarra, Massimiliano; Pallone, Francesco; Monteleone, Giovanni

    2008-06-01

    Regular consumption of mesalazine has been associated with a reduced risk of colorectal cancer (CRC) in patients with inflammatory bowel disease. The molecular mechanisms underlying the antineoplastic effect of 5-aminosalicylic acid remain, however, poorly characterized. In this study, we examined whether mesalazine affects cell cycle progression and analyzed specific checkpoint pathways in experimental models of CRC. Mesalazine inhibited the growth of HCT-116 and HT-29 cells, two CRC cell lines that express either a wild-type or mutated p53. Cell cycle analysis revealed that mesalazine induced cells to accumulate in S phase. This effect was associated with a sustained phosphorylation of the cyclin-dependent kinase (CDK)2 at threonine 14 and tyrosine 15 residues, an event that inactivates the CDK2-cyclin complex and blocks S-G(2) phase cell cycle transition. Consistently, mesalazine reduced the protein content of CDC25A, a phosphatase that regulates CDK2 phosphorylation status. Analysis of upstream kinases that negatively control CDC25A expression showed that mesalazine enhanced the activation of CHK1 and CHK2. However, silencing of CHK1 and CHK2 did not prevent the mesalazine-induced CDC25A protein downregulation. In contrast, CDC25A protein ubiquitination and degradation and accumulation of cells in S phase following mesalazine exposure were reverted by proteasome inhibitors. Notably, mesalazine also inhibited CDC25A in human CRC explants. Finally, we showed that mesalazine downregulated CDC25A in CT26, a murine CRC cell line, and prevented the formation of CT26-derived tumors in mice. Data show that mesalazine negatively regulates CDC25A protein expression, thus delaying CRC cell progression. PMID:18495657

  10. Adaptable Lipid Matrix Promotes Protein-Protein Association in Membranes.

    PubMed

    Kuznetsov, Andrey S; Polyansky, Anton A; Fleck, Markus; Volynsky, Pavel E; Efremov, Roman G

    2015-09-01

    The cell membrane is "stuffed" with proteins, whose transmembrane (TM) helical domains spontaneously associate to form functionally active complexes. For a number of membrane receptors, a modulation of TM domains' oligomerization has been shown to contribute to the development of severe pathological states, thus calling for detailed studies of the atomistic aspects of the process. Despite considerable progress achieved so far, several crucial questions still remain: How do the helices recognize each other in the membrane? What is the driving force of their association? Here, we assess the dimerization free energy of TM helices along with a careful consideration of the interplay between the structure and dynamics of protein and lipids using atomistic molecular dynamics simulations in the hydrated lipid bilayer for three different model systems - TM fragments of glycophorin A, polyalanine and polyleucine peptides. We observe that the membrane driven association of TM helices exhibits a prominent entropic character, which depends on the peptide sequence. Thus, a single TM peptide of a given composition induces strong and characteristic perturbations in the hydrophobic core of the bilayer, which may facilitate the initial "communication" between TM helices even at the distances of 20-30 Å. Upon tight helix-helix association, the immobilized lipids accommodate near the peripheral surfaces of the dimer, thus disturbing the packing of the surrounding. The dimerization free energy of the modeled peptides corresponds to the strength of their interactions with lipids inside the membrane being the lowest for glycophorin A and similarly higher for both homopolymers. We propose that the ability to accommodate lipid tails determines the dimerization strength of TM peptides and that the lipid matrix directly governs their association. PMID:26575933

  11. Protein-protein interactions of mitochondrial-associated protein via bioluminescence resonance energy transfer

    PubMed Central

    Koshiba, Takumi

    2015-01-01

    Protein-protein interactions are essential biological reactions occurring at inter- and intra-cellular levels. The analysis of their mechanism is generally required in order link to understand their various cellular functions. Bioluminescence resonance energy transfer (BRET), which is based on an enzymatic activity of luciferase, is a useful tool for investigating protein-protein interactions in live cells. The combination of the BRET system and biomolecular fluorescence complementation (BiFC) would provide us a better understanding of the hetero-oligomeric structural states of protein complexes. In this review, we discuss the application of BRET to the protein-protein interactions of mitochondrial-associated proteins and discuss its physiological relevance. PMID:27493852

  12. Discovery of novel 5-fluoro-N2,N4-diphenylpyrimidine-2,4-diamines as potent inhibitors against CDK2 and CDK9

    PubMed Central

    Gao, Jiadi; Fang, Cheng; Xiao, Zhiyan; Huang, Li; Chen, Chin-Ho; Wang, Li-Ting; Lee, Kuo-Hsiung

    2014-01-01

    Based on a 3D-QSAR pharmacophore derived from a diverse set of known cyclin-dependent kinase 9 (CDK9) inhibitors and a composite pharmacophore extracted from the complex structure of flavopiridol (FVP)-CDK9, thirty novel 5-fluoro-N2,N4-diphenylpyrimidine-2,4-diamine derivatives were designed and synthesized. Initial tests against four tumor cell lines with the sulforhodamine B (SRB) assay identified a series of potent compounds with GI50 values at lower micromolar or submicromolar level. Most of the highly cytotoxic compounds exhibited potent inhibitory activities against both CDK2/cyclin E1 and CDK9/cyclin T1. Notably, inhibitions against the two enzymes were generally correlated well with the cytotoxicity of these compounds. Appreciable inhibition was also observed for selected compounds in the anti-HIV-1 assay. Docking studies on compounds 6d and 9g provided conducive clues to further structural optimization. PMID:25914804

  13. Lipid droplets and associated proteins in sebocytes.

    PubMed

    Schneider, Marlon R

    2016-01-15

    Mammalian skin is characterized by the presence of sebaceous glands (SGs), which develop with the hair follicle and whose predominant cell type is the sebocyte. Sebocytes are epithelial cells that progressively accumulate lipids and eventually release their content (sebum) by holocrine secretion as cells disrupt. In addition to thermoregulatory and pheromonal actions, numerous additional functions have been demonstrated or postulated for sebum, including antimicrobial and antioxidant activities. The SG has also been involved in the pathogenesis of skin diseases as acne vulgaris and some forms of alopecia. Although lipid accumulation culminating in cell disruption and content release is the hallmark of sebocyte differentiation, only a surprisingly low number of studies have so far focused on sebocyte lipid droplets and their associated proteins. PMID:26571075

  14. Structure prediction of magnetosome-associated proteins

    PubMed Central

    Nudelman, Hila; Zarivach, Raz

    2014-01-01

    Magnetotactic bacteria (MTB) are Gram-negative bacteria that can navigate along geomagnetic fields. This ability is a result of a unique intracellular organelle, the magnetosome. These organelles are composed of membrane-enclosed magnetite (Fe3O4) or greigite (Fe3S4) crystals ordered into chains along the cell. Magnetosome formation, assembly, and magnetic nano-crystal biomineralization are controlled by magnetosome-associated proteins (MAPs). Most MAP-encoding genes are located in a conserved genomic region – the magnetosome island (MAI). The MAI appears to be conserved in all MTB that were analyzed so far, although the MAI size and organization differs between species. It was shown that MAI deletion leads to a non-magnetic phenotype, further highlighting its important role in magnetosome formation. Today, about 28 proteins are known to be involved in magnetosome formation, but the structures and functions of most MAPs are unknown. To reveal the structure–function relationship of MAPs we used bioinformatics tools in order to build homology models as a way to understand their possible role in magnetosome formation. Here we present a predicted 3D structural models’ overview for all known Magnetospirillum gryphiswaldense strain MSR-1 MAPs. PMID:24523717

  15. Structure prediction of magnetosome-associated proteins.

    PubMed

    Nudelman, Hila; Zarivach, Raz

    2014-01-01

    Magnetotactic bacteria (MTB) are Gram-negative bacteria that can navigate along geomagnetic fields. This ability is a result of a unique intracellular organelle, the magnetosome. These organelles are composed of membrane-enclosed magnetite (Fe3O4) or greigite (Fe3S4) crystals ordered into chains along the cell. Magnetosome formation, assembly, and magnetic nano-crystal biomineralization are controlled by magnetosome-associated proteins (MAPs). Most MAP-encoding genes are located in a conserved genomic region - the magnetosome island (MAI). The MAI appears to be conserved in all MTB that were analyzed so far, although the MAI size and organization differs between species. It was shown that MAI deletion leads to a non-magnetic phenotype, further highlighting its important role in magnetosome formation. Today, about 28 proteins are known to be involved in magnetosome formation, but the structures and functions of most MAPs are unknown. To reveal the structure-function relationship of MAPs we used bioinformatics tools in order to build homology models as a way to understand their possible role in magnetosome formation. Here we present a predicted 3D structural models' overview for all known Magnetospirillum gryphiswaldense strain MSR-1 MAPs. PMID:24523717

  16. A vitamin D3 analog induces a G1-phase arrest in CaCo-2 cells by inhibiting cdk2 and cdk6: roles of cyclin E, p21Waf1, and p27Kip1.

    PubMed

    Scaglione-Sewell, B A; Bissonnette, M; Skarosi, S; Abraham, C; Brasitus, T A

    2000-11-01

    Previous studies by our laboratory have shown that a noncalcemic fluorinated analog of 1alpha,25-dihydroxyvitamin D3, 1alpha,25-dihydroxy-16-ene-23-yne-26,27-hexafluorocholcal ciferol (F6-D3), significantly reduced the frequency of colonic adenomas and completely abolished the development of colonic adenocarcinomas in rats treated with azoxymethane. The mechanisms involved in this analog's chemopreventive actions, however, remain unclear. In the present study, we now show that although both 1alpha,25-dihydroxyvitamin D3 and F6-D3 inhibited the proliferation of CaCo-2 cells, a human colonic adenocarcinoma cell line, by increasing their doubling times, only F6-D3 caused an arrest of these cells in the G1 phase of their cell cycle. This arrest was accompanied by an increase in the expression of the cyclin-dependent kinase (cdk) inhibitor proteins, p2Waf1 and p27Kip1, which served to decrease the activity of cyclin-dependent kinase 2 and cyclin-dependent kinase 6, whereas the expression and phosphorylation of pRB were unchanged. In contrast to the increased expression of these cdk inhibitors, the expression of cyclin E was decreased, which further inhibited the activity of cyclin-dependent kinase 2. Collectively, the inhibition of these cyclin-dependent kinases served to arrest the CaCo-2 cells, independent of changes in pRB. Furthermore, antibody neutralization studies suggest that transforming growth factor-beta may mediate the coassociations between cdk2 and p27Kip1 and cyclin E induced by F6-D3. These data indicate that cell cycle arrest may, at least in part, underlie the chemopreventive actions of F6-D3 observed in the azoxymethane model of colon cancer. Furthermore, if the antiproliferative action observed in CaCo-2 cells also occurs in human colonic epithelium, F6-D3 may have chemopreventive potential against human colon cancer, as well. PMID:11089522

  17. A marginal band-associated protein has properties of both microtubule- and microfilament-associated proteins

    PubMed Central

    1989-01-01

    The marginal band of nucleated erythrocytes is a microtubule organelle under rigorous quantitative and spatial control, with properties quite different from those of the microtubule organelles of cultured cells. Previous results suggest that proteins other than tubulin may participate in organizing the marginal band, and may interact with elements of the erythrocyte cytoskeleton in addition to microtubules. To identify such species, we raised mAbs against the proteins that assemble from chicken brain homogenates with tubulin. One such antibody binds to a single protein in chicken erythrocytes, and produces an immunofluorescence pattern colocalizing with marginal band microtubules. Several properties of this protein are identical to those of ezrin, a protein isolated from brush border and localized to motile elements of cultured cells. A significant proportion of the antigen is not soluble in erythrocytes, as determined by extraction with nonionic detergent. This cytoskeleton-associated fraction is unaffected by treatments that solubilize the marginal band microtubules. The protein has properties of both microtubule- and microfilament-associated proteins. In the accompanying manuscript (Goslin, K., E. Birgbauer, G. Banker, and F. Solomon. 1989. J. Cell Biol. 109:1621-1631), we show that the same antibody recognizes a component of growth cones with a similar dual nature. In early embryonic red blood cells, the antigen is dispersed throughout the cell and does not colocalize with assembled tubulin. Its confinement to the marginal band during development follows rather than precedes that of microtubules. These results, along with previous work, suggest models for the formation of the marginal band. PMID:2677023

  18. Shedding Light on Selenium Biomineralization: Proteins Associated with Bionanominerals ▿

    PubMed Central

    Lenz, Markus; Kolvenbach, Boris; Gygax, Benjamin; Moes, Suzette; Corvini, Philippe F. X.

    2011-01-01

    Selenium-reducing microorganisms produce elemental selenium nanoparticles with particular physicochemical properties due to an associated organic fraction. This study identified high-affinity proteins associated with such bionanominerals and with nonbiogenic elemental selenium. Proteins with an anticipated functional role in selenium reduction, such as a metalloid reductase, were found to be associated with nanoparticles formed by one selenium respirer, Sulfurospirillum barnesii. PMID:21602371

  19. HIV-1 Resistant CDK2-Knockdown Macrophage-Like Cells Generated from 293T Cell-Derived Human Induced Pluripotent Stem Cells.

    PubMed

    Jerebtsova, Marina; Kumari, Namita; Xu, Min; de Melo, Gustavo Brito Alvim; Niu, Xiaomei; Jeang, Kuan-Teh; Nekhai, Sergei

    2012-07-26

    A major challenge in studies of human diseases involving macrophages is low yield and heterogeneity of the primary cells and limited ability of these cells for transfections and genetic manipulations. To address this issue, we developed a simple and efficient three steps method for somatic 293T cells reprogramming into monocytes and macrophage-like cells. First, 293T cells were reprogrammed into induced pluripotent stem cells (iPSCs) through a transfection-mediated expression of two factors, Oct-4 and Sox2, resulting in a high yield of iPSC. Second, the obtained iPSC were differentiated into monocytes using IL-3 and M-CSF treatment. And third, monocytes were differentiated into macrophage-like cells in the presence of M-CSF. As an example, we developed HIV-1-resistant macrophage-like cells from 293T cells with knockdown of CDK2, a factor critical for HIV-1 transcription. Our study provides a proof-of-principle approach that can be used to study the role of host cell factors in HIV-1 infection of human macrophages. PMID:22934150

  20. HIV-1 Resistant CDK2-Knockdown Macrophage-Like Cells Generated from 293T Cell-Derived Human Induced Pluripotent Stem Cells

    PubMed Central

    Jerebtsova, Marina; Kumari, Namita; Xu, Min; de Melo, Gustavo Brito Alvim; Niu, Xiaomei; Jeang, Kuan-Teh; Nekhai, Sergei

    2012-01-01

    A major challenge in studies of human diseases involving macrophages is low yield and heterogeneity of the primary cells and limited ability of these cells for transfections and genetic manipulations. To address this issue, we developed a simple and efficient three steps method for somatic 293T cells reprogramming into monocytes and macrophage-like cells. First, 293T cells were reprogrammed into induced pluripotent stem cells (iPSCs) through a transfection-mediated expression of two factors, Oct-4 and Sox2, resulting in a high yield of iPSC. Second, the obtained iPSC were differentiated into monocytes using IL-3 and M-CSF treatment. And third, monocytes were differentiated into macrophage-like cells in the presence of M-CSF. As an example, we developed HIV-1-resistant macrophage-like cells from 293T cells with knockdown of CDK2, a factor critical for HIV-1 transcription. Our study provides a proof-of-principle approach that can be used to study the role of host cell factors in HIV-1 infection of human macrophages. PMID:22934150

  1. BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease.

    PubMed

    Pierce, Albert C; Rao, Govinda; Bemis, Guy W

    2004-05-20

    In this work we describe BREED, a method for the generation of novel inhibitors from structures of known ligands bound to a common target. The method is essentially an automation of the common medicinal chemistry practice of joining fragments of two known ligands to generate a new inhibitor. The ligand-bound target structures are overlaid, all overlapping bonds in all pairs of ligands are found, and the fragments on each side of each matching bond are swapped to generate the new molecules. Since the method is automated, it can be applied recursively to generate all possible combinations of known ligands. In an application of this method to HIV protease inhibitors and protein kinase inhibitors, hundreds of new molecular structures were generated. These included known inhibitor scaffolds not included in the initial set, entirely novel scaffolds, and novel substituents on known scaffolds. The method is fast, and since all of the ligand functional groups are known to bind the target in the precise position and orientation present in the novel ligand, the success rate of this method should be superior to more traditional de novo design techniques. In an era of increasingly high-throughput structural biology, such methods for high-throughput utilization of structural information will become increasingly valuable. PMID:15139755

  2. Expression of two membrane fusion proteins, synaptosome-associated protein of 25 kDa and vesicle-associated membrane protein, in choroid plexus epithelium.

    PubMed

    Chung, I; Burkart, A; Szmydynger-Chodobska, J; Dodd, K A; Trimble, W S; Miller, K V; Shim, M; Chodobski, A

    2003-01-01

    In addition to being the major site of cerebrospinal fluid formation, the choroid plexus epithelium emerges as an important source of polypeptides in the brain. Physiologically regulated release of some polypeptides synthesized by the choroid plexus has been shown. The molecular mechanisms underlying this polypeptide secretion have not been characterized, however. In the present study, synaptosome-associated protein of 25 kDa and vesicle-associated membrane protein, two membrane fusion proteins playing a critical role in exocytosis in neurons and endocrine cells, were found to be expressed in the choroid plexus epithelium. It was also shown that in choroidal epithelium, synaptosome-associated protein of 25 kDa and vesicle-associated membrane protein stably interact. Two members of the vesicle-associated membrane protein family, vesicle-associated membrane protein-1 and vesicle-associated membrane protein-2, were expressed in the rat choroid plexus at the messenger RNA and protein level. However, their newly discovered isoforms, vesicle-associated membrane protein-1b and vesicle-associated membrane protein-2b, produced by alternative RNA splicing, were not detected in choroidal tissue. Immunohistochemistry demonstrated that vesicle-associated membrane protein is confined to the cytoplasm of choroidal epithelium, whereas synaptosome-associated protein of 25 kDa is associated with plasma membranes, albeit with a varied cellular distribution among species studied. Specifically, in the rat choroid plexus, synaptosome-associated protein of 25 kDa was localized to the basolateral membrane domain of choroidal epithelium and was expressed in small groups of cells. In comparison, in ovine and human choroidal tissues, apical staining for synaptosome-associated protein of 25 kDa was found in the majority of epithelial cells. These species-related differences in cellular synaptosome-associated protein of 25 kDa distribution suggested that the synaptosome-associated protein of

  3. Binding of the potential antitumour agent indirubin-5-sulphonate at the inhibitor site of rabbit muscle glycogen phosphorylase b. Comparison with ligand binding to pCDK2-cyclin A complex.

    PubMed

    Kosmopoulou, Magda N; Leonidas, Demetres D; Chrysina, Evangelia D; Bischler, Nicolas; Eisenbrand, Gerhard; Sakarellos, Constantinos E; Pauptit, Richard; Oikonomakos, Nikos G

    2004-06-01

    The binding of indirubin-5-sulphonate (E226), a potential anti-tumour agent and a potent inhibitor (IC(50) = 35 nm) of cyclin-dependent kinase 2 (CDK2) and glycogen phosphorylase (GP) has been studied by kinetic and crystallographic methods. Kinetic analysis revealed that E226 is a moderate inhibitor of GPb (K(i) = 13.8 +/- 0.2 micro m) and GPa (K(i) = 57.8 +/- 7.1 micro m) and acts synergistically with glucose. To explore the molecular basis of E226 binding we have determined the crystal structure of the GPb/E226 complex at 2.3 A resolution. Structure analysis shows clearly that E226 binds at the purine inhibitor site, where caffeine and flavopiridol also bind [Oikonomakos, N.G., Schnier, J.B., Zographos, S.E., Skamnaki, V.T., Tsitsanou, K.E. & Johnson, L.N. (2000) J. Biol. Chem.275, 34566-34573], by intercalating between the two aromatic rings of Phe285 and Tyr613. The mode of binding of E226 to GPb is similar, but not identical, to that of caffeine and flavopiridol. Comparative structural analyses of the GPb-E226, GPb-caffeine and GPb-flavopiridol complex structures reveal the structural basis of the differences in the potencies of the three inhibitors and indicate binding residues in the inhibitor site that can be exploited to obtain more potent inhibitors. Structural comparison of the GPb-E226 complex structure with the active pCDK2-cyclin A-E226 complex structure clearly shows the different binding modes of the ligand to GPb and CDK2; the more extensive interactions of E226 with the active site of CDK2 may explain its higher affinity towards the latter enzyme. PMID:15153119

  4. CDK2 and PKA Mediated-Sequential Phosphorylation Is Critical for p19INK4d Function in the DNA Damage Response

    PubMed Central

    Marazita, Mariela C.; Ogara, M. Florencia; Sonzogni, Silvina V.; Martí, Marcelo; Dusetti, Nelson J.; Pignataro, Omar P.; Cánepa, Eduardo T.

    2012-01-01

    DNA damage triggers a phosphorylation-based signaling cascade known as the DNA damage response. p19INK4d, a member of the INK4 family of CDK4/6 inhibitors, has been reported to participate in the DNA damage response promoting DNA repair and cell survival. Here, we provide mechanistic insight into the activation mechanism of p19INK4d linked to the response to DNA damage. Results showed that p19INK4d becomes phosphorylated following UV radiation, β-amyloid peptide and cisplatin treatments. ATM-Chk2/ATR-Chk1 signaling pathways were found to be differentially involved in p19INK4d phosphorylation depending on the type of DNA damage. Two sequential phosphorylation events at serine 76 and threonine 141 were identified using p19INK4d single-point mutants in metabolic labeling assays with 32P-orthophosphate. CDK2 and PKA were found to participate in p19INK4d phosphorylation process and that they would mediate serine 76 and threonine 141 modifications respectively. Nuclear translocation of p19INK4d induced by DNA damage was shown to be dependent on serine 76 phosphorylation. Most importantly, both phosphorylation sites were found to be crucial for p19INK4d function in DNA repair and cell survival. In contrast, serine 76 and threonine 141 were dispensable for CDK4/6 inhibition highlighting the independence of p19INK4d functions, in agreement with our previous findings. These results constitute the first description of the activation mechanism of p19INK4d in response to genotoxic stress and demonstrate the functional relevance of this activation following DNA damage. PMID:22558186

  5. Neurodegenerative diseases and widespread aggregation are associated with supersaturated proteins

    PubMed Central

    Ciryam, Prajwal; Tartaglia, Gian Gaetano; Morimoto, Richard I.; Dobson, Christopher M.; Vendruscolo, Michele

    2013-01-01

    Summary The maintenance of protein solubility is a fundamental aspect of protein homeostasis, as aggregation is associated with cytotoxicity and a variety of human diseases. Numerous proteins unrelated in sequence and structure, however, can misfold and aggregate, and widespread aggregation can occur in living systems under stress or ageing. A crucial question in this context is why only certain proteins aggregate in vivo while others do not. We identify here the proteins most vulnerable to aggregation as those whose cellular concentrations are high relative to their solubilities. These supersaturated proteins represent a metastable sub-proteome involved in pathological aggregation during stress and ageing, and are overrepresented in biochemical processes associated with neurodegenerative disorders. Consequently, such cellular processes become dysfunctional when the ability to keep intrinsically supersaturated proteins soluble is compromised. Thus, the simultaneous analysis of abundance and solubility can rationalize the diverse cellular pathologies linked to neurodegenerative diseases and aging. PMID:24183671

  6. 48-Kilodalton intermediate-filament-associated protein in astrocytes.

    PubMed

    Abd-el-Basset, E M; Kalnins, V I; Subrahmanyan, L; Ahmed, I; Fedoroff, S

    1988-01-01

    We provide evidence that a protein of 48 kilodaltons (KD), recognized by a normal rabbit serum (F2N), is associated with intermediate filaments (IF) of astrocytes both in cell cultures and in situ. Immunofluorescence staining shows that the F2N serum gives a fibrous staining pattern similar to that seen with anti-serum to glial filament protein (GFP), a protein specific for IF of astrocytes, and that both proteins are present in the perinuclear fibrous aggregates of IF produced by treating the cells with colchicine. At the ultrastructural level the gold particles decorating the 48-KD protein are localized in clusters along the IF, whereas the gold particles decorating the GFP are localized on the IF in a linear pattern. This difference in distribution and the fact that the two proteins have different electrophoretic mobilities on SDS gels indicates that the 48-KD protein although associated with IF is different from GFP. The 48-KD protein appears to be a distinct, developmentally regulated intermediate-filament-associated protein (IFAP), different from other IFAPs reported to date and the first IFAP described in astrocytes. Its appearance in late developmental stages when motile astroblasts are changing into nonmotile stellate cells suggests that the 48-KD protein may be involved in cross-linking the GFP-containing IF to provide more tensile strength to the cytoplasm at the expense of flexibility. PMID:2449542

  7. Proteins associated with human parainfluenza virus type 3.

    PubMed Central

    Jambou, R C; Elango, N; Venkatesan, S

    1985-01-01

    The polypeptides associated with human parainfluenza virus type 3 were identified. Five proteins were present in detergent- and salt-resistant viral cores. Of these, three proteins designated NP0, NP1, and NP2 of 68,000, 58,000, and 52,000 daltons, respectively, were stably associated with 50S RNA in CsCl gradient-purified nucleocapsids. The amounts of NP1 and NP2 were variable, and these proteins were shown to be structurally related to the major nucleocapsid protein (NP0) by partial Staphylococcus aureus V8 protease mapping. The other core proteins included a 240K protein designated L (candidate for the viral polymerase) and an 84K protein designated as the phosphoprotein (P) on the basis of a predominant incorporation of Pi. The viral envelope had four prominent proteins (72, 53, 40, and 12K) under reducing conditions of electrophoresis. The 72 and 53K proteins were specifically labeled with [3H]glucosamine and [3H]mannose. When sulfhydryl reagents were removed, a new 62K protein was visualized in place of the 72, 53, and 12K proteins. The 53 and 12K proteins were interpreted to be the two subunits (F1 and F2) of the fusion protein, and the 72K protein was designated as the HN (hemagglutinin-neuraminidase) glycoprotein. The unglycosylated 40K protein represented the viral matrix protein (M). Immunoprecipitation of infected cell lysates with rabbit hyperimmune antiserum against purified virus confirmed the viral origin of these polypeptides. Images PMID:2993658

  8. Programming Molecular Association and Viscoelastic Behavior in Protein Networks.

    PubMed

    Dooling, Lawrence J; Buck, Maren E; Zhang, Wen-Bin; Tirrell, David A

    2016-06-01

    A set of recombinant artificial proteins that can be cross-linked, by either covalent bonds or association of helical domains or both, is described. The designed proteins can be used to construct molecular networks in which the mechanism of crosslinking determines the time-dependent responses to mechanical deformation. PMID:27061171

  9. Expression of microtubule-associated protein 2 by reactive astrocytes.

    PubMed Central

    Geisert, E E; Johnson, H G; Binder, L I

    1990-01-01

    After an injury to the central nervous system, a dramatic change in the astrocytes bordering the wound occurs. The most characteristic feature of this process, termed reactive gliosis, is the upregulation of the intermediate filament protein, glial fibrillary acidic protein. In the present study, we show that reactive astrocytes express high levels of microtubule-associated protein 2 (MAP-2), a protein normally found in the somatodendritic compartment of neurons. When sections of injured brain are double-stained with antibodies directed against MAP-2 and glial fibrillary protein, all of the reactive astrocytes are found to contain MAP-2. The high levels of this protein appear to represent a permanent change in reactive astrocytes. In parallel quantitative studies, an elevated level of MAP-2 in the injured brain is confirmed by an immunoblot analysis of injured and normal white matter. This report demonstrates the direct involvement of a microtubule protein in the process of reactive gliosis. Images PMID:1692628

  10. BioID Identification of Lamin-Associated Proteins.

    PubMed

    Mehus, Aaron A; Anderson, Ruthellen H; Roux, Kyle J

    2016-01-01

    A- and B-type lamins support the nuclear envelope, contribute to heterochromatin organization, and regulate a myriad of nuclear processes. The mechanisms by which lamins function in different cell types and the mechanisms by which lamin mutations cause over a dozen human diseases (laminopathies) remain unclear. The identification of proteins associated with lamins is likely to provide fundamental insight into these mechanisms. BioID (proximity-dependent biotin identification) is a unique and powerful method for identifying protein-protein and proximity-based interactions in living cells. BioID utilizes a mutant biotin ligase from bacteria that is fused to a protein of interest (bait). When expressed in living cells and stimulated with excess biotin, this BioID-fusion protein promiscuously biotinylates directly interacting and vicinal endogenous proteins. Following biotin-affinity capture, the biotinylated proteins can be identified using mass spectrometry. BioID thus enables screening for physiologically relevant protein associations that occur over time in living cells. BioID is applicable to insoluble proteins such as lamins that are often refractory to study by other methods and can identify weak and/or transient interactions. We discuss the use of BioID to elucidate novel lamin-interacting proteins and its applications in a broad range of biological systems, and provide detailed protocols to guide new applications. PMID:26778550

  11. Identification of a Novel Inhibitory Actin-capping Protein Binding Motif in CD2-associated Protein*

    PubMed Central

    Bruck, Serawit; Huber, Tobias B.; Ingham, Robert J.; Kim, Kyoungtae; Niederstrasser, Hanspeter; Allen, Paul M.; Pawson, Tony; Cooper, John A.; Shaw, Andrey S.

    2008-01-01

    CD2-associated protein (CD2AP) is a scaffold molecule that plays a critical role in the maintenance of the kidney filtration barrier. Little, however, is understood about its mechanism of function. We used mass spectrometry to identify CD2AP-interacting proteins. Many of the proteins that we identified suggest a role for CD2AP in endocytosis and actin regulation. To address the role of CD2AP in regulation of the actin cytoskeleton, we focused on characterizing the interaction of CD2AP with actin-capping protein CP. We identified a novel binding motif LXHXTXXRPK(X)6P present in CD2AP that is also found in its homolog Cin85 and other capping protein-associated proteins such as CARMIL and CKIP-1. CD2AP inhibits the function of capping protein in vitro. Therefore, our results support a role of CD2AP in the regulation of the actin cytoskeleton. PMID:16707503

  12. Low protein silage associated with rumen impaction in suckler cows.

    PubMed

    2016-04-23

    Rumen impaction associated with low protein diets in a suckler cowCampylobacteriosis in suckler cowsPlant toxicity in ewesListerial encephalitis in ewes ITALIC! Chorioptes bovis-associated infertility in ramsThese are among matters discussed in the disease surveillance report for January 2016 from SAC Consulting: Veterinary Services (SAC C VS). PMID:27103691

  13. Cullin Family Proteins and Tumorigenesis: Genetic Association and Molecular Mechanisms

    PubMed Central

    Chen, Zhi; Sui, Jie; Zhang, Fan; Zhang, Caiguo

    2015-01-01

    Cullin family proteins function as scaffolds to form numerous E3 ubiquitin ligases with RING proteins, adaptor proteins and substrate recognition receptors. These E3 ligases further recognize numerous substrates to participate in a variety of cellular processes, such as DNA damage and repair, cell death and cell cycle progression. Clinically, cullin-associated E3 ligases have been identified to involve numerous human diseases, especially with regard to multiple cancer types. Over the past few years, our understanding of cullin proteins and their functions in genome stability and tumorigenesis has expanded enormously. Herein, this review briefly provides current perspectives on cullin protein functions, and mainly summarizes and discusses molecular mechanisms of cullin proteins in tumorigenesis. PMID:25663940

  14. Nanoparticles-cell association predicted by protein corona fingerprints

    NASA Astrophysics Data System (ADS)

    Palchetti, S.; Digiacomo, L.; Pozzi, D.; Peruzzi, G.; Micarelli, E.; Mahmoudi, M.; Caracciolo, G.

    2016-06-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells.In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface

  15. The Cdc48 machine in endoplasmic reticulum associated protein degradation.

    PubMed

    Wolf, Dieter H; Stolz, Alexandra

    2012-01-01

    The AAA-type ATPase Cdc48 (named p97/VCP in mammals) is a molecular machine in all eukaryotic cells that transforms ATP hydrolysis into mechanic power to unfold and pull proteins against physical forces, which make up a protein's structure and hold it in place. From the many cellular processes, Cdc48 is involved in, its function in endoplasmic reticulum associated protein degradation (ERAD) is understood best. This quality control process for proteins of the secretory pathway scans protein folding and discovers misfolded proteins in the endoplasmic reticulum (ER), the organelle, destined for folding of these proteins and their further delivery to their site of action. Misfolded lumenal and membrane proteins of the ER are detected by chaperones and lectins and retro-translocated out of the ER for degradation. Here the Cdc48 machinery, recruited to the ER membrane, takes over. After polyubiquitylation of the protein substrate, Cdc48 together with its dimeric co-factor complex Ufd1-Npl4 pulls the misfolded protein out and away from the ER membrane and delivers it to down-stream components for degradation by a cytosolic proteinase machine, the proteasome. The known details of the Cdc48-Ufd1-Npl4 motor complex triggered process are subject of this review article. PMID:21945179

  16. The association between glycosylphosphatidylinositol-anchored proteins and heterotrimeric G protein alpha subunits in lymphocytes.

    PubMed Central

    Solomon, K R; Rudd, C E; Finberg, R W

    1996-01-01

    Glycosylphosphatidylinositol (GPI)-anchored proteins are nonmembrane spanning cell surface proteins that have been demonstrated to be signal transduction molecules. Because these proteins do not extend into the cytoplasm, the mechanism by which cross-linking of these molecules leads to intracellular signal transduction events is obscure. Previous analysis has indicated that these proteins are associated with src family member tyrosine kinases; however, the role this interaction plays in the generation of intracellular signals is not clear. Here we show that GPI-anchored proteins are associated with alpha subunits of heterotrimeric GTP binding proteins (G proteins) in both human and murine lymphocytes. When the GPI-anchored proteins CD59, CD48, and Thy-1 were immunoprecipitated from various cell lines or freshly isolated lymphocytes, all were found to be associated with a 41-kDa phosphoprotein that we have identified, by using specific antisera, as a mixture of tyrosine phosphorylated G protein alpha subunits: a small amount of Gialpha1, and substantial amounts of Gialpha2 and Gialpha3. GTP binding assays performed with immunoprecipitations of CD59 indicated that there was GTP-binding activity associated with this molecule. Thus, we have shown by both immunochemical and functional criteria that GPI-anchored proteins are physically associated with G proteins. These experiments suggest a potential role of G proteins in the transduction of signals generated by GPI-anchored molecules expressed on lymphocytes of both mouse and human. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8650218

  17. Urease-associated heat shock protein of Helicobacter pylori.

    PubMed Central

    Evans, D J; Evans, D G; Engstrand, L; Graham, D Y

    1992-01-01

    Helicobacter pylori urease is an extracellular, cell-bound enzyme with a molecular weight of approximately 600,000 (600K enzyme) comprising six 66K and six 31K subunits. A 62K protein is closely associated with the H. pylori urease, both in crude preparations and after gel filtration; this protein can be removed from the urease by ion-exchange chromatography without inactivating the enzyme. We purified this urease-associated protein and determined its N-terminal amino acid sequence. The sequence is 80% homologous (identical plus conserved amino acid residues) to the Escherichia coli GroEL heat shock protein (HSP), 75% homologous to the human homolog, and 84% homologous to the HSP homolog found in species of Chlamydia. Thus, the 62K urease-associated protein of H. pylori belongs to the HSP60 family of stress proteins known as chaperonins. Evidently this protein, HSP62, participates in the extracellular assembly and/or protection of the urease against inactivation in the hostile environment of the stomach. Images PMID:1348725

  18. Analysis of alpha-synuclein-associated proteins by quantitative proteomics.

    PubMed

    Zhou, Yong; Gu, Guangyu; Goodlett, David R; Zhang, Terry; Pan, Catherine; Montine, Thomas J; Montine, Kathleen S; Aebersold, Ruedi H; Zhang, Jing

    2004-09-10

    To identify the proteins associated with soluble alpha-synuclein (AS) that might promote AS aggregation, a key event leading to neurodegeneration, we quantitatively compared protein profiles of AS-associated protein complexes in MES cells exposed to rotenone, a pesticide that produces parkinsonism in animals and induces Lewy body (LB)-like inclusions in the remaining dopaminergic neurons, and to vehicle. We identified more than 250 proteins associated with Nonidet P-40 soluble AS, and demonstrated that at least 51 of these proteins displayed significant differences in their relative abundance in AS complexes under conditions where rotenone was cytotoxic and induced formation of cytoplasmic inclusions immunoreactive to anti-AS. Overexpressing one of these proteins, heat shock protein (hsp) 70, not only protected cells from rotenone-mediated cytotoxicity but also decreased soluble AS aggregation. Furthermore, the protection afforded by hsp70 transfection appeared to be related to suppression of rotenone-induced oxidative stress as well as mitochondrial and proteasomal dysfunction. PMID:15234983

  19. Engineering nanoparticle-protein associations for protein crystal nucleation and nanoparticle arrangement

    NASA Astrophysics Data System (ADS)

    Benoit, Denise N.

    Engineering the nanoparticle - protein association offers a new way to form protein crystals as well as new approaches for arrangement of nanoparticles. Central to this control is the nanoparticle surface. By conjugating polymers on the surface with controlled molecular weights many properties of the nanoparticle can be changed including its size, stability in buffers and the association of proteins with its surface. Large molecular weight poly(ethylene glycol) (PEG) coatings allow for weak associations between proteins and nanoparticles. These interactions can lead to changes in how proteins crystallize. In particular, they decrease the time to nucleation and expand the range of conditions over which protein crystals form. Interestingly, when PEG chain lengths are too short then protein association is minimized and these effects are not observed. One important feature of protein crystals nucleated with nanoparticles is that the nanoparticles are incorporated into the crystals. What results are nanoparticles placed at well-defined distances in composite protein-nanoparticle crystals. Crystals on the size scale of 10 - 100 micrometers exhibit optical absorbance, fluorescence and super paramagnetic behavior derivative from the incorporated nanomaterials. The arrangement of nanoparticles into three dimensional arrays also gives rise to new and interesting physical and chemical properties, such as fluorescence enhancement and varied magnetic response. In addition, anisotropic nanomaterials aligned throughout the composite crystal have polarization dependent optical properties.

  20. Nanoparticles-cell association predicted by protein corona fingerprints.

    PubMed

    Palchetti, S; Digiacomo, L; Pozzi, D; Peruzzi, G; Micarelli, E; Mahmoudi, M; Caracciolo, G

    2016-07-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a "protein corona" layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø≈ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells. PMID:27279572

  1. A novel single-molecule study to determine protein--protein association constants.

    PubMed

    Ratcliff, G C; Erie, D A

    2001-06-20

    Atomic force microscopy (AFM) is traditionally used as an imaging technique to gain qualitative information for a biological system. We have successfully used the imaging capabilities of the AFM to determine protein-protein association constants. We have developed a method to measure the molecular weight of a protein based on its volume determined from AFM images. Our volume determination method allows for rapid, accurate analysis of large protein populations. On the basis of the measured volume, the fraction of monomers as dimers was determined for the DNA helicase UvrD, and the dissociation constant (K(d)) for the helicase was calculated. We determined a K(d) for UvrD of 1.4 microM, which is in good agreement with published K(d) data obtained from analytical ultracentrifugation (AUC) studies. Our method provides a rapid method for determining protein-protein association constants. PMID:11403593

  2. VAMP-1: a synaptic vesicle-associated integral membrane protein.

    PubMed

    Trimble, W S; Cowan, D M; Scheller, R H

    1988-06-01

    Several proteins are associated with, or are integral components of, the lipid bilayer that forms the delineating membrane of neuronal synaptic vesicles. To characterize these molecules, we used a polyclonal antiserum raised against purified cholinergic synaptic vesicles from Torpedo to screen a cDNA expression library constructed from mRNA of the electromotor nucleus. One clone encodes VAMP-1 (vesicle-associated membrane protein 1), a nervous-system-specific protein of 120 amino acids whose primary sequence can be divided into three domains: a proline-rich amino terminus, a highly charged internal region, and a hydrophobic carboxyl-terminal domain that is predicted to comprise a membrane anchor. Tryptic digestion of intact and lysed vesicles suggests that the protein faces the cytoplasm, where it may play a role in packaging, transport, or release of neurotransmitters. PMID:3380805

  3. Radioimmunoassay for pregnancy-associated plasma protein A

    SciTech Connect

    Sinosich, M.J.; Teisner, B.; Folkerson, J.; Saunders, D.M.; Grudzinskas, J.G.

    1982-01-01

    A specific and highly sensitive radioimmunoassay for determination of pregnancy-associated plasma protein A in human serum is described. The minimum detection limit for this protein was 2.9 ..mu..g/L. The within- and between-assay coefficients of variation were 4.0 and 4.5%, respectively. The circulating protein was detected within 32 days of conception in eight normal pregnancies and within 21 days in a twin pregnancy. Circulating concentrations in the mother at term were consistently higher (10-fold) than in matched amniotic fluid; none was detected in the umbilical circulation. This protein was also detected in the circulation of patients with hydatidiform mole. This assay will permit investigations into the clinical evaluation of measurements of the protein during early pregnancy and trophoblastic disease.

  4. Proteins associated with RNase E in a multicomponent ribonucleolytic complex.

    PubMed Central

    Miczak, A; Kaberdin, V R; Wei, C L; Lin-Chao, S

    1996-01-01

    The Escherichia coli endoribonuclease RNase E is essential for RNA processing and degradation. Earlier work provided evidence that RNase E exists intracellularly as part of a multicomponent complex and that one of the components of this complex is a 3'-to-5' exoribonuclease, polynucleotide phosphorylase (EC 2.7.7.8). To isolate and identify other components of the RNase E complex, FLAG-epitope-tagged RNase E (FLAG-Rne) fusion protein was purified on a monoclonal antibody-conjugated agarose column. The FLAG-Rne fusion protein, eluted by competition with the synthetic FLAG peptide, was found to be associated with other proteins. N-terminal sequencing of these proteins revealed the presence in the RNase E complex not only of polynucleotide phosphorylase but also of DnaK, RNA helicase, and enolase (EC 4.2.1.11). Another protein associated only with epitope-tagged temperature-sensitive (Rne-3071) mutant RNase E but not with the wild-type enzyme is GroEL. The FLAG-Rne complex has RNase E activity in vivo and in vitro. The relative amount of proteins associated with wild-type and Rne-3071 expressed at an elevated temperature differed. Images Fig. 1 Fig. 2 PMID:8632981

  5. Protein-Based Three-Dimensional Memories and Associative Processors

    NASA Astrophysics Data System (ADS)

    Birge, Robert

    2008-03-01

    The field of bioelectronics has benefited from the fact that nature has often solved problems of a similar nature to those which must be solved to create molecular electronic or photonic devices that operate with efficiency and reliability. Retinal proteins show great promise in bioelectronic devices because they operate with high efficiency (˜0.65%), high cyclicity (>10^7), operate over an extended wavelength range (360 -- 630 nm) and can convert light into changes in voltage, pH, absorption or refractive index. This talk will focus on a retinal protein called bacteriorhodopsin, the proton pump of the organism Halobacterium salinarum. Two memories based on this protein will be described. The first is an optical three-dimensional memory. This memory stores information using volume elements (voxels), and provides as much as a thousand-fold improvement in effective capacity over current technology. A unique branching reaction of a variant of bacteriorhodopsin is used to turn each protein into an optically addressed latched AND gate. Although three working prototypes have been developed, a number of cost/performance and architectural issues must be resolved prior to commercialization. The major issue is that the native protein provides a very inefficient branching reaction. Genetic engineering has improved performance by nearly 500-fold, but a further order of magnitude improvement is needed. Protein-based holographic associative memories will also be discussed. The human brain stores and retrieves information via association, and human intelligence is intimately connected to the nature and enormous capacity of this associative search and retrieval process. To a first order approximation, creativity can be viewed as the association of two seemingly disparate concepts to form a totally new construct. Thus, artificial intelligence requires large scale associative memories. Current computer hardware does not provide an optimal environment for creating artificial

  6. Dickkopf-related protein 3 is a potential Aβ-associated protein in Alzheimer's Disease.

    PubMed

    Bruggink, Kim A; Kuiperij, H Bea; Gloerich, Jolein; Otte-Höller, Irene; Rozemuller, Annemieke J M; Claassen, Jurgen A H R; Küsters, Benno; Verbeek, Marcel M

    2015-09-01

    Amyloid-β (Aβ) is the most prominent protein in Alzheimer's disease (AD) senile plaques. In addition, Aβ interacts with a variety of Aβ-associated proteins (AAPs), some of which can form complexes with Aβ and influence its clearance, aggregation or toxicity. Identification of novel AAPs may shed new light on the pathophysiology of AD and the metabolic fate of Aβ. In this study, we aimed to identify new AAPs by searching for proteins that may form soluble complexes with Aβ in CSF, using a proteomics approach. We identified the secreted Wnt pathway protein Dickkopf-related protein 3 (Dkk-3) as a potential Aβ-associated protein. Using immunohistochemistry on human AD brain tissue, we observed that (i) Dkk-3 co-localizes with Aβ in the brain, both in diffuse and classic plaques. (ii) Dkk-3 is expressed in neurons and in blood vessel walls in the brain and (iii) is secreted by leptomeningeal smooth muscle cells in vitro. Finally, measurements using ELISA revealed that (iv) Dkk-3 protein is abundantly present in both cerebrospinal fluid and serum, but its levels are similar in non-demented controls and patients with AD, Lewy body dementia, and frontotemporal dementia. Our study demonstrates that Dkk-3 is a hitherto unidentified Aβ-associated protein which, given its relatively high cerebral concentrations and co-localization with Aβ, is potentially involved in AD pathology. In this study, we propose that Dickkopf-related protein-3 (Dkk-3) might be a novel Amyloid-β (Aβ) associated protein. We demonstrate that Dkk-3 is expressed in the brain, especially in vessel walls, and co-localizes with Aβ in senile plaques. Furthermore, Dkk-3 levels in cerebrospinal fluid strongly correlate with Aβ40 levels, but were not suitable to discriminate non-demented controls and patients with dementia. PMID:26119087

  7. Encounter complexes and dimensionality reduction in protein–protein association

    PubMed Central

    Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor

    2014-01-01

    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein–protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001 PMID:24714491

  8. Thermodynamics of folding and association of lattice-model proteins

    NASA Astrophysics Data System (ADS)

    Cellmer, Troy; Bratko, Dusan; Prausnitz, John M.; Blanch, Harvey

    2005-05-01

    Closely related to the "protein folding problem" is the issue of protein misfolding and aggregation. Protein aggregation has been associated with the pathologies of nearly 20 human diseases and presents serious difficulties during the manufacture of pharmaceutical proteins. Computational studies of multiprotein systems have recently emerged as a powerful complement to experimental efforts aimed at understanding the mechanisms of protein aggregation. We describe the thermodynamics of systems containing two lattice-model 64-mers. A parallel tempering algorithm abates problems associated with glassy systems and the weighted histogram analysis method improves statistical quality. The presence of a second chain has a substantial effect on single-chain conformational preferences. The melting temperature is substantially reduced, and the increase in the population of unfolded states is correlated with an increase in interactions between chains. The transition from two native chains to a non-native aggregate is entropically favorable. Non-native aggregates receive ˜25% of their stabilizing energy from intraprotein contacts not found in the lowest-energy structure. Contact maps show that for non-native dimers, nearly 50% of the most probable interprotein contacts involve pairs of residues that form native contacts, suggesting that a domain-swapping mechanism is involved in self-association.

  9. Protein landscape at Drosophila melanogaster telomere-associated sequence repeats.

    PubMed

    Antão, José M; Mason, James M; Déjardin, Jérôme; Kingston, Robert E

    2012-06-01

    The specific set of proteins bound at each genomic locus contributes decisively to regulatory processes and to the identity of a cell. Understanding of the function of a particular locus requires the knowledge of what factors interact with that locus and how the protein composition changes in different cell types or during the response to internal and external signals. Proteomic analysis of isolated chromatin segments (PICh) was developed as a tool to target, purify, and identify proteins associated with a defined locus and was shown to allow the purification of human telomeric chromatin. Here we have developed this method to identify proteins that interact with the Drosophila telomere-associated sequence (TAS) repeats. Several of the purified factors were validated as novel TAS-bound proteins by chromatin immunoprecipitation, and the Brahma complex was confirmed as a dominant modifier of telomeric position effect through the use of a genetic test. These results offer information on the efficacy of applying the PICh protocol to loci with sequence more complex than that found at human telomeres and identify proteins that bind to the TAS repeats, which might contribute to TAS biology and chromatin silencing. PMID:22493064

  10. Virulent strain associated outer membrane proteins of Borrelia burgdorferi.

    PubMed Central

    Skare, J T; Shang, E S; Foley, D M; Blanco, D R; Champion, C I; Mirzabekov, T; Sokolov, Y; Kagan, B L; Miller, J N; Lovett, M A

    1995-01-01

    We have isolated and purified outer membrane vesicles (OMV) from Borrelia burgdorferi strain B31 based on methods developed for isolation of Treponema pallidum OMV. Purified OMV exhibited distinct porin activities with conductances of 0.6 and 12.6 nano-Siemen and had no detectable beta-NADH oxidase activity indicating their outer membrane origin and their lack of inner membrane contamination, respectively. Hydrophobic proteins were identified by phase partitioning with Triton X-114. Most of these hydrophobic membrane proteins were not acylated, suggesting that they are outer membrane-spanning proteins. Identification of palmitate-labeled lipoproteins revealed that several were enriched in the OMV, several were enriched in the protoplasmic cylinder inner membrane fraction, and others were found exclusively associated with the inner membrane. The protein composition of OMV changed significantly with successive in vitro cultivation of strain B31. Using antiserum with specificity for virulent strain B31, we identified OMV antigens on the surface of the spirochete and identified proteins whose presence in OMV could be correlated with virulence and protective immunity in the rabbit Lyme disease model. These virulent strain associated outer membrane-spanning proteins may provide new insight into the pathogenesis of Lyme disease. Images PMID:7593626

  11. Proteins that associate with lamins: Many faces, many functions

    SciTech Connect

    Schirmer, Eric C. . E-mail: e.schirmer@ed.ac.uk; Foisner, Roland . E-mail: roland.foisner@meduniwien.ac.at

    2007-06-10

    Lamin-associated polypeptides (LAPs) comprise inner nuclear membrane proteins tightly associated with the peripheral lamin scaffold as well as proteins forming stable complexes with lamins in the nucleoplasm. The involvement of LAPs in a wide range of human diseases may be linked to an equally bewildering range of their functions, including sterol reduction, histone modification, transcriptional repression, and Smad- and {beta}-catenin signaling. Many LAPs are likely to be at the center of large multi-protein complexes, components of which may dictate their functions, and a few LAPs have defined enzymatic activities. Here we discuss the definition of LAPs, review their many binding partners, elaborate their functions in nuclear architecture, chromatin organization, gene expression and signaling, and describe what is currently known about their links to human disease.

  12. Nanoforms: a new type of protein-associated mineralization

    NASA Astrophysics Data System (ADS)

    Vali, Hojatollah; McKee, Marc D.; Çiftçioglu, Neva; Sears, S. Kelly; Plows, Fiona L.; Chevet, Eric; Ghiabi, Pegah; Plavsic, Marc; Kajander, E. Olavi; Zare, Richard N.

    2001-01-01

    Controversy surrounds the interpretation of various nano-phenomena as being living organisms. Incubation of fetal bovine serum under standard cell culture conditions results in the formation of free entities in solution, here referred to as nanoforms. These nanoforms, when examined by transmission electron microscopy, have a distinct ovoid morphology ranging in size from tens to hundreds of nanometers. They are composed of hydroxyapatite and proteins and constitute a novel form of protein-associated mineralization. No detectable cell structure resembling bacteria is apparent. However, immunodetection of the proteins associated with the nanoforms, by two specific monoclonal antibodies, suggests a possible biogenic origin. The significance of nanoforms for the recognition of biological activity in ancient geological systems is discussed. The mode of mineralization in nanoforms is also compared to matrix-mediated calcification in vertebrates.

  13. Characterization of Disease-Associated Mutations in Human Transmembrane Proteins

    PubMed Central

    Molnár, János; Szakács, Gergely; Tusnády, Gábor E.

    2016-01-01

    Transmembrane protein coding genes are commonly associated with human diseases. We characterized disease causing mutations and natural polymorphisms in transmembrane proteins by mapping missense genetic variations from the UniProt database on the transmembrane protein topology listed in the Human Transmembrane Proteome database. We found characteristic differences in the spectrum of amino acid changes within transmembrane regions: in the case of disease associated mutations the non-polar to non-polar and non-polar to charged amino acid changes are equally frequent. In contrast, in the case of natural polymorphisms non-polar to charged amino acid changes are rare while non-polar to non-polar changes are common. The majority of disease associated mutations result in glycine to arginine and leucine to proline substitutions. Mutations to positively charged amino acids are more common in the center of the lipid bilayer, where they cause more severe structural and functional anomalies. Our analysis contributes to the better understanding of the effect of disease associated mutations in transmembrane proteins, which can help prioritize genetic variations in personal genomic investigations. PMID:26986070

  14. Matrix Gla Protein polymorphisms are associated with coronary artery calcification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix Gla Protein (MGP) is a key regulator of vascular calcification. Genetic variation at the MGP locus could modulate the development of coronary artery calcification (CAC). We examined the cross-sectional association between MGP SNPs [rs1800802 (T-138C), rs1800801 (G-7A),and rs4236 (Ala102Thr)...

  15. Intrinsic membrane association of Drosophila cysteine string proteins.

    PubMed

    Mastrogiacomo, A; Kohan, S A; Whitelegge, J P; Gundersen, C B

    1998-09-25

    Cysteine string proteins (csps) are highly conserved constituents of vertebrate and invertebrate secretory organelles. Biochemical and immunoprecipitation experiments implied that vertebrate csps were integral membrane proteins that were tethered to the outer leaflet of secretory vesicles via the fatty acyl residues of their extensively acylated cysteine string. Independently, work of others suggested that Drosophila csps were peripheral membrane proteins that were anchored to membranes by a mechanism that was independent of the cysteine string and its fatty acyl residues. We extended these investigation and found first that sodium carbonate treatment partially stripped both csps and the integral membrane protein, synaptotagmin, from Drosophila membranes. Concomitantly, carbonate released fatty acids into the medium, arguing that it has a mild, solubilizing effect on these membranes. Second, we observed that Drosophila csps behaved like integral membrane proteins in Triton X-114 partitioning experiments. Third, we found that when membrane-bound csps were deacylated, they remained membrane bound. Moreover, it appeared that hydrophobic interactions were necessary for this persistent membrane association of csps. Thus, neither reducing conditions, urea, nor chaotropic agents displaced deacylated csps from membranes. Only detergents were effective in solubilizing deacylated csps. Finally, by virtue of the inaccessibility of deacylated csps to thiol alkylation by the membrane-impermeant alkylating reagent, iodoacetic acid, we inferred that it was the cysteine string domain that mediated the membrane association of deacylated csps. Thus, we conclude that under physiological conditions csps are integral membrane proteins of secretory organelles, and that the cysteine string domain plays a vital role in the membrane association of these proteins. PMID:9771899

  16. Building a Hierarchical Organization of Protein Complexes Out of Protein Association Data

    PubMed Central

    Stojmirović, Aleksandar; Yu, Yi-Kuo

    2014-01-01

    Organizing experimentally determined protein associations as a hierarchy can be a good approach to elucidating the content of protein complexes and the modularity of subcomplexes. Several challenges exist. First, intrinsically sticky proteins, such as chaperones, are often falsely assigned to many functionally unrelated complexes. Second, the reported collections of proteins may not be true “complexes” in the sense that they bind together and perform a joint cellular function. Third, due to imperfect sensitivity of protein detection methods, both false positive and false negative assignments of a protein to complexes may occur. We mitigate the first issue by down-weighting sticky proteins by their occurrence frequencies. We approach the other two problems by merging nearly identical complexes and by constructing a directed acyclic graph (DAG) based on the relationship of partial inclusion. The constructed DAG, within which smaller complexes form parts of the larger, can reveal how different complexes are joined. By merging almost identical complexes one can deemphasize the influence of false positives, while allowing false negatives to be rescued by other nearly identical association data. We investigate several protein weighting schemes and compare their corresponding DAGs using yeast and human complexes. We find that the scheme incorporating weights based on information flow in the network of direct protein–protein interactions produces biologically most meaningful DAGs. In either yeast or human, isolated nodes form a large proportion of the final hierarchy. While most connected components encompass very few nodes, the largest one for each species contains a sizable portion of all nodes. By considering examples of subgraphs composed of nodes containing a specified protein, we illustrate that the graphs' topological features can correctly suggest the biological roles of protein complexes. The input data, final results and the source code are available at ftp

  17. Association of ebola virus matrix protein VP40 with microtubules.

    PubMed

    Ruthel, Gordon; Demmin, Gretchen L; Kallstrom, George; Javid, Melodi P; Badie, Shirin S; Will, Amy B; Nelle, Timothy; Schokman, Rowena; Nguyen, Tam L; Carra, John H; Bavari, Sina; Aman, M Javad

    2005-04-01

    Viruses exploit a variety of cellular components to complete their life cycles, and it has become increasingly clear that use of host cell microtubules is a vital part of the infection process for many viruses. A variety of viral proteins have been identified that interact with microtubules, either directly or via a microtubule-associated motor protein. Here, we report that Ebola virus associates with microtubules via the matrix protein VP40. When transfected into mammalian cells, a fraction of VP40 colocalized with microtubule bundles and VP40 coimmunoprecipitated with tubulin. The degree of colocalization and microtubule bundling in cells was markedly intensified by truncation of the C terminus to a length of 317 amino acids. Further truncation to 308 or fewer amino acids abolished the association with microtubules. Both the full-length and the 317-amino-acid truncation mutant stabilized microtubules against depolymerization with nocodazole. Direct physical interaction between purified VP40 and tubulin proteins was demonstrated in vitro. A region of moderate homology to the tubulin binding motif of the microtubule-associated protein MAP2 was identified in VP40. Deleting this region resulted in loss of microtubule stabilization against drug-induced depolymerization. The presence of VP40-associated microtubules in cells continuously treated with nocodazole suggested that VP40 promotes tubulin polymerization. Using an in vitro polymerization assay, we demonstrated that VP40 directly enhances tubulin polymerization without any cellular mediators. These results suggest that microtubules may play an important role in the Ebola virus life cycle and potentially provide a novel target for therapeutic intervention against this highly pathogenic virus. PMID:15795257

  18. Chicken Egg Shell Membrane Associated Proteins and Peptides.

    PubMed

    Makkar, Sarbjeet; Liyanage, Rohana; Kannan, Lakshmi; Packialakshmi, Balamurugan; Lay, Jack O; Rath, Narayan C

    2015-11-11

    Egg shells are poultry industry byproducts with potential for use in various biological and agricultural applications. We have been interested in the membranes underlying the calcareous shell as a feed supplement, which showed potential to improve immunity and performance of post hatch poultry. Therefore, to determine their protein and peptide profiles, we extracted the egg shell membranes (ESM) from fresh unfertilized eggs with methanol and guanidine hydrochloride (GdHCl) to obtain soluble proteins for analysis by mass spectrometry. The methanol extract was subjected to matrix-assisted laser desorption ionization (MALDI), electrospray ionization (ESI), high-performance reverse phase liquid chromatographic separation (HPLC), and tandem mass spectrometry (MS/MS) to determine its peptide and protein profiles. The GdHCl extract was subjected to ESI-HPLC-MS/MS following trypsin digestion of reduced/alkylated proteins. Nine proteins from the methanol extract and >275 proteins from the GdHCl extract were tentatively identified. The results suggested the presence of several abundant proteins from egg whites, such as ovoalbumin, ovotransferrin, and lysozyme as well as many others associated with antimicrobial, biomechanical, cytoskeletal organizational, cell signaling, and enzyme activities. Collagens, keratin, agrin, and laminin were some of the structural proteins present in the ESM. The methanol-soluble fraction contained several clusterin peptides and defensins, particularly, two isoforms of gallin. The ratios of the two isoforms of gallin differed between the membranes obtained from brown and white eggs. The high abundance of several antimicrobial, immunomodulatory, and other bioactive proteins in the ESM along with its potential to entrap various microbes and antigens may make it a suitable vehicle for oral immunization of post hatch poultry and improve their disease resistance. PMID:26485361

  19. Association of the P6 protein of Cauliflower mosaic virus with plasmodesmata and plasmodesmal proteins.

    PubMed

    Rodriguez, Andres; Angel, Carlos A; Lutz, Lindy; Leisner, Scott M; Nelson, Richard S; Schoelz, James E

    2014-11-01

    The P6 protein of Cauliflower mosaic virus (CaMV) is responsible for the formation of inclusion bodies (IBs), which are the sites for viral gene expression, replication, and virion assembly. Moreover, recent evidence indicates that ectopically expressed P6 inclusion-like bodies (I-LBs) move in association with actin microfilaments. Because CaMV virions accumulate preferentially in P6 IBs, we hypothesized that P6 IBs have a role in delivering CaMV virions to the plasmodesmata. We have determined that the P6 protein interacts with a C2 calcium-dependent membrane-targeting protein (designated Arabidopsis [Arabidopsis thaliana] Soybean Response to Cold [AtSRC2.2]) in a yeast (Saccharomyces cerevisiae) two-hybrid screen and have confirmed this interaction through coimmunoprecipitation and colocalization assays in the CaMV host Nicotiana benthamiana. An AtSRC2.2 protein fused to red fluorescent protein (RFP) was localized to the plasma membrane and specifically associated with plasmodesmata. The AtSRC2.2-RFP fusion also colocalized with two proteins previously shown to associate with plasmodesmata: the host protein Plasmodesmata-Localized Protein1 (PDLP1) and the CaMV movement protein (MP). Because P6 I-LBs colocalized with AtSRC2.2 and the P6 protein had previously been shown to interact with CaMV MP, we investigated whether P6 I-LBs might also be associated with plasmodesmata. We examined the colocalization of P6-RFP I-LBs with PDLP1-green fluorescent protein (GFP) and aniline blue (a stain for callose normally observed at plasmodesmata) and found that P6-RFP I-LBs were associated with each of these markers. Furthermore, P6-RFP coimmunoprecipitated with PDLP1-GFP. Our evidence that a portion of P6-GFP I-LBs associate with AtSRC2.2 and PDLP1 at plasmodesmata supports a model in which P6 IBs function to transfer CaMV virions directly to MP at the plasmodesmata. PMID:25239023

  20. Root carbon and protein metabolism associated with heat tolerance.

    PubMed

    Huang, Bingru; Rachmilevitch, Shimon; Xu, Jichen

    2012-05-01

    Extensive past efforts have been taken toward understanding heat tolerance mechanisms of the aboveground organs. Root systems play critical roles in whole-plant adaptation to heat stress, but are less studied. This review discusses recent research results revealing some critical physiological and metabolic factors underlying root thermotolerance, with a focus on temperate perennial grass species. Comparative analysis of differential root responses to supraoptimal temperatures by a heat-adapted temperate C3 species, Agrostis scabra, which can survive high soil temperatures up to 45 °C in geothermal areas in Yellow Stone National Park, and a heat-sensitive cogeneric species, Agrostis stolonifera, suggested that efficient carbon and protein metabolism is critical for root thermotolerance. Superior root thermotolerance in a perennial grass was associated with a greater capacity to control respiratory costs through respiratory acclimation, lowering carbon investment in maintenance for protein turnover, and efficiently partitioning carbon into different metabolic pools and alternative respiration pathways. Proteomic analysis demonstrated that root thermotolerance was associated with an increased maintenance of stability and less degradation of proteins, particularly those important for metabolism and energy production. In addition, thermotolerant roots are better able to maintain growth and activity during heat stress by activating stress defence proteins such as those participating in antioxidant defence (i.e. superoxide dismutase, peroxidase, glutathione S-transferase) and chaperoning protection (i.e. heat shock protein). PMID:22328905

  1. Heat Shock Proteins in Association with Heat Tolerance in Grasses

    PubMed Central

    Xu, Yan; Zhan, Chenyang; Huang, Bingru

    2011-01-01

    The grass family Poaceae includes annual species cultivated as major grain crops and perennial species cultivated as forage or turf grasses. Heat stress is a primary factor limiting growth and productivity of cool-season grass species and is becoming a more significant problem in the context of global warming. Plants have developed various mechanisms in heat-stress adaptation, including changes in protein metabolism such as the induction of heat shock proteins (HSPs). This paper summarizes the structure and function of major HSPs, recent research progress on the association of HSPs with grass tolerance to heat stress, and incorporation of HSPs in heat-tolerant grass breeding. PMID:22084689

  2. Balanced Protein–Water Interactions Improve Properties of Disordered Proteins and Non-Specific Protein Association

    PubMed Central

    2015-01-01

    Some frequently encountered deficiencies in all-atom molecular simulations, such as nonspecific protein–protein interactions being too strong, and unfolded or disordered states being too collapsed, suggest that proteins are insufficiently well solvated in simulations using current state-of-the-art force fields. To address these issues, we make the simplest possible change, by modifying the short-range protein–water pair interactions, and leaving all the water–water and protein–protein parameters unchanged. We find that a modest strengthening of protein–water interactions is sufficient to recover the correct dimensions of intrinsically disordered or unfolded proteins, as determined by direct comparison with small-angle X-ray scattering (SAXS) and Förster resonance energy transfer (FRET) data. The modification also results in more realistic protein-protein affinities, and average solvation free energies of model compounds which are more consistent with experiment. Most importantly, we show that this scaling is small enough not to affect adversely the stability of the folded state, with only a modest effect on the stability of model peptides forming α-helix and β-sheet structures. The proposed adjustment opens the way to more accurate atomistic simulations of proteins, particularly for intrinsically disordered proteins, protein–protein association, and crowded cellular environments. PMID:25400522

  3. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways.

    PubMed

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P; Taub, Dennis D

    2014-12-20

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levels and impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  4. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    PubMed Central

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  5. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  6. Adeno-associated virus rep protein synthesis during productive infection

    SciTech Connect

    Redemann, B.E.; Mendelson, E.; Carter, B.J.

    1989-02-01

    Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. The authors studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with (/sup 35/S)methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing to a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased.

  7. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.

    PubMed

    Anand, Gaurav; Zhang, Fuming; Linhardt, Robert J; Belfort, Georges

    2011-03-01

    Removing adsorbed protein from metals has significant health and industrial consequences. There are numerous protein-adsorption studies using model self-assembled monolayers or polymeric substrates but hardly any high-resolution measurements of adsorption and removal of proteins on industrially relevant transition metals. Surgeons and ship owners desire clean metal surfaces to reduce transmission of disease via surgical instruments and minimize surface fouling (to reduce friction and corrosion), respectively. A major finding of this work is that, besides hydrophobic interaction adhesion energy, water content in an adsorbed protein layer and secondary structure of proteins determined the access and hence ability to remove adsorbed proteins from metal surfaces with a strong alkaline-surfactant solution (NaOH and 5 mg/mL SDS in PBS at pH 11). This is demonstrated with three blood proteins (bovine serum albumin, immunoglobulin, and fibrinogen) and four transition metal substrates and stainless steel (platinum (Pt), gold (Au), tungsten (W), titanium (Ti), and 316 grade stainless steel (SS)). All the metallic substrates were checked for chemical contaminations like carbon and sulfur and were characterized using X-ray photoelectron spectroscopy (XPS). While Pt and Au surfaces were oxide-free (fairly inert elements), W, Ti, and SS substrates were associated with native oxide. Difference measurements between a quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance spectroscopy (SPR) provided a measure of the water content in the protein-adsorbed layers. Hydrophobic adhesion forces, obtained with atomic force microscopy, between the proteins and the metals correlated with the amount of the adsorbed protein-water complex. Thus, the amount of protein adsorbed decreased with Pt, Au, W, Ti and SS, in this order. Neither sessile contact angle nor surface roughness of the metal substrates was useful as predictors here. All three globular proteins

  8. Large-scale de novo prediction of physical protein-protein association.

    PubMed

    Elefsinioti, Antigoni; Saraç, Ömer Sinan; Hegele, Anna; Plake, Conrad; Hubner, Nina C; Poser, Ina; Sarov, Mihail; Hyman, Anthony; Mann, Matthias; Schroeder, Michael; Stelzl, Ulrich; Beyer, Andreas

    2011-11-01

    Information about the physical association of proteins is extensively used for studying cellular processes and disease mechanisms. However, complete experimental mapping of the human interactome will remain prohibitively difficult in the near future. Here we present a map of predicted human protein interactions that distinguishes functional association from physical binding. Our network classifies more than 5 million protein pairs predicting 94,009 new interactions with high confidence. We experimentally tested a subset of these predictions using yeast two-hybrid analysis and affinity purification followed by quantitative mass spectrometry. Thus we identified 462 new protein-protein interactions and confirmed the predictive power of the network. These independent experiments address potential issues of circular reasoning and are a distinctive feature of this work. Analysis of the physical interactome unravels subnetworks mediating between different functional and physical subunits of the cell. Finally, we demonstrate the utility of the network for the analysis of molecular mechanisms of complex diseases by applying it to genome-wide association studies of neurodegenerative diseases. This analysis provides new evidence implying TOMM40 as a factor involved in Alzheimer's disease. The network provides a high-quality resource for the analysis of genomic data sets and genetic association studies in particular. Our interactome is available via the hPRINT web server at: www.print-db.org. PMID:21836163

  9. Large-scale De Novo Prediction of Physical Protein-Protein Association*

    PubMed Central

    Elefsinioti, Antigoni; Saraç, Ömer Sinan; Hegele, Anna; Plake, Conrad; Hubner, Nina C.; Poser, Ina; Sarov, Mihail; Hyman, Anthony; Mann, Matthias; Schroeder, Michael; Stelzl, Ulrich; Beyer, Andreas

    2011-01-01

    Information about the physical association of proteins is extensively used for studying cellular processes and disease mechanisms. However, complete experimental mapping of the human interactome will remain prohibitively difficult in the near future. Here we present a map of predicted human protein interactions that distinguishes functional association from physical binding. Our network classifies more than 5 million protein pairs predicting 94,009 new interactions with high confidence. We experimentally tested a subset of these predictions using yeast two-hybrid analysis and affinity purification followed by quantitative mass spectrometry. Thus we identified 462 new protein-protein interactions and confirmed the predictive power of the network. These independent experiments address potential issues of circular reasoning and are a distinctive feature of this work. Analysis of the physical interactome unravels subnetworks mediating between different functional and physical subunits of the cell. Finally, we demonstrate the utility of the network for the analysis of molecular mechanisms of complex diseases by applying it to genome-wide association studies of neurodegenerative diseases. This analysis provides new evidence implying TOMM40 as a factor involved in Alzheimer's disease. The network provides a high-quality resource for the analysis of genomic data sets and genetic association studies in particular. Our interactome is available via the hPRINT web server at: www.print-db.org. PMID:21836163

  10. Phytoferritin association induced by EGCG inhibits protein degradation by proteases.

    PubMed

    Wang, Aidong; Zhou, Kai; Qi, Xin; Zhao, Guanghua

    2014-12-01

    Phytoferritin is a promising resource of non-heme iron supplementation, but it is not stable against degradation by proteases in the gastrointestinal tract. Therefore, how to improve the stability of ferritin in the presence of proteases is a challenge. Since (-)-epigallocatechin-3-gallate (EGCG) is rich in phenolic-hydroxyl groups, it could interact with ferritin through hydrogen bonds, thereby preventing protein from degradation. To confirm this idea, we focus on the interaction between EGCG and phytoferritin, and the consequence of such interaction. Results demonstrated that EGCG did interact with ferritin, and such interaction induced the change in the tertiary/quaternary structure of protein but not in its secondary structure. Furthermore, stopped-flow and dynamic light scattering (DLS) results showed that EGCG could trigger ferritin association. Consequently, such protein association markedly inhibited protein digestion by pepsin at pH 4.0 and by trypsin at pH 7.5. These findings raise the possibility to improve the stability of phytoferritin in the presence of proteases. PMID:25384342

  11. Assessing association between protein truncating variants and quantitative traits

    PubMed Central

    Rivas, Manuel A.; Pirinen, Matti; Neville, Matthew J.; Gaulton, Kyle J.; Moutsianas, Loukas; Lindgren, Cecilia M.; Karpe, Fredrik; McCarthy, Mark I.; Donnelly, Peter

    2013-01-01

    Motivation: In sequencing studies of common diseases and quantitative traits, power to test rare and low frequency variants individually is weak. To improve power, a common approach is to combine statistical evidence from several genetic variants in a region. Major challenges are how to do the combining and which statistical framework to use. General approaches for testing association between rare variants and quantitative traits include aggregating genotypes and trait values, referred to as ‘collapsing’, or using a score-based variance component test. However, little attention has been paid to alternative models tailored for protein truncating variants. Recent studies have highlighted the important role that protein truncating variants, commonly referred to as ‘loss of function’ variants, may have on disease susceptibility and quantitative levels of biomarkers. We propose a Bayesian modelling framework for the analysis of protein truncating variants and quantitative traits. Results: Our simulation results show that our models have an advantage over the commonly used methods. We apply our models to sequence and exome-array data and discover strong evidence of association between low plasma triglyceride levels and protein truncating variants at APOC3 (Apolipoprotein C3). Availability: Software is available from http://www.well.ox.ac.uk/~rivas/mamba Contact: donnelly@well.ox.ac.uk PMID:23860716

  12. Altered sodium channel-protein associations in critical illness myopathy

    PubMed Central

    2012-01-01

    Background During the acute phase of critical illness myopathy (CIM) there is inexcitability of skeletal muscle. In a rat model of CIM, muscle inexcitability is due to inactivation of sodium channels. A major contributor to this sodium channel inactivation is a hyperpolarized shift in the voltage dependence of sodium channel inactivation. The goal of the current study was to find a biochemical correlate of the hyperpolarized shift in sodium channel inactivation. Methods The rat model of CIM was generated by cutting the sciatic nerve and subsequent injections of dexamethasone for 7 days. Skeletal muscle membranes were prepared from gastrocnemius muscles, and purification and biochemical analyses carried out. Immunoprecipitations were performed with a pan-sodium channel antibody, and the resulting complexes probed in Western blots with various antibodies. Results We carried out analyses of sodium channel glycosylation, phosphorylation, and association with other proteins. Although there was some loss of channel glycosylation in the disease, as assessed by size analysis of glycosylated and de-glycosylated protein in control and CIM samples, previous work by other investigators suggest that such loss would most likely shift channel inactivation gating in a depolarizing direction; thus such loss was viewed as compensatory rather than causative of the disease. A phosphorylation site at serine 487 was identified on the NaV 1.4 sodium channel α subunit, but there was no clear evidence of altered phosphorylation in the disease. Co-immunoprecipitation experiments carried out with a pan-sodium channel antibody confirmed that the sodium channel was associated with proteins of the dystrophin associated protein complex (DAPC). This complex differed between control and CIM samples. Syntrophin, dystrophin, and plectin associated strongly with sodium channels in both control and disease conditions, while β-dystroglycan and neuronal nitric oxide synthase (nNOS) associated

  13. 14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes

    PubMed Central

    Xu, Zhe; Graham, Kourtney; Foote, Molly; Liang, Fengshan; Rizkallah, Raed; Hurt, Myra; Wang, Yanchang; Wu, Yuying; Zhou, Yi

    2013-01-01

    Summary The aggresome is a key cytoplasmic organelle for sequestration and clearance of toxic protein aggregates. Although loading misfolded proteins cargos to dynein motors has been recognized as an important step in the aggresome formation process, the molecular machinery that mediates the association of cargos with the dynein motor is poorly understood. Here, we report a new aggresome-targeting pathway that involves isoforms of 14-3-3, a family of conserved regulatory proteins. 14-3-3 interacts with both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3), thereby recruiting chaperone-associated protein cargos to dynein motors for their transport to aggresomes. This molecular cascade entails functional dimerization of 14-3-3, which we show to be crucial for the formation of aggresomes in both yeast and mammalian cells. These results suggest that 14-3-3 functions as a molecular adaptor to promote aggresomal targeting of misfolded protein aggregates and may link such complexes to inclusion bodies observed in various neurodegenerative diseases. PMID:23843611

  14. Protein 600 is a microtubule/endoplasmic reticulum-associated protein in CNS neurons.

    PubMed

    Shim, Su Yeon; Wang, Jian; Asada, Naoyuki; Neumayer, Gernot; Tran, Hong Chi; Ishiguro, Kei-ichiro; Sanada, Kamon; Nakatani, Yoshihiro; Nguyen, Minh Dang

    2008-04-01

    There is an increasing body of literature pointing to cytoskeletal proteins as spatial organizers and interactors of organelles. In this study, we identified protein 600 (p600) as a novel microtubule-associated protein (MAP) developmentally regulated in neurons. p600 exhibits the unique feature to interact with the endoplasmic reticulum (ER). Silencing of p600 by RNA interference (RNAi) destabilizes neuronal processes in young primary neurons undergoing neurite extension and containing scarce staining of the ER marker Bip. Furthermore, in utero electroporation of p600 RNAi alters neuronal migration, a process that depends on synergistic actions of microtubule dynamics and ER functions. p600-depleted migrating neurons display thin, crooked, and "zigzag" leading process with very few ER membranes. Thus, p600 constitutes the only known MAP to associate with the ER in neurons, and this interaction may impact on multiple cellular processes ranging from neuronal development to neuronal maturation and plasticity. PMID:18385319

  15. Altered surfactant protein A gene expression and protein metabolism associated with repeat exposure to inhaled endotoxin.

    PubMed

    George, Caroline L S; White, Misty L; O'Neill, Marsha E; Thorne, Peter S; Schwartz, David A; Snyder, Jeanne M

    2003-12-01

    Chronically inhaled endotoxin, which is ubiquitous in many occupational and domestic environments, can adversely affect the respiratory system resulting in an inflammatory response and decreased lung function. Surfactant-associated protein A (SP-A) is part of the lung innate immune system and may attenuate the inflammatory response in various types of lung injury. Using a murine model to mimic occupational exposures to endotoxin, we hypothesized that SP-A gene expression and protein would be elevated in response to repeat exposure to inhaled grain dust and to purified lipopolysaccharide (LPS). Our results demonstrate that repeat exposure to inhaled endotoxin, either in the form of grain dust or purified LPS, results in increased whole lung SP-A gene expression and type II alveolar epithelial cell hyperplasia, whereas SP-A protein levels in lung lavage fluid are decreased. Furthermore, these alterations in SP-A gene activity and protein metabolism are dependent on an intact endotoxin signaling system. PMID:12922979

  16. Why are proteins with glutamine- and asparagine-rich regions associated with protein misfolding diseases?

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Leonor

    2005-12-01

    The possibility that vibrational excited states (VESs) are the drivers of protein folding and function (the VES hypothesis) is explored to explain the reason why Gln- and Asn-rich proteins are associated with degenerative diseases. The Davydov/Scott model is extended to describe energy transfer from the water solution to the protein and vice versa. Computer simulations show that, on average, Gln and Asn residues lead to an initial larger absorption of energy from the environment to the protein, something that can explain the greater structural instability of prions. The sporadic, inherited and infectious character of prion diseases is discussed in the light of the VES hypothesis. An alternative treatment for prion diseases is suggested.

  17. Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes.

    PubMed

    Saidi, Laiq-Jan; Polydoro, Manuela; Kay, Kevin R; Sanchez, Laura; Mandelkow, Eva-Maria; Hyman, Bradley T; Spires-Jones, Tara L

    2015-01-01

    One of the hallmarks of Alzheimer's disease is the formation of neurofibrillary tangles, intracellular aggregates of hyperphosphorylated, mislocalized tau protein, which are associated with neuronal loss. Changes in tau are known to impair cellular transport (including that of mitochondria) and are associated with cell death in cell culture and mouse models of tauopathy. Thus clearing pathological forms of tau from cells is a key therapeutic strategy. One critical modulator in the degradation and clearance of misfolded proteins is the co-chaperone CHIP (Carboxy terminus Hsp70 interacting Protein), which is known to play a role in refolding and clearance of hyperphosphorylated tau. Here, we tested the hypothesis that CHIP could ameliorate pathological changes associated with tau. We find that co-expressing CHIP with full-length tau, tau truncated at D421 mimicking caspase cleavage, or the short tauRDΔK280 tau construct containing only the tau repeat domain with a tauopathy mutation, decreases tau protein levels in human H4 neuroglioma cells in a manner dependent on the Hsp70-binding TPR domain of CHIP. The observed reduction in tau levels by CHIP is associated with a decrease of tau phosphorylation and reduced levels of cleaved Caspase 3 indicating that CHIP plays an important role in preventing tau-induced pathological changes. Furthermore, tau-associated mitochondrial transport deficits are rescued by CHIP co-expression in H4 cells. Together, these data suggest that the co-chaperone CHIP can rescue the pathological effects of tau, and indicate that other diseases of protein misfolding and accumulation may also benefit from CHIP upregulation. PMID:25374103

  18. Electrostatic Rate Enhancement and Transient Complex of Protein-Protein Association

    PubMed Central

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2012-01-01

    The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to ~105 – 106 M−1s−1. Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys. J. 1997;73:2441–2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by kD = kD0 exp(−*/ kBT), where kD and kD0 are the rates in the presence and absence of electrostatic interactions, respectively, * is the average electrostatic interaction energy in a “transient-complex” ensemble, and kBT is thermal energy. The transient-complex ensemble separates the bound state from the unbound state. Predictions of the transient-complex theory on four protein complexes were found to agree well with experiment when the electrostatic interaction energy was calculated with the linearized Poisson-Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007, 15:215–224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient-complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. PMID:17932929

  19. An aquaporin protein is associated with drought stress tolerance.

    PubMed

    Li, Jun; Ban, Liping; Wen, Hongyu; Wang, Zan; Dzyubenko, Nikolay; Chapurin, Vladimir; Gao, Hongwen; Wang, Xuemin

    2015-04-01

    Water channel proteins known as aquaporins (AQPs) regulate the movement of water and other small molecules across plant vacuolar and plasma membranes; they are associated with plant tolerance of biotic and abiotic stresses. In this study, a PIP type AQPs gene, designated as GoPIP1, was cloned from Galega orientalis, a high value leguminous forage crop. The GoPIP1 gene consists of an 870 bp open reading frame encoding a protein of 289 amino acids, and belongs to the PIP1 subgroup of the PIP subfamily. The transcript level of GoPIP1 was higher in the root of G. orientalis than in the leaf and stem. The level of GoPIP1 transcript increased significantly when treated with 200 mM NaCl or 20% polyethylene glycol (PEG) 6000. Transient expression of GoPIP1 in onion epidermal cells revealed that the GoPIP1 protein was localized to the plasma membrane. Over-expression of GoPIP1 increased the rosette/root ratio and increased sensitivity to drought in transgenic Arabidopsis plants. However, GoPIP1 over-expression in Arabidopsis had no significant effect under saline condition. The present data provides a gene resource that contributes to furthering our understanding of water channel protein and their application in plant stress tolerance. PMID:25701792

  20. Association between milk protein gene variants and protein composition traits in dairy cattle.

    PubMed

    Huang, W; Peñagaricano, F; Ahmad, K R; Lucey, J A; Weigel, K A; Khatib, H

    2012-01-01

    The objective of this study was to identify DNA markers in the 4 casein genes (CSN1S1, CSN1S2, CSN2, and CSN3) and the 2 major whey protein genes (LALBA and LGB) that show associations with milk protein profile measured by reverse-phase HPLC. Fifty-three single nucleotide polymorphisms (SNP) were genotyped for cows in a unique resource population consisting of purebred Holstein and (Holstein × Jersey) × Holstein crossbred animals. Seven traits were analyzed, including concentrations of α(S)-casein (CN), β-CN, κ-CN, α-lactalbumin, β-lactoglobulin, and 2 additional secondary traits, the total concentration of the above 5 milk proteins and the α(S)-CN to β-CN ratio. A substantial fraction of phenotypic variation could be explained by the additive genetic component for the 7 milk protein composition traits studied. Moreover, several SNP were significantly associated with all examined traits at an experiment-wise error rate of 0.05, except for α-lactalbumin. Importantly, the significant SNP explained a large proportion of the phenotypic variation of milk protein composition. Our findings could be used for selecting animals that produce milk with desired composition or desired processing and manufacturing properties. PMID:22192223

  1. Detecting protein association at the T cell plasma membrane.

    PubMed

    Baumgart, Florian; Schütz, Gerhard J

    2015-04-01

    At the moment, many models on T cell signaling rely on results obtained via rather indirect methodologies, which makes direct comparison and conclusions to the in vivo situation difficult. Recently, a variety of new imaging methods were developed, which have the potential to directly shed light onto the mysteries of protein association at the T cell membrane. While the new modalities are extremely promising, for a broad readership it may be difficult to judge the results, since technological shortcomings are not always obvious. In this review article, we put key questions on the mechanism of protein interactions in the T cell plasma membrane into relation with techniques that allow to address such questions. We discuss applicability of the techniques, their strengths and weaknesses. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling. PMID:25300585

  2. Inferring drug-disease associations based on known protein complexes

    PubMed Central

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html. PMID:26044949

  3. Hematopoietic lineage cell specific protein 1 associates with and down-regulates protein kinase CK2.

    PubMed

    Ruzzene, M; Brunati, A M; Sarno, S; Donella-Deana, A; Pinna, L A

    1999-11-12

    The catalytic (alpha) subunit of protein kinase CK2 and the hematopoietic specific protein 1 (HS1) display opposite effects on Ha-ras induced fibroblast transformation, by enhancing and counteracting it, respectively. Here we show the occurrence of physical association between HS1 and CK2alpha as judged from both far Western blot and plasmon resonance (BIAcore) analysis. Association of HS1 with CK2alpha is drastically reduced by the deletion of the HS1 C-terminal region (403-486) containing an SH3 domain. HS1, but not its deletion mutant HS1 Delta324-393, lacking a sequence similar to an acidic stretch of the regulatory beta-subunit of CK2, inhibits calmodulin phosphorylation by CK2alpha. These data indicate that HS1 physically interacts with CK2alpha and down-regulates its activity by a mechanism similar to the beta-subunit. PMID:10561491

  4. Protein aggregates are associated with replicative aging without compromising protein quality control

    PubMed Central

    Saarikangas, Juha; Barral, Yves

    2015-01-01

    Differentiation of cellular lineages is facilitated by asymmetric segregation of fate determinants between dividing cells. In budding yeast, various aging factors segregate to the aging (mother)-lineage, with poorly understood consequences. In this study, we show that yeast mother cells form a protein aggregate during early replicative aging that is maintained as a single, asymmetrically inherited deposit over the remaining lifespan. Surprisingly, deposit formation was not associated with stress or general decline in proteostasis. Rather, the deposit-containing cells displayed enhanced degradation of cytosolic proteasome substrates and unimpaired clearance of stress-induced protein aggregates. Deposit formation was dependent on Hsp42, which collected non-random client proteins of the Hsp104/Hsp70-refolding machinery, including the prion Sup35. Importantly, loss of Hsp42 resulted in symmetric inheritance of its constituents and prolonged the lifespan of the mother cell. Together, these data suggest that protein aggregation is an early aging-associated differentiation event in yeast, having a two-faceted role in organismal fitness. DOI: http://dx.doi.org/10.7554/eLife.06197.001 PMID:26544680

  5. The evolution and diversification of plant microtubule-associated proteins.

    PubMed

    Gardiner, John

    2013-07-01

    Plant evolution is marked by major advances in structural characteristics that facilitated the highly successful colonization of dry land. Underlying these advances is the evolution of genes encoding specialized proteins that form novel microtubular arrays of the cytoskeleton. This review investigates the evolution of plant families of microtubule-associated proteins (MAPs) through the recently sequenced genomes of Arabidopsis thaliana, Oryza sativa, Selaginella moellendorffii, Physcomitrella patens, Volvox carteri and Chlamydomonas reinhardtii. The families of MAPs examined are AIR9, CLASP, CRIPT, MAP18, MOR1, TON, EB1, AtMAP70, SPR2, SPR1, WVD2 and MAP65 families (abbreviations are defined in the footnote to Table 1). Conjectures are made regarding the evolution of MAPs in plants in relation to the evolution of multicellularity, oriented cell division and vasculature. Angiosperms in particular have high numbers of proteins that are involved in promotion of helical growth or its suppression, and novel plant microtubular structures may have acted as a catalyst for the development of novel plant MAPs. Comparisons of plant MAP gene families with those of animals show that animals may have more flexibility in the structure of their microtubule cytoskeletons than plants, but with both plants and animals possessing many MAP splice variants. PMID:23551562

  6. Protein kinase activity associated with simian virus 40 T antigen.

    PubMed Central

    Griffin, J D; Spangler, G; Livingston, D M

    1979-01-01

    Incubation of simian virus 40 (SV40) tumor (T) antigen-containing immunoprecipitates with [gamma-32P]ATP results in the incorporation of radioactive phosphate into large T antigen. Highly purified preparations of large T antigen from a SV40-transformed cell line, SV80, are able to catalyze the phosphorylation of a known phosphate acceptor, casein. The kinase activity migrates with large T antigen through multiple purification steps. Sedimentation analysis under non-T-antigen-aggregating conditions reveals that kinase activity and the immunoreactive protein comigrate as a 6S structure. The kinase activity of purified preparations of large T antigen can be specifically adsorbed to solid-phase anti-T IgG, and partially purified T antigen from a SV40 tsA transformation is thermolabile in its ability to phosphorylate casein when compared to comparably purified wild-type T antigen. These observations indicate that the SV40 large T antigen is closely associated with protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) activity. Images PMID:223152

  7. Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome

    PubMed Central

    Uhle, Stefan; Medalia, Ohad; Waldron, Richard; Dumdey, Renate; Henklein, Peter; Bech-Otschir, Dawadschargal; Huang, Xiaohua; Berse, Matthias; Sperling, Joseph; Schade, Rüdiger; Dubiel, Wolfgang

    2003-01-01

    The COP9 signalosome (CSN) purified from human erythrocytes possesses kinase activity that phosphoryl ates proteins such as c-Jun and p53 with consequence for their ubiquitin (Ub)-dependent degradation. Here we show that protein kinase CK2 (CK2) and protein kinase D (PKD) co-purify with CSN. Immunoprecipi tation and far-western blots reveal that CK2 and PKD are in fact associated with CSN. As indicated by electron microscopy with gold-labeled ATP, at least 10% of CSN particles are associated with kinases. Kinase activity, most likely due to CK2 and PKD, co-immuno precipitates with CSN from HeLa cells. CK2 binds to ΔCSN3(111–403) and CSN7, whereas PKD interacts with full-length CSN3. CK2 phosphorylates CSN2 and CSN7, and PKD modifies CSN7. Both CK2 and PKD phosphorylate c-Jun as well as p53. CK2 phosphoryl ates Thr155, which targets p53 to degradation by the Ub system. Curcumin, emodin, DRB and resveratrol block CSN-associated kinases and induce degradation of c-Jun in HeLa cells. Curcumin treatment results in elevated amounts of c-Jun–Ub conjugates. We conclude that CK2 and PKD are recruited by CSN in order to regulate Ub conjugate formation. PMID:12628923

  8. Hepatitis B virus X protein mediates yes-associated protein 1 upregulation in hepatocellular carcinoma

    PubMed Central

    Wu, Yuzhuo; Zhang, Junhe; Zhang, Huaihong; Zhai, Yufeng

    2016-01-01

    Hepatitis B virus (HBV) X protein (HBx) is implicated in the development of hepatocellular carcinoma (HCC). Yes-associated protein 1 (YAP) is an important proto-oncogene, which is a downstream effector molecule in the Hippo signaling pathway. The aim of the present study was to investigate the association between HBx expression in HCC samples and YAP expression in the Hippo pathway. A total of 20 pathologically confirmed HCC samples, 20 corresponding adjacent non-tumor liver tissues and 5 normal liver tissue samples were collected. The expression of HBx and YAP in the tissues was analyzed by quantitative reverse transcription-polymerase chain reaction and western blot analysis. The intensity and location of YAP expression were analyzed by immunohistochemistry. YAP mRNA and protein expression levels in HCC samples infected with HBV were significantly higher than those of normal liver tissues. Furthermore, YAP expression was positively correlated with HBx expression in HBV-positive HCC samples. Immunohistochemical staining revealed that YAP was predominantly expressed in the nuclei in HBV-positive HCC tissues. YAP expression was significantly decreased in the normal liver tissue and corresponding adjacent liver tissue when compared with the HCC tissues and by contrast to HCC tissues, YAP was predominantly located in the cytoplasm. In conclusion, these results indicate that the YAP gene is a key driver of HBx-induced liver cancer. Therefore, YAP may present a novel target in the treatment of HBV-associated HCC.

  9. Rapid purification of protein complexes from mammalian cells

    PubMed Central

    Medina, Dan; Moskowitz, Neal; Khan, Subarna; Christopher, Scott; Germino, Joseph

    2000-01-01

    The evaluation of the protein binding partner(s) of biologically important proteins is currently an area of intense research, especially since the development of the yeast two-hybrid assay. However, not all protein–protein interactions uncovered by this assay are biologically relevant and another confirmatory assay must be performed. Ideally, this assay should be rapid, versatile and performed under conditions which mimic the ‘normal’ physiological state as closely as possible. Towards this goal, we have constructed two eukaryotic expression vectors that facilitate the purification of a protein of interest, along with any associated proteins, from mammalian cells. These vectors incorporate the following features: (i) a tetracycline-responsive promoter so that the level of protein production can be regulated; (ii) an N-terminal glutathione S-transferase tag or a triple repeat of the HA1 epitope, to facilitate purification of the protein either by glutathione affinity chromatography or immunoprecipitation, respectively, followed by a multiple cloning site; (iii) the gene for the enhanced green fluorescent protein (for detection of the presence of the fusion protein and subcellular localization); (iv) a puromycin marker for the selection of stable transformants; (v) a truncated EBNA protein and oriP sequence for episomal replication of the vector. These latter two features permit expansion of small cultures of transfected cells under puromycin selection, thereby increasing the amount of tagged protein that can be purified. We show that these vectors can be used to direct the doxycycline-inducible expresssion of tagged proteins and to recover tagged CIP1–p21 protein complexes from HeLa cells. Furthermore, we show that these tagged p21-purified complexes contain both cyclin A and Cdk2, which are known to interact with p21, but not β-actin. PMID:10871384

  10. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    SciTech Connect

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A.

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.

  11. Atomistic Simulation of Lignocellulosic Biomass and Associated Cellulosomal Protein Complexes

    SciTech Connect

    Petridis, Loukas; Crowley, Michael F; Smith, Jeremy C

    2010-01-01

    Computer simulations have been performed to obtain an atomic-level understanding of lignocellulose structure and the assembly of its associated cellulosomal protein complexes. First, a CHARMM molecular mechanics force field for lignin is derived and validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this work provides the basis for full simulations of lignocellulose. Second, the underlying molecular mechanism governing the assembly of various cellulosomal modules is investigated by performing a novel free-energy calculation of the cohesin-dockerin dissociation. Our calculation indicates a free-energy barrier of ~17 kcal/mol and further reveals a stepwise dissociation pathway involving both the central -sheet interface and its adjacent solvent-exposed loop/turn regions clustered at both ends of the -barrel structure.

  12. Golgi protein ACBD3 mediates neurotoxicity associated with Huntington's Disease

    PubMed Central

    Sbodio, Juan I.; Paul, Bindu D.; Machamer, Carolyn E.; Snyder, Solomon H.

    2013-01-01

    Summary Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by expansion of polyglutamine repeats in the gene for huntingtin (Htt). In HD the corpus striatum selectively degenerates despite uniform expression of mutant huntingtin (mHtt) throughout the brain and body. Striatal selectivity reflects the binding of the striatal-selective protein Rhes to mHtt to augment cytotoxicity, but molecular mechanisms underlying the toxicity have been elusive. Here we report that the Golgi protein ACBD3 (Acyl-CoA binding Domain Containing 3) mediates mHtt cytotoxicity via a Rhes/mHtt/ACBD3 complex. ACBD3 levels are markedly elevated in the striatum of HD patients, in a striatal cell line harboring polyglutamine repeats, and in the brains of HD mice. Moreover, ACBD3 deletion abolishes HD neurotoxicity, which is increased by ACBD3 overexpression. Enhanced levels of ACBD3 elicited by ER, mitochondrial and Golgi stresses may account for HD associated augmentation of ACBD3 and neurodegeneration. PMID:24012756

  13. Staphylococcus saprophyticus surface-associated protein (Ssp) is associated with lifespan reduction in Caenorhabditis elegans

    PubMed Central

    Szabados, Florian; Mohner, Amelie; Kleine, Britta; Gatermann, Sören G

    2013-01-01

    Staphylococcal lipases have been proposed as pathogenicity factors. In Staphylococcus saprophyticus the surface-associated protein (Ssp) has been previously characterized as a cell wall-associated true lipase. A S. saprophyticus Δssp::ermB mutant has been described as less virulent in an in vivo model of urinary tract infection compared with its wild-type. This is the first report showing that S. saprophyticus induced a lifespan reduction in Caenorhabditis elegans similar to that of S. aureus RN4220. In two S. saprophyticus Δssp::ermB mutants lifespan reduction in C. elegans was partly abolished. In order to attribute virulence to the lipase activity itself and distinguish this phenomenon from the presence of the Ssp-protein, the conserved active site of the lipase was modified by site-directed ligase-independent mutagenesis and lipase activity-deficient mutants were constructed. These results indicate that the Ssp is associated with pathogenicity in C. elegans and one could speculate that the lipase activity itself is responsible for this virulence. PMID:23959029

  14. Heavy path mining of protein-protein associations in the malaria parasite.

    PubMed

    Yu, Xinran; Korkmaz, Turgay; Lilburn, Timothy G; Cai, Hong; Gu, Jianying; Wang, Yufeng

    2015-07-15

    Annotating and understanding the function of proteins and other elements in a genome can be difficult in the absence of a well-studied and evolutionarily close relative. The causative agent of malaria, one of the oldest and most deadly global infectious diseases, is a good example of this problem. The burden of malaria is huge and there is a pressing need for new, more effective antimalarial strategies. However, techniques such as homology-dependent annotation transfer are severely impaired in this parasite because there are no well-understood close relatives. To circumvent this approach we developed a network-based method that uses a heavy path network-mining algorithm. We uncovered the protein-protein associations that are implicated in important cellular processes including genome integrity, DNA repair, transcriptional regulation, invasion, and pathogenesis, thus demonstrating the utility of this method. The URL of the source code for super-sequence mining method is http://www.cs.utsa.edu/~korkmaz/research/heavy-path-mining/. PMID:25861922

  15. Integrated protein function prediction by mining function associations, sequences, and protein–protein and gene–gene interaction networks

    PubMed Central

    Cao, Renzhi; Cheng, Jianlin

    2016-01-01

    Motivations Protein function prediction is an important and challenging problem in bioinformatics and computational biology. Functionally relevant biological information such as protein sequences, gene expression, and protein–protein interactions has been used mostly separately for protein function prediction. One of the major challenges is how to effectively integrate multiple sources of both traditional and new information such as spatial gene–gene interaction networks generated from chromosomal conformation data together to improve protein function prediction. Results In this work, we developed three different probabilistic scores (MIS, SEQ, and NET score) to combine protein sequence, function associations, and protein–protein interaction and spatial gene–gene interaction networks for protein function prediction. The MIS score is mainly generated from homologous proteins found by PSI-BLAST search, and also association rules between Gene Ontology terms, which are learned by mining the Swiss-Prot database. The SEQ score is generated from protein sequences. The NET score is generated from protein–protein interaction and spatial gene–gene interaction networks. These three scores were combined in a new Statistical Multiple Integrative Scoring System (SMISS) to predict protein function. We tested SMISS on the data set of 2011 Critical Assessment of Function Annotation (CAFA). The method performed substantially better than three base-line methods and an advanced method based on protein profile–sequence comparison, profile–profile comparison, and domain co-occurrence networks according to the maximum F-measure. PMID:26370280

  16. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins.

    PubMed

    Kadota, Yasuhiro; Macho, Alberto P; Zipfel, Cyril

    2016-01-01

    Membrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications. However, recent advances in immunoprecipitation technology allow to isolate membrane proteins efficiently, facilitating the study of protein-protein interactions, the identification of novel associated proteins, and to identify post-translational modifications, such as phosphorylation. Here, we describe an optimized immunoprecipitation protocol for plant plasma membrane receptor-like kinases. PMID:26577786

  17. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin

    PubMed Central

    Wilhelmsen, Kevin; Litjens, Sandy H.M.; Kuikman, Ingrid; Tshimbalanga, Ntambua; Janssen, Hans; van den Bout, Iman; Raymond, Karine; Sonnenberg, Arnoud

    2005-01-01

    Despite their importance in cell biology, the mechanisms that maintain the nucleus in its proper position in the cell are not well understood. This is primarily the result of an incomplete knowledge of the proteins in the outer nuclear membrane (ONM) that are able to associate with the different cytoskeletal systems. Two related ONM proteins, nuclear envelope spectrin repeat (nesprin)–1 and –2, are known to make direct connections with the actin cytoskeleton through their NH2-terminal actin-binding domain (ABD). We have now isolated a third member of the nesprin family that lacks an ABD and instead binds to the plakin family member plectin, which can associate with the intermediate filament (IF) system. Overexpression of nesprin-3 results in a dramatic recruitment of plectin to the nuclear perimeter, which is where these two molecules are colocalized with both keratin-6 and -14. Importantly, plectin binds to the integrin α6β4 at the cell surface and to nesprin-3 at the ONM in keratinocytes, suggesting that there is a continuous connection between the nucleus and the extracellular matrix through the IF cytoskeleton. PMID:16330710

  18. Establishing an osteosarcoma associated protein-protein interaction network to explore the pathogenesis of osteosarcoma

    PubMed Central

    2013-01-01

    Background The aim of this study was to establish an osteosarcoma (OS) associated protein-protein interaction network and explore the pathogenesis of osteosarcoma. Methods The gene expression profile GSE9508 was downloaded from the Gene Expression Omnibus database, including five samples of non-malignant bone (the control), seven samples for non-metastatic patients (six of which were analyzed in duplicate), and 11 samples for metastatic patients (10 of which were analyzed in duplicate). Differentially expressed genes (DEGs) between osteosarcoma and control samples were identified by packages in R with the threshold of |logFC (fold change)| > 1 and false discovery rate < 0.05. Osprey software was used to construct the interaction network of DEGs, and genes at protein-protein interaction (PPI) nodes with high degrees were identified. The Database for Annotation, Visualization and Integrated Discovery and WebGestalt software were then used to perform functional annotation and pathway enrichment analyses for PPI networks, in which P < 0.05 was considered statistically significant. Results Compared to the control samples, the expressions of 42 and 341 genes were altered in non-metastatic OS and metastatic OS samples, respectively. A total of 15 significantly enriched functions were obtained with Gene Ontology analysis (P < 0.05). The DEGs were classified and significantly enriched in three pathways, including the tricarboxylic acid cycle, lysosome and axon guidance. Genes such as HRAS, IDH3A, ATP6ap1, ATP6V0D2, SEMA3F and SEMA3A were involved in the enriched pathways. Conclusions The hub genes from metastatic OS samples are not only bio-markers of OS, but also help to improve therapies for OS. PMID:24330838

  19. Iroquois homeobox transcription factor (Irx5) promotes G1/S-phase transition in vascular smooth muscle cells by CDK2-dependent activation.

    PubMed

    Liu, Dong; Pattabiraman, Vaishnavi; Bacanamwo, Methode; Anderson, Leonard M

    2016-08-01

    The Iroquois homeobox (Irx5) gene is essential in embryonic development and cardiac electrophysiology. Although recent studies have reported that IRX5 protein is involved in regulation of the cell cycle and apoptosis in prostate cancer cells, little is known about the role of IRX5 in the adult vasculature. Here we report novel observations on the role of IRX5 in adult vascular smooth muscle cells (VSMCs) during proliferation in vitro and in vivo. Comparative studies using primary human endothelial cells, VSMCs, and intact carotid arteries to determine relative expression of Irx5 in the peripheral vasculature demonstrate significantly higher expression in VSMCs. Sprague-Dawley rat carotid arteries were subjected to balloon catherization, and the presence of IRX5 was examined by immunohistochemistry after 2 wk. Results indicate markedly elevated IRX5 signal at 14 days compared with uninjured controls. Total RNA was isolated from injured and uninjured arteries, and Irx5 expression was measured by RT-PCR. Results demonstrate a significant increase in Irx5 expression at 3-14 days postinjury compared with controls. Irx5 genetic gain- and loss-of-function studies using thymidine and 5-bromo-2'-deoxyuridine incorporation assays resulted in modulation of DNA synthesis in primary rat aortic VSMCs. Quantitative RT-PCR results revealed modulation of cyclin-dependent kinase inhibitor 1B (p27(kip1)), E2F transcription factor 1 (E2f1), and proliferating cell nuclear antigen (Pcna) expression in Irx5-transduced VSMCs compared with controls. Subsequently, apoptosis was observed and confirmed by morphological observation, caspase-3 cleavage, and enzymatic activation compared with control conditions. Taken together, these results indicate that Irx5 plays an important role in VSMC G1/S-phase cell cycle checkpoint control and apoptosis. PMID:27170637

  20. Uncoupling protein 2 gene polymorphisms are associated with obesity

    PubMed Central

    2012-01-01

    Background Uncoupling protein 2 (UCP2) gene polymorphisms have been reported as genetic risk factors for obesity and type 2 diabetes mellitus (T2DM). We examined the association of commonly observed UCP2 G(−866)A (rs659366) and Ala55Val (C > T) (rs660339) single nucleotide polymorphisms (SNPs) with obesity, high fasting plasma glucose, and serum lipids in a Balinese population. Methods A total of 603 participants (278 urban and 325 rural subjects) were recruited from Bali Island, Indonesia. Fasting plasma glucose (FPG), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) were measured. Obesity was determined based on WHO classifications for adult Asians. Participants were genotyped for G(−866)A and Ala55Val polymorphisms of the UCP2 gene. Results Obesity prevalence was higher in urban subjects (51%) as compared to rural subjects (23%). The genotype, minor allele (MAF), and heterozygosity frequencies were similar between urban and rural subjects for both SNPs. All genotype frequencies were in Hardy-Weinberg equilibrium. A combined analysis of genotypes and environment revealed that the urban subjects carrying the A/A genotype of the G(−866)A SNP have higher BMI than the rural subjects with the same genotype. Since the two SNPs showed strong linkage disequilibrium (D’ = 0.946, r2 = 0.657), a haplotype analysis was performed. We found that the AT haplotype was associated with high BMI only when the urban environment was taken into account. Conclusions We have demonstrated the importance of environmental settings in studying the influence of the common UCP2 gene polymorphisms in the development of obesity in a Balinese population. PMID:22533685

  1. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development

    PubMed Central

    Zhang, Weipeng; Sun, Jin; Ding, Wei; Lin, Jinshui; Tian, Renmao; Lu, Liang; Liu, Xiaofen; Shen, Xihui; Qian, Pei-Yuan

    2015-01-01

    Though the essential role of extracellular matrix in biofilm development has been extensively documented, the function of matrix-associated proteins is elusive. Determining the dynamics of matrix-associated proteins would be a useful way to reveal their functions in biofilm development. Therefore, we applied iTRAQ-based quantitative proteomics to evaluate matrix-associated proteins isolated from different phases of Pseudomonas aeruginosa ATCC27853 biofilms. Among the identified 389 proteins, 54 changed their abundance significantly. The increased abundance of stress resistance and nutrient metabolism-related proteins over the period of biofilm development was consistent with the hypothesis that biofilm matrix forms micro-environments in which cells are optimally organized to resist stress and use available nutrients. Secreted proteins, including novel putative effectors of the type III secretion system were identified, suggesting that the dynamics of pathogenesis-related proteins in the matrix are associated with biofilm development. Interestingly, there was a good correlation between the abundance changes of matrix-associated proteins and their expression. Further analysis revealed complex interactions among these modulated proteins, and the mutation of selected proteins attenuated biofilm development. Collectively, this work presents the first dynamic picture of matrix-associated proteins during biofilm development, and provides evidences that the matrix-associated proteins may form an integral and well regulated system that contributes to stress resistance, nutrient acquisition, pathogenesis and the stability of the biofilm. PMID:26029669

  2. Lipid droplet-associated proteins in atherosclerosis (Review).

    PubMed

    Plakkal Ayyappan, Janeesh; Paul, Antoni; Goo, Young-Hwa

    2016-06-01

    Accumulation of atherosclerotic plaques in arterial walls leads to major cardiovascular diseases and stroke. Macrophages/foam cells are central components of atherosclerotic plaques, which populate the arterial wall in order to remove harmful modified low‑density lipoprotein (LDL) particles, resulting in the accumulation of lipids, mostly LDL‑derived cholesterol ester, in cytosolic lipid droplets (LDs). At present, LDs are recognized as dynamic organelles that govern cellular metabolic processes. LDs consist of an inner core of neutral lipids surrounded by a monolayer of phospholipids and free cholesterol, and contain LD‑associated proteins (LDAPs) that regulate LD functions. Foam cells are characterized by an aberrant accumulation of cytosolic LDs, and are considered a hallmark of atherosclerotic lesions through all stages of development. Previous studies have investigated the mechanisms underlying foam cell formation, aiming to discover therapeutic strategies that target foam cells and intervene against atherosclerosis. It is well established that LDAPs have a major role in the pathogenesis of metabolic diseases caused by dysfunction of lipid metabolism, and several studies have linked LDAPs to the development of atherosclerosis. In this review, several foam cell‑targeting pathways have been described, with an emphasis on the role of LDAPs in cholesterol mobilization from macrophages. In addition, the potential of LDAPs as therapeutic targets to prevent the progression and/or facilitate the regression of the disease has been discussed. PMID:27082419

  3. Lipid droplet-associated proteins in atherosclerosis (Review)

    PubMed Central

    AYYAPPAN, JANEESH PLAKKAL; PAUL, ANTONI; GOO, YOUNG-HWA

    2016-01-01

    Accumulation of atherosclerotic plaques in arterial walls leads to major cardiovascular diseases and stroke. Macrophages/foam cells are central components of atherosclerotic plaques, which populate the arterial wall in order to remove harmful modified low-density lipoprotein (LDL) particles, resulting in the accumulation of lipids, mostly LDL-derived cholesterol ester, in cytosolic lipid droplets (LDs). At present, LDs are recognized as dynamic organelles that govern cellular metabolic processes. LDs consist of an inner core of neutral lipids surrounded by a monolayer of phospholipids and free cholesterol, and contain LD-associated proteins (LDAPs) that regulate LD functions. Foam cells are characterized by an aberrant accumulation of cytosolic LDs, and are considered a hallmark of atherosclerotic lesions through all stages of development. Previous studies have investigated the mechanisms underlying foam cell formation, aiming to discover therapeutic strategies that target foam cells and intervene against atherosclerosis. It is well established that LDAPs have a major role in the pathogenesis of metabolic diseases caused by dysfunction of lipid metabolism, and several studies have linked LDAPs to the development of atherosclerosis. In this review, several foam cell-targeting pathways have been described, with an emphasis on the role of LDAPs in cholesterol mobilization from macrophages. In addition, the potential of LDAPs as therapeutic targets to prevent the progression and/or facilitate the regression of the disease has been discussed. PMID:27082419

  4. Lacritin and other autophagy associated proteins in ocular surface health.

    PubMed

    Karnati, Roy; Talla, Venu; Peterson, Katherine; Laurie, Gordon W

    2016-03-01

    Advantage may be taken of macroautophagy ('autophagy') to promote ocular health. Autophagy continually captures aged or damaged cellular material for lysosomal degradation and recyling. When autophagic flux is chronically elevated, or alternatively deficient, health suffers. Chronic elevation of flux and stress are the consequence of inflammatory cytokines or of dry eye tears but not normal tears invitro. Exogenous tear protein lacritin transiently accelerates flux to restore homeostasis invitro and corneal health invivo, and yet the monomeric active form of lacritin appears to be selectively deficient in dry eye. Tissue transglutaminase-dependent cross-linking of monomer decreases monomer quantity and monomer affinity for coreceptor syndecan-1 thereby abrogating activity. Tissue transglutaminase is elevated in dry eye. Mutation of arylsulfatase A, arylsulfatase B, ceroid-lipofuscinosis neuronal 3, mucolipin, or Niemann-Pick disease type C1 respectively underlie several diseases of apparently insufficient autophagic flux that affect the eye, including: metachromatic leukodystrophy, mucopolysaccharidosis type VI, juvenile-onset Batten disease, mucolipidosis IV, and Niemann-Pick type C associated with myelin sheath destruction of corneal sensory and ciliary nerves and of the optic nerve; corneal clouding, ocular hypertension, glaucoma and optic nerve atrophy; accumulation of 'ceroid-lipofuscin' in surface conjunctival cells, and in ganglion and neuronal cells; decreased visual acuity and retinal dystrophy; and neurodegeneration. For some, enzyme or gene replacement, or substrate reduction, therapy is proving to be successful. Here we discuss examples of restoring ocular surface homeostasis through alteration of autophagy, with particular attention to lacritin. PMID:26318608

  5. Loss of G(1)/S checkpoint in human immunodeficiency virus type 1-infected cells is associated with a lack of cyclin-dependent kinase inhibitor p21/Waf1.

    PubMed

    Clark, E; Santiago, F; Deng, L; Chong, S; de La Fuente, C; Wang, L; Fu, P; Stein, D; Denny, T; Lanka, V; Mozafari, F; Okamoto, T; Kashanchi, F

    2000-06-01

    Productive high-titer infection by human immunodeficiency virus type 1 (HIV-1) requires the activation of target cells. Infection of quiescent peripheral CD4 lymphocytes by HIV-1 results in incomplete, labile reverse transcripts and lack of viral progeny formation. An interplay between Tat and p53 has previously been reported, where Tat inhibited the transcription of the p53 gene, which may aid in the development of AIDS-related malignancies, and p53 expression inhibited HIV-1 long terminal repeat transcription. Here, by using a well-defined and -characterized stress signal, gamma irradiation, we find that upon gamma irradiation, HIV-1-infected cells lose their G(1)/S checkpoints, enter the S phase inappropriately, and eventually apoptose. The loss of the G(1)/S checkpoint is associated with a loss of p21/Waf1 protein and increased activity of a major G(1)/S kinase, namely, cyclin E/cdk2. The p21/Waf1 protein, a known cyclin-dependent kinase inhibitor, interacts with the cdk2/cyclin E complex and inhibits progression of cells into S phase. We find that loss of the G(1)/S checkpoint in HIV-1-infected cells may in part be due to Tat's ability to bind p53 (a known activator of the p21/Waf1 promoter) and sequester its transactivation activity, as seen in both in vivo and in vitro transcription assays. The loss of p21/Waf1 in HIV-1-infected cells was specific to p21/Waf1 and did not occur with other KIP family members, such as p27 (KIP1) and p57 (KIP2). Finally, the advantage of a loss of the G(1)/S checkpoint for HIV-1 per se may be that it pushes the host cell into the S phase, which may then allow subsequent virus-associated processes, such as RNA splicing, transport, translation, and packaging of virion-specific genes, to occur. PMID:10799578

  6. Loss of G1/S Checkpoint in Human Immunodeficiency Virus Type 1-Infected Cells Is Associated with a Lack of Cyclin-Dependent Kinase Inhibitor p21/Waf1

    PubMed Central

    Clark, Elizabeth; Santiago, Francisco; Deng, Longwen; Chong, Siew yen; de la Fuente, Cynthia; Wang, Lai; Fu, Peng; Stein, Dana; Denny, Thomas; Lanka, Venkata; Mozafari, Fariba; Okamoto, Takashi; Kashanchi, Fatah

    2000-01-01

    Productive high-titer infection by human immunodeficiency virus type 1 (HIV-1) requires the activation of target cells. Infection of quiescent peripheral CD4 lymphocytes by HIV-1 results in incomplete, labile reverse transcripts and lack of viral progeny formation. An interplay between Tat and p53 has previously been reported, where Tat inhibited the transcription of the p53 gene, which may aid in the development of AIDS-related malignancies, and p53 expression inhibited HIV-1 long terminal repeat transcription. Here, by using a well-defined and -characterized stress signal, gamma irradiation, we find that upon gamma irradiation, HIV-1-infected cells lose their G1/S checkpoints, enter the S phase inappropriately, and eventually apoptose. The loss of the G1/S checkpoint is associated with a loss of p21/Waf1 protein and increased activity of a major G1/S kinase, namely, cyclin E/cdk2. The p21/Waf1 protein, a known cyclin-dependent kinase inhibitor, interacts with the cdk2/cyclin E complex and inhibits progression of cells into S phase. We find that loss of the G1/S checkpoint in HIV-1-infected cells may in part be due to Tat's ability to bind p53 (a known activator of the p21/Waf1 promoter) and sequester its transactivation activity, as seen in both in vivo and in vitro transcription assays. The loss of p21/Waf1 in HIV-1-infected cells was specific to p21/Waf1 and did not occur with other KIP family members, such as p27 (KIP1) and p57 (KIP2). Finally, the advantage of a loss of the G1/S checkpoint for HIV-1 per se may be that it pushes the host cell into the S phase, which may then allow subsequent virus-associated processes, such as RNA splicing, transport, translation, and packaging of virion-specific genes, to occur. PMID:10799578

  7. HIV Genome-Wide Protein Associations: a Review of 30 Years of Research.

    PubMed

    Li, Guangdi; De Clercq, Erik

    2016-09-01

    The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle. PMID:27357278

  8. Phase I and Pharmacologic Study of SNS-032, a Potent and Selective Cdk2, 7, and 9 Inhibitor, in Patients With Advanced Chronic Lymphocytic Leukemia and Multiple Myeloma

    PubMed Central

    Tong, Wei-Gang; Chen, Rong; Plunkett, William; Siegel, David; Sinha, Rajni; Harvey, R. Donald; Badros, Ashraf Z.; Popplewell, Leslie; Coutre, Steven; Fox, Judith A.; Mahadocon, Kristi; Chen, Tianling; Kegley, Peggy; Hoch, Ute; Wierda, William G.

    2010-01-01

    Purpose SNS-032 is a highly selective and potent inhibitor of cyclin-dependent kinases (Cdks) 2, 7, and 9, with in vitro growth inhibitory effects and ability to induce apoptosis in malignant B cells. A phase I dose-escalation study of SNS-032 was conducted to evaluate safety, pharmacokinetics, biomarkers of mechanism-based pharmacodynamic (PD) activity, and clinical efficacy. Patients and Methods Parallel cohorts of previously treated patients with chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) received SNS-032 as a loading dose followed by 6-hour infusion weekly for 3 weeks of each 4-week course. Results There were 19 patients with CLL and 18 with MM treated. Tumor lysis syndrome was the dose-limiting toxicity (DLT) for CLL, the maximum-tolerated dose (MTD) was 75 mg/m2, and the most frequent grade 3 to 4 toxicity was myelosuppression. One patient with CLL had more than 50% reduction in measurable disease without improvement in hematologic parameters. Another patient with low tumor burden had stable disease for four courses. For patients with MM, no DLT was observed and MTD was not identified at up to 75 mg/m2, owing to early study closure. Two patients with MM had stable disease and one had normalization of spleen size with treatment. Biomarker analyses demonstrated mechanism-based PD activity with inhibition of Cdk7 and Cdk9, decreases in Mcl-1 and XIAP expression level, and associated CLL cell apoptosis. Conclusion SNS-032 demonstrated mechanism-based target modulation and limited clinical activity in heavily pretreated patients with CLL and MM. Further single-agent, PD-based, dose and schedule modification is warranted to maximize clinical efficacy. PMID:20479412

  9. Calculating the Bimolecular Rate of Protein-Protein Association with Interacting Crowders.

    PubMed

    Yap, Eng-Hui; Head-Gordon, Teresa

    2013-05-14

    We have recently introduced a method termed Poisson-Boltzmann semianalytical method (PB-SAM) for solving the linearized Poisson-Boltzmann equation for large numbers of arbitrarily shaped dielectric cavities with controlled precision. In this work we extend the applicability of the PB-SAM approach by deriving force and torque expressions that fully account for mutual polarization in both the zero- and first-order derivatives of the surface charges, that can now be embedded into a Brownian dynamics scheme to look at electrostatic-driven mesoscale assembly and kinetics. We demonstrate the capabilities of the PB-SAM approach by simulating the protein concentration effects on the bimolecular rate of association of barnase and barstar, under periodic boundary conditions and evaluated through mean first passage times. We apply PB-SAM to the pseudo-first-order reaction rate conditions in which either barnase or barstar are in great excess relative to the other protein (124:1). This can be considered a specific case in which the PB-SAM approach can be applied to crowding conditions in which crowders are not inert but can form interactions with other molecules. PMID:26583736

  10. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura

    2016-01-01

    Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis.

  11. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation

    PubMed Central

    Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura

    2016-01-01

    Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis. PMID:26776680

  12. Simulations of HIV Capsid Protein Dimerization Reveal the Effect of Chemistry and Topography on the Mechanism of Hydrophobic Protein Association

    NASA Astrophysics Data System (ADS)

    Yu, Naiyin; Hagan, Michael F.

    2012-09-01

    Recent work has shown that the hydrophobic protein surfaces in aqueous solution sit near a drying transition. The tendency for these surfaces to expel water from their vicinity leads to self assembly of macromolecular complexes. In this article we show with a realistic model for a biologically pertinent system how this phenomenon appears at the molecular level. We focus on the association of the C-terminal domain (CA-C) of the human immunodeficiency virus (HIV) capsid protein. By combining all-atom simulations with specialized sampling techniques we measure the water density distribution during the approach of two CA-C proteins as a function of separation and amino acid sequence in the interfacial region. The simulations demonstrate that CA-C protein-protein interactions sit at the edge of a dewetting transition and that this mesoscopic manifestation of the underlying liquid-vapor phase transition can be readily manipulated by biology or protein engineering to significantly affect association behavior. While the wild type protein remains wet until contact, we identify a set of in silico mutations, in which three hydrophilic amino acids are replaced with nonpolar residues, that leads to dewetting prior to association. The existence of dewetting depends on the size and relative locations of substituted residues separated by nm length scales, indicating long range cooperativity and a sensitivity to surface topography. These observations identify important details which are missing from descriptions of protein association based on buried hydrophobic surface area.

  13. Surface Association of Pht Proteins of Streptococcus pneumoniae

    PubMed Central

    Plumptre, Charles D.; Ogunniyi, Abiodun D.

    2013-01-01

    Streptococcus pneumoniae is a major human pathogen responsible for massive global morbidity and mortality. The pneumococcus attaches a variety of proteins to its cell surface, many of which contribute to virulence; one such family are the polyhistidine triad (Pht) proteins PhtA, PhtB, PhtD, and PhtE. In this study, we have examined the mechanism of Pht surface attachment using PhtD as a model. Analysis of deletion and point mutants identified a three-amino-acid region of PhtD (Q27-H28-R29) that is critical for the process. The analogous region in PhtE was also necessary for its attachment to the cell surface. Furthermore, we show that a large proportion of the total amount of each Pht protein is released into bacterial culture supernatants. Other surface proteins were also released, albeit to lesser extents, and this was not due to pneumococcal autolysis. The extent of release of surface proteins was strain dependent and was not affected by the capsule. Lastly, we compared the fitness of wild-type and ΔphtABDE pneumococci in vivo in a mouse coinfection model. Release of Pht proteins by the wild type did not complement the mutant strain, consistent with surface-attached rather than soluble forms of the Pht proteins playing the major role in virulence. The significant degree of release of Pht proteins from intact bacteria may have implications for the use of these proteins in novel vaccines. PMID:23876799

  14. Proteomic analysis and identification of cell surface-associated proteins of Clostridium chauvoei.

    PubMed

    Jayaramaiah, Usharani; Singh, Neetu; Thankappan, Sabarinath; Mohanty, Ashok Kumar; Chaudhuri, Pallab; Singh, Vijendra Pal; Nagaleekar, Viswas Konasagara

    2016-06-01

    Blackleg is a highly fatal disease of cattle and sheep, caused by Clostridium chauvoei, a Gram positive, anaerobic, spore forming bacteria. Cell surface-associated proteins play a major role in inducing the protective immunity. However, the identity of a majority of cell surface-associated proteins of C. chauvoei is not known. In the present investigation, we have used SDS-PAGE, 2D-gel electrophoresis and Western blotting followed by mass spectrometry to identify cell surface-associated proteins of C. chauvoei. Among the identified proteins, which have shown to offer protective antigencity in other bacteria, Enolase, Chaperonin, Ribosomal protein L10, Glycosyl Hydrolase and Flavoprotein were characterized by sequencing and their overexpression in Escherichia coli. In conclusion, cell surface-associated proteins were identified using proteomic approach and the genes for the immunoreactive proteins were expressed, which may prove to be potential diagnostic or vaccine candidates. PMID:26971466

  15. Peptide aptamer identified by molecular docking targeting translationally controlled tumor protein in leukemia cells.

    PubMed

    Kadioglu, Onat; Efferth, Thomas

    2016-08-01

    Bioinformatics screening and molecular docking analyses were utilized to select high affinity peptides targeting translationally controlled tumor protein (TCTP). Selected peptide aptamers were tested towards cancer cell lines with different levels of TCTP expression. One peptide (WGQWPYHC) revealed specific cytotoxicity according to the TCTP expression in tumor cells without affecting normal cells. Western blot analysis showed peptide-induced down-regulation of TCTP as primary target as well as of cell-cycle related downstream proteins (CDK2, CDK6, Cyclin D3) in MOLT-4 leukemia cells. "WGQWPYHC" deserves further analysis for targeted therapy of TCTP-expressing tumor cells. Graphical abstract Molecular docking on TCTP, cytotoxicity toward MOLT-4 leukemia cell line and downregulation of CDK2, CDK6, CyclinD3 and TCTP proteins. PMID:26972431

  16. Polysomes of Trypanosoma brucei: Association with Initiation Factors and RNA-Binding Proteins

    PubMed Central

    Klein, Cornelia; Terrao, Monica; Inchaustegui Gil, Diana; Clayton, Christine

    2015-01-01

    We report here the results of experiments designed to identify RNA-binding proteins that might be associated with Trypanosoma brucei polysomes. After some preliminary mass spectrometry of polysomal fractions, we investigated the distributions of selected tagged proteins using sucrose gradients and immunofluorescence. As expected, the polysomal fractions contained nearly all annotated ribosomal proteins, the translation-associated protein folding complex, and many translation factors, but also many other abundant proteins. Results suggested that cap-binding proteins EIF4E3 and EIF4E4 were associated with both free and membrane-bound polysomes. The EIF4E binding partners EIF4G4 and EIF4G3 were present but the other EIF4E and EIF4G paralogues were not detected. The dominant EIF4E in the polysomal fraction is EIF4E4 and very few polysomal mRNAs are associated with EIF4G. Thirteen potential mRNA-binding proteins were detected in the polysomes, including the known polysome-associated protein RBP42. The locations of two of the other proteins were tested after epitope tagging: RBP29 was in the nucleus and ZC3H29 was in the cytoplasm. Quantitative analyses showed that specific association of an RNA-binding protein with the polysome fraction in sucrose gradients will not be detected if the protein is in more than 25-fold molar excess over its target binding sites. PMID:26287607

  17. Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain.

    PubMed

    Kozielski, Frank; Riaz, Tahira; DeBonis, Salvatore; Koehler, Christian J; Kroening, Mario; Panse, Isabel; Strozynski, Margarita; Donaldson, Ian M; Thiede, Bernd

    2011-07-01

    The microtubule (MT) cytoskeleton is essential for a variety of cellular processes. MTs are finely regulated by distinct classes of MT-associated proteins (MAPs), which themselves bind to and are regulated by a large number of additional proteins. We have carried out proteome analyses of tubulin-rich and tubulin-depleted MAPs and their interacting partners isolated from bovine brain. In total, 573 proteins were identified giving us unprecedented access to brain-specific MT-associated proteins from mammalian brain. Most of the standard MAPs were identified and at least 500 proteins have been reported as being associated with MTs. We identified protein complexes with a large number of subunits such as brain-specific motor/adaptor/cargo complexes for kinesins, dynein, and dynactin, and proteins of an RNA-transporting granule. About 25% of the identified proteins were also found in the synaptic vesicle proteome. Analysis of the MS/MS data revealed many posttranslational modifications, amino acid changes, and alternative splice variants, particularly in tau, a key protein implicated in Alzheimer's disease. Bioinformatic analysis of known protein-protein interactions of the identified proteins indicated that the number of MAPs and their associated proteins is larger than previously anticipated and that our database will be a useful resource to identify novel binding partners. PMID:20567863

  18. Matrix Gla Protein polymorphism, but not concentrations, is associated with radiographic hand osteoarthritis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective. Factors associated with mineralization and osteophyte formation in osteoarthritis (OA) are incompletely understood. Genetic polymorphisms of matrix Gla protein (MGP), a mineralization inhibitor, have been associated clinically with conditions of abnormal calcification. We therefore evalua...

  19. Protein kinase activity associated with pancreatic zymogen granules.

    PubMed

    Burnham, D B; Munowitz, P; Thorn, N; Williams, J A

    1985-05-01

    Purified zymogen granules were prepared from rat pancreas by using an iso-osmotic Percoll gradient. In the presence of [gamma-32P]ATP, phosphorylation of several granule proteins was induced by Ca2+, most notably a Mr-13 000 protein, whereas addition of cyclic AMP was without effect. When phosphatidylserine was also added, Ca2+ increased the phosphorylation of additional proteins, with the largest effect on a protein of Mr 62 000. Purified granules were also able to phosphorylate exogenous substrates. Ca2+-induced phosphorylation of lysine-rich histone was enhanced over 3-fold in the presence of phosphatidylserine, and cyclic AMP-activated protein kinase activity was revealed with mixed histone as substrate. The concentrations of free Ca2+ and cyclic AMP required for half-maximal phosphorylation of both endogenous and exogenous proteins were 1-3 microM and 57 nM respectively. Treatment of granules with 0.25 M-KCl resulted in the release of phosphatidylserine-dependent kinase activity into a high-speed granule supernatant. In contrast, granule-protein substrates of Ca2+-activated kinase activity were resistant to KCl extraction, and in fact were present in purified granule membranes. Kinase activity activated by cyclic AMP was not extracted by KCl treatment. It is concluded that phosphorylation of integral membrane proteins in the zymogen granule can be induced by one or more Ca2+-activated protein kinases. Such a reaction is a potential mechanism by which exocytosis may be regulated in the exocrine pancreas by Ca2+-mediated secretagogues. PMID:4004796

  20. Protein kinase activity associated with pancreatic zymogen granules.

    PubMed Central

    Burnham, D B; Munowitz, P; Thorn, N; Williams, J A

    1985-01-01

    Purified zymogen granules were prepared from rat pancreas by using an iso-osmotic Percoll gradient. In the presence of [gamma-32P]ATP, phosphorylation of several granule proteins was induced by Ca2+, most notably a Mr-13 000 protein, whereas addition of cyclic AMP was without effect. When phosphatidylserine was also added, Ca2+ increased the phosphorylation of additional proteins, with the largest effect on a protein of Mr 62 000. Purified granules were also able to phosphorylate exogenous substrates. Ca2+-induced phosphorylation of lysine-rich histone was enhanced over 3-fold in the presence of phosphatidylserine, and cyclic AMP-activated protein kinase activity was revealed with mixed histone as substrate. The concentrations of free Ca2+ and cyclic AMP required for half-maximal phosphorylation of both endogenous and exogenous proteins were 1-3 microM and 57 nM respectively. Treatment of granules with 0.25 M-KCl resulted in the release of phosphatidylserine-dependent kinase activity into a high-speed granule supernatant. In contrast, granule-protein substrates of Ca2+-activated kinase activity were resistant to KCl extraction, and in fact were present in purified granule membranes. Kinase activity activated by cyclic AMP was not extracted by KCl treatment. It is concluded that phosphorylation of integral membrane proteins in the zymogen granule can be induced by one or more Ca2+-activated protein kinases. Such a reaction is a potential mechanism by which exocytosis may be regulated in the exocrine pancreas by Ca2+-mediated secretagogues. Images Fig. 1. Fig. 2. Fig. 7. Fig. 8. PMID:4004796

  1. G-protein coupled receptor-associated sorting protein 1 (GASP-1), a ubiquitous tumor marker.

    PubMed

    Zheng, Xiaoyi; Chang, Frank; Zhang, Xinmin; Rothman, Vicki L; Tuszynski, George P

    2012-08-01

    Using an innovative "2-D high performance liquid electrophoresis" (2-D HPLE) technology we identified that a specific fragment of G-protein coupled receptor-associated sorting protein 1 (GASP-1) was present in the sera of breast cancer patients and was over-expressed in early and late stage breast tumors (Tuszynski, G.P. et al., 2011). In this study we further investigated the significance of GASP-1 as a tumor marker by investigating the expression GASP-1 in different kinds of tumors as well as in the sera of patients with various cancers. Over expression of GASP-1 was detected in brain, pancreatic, and breast cancers as compared to their respective normal tissues as assessed by immunohistochemical staining of tissue arrays using a "peptide specific" GASP-1 antibody. We found that across these cancers, GASP-1 was expressed approximately 10 fold more in the cancer as compared to normal tissue. The increase in GASP-1 expression was also seen in hyperplastic and inflammatory lesions of breast and pancreatic cancers as compared to normal tissue. GASP-1 was primarily expressed in the tumor epithelium of the epithelial-derived cancers and in the transformed glial cells of the brain tumors. Using a sensitive "competitive ELISA" for GASP-1, we found that sera from patients with brain, liver, breast and lung cancers expressed 4-7 fold more GASP-1 peptide than sera from normal healthy individuals. These studies identify GASP-1 as a potential new serum and tumor biomarker for several cancers and suggest that GASP-1 may be a novel target for development of cancer therapeutics. PMID:22483848

  2. Identification of novel proteins associated with both alpha-synuclein and DJ-1.

    PubMed

    Jin, Jinghua; Li, G Jane; Davis, Jeanne; Zhu, David; Wang, Yan; Pan, Catherine; Zhang, Jing

    2007-05-01

    The molecular mechanisms leading to neurodegeneration in Parkinson disease (PD) remain elusive, although many lines of evidence have indicated that alpha-synuclein and DJ-1, two critical proteins in PD pathogenesis, interact with each other functionally. The investigation on whether alpha-synuclein directly interacts with DJ-1 has been controversial. In the current study, we analyzed proteins associated with alpha-synuclein and/or DJ-1 with a robust proteomics technique called stable isotope labeling by amino acids in cell culture (SILAC) in dopaminergic MES cells exposed to rotenone versus controls. We identified 324 and 306 proteins in the alpha-synuclein- and DJ-1-associated protein complexes, respectively. Among alpha-synuclein-associated proteins, 141 proteins displayed significant changes in the relative abundance (increase or decrease) after rotenone treatment; among DJ-1-associated proteins, 119 proteins displayed significant changes in the relative abundance after rotenone treatment. Although no direct interaction was observed between alpha-synuclein and DJ-1, whether analyzed by affinity purification followed by mass spectrometry or subsequent direct co-immunoprecipitation, 144 proteins were seen in association with both alpha-synuclein and DJ-1. Of those, 114 proteins displayed significant changes in the relative abundance in the complexes associated with alpha-synuclein, DJ-1, or both after rotenone treatment. A subset of these proteins (mortalin, nucleolin, grp94, calnexin, and clathrin) was further validated for their association with both alpha-synuclein and DJ-1 using confocal microscopy, Western blot, and/or immunoprecipitation. Thus, we not only confirmed that there was no direct interaction between alpha-synuclein and DJ-1 but also, for the first time, report these five novel proteins to be associating with both alpha-synuclein and DJ-1. Further characterization of these docking proteins will likely shed more light on the mechanisms by which DJ-1

  3. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    PubMed

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  4. Methyl-accepting protein associated with bacterial sensory phodopsin I

    SciTech Connect

    Spudich, E.N.; Hasselbacher, C.A. ); Spudich, J.L. )

    1988-09-01

    In vivo radiolabeling of Halaobacterium halobium phototaxis mutants and revertants with L-(methyl-{sup 3}H) methionine implicated seven methyl-accepting protein bands with apparent molecular masses from 65 to 150 kilodaltons (kDa) in adaptation of the organism to chemo and photo stimuli, and one of these (94 kDa) was specifically implicated in photoaxis. The lability of the radiolabeled bands to mild base treatment indicated the the methyl linkages are carboxylmethylesters, as is the case in the eubacterial chemotaxis receptor-transducers. The 94-kDa protein was present in increased amounts in an overproducer of the apoprotein of sensory rhodopsin I, one of two retinal-containing photoaxis receptors in H. halobium. It was absent in a strain the contained sensory rhodopsin II and that lacked sensory rhodopsin I and was also absent in a mutant that lacked both photoreceptors. Based in the role of methyl-accepting proteins in chemotaxis in other bacteria, we suggest that the 94-kDa protein is the signal transducer for sensory rhodopsin I. By ({sup 3}H)retinal labeling studies, we previously identified a 25-kDa retinal-binding polypeptide that was derived from photochemically reactive sensory rhodopsin I. When H. halobium membranes containing sensory rhodopsin I were treated by a procedure that stably reduced ({sup 3}H) retinal onto the 25-kDa apoprotein, a 94-kDa protein was also found to be radiolabeled. Protease digestion confirmed that the 94-kDa retinal-labeled protein was the same as the methyl-accepting protein that was suggested above to be the siginal transducer for sensory rhodopsin I. Possible models are that the 25- and 94-kDa proteins are tightly interacting components of the photosensory signaling machinery or that both are forms of sensory rhodopsin I.

  5. Associations between heat shock protein 70 genetic polymorphisms and calving traits in crossbred Brahman cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stressors such as heat, cold, toxins, and oxygen deprivation are known to induce heat shock proteins. Genetic polymorphisms associated with heat shock protein genes have been associated with decreased male and female fertility. Our objectives were to 1) confirm single nucleotide polymorphisms (SNP) ...

  6. SIMILARITIES BETWEEN PROTEIN IIIA AND PROTEIN IIIB, TWO PROMINENT SYNAPTIC VESICLE-ASSOCIATED PHOSPHOPROTEINS (JOURNAL VERSION)

    EPA Science Inventory

    Protein IIIa (Mr 74,000) and protein IIIb (Mr 55,000) are two major phosphoproteins found in mammalian brain. It was previously shown in intact nerve cells that the phosphorylation state of these two proteins could be increased by electrical stimulation, by depolarizing agents in...

  7. A protein kinase associated with paired helical filaments in Alzheimer disease.

    PubMed Central

    Vincent, I J; Davies, P

    1992-01-01

    We have identified a protein kinase in immunoaffinity-purified preparations of paired helical filaments from brain tissue of individuals with Alzheimer disease. The kinase phosphorylates the filament proteins in vitro in a manner independent of second messenger regulation or of modulation by heparin and polyamines. Physiological concentrations of hemin, an oxidized heme porphyrin, inhibit the kinase and abolish Alz-50 immunoreactivity of the proteins. Since paired helical filaments are composed of hyperphosphorylated proteins, association of a protein kinase with the filaments provides a mechanism for abnormal processing of the proteins in disease. Images PMID:1557394

  8. Expressions of Senescence-Associated β-Galactosidase and Senescence Marker Protein-30 are Associated with Lens Epithelial Cell Apoptosis

    PubMed Central

    Zhou, Dan; Yin, Dan; Xiao, Fang; Hao, Jie

    2015-01-01

    Background To investigate associations of senescence marker protein-30 and senescence-associated β-galactosidase expression with lens epithelial cells apoptosis among Chinese age-related cataract patients. Material/Methods A total of 145 age-related cataract patients (69 cases with nuclear cataract in 91 eyes and 76 cases of cortical cataract with 102 eyes) were enrolled in our study. An annular tear of the central part of anterior lens capsules was performed for each patient. Immunohistochemical staining and real-time PCR were used to detect the protein and mRNA expression levels, and TUNEL was used to assess lens epithelial cells apoptosis. Comparisons of protein expression levels and lens epithelial cells apoptosis were made between the 2 groups. Results The results showed a higher protein expression level of senescence marker protein-30 in surrounding parts of the anterior lens capsule compared with the central part of the anterior lens capsule; however, the positive rate of senescence-associated β-galactosidase was remarkably higher in the central part than in the surrounding part. Compared with cortical cataract patients, nuclear cataract patients had elevated senescence marker protein-30 protein and mRNA expression levels, but had a decreased positive rate of senescence-associated β-galactosidase. TUNEL results showed that the lens epithelial cell apoptosis rate was higher in the central part of the anterior lens capsule than in the surrounding part in both groups. Within either central or surrounding area of anterior lens capsule, cortical cataract patients exhibited a significantly higher lens epithelial cell apoptosis rate in contrast with nuclear cataract patients. Conclusions Our study results suggest that senescence marker protein-30 and senescence-associated β-galactosidase expressions in both nuclear cataract and cortical cataract patients were associated with lens epithelial cells apoptosis. PMID:26619319

  9. LUD, a new protein domain associated with lactate utilization

    PubMed Central

    2013-01-01

    Background A novel highly conserved protein domain, DUF162 [Pfam: PF02589], can be mapped to two proteins: LutB and LutC. Both proteins are encoded by a highly conserved LutABC operon, which has been implicated in lactate utilization in bacteria. Based on our analysis of its sequence, structure, and recent experimental evidence reported by other groups, we hereby redefine DUF162 as the LUD domain family. Results JCSG solved the first crystal structure [PDB:2G40] from the LUD domain family: LutC protein, encoded by ORF DR_1909, of Deinococcus radiodurans. LutC shares features with domains in the functionally diverse ISOCOT superfamily. We have observed that the LUD domain has an increased abundance in the human gut microbiome. Conclusions We propose a model for the substrate and cofactor binding and regulation in LUD domain. The significance of LUD-containing proteins in the human gut microbiome, and the implication of lactate metabolism in the radiation-resistance of Deinococcus radiodurans are discussed. PMID:24274019

  10. Programmable protein arrays for immunoprofiling HPV-associated cancers.

    PubMed

    Ewaisha, Radwa; Meshay, Ian; Resnik, Jack; Katchman, Benjamin A; Anderson, Karen S

    2016-04-01

    Over 600,000 cancers each year are attributed to the human papillomavirus (HPV), including cervical, anogenital and oropharyngeal cancers (OPC). A key challenge in understanding HPV immunobiology is the diversity of oncogenic HPV types and the need for multiplexed display of HPV antigens to measure antibody responses. We have generated custom HPV protein microarrays displaying 98 proteins as C-terminal GST fusion proteins, representing eight antigens of two low-risk HPV types (HPV6 and 11) and ten oncogenic high-risk HPV types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52 and 58). We demonstrate robust and reproducible protein expression of 96/98 of the antigens using a human cell lysate expression system. The target epitopes and specificities of four monoclonal antibodies were identified. Using sera from ten patients with newly diagnosed OPC and ten controls, we demonstrate specific IgG seroreactivity to HPV16 E1, E2, and E7 (a fold increase of 1.52, 2.19 and 1.35 in cases vs. controls, respectively, all p < 0.005), confirming our prior data on an ELISA platform. We also detect HPV52 E7 Abs in serum from a patient with cervical cancer. The HPV protein array has potential for rapid identification of serologic responses to 12 HPV types. PMID:27089055

  11. Association of Influenza Virus Proteins with Membrane Rafts

    PubMed Central

    Veit, Michael; Thaa, Bastian

    2011-01-01

    Assembly and budding of influenza virus proceeds in the viral budozone, a domain in the plasma membrane with characteristics of cholesterol/sphingolipid-rich membrane rafts. The viral transmembrane glycoproteins hemagglutinin (HA) and neuraminidase (NA) are intrinsically targeted to these domains, while M2 is seemingly targeted to the edge of the budozone. Virus assembly is orchestrated by the matrix protein M1, binding to all viral components and the membrane. Budding progresses by protein- and lipid-mediated membrane bending and particle scission probably mediated by M2. Here, we summarize the experimental evidence for this model with emphasis on the raft-targeting features of HA, NA, and M2 and review the functional importance of raft domains for viral protein transport, assembly and budding, environmental stability, and membrane fusion. PMID:22312341

  12. Possible association between phages, Hoc protein, and the immune system.

    PubMed

    Dabrowska, K; Switała-Jeleń, K; Opolski, A; Górski, A

    2006-02-01

    Mammals have become "an environment" for enterobacterial phage life cycles. Therefore it could be expected that bacteriophages adapt to them. This adaptation must comprise bacteriophage proteins. Gp Hoc seems to have significance neither for phage particle structure nor for phage antibacterial activity. It is evidently not necessary for the "typical" antibacterial actions of bacteriophages. But the rules of evolution make it improbable that gp Hoc really has no function, and non-essential genes of T4-type phages are probably important for phages' adaptation to their particular lifestyle. More interesting is the eukaryotic origin of gp Hoc: a resemblance to immunoglobulin-like proteins that reflects their evolutionary relation. Substantial differences in biological activity between T4 and a mutant that lacks gp Hoc were observed in a mammalian system. Hoc protein seems to be one of the molecules predicted to interact with mammalian organisms and/or modulate these interactions. PMID:16195787

  13. Localized mRNA translation and protein association

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir

    2014-08-01

    Recent direct observations of localization of mRNAs and proteins both in prokaryotic and eukaryotic cells can be related to slowdown of diffusion of these species due to macromolecular crowding and their ability to aggregate and form immobile or slowly mobile complexes. Here, a generic kinetic model describing both these factors is presented and comprehensively analyzed. Although the model is non-linear, an accurate self-consistent analytical solution of the corresponding reaction-diffusion equation has been constructed, the types of localized protein distributions have been explicitly shown, and the predicted kinetic regimes of gene expression have been classified.

  14. Association of the P6 Protein of Cauliflower mosaic virus with Plasmodesmata and Plasmodesmal Proteins1[W][OPEN

    PubMed Central

    Rodriguez, Andres; Angel, Carlos A.; Lutz, Lindy; Leisner, Scott M.; Nelson, Richard S.; Schoelz, James E.

    2014-01-01

    The P6 protein of Cauliflower mosaic virus (CaMV) is responsible for the formation of inclusion bodies (IBs), which are the sites for viral gene expression, replication, and virion assembly. Moreover, recent evidence indicates that ectopically expressed P6 inclusion-like bodies (I-LBs) move in association with actin microfilaments. Because CaMV virions accumulate preferentially in P6 IBs, we hypothesized that P6 IBs have a role in delivering CaMV virions to the plasmodesmata. We have determined that the P6 protein interacts with a C2 calcium-dependent membrane-targeting protein (designated Arabidopsis [Arabidopsis thaliana] Soybean Response to Cold [AtSRC2.2]) in a yeast (Saccharomyces cerevisiae) two-hybrid screen and have confirmed this interaction through coimmunoprecipitation and colocalization assays in the CaMV host Nicotiana benthamiana. An AtSRC2.2 protein fused to red fluorescent protein (RFP) was localized to the plasma membrane and specifically associated with plasmodesmata. The AtSRC2.2-RFP fusion also colocalized with two proteins previously shown to associate with plasmodesmata: the host protein Plasmodesmata-Localized Protein1 (PDLP1) and the CaMV movement protein (MP). Because P6 I-LBs colocalized with AtSRC2.2 and the P6 protein had previously been shown to interact with CaMV MP, we investigated whether P6 I-LBs might also be associated with plasmodesmata. We examined the colocalization of P6-RFP I-LBs with PDLP1-green fluorescent protein (GFP) and aniline blue (a stain for callose normally observed at plasmodesmata) and found that P6-RFP I-LBs were associated with each of these markers. Furthermore, P6-RFP coimmunoprecipitated with PDLP1-GFP. Our evidence that a portion of P6-GFP I-LBs associate with AtSRC2.2 and PDLP1 at plasmodesmata supports a model in which P6 IBs function to transfer CaMV virions directly to MP at the plasmodesmata. PMID:25239023

  15. Decreased activity of Blastocladiella emersonii zoospore ribosomes: correlation with developmental changes in ribosome-associated proteins.

    PubMed

    Jaworski, A J; Wilson, J B

    1989-10-01

    Ribosomal proteins isolated from dormant zoospores were compared to the ribosomal proteins found in the active growth phase by two-dimensional polyacrylamide gel electrophoresis. Zoospore ribosomes were found to contain a set of five proteins, designated Z1 to Z5, which were not present in growth phase ribosomes. The Z1-Z5 proteins were not removed by high-salt washes using either 1 M KCl or 1 M NH4 Cl. The Z1 protein is found associated with zoospore 60 S subunits while Z2-Z5 are bound to 40 S subunits. Zoospore monoribosomes and polyribosomes contain comparable levels of each of the five proteins. Approximately 60 min. after sporulation is induced, the Z1-Z5 proteins begin to accumulate on the ribosomes with the highest levels of these proteins found associated with ribosomes at the zoospore stage. During germination, the proteins gradually disappear and are not detectable on the ribosomes after 4 hr of germination. The presence of the Z1-Z5 proteins correlates with a decrease in in vitro protein synthetic activity of the fungal ribosomes. The data are consistent with the hypothesis that the proteins regulate translation by completely blocking protein synthesis on a subset of ribosomes while the remainder of the ribosomes function at normal rates. PMID:2776972

  16. Studies on gonococcus infection. XV. Identification of surface proteins of Neisseria gonorrhoeae correlated with leukocyte association.

    PubMed Central

    King, G J; Swanson, J

    1978-01-01

    Neisseria gonorrhoeae which exhibit high levels of leukocyte association have a surface protein which is considerably diminished in isogenic gonococci which exhibit low levels of leukocyte association (LA). The LA protein exhibits strain variation in molecular weight and immunogenicity. Membranes derived from LA+ and LA- organisms show quantitative differences in their adsorption to leukocytes; these differences are analogous to those found for the intact organisms regarding their association with leukocytes. Images PMID:211086

  17. Computational Framework for Prediction of Peptide Sequences That May Mediate Multiple Protein Interactions in Cancer-Associated Hub Proteins

    PubMed Central

    Sarkar, Debasree; Patra, Piya; Ghosh, Abhirupa; Saha, Sudipto

    2016-01-01

    A considerable proportion of protein-protein interactions (PPIs) in the cell are estimated to be mediated by very short peptide segments that approximately conform to specific sequence patterns known as linear motifs (LMs), often present in the disordered regions in the eukaryotic proteins. These peptides have been found to interact with low affinity and are able bind to multiple interactors, thus playing an important role in the PPI networks involving date hubs. In this work, PPI data and de novo motif identification based method (MEME) were used to identify such peptides in three cancer-associated hub proteins—MYC, APC and MDM2. The peptides corresponding to the significant LMs identified for each hub protein were aligned, the overlapping regions across these peptides being termed as overlapping linear peptides (OLPs). These OLPs were thus predicted to be responsible for multiple PPIs of the corresponding hub proteins and a scoring system was developed to rank them. We predicted six OLPs in MYC and five OLPs in MDM2 that scored higher than OLP predictions from randomly generated protein sets. Two OLP sequences from the C-terminal of MYC were predicted to bind with FBXW7, component of an E3 ubiquitin-protein ligase complex involved in proteasomal degradation of MYC. Similarly, we identified peptides in the C-terminal of MDM2 interacting with FKBP3, which has a specific role in auto-ubiquitinylation of MDM2. The peptide sequences predicted in MYC and MDM2 look promising for designing orthosteric inhibitors against possible disease-associated PPIs. Since these OLPs can interact with other proteins as well, these inhibitors should be specific to the targeted interactor to prevent undesired side-effects. This computational framework has been designed to predict and rank the peptide regions that may mediate multiple PPIs and can be applied to other disease-associated date hub proteins for prediction of novel therapeutic targets of small molecule PPI modulators. PMID

  18. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification.

    PubMed

    Nguyen, Ngoc-Thuy-Trinh; Saguez, Cyril; Conesa, Christine; Lefebvre, Olivier; Acker, Joël

    2015-02-01

    To identify the proteins associated with the RNA polymerase III (Pol III) machinery in exponentially growing yeast cells, we developed our own tandem chromatin affinity purification procedure (TChAP) after in vivo cross-link, allowing a reproducible and good recovery of the protein bait and its associated partners. In contrast to TFIIIA that could only be purified as a free protein, this protocol allows us to capture free Pol III together with Pol III bound on its target genes. Transcription factors, elongation factors, RNA-associated proteins and proteins involved in Pol III biogenesis were identified by mass spectrometry. Interestingly, the presence of all the TFIIIB subunits found associated with Pol III together with the absence of TFIIIC and chromatin factors including histones suggest that DNA-bound Pol III purified using TChAP is mainly engaged in transcription reinitiation. PMID:25086199

  19. Effect of the microtubule-associated protein tau on dynamics of single-headed motor proteins KIF1A

    NASA Astrophysics Data System (ADS)

    Sparacino, J.; Farías, M. G.; Lamberti, P. W.

    2014-02-01

    Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with nonmotile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al., Science 319, 1086 (2008), 10.1126/science.1152993] we developed a stochastic model of interacting single-headed motor proteins KIF1A that also takes into account the interactions between motor proteins and tau molecules. Our model reproduces experimental observations and predicts significant effects of tau on bound time and run length which suggest an important role of tau in regulation of kinesin-based transport.

  20. Transmembrane Protein (Perfringolysin O) Association with Ordered Membrane Domains (Rafts) Depends Upon the Raft-Associating Properties of Protein-Bound Sterol

    PubMed Central

    Lin, Qingqing; London, Erwin

    2013-01-01

    Because transmembrane (TM) protein localization, or nonlocalization, in ordered membrane domains (rafts) is a key to understanding membrane domain function, it is important to define the origin of protein-raft interaction. One hypothesis is that a tight noncovalent attachment of TM proteins to lipids that have a strong affinity for ordered domains can be sufficient to induce raft-protein interaction. The sterol-binding protein perfringolysin O (PFO) was used to test this hypothesis. PFO binds both to sterols that tend to localize in ordered domains (e.g., cholesterol), and to those that do not (e.g., coprostanol), but it does not bind to epicholesterol, a raft-promoting 3α-OH sterol. Using a fluorescence resonance energy transfer assay in model membrane vesicles containing coexisting ordered and disordered lipid domains, both TM and non-TM forms of PFO were found to concentrate in ordered domains in vesicles containing high and low-Tm lipids plus cholesterol or 1:1 (mol/mol) cholesterol/epicholesterol, whereas they concentrate in disordered domains in vesicles containing high-Tm and low-Tm lipids plus 1:1 (mol/mol) coprostanol/epicholesterol. Combined with previous studies this behavior indicates that TM protein association with ordered domains is dependent upon both the association of the protein-bound sterol with ordered domains and hydrophobic match between TM segments and rafts. PMID:24359745

  1. Identification of a novel protein-protein interaction motif mediating interaction of GPCR-associated sorting proteins with G protein-coupled receptors.

    PubMed

    Bornert, Olivier; Møller, Thor C; Boeuf, Julien; Candusso, Marie-Pierre; Wagner, Renaud; Martinez, Karen L; Simonin, Frederic

    2013-01-01

    GPCR desensitization and down-regulation are considered key molecular events underlying the development of tolerance in vivo. Among the many regulatory proteins that are involved in these complex processes, GASP-1 have been shown to participate to the sorting of several receptors toward the degradation pathway. This protein belongs to the recently identified GPCR-associated sorting proteins (GASPs) family that comprises ten members for which structural and functional details are poorly documented. We present here a detailed structure-function relationship analysis of the molecular interaction between GASPs and a panel of GPCRs. In a first step, GST-pull down experiments revealed that all the tested GASPs display significant interactions with a wide range of GPCRs. Importantly, the different GASP members exhibiting the strongest interaction properties were also characterized by the presence of a small, highly conserved and repeated "GASP motif" of 15 amino acids. We further showed using GST-pull down, surface plasmon resonance and co-immunoprecipitation experiments that the central domain of GASP-1, which contains 22 GASP motifs, is essential for the interaction with GPCRs. We then used site directed mutagenesis and competition experiments with synthetic peptides to demonstrate that the GASP motif, and particularly its highly conserved core sequence SWFW, is critically involved in the interaction with GPCRs. Overall, our data show that several members of the GASP family interact with GPCRs and highlight the presence within GASPs of a novel protein-protein interaction motif that might represent a new target to investigate the involvement of GASPs in the modulation of the activity of GPCRs. PMID:23441177

  2. Axoplasmic transport of microtubule-associated proteins in the rat sciatic nerve

    SciTech Connect

    Takenaka, T.; Inomata, K.

    1981-09-01

    /sup 32/P-ATP was injected into the L5 dorsal root ganglion and axoplasmic transport of the phosphorylate MA proteins 2, microtubule-associated proteins 2, was observed. After the injection of /sup 32/P-ATP, the nerve was dissected out at prescribed time intervals and sliced into 5-mm pieces. Each segment was electrophoresed on an SDS-polyacrylamide slab gel and subjected to autoradiography. A protein of 310,000 dalton was transported at a velocity of 6.6-10.6 mm/day in the axon with the electrophoretic mobility identical to that of MA proteins 2, one of the key components associated with the microtubules.

  3. Protein 4.1: its association with the human erythrocyte membrane.

    PubMed Central

    Shiffer, K A; Goodman, S R

    1984-01-01

    125I-labeled protein 4.1a and 4.1b have equal ability to reassociate with inside-out erythrocyte vesicles that were depleted of protein 4.1 in addition to other peripheral membrane proteins. The reassociation of 125I-labeled protein 4.1 to protein 4.1-depleted vesicles at 4 degrees C is salt dependent, pH dependent, and saturable with a Kd of 42-50 nM and an extrapolated maximal binding capacity of 120-140 micrograms of protein 4.1 bound per mg of vesicle protein or 60-70 micrograms of protein 4.1 bound per mg of ghost protein, correlating with the protein 4.1 content in the erythrocyte membrane (6-7% of the total membrane protein). Selective proteolytic cleavage of these vesicles with papain (5 micrograms/ml at 4 degrees C) eliminates greater than 60% of the high-affinity binding sites; therefore, we conclude that the interaction of protein 4.1 with the cytoplasmic membrane surface is through a specific high-affinity protein-protein association. Images PMID:6589603

  4. Brownian dynamics study of the influences of electrostatic interaction and diffusion on protein-protein association kinetics.

    PubMed Central

    Zhou, H X

    1993-01-01

    A unified model is presented for protein-protein association processes that are under the influences of electrostatic interaction and diffusion (e.g., protein oligomerization, enzyme catalysis, electron and energy transfer). The proteins are modeled as spheres that bear point charges and undergo translational and rotational Brownian motion. Before association can occur the two spheres have to be aligned properly to form a reaction complex via diffusion. The reaction complex can either go on to form the product or it can dissociate into the separate reactants through diffusion. The electrostatic interaction, like diffusion, influences every step except the one that brings the reaction complex into the product. The interaction potential is obtained by extending the Kirkwood-Tanford protein model (Tanford, C., and J. G. Kirkwood. 1957. J. Am. Chem. Soc. 79:5333-5339) to two charge-embedded spheres and solving the consequent equations under a particular basis set. The time-dependent association rate coefficient is then obtained through Brownian dynamics simulations according an algorithm developed earlier (Zhou, H.-X. 1990. J. Phys. Chem. 94:8794-8800). This method is applied to a model system of the cytochrome c and cytochrome c peroxidase association process and the results confirm the experimental dependence of the association rate constant on the solution ionic strength. An important conclusion drawn from this study is that when the product is formed by very specific alignment of the reactants, as is often the case, the effect of the interaction potential is simply to scale the association rate constant by a Boltzmann factor. This explains why mutations in the interface of the reaction complex have strong influences on the association rate constant whereas those away from the interface have minimal effects. It comes about because the former mutations change the interaction potential of the reaction complex significantly and the latter ones do not. PMID:8396447

  5. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin

    SciTech Connect

    Leiman, Petr G.; Basler, Marek; Ramagopal, Udupi A.; Bonanno, Jeffrey B.; Sauder, J. Michael; Pukatzki, Stefan; Burley, Stephen K.; Almo, Steven C.; Mekalanos, John J.

    2009-04-22

    Protein secretion is a common property of pathogenic microbes. Gram-negative bacterial pathogens use at least 6 distinct extracellular protein secretion systems to export proteins through their multilayered cell envelope and in some cases into host cells. Among the most widespread is the newly recognized Type VI secretion system (T6SS) which is composed of 15--20 proteins whose biochemical functions are not well understood. Using crystallographic, biochemical, and bioinformatic analyses, we identified 3 T6SS components, which are homologous to bacteriophage tail proteins. These include the tail tube protein; the membrane-penetrating needle, situated at the distal end of the tube; and another protein associated with the needle and tube. We propose that T6SS is a multicomponent structure whose extracellular part resembles both structurally and functionally a bacteriophage tail, an efficient machine that translocates proteins and DNA across lipid membranes into cells.

  6. Detergent-associated Solution Conformations of Helical and Beta-barrel Membrane Proteins

    SciTech Connect

    Mo, Yiming; Lee, Byung-Kwon; Ankner, John Francis; Becker, Jeffrey Marvin; Heller, William T

    2008-01-01

    Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), the Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the ?-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparison provided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state.

  7. Analysis of low-density lipoprotein-associated proteins using the method of digitized native protein mapping.

    PubMed

    Jin, Ya; Chen, Jin; Wang, Ahui; Zhang, Jun; Chen, Shumin; Manabe, Takashi; Tan, Wen

    2016-07-01

    The method of digitized native protein mapping, combining nondenaturing micro 2DE, grid gel-cutting, and quantitative LC-MS/MS (in data-independent acquisition mode, or MS(E) ), was improved by using a new MS/MS mode, ion mobility separation enhanced-MS(E) (HDMS(E) ), and applied to analyze the area of human plasma low-density lipoprotein (LDL). An 18 mm × 4.8 mm rectangular area which included LDL on a nondenaturing micro 2D gel of human plasma was grid-cut into 72 square gel pieces and subjected to quantitative LC-MS/MS. Compared with MS(E) , HDMS(E) showed significantly higher performance, by assigning 50% more proteins and detecting each protein in more squares. A total of 253 proteins were assigned with LC-HDMS(E) and the quantity distribution of each was reconstructed as a native protein map. The maps showed that Apo B-100 was the most abundant protein in the grid-cut area, concentrated at pI ca. 5.4-6.1 and apparent mass ca. 1000 kDa, which corresponded to four gel pieces, squares 39-42. An Excel macro was prepared to search protein maps which showed protein quantity peaks localized within this concentrated region of Apo B-100. Twenty-two proteins out of the 252 matched this criterion, in which 19 proteins have been reported to be associated with LDL. This method only requires several microliters of a plasma sample and the principle of the protein separation is totally different from the commonly used ultracentrifugation. The results obtained by this method would provide new insights on the structure and function of LDL. PMID:27174546

  8. Deficiency of cyclase-associated protein 2 promotes arrhythmias associated with connexin43 maldistribution and fibrosis

    PubMed Central

    Peche, Vivek Shahaji; Linhart, Markus; Nickenig, Georg; Noegel, Angelika Anna; Schrickel, Jan Wilko

    2016-01-01

    Introduction Cyclase-associated protein 2 (CAP2) plays a major role in regulating the actin cytoskeleton. Since inactivation of CAP2 in a mouse model by a gene trap approach (Cap2gt/gt) results in cardiomyopathy and increased mortality, we hypothesized that CAP2 has a major impact on arrhythmias and electrophysiological parameters. Material and methods We performed long-term-ECG recordings in transgenic CAP2 deficient mice (C57BL/6) to detect spontaneous arrhythmias. In vivo electrophysiological studies by right heart catheterization and ex vivo epicardial mapping were used to analyze electrophysiological parameters, the inducibility of arrhythmias, and conduction velocities. Expression and distribution of cardiac connexins and the amount of cardiac fibrosis were evaluated. Results Spontaneous ventricular arrhythmias could be detected in Cap2gt/gt during the long-term-ECG recording. Cap2gt/gt showed marked conduction delays at atrial and ventricular levels, including a reduced heart rate (421.0 ±40.6 bpm vs. 450.8 ±27.9 bpm; p < 0.01), and prolongations of PQ (46.3 ±4.1 ms vs. 38.6 ±6.5 ms; p < 0.01), QRS (16.2 ±2.6 ms vs. 12.6 ±1.4 ms; p < 0.01), and QTc interval (55.8 ±6.0 ms vs. 45.2 ±3.3 ms; p = 0.02) in comparison to wild type mice. The PQ prolongation was due to an infra-Hisian conduction delay (HV: 9.7 ±2.1 ms vs. 6.5 ±3.1 ms; p = 0.02). The inducibility of ventricular tachycardias during the electrophysiological studies was significantly elevated in the mutant mice (inducible animals: 88% vs. 33%; p = 0.04). Cap2gt/gt showed more abnormal distribution of connexin43 compared to WT (23.0 ±4.7% vs. 2.9 ±0.8%; p < 0.01). Myocardial fibrosis was elevated in Cap2gt/gt hearts (9.1 ±6.7% vs. 5.5 ±3.3%; p < 0.01). Conclusions Loss of CAP2 results in marked electrophysiological disturbances including impaired sinus node function, conduction delays, and susceptibility to malignant arrhythmias. Structural changes in Cap2gt/gt are associated with

  9. RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction.

    PubMed

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-07-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA-RNA/RNA-protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA-RNA interactions and 1619 RNA-protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA-RNA/RNA-protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA-RNA/RNA-protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. PMID:24803509

  10. Cilia and cilia-associated proteins in cancer

    PubMed Central

    Seeger-Nukpezah, Tamina; Little, Joy L.; Serzhanova, Victoria; Golemis, Erica A.

    2013-01-01

    The primary cilium is a well-established target in the pathogenesis of numerous developmental and chronic disorders, and more recently is attracting interest as a structure relevant to cancer. Here we discuss mechanisms by which changes in cilia can contribute to the formation and growth of tumors. We emphasize the cancer-relevance of cilia-dependent signaling pathways and proteins including mTOR, VHL, TSC, WNT, Aurora-A, NEDD9, and Hedgehog, and highlight the emerging role of ciliary dysfunction in renal cell carcinoma, medulloblastoma, and breast cancer. PMID:24982684