Science.gov

Sample records for cdse obtenidas por

  1. Biopolymer-protected CdSe nanoparticles.

    PubMed

    Bozanić, D K; Djoković, V; Bibić, N; Sreekumari Nair, P; Georges, M K; Radhakrishnan, T

    2009-11-23

    A synthetic procedure for the encapsulation of cadmium selenide (CdSe) nanoparticles in a sago starch matrix is introduced. The nanocomposite was investigated using structural, spectroscopic, and thermal methods. TEM micrographs of the nanocomposite showed spherical CdSe particles of 4-5 nm in size coated with a biopolymer layer. The absorption edges of both the aqueous solution and the thin film of the CdSe-starch nanocomposite were shifted toward lower wavelengths in comparison to the value of the bulk semiconductor. Infrared measurements revealed that the interaction of CdSe nanoparticles and starch chains takes place via OH groups. Although the onset of the temperature of decomposition of CdSe-starch nanocomposite is lower than that of the pure matrix, thermogravimetric analysis also showed that introduction of CdSe nanoparticles significantly reduced starch degradation rate leading to high residual mass at the end of the degradation process. PMID:19772959

  2. CdSe Nanoplatelets: Living Polymers.

    PubMed

    Jana, Santanu; Davidson, Patrick; Abécassis, Benjamin

    2016-08-01

    Colloidal CdSe nanoplatelets are considered to be excellent candidates for many applications in nanotechnology. One of the current challenges is to self-assemble these colloidal quantum wells into large ordered structures to control their collective optical properties. We describe a simple and robust procedure to achieve controlled face-to-face self-assembly of CdSe nanoplatelets into micron-long polymer-like threads made of up to ∼1000 particles. These structures are formed by addition of oleic acid to a stable colloidal dispersion of platelets, followed by slow drying and re-dispersion. We could control the average length of the CdSe nanoplatelet threads by varying the amount of added oleic acid. These 1-dimensional structures are flexible and feature a "living polymer" character because threads of a given length can be further grown through the addition of supplementary nanoplatelets at their reactive ends. PMID:27329047

  3. Anisotropy in CdSe quantum rods

    SciTech Connect

    Li, Liang-shi

    2003-09-01

    The size-dependent optical and electronic properties of semiconductor nanocrystals have drawn much attention in the past decade, and have been very well understood for spherical ones. The advent of the synthetic methods to make rod-like CdSe nanocrystals with wurtzite structure has offered us a new opportunity to study their properties as functions of their shape. This dissertation includes three main parts: synthesis of CdSe nanorods with tightly controlled widths and lengths, their optical and dielectric properties, and their large-scale assembly, all of which are either directly or indirectly caused by the uniaxial crystallographic structure of wurtzite CdSe. The hexagonal wurtzite structure is believed to be the primary reason for the growth of CdSe nanorods. It represents itself in the kinetic stabilization of the rod-like particles over the spherical ones in the presence of phosphonic acids. By varying the composition of the surfactant mixture used for synthesis we have achieved tight control of the widths and lengths of the nanorods. The synthesis of monodisperse CdSe nanorods enables us to systematically study their size-dependent properties. For example, room temperature single particle fluorescence spectroscopy has shown that nanorods emit linearly polarized photoluminescence. Theoretical calculations have shown that it is due to the crossing between the two highest occupied electronic levels with increasing aspect ratio. We also measured the permanent electric dipole moment of the nanorods with transient electric birefringence technique. Experimental results on nanorods with different sizes show that the dipole moment is linear to the particle volume, indicating that it originates from the non-centrosymmetric hexagonal lattice. The elongation of the nanocrystals also results in the anisotropic inter-particle interaction. One of the consequences is the formation of liquid crystalline phases when the nanorods are dispersed in solvent to a high enough

  4. Medición de placas astrométricas obtenidas con el telescopio Astrográfico de La Plata

    NASA Astrophysics Data System (ADS)

    di Sisto, R. P.; Orellana, R.

    El Observatorio de La Plata cuenta con un gran número de placas de asteroides y cometas obtenidas con el telescopio astrográfico, que cubren gran parte del cielo del hemisferio sur. En 1996 se recopilaron y clasificaron 2187 placas (Beca para estudiantes de la AAA 1996) de las cuales 2031 corresponden a asteroides. Los datos de cada placa se volcaron en una base de datos creada para facilitar su manejo y preservar la información. A partir de este trabajo se revisaron los MPC electrónicos y se identificaron aquellas placas de asteroides pertenecientes a nuestra base de datos cuyos resultados no fueron publicados en los mismos. De un total de 400 placas que no aparecían publicadas sobresalía un paquete constituído por 40 placas obtenidas en 1977. Estas últimas fueron reducidas utilizando las posiciones y movimientos propios de las estrellas de referencia obtenidas del catálogo SAO 2000 dadas para el sistema FK5. Las posiciones calculadas fueron enviadas y publicadas en los Minor Planet Circulars (MPC).

  5. Magnetic study of Fe-doped CdSe nanomaterials

    NASA Astrophysics Data System (ADS)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-05-01

    Nanoparticles of pure and iron (50 %) doped cadmium selenide (CdSe) have been synthesized by soft chemical route. EDAX analysis supports the inclusion of Fe into CdSe nanoparticles. The average particle size of pure and doped CdSe is found to be ˜50 nm from scanning electron microscopy (SEM). Magnetization of the samples are measured under the field cooled (FC) and zero field cooled (ZFC) modes in the temperature range from 5K to 300K applying a magnetic field of 500Oe. Field dependent magnetization (M-H) measurement indicates presence of room temperature (RT) paramagnetism and low temperature (5K) ferromagnetism of the sample.

  6. Optical Properties of CdSe Nanoparticle Assemblies

    SciTech Connect

    Huser, T; Gerion, D; Zaitseva, N; Krol, D M; Leon, F R

    2003-11-24

    We report on three-dimensional fluorescence imaging of micron-size faceted crystals precipitated from solutions of CdSe nanocrystals. Such crystals have previously been suggested to be superlattices of CdSe quantum dots [1,2]. Possible applications for these materials include their use in optical and optoelectronic devices. The micron-size crystals were grown by slow evaporation from toluene solutions of CdSe nanocrystals in the range of 3-6 nm, produced by traditional wet-chemistry techniques. By using a confocal microscope with laser illumination, three-dimensional raster-scanning and synchronized hyper-spectral detection, we have generated spatial profiles of the fluorescence emission intensity and spectrum. The fluorescence data of the micro-crystals were compared with spectra of individual nanocrystals obtained from the same solution. The results do not support the assertion that these microcrystals consist of CdSe superlattices.

  7. Visible light-driven CdSe nanotube array photocatalyst

    PubMed Central

    2013-01-01

    Large-scale CdSe nanotube arrays on indium tin oxide (ITO) glass have been synthesized using ZnO nanorod template. The strong visible light absorption in CdSe, its excellent photoresponse, and the large surface area associated with the tubular morphology lead to good visible light-driven photocatalytic capability of these nanotube arrays. Compared to freestanding nanoparticles, such one-piece nanotube arrays on ITO make it very convenient for catalyst recycling after their usage PMID:23680487

  8. Visible light-driven CdSe nanotube array photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhu, Haojun; Li, Quan

    2013-05-01

    Large-scale CdSe nanotube arrays on indium tin oxide (ITO) glass have been synthesized using ZnO nanorod template. The strong visible light absorption in CdSe, its excellent photoresponse, and the large surface area associated with the tubular morphology lead to good visible light-driven photocatalytic capability of these nanotube arrays. Compared to freestanding nanoparticles, such one-piece nanotube arrays on ITO make it very convenient for catalyst recycling after their usage

  9. Visible light-driven CdSe nanotube array photocatalyst.

    PubMed

    Zhu, Haojun; Li, Quan

    2013-01-01

    Large-scale CdSe nanotube arrays on indium tin oxide (ITO) glass have been synthesized using ZnO nanorod template. The strong visible light absorption in CdSe, its excellent photoresponse, and the large surface area associated with the tubular morphology lead to good visible light-driven photocatalytic capability of these nanotube arrays. Compared to freestanding nanoparticles, such one-piece nanotube arrays on ITO make it very convenient for catalyst recycling after their usage. PMID:23680487

  10. Enhanced photoelectric activity of CdSe nanostructures with mixed crystalline phases

    NASA Astrophysics Data System (ADS)

    Tao, Leiming; Pang, Shan; An, Yanqing; Xu, Hongtao; Wu, Sixin

    2010-05-01

    CdSe nanostructures were synthesized by the hydrothermal process. The morphology and structures of as-prepared CdSe were seriously affected by adding an ionic liquid, lithium bis((trifluoromethyl)- sulfonyl)amide. The results illustrated that when the ionic liquid is added, CdSe nanorod-chain assemblies with the mixed cubic and hexagonal phases are obtained. The surface photovoltaic and photocurrent measurements demonstrated that CdSe nanorod-chain assemblies show a photoelectric response.

  11. Piezo-phototronic effect of CdSe nanowires.

    PubMed

    Dong, Lin; Niu, Simiao; Pan, Caofeng; Yu, Ruomeng; Zhang, Yan; Wang, Zhong Lin

    2012-10-23

    The piezo-phototronic effect on transport properties of flexible CdSe NW devices is investigated. An optimum sensitivity of the flexible CdSe NW devices can be achieved by adjusting the applied strain and illumination intensity. The piezo-phototronic effect under compressive strain increases the internal electric field of the Schottky barrier, and assists the separation of the photo-excited electron-hole pairs, resulting in the increase of photocurrent. A trap-mediated mechanism is responsible for the decreased hole separation when the strain is larger than the critical strain. PMID:22887269

  12. Photochemical electronic doping of colloidal CdSe nanocrystals.

    PubMed

    Rinehart, Jeffrey D; Schimpf, Alina M; Weaver, Amanda L; Cohn, Alicia W; Gamelin, Daniel R

    2013-12-18

    A method for electronic doping of colloidal CdSe nanocrystals (NCs) is reported. Anaerobic photoexcitation of CdSe NCs in the presence of a borohydride hole quencher, Li[Et3BH], yields colloidal n-type CdSe NCs possessing extra conduction-band electrons compensated by cations deposited by the hydride hole quencher. The photodoped NCs possess excellent optical quality and display the key spectroscopic signatures associated with NC n-doping, including a bleach at the absorption edge, appearance of a new IR absorption band, and Auger quenching of the excitonic photoluminescence. Although stable under anaerobic conditions, these spectroscopic changes are all reversed completely upon exposure of the n-doped NCs to air. Chemical titration of the added electrons confirms previous correlations between absorption bleach and electron accumulation and provides a means of quantifying the extent of electron trapping in some NCs. The generality of this photodoping method is demonstrated by initial results on colloidal CdE (E = S, Te) NCs as well as on CdSe quantum dot films. PMID:24289732

  13. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates.

    PubMed

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices. PMID:27199079

  14. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates

    NASA Astrophysics Data System (ADS)

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices.

  15. Direct Patterning of CdSe Quantum Dots into Sub-100 nm Structures

    SciTech Connect

    Hampton, Meredith J.; Templeton, Joseph L.; DeSimone, Joseph M.

    2010-03-02

    Ordered, two-dimensional cadmium selenide (CdSe) arrays have been fabricated on indium-doped tin oxide (ITO) electrodes using the pattern replication in nonwetting templates (PRINT) process. CdSe quantum dots (QDs) with an average diameter of 2.7 nm and a pyridine surface ligand were used for patterning. The PRINT technique utilizes a perfluoropolyether (PFPE) elastomeric mold that is tolerant of most organic solvents, thus allowing solutions of CdSe QDs in 4-picoline to be used for patterning without significant deformation of the mold. Nanometer-scale diffraction gratings have been successfully replicated with CdSe QDs.

  16. Luminescent gelatin nanospheres by encapsulating CdSe quantum dots.

    PubMed

    Chen, Longyan; Willoughby, Adrienne; Zhang, Jin

    2014-02-01

    Quantum dots (QDs) have been encapsulated within gelatin nanoparticles (GNPs), which gives GNPs fluorescent properties and improves the biocompatibility of QDs. Hydrophilic CdSe QDs were produced through thermodecomposition following the ligand-exchange method, and were then encapsulated in GNPs. The results of high-resolution transmission electron microscopy and transmission electron microscopy show that CdSe QDs and QDs-encapsulated GNPs (QDs-GNPs) have average diameters of 5 ± 1 and 150 ± 10 nm, respectively. Results of both high-resolution transmission electron microscopy and confocal laser scanning microscopy indicate that CdSe QDs are successfully encapsulated within GNPs. The QDs-GNPs have distinctive fluorescent properties with maximum emission at 654 nm, with a 24 nm red-shift compared with hydrophilic mercaptoundecanoic acid (MUA)-modified QDs. In addition, an in vitro cytotoxicity test shows that QDs-GNPs do not have any toxic effect on cells. It is expected that QDs-GNPs might be an excellent candidate as a contrast agent in bio-imaging. PMID:23533134

  17. Photophysical properties of biologically compatible CdSe quantum dot structures.

    PubMed

    Kloepfer, Jeremiah A; Bradforth, Stephen E; Nadeau, Jay L

    2005-05-26

    The photophysical properties of CdSe and ZnS(CdSe) semiconductor quantum dots in nonpolar and aqueous solutions were examined with steady-state (absorption and emission) and time-resolved (time-correlated single-photon-counting) spectroscopy. The CdSe structures were prepared from a single CdSe synthesis, a portion of which were ZnS-capped, thus any differences observed in the spectral behavior between the two preparations were due to changes in the molecular shell. Quantum dots in nonpolar solvents were surrounded with a trioctylphosphine oxide (TOPO) coating from the initial synthesis solution. ZnS-capped CdSe were initially brighter than bare uncapped CdSe and had overall faster emission decays. The dynamics did not vary when the solvent was changed from hexane to dichloromethane; however, replacement of the TOPO cap by pyridine affected CdSe but not ZnS(CdSe). CdSe was then solubilized in water with mercapto-acetic acid or dihydrolipoic acid, whereas ZnS(CdSe) could be solubilized only with dihydrolipoic acid. Both solubilization agents quenched the nanocrystal emission, though with CdSe the quenching was nearly complete. Additional quenching of the remaining emission was observed when the redox-active molecule adenine was conjugated to the water-soluble CdSe but was not seen with ZnS(CdSe). The emission of aqueous CdSe could be enhanced under prolonged exposure to room light and resulted in a substantial increase of the emission lifetimes; however, the enhancement occurred concurrently with precipitation of the nanocrystals, which was possibly caused by photocatalytic destruction of the mercaptoacetic acid coating. These results are the first presented on aqueous CdSe quantum dot structures and are presented in the context of designing better, more stable biological probes. PMID:16852208

  18. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals

    ERIC Educational Resources Information Center

    Boatman, Elizabeth M.; Lisensky, George C.; Nordell, Karen J.

    2005-01-01

    The synthesis for CdSe quantum dot nanocrystals that vary in color and are a visually engaging way to demonstrate quantum effects in chemistry is presented. CdSe nanocrystals are synthesized from CdO and elemental Se using a kinetic growth method where particle size depends on reaction time.

  19. Influence of Surfactants and Charges on CdSe Quantum Dots

    SciTech Connect

    Yang, Ping; Tretiak, Sergei; Ivanov, Sergei

    2011-07-11

    The chemistry between CdSe quantum dots and common surface capping ligands is invested using density functional theory. We will discuss the electronic structures and optical properties of CdSe QDs controlled by the size of particle, self-organization, capping ligands, and positive charges. Charges on quantum dots have profound effects on their structures, binding energies, and optical properties.

  20. CdSe quantum dot internalization by Bacillus subtilis and Escherichia coli

    NASA Technical Reports Server (NTRS)

    Kloepfer, Jeremiah A.; Mielke, Randall E.; Nadeau, Jay L.

    2004-01-01

    Biological labeling has been demonstrated with CdSe quantum dots in a variety of animal cells, but bacteria are harder to label because of their cell walls. We discuss the challenges of using minimally coated, bare CdSe quantum dots as luminescent internal labels for bacteria.

  1. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    NASA Astrophysics Data System (ADS)

    Salini, K.; Mathew, Thomas; Mathew, Vincent

    2016-05-01

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantly alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.

  2. Synthesis of highly luminescent mercaptosuccinic acid-coated CdSe nanocrystals under atmospheric conditions.

    PubMed

    Dong, Meiting; Xu, Jingyi; Liu, Shuxian; Zhou, Ying; Huang, Chaobiao

    2014-11-01

    Here we report a facile one-pot method for the preparation of high-quality CdSe nanocrystals (NCs) in aqueous solution under an air atmosphere. Compared with the traditional use of NaHSe or H2 Se, the more stable sodium selenite is utilized as the Se source for preparing highly luminescent CdSe nanocrystals. By using mercaptosuccinic acid (MSA) as the capping agent and borate-citrate acid as the buffering solution, CdSe nanocrystals with high quantum yield (up to 70%) have been synthesized conveniently. The influence of different experimental parameters, such as the pH of the precursor solution, the molar ratio of Cd(2+) to Na2 SeO3 and Cd(2+) to MSA on the CdSe nanocrystals, has been systematically investigated. The prepared CdSe NCs were spherical with a size of ~ 5 nm. PMID:24639040

  3. Preparation of highly luminescent CdSe quantum dots by reverse micelles

    NASA Astrophysics Data System (ADS)

    Liu, Kang; Park, Sang Joon

    2014-08-01

    CdSe quantum dots (QDs) with relatively high photoluminescence (PL) quantum yield (QY) (about 30%) were prepared by a safe, low-cost, and simple synthesis method, utilizing a sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water/cyclohexane microemulsion system. Cadmium chloride (CdCl2) and selenium powder were used as the cadmium and selenium sources, respectively. Size-tunable CdSe nanoparticles were obtained at various water-to-surfactant ratios, W ([H2O]/[surfactant]). The size of the CdSe nanoparticles increased, and the UV-vis absorption and PL peaks shifted towards the red region as W increased. Interestingly, the redshift also occurred when the ratio of Cd to Se increased. The highest PL efficiency was obtained at W of 5 and a Cd/Se ratio of 2:1. In addition, the CdSe nanoparticles with higher Cd to Se molar ratio (3/1) showed a higher stability against photooxidation.

  4. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    PubMed

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates. PMID:26407206

  5. Effect of Chemicals on Morphology and Luminescence of CdSe Quantum Dots.

    PubMed

    Zhang, Xiao; Li, Xiaoyu; Zhang, Ruili; Yang, Ping

    2015-04-01

    CdSe quantum dots (QDs) with several morphologies were fabricated using various reaction sys- tems. In a trioctylamine (TOA) and octadecylphosphonic acid (ODPA) system, yellow-emitting (a photoluminescence (PL) peak wavelength of 583 nm) CdSe QDs revealed rod morphology and nar- row size distribution. When ODPA was replaced by tetradecylphosphonic acid (TDPA), red-emitting CdSe rods (a PL peak wavelength of 653 nm) with broad size distribution were fabricated. This is ascribed that the short carbon chain accelerated the growth of CdSe QDs. As a result, the use of ODPA resulted in CdSe QDs with high PL efficiency (3.1%). Furthermore, cubic-like CdSe QDs were created in a stearic acid (SA) and octadecene (ODE) reaction system. The PL efficiency of the QDs is low (0.2%). When hexadecylamine (HDA) was added in such SA and ODE reaction system, spherical CdSe QDs with narrow size distribution and high PL efficiency (3.4%) were prepared. PMID:26353513

  6. Size-dependent absorption and defect states in CdSe nanocrystals in various multilayer structures.

    PubMed

    Nesheva, D; Levi, Z; Aneva, Z; Zrinscak, I; Main, C; Reynolds, S

    2002-12-01

    GeS2-CdSe superlattices and composite films are prepared by consecutive thermal evaporation of CdSe and GeS2 in vacuum. CdSe layer thickness varies between 1 and 10 nm, while the thickness of GeS2 layers is either equal (in superlattices) to or 20 times greater (in composite films) than that of CdSe layers. Standard spectral photocurrent measurements and various constant photocurrent methods are used to study optical absorption of all samples. An overall blueshift is observed with decreasing CdSe layer thickness of superlattices. This shift is related to a size-induced increase of the optical band gap of CdSe due to one-dimensional carrier confinement in the continuous nanocrystalline CdSe layers. A number of features are observed in the absorption spectra of composite films containing CdSe nanocrystals with average radii of approximately 2.5 and approximately 3.3 nm. They are discussed in terms of three-dimensional carrier confinement and are considered a manifestation of excited electron states in CdSe nanocrystals embedded in GeS2 thin film matrix. In addition to these discrete features, the exponential dependence of the optical absorption (Urbach) edge indicates a distribution of "valence band" tail states associated with disorder. Transient photoconductivity measurements made on similarly prepared SiOx-CdSe superlattices exhibit a rapid fall in photocurrent by a power law decay over several orders of magnitude of time, which is consistent with multi-pletrapping transport via an extensive distribution of deep defects. PMID:12908429

  7. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity

    PubMed Central

    Wang, Wei; He, Yan; Yu, Guodong; Li, Baolong; Sexton, Darren W.; Wileman, Thomas; Roberts, Alexandra A.; Hamilton, Chris J.; Liu, Ruoxi; Chao, Yimin; Shan, Yujuan; Bao, Yongping

    2015-01-01

    The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM) increased cell viability in response to CdSe QDs (20 μM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3–6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy. PMID:26402917

  8. Dangling Bond Magnetic Polaron in CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Efros, Alexander; Rodina, Anna

    In this work we study theoretically the effect of the spins of the surface dangling bonds on the PL of CdSe nanocrystals (NCs). We show that spins of dangling bonds open new recombination channels for the dark exciton recombination which is connected with flip-flip and flip-flop spin-assisted recombination of the dark exciton. Calculations show that at low temperatures the interaction between dangling bonds and NC excitons leads to the dynamical polarization of the dangling bond spins along the anisotropic axis following by the formation of a dangling bond magnetic polaron. An increase of the temperature, or of the external magnetic field perpendicular to the anisotropic axis, destroys the polaron state. This results in a shift of the transition energy and an increase of its recombination rate. Thus thermal depolarization of the polaron state may explain the small activation energies observed in the temperature dependences of the exciton lifetimes in CdSe NCs. The exchange interaction of the electron spin with spins of the surface dangling bonds explains also radiative recombination of the dark excitons in nanowires, nanorods and nanoplatelets.

  9. Spontaneous emission enhancement of colloidal CdSe nanoplatelets

    NASA Astrophysics Data System (ADS)

    Yang, Zhili; Pelton, Matthew; Waks, Edo

    Colloidal CdS /CdSe/CdS nanoplatelets synthesized recently are high efficient nano-emitters and gain media for nanoscale lasers and other nonlinear optical devices. They are characterized as quantum well structure due to energy gap difference between core CdSe and shell CdS, of which the luminescent wavelength could be tuned precisely by their thickness of growth. However, the influence of environment on the material's optical properties and further enhancement of the emission to implement nanoscale systems remains to be investigated. Here we demonstrate spontaneous emission rate enhancement of these CdSe nanoplatelets coupled to a photonic crystal cavity. We show clearly the photoluminescent spectrum modification of the nanoplatelets emission and an averaged Purcell enhancement factor of 3.1 is achieved when they are coupled to carefully-designed nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our experiment of lifetime measurement. Also the phenomenon of cavity quality factor increasing is observed when increasing intensity of pumping, which attributes to saturable absorption of the nanoplatelets. Our success in enhancement of emission from these nanoplatelets here paves the road to realize actual nanoscale integrated systems such as ultra-low threshold micro-cavity lasers.

  10. Synthesis and applications of CdSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Rao, M. C.; Ravindranadh, K.; Shekhawat, M. S.

    2013-06-01

    Polymer nanoparticle composite materials have attracted the interest of a number of researchers, due to their synergistic and hybrid properties derived from several components. Whether in solution or in bulk, these materials offer unique mechanical, electrical, optical and thermal properties. CdSe nanoparticles have been prepared at room temperature. Cadmium chloride 99 mM of 4 mL is added to 2.2g Poly vinyl alcohol. The volume of solution is made up to 50 mL by bi-distilled water and the solution is left for 24 hours at room temperature to swell. After that the solution is warmed up to 60°C and stirred for 4 hours until viscous transparent solution is obtained. One milliliter of Sodium Hydrogen Selenide is dropped into the solution with gentle stirring. Solution is casted on flat glass plate dishes. After the solvent evaporation, a thin film containing CdSe nanoparticles are obtained. The film is washed with de-ionized water to remove other soluble salts before measurements.

  11. Moléculas orgánicas obtenidas en simulaciones experimentales del medio interestelar.

    NASA Astrophysics Data System (ADS)

    Muñoz-Caro, Guillermo Manuel

    Las nubes moleculares son regiones de formación de estrellas, con temperaturas cinéticas entre 10-50 K y densidades de 103-106 átomos cm-3. Su materia está formada por gas y polvo interestelar. Estas partículas de polvo están cubiertas por una fina capa de hielo, de unos 0.01 μm, que contiene H2O y a menudo CO, CO2, CH3OH y NH3. El hielo es presumiblemente irradiado por fotones ultravioleta y rayos cósmicos en las zonas poco profundas de las nubes moleculares y las regiones circunestelares. En un sistema de vacío, P ˜ 10-7 mbar, simulamos la deposición de hielo a partir de 10 K y la irradiación ultravioleta por medio de una lámpara de descarga de hidrógeno activada con microondas. La evolución del hielo se observa por medio de un espectrómetro infrarrojo. De este modo es posible determinar la composición del hielo observado en el medio interestelar y predecir la presencia de moléculas aún no detectadas en el espacio, que han sido producto del procesamiento del hielo en nuestros experimentos. También es posible calentar el sistema hasta temperatura ambiente para sublimar el hielo depositado. Cuando el hielo ha sido previamente irradiado, se observa un residuo compuesto por moléculas orgánicas complejas, algunas prebióticas, como varios ácidos carboxílicos, aminas, amidas, ésteres y en menor proporción moléculas heterocíclicas y aminoácidos. Algunas de estas moléculas podrían detectarse en estado gaseoso por medio de observaciones milimétricas y de radio. También podrían estar presentes en el polvo cometario, cuyo análisis químico está planeado por las misiones Stardust y Rosetta. Mientras tanto, nuestro grupo está llevando a cabo el análisis de partículas de polvo interplanetario (IDPs), algunas de las cuales pueden ser de origen cometario. Al igual que ocurre con los productos obtenidos por irradiación del hielo en nuestros experimentos, algunas IDPs son ricas en material orgánico que contiene oxígeno.

  12. Cl-capped CdSe nanocrystals via in situ generation of chloride anions

    NASA Astrophysics Data System (ADS)

    Palencia, Cristina; Lauwaet, Koen; de La Cueva, Leonor; Acebrón, María; Conde, Julio J.; Meyns, Michaela; Klinke, Christian; Gallego, José M.; Otero, Roberto; Juárez, Beatriz H.

    2014-05-01

    Halide ions cap and stabilize colloidal semiconductor nanocrystal (NC) surfaces allowing for NCs surface interactions that may improve the performance of NC thin film devices such as photo-detectors and/or solar cells. Current ways to introduce halide anions as ligands on surfaces of NCs produced by the hot injection method are based on post-synthetic treatments. In this work we explore the possibility to introduce Cl in the NC ligand shell in situ during the NCs synthesis. With this aim, the effect of 1,2-dichloroethane (DCE) in the synthesis of CdSe rod-like NCs produced under different Cd/Se precursor molar ratios has been studied. We report a double role of DCE depending on the Cd/Se precursor molar ratio (either under excess of cadmium or selenium precursor). According to mass spectrometry (ESI-TOF) and nuclear magnetic resonance (1H NMR), under excess of Se precursor (Se dissolved in trioctylphosphine, TOP) conditions at 265 °C ethane-1,2-diylbis(trioctylphosphonium)dichloride is released as a product of the reaction between DCE and TOP. According to XPS studies chlorine gets incorporated into the CdSe ligand shell, promoting re-shaping of rod-like NCs into pyramidal ones. In contrast, under excess Cd precursor (CdO) conditions, DCE reacts with the Cd complex releasing chlorine-containing non-active species which do not trigger NCs re-shaping. The amount of chlorine incorporated into the ligand shell can thus be controlled by properly tuning the Cd/Se precursor molar ratio.Halide ions cap and stabilize colloidal semiconductor nanocrystal (NC) surfaces allowing for NCs surface interactions that may improve the performance of NC thin film devices such as photo-detectors and/or solar cells. Current ways to introduce halide anions as ligands on surfaces of NCs produced by the hot injection method are based on post-synthetic treatments. In this work we explore the possibility to introduce Cl in the NC ligand shell in situ during the NCs synthesis. With this aim

  13. Experimental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots

    SciTech Connect

    Lee, J I; Meulenberg, R W; Hanif, K M; Mattoussi, H; Klepeis, J E; Terminello, L J; van Buuren, T

    2006-12-15

    Recent theoretical descriptions as to the magnitude of effect that quantum confinement has on he conduction band (CB) of CdSe quantum dots (QD) have been conflicting. In this manuscript, we experimentally identify quantum confinement effects in the CB of CdSe QDs for the first time. Using X-ray absorption spectroscopy, we have unambiguously witnessed the CB minimum shift to higher energy with decreasing particle size and have been able to compare these results to recent theories. Our experiments have been able to identify which theories correctly describe the CB states in CdSe QDs. In particular, our experiments suggest that multiple theories describe the shifts in the CB of CdSe QDs and are not mutually exclusive.

  14. Tuning luminescence and reducing reabsorption of CdSe quantum disks for luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    Lin, Huichuan; Xie, Peng; Liu, Yong; Zhou, Xiang; Li, Baojun

    2015-08-01

    Cadmium selenide (CdSe) quantum disks (QDs) have been synthesized for application in luminescent solar concentrators (LSCs). Luminescence tuning and reabsorption reduction of the QDs were achieved by controlling their size using a hot injection method. The overlap of the absorption and photoluminescence spectra of the as-prepared CdSe QDs was negligible. The as-prepared CdSe QDs were incorporated into polymethylmethacrylate without aggregation and luminescence quenching. The obtained highly transparent composites with non-affecting light-emitting properties were used as LSCs. The placement of a CdSe QDs doped LSC prototype (10 × 1 × 0.1 cm) on a Si-cell resulted in a 201% increase in the electrical power output of the Si-cell compared with that of the bare Si-cell.

  15. Efficient cw lasing in a Cr{sup 2+}:CdSe crystal

    SciTech Connect

    Akimov, V A; Kozlovskii, V I; Korostelin, Yu V; Landman, A I; Podmar'kov, Yu P; Skasyrsky, Ya K; Frolov, M P

    2007-11-30

    Continuous wave lasing in a Cr{sup 2+}:CdSe crystal is obtained for the first time. The Cr{sup 2+}:CdSe crystal pumped by a 1.908-{mu}m thulium fibre laser generated 1.07 W at 2.623 {mu}m with the quantum slope efficiency with respect to the absorbed power equal to 60%. (letters)

  16. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    SciTech Connect

    Singh, Neetu Kapoor, Avinashi; Kumar, Vinod; Mehra, R. M.

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  17. Structural and transport properties of CdSe nanorods

    SciTech Connect

    Das, Sayantani Banerjee, Sourish; Dutta, Alo; Ghosh, Binita; Sinha, T. P.

    2015-06-24

    The nanorods of cadmium selenide (CdSe) have been synthesized by soft chemical route. The selected area electron diffraction pattern, high resolution TEM and X-ray diffraction pattern indicate the cubic structure of the sample. The band gap of the sample is obtained using Tauc relation to UV-visible spectrum and found to be 1.92 eV. 1{sup st} order and 2{sup nd} order Raman bands are followed to investigate the behaviour of the phonon modes of the materials which is considered to be important to predict the potential of the material to microwave applications. Thermal behaviour of the sample is investigated using differential scanning calorimeter. Kissinger equation is used to calculate the activation energy of the sample, which is found to be 1.67 eV.

  18. Fluorescence quenching of CdSe quantum dots on graphene

    SciTech Connect

    Guo, Xi Tao; Hua Ni, Zhen Yan Nan, Hai; Hui Wang, Wen; Yan Liao, Chun; Zhang, Yan; Wei Zhao, Wei

    2013-11-11

    We studied systematically the fluorescence quenching of CdSe quantum dots (QDs) on graphene and its multilayers, as well as graphene oxide (GO) and reduced graphene oxide (rGO). Raman intensity of QDs was used as a quantitatively measurement of its concentration in order to achieve a reliable quenching factor (QF). It was found that the QF of graphene (∼13.1) and its multilayers is much larger than rGO (∼4.4), while GO (∼1.5) has the lowest quenching efficiency, which suggests that the graphitic structure is an important factor for quenching the fluorescence of QDs. It was also revealed that the QF of graphene is not strongly dependent on its thicknesses.

  19. In-situ material state monitoring using embedded CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Brubaker, Cole D.; Frecker, Talitha M.; Njoroge, Ian; Shane, Dylan O.; Smudde, Christine M.; Rosenthal, Sandra J.; Jennings, G. Kane; Adams, Douglas E.

    2016-04-01

    The development of new, smart materials capable of intrinsically detecting and communicating the occurrence of external loads and resultant damage present in a material will be crucial in the advancement of future structural health monitoring (SHM) and nondestructive evaluation (NDE) technologies. Traditionally, many SHM and NDE approaches have relied on the use of physical sensors to monitor a structure for damage, but are often hindered by their requirements for power consumption and large-scale data collection. In this work, we seek to evaluate the effectiveness of ultrasmall, white-light emitting Cadmium Selenide quantum dots (CdSe QDs) as an alternative to providing in-situ material state monitoring capabilities, while also aiming to reduce reliance on data collection and power consumption to effectively monitor a material and structure for damage. To achieve this goal, CdSe QDs are embedded in an optically clear epoxy composite matrix and exposed to external mechanical loadings. Initial results show a corresponding relationship between the shifts in observed emission spectra and external load for samples containing CdSe QDs. The effectiveness of CdSe QDs as a surface strain gauge on aluminum and fiberglass are also investigated in this paper. By monitoring changes in the emission spectra for materials containing CdSe QDs before, during and after the application of external loads, the effectiveness of CdSe QDs for communicating the occurrence of external loads acting on a material and detecting changes in material state is evaluated.

  20. Thermal conductivity of zinc blende and wurtzite CdSe nanostructures.

    PubMed

    Yang, Juekuan; Tang, Hao; Zhao, Yang; Zhang, Yin; Li, Jiapeng; Ni, Zhonghua; Chen, Yunfei; Xu, Dongyan

    2015-10-14

    Many binary octet compounds including CdSe can be grown in either the wurtzite (WZ) or zinc blende (ZB) phase, which has aroused great interest among the research community in understanding the phase dependence of the thermal transport properties of these compounds. So far, it has been debatable whether the ZB phase possesses higher thermal conductivity than the WZ phase. In this work, we report on thermal conductivity measurements of CdSe nanowires/nanoribbons with both WZ and ZB phases via a suspended device method. At room temperature, the thermal conductivity of all the ZB CdSe nanostructures measured in this work is higher than the bulk thermal conductivity of the WZ CdSe reported in the literature, suggesting that the bulk thermal conductivity of the ZB CdSe is higher than that of the WZ phase. Our result is different from previous experimental results in the literature for InAs nanowires which suggest similar thermal conductivity values for the bulk ZB and WZ InAs crystals. The higher thermal conductivity of the ZB CdSe can be explained by its lower anharmonicity and a smaller number of atoms per unit cell compared to the WZ phase. PMID:26372172

  1. High-conjugation-efficiency aqueous CdSe quantum dots.

    PubMed

    Au, Giang H T; Shih, Wan Y; Shih, Wei-Heng

    2013-11-12

    Quantum dots (QDs) are photoluminescent nanoparticles that can be directly or indirectly coupled with a receptor such as an antibody to specifically image a target biomolecule such as an antigen. Recent studies have shown that QDs can be directly made at room temperature and in an aqueous environment (AQDs) with 3-mercaptopropionic acid (MPA) as the capping ligand without solvent and ligand exchange typically required by QDs made by the organic solvent routes (OQDs). In this study, we have synthesized CdSe AQDs and compared their conjugation efficiency and imaging efficacy with commercial carboxylated OQDs in HT29 colon cancer cells using a primary antibody-biotinylated secondary antibody-streptavidin (SA) sandwich. We showed that the best imaging condition for AQDs occurred when one AQD was bound with 3 ± 0.3 SA with a nominal SA/AQD ratio of 4 corresponding to an SA conjugation efficiency of 75 ± 7.5%. In comparison, for commercial CdSe-ZnS OQDs to achieve 2.7 ± 0.4 bound SAs per OQD for comparable imaging efficacy a nominal SA/OQD ratio of 80 was needed corresponding to an SA conjugation efficiency of 3.4 ± 0.5% for CdSe-ZnS OQDs. The more than 10 times better SA conjugation efficiency of the CdSe AQDs as compared to that of the CdSe-ZnS OQDs was attributed to more capping molecules on the AQD surface as a result of the direct aqueous synthesis. More capping molecules on the AQD surface also allowed the SA-AQD conjugate to be stable in cell culture medium for more than three days without losing their staining capability in a flowing cell culture medium. In contrast, SA-OQD conjugates aggregated in cell culture medium and in phosphate buffer saline solution over time. PMID:24151632

  2. Quantum chemistry of the minimal CdSe clusters

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Tretiak, Sergei; Masunov, Artëm E.; Ivanov, Sergei

    2008-08-01

    Colloidal quantum dots are semiconductor nanocrystals (NCs) which have stimulated a great deal of research and have attracted technical interest in recent years due to their chemical stability and the tunability of photophysical properties. While internal structure of large quantum dots is similar to bulk, their surface structure and passivating role of capping ligands (surfactants) are not fully understood to date. We apply ab initio wavefunction methods, density functional theory, and semiempirical approaches to study the passivation effects of substituted phosphine and amine ligands on the minimal cluster Cd2Se2, which is also used to benchmark different computational methods versus high level ab initio techniques. Full geometry optimization of Cd2Se2 at different theory levels and ligand coverage is used to understand the affinities of various ligands and the impact of ligands on cluster structure. Most possible bonding patterns between ligands and surface Cd/Se atoms are considered, including a ligand coordinated to Se atoms. The degree of passivation of Cd and Se atoms (one or two ligands attached to one atom) is also studied. The results suggest that B3LYP/LANL2DZ level of theory is appropriate for the system modeling, whereas frequently used semiempirical methods (such as AM1 and PM3) produce unphysical results. The use of hydrogen atom for modeling of the cluster passivating ligands is found to yield unphysical results as well. Hence, the surface termination of II-VI semiconductor NCs with hydrogen atoms often used in computational models should probably be avoided. Basis set superposition error, zero-point energy, and thermal corrections, as well as solvent effects simulated with polarized continuum model are found to produce minor variations on the ligand binding energies. The effects of Cd-Se complex structure on both the electronic band gap (highest occupied molecular orbital-lowest unoccupied molecular orbital energy difference) and ligand binding

  3. The Optical Properties of CdSe Quantum Dots by Using Spray-Atomization Method

    NASA Astrophysics Data System (ADS)

    Rosmani, C. H.; Abdullah, S.; Rusop, M.

    2013-06-01

    Cadmium Selenide (CdSe) quantum dots (QDs) is inorganic material by using spray-atomization method which is the novelty to find out the optical properties for the CdSe QDs. The Selenium (Se) precursor and Cadmium (Cd) precursor were prepared first. Se precursor by using sodium sulfite aqueous was mixed with selenium (Se) powder. For Cd precursor was used cadmium chloride (CdCI) as the Cd precursor. From previous research, CdSe QDs was obtained by using capping agent such as tri-n-octylphosphine oxide (TOPO) and trioctylphosphine (TOP). These capping agent are hazardous to environment and human. By using spray-atomization method it is more safe and economically. The photoluminescence (PL) was used to investigate the optical properties and to investigate the energy band gap from PL result. The field emission scanning electron microscopy (FESEM) was used to know the surface morphology of CdSe QDs. By PL result, the energy band gap was calculate and the comparison was investigate between the size of particle and the energy band gap. This important in this paper is to investigate the optical properties of CdSe QDs by using sprays-atomization method and to relate with the particle size.

  4. Electron shuttling across the interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy

    SciTech Connect

    Burda, C.; Green, T.C.; Link, S.; El-Sayed, M.A.

    1999-03-18

    The formation and decay of the optical hole (bleach) for 4 nm CdSe nanoparticles (NPs) with adsorbed electron acceptors (1,4-benzoquinone and 1,2-naphthoquinone) and the rise and decay of the reduced electron acceptors formed after interfacial electron transfer from the CdSe NPs were investigated by femtosecond laser spectroscopy. The ultrashort (200--400 fs) rise times of the bleach at the band-gap energy of the CdSe NP as well as of the acceptor radical anion are found to increase with increasing the excitation energy. This suggests that the electron transfer from the CdSe NP to the quinone electron acceptor occurs after thermalization of the excited hot electrons. The decay times of the transient absorption for the electron acceptor radical anions are found to be comparable to that of the CdSe NP bleach recovery time (3 ps). This suggests that the surface quinones shuttle the electron from the conduction band to the valence band of the excited NP. The authors contrast this behavior with the excited-state dynamics of the recently investigated CdS-MV{sup 2+} system in which the electron acceptor does not shuttle the accepted electron back to the hole in CdS.

  5. Nanostructured TiO2 Films Attached CdSe QDs Toward Enhanced Photoelectrochemical Performance.

    PubMed

    Du, Yingying; Yang, Ping; Liu, Yunshi; Zhao, Jie; He, Haiyan; Miao, Yanping

    2016-06-01

    TiO2 films consisted of small nanoparticles were fabricated via a spinning coating method on fluorine doped in tin oxide (FTO) slide glass. After calcination, the films were subsequently sensitized by CdSe quantum dots (QDs) using mercaptopropionic acid (MPA) as a bifunctional surface modifier. Upon UV light irradiation, CdSe QDs inject electrons into TiO2 nanoparticles, thus resulting in the generation of photocurrent in QD-sensitized solar cell. The results indicate that TiO2 films sensitized by CdSe QDs have achieved 1.5-fold enhancement in photocurrent compared with pure TiO2 films, indicating that CdSe QDs can improve the photocurrent by promoting the separation of photoinduced charge carriers. In addition, the photocurrent enhances as the thickness of TiO2 films increased. Such improved photoelectrochemical performance is ascribed to the basis of improved interfacial charge transport of the TiO2-CdSe composite films. Combining QDs on TiO2 thin films is a promising and effective way to enhance the photoelectrochemical performance, which is important in QD-sensitized solar cell application. PMID:27427714

  6. Controlled growth of CdSe quantum dots on silica spheres

    NASA Astrophysics Data System (ADS)

    Kim, Byoung-Ju; Jo, Dong-Hyun; Lim, Se-Han; Kim, Do-Kyoon; Park, Jin-Young; Kang, Kwang-Sun

    2015-08-01

    Various sizes of CdSe quantum dots have been fabricated on the surface of the monodisperse silica spheres and five diffe rent photoluminescence (PL) peaks are observed from the CdSe quantum dots. The monodisperse silica spheres were syn thesized with Stöber synthetic method. The surface of the spheres was modified with 100:1 ratio of phenylpropyltrimeth oxysilane (PTMS) and mercaptopropyltrimethoxysilane (MPTMS). The MPTMS works as a covalent bond formation wi th CdSe quantum dots, and the PTMS acts as a separating quantum dots to prevent PL quenching by neighboring quantu m dots. The Fourier transform infrared (FTIR) spectrum of the surface modified spheres (SMSiO2) shows strong absorpti on peak at 2852 and 2953 cm-1 representing the characteristic absorption of -CH or -CH2. The FTIR absorption peak at 1 741 cm-1 represents the characteristic absorption of CdSe quantum dots. The field emission scanning electron microscope image shows the average diameter of the spheres ranging approximately 418 nm. The ultraviolet-visible transmittance s pectrum shows stop band at 880 nm. The PL spectrum shows five different emission bands at 434, 451, 468, 492 and 545 nm, which indicates the formation of several different sizes of CdSe quantum dots.

  7. Digital Doping in Magic-Sized CdSe Clusters.

    PubMed

    Muckel, Franziska; Yang, Jiwoong; Lorenz, Severin; Baek, Woonhyuk; Chang, Hogeun; Hyeon, Taeghwan; Bacher, Gerd; Fainblat, Rachel

    2016-07-26

    Magic-sized semiconductor clusters represent an exciting class of materials located at the boundary between quantum dots and molecules. It is expected that replacing single atoms of the host crystal with individual dopants in a one-by-one fashion can lead to unique modifications of the material properties. Here, we demonstrate the dependence of the magneto-optical response of (CdSe)13 clusters on the discrete number of Mn(2+) ion dopants. Using time-of-flight mass spectrometry, we are able to distinguish undoped, monodoped, and bidoped cluster species, allowing for an extraction of the relative amount of each species for a specific average doping concentration. A giant magneto-optical response is observed up to room temperature with clear evidence that exclusively monodoped clusters are magneto-optically active, whereas the Mn(2+) ions in bidoped clusters couple antiferromagnetically and are magneto-optically passive. Mn(2+)-doped clusters therefore represent a system where magneto-optical functionality is caused by solitary dopants, which might be beneficial for future solotronic applications. PMID:27420556

  8. Morphological Manipulation of Solvothermal Prepared CdSe Nanostructures by Controlling the Growth Rate of Nanocrystals as a Kinetic Parameter

    NASA Astrophysics Data System (ADS)

    Zarghami, V.; Mohammadi, M. R.; Fray, D. J.

    2012-11-01

    The morphological manipulation, structural characterization, and optical properties of different cadmium selenide (CdSe) nanostructures are reported. Two different CdSe nanostructures, i.e., nanorods and nanoparticles, were grown by controlling the concentration of precursors (i.e., cadmium nitrate and selenium dioxide) in ethanolamine solvent. By manipulating the kinetic parameter of the process (i.e., growth rate) under constant growth driving force (i.e., degree of supersaturation), the morphology of CdSe nanostructures can be tailored from nanorods to nanoparticles. The optical properties of CdSe nanostructures were investigated using ultraviolet-visible (UV-vis) spectroscopy. The absorption edge of the samples showed a blue-shift. CdSe nanostructures prepared under optimized conditions showed good microstructural and optical properties for solar cell applications.

  9. Fluorescence relaxation dynamics of CdSe and CdSe/CdS core/shell quantum dots

    SciTech Connect

    Kaur, Gurvir; Kaur, Harmandeep; Tripathi, S. K.

    2014-04-24

    Time-resolved fluorescence spectra for colloidal CdSe and CdSe/CdS core/shell quantum dots have been investigated to know their electron relaxation dynamics at the maximum steady state fluorescence intensity. CdSe core and CdSe/CdS type I core-shell materials with different shell (CdS) thicknesses have been synthesized using mercaptoacetic acid as a capping agent. Steady state absorption and emission studies confirmed successful synthesis of CdSe and CdSe/CdS core-shell quantum dots. The fluorescence shows a tri-exponential decay with lifetimes 57.39, 7.82 and 0.96 ns for CdSe quantum dots. The lifetime of each recombination decreased with growth of CdS shell over the CdSe core, with maximum contribution to fluorescence by the fastest transition.

  10. Size dependence of negative trion Auger recombination in photodoped CdSe nanocrystals.

    PubMed

    Cohn, Alicia W; Rinehart, Jeffrey D; Schimpf, Alina M; Weaver, Amanda L; Gamelin, Daniel R

    2014-01-01

    We report a systematic investigation of the size dependence of negative trion (T(-)) Auger recombination rates in free-standing colloidal CdSe nanocrystals. Colloidal n-type CdSe nanocrystals of various radii have been prepared photochemically, and their trion decay dynamics have been measured using time-resolved photoluminescence spectroscopy. Trion Auger time constants spanning 3 orders of magnitude are observed, ranging from 57 ps (radius R = 1.4 nm) to 2.2 ns (R = 3.2 nm). The data reveal a substantially stronger size dependence than found for bi- or multiexciton Auger recombination in CdSe or other semiconductor nanocrystals, scaling in proportion to R(4.3). PMID:24328385

  11. Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance

    SciTech Connect

    Dai, Qilin; Wang, Wenyong E-mail: jtang2@uwyo.edu; Tang, Jinke E-mail: jtang2@uwyo.edu; Sabio, Erwin M.

    2014-05-05

    In this work, we demonstrate (1) a facile method to prepare Mn doped CdSe quantum dots (QDs) on Zn{sub 2}SnO{sub 4} photoanodes by pulsed laser deposition and (2) improved device performance of quantum dot sensitized solar cells of the Mn doped QDs (CdSe:Mn) compared to the undoped QDs (CdSe). The band diagram of photoanode Zn{sub 2}SnO{sub 4} and sensitizer CdSe:Mn QD is proposed based on the incident-photon-to-electron conversion efficiency (IPCE) data. Mn-modified band structure leads to absorption at longer wavelengths than the undoped CdSe QDs, which is due to the exchange splitting of the CdSe:Mn conduction band by the Mn dopant. Three-fold increase in the IPCE efficiency has also been observed for the Mn doped samples.

  12. Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange

    PubMed Central

    Das, Amit; Han, Zhiji; Haghighi, Mohsen Golbon; Eisenberg, Richard

    2013-01-01

    Unique tripodal S-donor capping agents with an attached carboxylate are found to bind tightly to the surface of CdSe nanocrystals (NCs), making the latter water soluble. Unlike that in similarly solubilized CdSe NCs with one-sulfur or two-sulfur capping agents, dissociation from the NC surface is greatly reduced. The impact of this behavior is seen in the photochemical generation of H2 in which the CdSe NCs function as the light absorber with metal complexes in aqueous solution as the H2-forming catalyst and ascorbic acid as the electron donor source. This precious-metal–free system for H2 generation from water using [Co(bdt)2]− (bdt, benzene-1,2-dithiolate) as the catalyst exhibits excellent activity with a quantum yield for H2 formation of 24% at 520 nm light and durability with >300,000 turnovers relative to catalyst in 60 h. PMID:24082134

  13. The direct observation of charge separation dynamics in CdSe quantum dots/cobaloxime hybrids.

    PubMed

    Huang, J; Tang, Y; Mulfort, K L; Zhang, X

    2016-02-14

    In this work, we investigated photoinduced charge separation dynamics in a CdSe quantum dot/cobaloxime molecular catalyst hybrid using the combination of transient optical (OTA) and X-ray absorption (XTA) spectroscopy. We show that ultrafast charge separation occurs through electron transfer (ET) from CdSe QDs to cobaloxime. In addition to the enhanced 1S exciton bleach recovery in CdSe QDs due to the presence of cobaloxime, the direct evidence for ET process, i.e. the formation of the transient charge separated state, is captured by XTA. These results not only demonstrate the capability of XTA to capture the transient species during the photoinduced reactions in hybrid nanostructures but also enhance our understanding of charge separation dynamics in semiconductor nanocrystal/molecular catalyst hybrid. PMID:26805707

  14. Functionalisation of CdSe semiconductor nanoparticles with polystyrene brushes by radical polimerization.

    PubMed

    Etxeberria, Haritz; Zalakain, Iñaki; Tercjak, Agnieszka; Eceiza, Arantxa; Kortaberria, Galder; Mondragon, Iñaki

    2013-01-01

    CdSe nanoparticles with polystyrene (PS) brushes are obtained by "grafting through" technique starting from solely aqueously synthesized nanoparticles. Mercaptoethanol (ME) capped nanoparticles are used to achieve double bond functional groups on the surface by condensation reaction with methacryloxypropyltrimethoxysilane (MPS). PS polymerization starts from these double bonds. Spectroscopic, diffraction and thermal techniques are used to characterize the nanoparticles. Infrared spectroscopy shows the formation of robust bonding between CdSe nanoparticles and the organic ligand, as well as the presence of the functional double bond on the surface of nanoparticles. Thermal analysis reveals changes in thermal properties of PS, as thermal stability of PS in the functionalised nanoparticles is improved. UV-vis and fluorescence measurements show that PS-CdSe nanoparticles exhibit good optical properties and transmission electron microscope (TEM) micrographs shows good level of dispersion of CdSe nanoparticles in a PS matrix. PMID:23646790

  15. The effect of Pb addition on the morphology of CdSe quantum dot

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin

    2010-08-01

    CdSe quantum dots had been synthesized with a hot injection method. It was shown that the addition of Pb ions in the initial precursor solution changed the morphology of CdSe nanocrystals from slightly prolate ellipsoid to branched rod. Photoluminescence (PL) of the branched nanocrystals showed rapid depression of emission intensity due to the morphological development to the branched nanocrystal induced by Pb addition. Low temperature PL spectrum indicated that the surface recombination of charge carrier resulted in the large depression of emission from the branched nanocrystal.

  16. Energy relaxation in CdSe nanocrystals: the effects of morphology and film preparation.

    PubMed

    Spann, Bryan T; Chen, Liangliang; Ruan, Xiulin; Xu, Xianfan

    2013-01-14

    Ultrafast time-resolved absorption spectroscopy is used to investigate exciton dynamics in CdSe nanocrystal films. The effects of morphology, quantum-dot versus quantum-rod, and preparation of nanocrystals in a thin film form are investigated. The measurements revealed longer intraband exciton relaxation in quantum-rods than in quantum-dots. The slowed relaxation in quantum-rods is due to mitigation of the Auger-relaxation mechanism from elongating the nanocrystal. In addition, the nanocrystal thin film showed long-lived confined acoustic phonons corresponding to the ellipsoidal breathing mode, contrary to others work on colloidal systems of CdSe nanocrystals. PMID:23389266

  17. Enhanced random lasing from a colloidal CdSe quantum dot-Rh6G system

    NASA Astrophysics Data System (ADS)

    Augustine, Anju K.; Radhakrishnan, P.; Nampoori, V. P. N.; Kailasnath, M.

    2015-02-01

    In this letter, we report random laser action in a system where optical amplification is provided by colloidal CdSe quantum dots (CQDs) triggered by the emission from Rhodamine 6G. The laser emission from CdSe QDs is optically excited by Rh-6G which in turn is photo-pumped by a frequency-doubled Q-switched Nd : YAG laser system at an excitation wavelength of 532 nm. At intensities greater than the threshold value, laser emission is characterized by narrowing peaks.

  18. Acetate ligands determine the crystal structure of CdSe nanoplatelets - a density functional theory study.

    PubMed

    Koster, Rik S; Fang, Changming; van Blaaderen, Alfons; Dijkstra, Marjolein; van Huis, Marijn A

    2016-08-10

    Cadmium selenide (CdSe) nanoplatelets of a few atomic layers thick exhibit extremely sharp photoluminescence peaks and are synthesized in the zinc blende crystal structure, whereas the most stable bulk polymorph of CdSe is the wurtzite structure. These platelets can be synthesized very monodispersely in thickness, and are covered with acetate ligands. Here, we show by means of density functional theory (DFT) calculations that these ligands play a pivoting role in the stabilization of 2D nanosheets as a whole, including the deviating crystal structure. The relative stability as a function of slab thickness, strong effects on electronic properties, and implications for synthesis are discussed. PMID:27453036

  19. An oleic acid-capped CdSe quantum-dot sensitized solar cell

    SciTech Connect

    Chen Jing; Song, J. L.; Deng, W. Q.; Sun, X. W.; Jiang, C. Y.; Lei, W.; Huang, J. H.; Liu, R. S.

    2009-04-13

    In this letter, we report an oleic acid (OA)-capped CdSe quantum-dot sensitized solar cell (QDSSC) with an improved performance. The TiO{sub 2}/OA-CdSe photoanode in a two-electrode device exhibited a photon-to-current conversion efficiency of 17.5% at 400 nm. At AM1.5G irradiation with 100 mW/cm{sup 2} light intensity, the QDSSCs based on OA-capped CdSe showed a power conversion efficiency of about 1%. The function of OA was to increase QD loading, extend the absorption range and possibly suppress the surface recombination.

  20. Experimental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots

    SciTech Connect

    Lee, Jonathan R. I.; Meulenberg, Robert W.; Klepeis, John E.; Terminello, Louis J.; Buuren, Tony van; Hanif, Khalid M.; Mattoussi, Hedi

    2007-04-06

    X-ray absorption spectroscopy has been used to characterize the evolution in the conduction band (CB) density of states of CdSe quantum dots (QDs) as a function of particle size. We have unambiguously witnessed the CdSe QD CB minimum (CBM) shift to higher energy with decreasing particle size, consistent with quantum confinement effects, and have directly compared our results with recent theoretical calculations. At the smallest particle size, evidence for a pinning of the CBM is presented. Our observations can be explained by considering a size-dependent change in the angular-momentum-resolved states at the CBM.

  1. Precisión de las velocidades radiales obtenidas con el REOSC

    NASA Astrophysics Data System (ADS)

    González, J. F.; Lapasset, E.

    Complementando una línea de trabajo iniciada con anterioridad discutimos la estabilidad del espectrógrafo REOSC de CASLEO en DC para la medición de velocidades radiales en base al análisis de observaciones realizadas en enero y abril de 1997. En esas oportunidades obtuvimos 26 espectros de estrellas patrones y 27 espectros de 3 estrellas usadas como estrellas de referencia en nuestro programa de cúmulos abiertos. Además tomamos 26 espectros de crepúsculo con el telescopio en posiciones cubriendo el rango H=-4,+4 y δ =-90,+30. Mediante correlaciones cruzadas derivamos la velocidad de 19 órdenes en cada uno de estos espectros. En base a un análisis estadístico de los datos obtenidos discutimos la contribución de los distintos factores que afectan a la dispersión de lectura observada. En particular, la flexión del instrumento no introduciría errores significativos cuando se observa con masas de aire menores que 2.0. La dispersión de los valores de velocidad medidos para espectros de alta relación S/N de una misma estrella resultó del orden de 0.5 km/s. La comparación con los valores de velocidad publicados por distintos autores para las estrellas patrones no permite distinguir ninguna diferencia sistemática apreciable de las velocidades de CASLEO, siendo la media cuadrática de los residuos del orden de 1.0 km/s.

  2. Investigation of size dependent structural and optical properties of thin films of CdSe quantum dots

    SciTech Connect

    Sharma, Madhulika; Sharma, A.B.; Mishra, N.; Pandey, R.K.

    2011-03-15

    Research highlights: {yields} CdSe q-dots have been synthesized using simple chemical synthesis route. {yields} Thin film of CdSe quantum dots exhibited self-organized growth. {yields} Size dependent blue shift observed in the absorption edge of CdSe nanocrystallites. {yields} PL emission band corresponds to band edge luminescence and defect luminescence. {yields} Organized growth led to enhancement in luminescence yield of smaller size Q-dots. -- Abstract: Cadmium selenide (CdSe) quantum dots were grown on indium tin oxide substrate using wet chemical technique for possible application as light emitting devices. The structural, morphological and luminescence properties of the as deposited thin films of CdSe Q-dot have been investigated, using X-ray diffraction, transmission electron microscopy, atomic force microscopy and optical and luminescence spectroscopy. The quantum dots have been shown to deposit in an organized array on ITO/glass substrate. The as grown Q-dots exhibited size dependent blue shift in the absorption edge. The effect of quantum confinement also manifested as a blue shift of photoluminescence emission. It is shown that the nanocrystalline CdSe exhibits intense photoluminescence as compared to the large grained polycrystalline CdSe films.

  3. Probing metabolic stability of CdSe nanoparticles: alkaline extraction of free cadmium from liver and kidney samples of rats exposed to CdSe nanoparticles.

    PubMed

    Arslan, Zikri; Ates, Mehmet; McDuffy, Wanaki; Agachan, M Sabri; Farah, Ibrahim O; Yu, W William; Bednar, Anthony J

    2011-08-15

    Cadmium selenide nanoparticles (CdSe NPs) exhibit novel optoelectronic properties for potential biomedical applications. However, their metabolic stability is not fully understood because of the difficulties in measurement of free Cd from biological tissues of exposed individuals. In this study, alkaline dissolution with tetramethylammonium hydroxide (TMAH) is demonstrated for selective determination of free Cd and intact NPs from liver and kidney samples of animals that were exposed to thiol-capped CdSe NPs. Aqueous suspensions of CdSe NPs (3.2 nm) were used to optimize the conditions for extracting free Cd without affecting NPs. Nanoparticles were found to aggregate when heated in TMAH without releasing any significant Cd to solution. Performance of the method in discriminating free Cd and intact NPs were verified by Dogfish Liver (DOLT-4) certified reference material. The samples from the animals were digested in 4 mL TMAH at 70°C to extract free Cd followed by analysis of aqueous phase by ICP-MS. Both liver and kidney contained significant levels of free Cd. Total Cd was higher in the liver, while kidney accumulated mostly free Cd such that up to 47.9% of total Cd in the kidney was free Cd when NPs were exposed to UV-light before injection. PMID:21700388

  4. A surfactant-free recipe for shape-controlled synthesis of CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Hongmei; Tao, Hong; Yang, Tingbin; Kong, Lingbin; Qin, Donghuan; Chen, Junwu

    2011-01-01

    We described surfactant-free recipes for the synthesis of CdSe nanocrystals (NCs) with well-controlled morphologies at a relatively low temperature. Dot-, rod-, tetrapod-and sphere-shaped CdSe NCs were prepared with trioctylphosphine oxide (TOPO) as a non-equilibrium solvent and trioctylphosphine selenide (TOPSe) and cadmium carboxylates as Se and Cd precursors, respectively. It was found that the morphology and stacking pattern of the CdSe NCs were related to the preparation conditions such as the concentration of the injected TOPSe(monomer concentration), reaction temperature and chain length of the cadmium carboxylate precursors. At a reaction temperature of 240 °C, CdSe NCs with a tetrapod selectivity of up to 85% were obtained in the presence of cadmium myristate under high concentrated TOPSe injection, and the in situ-formed myristic acid supplied the best acidic ligand with optimal amount to stabilize the anisotropic growth of the tetrapods. The intentional addition of more myristic acid in the reaction system would block the growth pathway of the tetrapods. Using cadmium laurate, cadmium palmitate and cadmium stearate as the cadmium precursors would reduce the formation of the tetrapods, showing the very low selectivity of the tetrapods.

  5. HPVB AND HPVZM SHAPED GROWTH OF CDZNTE, CDSE AND ZNSE CRYSTALS.

    SciTech Connect

    KOLESNIKOV,N.N.; JAMES,R.B.; BERZIGIAROVA,N.S.; KULAKOV,M.P.

    2002-07-07

    High-pressure Bridgman (HPVB) and vertical zone melting (HPVZM) growth processes have been applied for the manufacturing of Cd{sub 1-x}Zn{sub x}Te (x = 0.04-0.2), CdSe and ZnSe crystal tapes with sizes up to 120 x 120 x 12 mm. The influences of the technological parameters describing the growth processes on the crystal quality and some selected material properties are discussed. The dependence of the inclusion (bubbles) content on the deviation from melt stoichiometry is determined. A method for growing plates with low content of inclusions is described. High-resistivity crystal tapes of undoped CdZnTe (10{sup 10} Ohm x cm), CdSe (10{sup 11} Ohm x cm) and ZnSe (>10{sup 11} Ohm x cm) were prepared. The possibility of tape growth on oriented seeds is shown for the example of CdSe. The primary differences between HPVB and HPVZM results are described. The main HPVZM advantage for II-VI compound crystal growth is the possibility of obtaining crystals with more stoichiometric composition or with a controlled deviation from stoichiometry. Hence, HPVZM is preferable for growing high-resistivity II-VI crystals with low inclusion content and possibly with better transport properties. Keywords for this report are: Crystal growth, shaped crystal growth, ZnSe, CdSe, CdZnTe, CZT, HPVB, Bridgman, HPVZM, zone melting, radiation detectors.

  6. Photochemical properties and shape evolution of CdSe QDs in a non-injection reaction

    NASA Astrophysics Data System (ADS)

    Park, Eunjung; Ryu, Jiyoung; Choi, Youngseon; Hwang, Kwang-Jin; Song, Rita

    2013-04-01

    Highly monodispersed CdSe quantum dots (QDs) were prepared without an injection procedure. A series of Cd salts of long chain fatty acids, including Cd-myristate (C14), Cd-palmitate (C16) and Cd-stearate (C18) was prepared, and all metallic precursors and surfactants were mixed together followed by increasing the temperature in a controlled manner. The reaction resulted in highly monodisperse and bright zinc blende QDs. In addition, the effects of specific ligands which have been known to lead anisotropic growth of the nanocrystals in the injection method were investigated. The use of alkyl phosphonic acid and alkyl amine was found to produce extremely monodisperse CdSe QDs with a high quantum yield. This procedure was proven to be able to yield a large quantity of zinc blende CdSe QDs (2 g) in a one-pot reaction. The use of a controlled amount of tetradecylphosphonic acid and octadecylamine resulted in tetrapod- and match-shaped QDs, the first reported by a non-injection method. These results clearly demonstrate that appropriate combination of precursors can provide high quality of CdSe nanocrystals in terms of quantum yield, monodispersity and shape control by a non-injection method.

  7. Photostability of CdSe quantum dots functionalized with aromatic dithiocarbamate ligands.

    PubMed

    Tan, Yizheng; Jin, Song; Hamers, Robert J

    2013-12-26

    Organic ligands are widely used to enhance the ability of CdSe quantum dots (QDs) to resist photodegradation processes such as photo-oxidation. Because long alkyl chains may adversely affect the performance of QD devices that require fast and efficient charge transfer, shorter aromatic ligands are of increasing interest. In this work, we characterize the formation of phenyl dithiocarbamate (DTC) adducts on CdSe surfaces and the relative effectiveness of different para-substituted phenyl dithiocarbamates to enhance the aqueous photostability of CdSe QDs on TiO2. Optical absorption and photoluminescence measurements show that phenyl DTC ligands can be highly effective at reducing QD photocorrosion in water, and that ligands bearing electron-donating substituents are the most effective. A comparison of the QD photostability resulting from use of ligands bearing DTC versus thiol surface-binding groups shows that the DTC group provides greater QD photostability. Density functional calculations with natural bond order analysis show that the effectiveness of substituted phenyl DTC results from the ability of these ligands to remove positive charge away from the CdSe and to delocalize positive charge on the ligand. PMID:24256318

  8. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    NASA Astrophysics Data System (ADS)

    Isnaeni, Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-03-01

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  9. Strain-controlled fluorescence polarization in a CdSe nanoplatelet-block copolymer composite.

    PubMed

    Beaudoin, E; Abecassis, B; Constantin, D; Degrouard, J; Davidson, P

    2015-03-01

    By dispersing semi-conducting CdSe nanoplatelets within a styrene-butadiene-styrene block copolymer matrix we form homogeneous fluorescent hybrid films. Reversible orientation control of the nanoplatelets is simply achieved through stretching the film, leading to tuneable fluorescence anisotropy. Such adjustable polarization effects are useful for modulating the optical response in composite materials. PMID:25664355

  10. A Biphasic Ligand Exchange Reaction on Cdse Nanoparticles: Introducing Undergraduates to Functionalizing Nanoparticles for Solar Cells

    ERIC Educational Resources Information Center

    Zemke, Jennifer M.; Franz, Justin

    2016-01-01

    Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP…

  11. Application of CdSe quantum dots for the direct detection of TNT.

    PubMed

    Yi, Kui-Yu

    2016-02-01

    CdSe quantum dots were synthesized through a simple, green organic-phase method. Paraffin was used as the reaction solvent and a reducing agent, oleic acid was the reaction ligand, and oleyl amine was the stabilizer. Based on the phenomenon of TNT quenched oil-soluble CdSe quantum dot fluorescence, a simple, fast, and direct method of TNT detection was established. Under optimum conditions, the degree of fluorescence quenching of oil-soluble CdSe quantum dots had a good linear correlation with TNT concentration in the 1.0×10(-7)-5.0×10(-5) mol/L range, and the correlation coefficient was 0.9990. TNT detection limit was 2.1×10(-8)mol/L. The method was successfully used to determine TNT-explosion dust samples, results were satisfactory. The fluorescence quenching mechanism of oil-soluble CdSe quantum dots by TNT was also discussed. PMID:26773219

  12. Electronic structures and magnetism for carbon doped CdSe: Modified Becke-Johnson density functional calculations

    NASA Astrophysics Data System (ADS)

    Fan, S. W.; Song, T.; Huang, X. N.; Yang, L.; Ding, L. J.; Pan, L. Q.

    2016-09-01

    Utilizing the full potential linearized augment plane wave method, the electronic structures and magnetism for carbon doped CdSe are investigated. Calculations show carbon substituting selenium could induce CdSe to be a diluted magnetic semiconductor. Single carbon dopant could induce 2.00 μB magnetic moment. Electronic structures show the long-range ferromagnetic coupling mainly originates from the p-d exchange-like p-p coupling interaction. Positive chemical pair interactions indicate carbon dopants would form homogeneous distribution in CdSe host. The formation energy implies the non-equilibrium fabricated technology is necessary during the samples fabricated.

  13. Cl-capped CdSe nanocrystals via in situ generation of chloride anions.

    PubMed

    Palencia, Cristina; Lauwaet, Koen; de la Cueva, Leonor; Acebrón, María; Conde, Julio J; Meyns, Michaela; Klinke, Christian; Gallego, José M; Otero, Roberto; Juárez, Beatriz H

    2014-06-21

    Halide ions cap and stabilize colloidal semiconductor nanocrystal (NC) surfaces allowing for NCs surface interactions that may improve the performance of NC thin film devices such as photo-detectors and/or solar cells. Current ways to introduce halide anions as ligands on surfaces of NCs produced by the hot injection method are based on post-synthetic treatments. In this work we explore the possibility to introduce Cl in the NC ligand shell in situ during the NCs synthesis. With this aim, the effect of 1,2-dichloroethane (DCE) in the synthesis of CdSe rod-like NCs produced under different Cd/Se precursor molar ratios has been studied. We report a double role of DCE depending on the Cd/Se precursor molar ratio (either under excess of cadmium or selenium precursor). According to mass spectrometry (ESI-TOF) and nuclear magnetic resonance ((1)H NMR), under excess of Se precursor (Se dissolved in trioctylphosphine, TOP) conditions at 265 °C ethane-1,2-diylbis(trioctylphosphonium)dichloride is released as a product of the reaction between DCE and TOP. According to XPS studies chlorine gets incorporated into the CdSe ligand shell, promoting re-shaping of rod-like NCs into pyramidal ones. In contrast, under excess Cd precursor (CdO) conditions, DCE reacts with the Cd complex releasing chlorine-containing non-active species which do not trigger NCs re-shaping. The amount of chlorine incorporated into the ligand shell can thus be controlled by properly tuning the Cd/Se precursor molar ratio. PMID:24827847

  14. Optical properties of water soluble CdSe quantum dots modified by a novel biopolymer based on sodium alginate

    NASA Astrophysics Data System (ADS)

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari

    2013-10-01

    Water soluble CdSe quantum dots (QDs) were modified using a novel biopolymer based on the graft copolymerization of poly (acrylic acid) as a monomer onto sodium alginate as a backbone at room temperature. The obtained CdSe QDs were characterized by Fourier transform infrared spectrometer, thermo-gravimetry analysis, transmission electron microscopy, and dynamic light scattering. Optical properties of the prepared CdSe QDs were investigated by absorption and fluorescence spectra. It was found that the resultant QDs incredibly exhibited high fluorescence intensity and quantum yields. Lastly, the influence of the aging time on the fluorescence intensity of the modified CdSe QDs was studied by their fluorescence spectra. Due to the optical behavior of this modified QDs; it could be of potential interest in biological systems.

  15. Enhanced photorefractive performance in CdSe quantum-dot-dispersed poly(styrene-co-acrylonitrile) polymers

    SciTech Connect

    Li Xiangping; Embden, Joel van; Chon, James W. M.; Gu Min; Evans, Richard A.

    2010-06-21

    This paper reports on the enhanced photorefractive behavior of a CdSe quantum-dot-dispersed less expensive polymer of poly(styrene-co-acrylonitrile). The capability of CdSe quantum dots used as photosensitizers and the associated photorefractive performance are characterized through a photocurrent experiment and a two-beam coupling experiment, respectively. An enhanced two-beam coupling gain coefficient of 12.2 cm{sup -1} at 46 V/mum was observed owning to the reduced potential barrier. The photorefractive performance per CdSe quantum dot is three orders of magnitude higher than that in the sample sensitized by trinitrofluorenone in poly(styrene-co-acrylonitrile), and almost ten times higher than that in the CdSe quantum-dot-sensitized poly(N-vinylcarbazole) polymers.

  16. Synthesis of CdSe quantum dots using selenium dioxide as selenium source and its interaction with pepsin

    NASA Astrophysics Data System (ADS)

    Wang, Yilin; Mo, Yunchuan; Zhou, Liya

    2011-09-01

    A novel method has been developed for the synthesis of thioglycolic acid (TGA)-capped CdSe quantum dots (QDs) in an aqueous medium when selenium dioxide worked as a selenium source and sodium borohydride acted as a reductant. The interaction between CdSe QDs and pepsin was investigated by fluorescence spectroscopy. It was proved that the fluorescence quenching of pepsin by CdSe QDs was mainly a result of the formation of CdSe-pepsin complex. Based on the fluorescence quenching results, the Stern-Volmer quenching constant ( Ksv), binding constant ( KA) and binding sites ( n) were calculated. According to the Foster's non-radiative energy transfer theory, the binding distance ( r) between pepsin and CdSe QDs was obtained. The influence of CdSe QDs on the conformation of pepsin has been analyzed by synchronous fluorescence spectra, which provided that the secondary structure of pepsin has been changed by the interaction of CdSe QDs with pepsin.

  17. Ultrafast Carrier Dynamics and Hot Electron Extraction in Tetrapod-Shaped CdSe Nanocrystals.

    PubMed

    Jing, Pengtao; Ji, Wenyu; Yuan, Xi; Qu, Songnan; Xie, Renguo; Ikezawa, Michio; Zhao, Jialong; Li, Haibo; Masumoto, Yasuaki

    2015-04-22

    The ultrafast carrier dynamics and hot electron extraction in tetrapod-shaped CdSe nanocrystals was studied by femtosecond transient absorption (TA) spectroscopy. The carriers relaxation process from the higher electronic states (CB2, CB3(2), and CB4) to the lowest electronic state (CB1) was demonstrated to have a time constant of 1.04 ps, resulting from the spatial electron transfer from arms to a core. The lowest electronic state in the central core exhibited a long decay time of 5.07 ns in agreement with the reported theoretical calculation. The state filling mechanism and Coulomb blockade effect in the CdSe tetrapod were clearly observed in the pump-fluence-dependent transient absorption spectra. Hot electrons were transferred from arm states into the electron acceptor molecules before relaxation into core states. PMID:25838148

  18. Distribution of CdSe nanoparticles synthesized in porous SiO{sub x} matrix

    SciTech Connect

    Bacherikov, Yu. Yu. Indutnyi, I. Z.; Okhrimenko, O. B.; Optasyuk, S. V.; Shepeliavyi, P. E.; Ponamarenko, V. V.

    2011-09-15

    Photoluminescence spectra of CdSe nanoparticles synthesized by the chemical method from an aqueous solution are studied in relation to nanoparticle location over depth in the porous SiO{sub x} layer consisting of a set of distinct SiO{sub x} columns {approx}(10-100) nm in diameter. An analysis of radiative characteristics of this structure shows that the distributions of different-size nanoparticle fractions over the nanocomposite layer depth are different. A model explaining the cause of such distributions is considered. Within this model the parameter defining the 'constrained geometry' notion for the used conditions of CdSe nanoparticles' growth in the SiO{sub x} matrix is estimated.

  19. Distance-Dependent Triplet Energy Transfer between CdSe Nanocrystals and Surface Bound Anthracene.

    PubMed

    Li, Xin; Huang, Zhiyuan; Zavala, Ramsha; Tang, Ming Lee

    2016-06-01

    We investigate triplet energy transfer (TET) across variable-length aromatic oligo-p-phenylene and aliphatic bridges in a covalently linked CdSe nanocrystal (NC)-bridge-anthracene hybrid system. Photon upconversion measurements in saturated 9,10-diphenylanthracene hexane solutions under air-free conditions at room temperature provided the steady-state rate of TET (ket) across this interface. For flexible transmitters, ket is similar for different lengths of aliphatic bridges, suggesting that the ligands bend backward. For the rigid phenylene spacer, triplet sensitization of anthracene transmitter molecules by CdSe NCs shows a strong distance dependence, with a Dexter damping coefficient of 0.43 ± 0.07 Å(-1). The anthracene transmitter bound closest to the NC surface gave the highest quantum yield of 14.3% for the conversion of green to violet light, the current record for a hybrid platform. PMID:27164056

  20. Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand

    NASA Astrophysics Data System (ADS)

    Seo, Jangwon; Kim, Won Jin; Kim, Sung Jin; Lee, Kwang-Sup; Cartwright, A. N.; Prasad, Paras N.

    2009-03-01

    We demonstrate a relative improvement in power conversion efficiency of polymer nanocomposite photovoltaic cells consisting of poly(3-hexylthiophene) (P3HT) functionalized CdSe nanocrystals. Thermal deprotection processing of the tert-buthoxycarbonyl moiety in the carbamate ligand surrounding the surface of CdSe nanocrystal significantly shortened the length of the ligand between nanocrystals and between the nanocrystal and the polymer matrix. The resulting device performance was investigated as a function of the composition ratio of P3HT/CdSe and the heating temperature. This simple and straightforward ligand deprotection strategy resulted in a significant increase in current density due to improvement of charge transport between the constituent materials.

  1. Enhanced chemiluminescence CdSe quantum dots by histidine and tryptophan

    NASA Astrophysics Data System (ADS)

    Hosseini, Morteza; Ganjali, Mohammad Reza; Jarrahi, Afsaneh; Vaezi, Zahra; Mizani, Farhang; Faridbod, Farnoush

    2014-11-01

    The enhancing effect of histidine and tryptophan on chemiluminescence (CL) of CdSe quantum dots (QDs)-H2O2 system was studied. This reaction is based on the catalytic effect of amino acids, causing a significant increase in the light emission, as a result of the reaction of quantum dots (QDs) with hydrogen peroxide. In the optimum conditions, this method was satisfactorily described by linear calibration curve in the range of 0.66-35.5 μM and 0.83-35.1 μM for histidine and tryptophan, respectively. The effect of various parameters such as concentration of CdSe QDs, concentration of H2O2 and concentration of imidazole on the intensity of CL system were studied. The main experimental advantage of the proposed method is it's selective to two amino acids compared with other amino acids.

  2. Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting

    PubMed Central

    2015-01-01

    Enhanced plasmonic fields are a promising way to increase the efficiency of photocatalytic water splitting. The availability of atomically thin materials opens up completely new opportunities. We report photocatalytic water splitting on ultrathin CdSe nanoplatelets placed in plasmonic nanogaps formed by a flat gold surface and a gold nanoparticle. The extreme field intensity created in these gaps increases the electron–hole pair production in the CdSe nanoplatelets and enhances the plasmon-mediated interfacial electron transfer. Compared to individual nanoparticles commonly used to enhance photocatalytic processes, gap-plasmons produce several orders of magnitude higher field enhancement, strongly localized inside the semiconductor sheet thus utilizing the entire photocatalyst efficiently. PMID:25937870

  3. Electroluminescence from colloidal semiconductor CdSe nanoplatelets in hybrid organic-inorganic light emitting diode

    NASA Astrophysics Data System (ADS)

    Vitukhnovsky, A. G.; Lebedev, V. S.; Selyukov, A. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S.

    2015-01-01

    We report on the fabrication of a hybrid light-emitting-diode based on colloidal semiconductor CdSe nanoplatelets as emitters and organic TAZ [3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole] and TPD [N, N‧-bis (3-methylphenyl)-N, N‧-bis (phenyl)-benzidine] materials as the electron and hole transporting layers. Electroluminescent and current-voltage characteristics of the developed hybrid device with the turn-on voltage of 5.5 V and the radiation wavelength of 515 nm have been obtained. Semiconductor nanoplatelets like CdSe are attractive for the fabrication of hybrid LEDs with low operating voltages, spectrally pure color and short-wavelength electroluminescence, which is required for RGB devices.

  4. Study of sub band gap absorption of Sn doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-04-01

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  5. Study of sub band gap absorption of Sn doped CdSe thin films

    SciTech Connect

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-04-24

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  6. Reassignment of the OSe-VCd complex in CdSe

    NASA Astrophysics Data System (ADS)

    Bastin, Dirk; Lavrov, E. V.; Weber, J.

    2014-02-01

    An IR absorption study of CdSe single crystals is presented. The as-received material revealed three absorption lines at 1094.2, 1107.5, and 1126.3 cm-1, which were previously assigned to the OSe-VCd complex [G. Chen et al., Phys. Rev. Lett. 101, 195502 (2008)] We show that each of the lines is accompanied by a number of weaker satellites with intensities which match the natural abundances of sulfur isotopes. In contrast to the original identification it is suggested that these peaks are local vibrational modes of a SOn complex. The three modes correspond to different orientations of the complex in the CdSe lattice. Arguments are presented in favor of 2 oxygen atoms (n = 2) in the complex. Measurements with uniaxial stress applied to the samples revealed defect symmetries and activation energies for the defect reorientation. The complex was found to be stable up to 750 °C.

  7. Photo-gated charge transfer of organized assemblies of CdSe quantum dots.

    PubMed

    Pradhan, Sulolit; Chen, Shaowei; Wang, Shizhong; Zou, Jing; Kauzlarich, Susan M; Louie, Angelique Y

    2006-01-17

    The electronic conductivity of tri-n-octylphosphineoxide (TOPO)-protected CdSe quantum dots (QDs) was studied at the air-water interface using the Langmuir technique within the context of photochemical and photophysical excitation. It was found that, upon photoirradiation with photon energies higher than that of the absorption threshold, the voltammetric currents increased rather substantially with a pair of voltammetric peaks at positive potentials. However, the photoconductivity profiles exhibited a dynamic transition, which was ascribed to the strong affinity of oxygen onto the CdSe surface and the consequent trapping of the photogenerated electrons. The resulting excess of holes led to photocorrosion of the particle cores. The oxygen adsorption and photoetching processes were found to be reversible upon cessation of the photoexcitation. In contrast, only featureless voltammetric responses were observed when the particle monolayers were deposited onto the electrode surface and the film conductance was measured in a vacuum (the overall profiles were analogous to that of a Coulomb blockade). A comparative study was also carried out with a CdSe dropcast thick film immersed in acetonitrile, where the photoconductivity profiles were reversible and almost linear. The latter was attributed to the separation of photogenerated electrons and holes which were subsequently collected at the electrodes under voltammetric control. In the dropcast system, the oxygen effects were minimal which was ascribed to the acetontrile medium that limited the access to oxygen and thus the particles were chemically intact. These studies suggest that chemical environment plays an important role in the determination of the chemical stability and electronic conductivity of CdSe QD thin films. PMID:16401132

  8. A mirage study of CdSe colloidal quantum dot films, Urbach tail, and surface states

    NASA Astrophysics Data System (ADS)

    Guyot-Sionnest, Philippe; Lhuillier, Emmanuel; Liu, Heng

    2012-10-01

    Thermal deflection spectroscopy allows to measure very small absorption and uncovers absorption tails extending well below the bulk bandgap energy for CdSe quantum dots films after ligand exchange by sulfide. In this monodispersed system, the redshift, the broadening, and the absorption tails cannot be solely attributed to electronic coupling between the dots. Instead, mixing of hole states from the quantum dot and surface is proposed to dominate the changes of the interband spectra at the absorption edge.

  9. A mirage study of CdSe colloidal quantum dot films, Urbach tail, and surface states.

    PubMed

    Guyot-Sionnest, Philippe; Lhuillier, Emmanuel; Liu, Heng

    2012-10-21

    Thermal deflection spectroscopy allows to measure very small absorption and uncovers absorption tails extending well below the bulk bandgap energy for CdSe quantum dots films after ligand exchange by sulfide. In this monodispersed system, the redshift, the broadening, and the absorption tails cannot be solely attributed to electronic coupling between the dots. Instead, mixing of hole states from the quantum dot and surface is proposed to dominate the changes of the interband spectra at the absorption edge. PMID:23083181

  10. Multielectron ionization of CdSe quantum dots in intense femtosecond ultraviolet light

    SciTech Connect

    Son, D.H.; Wittenberg, Joshua S.; Alivisatos, A. Paul

    2004-03-26

    Multielectron ionization of colloidal CdSe quantum dots under intense femtosecond UV excitation has been studied. By directly probing the absorption from the ionized electron, quantitative measurements of the yield and dynamics of the ionization have been made as a function of excitation fluence and variations of size and potential structure of quantum dots. The results have been explained by an ionization mechanism involving resonant two-photon absorption.

  11. Magnetoconductance of CdSe in the hopping regime: The effect of quantum interference

    SciTech Connect

    Zhang, Y.; Dai, P.; Sarachik, M.P. )

    1992-04-15

    A magnetoconductance is observed for weakly insulating {ital n}-type CdSe, which, depending on the temperature of the measurement, is quadratic or approximately linear with field in small magnetic fields, and exhibits saturation as the field is increased. The crossovers from quadratic to linear behavior and to saturation occur at magnetic fields which are consistent with theoretical expectations for the effect of quantum interference in the hopping regime.

  12. Self assembly and optical properties of CdSe nanoplatelet superlattice

    NASA Astrophysics Data System (ADS)

    Gao, Yunan; Tisdale, William; Tisdale Lab MIT Team

    Colloidal CdSe nanoplatelets (NPs) are 1-D confined materials with atomic uniform thickness, and only have homogeneous broadening in energy level distributions and very narrow emission spectrum. Additionally, NPs have a giant oscillator strength that leads to a faster emission rate compared to quantum dots and rods. Due to these properties, NPs have shown promising potential applications in light-emitting diodes, colloidal lasers, and harvesting multiple exciton generation in photovoltaic cells.Self-assembly of superlattice has been studied broadly for many nano-particles, but not yet for CdSe NPs. We will show for the first time a selective control of CdSe NP superlattice self-assembly, i.e., self-assembled into columnar or lamellar superlattice. Moreover, we will present that the assembly morphology of superlattice has direct effects on their optical properties, like polarization, absorption efficiency and emission rate, etc., and also on their Forster energy transfer properties. The self-assembly is based on liquid interfacial self-assembly and transfer technique. The structure and propertied of the superlattice are characterized by transmission electron microscopy, and time-, polarization- and space-resolved photo-luminescent micro-spectroscopy.

  13. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution.

    PubMed

    Zou, Guizheng; Ju, Huangxian

    2004-12-01

    Electrogenerated chemiluminescence (ECL) of semiconductor quantum dots in aqueous solutions and its first sensing application were studied by depositing CdSe nanocrystals (NCs) on a paraffin-impregnated graphite electrode (PIGE). The CdSe nanocrystal thin film exhibited two ECL peaks at -1.20 (ECL-1) and -1.50 V (ECL-2) in pH 9.3, 0.1 M PBS during the cyclic sweep between 0 and -1.8 V at 20 mV s(-1). The electron-transfer reaction between individual electrochemically reduced nanocrystal species and oxidant coreactants such as H(2)O(2) and reduced dissolved oxygen led to ECL-1. When mass NCs packed densely in the film were reduced electrochemically, assembly of reduced nanocrystal species could react with coreactants to produce another ECL signal, ECL-2. ECL-1 showed higher sensitivity to the concentration of oxidant coreactants than ECL-2 and thus was used for ECL detection of coreactant, H(2)O(2). A linear response of ECL-1 to H(2)O(2) was observed in the concentration range of 2.5 x 10(-7)-6 x 10(-5) M with a detection limit of 1.0 x10(-7) M. The fabrication of 10 CdSe nanocrystal thin-film modified PIGEs displayed an acceptable reproducibility with a RSD of 1.18% obtained at H(2)O(2) level of 10 microM. PMID:15571335

  14. Radial Electron Momentum Densities of Colloidal CdSe Nanocrystals Determined by Positron Beam Analysis

    SciTech Connect

    Denison, A B; Meulenberg, R; Eijt, S W H; Van Veen, A; Mijnarends, P E; Barbiellini, B; Bansil, A; Fischer, C; Weber, M H; Lynn, K G

    2003-07-31

    We present depth-resolved positron 2D angular correlation of annihilation radiation (2DACAR) experiments on CdSe quantum dots in the diameter range from 2.5 to 6 nm, deposited as micrometer thin layers. The average radial distribution of the valence electron momentum density (EMD) of CdSe quantum dots has been extracted, which reveals a systematic dependence upon particle size. The quantum confinement related changes and their size scaling observable at the Jones zone momentum of {approx}0.8 a.u. seem to agree with the previous coincidence Doppler study. In addition, the average radial EMD shows an increase in the low-momentum range (<0.6 a.u.) and a reduction in the high-momentum range (>1.6 a.u.) with respect to that measured on a bulk CdSe single crystal. Possible origins of these are described. First-principles calculations based on the Korringa-Kohn-Rostoker (KKR) method were performed to gain a better insight.

  15. Detection of CdSe quantum dot photoluminescence for security label on paper

    NASA Astrophysics Data System (ADS)

    Isnaeni, Sugiarto, Iyon Titok; Bilqis, Ratu; Suseno, Jatmiko Endro

    2016-02-01

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program to reveal quantum dot pattern stamp having the word 'RAHASIA'. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.

  16. Optical properties of P3HT:tributylphosphine oxide-capped CdSe nanocomposites

    NASA Astrophysics Data System (ADS)

    Benchaabane, A.; Ben Hamed, Z.; Lahmar, A.; Sanhoury, M. A.; Kouki, F.; Zellama, K.; Zeinert, A.; Bouchriha, H.

    2016-08-01

    The optical properties of nanocomposite layers prepared by incorporation of tributylphosphine oxide (TBPO)-capped CdSe nanocrystals (NCs) in a P3HT polymer matrix are studied using different nanocrystal concentrations. Reflection spectra analyzed through Kim oscillator model lead to the determination of optical constants such as refractive index n, extinction coefficient k, dielectric permittivity ɛ and absorption coefficient α.Using the common Cauchy, Drude-Lorentz, Tauc and single-effective-oscillator theoretical models, we have determined the values of static refractive index n s and permittivity ɛ s, plasma frequency ω_{{p}}, carrier density N, optical band gap E g and oscillator and dispersion energies E0 and E d, respectively. It is found that TBPO-capped CdSe NCs concentration affects the optoelectronic parameters of the nanocomposite thin films. Moreover, the disorder of this hybrid system is also studied by the determination of Urbach energy, which increases with TBPO-capped CdSe concentration.

  17. Influence of Surfactants and Charges on CdSe Quantum Dots

    SciTech Connect

    Yang, Ping; Tretiak, Sergei; Ivanov, Sergei

    2011-01-01

    Surface effects significantly influence the functionality of semiconductor nanocrystals. High quality nanocrystals can be achieved with good control of surface passivation by various hydrophobic ligands. In this work, the chemistry between CdSe quantum dots and common surface capping ligands is investigated using density functional theory (DFT). We discuss the electronic structures and optical properties of small CdSe clusters controlled by their size of particle, self-organization, capping ligands, and positive charges. The chosen model ligands reproduce good structural and energetic description of the interactions between the ligands and quantum dots. In order to capture the chemical nature and energetics of the interactions between the capping ligands and CdSe quantum dots, we found that PMe3 is needed to adequately model trioctylphosphine (TOP), NH3 is sufficient for amines, while OPH2Me could be used to model trioctylphosphine oxide. The relative binding interaction strength between ligands was found to decrease in order Cd–O > Cd–N > Cd–P with average binding energy per ligand being -25 kcal/mol for OPH₂Me, -20 kcal/mol for NH₃ and -10 kcal/mol for PMe₃. Charges on studied stoichiometric clusters were found to have a significant effect on their structures, binding energies, and optical properties.

  18. Luminescent CdTe and CdSe semiconductor nanocrystals: preparation, optical properties and applications.

    PubMed

    Wang, Ying

    2008-03-01

    The novel optical and electrical properties of luminescent semiconductor nanocrystals are appealing for ultrasensitive multiplexing and multicolor applications in a variety of fields, such as biotechnology, nanoscale electronics, and opto-electronics. Luminescent CdSe and CdTe nanocrystals are archetypes for this dynamic research area and have gained interest from diverse research communities. In this review, we first describe the advances in preparation of size- and shape-controlled CdSe and CdTe semiconductor nanocrystals with the organometallic approach. This article gives particular focus to water soluble nanocrystals due to the increasing interest of using semiconductor nanocrystals for biological applications. Post-synthetic methods to obtain water solubility, the direct synthesis routes in aqueous medium, and the strategies to improve the photoluminescence efficiency in both organic and aqueous phase are discussed. The shape evolution in aqueous medium via self-organization of preformed nanoparticles is a versatile and powerful method for production of nanocrystals with different geometries, and some recent advances in this field are presented with a qualitative discussion on the mechanism. Some examples of CdSe and CdTe nanocrystals that have been applied successfully to problems in biosensing and bioimaging are introduced, which may profoundly impact biological and biomedical research. Finally we present the research on the use of luminescent semiconductor nanocrystals for construction of light emitting diodes, solar cells, and chemical sensors, which demonstrate that they are promising building blocks for next generation electronics. PMID:18468108

  19. Conduction band offset determination between strained CdSe and ZnSe layers using DLTS

    SciTech Connect

    Rangel-Kuoppa, Victor-Tapio

    2013-12-04

    The conduction band offset between strained CdSe layers embedded in unintentionally n-type doped ZnSe is measured and reported. Two samples, consisting of thirty Ultra Thin Quantum Wells (UTQWs) of CdSe embedded in ZnSe, grown by Atomic Layer Epitaxy, are used for this study. The thicknesses of the UTQWs are one and three monolayers (MLs) in each sample, respectively. As expected, the sample with one ML UTQWs does not show any energy level in the UTQWs due to the small thickness of the UTQWs, while the thickness of the sample with 3 ML UTQWs is large enough to form an energy level inside the UTQWs. This energy level appears as a majority trap with an activation energy of 223.58 ± 9.54 meV. This corresponds to UTQWs with barrier heights (the conduction band offset) between 742 meV and 784 meV. These values suggest that the band gap misfit between strained CdSe and ZnSe is around 70.5 to 74 % in the conduction band.

  20. Femtosecond cooling of hot electrons in CdSe quantum-well platelets.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; van der Bok, Johanna C; Van Dijk-Moes, Relinde J A; Hannappel, Thomas; Eichberger, Rainer; Vanmaekelbergh, Daniel

    2015-04-01

    Semiconductor quantum wells are ubiquitous in high-performance optoelectronic devices such as solar cells and lasers. Understanding and controlling of the (hot) carrier dynamics is essential to optimize their performance. Here, we study hot electron cooling in colloidal CdSe quantum-well nanoplatelets using ultrafast two-photon photoemission spectroscopy at low excitation intensities, resulting typically in 1-5 hot electrons per platelet. We observe initial electron cooling in the femtosecond time domain that slows down with decreasing electron energy and is finished within 2 ps. The cooling is considerably faster at cryogenic temperatures than at room temperature, and at least for the systems that we studied, independent of the thickness of the platelets (here 3-5 CdSe units) and the presence of a CdS shell. The cooling rates that we observe are orders of magnitude faster than reported for similar CdSe platelets under strong excitation. Our results are understood by a classic cooling mechanism with emission of longitudinal optical phonons without a significant influence of the surface. PMID:25764379

  1. Analysis of the effects of surface chemistry on the XAS spectra of CdSe nanomaterials

    NASA Astrophysics Data System (ADS)

    Whitley, Heather; Prendergast, David; Ogitsu, Tadashi; Schwegler, Eric

    2010-03-01

    X-ray absorption spectroscopy (XAS) is an element-specific probe of local electronic structure, and is an ideal method to analyze chemical bonding. We investigate the consistency of theoretically predicted structures of CdSe nanomaterials with recently measured XAS via ab initio calculations. Using plane-wave DFT, the x-ray absorption cross-section for the Cd L3-edge of small CdSe clusters with a variety of surface ligands is calculated. We also highlight the importance of including excitonic effects in our simulations of core excitation spectra. We compare our simulations to existing experimental data on the ligand dependence of XAS for ligated quantum dots up to ˜3nm in diameter. Based on the favorable comparison of our theoretical spectra with experimental measurements, we infer the validity of our DFT-derived structure and surface passivation for these quantum dots and its relevance to understanding optoelectronic properties of solution-synthesized CdSe nanocrystals. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Inverted organic solar cells using a solution-processed TiO2/CdSe electron transport layer to improve performance

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoxiao; Xiong, Zhicheng; Wang, Wen; Zhang, Luming; Wu, Sujuan; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Liu, Jun-Ming

    2016-04-01

    In the present work, cadmium selenide (CdSe) nanoparticles are deposited directly on TiO2 film to fabricate the TiO2/CdSe interlayer by a chemical bath deposition method. The inverted organic solar cells using poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) bulk heterojunction as an active layer and TiO2/CdSe interlayer as an electron transport layer (ETL) are fabricated in air. A series of microstructural, photo-electronic, and electrochemical characterizations on these cells are performed. The TiO2/CdSe structure with respect to either the TiO2 layer or the CdSe layer as the ETL exhibits significantly enhanced external quantum efficiency (EQE) in the visible region. The photoluminescence (PL) measurement shows that the exciton dissociation in the TiO2/CdSe structure is more effective than that in either the TiO2 or CdSe structure. The Nyquist plots obtained from electrochemical impedance spectroscopy (EIS) implies that the charge recombination in the TiO2/CdSe structure can be suppressed with respect to that in either the CdSe or TiO2 structure. The photovoltaic performances of the cells with the TiO2/CdSe ETL are clearly improved compared with the reference cells only with the TiO2 layer or CdSe layer as the ETL.

  3. Green route synthesis of high quality CdSe quantum dots for applications in light emitting devices

    SciTech Connect

    Bera, Susnata; Singh, Shashi B.; Ray, S.K.

    2012-05-15

    Investigation was made on light emitting diodes fabricated using CdSe quantum dots. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. Room temperature photoluminescence investigation showed sharp 1st excitonic emission peak at 568 nm. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting devices were fabricated by solution process. The electroluminescence study showed low turn on voltage ({approx}2.2 V) .The EL peak intensity was found to increase by increasing the operating current. - Graphical abstract: Light emitting diode was fabricated using CdSe quantum dots using olive oil as the capping agent, instead of toxic phosphine. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting device shows strong electroluminescence in the range 630-661 nm. Highlights: Black-Right-Pointing-Pointer CdSe Quantum dots were synthesized using olive oil as the capping agent. Black-Right-Pointing-Pointer Light emitting device was fabricated using CdSe QDs/P3HT polymer heterojunction. Black-Right-Pointing-Pointer The I-V characteristics study showed low turn on voltage at {approx}2.2 V. Black-Right-Pointing-Pointer The EL peak intensity increases with increasing the operating current.

  4. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe.

    PubMed

    Bang, Jin Ho; Kamat, Prashant V

    2009-06-23

    CdSe and CdTe nanocrystals are linked to nanostructured TiO2 films using 3-mercaptopropionic acid as a linker molecule for establishing the mechanistic aspects of interfacial charge transfer processes. Both these quantum dots are energetically capable of sensitizing TiO2 films and generating photocurrents in quantum dot solar cells. These two semiconductor nanocrystals exhibit markedly different external quantum efficiencies ( approximately 70% for CdSe and approximately 0.1% for CdTe at 555 nm). Although CdTe with a more favorable conduction band energy (E(CB) = -1.0 V vs NHE) is capable of injecting electrons into TiO2 faster than CdSe (E(CB) = -0.6 V vs NHE), hole scavenging by a sulfide redox couple remains a major bottleneck. The sulfide ions dissolved in aqueous solutions are capable of scavenging photogenerated holes in photoirradiated CdSe system but not in CdTe. The anodic corrosion and exchange of Te with S dominate the charge transfer at the CdTe interface. Factors that dictate the efficiency and photostability of CdSe and CdTe quantum dots are discussed. PMID:19435373

  5. Chemically synthesized CdSe quantum dots inhibit growth of human lung carcinoma cells via ROS generation

    PubMed Central

    Jigyasu, Aditya Kumar; Siddiqui, Sahabjada; Lohani, Mohatashim; Khan, Irfan Ali; Arshad, Md

    2016-01-01

    Quantum dots (QDs), semiconducting materials have potential applications in the field of electronic and biomedical applications including cancer therapy. In present study, cadmium selenide (CdSe) QDs were synthesized by chemical method. Octadecene was used as non-coordinating solvent which facilitated the formation of colloidal solutions of nanoparticles. CdSe QDs were characterized by UV-vis spectrometer and transmission electron microscope (TEM). The size measured by TEM was varied between 2-5 nm depending upon temperature. The cytotoxic activity of QDs was monitored by MTT assay, nuclear condensation, ROS activity and DNA fragmentation assay on human lung epithelial A549 cell line. Cells were treated with different concentrations of varying size of CdSe QDs for 24 h. CdSe QDs induced significant (p < 0.05) dose dependent cytotoxicity and this was comparable to the sizes of particles. Smaller particles were more cytotoxic to the large particles. Fluorescence microscopic analysis revealed that QDs induced oxidative stress generating significant ROS level and consequently, induced nuclear condensation and DNA fragmentation. Study suggested the cytotoxicity of CdSe QDs via ROS generation and DNA fragmentation depending upon particles size. PMID:27047318

  6. A novel toxicity mechanism of CdSe nanoparticles to Saccharomyces cerevisiae: enhancement of vacuolar membrane permeabilization (VMP).

    PubMed

    Sun, Meiqing; Yu, Qilin; Liu, Ming; Chen, Xiaoyan; Liu, Zhe; Zhou, Hao; Yuan, Yingjin; Liu, Lu; Li, Mingchun; Zhang, Chengdong

    2014-09-01

    Cadmium selenide (CdSe) nanoparticles are implemented in a wide range of applications, but their potential risk to the ecosystem, especially to the organisms essential for the maintenance of ecosystem homeostasis, such as fungal populations, plants and bacteria, remains to be elucidated. In this study, we investigated their toxicity to one of the most important fungal model organisms, Saccharomyces cerevisiae. Growth inhibition assays revealed that the synthesized CdSe nanoparticles with the sizes of 20-30 nm had strong inhibitory effect on yeast growth (IC50=80 ppm). This toxicity was not attributed to mitochondrial dysfunction and autophagy, but was dependent on End3-mediated endocytosis, and was associated with reactive oxygen species (ROS) accumulation and an enhancement of vacuolar membrane permeabilization (VMP). These results reveal a key role of the vacuole during the interaction between CdSe nanoparticles and yeast cells. PMID:25014418

  7. Ultra-thin crystalline films of CdSe and CuSe formed at the organic-aqueous interface.

    PubMed

    Kalyanikutty, K P; Gautam, Ujjal K; Rao, C N R

    2007-06-01

    Two-dimensional nanostructures in the form of ultra-thin crystalline films of CdSe and CuSe have been prepared at the organic-aqueous interface by reacting toluene solutions of metal cupferronates with an aqueous solution of N,N-dimethyl selenourea. The films have been examined using electron microscopy and optical spectroscopy. At lower concentrations of the reacting species, the CdSe films formed at the toluene-water interface at approximately 30 degrees C consisted mostly of nanocrystals. With increase in concentration as well as temperature, the interface reaction yielded thicker films which are mostly single-crystalline. We have studied the time-dependent growth of the CdSe film at the interface using UV-visible absorption spectroscopy. Ultra-thin films of CuSe formed at the toluene-water interface are generally single-crystalline. PMID:17654965

  8. Electronic structure and optical absorption spectra of CdSe covered with ZnSe and ZnS epilayers

    NASA Astrophysics Data System (ADS)

    Yun, So Jeong; Lee, Geunsik; Kim, Jai Sam; Shin, Seung Koo; Yoon, Young-Gui

    2006-02-01

    Using the first-principles methods we compute the electronic structure and the absorption spectra for a wurtzite CdSe (0001) slab covered with zincblende ZnSe and ZnS epilayers. For each structure we compute the DOS and the imaginary part of the dielectric function. We find that the semiconductor passivation shifts the 'near Fermi-level' states of the bare CdSe slab down to lower energy levels. The migration suggests the decrease of surface effects and energy loss. We observe the substantial reduction of the abnormal peaks in the absorption spectra of the bare CdSe slab, which seems to be a consequence of the DOS migration. This is consistent with the experimental results that a proper passivation enhance the luminescence efficiency. We also study the case that the epilayer surface is terminated with PH 3 and find the PH 3 passivation also reduces the surface state to some extent.

  9. p -State Luminescence in CdSe Nanoplatelets: Role of Lateral Confinement and a Longitudinal Optical Phonon Bottleneck

    NASA Astrophysics Data System (ADS)

    Achtstein, Alexander W.; Scott, Riccardo; Kickhöfel, Sebastian; Jagsch, Stefan T.; Christodoulou, Sotirios; Bertrand, Guillaume H. V.; Prudnikau, Anatol V.; Antanovich, Artsiom; Artemyev, Mikhail; Moreels, Iwan; Schliwa, Andrei; Woggon, Ulrike

    2016-03-01

    We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k .p calculations—all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness.

  10. Optical studies of capped CdSe nanoparticles and their photocatalytic activity for degradation of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Taheri Otaqsara, Seyed Mohammad; Nemati-Kande, Ebrhim; Barzegar, Ramin

    2013-04-01

    Polyethylene glycol (PEG) and mercaptoethanol (ME)-capped CdSe nanoparticles (NPs) have been successfully prepared and systematic investigation on structural, optical and photocatalytic properties is presented. The intrinsic characteristics of resulting nanoparticles were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible and photoluminescence (PL) spectrophotometer. Cubic phase, nearly uniform size (˜10 nm) and spherical morphology of the synthesized nanoparticles were established through XRD and TEM analysis. Spectroscopic measurements exhibit that capping agent can effectively tune energy band structure. ME-capped CdSe NPs exhibit higher light emission efficiency as compared to PEG capping. Photocatalytic activity of CdSe nanoparticles on methylene blue (MB) dye, a significant enhancement was observed in the photodegradation efficiency. A maximum degradation of MB dye (73.5%) was obtained.

  11. Comparative behavior of CdS and CdSe quantum dots in poly(3-hexylthiophene) based nanocomposites

    SciTech Connect

    Sonar, Prashant . E-mail: sonar@mat.ethz.ch; Sreenivasan, K.P.; Madddanimath, Trupti; Vijayamohanan, K. . E-mail: viji@ems.ncl.res.in

    2006-01-05

    CdS and CdSe nanoparticles have been prepared using conducting poly(3-hexylthiophene) (P3HT) matrix with an objective to understand the effect of nanoparticles on the polymer matrix using electrochemical and spectroscopic techniques. The spectroscopic results reveal that the electronic structure of polymer is strongly influenced by the characteristics of embedded semiconducting nanoparticles. SEM and TEM images show the ordered morphology of the CdS and CdSe nanoparticles in presence of the polymer matrix. Cyclic voltammetry performed both in the presence and absence of light enables us to understand the redox changes in P3HT due to CdS and CdSe quantum dots such as the generation of free radical in the excited state and their electrochemical band gaps.

  12. How quickly does a hole relax into an engineered defect state in CdSe quantum dots.

    PubMed

    Avidan, Assaf; Pinkas, Iddo; Oron, Dan

    2012-04-24

    Intraband hole relaxation of colloidal Te-doped CdSe quantum dots is studied using state-selective transient absorption spectroscopy. The dots are excited at the band edge, and the defect band bleach caused by state filling of the hole is probed. Close to the defect energy, the hole relaxation is substantially slowed down, indicating a gap separating the defect state from the CdSe band edge. A clear dependence of the relaxation time with the QD's size is presented, implying that the hole relaxation is mediated by longitudinal optical (LO) phonon modes of the CdSe host. In addition, we find that overcoating the quantum dots by two monolayers of a ZnS shell extends the hole relaxation time by a factor of 2, suggesting a combined effect of LO phonons and surface effects governing intraband hole relaxation. PMID:22439798

  13. p-State Luminescence in CdSe Nanoplatelets: Role of Lateral Confinement and a Longitudinal Optical Phonon Bottleneck.

    PubMed

    Achtstein, Alexander W; Scott, Riccardo; Kickhöfel, Sebastian; Jagsch, Stefan T; Christodoulou, Sotirios; Bertrand, Guillaume H V; Prudnikau, Anatol V; Antanovich, Artsiom; Artemyev, Mikhail; Moreels, Iwan; Schliwa, Andrei; Woggon, Ulrike

    2016-03-18

    We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k·p calculations-all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness. PMID:27035317

  14. Photocurrent enhancement of SiNW-FETs by integrating protein-shelled CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Moh, Sang Hyun; Kulkarni, Atul; San, Boi Hoa; Lee, Jeong Hun; Kim, Doyoun; Park, Kwang Su; Lee, Min Ho; Kim, Taesung; Kim, Kyeong Kyu

    2016-01-01

    We proposed a new strategy to increase the photoresponsivity of silicon NW field-effect transistors (FETs) by integrating CdSe quantum dots (QDs) using protein shells (PSs). CdSe QDs were synthesized using ClpP, a bacterial protease, as protein shells to control the size and stability of QD and to facilitate the mounting of QDs on SiNWs. The photocurrent of SiNW-FETs in response to light at a wavelength of 480 nm was enhanced by a factor of 6.5 after integrating CdSe QDs because of the coupling of the optical properties of SiNWs and QDs. As a result, the photoresponsivity to 480 nm light reached up to 3.1 × 106, the highest value compared to other SiNW-based devices in the visible light range.We proposed a new strategy to increase the photoresponsivity of silicon NW field-effect transistors (FETs) by integrating CdSe quantum dots (QDs) using protein shells (PSs). CdSe QDs were synthesized using ClpP, a bacterial protease, as protein shells to control the size and stability of QD and to facilitate the mounting of QDs on SiNWs. The photocurrent of SiNW-FETs in response to light at a wavelength of 480 nm was enhanced by a factor of 6.5 after integrating CdSe QDs because of the coupling of the optical properties of SiNWs and QDs. As a result, the photoresponsivity to 480 nm light reached up to 3.1 × 106, the highest value compared to other SiNW-based devices in the visible light range. Electronic supplementary information (ESI) available: Materials and methods. See DOI: 10.1039/c5nr07901b

  15. Green route synthesis of high quality CdSe quantum dots for applications in light emitting devices

    NASA Astrophysics Data System (ADS)

    Bera, Susnata; Singh, Shashi B.; Ray, S. K.

    2012-05-01

    Investigation was made on light emitting diodes fabricated using CdSe quantum dots. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. Room temperature photoluminescence investigation showed sharp 1st excitonic emission peak at 568 nm. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting devices were fabricated by solution process. The electroluminescence study showed low turn on voltage (˜2.2 V) .The EL peak intensity was found to increase by increasing the operating current.

  16. Dislocation-driven growth of porous CdSe nanorods from CdSe.(ethylenediamine)0.5 nanorods

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Bae; Jang, Du-Jeon

    2015-12-01

    Porous CdSe nanorods having a novel flute-like morphology have been prepared facilely via the hydrothermal treatment of CdSe.(en)0.5 (en = ethylenediamine) nanorods as sacrificial templates. During the hydrothermal process, various crystalline imperfections such as stacking faults and twinning planes appear due to lattice mismatches between orthorhombic CdSe.(en)0.5 and hexagonal wurtzite porous CdSe nanorods and subsequently disappear to release mismatched strains. In the self-healing process of defects, due to the imbalance of in-and-out atomic diffusion, point defects of atomic vacancies are heavily generated in CdSe nanorods to produce volume defects of voids eventually. The photoluminescence of CdSe nanorods shifts to the red region and decreases in intensity with the increase of the hydrolysis time as surface states and selenium vacancies increase. The mean lifetime of photoluminescence increases with the increase of the hydrothermal-treatment time as the fractional amplitude of the surface-state-related component increases.Porous CdSe nanorods having a novel flute-like morphology have been prepared facilely via the hydrothermal treatment of CdSe.(en)0.5 (en = ethylenediamine) nanorods as sacrificial templates. During the hydrothermal process, various crystalline imperfections such as stacking faults and twinning planes appear due to lattice mismatches between orthorhombic CdSe.(en)0.5 and hexagonal wurtzite porous CdSe nanorods and subsequently disappear to release mismatched strains. In the self-healing process of defects, due to the imbalance of in-and-out atomic diffusion, point defects of atomic vacancies are heavily generated in CdSe nanorods to produce volume defects of voids eventually. The photoluminescence of CdSe nanorods shifts to the red region and decreases in intensity with the increase of the hydrolysis time as surface states and selenium vacancies increase. The mean lifetime of photoluminescence increases with the increase of the hydrothermal

  17. Pyramid-Shaped Wurtzite CdSe Nanocrystals with Inverted Polarity.

    PubMed

    Ghosh, Sandeep; Gaspari, Roberto; Bertoni, Giovanni; Spadaro, Maria Chiara; Prato, Mirko; Turner, Stuart; Cavalli, Andrea; Manna, Liberato; Brescia, Rosaria

    2015-08-25

    We report on pyramid-shaped wurtzite cadmium selenide (CdSe) nanocrystals (NCs), synthesized by hot injection in the presence of chloride ions as shape-directing agents, exhibiting reversed crystal polarity compared to former reports. Advanced transmission electron microscopy (TEM) techniques (image-corrected high-resolution TEM with exit wave reconstruction and probe-corrected high-angle annular dark field-scanning TEM) unequivocally indicate that the triangular base of the pyramids is the polar (0001̅) facet and their apex points toward the [0001] direction. Density functional theory calculations, based on a simple model of binding of Cl(-) ions to surface Cd atoms, support the experimentally evident higher thermodynamic stability of the (0001̅) facet over the (0001) one conferred by Cl(-) ions. The relative stability of the two polar facets of wurtzite CdSe is reversed compared to previous experimental and computational studies on Cd chalcogenide NCs, in which no Cl-based chemicals were deliberately used in the synthesis or no Cl(-) ions were considered in the binding models. Self-assembly of these pyramids in a peculiar clover-like geometry, triggered by the addition of oleic acid, suggests that the basal (polar) facet has a density and perhaps type of ligands significantly different from the other three facets, since the pyramids interact with each other exclusively via their lateral facets. A superstructure, however with no long-range order, is observed for clovers with their (0001̅) facets roughly facing each other. The CdSe pyramids were also exploited as seeds for CdS pods growth, and the peculiar shape of the derived branched nanostructures clearly arises from the inverted polarity of the seeds. PMID:26203791

  18. Hybrid nanocomposites of CdSe nanocrystals distributed in complexing thiophene-based copolymers.

    PubMed

    Aldakov, Dmitry; Jiu, Tonggang; Zagorska, Malgorzata; de Bettignies, Rémi; Jouneau, Pierre-Henri; Pron, Adam; Chandezon, Frédéric

    2010-07-21

    Two types of conjugated polymers were prepared with the goal to blend them with rod-like CdSe nanocrystals. The polymers of the first type were synthesized through copolymerization of 3-octylthiophene and 3-methylene-ethylcarboxylate-thiophene to give polythiophene with solubilizing alkyl groups and methylene ester functional groups (PE series). Post-polymerization hydrolysis of the ester type polymers yielded acid-type ones (PA series). Photoluminescence (PL) quenching in these polymers induced by their titration with nanocrystals solution was chosen as a measure of the polymer-nanocrystal interactions. PL of polyacids turned out to be more efficiently quenched as compared to the case of polymers with ester groups which was interpreted as an indication of better electronic communication between the hybrid components. Infrared (IR) spectroscopy confirmed efficient coordination of the carboxylic groups to CdSe. Voltammetric studies combined with UV-vis spectroelectrochemistry enabled the determination of energy levels alignment of the molecular composite components which turned out to be of staggered type-appropriate for photovoltaic applications. The obtained blends of polyacids with CdSe nanocrystals, when studied by transmission electron microscopy (TEM), revealed the presence of an interpenetrating network in which nanorods were homogeneously distributed within the polymer matrix without any indication of agglomerates formation both on the film surface and in the cross-section. Blends with polymers containing ester groups were less homogeneous which could be explained by weaker polymer-nanocrystals interactions. Photovoltaic cells based on these hybrid materials are also discussed. PMID:20502773

  19. Observation of an Excitonic Quantum Coherence in CdSe Nanocrystals.

    PubMed

    Dong, Shuo; Trivedi, Dhara; Chakrabortty, Sabyasachi; Kobayashi, Takayoshi; Chan, Yinthai; Prezhdo, Oleg V; Loh, Zhi-Heng

    2015-10-14

    Recent observations of excitonic coherences within photosynthetic complexes suggest that quantum coherences could enhance biological light harvesting efficiencies. Here, we employ optical pump-probe spectroscopy with few-femtosecond pulses to observe an excitonic quantum coherence in CdSe nanocrystals, a prototypical artificial light harvesting system. This coherence, which encodes the high-speed migration of charge over nanometer length scales, is also found to markedly alter the displacement amplitudes of phonons, signaling dynamics in the non-Born-Oppenheimer regime. PMID:26359970

  20. Electrooptical properties of hybrid liquid crystalline systems containing CdSe quantum dots

    SciTech Connect

    Dradrach, K. Bartkiewicz, S.; Miniewicz, A.

    2014-12-08

    In this paper, we present electrooptical properties of hybrid liquid crystalline systems, which contained CdSe quantum dots (QDs). We have shown by experiments of degenerated two-wave mixing and transverse conductivity measurements that liquid crystal cells filled with nematic and doped with semiconductor nanoparticles exhibit photorefractive effect associated with photoconductivity appearing in the system. We also present the mathematical model, which explains the relationship between the photoconductivity of the layer on which the QDs reside and the generation of holographic gratings. Our research may help to develop better understanding of processes observed in such systems and create more efficient materials for holographic data storage.

  1. Vapor-phase nucleation of individual CdSe nanostructures from shape-engineered nanocrystal seeds

    NASA Astrophysics Data System (ADS)

    Fasoli, A.; Pisana, S.; Colli, A.; Carbone, L.; Manna, L.; Ferrari, A. C.

    2008-01-01

    We investigate the vapor-phase nucleation of CdSe nanostructures on nanocrystals seeds of different shapes. The growth dynamics is assessed by transmission electron microscopy, following the evolution of the same nanocrystals prior and after the deposition process. We prove that individual nanocrystals can sustain the growth of single nanowires and determine their final morphology. Straight or branched nanowires are obtained from spherical or tetrapod-shaped nanocrystals, respectively. When tetrapod-shaped nanocrystals are used, we also find that their original shape and orientation are mostly preserved upon further growth.

  2. Electrooptical properties of hybrid liquid crystalline systems containing CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Dradrach, K.; Bartkiewicz, S.; Miniewicz, A.

    2014-12-01

    In this paper, we present electrooptical properties of hybrid liquid crystalline systems, which contained CdSe quantum dots (QDs). We have shown by experiments of degenerated two-wave mixing and transverse conductivity measurements that liquid crystal cells filled with nematic and doped with semiconductor nanoparticles exhibit photorefractive effect associated with photoconductivity appearing in the system. We also present the mathematical model, which explains the relationship between the photoconductivity of the layer on which the QDs reside and the generation of holographic gratings. Our research may help to develop better understanding of processes observed in such systems and create more efficient materials for holographic data storage.

  3. Electro-absorption of an ensemble of close-packed CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Gurinovich, Leonid I.; Artemyev, Mikhail V.

    2002-05-01

    Highly monodisperse CdSe quantum dots 1.8 nm in size were synthesized capped with surface monolayer of 1-thioglycerol. The optical absorption of thin films of matrix free close- packed and isolated in PMMA matrix quantum dots was studied at various electric field biases. The broadening and red shift of optical transitions in close-packed ensemble against isolated is attributed to the formation of collective electronic submini-bands between interacting nanocrystals. The reversible collapse of collective electronic subminibands has been achieved by applying of strong electric field to the thin film of close-packed quantum dots.

  4. A novel strategy towards designing a CdSe quantum dot-metallohydrogel composite material.

    PubMed

    Chatterjee, Sayantan; Maitra, Uday

    2016-08-11

    We have described here an efficient method to disperse hydrophobic CdSe quantum dots (QDs) in an aqueous phase using cetyltrimethylammonium bromide (CTAB) micelles without any surface ligand exchange. The water soluble QDs were then embedded in 3D self assembled fibrillar networks (SAFINs) of a hydrogel showing homogeneous dispersibility as evidenced from optical and electron microscopic techniques. The photophysical studies of the hydrogel-QD composite are reported for the first time. These composite materials may have potential applications in biology, optoelectronics, sensors, non-linear optics and materials science. PMID:27465805

  5. Charge carrier transport in thin films of colloidal CdSe quantum rods

    NASA Astrophysics Data System (ADS)

    Persano, A.; Leo, G.; Manna, L.; Cola, A.

    2008-10-01

    Phototransport properties of organically capped colloidal CdSe quantum rod thin films deposited by spin coating are studied in air at room temperature in planar electrode configuration. Under optical excitation, the observed current-voltage characteristics and current transients are well described by a resonant tunneling model. A significant and irreversible current quenching of the photoresponse occurs with either the aging of the samples or the flowing of the current itself when above few picoamperes. The process, which is still interpreted in the frame of the model, can be attributed to the charge trapping by the defect states at the barrier between rods with a consequent increase in the barrier height.

  6. Multicolored silica coated CdSe core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Goftman, Valentina V.; Markin, Alexey V.; De Saeger, Sarah; Goryacheva, Irina Y.

    2016-04-01

    Silanization is a convenient route to provide water-solubility to the quantum dots (QDs) with different structure. Green, orange and red emitting CdSe-based QDs were synthesized by varying of number and material of wider-band gap shells and fluorescent properties of QDs were characterized before and after silanization. It was shown that structure of the QD influences on the quantum yield of the silanized QDs: the better CdSe core is protected with wider-band gap semiconductor shells, the more fluorescence properties remain after silica coated QD possess. Hence silica coated QDs have a great perspectives for the multiplex analysis.

  7. Determination of the Exciton Binding Energy in CdSe Quantum Dots

    SciTech Connect

    Meulenberg, R; Lee, J; Wolcott, A; Zhang, J; Terminello, L; van Buuren, T

    2009-10-27

    The exciton binding energy (EBE) in CdSe quantum dots (QDs) has been determined using x-ray spectroscopy. Using x-ray absorption and photoemission spectroscopy, the conduction band (CB) and valence band (VB) edge shifts as a function of particle size have been determined and combined to obtain the true band gap of the QDs (i.e. without and exciton). These values can be compared to the excitonic gap obtained using optical spectroscopy to determine the EBE. The experimental EBE results are compared with theoretical calculations on the EBE and show excellent agreement.

  8. Selenium Redox Reactivity on Colloidal CdSe Quantum Dot Surfaces

    PubMed Central

    2016-01-01

    Understanding the structural and compositional origins of midgap states in semiconductor nanocrystals is a longstanding challenge in nanoscience. Here, we report a broad variety of reagents useful for photochemical reduction of colloidal CdSe quantum dots, and we establish that these reactions proceed via a dark surface prereduction step prior to photoexcitation. Mechanistic studies relying on the specific properties of various reductants lead to the proposal that this surface prereduction occurs at oxidized surface selenium sites. These results demonstrate the use of small-molecule inorganic chemistries to control the physical properties of colloidal QDs and provide microscopic insights into the identities and reactivities of their localized surface species. PMID:27518320

  9. Communication: biexciton generation rates in CdSe nanorods are length independent.

    PubMed

    Baer, Roi; Rabani, Eran

    2013-02-01

    We study how shape affects multiexciton generation rates in a semiconducting nanocrystal by considering CdSe nanorods with varying diameters and aspect ratios. The calculations employ an atomistic semiempirical pseudopotential model combined with an efficacious stochastic approach applied to systems containing up to 20 000 atoms. The effect of nanorod diameter and aspect ratio on multiexciton generation rates is analyzed in terms of the scaling of the density of trion states and the scaling of the Coulomb couplings. Both show distinct scaling from spherical nanocrystals leading to a surprising result where the multiexciton generation rates are roughly independent of the nanorod length. PMID:23406091

  10. Surface plasmon propelled high-performance CdSe nanoribbons photodetector.

    PubMed

    Luo, Lin-Bao; Xie, Wei-Jie; Zou, Yi-Feng; Yu, Yong-Qiang; Liang, Feng-Xia; Huang, Zi-Jun; Zhou, Ke-Ya

    2015-05-18

    In this work, we present a plasmonic photodetector (PPD) with high sensitivity to red light illumination. The ultrasensitive PPD was composed of high-crystalline CdSe nanoribbons (NRs) decorated with plasmonic hollow gold nanoparticles (HGNs) on the surface, which were capable of coupling the incident light due to localized surface plasmon resonance (LSPR). Device analysis reveals that after modification of HGNs, both responsivity and detectivity were considerably improved. Further device performance analysis and theoretical simulation based on finite element method (FEM) find that the optimized performance is due to HGNs induced localized field enhancement and direct electron transfer. PMID:26074550

  11. Hot spot assisted blinking suppression of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Lu, Liu; Tong, Xuan; Zhang, Xu; Ren, Naifei; Jiang, Bo; Lu, Haifei

    2016-05-01

    This work compares the blinking of CdSe QDs on glass, single silver nanowire, and double aligned nanowires. The corresponding on-time fractions of these three cases are 50%, 70% and 85% respectively, which indicates that aligned double nanowires shows more efficient suppression than that of single nanowire. This phenomenon is attributed to the higher concentration of hot electron from hot spot between nanowires. Occupation of the non-radiative recombination centers by hot electrons from silver nanowires can be explained for the suppressed blinking behavior. The result has provided a novel pathway of suppressing the blinking behavior of QDs through plasmonic hot spot.

  12. Selenium Redox Reactivity on Colloidal CdSe Quantum Dot Surfaces.

    PubMed

    Tsui, Emily Y; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-09-01

    Understanding the structural and compositional origins of midgap states in semiconductor nanocrystals is a longstanding challenge in nanoscience. Here, we report a broad variety of reagents useful for photochemical reduction of colloidal CdSe quantum dots, and we establish that these reactions proceed via a dark surface prereduction step prior to photoexcitation. Mechanistic studies relying on the specific properties of various reductants lead to the proposal that this surface prereduction occurs at oxidized surface selenium sites. These results demonstrate the use of small-molecule inorganic chemistries to control the physical properties of colloidal QDs and provide microscopic insights into the identities and reactivities of their localized surface species. PMID:27518320

  13. Construction of dentate bonded TiO2-CdSe heterostructures with enhanced photoelectrochemical properties: versatile labels toward photoelectrochemical and electrochemical sensing.

    PubMed

    Gao, Picheng; Ma, Hongmin; Yan, Tao; Wu, Dan; Ren, Xiang; Yang, Jiaojiao; Du, Bin; Wei, Qin

    2015-01-14

    A facile synthetic route for TiO2-CdSe heterostructures was proposed based on dentate binding of TiO2 to carboxyl. Carboxyl functionalized CdSe quantum dots (CF-CdSe QDs) were successfully bonded onto TiO2 nanoparticles (NPs), which could significantly improve the photoelectrochemical (PEC) properties of TiO2 NPs. This is ascribed to the fact that CdSe QDs with a narrow band gap could be stimulated under visible light irradiation, and the energy levels of TiO2 NPs and CF-CdSe QDs are aligned with an electrolyte solution. High resolution transmission electron microscopy images revealed the heterostructures of the TiO2-CdSe composites. Ultraviolet visible spectroscopy, photoluminescence emission spectroscopy and electrochemical impedance spectroscopy analysis exhibited that the prepared TiO2-CdSe heterostructures have improved light absorption, charge separation efficiency and electron transfer ability in the visible light region. TiO2-CdSe heterostructures were used as versatile labels for fabrication of PEC and electrochemical immunosensors, and human immune globulin G (HIgG) was used as a model analyte. The immunosensor showed high sensitivity, a low detection limit and a wide linear range, which could be applied in practical serum sample analysis. The constructed TiO2-CdSe heterostructures would have potential applications in photocatalysis, aptasensors, cytosensors and other areas of nanotechnology. PMID:25408238

  14. Magneto-optical spectrum and the effective excitonic Zeeman splitting energies of Mn and Co-doped CdSe nanowires

    SciTech Connect

    Xiong, Wen; Chen, Wensuo

    2013-12-21

    The electronic structure of Mn and Co-doped CdSe nanowires are calculated based on the six-band k·p effective-mass theory. Through the calculation, it is found that the splitting energies of the degenerate hole states in Mn-doped CdSe nanowires are larger than that in Co-doped CdSe nanowires when the concentration of these two kinds of magnetic ions is the same. In order to analysis the magneto-optical spectrum of Mn and Co-doped CdSe nanowires, the four lowest electron states and the four highest hole states are sorted when the magnetic field is applied, and the 10 lowest optical transitions between the conduction subbands and the valence subbands at the Γ point in Mn and Co-doped CdSe nanowires are shown in the paper, it is found that the order of the optical transitions at the Γ point almost do not change although two different kinds of magnetic ions are doped in CdSe nanowires. Finally, the effective excitonic Zeeman splitting energies at the Γ point are found to increase almost linearly with the increase of the concentration of the magnetic ions and the magnetic field; meanwhile, the giant positive effective excitonic g factors in Mn and Co-doped CdSe nanowires are predicted based on our theoretical calculation.

  15. Internal field switching in CdSe quantum dot films on Si.

    PubMed

    Sarkar, Shaibal K; Cohen, Hagai; Hodes, Gary

    2005-01-13

    If a thin film (tens of nm) of CdSe quantum dots (4 nm diameter) is deposited by chemical bath deposition onto various substrates, the films, although essentially intrinsic, behave as if they were n-type with respect to charge separation. However, films deposited under certain deposition conditions on Si (both n(+)- and p(+)-type) behave as if they were p-type. In this case, we show that it is possible to switch this p-type photoresponse by either light illumination intensity or injection of electrons from an external filament. Using both surface photovoltage spectroscopy and a novel adaptation of X-ray photoelectron spectroscopy, we show how this behavior results from a Cd(OH)(2) layer adsorbed at the Si surface at the beginning of the deposition. This response is explained by a competition between a high concentration of relatively shallow hole traps in the CdSe and a lower concentration of deeper electron traps in the Cd(OH)(2). The relative occupancies of these traps determine the fields in the film and their response to external parameters. PMID:16851002

  16. High-Temperature Microfluidic Synthesis of CdSe Nanocrystals inNanoliter Droplets

    SciTech Connect

    Chan, Emory M.; Alivisatos, A. Paul; Mathies, Richard A.

    2005-06-09

    The high-temperature synthesis of CdSe nanocrystals innanoliter-volume droplets flowing in a perfluorinated carrier fluidthrough a microfabricated reactor is presented. A flow-focusing nanojetstructure with a step increase in channel height reproducibly generatedoctadecene droplets in Fomblin Y 06/6 perfluorinated polyether atcapillary numbers up to 0.81 and with a droplet:carrier fluid viscosityratio of 0.035. Cadmium and selenium precursors flowing in octadecenedroplets through a high-temperature (240-300 degrees C) glassmicroreactor produced high quality CdSe nanocrystals, as verified byoptical spectroscopy and transmission electron microscopy. Isolating thereaction solution in droplets prevented particle deposition andhydrodynamic dispersion, allowing the reproducible synthesis ofnanocrystals at three different temperatures and four different residencetimes in the span of four hours. Our synthesis of a wide range ofnanocrystals at high temperatures, high capillary numbers, and lowviscosity ratio illustrates the general utility of droplet-basedmicrofluidic reactors to encapsulate nanoliter volumes of organic oraqueous solutions and to precisely control chemical or biochemicalreactions.

  17. Precursor and oxygen dependence of the unidirectional, seeded growth of CdSe nanorods

    PubMed Central

    Doll, Jonathan D.; Hu, Bin; Papadimitrakopoulos, Fotios

    2012-01-01

    It was recently shown that, by controlling the O2 concentration, the seeded-growth of CdSe nanocrystals (NC) can be manipulated to proceed either unidirectionally (from the (0001) facet) or three-dimensionally. In this contribution, we investigate two new Se precursors (i.e. SeO2 and NaHSe) and compare them with Se obtained from etching of smaller NC seeds. Under anaerobic conditions, both precursors led to successful 3-dimensional (3D) NC growth. At high O2 concentrations, the seeded growth of rods was enhanced by the NaHSe precursor, while impeded by the use of SeO2. Mechanistic studies showed that the reduction of SeO2 to Se2- produces an excessive amount of O2. This leads to rod fragmentation due to etching as well as the production of deep traps that quench their luminescence. These new precursors, along with a heightened understanding of oxygen's role, expand the synthetic repertoire of the redox-assisted, seeded-growth of CdSe and better position this low temperature (125 °C) methodology towards realizing advanced NC heterostructures. PMID:23230347

  18. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kelley, Anne Myers

    2016-06-01

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ˜2.8 and ˜5.2 nm (˜410 and ˜2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active "longitudinal optical" phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  19. Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets.

    PubMed

    She, Chunxing; Fedin, Igor; Dolzhnikov, Dmitriy S; Dahlberg, Peter D; Engel, Gregory S; Schaller, Richard D; Talapin, Dmitri V

    2015-10-27

    There have been multiple demonstrations of amplified spontaneous emission (ASE) and lasing using colloidal semiconductor nanocrystals. However, it has been proven difficult to achieve low thresholds suitable for practical use of nanocrystals as gain media. Low-threshold blue ASE and lasing from nanocrystals is an even more challenging task. Here, we show that colloidal nanoplatelets (NPLs) with electronic structure of quantum wells can produce ASE in the red, yellow, green, and blue regions of the visible spectrum with low thresholds and high gains. In particular, for blue-emitting NPLs, the ASE threshold is 50 μJ/cm(2), lower than any reported value for nanocrystals. We then demonstrate red, yellow, green, and blue lasing using NPLs with different thicknesses. We find that the lateral size of NPLs does not show any strong effect on the Auger recombination rates and, correspondingly, on the ASE threshold or gain saturation. This observation highlights the qualitative difference of multiexciton dynamics in CdSe NPLs and other quantum-confined CdSe materials, such as quantum dots and rods. Our measurements of the gain bandwidth and gain lifetime further support the prospects of colloidal NPLs as solution-processed optical gain materials. PMID:26302368

  20. Structural and optical properties of solvothermal synthesized nearly monodispersed CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Shahi, A. K.; Pandey, B. K.; Singh, B. P.; Gopal, R.

    2016-09-01

    Water soluble nearly monodisperse CdSe nanocrystals have been successfully synthesized via aqueous phase solvothermal route in non ionic surfactant glycolic acid ethoxylate 4-non phenyl ether (GAEPE). X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) are used to determine the phase, structural parameters such as lattice constants, strain, x-ray density and specific surface area, morphology, shape and size distribution, respectively, whereas optical properties are studied by UV-visible absorption and photoluminescence (PL) spectroscopy. All the diffraction peaks of XRD pattern indexed to wurtzite phase of hexagonal system of CdSe and crystallite sizes estimated to be 13–29 nm along some stronger and narrower peaks which is also consistent with TEM measurement while crystallinity and defects have been analyzed with selective area electron diffraction (SAED) pattern. Optical absorption spectrum shows that the as prepared sample exhibits primary and secondary absorption band centered at 2.15 eV and 1.82 eV, respectively, which is blue shifted as compared to bulk value (1.74 eV) of band gap due to quantum confinement effect. Photoluminescence spectrum shows sharp excitonic emission band centered at 583 nm which is nearer to primary band gap energy.

  1. Efficient intranuclear gene delivery by CdSe aqueous quantum dots electrostatically-coated with polyethyleneimine

    NASA Astrophysics Data System (ADS)

    Au, Giang H. T.; Y Shih, Wan; Shih, Wei-Heng

    2015-01-01

    Quantum dots (QDs) are semiconducting nanoparticles with photoluminescence properties that do not photobleach. Due to these advantages, using QDs for non-viral gene delivery has the additional benefit of being able to track the delivery of the genes in real time as it happens. We investigate the efficacy of mercaptopropionic acid (MPA)-capped CdSe aqueous quantum dots (AQDs) electrostatically complexed with branched polyethyleneimine (PEI) both as a non-viral gene delivery vector and as a fluorescent probe for tracking the delivery of genes into nuclei. The MPA-capped CdSe AQDs that were completely synthesized in water were the model AQDs. A nominal MPA:Cd:Se = 4:3:1 was chosen for optimal photoluminescence and zeta potential. The gene delivery study was carried out in vitro using a human colon cancer cell line, HT29 (ATCC). The model gene was a plasmid DNA (pDNA) that can express red fluorescent protein (RFP). Positively charged branched PEI was employed to provide a proton buffer to the AQDs to allow for endosomal escape. It is shown that by using a PEI-AQD complex with a PEI/AQD molar ratio of 300 and a nominal pDNA/PEI-AQD ratio of 6, we can achieve 75 ± 2.6% RFP expression efficiency with cell vitality remaining at 78 ± 4% of the control.

  2. Fingerprint detection and using intercalated CdSe nanoparticles on non-porous surfaces.

    PubMed

    Algarra, Manuel; Radotić, Ksenija; Kalauzi, Aleksandar; Mutavdžić, Dragosav; Savić, Aleksandar; Jiménez-Jiménez, José; Rodríguez-Castellón, Enrique; da Silva, Joaquim C G Esteves; Guerrero-González, Juan José

    2014-02-17

    A fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures, functionalized with amino groups (PPH-NH2@CdSe), was synthesized, characterized and used for fingerprint detection. The main scopes of this work were first to develop a friendly chemical powder for detecting latent fingerprints, especially in non-porous surfaces; their further intercalation in PPH structure enables not to spread the fluorescent nanoparticles, for that reason very good fluorescent images can be obtained. The fingerprints, obtained on different non-porous surfaces such as iron tweezers, mobile telephone screen and magnetic band of a credit card, treated with this powder emit a pale orange luminescence under ultraviolet excitation. A further image processing consists of contrast enhancement that allows obtaining positive matches according to the information supplied from a police database, and showed to be more effective than that obtained with the non-processed images. Experimental results illustrate the effectiveness of proposed methods. PMID:24491786

  3. Temporary Charge Carrier Separation Dominates the Photoluminescence Decay Dynamics of Colloidal CdSe Nanoplatelets.

    PubMed

    Rabouw, Freddy T; van der Bok, Johanna C; Spinicelli, Piernicola; Mahler, Benoît; Nasilowski, Michel; Pedetti, Silvia; Dubertret, Benoît; Vanmaekelbergh, Daniël

    2016-03-01

    Luminescent colloidal CdSe nanoplatelets with atomically defined thicknesses have recently been developed, and their potential for various applications has been shown. To understand their special properties, experiments have until now focused on the relatively short time scales of at most a few nanoseconds. Here, we measure the photoluminescence decay dynamics of colloidal nanoplatelets on time scales up to tens of microseconds. The excited state dynamics are found to be dominated by the slow (∼μs) dynamics of temporary exciton storage in a charge-separated state, previously overlooked. We study the processes of charge carrier separation and exciton recovery in pure CdSe nanoplatelets as well as in core-crown and core-shell CdSe/CdS nanoplatelets with high ensemble quantum yields of 50%, and discuss the implications. Our work highlights the importance of reversible charge carrier trapping and experiments over a wide range of time scales for the understanding of colloidal nanoemitters in general and nanoplatelets in particular. PMID:26863992

  4. CdSe colloidal nanocrystals monolithically integrated in a pseudomorphic semiconductor epilayer

    SciTech Connect

    Larramendi, Erick M.; Schoeps, Oliver; Woggon, Ulrike; Artemyev, Mikhail V.; Schikora, Detlef; Lischka, Klaus

    2013-01-14

    As optically active emitters in a semiconductor matrix, core/shell and bare CdSe colloidal nanocrystals (CNCs) were monolithically incorporated in ZnSe pseudomorphic epilayers by molecular beam epitaxy (MBE). A suspension of wet chemically synthesized CNCs was sprayed ex-situ over a pseudomorphic ZnSe/GaAs(001) heterostructure using a nebulizer. Subsequently, the matrix material growth was resumed to form a capping layer by a slow MBE growth mode. Structural investigations show high crystalline quality and pseudomorphic epitaxial character of the whole hybrid CNC-matrix structure. The core/shell CNCs remain optically active following the embedding process. Their emission is blue shifted without a significant change on the spectral shape, and shows the same temperature dependence as that of the free exciton peak energy in zinc-blende CdSe at temperatures above 80 K. Our optical characterization of the samples showed that the embedded CNCs were stable and that the structure of the host was preserved. These results are encouraging for the fabrication of more complex optoelectronic devices based on CNCs.

  5. Vacuum evaporated CdSe thin films and its some spectral response characteristics

    NASA Astrophysics Data System (ADS)

    Sarmah, K.; Sarma, R.; Das, H. L.

    2008-05-01

    CdSe thin films deposited by means of thermal evaporation technique under a high vacuum of 10-5 Torr on properly cleaned glass substrates held at different elevated temperatures are of polycrystalline nature having hexagonal structure. For a typical Al/CdSe/Al gap type structure of such films the I-V characteristics are linear both under dark and under monochromatic illuminations for low bias voltages, but such curves show Poole-Frenkel type of conductivity under the same illuminations mainly for high bias regions. The photocurrents of the deposited CdSe films are of deffect controlled type. The spectral response characteristics of the films at room temperature show a prominent peak along with some smaller peaks mainly in the longer wavelength side. The transport mechanism for the said films are generally a doubly activated process. From 1nσ vs 1000/T plot dark and photo-activation energies along with the mobility activation energies are calculated for a few wavelengths close to the threshold wavelength. The photocurrent decay characteristics curves under room temperature environment basically exhibited two different decay times which actually corresponds to two distinct trap levels and the corresponding trap depths are calculated. From the transmission spectra, optical band gaps have been calculated for deposited films.

  6. A Closer Look into the Traditional Purification Process of CdSe Semiconductor Quantum Dots.

    PubMed

    Shakeri, Behtash; Meulenberg, Robert W

    2015-12-15

    This paper describes how the postprocessing procedure for wurtzite CdSe quantum dots (QDs) 4.8 and 6.7 nm in diameter is affected by both the choice of nonsolvent and the number of processing steps. Using a host of analytical techniques (ultraviolet-visible, photoluminescence, nuclear magnetic, X-ray photoelectron, and infrared spectroscopy, as well as thermogravimetric analysis), we find that control over the ligand type and surface density can be achieved simply by the number of washing steps used during the postprocessing procedure. Using multiple washing steps we can achieve colloidally stable solutions of QDs with organic mass fractions as low as 13% by mass. For CdSe QDs passivated with trioctylphosphine oxide (TOPO) and stearic acid (SA), essentially no TOPO is bound to the particle surface after three or four washing steps, with a plateau in the amount of SA being removed. The results can be explained using the L- and X-type ligand classification system for QDs, with L-type ligands (TOPO) removed in the early processing steps but the removal of X-type (SA) ligand stalling at a large number of washing steps due to charging of the QDs. Importantly, very little change is observed in the photoluminescence (PL) properties, suggesting that the choice of nonsolvent during postprocessing will allow the production of QD materials with very low organic content by mass but with good PL quantum yields. PMID:26625188

  7. Templating growth of gold nanostructures with a CdSe quantum dot array.

    PubMed

    Paul, Neelima; Metwalli, Ezzeldin; Yao, Yuan; Schwartzkopf, Matthias; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter; Paul, Amitesh

    2015-06-01

    In optoelectronic devices based on quantum dot arrays, thin nanolayers of gold are preferred as stable metal contacts and for connecting recombination centers. The optimal morphology requirements are uniform arrays with precisely controlled positions and sizes over a large area with long range ordering since this strongly affects device performance. To understand the development of gold layer nanomorphology, the detailed mechanism of structure formation are probed with time-resolved grazing incidence small-angle X-ray scattering (GISAXS) during gold sputter deposition. Gold is sputtered on a CdSe quantum dot array with a characteristic quantum dot spacing of ≈7 nm. In the initial stages of gold nanostructure growth, a preferential deposition of gold on top of quantum dots occurs. Thus, the quantum dots act as nucleation sites for gold growth. In later stages, the gold nanoparticles surrounding the quantum dots undergo a coarsening to form a complete layer comprised of gold-dot clusters. Next, growth proceeds dominantly via vertical growth of gold on these gold-dot clusters to form an gold capping layer. In this capping layer, a shift of the cluster boundaries due to ripening is found. Thus, a templating of gold on a CdSe quantum dot array is feasible at low gold coverage. PMID:25960066

  8. Templating growth of gold nanostructures with a CdSe quantum dot array

    NASA Astrophysics Data System (ADS)

    Paul, Neelima; Metwalli, Ezzeldin; Yao, Yuan; Schwartzkopf, Matthias; Yu, Shun; Roth, Stephan V.; Müller-Buschbaum, Peter; Paul, Amitesh

    2015-05-01

    In optoelectronic devices based on quantum dot arrays, thin nanolayers of gold are preferred as stable metal contacts and for connecting recombination centers. The optimal morphology requirements are uniform arrays with precisely controlled positions and sizes over a large area with long range ordering since this strongly affects device performance. To understand the development of gold layer nanomorphology, the detailed mechanism of structure formation are probed with time-resolved grazing incidence small-angle X-ray scattering (GISAXS) during gold sputter deposition. Gold is sputtered on a CdSe quantum dot array with a characteristic quantum dot spacing of ~7 nm. In the initial stages of gold nanostructure growth, a preferential deposition of gold on top of quantum dots occurs. Thus, the quantum dots act as nucleation sites for gold growth. In later stages, the gold nanoparticles surrounding the quantum dots undergo a coarsening to form a complete layer comprised of gold-dot clusters. Next, growth proceeds dominantly via vertical growth of gold on these gold-dot clusters to form an gold capping layer. In this capping layer, a shift of the cluster boundaries due to ripening is found. Thus, a templating of gold on a CdSe quantum dot array is feasible at low gold coverage.

  9. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    SciTech Connect

    Lu, Y. F.; Cao, X. A.

    2014-11-17

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions.

  10. Quantum confinement effect in multilayer structure of alternate CdSe and SiOx insulator matrix thinfilms

    NASA Astrophysics Data System (ADS)

    Melvin David Kumar, M.; Devadason, Suganthi

    2013-06-01

    Multilayer (ML) structure of layer-by-layer deposited CdSe/SiOx thin films and their monolayers were prepared using sequential thermal evaporation technique. X-ray diffraction study confirmed the (002) plane of CdSe with wurtzite structure. It is noticed that the microstrain, developed in ML thin films, increased with decreasing particle size. Experimentally measured band gap energies confirmed the splitting of valence band energy levels which rise due to hole confinement in CdSe. Crystallite sizes (5-7 nm) were calculated using the effective mass approximation model (i.e., Brus model) which shows that the diameter of crystallites was smaller than the Bohr exciton diameter (11.2 nm) of CdSe. The main band in the emission spectra of ML samples gradually shifted to longer wavelength side when particle size was increased from 5 to 7 nm. This is characteristic of quantum size effect. It is inferred that disorderliness in CdSe/SiOx ML thin films would increase when the thickness of CdSe sublayer is greater than that of SiOx matrix layer.

  11. Dislocation-driven growth of porous CdSe nanorods from CdSe·(ethylenediamine)(0.5) nanorods.

    PubMed

    Kim, Hyung-Bae; Jang, Du-Jeon

    2016-01-01

    Porous CdSe nanorods having a novel flute-like morphology have been prepared facilely via the hydrothermal treatment of CdSe·(en)0.5 (en = ethylenediamine) nanorods as sacrificial templates. During the hydrothermal process, various crystalline imperfections such as stacking faults and twinning planes appear due to lattice mismatches between orthorhombic CdSe·(en)0.5 and hexagonal wurtzite porous CdSe nanorods and subsequently disappear to release mismatched strains. In the self-healing process of defects, due to the imbalance of in-and-out atomic diffusion, point defects of atomic vacancies are heavily generated in CdSe nanorods to produce volume defects of voids eventually. The photoluminescence of CdSe nanorods shifts to the red region and decreases in intensity with the increase of the hydrolysis time as surface states and selenium vacancies increase. The mean lifetime of photoluminescence increases with the increase of the hydrothermal-treatment time as the fractional amplitude of the surface-state-related component increases. PMID:26615794

  12. Controlled synthesis and optical properties of tunable CdSe quantum dots and effect of pH

    SciTech Connect

    Ratnesh, R. K.; Mehata, Mohan Singh

    2015-09-15

    Cadmium selenide (CdSe) quantum dots (Q-dots) were prepared by using non-coordinating solvent octadecene instead of coordinating agent trioctylphosphine oxide (TOPO). Reaction processes were carried out at various temperatures of 240°, 260°, 280° and 300° C under nitrogen atmosphere. The prepared CdSe Q-dots which are highly stable show uniform size distribution and tunable optical absorption and photoluminescence (PL). The growth temperature significantly influenced the particle size; spectral behavior, energy band gap and PL intensity and the full width at half maxima (FWHM). Three different methods were employed to determine the particle size and the average particle size of the CdSe Q-dots is 3.2 - 4.3 nm, grown at different temperatures. In addition, stable and mono-dispersed water soluble CdSe Q-dots were prepared by the ligand exchange technique. Thus, the water soluble Q-dots, which are sensitive to the basic pH may be important for biological applications.

  13. Study of optical and structural properties of CdSe quantum dot embedded in PVA polymer matrix

    SciTech Connect

    Tyagi, Chetna Sharma, Ambika

    2015-08-28

    To enhance the properties and applicability of devices it is essential to incorporate semiconductor nanoparticles into polymer matrix. This introduces a new branch of science which includes device fabrications such as gas sensors, nonlinear optics, catalysis etc. Herein, we have synthesized CdSe/PVA nanocomposite (NC) material using wet chemical synthesis technique. The XRD studies revealed the formation of crystalline structure of CdSe nanoparticles (NP’s) and PVA NC’s with an average size of 100 nm and 5 nm respectively. Energy band gap is determined using UV-VIS Spectroscopy. A red shift in the absorption edge of CdSe/PVA NC is observed with respect to CdSe Np’s, The photoluminescence spectra also show red shift for CdSe/PVA NC as compared to CdSe NP’s Thus the use of CdSe/PVA for solar cell application would be more preferable than CdSe NP’s.

  14. Controlled synthesis and optical properties of tunable CdSe quantum dots and effect of pH

    NASA Astrophysics Data System (ADS)

    Ratnesh, R. K.; Mehata, Mohan Singh

    2015-09-01

    Cadmium selenide (CdSe) quantum dots (Q-dots) were prepared by using non-coordinating solvent octadecene instead of coordinating agent trioctylphosphine oxide (TOPO). Reaction processes were carried out at various temperatures of 240°, 260°, 280° and 300° C under nitrogen atmosphere. The prepared CdSe Q-dots which are highly stable show uniform size distribution and tunable optical absorption and photoluminescence (PL). The growth temperature significantly influenced the particle size; spectral behavior, energy band gap and PL intensity and the full width at half maxima (FWHM). Three different methods were employed to determine the particle size and the average particle size of the CdSe Q-dots is 3.2 - 4.3 nm, grown at different temperatures. In addition, stable and mono-dispersed water soluble CdSe Q-dots were prepared by the ligand exchange technique. Thus, the water soluble Q-dots, which are sensitive to the basic pH may be important for biological applications.

  15. Green synthesis of highly efficient CdSe quantum dots for quantum-dots-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Bing; Shen, Chao; Zhang, Bo; Zhang, Mengya; Yuan, Shuanglong; Yang, Yunxia; Chen, Guorong

    2014-05-01

    Green synthesis of CdSe quantum dots for application in the quantum-dots-sensitized solar cells (QDSCs) is investigated in this work. The CdSe QDs were prepared with glycerol as the solvent, with sharp emission peak, full width at half maximum around 30 nm, and absorption peak from 475 nm to 510 nm. The reaction is environmental friendly and energy saving. What's more, the green synthesized CdSe QDs are coherence to the maximum remittance region of the solar spectrum and suitable as sensitizers to assemble onto TiO2 electrodes for cell devices application. What's more, the dynamic procedure of the carriers' excitation, transportation, and recombination in the QDSCs are discussed. Because the recombination of the electrons from the conduction band of TiO2's to the electrolyte affects the efficiency of the solar cells greatly, 3-Mercaptopropionic acid capped water-dispersible QDs were used to cover the surface of TiO2. The resulting green synthesized CdSe QDSCs with Cu2S as the electrode show a photovoltaic performance with a conversion efficiency of 3.39%.

  16. Effects of culture conditions of Pseudomonas aeruginosa strain RB on the synthesis of CdSe nanoparticles.

    PubMed

    Ayano, Hiroyuki; Kuroda, Masashi; Soda, Satoshi; Ike, Michihiko

    2015-04-01

    Cadmium selenide (CdSe) was synthesized by Pseudomonas aeruginosa strain RB in a culture containing lactic acid as a carbon source, 1 mM selenite, and 1 mM cadmium under various conditions. High purity (1.02-1.16 of the atomic ratio of Se to Cd) and efficient synthesis of biogenic CdSe nanoparticles were observed at 25-30°C, 0.05-10 g L(-1) NaCl, and neutral pH conditions compared with other tested conditions. However, the size and shape of synthesized CdSe nanoparticles were not changed by changing culture conditions. The contents of S and Se in the particles respectively increased under alkaline and weak acidic conditions. Furthermore, high temperature (>37°C), high salinity (>10 g L(-1) NaCl), and alkaline pH affected the CdSe-synthesizing rate by strain RB. This report is the first optimizing the culture conditions for synthesizing biogenic CdSe nanoparticles in a batch processing. PMID:25454693

  17. Macroscopic Superlattices of CdSe Colloidal Nanocrystals: Appearance and Optical Properties

    SciTech Connect

    Zaitseva, N; Manna, L; Leon, F; Gerion, D; Saw, C; Galli, G

    2004-03-25

    distribution of sizes and shapes that always exist in NCs one more reason to prevent faceting. At the same time, formation of faceted SLs from colloidal solutions has been reported in a number of works [1, 6, 8, 11]. Two recent publications in this journal [12,13] were devoted to the case of CdSe that, for its well-known properties, can be considered as a model NC material. These publications stated that perfectly shaped hexagonal platelets obtained from a toluene solution of CdSe NCs were faceted SLs. The size of the crystals (up to 200 {micro}m) was large enough to observe them in an optical microscope, but apparently too small for the separation and characterization by macroscopic techniques. Therefore no optical characterization was presented, and the conclusion was made on the basis of TEM images of small fragments that did not show any visible faceting. It is important to say here that, despite the fact that the authors used a special triple-solvent ''controlled oversaturation technique'', formation of these hexagonal platelets is not rare in CdSe NC solutions and had been discussed previously in the connection with SL formation [1]. In our experiments with CdSe NCs, we frequently observed them to form spontaneously in relatively large number and size. Such common and easy formation of these crystals stimulated us to take a closer look at their nature. Here we present the results of our investigations, together with new attempts to obtain micron-scale SLs of CdSe NCs suitable for direct characterization by combination of electron microscopy with macroscopic techniques, such as optical polarization microscopy, x-ray diffraction, and photoluminescence spectroscopy.

  18. Aqueous phase synthesized CdSe magic-sized clusters: solution composition dependence of adsorption layer structure.

    PubMed

    Park, Yeon-Su; Okamoto, Yukihiro; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2012-01-01

    We report dispersion solution composition dependence of the adsorption layer structure and the physical and optical properties of aqueous phase-synthesized semiconductor nanoparticles (NPs). We synthesized cysteine (Cys)-capped CdSe NPs with well-defined core structures, dispersed them in a series of aqueous solutions with different compositions, and then investigated their adsorption layer structure and physical and optical properties. Each CdSe NP consisted of a (CdSe)33 or (CdSe)34 magic-sized cluster (d - 1.45 nm) core, a ligand-Cys shell, and an adsorption layer. The dispersion solution composition strongly affected the adsorption layer structure of the CdSe NPs. The solution with a composition close to that of the as-prepared solution stabilized the physical and optical properties of the NPs. The solution with a composition different from that of the as-prepared solution, however, resulted in large changes in their adsorption layer structure and thus their physical and optical properties. The solution composed of neutral or weakly charged Cys and Cd-Cys complexes led to the adsorption layer with low charge density and that destabilized the NPs. The solution containing only neutral or weakly charged forms of Cys, without Cd-Cys complexes, was favorable to the formation of a thick adsorption layer with low charge density and that destabilized the NPs. The amount of adsorbed Cys in the adsorption layer depended on the dispersion solution composition. However, the amount of adsorbed Cd-Cys complexes in the adsorption layer was almost constant regardless of the dispersion solution composition. PMID:22524016

  19. Comparative Electrical Study on n-Type Cd1-XSeX and CdSe Thin Films Deposited by Electron Beam Evaporation Technique

    NASA Astrophysics Data System (ADS)

    Verma, Aneet Kumar; Tripathi, Ravishankar Nath; Vishwakarma, Rahul S. R.

    2011-10-01

    Since the last two decades, in the area of electronics, group II-VI compounds have drawn considerable interest due to their various applications. Cadmium selenide (CdSe), a member of this group, is one of the promising semiconducting material from its application point of view. The n-type Cd1-XSeX and CdSe films have been deposited onto ultra cleaned glass substrates by electron bean evaporated technique under 10-5 torr vacuum. The n-type Cd1-XSeX thin films has confirmed by Hall effect data. The resistivity of the film has been determined by I-V measurement using four probe setup. It is observed that the resistivity decreases with increases Cd/Se ratio and we found that n-type Cd1-XSeX thin films is more better than CdSe thin films.

  20. Critical role of CdSe nanoplatelets in color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes.

    PubMed

    Hasanov, Namig; Sharma, Vijay Kumar; Hernandez Martinez, Pedro Ludwig; Tan, Swee Tiam; Demir, Hilmi Volkan

    2016-06-15

    Here we report CdSe nanoplatelets that are incorporated into color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes. The critical role of CdSe nanoplatelets as an exciton donor for the color conversion was experimentally investigated. The power conversion efficiency of the hybrid light-emitting diode was found to increase by 23% with the incorporation of the CdSe nanoplatelets. The performance enhancement is ascribed to efficient exciton transfer from the donor CdSe nanoplatelet quantum wells to the acceptor CdSe/ZnS nanocrystal quantum dots through Förster-type nonradiative resonance energy transfer. PMID:27304313

  1. Measuring photoluminescence spectra of self-assembly array nanowire of colloidal CdSe quantum dots using scanning near-field optics microscopy

    NASA Astrophysics Data System (ADS)

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Qin, Shuijie

    2016-05-01

    A novel periodic array CdSe nanowire is prepared on a substrate of the porous titanium dioxide by using a self-assembly method of the colloidal CdSe quantum dots (QDs). The experimental results show that the colloidal CdSe QDs have renewedly assembled on its space scale and direction in process of losing background solvent and form the periodic array nanowire. The main peak wavelength of Photoluminescence (PL) spectra, which is measured by using a 100-nm aperture laser beam spot on a scanning near-field optics microscopy, has shifted 60 nm with compared to the colloidal CdSe QDs. Furthermore, we have measured smaller ordered nanometer structure in thin QDs area as well, a 343-nm periodic nanowire in thick QDs area and the colloidal QDs in edge of well-ordered nanowire.

  2. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    PubMed

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs. PMID:27224958

  3. Surface structure of CdSe Nanorods revealed by combined X-rayabsorption fine structure measurements and ab-initio calculations

    SciTech Connect

    Aruguete, Deborah A.; Marcus, Matthew A.; Li, Liang-shi; Williamson, Andrew; Fakra, Sirine; Gygi, Francois; Galli, Giulia; Alivisatos, A. Paul

    2006-01-27

    We report orientation-specific, surface-sensitive structural characterization of colloidal CdSe nanorods with extended X-ray absorption fine structure spectroscopy and ab-initio density functional theory calculations. Our measurements of crystallographically-aligned CdSe nanorods show that they have reconstructed Cd-rich surfaces. They exhibit orientation-dependent changes in interatomic distances which are qualitatively reproduced by our calculations. These calculations reveal that the measured interatomic distance anisotropy originates from the nanorod surface.

  4. Achiral CdSe quantum dots exhibit optical activity in the visible region upon post-synthetic ligand exchange with D- or L-cysteine.

    PubMed

    Tohgha, Urice; Varga, Krisztina; Balaz, Milan

    2013-03-01

    Semiconductor cadmium selenide (CdSe) quantum dots (QDs) exhibited mirror-image circular dichroism (CD) spectra in the visible region (350-570 nm) after replacing the trioctylphosphine oxide/oleic acid ligands on achiral nanocrystals with D- and L-cysteines. Chiroptical properties of cysteine-capped CdSe QDs depend on their size and can be fine-tuned by changing the radius of QDs. PMID:23361413

  5. Negative magnetoresistance in the variable-range-hopping regime in n-type CdSe

    NASA Astrophysics Data System (ADS)

    Zhang, Youzhu; Sarachik, M. P.

    1991-03-01

    The magnetoresistance in the variable-range-hopping regime of compensated, n-type CdSe measured between 1.6 and 6 K in the Ohmic regime at small magnetic fields is negative and obeys the expression ΔR/R=f(T)B2, with f(T)~T-α and α=1.32+/-0.04. As in recent experiments by Tremblay et al. on GaAs, this temperature dependence is observed for all samples independently of whether the resistivity at zero field indicates Mott hopping or variable-range hopping in the presence of a Coulomb gap. This implies either that the relevant dephasing time is not the hopping time, or that our current understanding of the negative magnetoresistance in these materials is incomplete.

  6. Mid-Infrared Photoluminescence of CdS and CdSe Colloidal Quantum Dots.

    PubMed

    Jeong, Kwang Seob; Guyot-Sionnest, Philippe

    2016-02-23

    Mid-infrared intraband photoluminescence is observed from CdSe and CdS colloidal quantum dots (CQDs) and core/shell systems when excited by a visible laser. The CQDs show more intraband photoluminescence with dodecanethiol than with other ligands. Core/shells show an increase of the intraband photoluminescence with increasing shell thickness. The detected emission is restricted to below 2900 cm(-1), bounded by the C-H vibrational modes of the organic ligands. Upon photoexcitation in air for all dodecanethiol ligands capped CQD systems studied, the intraband photoluminescence is quenched over time, and emission at lower frequency is observed, which is assigned to laser heating and thermal emission from oxides. PMID:26799582

  7. Photoconductivity of composites based on CdSe quantum dots and low-band-gap polymers

    NASA Astrophysics Data System (ADS)

    Dayneko, Sergey; Linkov, Pavel; Martynov, Igor; Tameev, Alexey; Tedoradze, Marine; Samokhvalov, Pavel; Nabiev, Igor; Chistyakov, Alexander

    2016-05-01

    Photoconductivity of thin layers prepared by spin coating of blends of CdSe quantum dots (QDs) and a low-band-gap polymer PCDTBT or PTB7 has been studied. It has been found that photocurrent in the composites containing QDs of 10-nm in size is significantly higher than in those of containing 5-nm QDs. Analysis of the results showed that the photoresponse of the thin layers is mainly determined by the relative positions of the frontier energy levels of the materials used, organic semiconductors and QDs. Therefore, the ability to tune the relative positions of these levels by varying the QD size is of special importance, thus allowing the optimization of photodetectors and photovoltaic cells.

  8. Radiative rate modification in CdSe quantum dot-coated microcavity

    NASA Astrophysics Data System (ADS)

    Veluthandath, Aneesh V.; Bisht, Prem B.

    2015-12-01

    Whispering gallery modes (WGMs) of the microparticles with spherical or cylindrical symmetry have exceptionally high quality factors and small mode volume. Quantum dots (QDs) are zero dimensional systems with variable band gap as well as luminescent properties with applications in photonics. In this paper, the WGMs have been observed in the luminescence spectra of CdSe QD-coated single silica microspheres. Theoretical estimations of variation of resonance frequency, electric field, and Q-values have been done for a multilayer coating of QDs on silica microspheres. Observed WGMs have been identified for their mode number and polarization using Mie theory. Broadening of modes due to material absorption has been observed. Splitting of WGMs has also been observed due to coherent coupling of counter propagating waves in the microcavity due to the presence of QDs. At room temperature, the time-resolved study indicates the modification of the radiative rate due to coupling of WGMs of the microcavity-QD hybrid system.

  9. Importance of Polaronic Effects for Charge Transport in CdSe Quantum Dot Solids.

    PubMed

    Prodanović, Nikola; Vukmirović, Nenad; Ikonić, Zoran; Harrison, Paul; Indjin, Dragan

    2014-04-17

    We developed an accurate model accounting for electron-phonon interaction in colloidal quantum dot supercrystals that allowed us to identify the nature of charge carriers and the electrical transport regime. We find that in experimentally analyzed CdSe nanocrystal solids, the electron-phonon interaction is sufficiently strong that small polarons localized to single dots are formed. Charge-carrier transport occurs by small polaron hopping between the dots, with mobility that decreases with increasing temperature. While such a temperature dependence of mobility is usually considered as a proof of band transport, we show that the same type of dependence occurs in the system where transport is dominated by small polaron hopping. PMID:26269977

  10. Superresolution Structure Optical Disk with Semiconductor-Doped Glass Mask Layer Containing CdSe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yeh, Tung‑Ti; Wang, Jr‑Hau; Hsieh, Tsung‑Eong; Shieh, Han‑Ping D.

    2006-02-01

    In this work, we demonstrate a distinct superresolution phenomenon and signal properties of an optical disk with a semiconductor-doped glass (SDG) mask layer containing CdSe nanoparticles. It was found that the 69 nm marks could be consistently retrieved at reading power (Pr) = 4 mW with carrier-to-noise ratio (CNR) = 13.56 dB. The signals were clearly resolved with CNRs nearly equal to 40 dB at Pr=4 mW when the recorded marks were larger than 100 nm. The cyclability test indicated that the CdSe-SiO2 SDG layer might serve as a stable and reliable optical mask layer in 105 readout cycles.

  11. Synthesis kinetics of CdSe quantum dots in trioctylphosphine oxide and in stearic acid

    NASA Astrophysics Data System (ADS)

    Dickerson, B. D.; Irving, D. M.; Herz, E.; Claus, R. O.; Spillman, W. B.; Meissner, K. E.

    2005-04-01

    A diffusion-barrier model described the early evolution of size-dependent photoluminescence emission from CdSe quantum dots formed by organometallic synthesis. Emission peak widths, emission redshift rates, and nanocrystal growth rates all decreased to a minimum at a reaction completion time. Growth after the completion time by Ostwald ripening was marked by a doubling of the activation energy. The temperature dependence of both reaction completion rates and photoluminescence redshift rates followed Arrhenius behavior governed by activation energies that increased with solvent molecular weight, in this limited case. In stearic acid and in trioctylphosphine oxide, the typical activation energies were 0.6±0.1 and 0.92±0.26eV/molecule, respectively.

  12. Electronic structure of cobalt doped CdSe quantum dots using soft X-ray spectroscopy

    SciTech Connect

    Joshua T. Wright; Su, Dong; van Buuren, Tony; Meulenberg, Robert W.

    2014-08-21

    The electronic structure and magnetic properties of cobalt doped CdSe quantum dots (QDs) are studied using electron microscopy, soft X-ray spectroscopy, and magnetometry. Magnetometry measurements suggest these QDs are superparamagnetic, contrary to a spin-glass state observed in the bulk analogue. Moreover, the electron microscopy shows well formed QDs, but with cobalt existing as doped into the QD and as unreacted species not contained in the QD. X-ray absorption measurements at the Co L3-edge suggest that changes in spectra features as a function of particle size can be described considering combination of a cobalt ion in a tetrahedral crystal field and an octahedrally coordinated (impurity) phase. With decreasing particle sizes, the impurity phase increases, suggesting that small QDs can be difficult to dope.

  13. Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots.

    PubMed

    Bloom, Brian P; Kiran, Vankayala; Varade, Vaibhav; Naaman, Ron; Waldeck, David H

    2016-07-13

    This work demonstrates that chiral imprinted CdSe quantum dots (QDs) can act as spin selective filters for charge transport. The spin filtering properties of chiral nanoparticles were investigated by magnetic conductive-probe atomic force microscopy (mCP-AFM) measurements and magnetoresistance measurements. The mCP-AFM measurements show that the chirality of the quantum dots and the magnetic orientation of the tip affect the current-voltage curves. Similarly, magnetoresistance measurements demonstrate that the electrical transport through films of chiral quantum dots correlates with the chiroptical properties of the QD. The spin filtering properties of chiral quantum dots may prove useful in future applications, for example, photovoltaics, spintronics, and other spin-driven devices. PMID:27336320

  14. Thickness dependent optical and electrical properties of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Purohit, A.; Chander, S.; Nehra, S. P.; Lal, C.; Dhaka, M. S.

    2016-05-01

    The effect of thickness on the optical and electrical properties of CdSe thin films is investigated in this paper. The films of thickness 445 nm, 631 nm and 810 nm were deposited on glass and ITO coated glass substrates using thermal evaporation technique. The deposited thin films were thermally annealed in air atmosphere at temperature 100°C and were subjected to UV-Vis spectrophotometer and source meter for optical and electrical analysis respectively. The absorption coefficient is observed to increase with photon energy and found maximum in higher photon energy region. The extinction coefficient and refractive index are also calculated. The electrical analysis shows that the electrical resistivity is observed to be decreased with thickness.

  15. CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms

    PubMed Central

    Gomes, Suzete A.O.; Vieira, Cecilia Stahl; Almeida, Diogo B.; Santos-Mallet, Jacenir R.; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Feder, Denise

    2011-01-01

    Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. PMID:22247686

  16. Interaction of Globular Plasma Proteins with Water-Soluble CdSe Quantum Dots.

    PubMed

    Pathak, Jyotsana; Rawat, Kamla; Sanwlani, Shilpa; Bohidar, H B

    2015-06-01

    The interactions between water-soluble semiconductor quantum dots [hydrophilic 3-mercaptopropionic acid (MPA)-coated CdSe] and three globular plasma proteins, namely, bovine serum albumin (BSA), β-lactoglobulin (β-Lg) and human serum albumin (HSA), are investigated. Acidic residues of protein molecules form electrostatic interactions with these quantum dots (QDs). To determine the stoichiometry of proteins bound to QDs, we used dynamic light scattering (DLS) and zeta potential techniques. Fluorescence resonance energy transfer (FRET) experiments revealed energy transfer from tryptophan residues in the proteins to the QD particles. Quenching of the intrinsic fluorescence of protein molecules was noticed during this binding process (hierarchy HSA<β-Lg

  17. Silver nanowires-based signal amplification for CdSe quantum dots electrochemiluminescence immunoassay.

    PubMed

    Huang, Tingyu; Meng, Qingmin; Jie, Guifen

    2015-04-15

    A novel silver-cysteine hybrid nanowires (SCNWs) with many reactive carboxyl and amine groups were prepared, which enable them to be used as idea signal amplifying labels in bioassays. A large number of CdSe quantum dots (QDs) were loaded on the SCNWs to develop amplified SCNWs-QDs electrochemiluminescence (ECL) signal probe. The PAMAM dendrimer-SCNWs nanohybrids covered on the electrode constructed an effective antibody immobilization matrix and made the immobilized biomolecules hold high stability and bioactivity. Based on the specific sandwich immunoreaction strategy, the detection antibody (Ab2)-SCNWs-QDs ECL signal probe was applied to the sensitive signal-on ECL immunoassay of human IgG. The SCNWs-QDs ECL not only opens promising new ECL emitting species, but also promotes the development of novel ECL signal-transition platforms for biosensing devices. PMID:25460886

  18. Generation of Rashba spin-orbit coupling in CdSe nanowire by ionic liquid gate.

    PubMed

    Zhang, Shan; Tang, Ning; Jin, Weifeng; Duan, Junxi; He, Xin; Rong, Xin; He, Chenguang; Zhang, Lisheng; Qin, Xudong; Dai, Lun; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2015-02-11

    Spintronic devices rely on the spin degree of freedom (DOF), and spin orbit coupling (SOC) is the key to manipulate spin DOF. Quasi-one-dimensional structures, possessing marked anisotropy gives more choice for the manipulation of the spin DOF since the concrete SOC form varies along with crystallographic directions. The anisotropy of the Dresselhaus SOC in cadmium selenide (CdSe) nanobelt and nanowire was studied by circular photogalvanic effect. It was demonstrated that the Dresselhaus SOC parameter is zero along the [0001] crystallographic direction, which suppresses the spin relaxation and increases the spin diffusion length, and thus is beneficial to the spin manipulation. To achieve a device structure with Rashba SOC presence and Dresselhaus SOC absence for manipulating the spin DOF, an ionic liquid gate was produced on a nanowire grown along the [0001] crystallographic direction, and the Rashba SOC was induced by gating, as expected. PMID:25574856

  19. Radiative rate modification in CdSe quantum dot-coated microcavity

    SciTech Connect

    Veluthandath, Aneesh V.; Bisht, Prem B.

    2015-12-21

    Whispering gallery modes (WGMs) of the microparticles with spherical or cylindrical symmetry have exceptionally high quality factors and small mode volume. Quantum dots (QDs) are zero dimensional systems with variable band gap as well as luminescent properties with applications in photonics. In this paper, the WGMs have been observed in the luminescence spectra of CdSe QD-coated single silica microspheres. Theoretical estimations of variation of resonance frequency, electric field, and Q-values have been done for a multilayer coating of QDs on silica microspheres. Observed WGMs have been identified for their mode number and polarization using Mie theory. Broadening of modes due to material absorption has been observed. Splitting of WGMs has also been observed due to coherent coupling of counter propagating waves in the microcavity due to the presence of QDs. At room temperature, the time-resolved study indicates the modification of the radiative rate due to coupling of WGMs of the microcavity-QD hybrid system.

  20. Optical and Phonon Characterization of Ternary CdSe x S1- x Alloy Quantum Dots

    NASA Astrophysics Data System (ADS)

    Thi, L. A.; Cong, N. D.; Dang, N. T.; Nghia, N. X.; Quang, V. X.

    2016-05-01

    Ternary CdSe x S1- x alloy quantum dots (QDs) were synthesized using a wet chemical method. Their morphology, particle size, structural, optical, and vibrational properties were investigated using transmission electron microscopy, x-ray diffraction, UV-Vis, fluorescence and Raman spectroscopy, respectively. The optical and vibrational properties of the QDs can be controlled by adjusting the Se/S molar ratio. The absorption and emission peaks shift to a longer wavelength range when increasing the Se content. The presence of two CdSe-like and CdS-like longitudinal optical phonon modes was observed. The dependencies of the optical and phonon modes on the Se content are discussed in detail.

  1. Aqueous synthesis and characterization of Ni, Zn co-doped CdSe QDs

    NASA Astrophysics Data System (ADS)

    Thirugnanam, N.; Govindarajan, D.

    2016-01-01

    Ni, Zn co-doped CdSe quantum dots (QDs) were synthesized by chemical precipitation method through aqueous route. The prepared QDs were characterized by X-ray diffraction (XRD) technique, UV-Vis absorption spectroscopy, photoluminescence (PL) spectroscopy and high resolution transmission electron microscopy (HRTEM). XRD technique results indicate that the prepared samples have a zinc blende cubic phase. From UV-Vis absorption spectroscopy technique, the prepared samples were blue shifted with respect to their bulk counter part due to quantum confinement effect. Among different doping ratios examined, a maximum PL emission intensity was observed for CdSe:Ni(1 %):Zn(1 %) QDs. HRTEM pictures show that the prepared QDs were in spherical shape.

  2. Quantum-confined emission and fluorescence blinking of individual exciton complexes in CdSe nanowires.

    PubMed

    Franz, Dennis; Reich, Aina; Strelow, Christian; Wang, Zhe; Kornowski, Andreas; Kipp, Tobias; Mews, Alf

    2014-11-12

    One-dimensional semiconductor nanostructures combine electron mobility in length direction with the possibility of tailoring the physical properties by confinement effects in radial direction. Here we show that thin CdSe quantum nanowires exhibit low-temperature fluorescence spectra with a specific universal structure of several sharp lines. The structure strongly resembles the pattern of bulk spectra but show a diameter-dependent shift due to confinement effects. Also the fluorescence shows a pronounced complex blinking behavior with very different blinking dynamics of different emission lines in one and the same spectrum. Time- and space-resolved optical spectroscopy are combined with high-resolution transmission electron microscopy of the very same quantum nanowires to establish a detailed structure-property relationship. Extensive numerical simulations strongly suggest that excitonic complexes involving donor and acceptor sites are the origin of the feature-rich spectra. PMID:25343231

  3. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    NASA Astrophysics Data System (ADS)

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  4. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    NASA Astrophysics Data System (ADS)

    Milekhin, Alexander G.; Sveshnikova, Larisa L.; Duda, Tatyana A.; Rodyakina, Ekaterina E.; Dzhagan, Volodymyr M.; Sheremet, Evgeniya; Gordan, Ovidiu D.; Himcinschi, Cameliu; Latyshev, Alexander V.; Zahn, Dietrich R. T.

    2016-05-01

    Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir-Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 103 which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  5. Molecular-Counting-Free and Electrochemiluminescent Single-Molecule Immunoassay with Dual-Stabilizers-Capped CdSe Nanocrystals as Labels.

    PubMed

    Zhang, Xin; Zhang, Bin; Miao, Wujian; Zou, Guizheng

    2016-05-17

    Biorelated single-molecule detection (SMD) has been achieved typically by imaging the redox fluorescent labels and then determining each label one by one. Herein, we demonstrated that the capping agents (i.e., mercaptopropionic acid and sodium hexametaphosphate) can facilitate the electrochemical involved hole (or electron) injecting process and improve the stability of the dual-stabilizers-capped CdSe nanocrystals (NCs), so that the CdSe NCs could be electrochemically and repeatedly inspired to excited states by giving off electrochemiluminescence (ECL) in a cyclic pattern. With the CdSe NCs as ECL label and carcinoembryonic antigen (CEA) as target molecule, a convenient single-molecule immunoassay was proposed by simply detecting the ECL intensity of the dual-stabilizers-capped CdSe NCs in a sandwich-typed immune complex. The limit of detection is 0.10 fg/mL at S/N = 3, which corresponds to about 6-8 CEA molecules in 20 μL of serum sample. Importantly, the ECL spectra of both CdSe NCs and its conjugate with probe antigen in the immune complex were almost identical to the photoluminescence spectrum of bare CdSe NCs, indicating that all emissions were originated from the same excited species. The molecular-counting-free and ECL-based SMD might be a promising alternative to the fluorescent SMD. PMID:27118637

  6. Electrochemical photovoltaic cells CdSe thin film electrodes. Final report, June 1979-June 1980

    SciTech Connect

    Russak, M.A.; Reichman, J.; DeCarlo, J.; Creter, C.

    1980-07-01

    Progress on developing stable, thin-film CdSe electrodes with sunlight conversion efficiency of 10% for use with aqueous polysulfide electrolytes in frontwall and backwall illuminated EPCs is reported. The main effort has been directed towards establishing the relationships among thin-film processing, resultant electronic properties and I-V performance in order to produce electrodes with maximum power conversion efficiency. The most encouraging results have been obtained with CdSe thin-film electrodes produced in two ways for frontwall cells. Films were deposited on titanium at approximately 100/sup 0/C with a high Se/Cd ratio and then heat treated in air at 350 to 400/sup 0/C. These films usually have a very fine grained microstructure after heat treatment and the resultant electrodes exhibit fairly square I-V characteristics with fill factors of 0.6 or greater and high current output. The overall power efficiency of these electrodes is limited by relatively low output voltages. At present, power conversion efficiencies of 3 to 5% can be obtained reproducibly at simulated AM2 conditions with electrodes processed in this manner. The second type of film that has yielded very promising results is deposited on titanium at substrate temperatures greater than 400/sup 0/C. The interesting feature of these electrodes is their increased open circuit voltage. However, the current output and fill factor are lower. As a result, the power conversion efficiency of these electrodes is 3 to 4%. Backwall electrodes with an efficiency of greater than 4% and short circuit densities near theoretical for AM2 conditions have been produced.

  7. Computational insights into CdSe quantum dots' interactions with acetate ligands.

    PubMed

    Tamukong, Patrick K; Peiris, Wadumesthrige D N; Kilina, Svetlana

    2016-07-27

    Using density functional theory (DFT) and time-dependent DFT (TDDFT), we investigate the effects of carboxylate groups on the electronic and optical properties of CdSe quantum dots (QDs). We specifically focus on the mechanisms of the binding of the acetate anion to the QD surface with and without excess of Cd(2+) cations. Our calculations show that the most stable ligated conformations are those where an acetate is attached to extra Cd(2+) ion forming a [Cd(2+)(CH3COO(-))] at the QD's surface, while also accompanied by an acetate attached nearby at the surface balancing the overall neutral charge of the system. In contrast, formation of a neutral metal-acetate complex [Cd(2+)(CH3COO(-))2] at the QD surface is found to be the least energetically preferable. A strength of the QD-ligand interaction depends on the solvent, the facet of the QD to which the ligands are attached, and the binding mode - with the bridging mode found to be the most stable conformation for both acetate and cadmium acetate ligands. The cadmium acetate ligands introduce electron trap states at the edge of the conduction band - unoccupied orbitals predominately localized on Cd(2+) ion - that are extremely sensitive to the ligand position and the solvent polarity. Polar solvents like acetonitrile delocalize the electronic density over the entire system and, thus, eliminate trap states. As a result, mixed passivation of the CdSe QDs by pairs of cadmium acetate and acetate ligands provides optimal optical properties with minimal contributions of the ligand-related trap states and optically bright lowest energy transitions. PMID:27406268

  8. Orbital alignment at the internal interface of arylthiol functionalized CdSe molecular hybrids

    SciTech Connect

    Li, Zhi; Schlaf, Rudy; Mazzio, Katherine A.; Okamoto, Ken; Luscombe, Christine K.

    2015-04-21

    Organic-inorganic nanoparticle molecular hybrid materials are interesting candidates for improving exciton separation in organic solar cells. The orbital alignment at the internal interface of cadmium selenide (ArS-CdSe) hybrid materials functionalized with covalently attached arylthiolate moieties was investigated through X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS). A physisorbed interface between arylthiol (ArSH) ligands and CdSe nanoparticles was also investigated for comparison. This interface was created via a multi-step thin film deposition procedure in-vacuo, where the surface was characterized after each experimental step. This enabled the direct comparison of ArSH/CdSe interfaces produced via physisorption and ArS-CdSe covalently attached hybrid materials, which rely on a chemical reaction for their synthesis. All material depositions were performed using an electrospray deposition, which enabled the direct injection of solution-originating molecular species into the vacuum system. This method allows XPS and UPS measurements to be performed immediately after deposition without exposure to the atmosphere. Transmission electron microscopy was used to determine the morphology and particle size of the deposited materials. Ultraviolet-visible spectroscopy was used to estimate the optical band gap of the CdSe nanoparticles and the HOMO-LUMO gap of the ArSH ligands. These experiments showed that hybridization via covalent bonds results in an orbital realignment at the ArSH/CdSe interface in comparison to the physisorbed interface. The orbital alignment within the hybrid caused a favorable electron injection barrier, which likely facilitates exciton-dissociation while preventing charge-recombination.

  9. Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O

    NASA Astrophysics Data System (ADS)

    Debgupta, Joyashish; Devarapalli, Ramireddy; Rahman, Shakeelur; Shelke, Manjusha V.; Pillai, Vijayamohanan K.

    2014-07-01

    Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, ``as grown'' CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ~470 μA cm-2) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers.Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, ``as grown'' CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ~470 μA cm-2) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar

  10. High resolution photoemission study of CdSe and CdSe/ZnS core-shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Borchert, H.; Talapin, D. V.; McGinley, C.; Adam, S.; Lobo, A.; de Castro, A. R. B.; Möller, T.; Weller, H.

    2003-07-01

    Colloidally prepared CdSe and CdSe/ZnS core-shell nanocrystals passivated with trioctylphosphine/trioctylphosphine oxide and hexadecylamine have been studied by photoelectron spectroscopy with tuneable synchrotron radiation. High-resolution spectra of the Se 3d level in CdSe nanocrystals indicate the bonding of organic ligands not only to surface Cd but also to surface Se atoms. The investigation of the CdSe/ZnS core-shell nanocrystals allows us to determine the average thickness of the ZnS shell and to study the interface between the two semiconductor nanomaterials. The photoemission spectra indicate a rather well ordered interface. No evidence for interfacial bonds other than Cd-S and Se-Zn is found.

  11. Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis.

    PubMed

    Yang, Xiaohao; Masadeh, Ahmad S; McBride, James R; Božin, Emil S; Rosenthal, Sandra J; Billinge, Simon J L

    2013-06-14

    The atomic pair distribution function (PDF) analysis of X-ray powder diffraction data has been used to study the structure of small and ultra-small CdSe nanoparticles. A method is described that uses a wurtzite and zinc-blende mixed phase model to account for stacking faults in CdSe particles. The mixed-phase model successfully describes the structure of nanoparticles larger than 2 nm yielding a stacking fault density of about 30%. However, for ultrasmall nanoparticles smaller than 2 nm, the models cannot fit the experimental PDF showing that the structure is significantly modified from that of larger particles and the bulk. The observation of a significant change in the average structure at ultra-small size is likely to explain the unusual properties of the ultrasmall particles such as their white light emitting ability. PMID:23525376

  12. Structural and optical characterization of CdSe nanocrystallites/rare earth ions in sol gel glasses

    NASA Astrophysics Data System (ADS)

    Jose, Gijo; Joseph, Cyriac; Ittyachen, M. A.; Unnikrishnan, N. V.

    2007-07-01

    Sol-gel method is used to prepare semiconductor cadmium selenide nanocrystallites together with europium and terbium ions in silica matrix. From the electron diffraction pattern in the transmission electron micrograph (TEM), the plane distances (d) were estimated to be 1.072 Å, 1.233 Å and 2.149 Å, which match the (2 1 4), (3 0 0) and (1 1 0) planes of bulk CdSe. The intensity of characteristic red emission of Europium (Eu3+) and green emission of Terbium (Tb3+) ions increases considerably in the presence of CdSe particles. The blue emission is prominent in the glass samples in the gel stage. The purity of the colors are measured using the Commission Internationale de Eclairage (CIE) color coordinate diagram and is found to be 100% for RED and GREEN.

  13. Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser

    NASA Astrophysics Data System (ADS)

    Lazarev, V. A.; Tarabrin, M. K.; Kovtun, A. A.; Karasik, V. E.; Kireev, A. N.; Kozlovsky, V. I.; Korostelin, Yu V.; Podmar'kov, Yu P.; Frolov, M. P.; Gubin, M. A.

    2015-12-01

    We demonstrate the operation of a room-temperature, solid-state, broadly tunable Cr-doped CdSe single-crystal continuous-wave laser. Longitudinal pumping with a continuous-wave diode laser array at 1.94 μm produced a broadband output of 280 mW at 2.6 μm with an incident power slope efficiency of 12%. With an intracavity Brewster-cut CaF2 prism, we tuned the Cr2+:CdSe laser from 2.45 to 3.06 μm with a resolution of 10 nm and an output power up to 55 mW.

  14. Anomalous photoluminescence in CdSe quantum-dot solids at high pressure due to nonuniform stress.

    PubMed

    Grant, Christian D; Crowhurst, Jonathan C; Hamel, Sebastien; Williamson, Andrew J; Zaitseva, Natalia

    2008-06-01

    The application of static high pressure provides a means to precisely control and investigate many fundamental and unique properties of nanoparticles. CdSe is a model quantum-dot system, the behavior of which under high pressure has been extensively studied; however, the effect of nonuniform stresses on this system has not been fully appreciated. Photoluminescence data obtained from CdSe quantum-dot solids in different stress environments varying from purely uniform to highly nonuniform are presented. Small deviations from a uniform stress distribution profoundly affect the electronic properties of this system. In nonuniform stress environments, a pronounced flattening of the photoluminescence enegy is observed above 3 GPa. The observations are validated with theoretical calculations obtained using an all-atom semiempirical pseudopotential technique. This effect must be considered when investigating other potentially pressure-mediated phenomena. PMID:18481798

  15. Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor.

    PubMed

    Wang, Teng; Zhang, Shengyi; Mao, Changjie; Song, Jiming; Niu, Helin; Jin, Baokang; Tian, Yupeng

    2012-01-15

    A novel strategy for the enhancement of electrochemiluminescence (ECL) was developed by combining CdSe quantum dots (QDs) with graphene oxide-chitosan (GO-CHIT). The ECL sensor fabricated with CdSe QDs/GO-CHIT composite exhibited high ECL intensity, good biocompatibility and long-term stability, and was used to detect of cytochrome C (Cyt C). The results show that the ECL sensor has high sensitivity for Cyt C with the linear range from 4.0 to 324 μM and the detection limit of 1.5 μM. Furthermore, the ECL sensor can selectively sense Cyt C from glucose and bovine serum albumin (BSA). PMID:22099955

  16. Raman spectroscopic investigation of the confined optical phonon modes in the aligned CdSe nanorod arrays

    NASA Astrophysics Data System (ADS)

    Nobile, Concetta; Carbone, Luigi; Kudera, Stefan; Manna, Liberato; Cingolani, Roberto; Krahne, Roman; Fonoberov, Vladimir A.; Balandin, Alexander A.; Chilla, Gerwin; Kipp, Tobias; Heitmann, Detlef

    2007-03-01

    Nanocrystal rods have emerged as promising nanostructured material for both fundamental studies of nanoscale effects and for optical and electronic device applications. We investigated the optical phonon excitations in laterally aligned CdSe nanocrystal rod arrays using resonant Raman scattering. Electric-field mediated alignment between interdigitated electrodes has been used to prepare the samples. We report Raman experiments that probe the optical lattice vibrations in ordered arrays of CdSe nanorods with respect to the nanorod orientation. The packing of nanorods into dense arrays leads to the suppression of the surface optical phonon modes. In the longitudinal-optical phonon peak we observe a fine structure that depends on the relative orientation of the nanorods with respect to the incident light polarization. Detailed comparison of the experimental data with the first-principle calculations for corresponding nanostructures, which reveal the symmetry of the phonon potentials for the Raman active modes, provides a qualitative explanation of the experimentally observed phonon modes.

  17. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    SciTech Connect

    Huis, M.A. van . E-mail: m.a.vanhuis@tnw.tudelft.nl; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2005-03-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were monitored using optical absorption and positron annihilation spectroscopy. High-resolution TEM on cross-sections after annealing at a temperature of 1300 K showed that clusters with a size below 5 nm have the high-pressure rock-salt structure and are in a cube-on-cube orientation relation with MgO, whereas clusters larger than 5 nm adopt the stable wurtzite crystal structure and were observed in two different orientation relations with MgO.

  18. Synthesis of CdSe and CdSe/TiO2 nanoparticles under multibubble sonoluminescence condition.

    PubMed

    Wang, Jing; Guo, Wei; Liu, Shanhu; Li, Deliang

    2012-05-01

    CdSe and CdSe/TiO(2) nanoparticles were synthesized under multibubble sonoluminescence (MBSL) condition. The influences of TiO(2) introduced as the sensitizer on the morphology and crystal transformation were investigated. The morphology, phase and optical properties of the final products have been characterized by X-ray powder diffraction, transmission electron microscope, UV-vis absorption spectroscopy and photoluminescence spectroscopy. The results showed that as-prepared nanoparticles are well-crystallized, and the suppression of crystal pattern transition as well as the control of CdSe crystal growth can be implemented by coupling of TiO(2) semiconductor. Furthermore, the possible growth mechanism for different morphologies and crystal phases of the nanocrystals were also discussed. PMID:21982937

  19. Epitaxial growth and photoluminescence excitation spectroscopy of CdSe quantum dots in (Zn,Cd)Se barrier

    NASA Astrophysics Data System (ADS)

    Piwowar, J.; Pacuski, W.; Smoleński, T.; Goryca, M.; Bogucki, A.; Golnik, A.; Nawrocki, M.; Kossacki, P.; Suffczyński, J.

    2016-05-01

    Design, epitaxial growth, and resonant spectroscopy of CdSe Quantum Dots (QDs) embedded in an innovative (Zn,Cd)Se barrier are presented. The (Zn,Cd)Se barrier enables shifting of QDs energy emission down to 1.87 eV, that is below the energy of Mn$^{2+}$ ions internal transition (2.1 eV). This opens a perspective for implementation of epitaxial CdSe QDs doped with several Mn ions as, e. g., the light sources in high quantum yield magnetooptical devices. Polarization resolved Photoluminescence Excitation measurements of individual QDs reveal sharp ($\\Gamma <$ 150 $\\mu$eV) maxima and transfer of optical polarization to QD confining charged exciton state with efficiency attaining 26 %. The QD doping with single Mn$^{2+}$ ions is achieved.

  20. Temperature- and field-dependent energy transfer in CdSe nanocrystal aggregates studied by magneto-photoluminescence spectroscopy.

    PubMed

    Blumling, Daniel E; Tokumoto, Takahisa; McGill, Stephen; Knappenberger, Kenneth L

    2012-08-21

    The influence of temperature and applied magnetic fields on photoluminescence (PL) emission and electronic energy transfer (ET) of both isolated and aggregated CdSe nanocrystals was investigated. Following 400-nm excitation, temperature-dependent, intensity-integrated and energy-resolved PL measurements were used to quantify the emission wavelength and amplitude of isolated CdSe nanocrystals. The results indicated an approximately three-fold increase in PL intensity upon decreasing the temperature from 300 K to 6 K; this was attributed to a reduction of charge carrier access to nanocrystal surface trap states and suppression of thermal loss channels. Temperature-dependent PL measurements of aggregated CdSe nanocrystals, which included both energy-donating and -accepting particles, were analyzed using a modified version of Förster theory. Temperature-dependent ET efficiency increased from 0.55 to 0.75 upon decreasing the sample temperature from 225 K to 6 K, and the ET data contained the same trend observed for the PL of isolated nanoclusters. The application of magnetic fields to increase nanocrystal ET efficiency was studied using magneto-photoluminescence measurements recorded at a sample temperature of 1.6 K. We demonstrated that the exciton fine structure population of the donor was varied using applied magnetic fields, which in turn dictated the PL yield and the resultant ET efficiency of the CdSe nanocrystal aggregate system. The experimental data indicated an ET efficiency enhancement of approximately 7%, which was limited by the random orientation of the spherical nanocrystals in the thin film. PMID:22767253

  1. Synthesis, Surface Studies, Composition and Structural Characterization of CdSe, Core/Shell, and Biologically Active Nanocrystals

    PubMed Central

    Rosenthal, Sandra J.; McBride, James; Pennycook, Stephen J.; Feldman, Leonard C.

    2011-01-01

    Nanostructures, with their very large surface to volume ratio and their non-planar geometry, present an important challenge to surface scientists. New issues arise as to surface characterization, quantification and interface formation. This review summarizes the current state of the art in the synthesis, composition, surface and interface control of CdSe nanocrystal systems, one of the most studied and useful nanostructures. PMID:21479151

  2. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

    PubMed Central

    Sveshnikova, Larisa L; Duda, Tatyana A; Rodyakina, Ekaterina E; Dzhagan, Volodymyr M; Gordan, Ovidiu D; Veber, Sergey L; Himcinschi, Cameliu; Latyshev, Alexander V; Zahn, Dietrich R T

    2015-01-01

    Summary We present the results of an investigation of surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir–Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR) energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm), confirming the formation of SERS “hot spots”. PMID:26734529

  3. Electroluminescence from isolated CdSe /ZnS quantum dots in multilayered light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhao, Jialong; Zhang, Jingying; Jiang, Chaoyang; Bohnenberger, Jolanta; Basché, Thomas; Mews, Alf

    2004-09-01

    Electro- and photoluminescence spectra of the CdSe /ZnS core-shell quantum dots (QDs) covered by various organic ligands and incorporated into multilayered light-emitting diodes (LEDs) were recorded by a confocal optical microscope. The QDs were dispersed in a hole transporting material, N,N'-Diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD), to investigate the LED performance at different QD concentrations and the effect of different surface modifications on the isolated QDs. No wavelength shift was observed in the electroluminescence spectra from the QD LEDs with or without the TPD. The peak energies of the electro- and photoluminescence showed only small spectral shifts (several nanometer) for the diluted QDs and no dependence on the QD-concentration, surface ligands, or conductive polymers that were used. This suggests that the relative peak shifts are related to the different filling processes in the CdSe QDs under photo excitation and electric injection, rather than to the "chemical" effects on the surface of the CdSe /ZnS QDs.

  4. Effect of Different Ligands on Carrier Dynamics of CdSe Quatum Dots for Solar Cells Applications

    NASA Astrophysics Data System (ADS)

    Yakami, Baichhabi R.; Togha, Urice; Mahat, Meg; Nandyala, Shashank R.; Balaz, Milan; Pikal, Jon M.; Department of Electrical; Computer Engineering Team; Department of Chemistry Team; Department of Physics Team

    2015-03-01

    We have carried out steady state absorption and photoluminescence (PL), as well as time resolved PL and ultrafast transient absorption (TA) studies of CdSe quantum dots (QD) with five different capping ligands: trioctylphosphine oxide (TOPO), oleic acid (OA), dodecanethiol (DDT), mercaptopropionic acid (MPA), and L-cysteine (Cys). These ligands have different chemical structures and which effects the optical properties of the QDs. Measurements were conducted on QD sizes ranging from Ø = 2.5nm to 4.6nm with smaller QDs showing an excitonic PL and a broad surface trap state PL. The ligand exchange of OA CdSe QDs with MPA, DDT and Cys leads to quenching of excitonic PL intensity accompanied by a larger surface trap state to excitonic PL intensity ratio. This is consistent with the TRPL measurements, which show faster exciton PL decays for CdSe QDs with MPA, DDT and Cys ligands compared to OA and TOPO. The PL decay shows multi-exponential behavior with the average lifetime decreasing with increasing QD size. Data from TA experiments using a white light probe is also used to study the picosecond carrier dynamics. These measurements shed light on the role of capping ligands on the carrier dynamics of the QD used as sensitizers in solar cells. U.S. Department of Energy.

  5. Observed Shifts in Unoccupied States for Cu Doped CdSe Quantum Dots Observed via Synchrotron Techniques

    NASA Astrophysics Data System (ADS)

    Joshua, Joshua; Meulenberg, Robert

    2012-02-01

    Recent work has been targeted on examining the optical properties of guest ions in quantum dot (QD) lattice; however, very few studies have attempted to understand the effect the dopant has on the host electronic structure. In this talk, we will present data that suggests copper doping of CdSe QDs leads to trapped states below the conduction band (CB) minimum of the host CdSe particle. We propose that one possible reason for this could be hybridization between copper and cadmium, lowering the energy for the cadmium 5s states below the CB minimum of bulk CdSe. X-ray absorption near edge structure spectroscopy measurements at the Cd M3-edge for bulk, undoped, and doped QDs are compared and an unexpected lowering in the CB minimum is observed. We also present a first order theoretical model, for describing our results considering the effects caused by confinement, doping, and hybridization. Numerical approximations for atomic interactions suggest the hybridization parameter can lead to a lowering of the CB minimum by as much as 1.5 eV, as observed experimentally. Future work will include more in depth modelling of hybridization starting from tight binding calculations, developing a predictive model, applicable to more than existing data.

  6. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films.

    PubMed

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates. PMID:25483981

  7. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films

    NASA Astrophysics Data System (ADS)

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  8. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model.

    PubMed

    Alaraby, Mohamed; Demir, Esref; Hernández, Alba; Marcos, Ricard

    2015-10-15

    Since CdSe QDs are increasingly used in medical and pharmaceutical sciences careful and systematic studies to determine their biosafety are needed. Since in vivo studies produce relevant information complementing in vitro data, we promote the use of Drosophila melanogaster as a suitable in vivo model to detect toxic and genotoxic effects associated with CdSe QD exposure. Taking into account the potential release of cadmium ions, QD effects were compared with those obtained with CdCl2. Results showed that CdSe QDs penetrate the intestinal barrier of the larvae reaching the hemolymph, interacting with hemocytes, and inducing dose/time dependent significant genotoxic effects, as determined by the comet assay. Elevated ROS production, QD biodegradation, and significant disturbance in the conserved Hsps, antioxidant and p53 genes were also observed. Overall, QD effects were milder than those induced by CdCl2 suggesting the role of Cd released ions in the observed harmful effects of Cd based QDs. To reduce the observed side-effects of Cd based QDs biocompatible coats would be required to avoid cadmium's undesirable effects. PMID:26026410

  9. Reconstructing a solid-solid phase transformation pathway in CdSe nanosheets with associated soft ligands

    PubMed Central

    Wang, Zhongwu; Wen, Xiao-Dong; Hoffmann, Roald; Son, Jae Sung; Li, Ruipeng; Fang, Chia-Chen; Smilgies, Detlef-M.; Hyeon, Taeghwan

    2010-01-01

    Integrated single-crystal-like small and wide-angle X-ray diffraction images of a CdSe nanosheet under pressure provide direct experimental evidence for the detailed pathway of transformation of the CdSe from a wurtzite to a rock-salt structure. Two consecutive planar atomic slips [(001) 〈110〉 in parallel and (102) with a distortion angle of ∼40°] convert the wurtzite-based nanosheet into a saw-like rock-salt nanolayer. The transformation pressure is three times that in the bulk CdSe crystal. Theoretical calculations are in accord with the mechanism and the change in transformation pressure, and point to the critical role of the coordinated amines. Soft ligands not only increase the stability of the wurtzite structure, but also improve its elastic strength and fracture toughness. A ligand extension of 2.3 nm appears to be the critical dimension for a turning point in stress distribution, leading to the formation of wurtzite (001)/zinc-blende (111) stacking faults before rock-salt nucleation. PMID:20855580

  10. Optical and Surface Characterization Studies of CdSe Quantum Dots Undergoing Photooxidation

    NASA Astrophysics Data System (ADS)

    Powell, Lauren C. J.

    Realization of the potential of Quantum Dots (QDs) for biological, energy-efficient lighting and energy harvesting applications requires that their long-term photostability be improved, especially with regards to protection from photooxidation. The overarching objective of this project was the determination of the chemical and physical mechanisms of photooxidation of CdSe QDs. Pittsburgh-based Crystalplex, Inc. provided CdSe QDs with different organic ligands for this research. Three integrated in situ and ex situ characterization techniques were used to observe changes in optical behavior, QD morphology, and surface chemistry during photooxidation conditions. Single-molecule fluorescence microscopy experiments were used to observe real-time changes in the photoluminescence (PL) behavior of single QDs with oleic and lauric acid ligands. The QDs are exposed to 1 atm of pure O2, dry Ar, Ar bubbled through DI water, or air in an environmental chamber and excited with a 488 nm light. Changes in PL intensities were analyzed with respect to the periods of exposure to controlled atmospheres and light. Samples illuminated continuously exhibited strong photoenhancement effects, while those kept in the dark showed atmospheric-dependent PL loss. Microstructural and chemical identification was performed with aberration-corrected transmission electron microscopy (TEM). Ex situ exposures of QD samples to air, dry O2, and dry Ar revealed changes in surface oxide growth with respect to exposure length, illumination, and column vacuum pressure. Samples exposed to air and light exhibited the most extensive photooxidation. Quantum dots with oleic acid ligands were treated with UV/ozone plasma, and extensive degradation of QDs was observed. X-ray photoemission spectroscopy (XPS) measurements at CMU were used to identify the chemical and bonding states of the surface species before and after photooxidation. Analysis of the acquired spectra showed that exposure to below-bandgap light

  11. A Two-Step Synthetic Strategy toward Monodisperse Colloidal CdSe and CdSe/CdS Core/Shell Nanocrystals.

    PubMed

    Zhou, Jianhai; Pu, Chaodan; Jiao, Tianyu; Hou, Xiaoqi; Peng, Xiaogang

    2016-05-25

    CdSe magic-size clusters with close-shell surface and fixed molecular formula are well-known in the size range between ∼1 and 3 nm. By applying high concentration of cadmium alkanoates as ligands, a conventional synthetic system for CdSe nanocrystals was tuned to discriminate completion from initiation of atomic flat facets. This resulted in ∼4-13 nm CdSe nanocrystals with hexahedral shape terminated with low-index facets, namely three (100), one (110), and two (111) facets. These low-symmetry (Cs group with single mirror plane) yet monodisperse hexahedra were found to be persistent not only in a broad size range but also under typical synthetic temperatures for growth of both CdSe and CdS. Atomic motion on the surface of the nanocrystals under enhanced ligand dynamics initiated intraparticle ripening without activating interparticle ripening, which converted the hexahedral nanocrystals to monodisperse spherical ones. This new synthetic strategy rendered optimal color purity of photoluminescence (PL) of the CdSe and CdSe/CdS core/shell nanocrystals, with the ensemble PL peak width comparable with that of a corresponding single dot. PMID:27144923

  12. Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O.

    PubMed

    Debgupta, Joyashish; Devarapalli, Ramireddy; Rahman, Shakeelur; Shelke, Manjusha V; Pillai, Vijayamohanan K

    2014-08-01

    Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, "as grown" CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ∼ 470 μA cm(-2)) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers. PMID:24979744

  13. Coverage control of CdSe quantum dots in the photodeposition on TiO2 for the photoelectrochemical solar hydrogen generation.

    PubMed

    Yoshii, Mari; Murata, Yusuke; Nakabayashi, Yasunari; Ikeda, Takuya; Fujishima, Musashi; Tada, Hiroaki

    2016-07-15

    CdSe quantum dots (QDs) have successfully been formed on the TiO2 surface by the photodeposition of Se QDs and their subsequent transformation into CdSe QDs (CdSe/TiO2) (Fujishima et al., 2014). The addition of mercaptoacetic acid (MAA) in the second step of the two-step photodeposition process significantly decreases the CdSe particle size and the contact angle against the TiO2 surface to increase the TiO2-surface coverage by CdSe QDs with the particle size distribution sharpened. X-ray photoelectron and Raman spectroscopy measurements indicated that MAA is densely chemisorbed on the surface of CdSe QDs through CdS bond, whereas sparsely adsorbed on the TiO2 surface. Photoelectrochemical (PEC) cells using CdSe/TiO2 as the photoanode for hydrogen (H2) generation from aqueous sulfide solution were fabricated. The rate of H2 generation strongly depends on the concentration of MAA (C) added in the photoanode preparation, and the photoanode prepared at C=0.04mM affords a maximum solar-to-hydrogen conversion efficiency of 0.028%. PMID:27100903

  14. Effects of morphology, diameter and periodic distance of the Ag nanoparticle periodic arrays on the enhancement of the plasmonic field absorption in the CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kohnehpoushi, Saman; Eskandari, Mehdi; Ahmadi, Vahid; Yousefirad, Mansooreh; Nabavi, Elham

    2016-09-01

    In this work, the numerical calculations of plasmonic field absorption of Ag nanoparticles (Ag NPs) periodic arrays in the CdSe quantum dot (QD) film are investigated by the three-dimensional finite difference time domain (FDTD). Diameter (D), periodic distance (P), and morphology effects of Ag NPs are investigated on the improvement of the plasmonic field absorption in CdSe QD film. Results show that plasmonic field absorption in CdSe QD film is enhanced with reduction of D of Ag NPs until 5 nm and reduces thereafter. It is observed that with raising D of Ag NPs, optimum plasmonic field absorption in CdSe QD film is shifted toward the higher P. Moreover, with varying morphology of Ag NPs from spherical to cylindrical, cubic, ringing and pyramid, the plasmonic field absorption is considerably enhanced in CdSe QD film and position of quadrupole plasmon mode (QPPM) is shifted toward further wavelength. For cylindrical Ag NPs, the QPPM intensity increased with raising height (H) until 15 nm and reduces thereafter.

  15. Evaluation of all-inorganic CdSe quantum dot thin films for optoelectronic applications.

    PubMed

    Zhang, Y Q; Cao, X A

    2012-07-11

    Exchanging the original organic ligands of colloidal CdSe quantum dots (QDs) with inorganic metal chalcogenide SnS(4) ligands resulted in absorption peak redshifts and complete photoluminescence (PL) quenching in QD solids. The SnS(4)-capped QDs, meanwhile, were able to retain strong excitonic absorption. After the ligand exchange, the ITO/QDs/Al structure showed much higher electrical conductivity and reduced space-charge limited current. Its photocurrent spectral response increased by over two orders of magnitude and closely resembled the absorption spectrum of the QDs. However, it was found that mild thermal treatment above 200 °C transformed the SnS(4)-capped QD film into to a more conductive assembly, degrading its absorption and photocurrent generation. These results suggest that the inorganic ligands considerably enhanced the inter-dot electronic coupling in QD solids, leading to facile charge separation and transport. Our study thus demonstrates the potential applicability of colloidal QDs with metal chalcogenide ligands processed at low temperatures for efficient photodetection and solar energy conversion. PMID:22705470

  16. The role of ligands in the optical and electronic spectra of CdSe nanoclusters

    SciTech Connect

    Kilina, Svletana; Sergei, Ivanov A; Victor, Klimov I; Sergei, Tretiak

    2008-01-01

    We investigate the impact of ligands on morphology, electronic structure, and optical response of the Cd33Se33 cluster, which already overlapps in size with the smallest synthesized CdSe quantum dots (QDs). Our Density Functional Theory (DFT) calculations demonstrate significant surface reorganization both for the bare cluster and for the cluster capped by amine and phosphine oxide ligand models. We observe strong surface-ligand interactions leading to substantial charge redistribution and polarization effects on the surface. This effect results in the appearance of hybridized states, where the electronic density is spread over the cluster and the ligands. Neither the ligand's nor hybridized molecular orbitals appear as trap states inside or near the band gap of the QD. Instead, being optically dark, dense hybridized states from the edges of the valence and the conduction bands could open new relaxation channels for high energy photoexcitations. Comparing quantum dots passivated by different ligands, we found that hybridized states are denser in at the edge of the conduction band of the cluster ligated with phosphine oxide molecules than that with primary amines. Such a different manifestation of ligand binding may potentially lead to the faster electron relaxation in dots passivated by phosphine oxide than by amine ligands, which is in agreement with experimental data.

  17. Enhancement in the photorefractive performance of organic composites photosensitized with functionalized CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Liang, Yichen; Wang, Wei; Moon, Jong-Sik; Winiarz, Jeffrey G.

    2016-08-01

    Enhancement in the photorefractive (PR) performance of organic composites photosensitized by CdSe quantum dots (QCdSe) passivated with the charge-transport ligands, sulfonated triphenyldiamine (STPD), is reported. This enhancement is primarily attributed to the ability of the passivating ligand, STPD, to facilitate the charge-transfer process between the QCdSe and the triphenyldiamine (TPD) charge-transport matrix. The PR composites exhibited a maximum photocharge-generation efficiency of 0.9% and two-beam coupling gain coefficient of 110 cm-1. These figures of merit represent a significant improvement over similar composites photosensitized with more conventional trioctylphosphine oxide-passivated QCdSe (TQCdSe). Moreover, composites photosensitized with SQCdSe had a faster response time of τ = 128 ms at an electric field of 60 V/μm compared with τ = 982 ms for those containing TQCdSe. Because of the molecular similarity between the STPD passivating groups and the TPD-based charge-transport matrix, concentrations of up to 1.4 wt% of SQCdSe are achieved in PR composites without any detectable phase separation, a considerable improvement over the 0.7 wt% for TQCdSe.

  18. CdSe Quantum-Dot-Sensitized Solar Cell with ~100% Internal Quantum Efficiency

    SciTech Connect

    Fuke, Nobuhiro; Hoch, Laura B.; Koposov, Alexey Y.; Manner, Virginia W.; Werder, Donald J.; Fukui, Atsushi; Koide, Naoki; Katayama, Hiroyuki; Sykora, Milan

    2010-10-20

    We have constructed and studied photoelectrochemical solar cells (PECs) consisting of a photoanode prepared by direct deposition of independently synthesized CdSe nanocrystal quantum dots (NQDs) onto a nanocrystalline TiO2 film (NQD/TiO2), aqueous Na2S or Li2S electrolyte, and a Pt counter electrode. We show that light harvesting efficiency (LHE) of the NQD/TiO2 photoanode is significantly enhanced when the NQD surface passivation is changed from tri-n-octylphosphine oxide (TOPO) to 4-butylamine (BA). In the PEC the use of NQDs with a shorter passivating ligand, BA, leads to a significant enhancement in both the electron injection efficiency at the NQD/TiO2 interface and charge collection efficiency at the NQD/electrolyte interface, with the latter attributed mostly to a more efficient diffusion of the electrolyte through the pores of the photoanode. We show that by utilizing BA-capped NQDs and aqueous Li2S as an electrolyte, it is possible to achieve ~100% internal quantum efficiency of photon-to-electron conversion, matching the performance of dye-sensitized solar cells.

  19. Photoinduced Electron Transfer to Engineered Surface Traps in CdSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Califano, Marco; Zhu, Haiming; Yang, Ye; Hyeon-Deuk, Kim; Song, Nianhui; Wang, Youwei; Zhang, Wenqing; Prezhdo, Oleg; Lian, Tianquan

    2014-03-01

    Quantum confined nanomaterials, such as semiconductor nanocrystals (NCs), have emerged in the past decade as a new class of materials for solar energy conversion. An appropriate model for describing photoinduced charge transfer in these systems is, however, still lacking. Recently we observed that the rate of photoinduced electron transfer from CdSe NCs to molecular acceptors increased with decreasing NC size (and increasing driving force) exhibiting a lack of Marcus inverted regime behaviour over an apparent driving force range of 0-1.3 V. Our atomistic semiempirical pseudopotential calculations show that an Auger assisted ET mechanism, in which the transfer of the electron is coupled to the excitation of the hole, can circumvent the unfavourable Frank-Condon overlap (that is a signature of inter- or intra- molecular electron transfer) in the Marcus inverted regime, reproducing our observed ET rates with remarkable accuracy. We conclude that electron transfer from quantum dots differs from electron transfer originating from both molecules and bulk semiconductors. It proceeds via a novel Auger-assisted pathway which we believe is available to most excitonic nanomaterials. This new finding will have a major impact on the design of next generation solar energy harvesting devices.

  20. Efficient CdSe nanocrystal diffraction gratings prepared by microcontact molding.

    PubMed

    Shallcross, R Clayton; Chawla, Gulraj S; Marikkar, F Saneeha; Tolbert, Stephanie; Pyun, Jeffrey; Armstrong, Neal R

    2009-11-24

    We describe the formation of efficient transmission diffraction gratings created from patterned high quality ligand-capped CdSe nanocrystals (NCs), using a facile microcontact molding procedure. Soft polymer replicas of commercially available master gratings were "inked" with solvated NCs and the resulting pattern transferred to a variety of substrates after drying. Large-area (>0.5 cm(2)), defect free diffraction gratings were prepared with a variety of submicrometer line spacings and feature sizes down to ca. 160 nm. The morphology of the resulting pattern was tuned by controlling the concentration of the NC-based ink. Optimized gratings (1200 g/mm) showed an increase in transmission diffraction efficiency (DE) with increasing nanocrystal diameter. DE = ca. 15% (488 nm) for 2.5 nm diameter NCs versus DE = ca. 25-30% (488 nm) for 7.3 nm nanocrystals. These increases in DE are ascribed to changes in both the real (n) and imaginary (k) components of the complex index of refraction as NC diameter increases. We demonstrate the ability to in- and out-couple incident laser radiation into internal reflection elements using these stamped NC gratings, including single-mode waveguides, offering a novel application of ordered nanocrystal thin films. PMID:19803496

  1. The influence of pyridine ligand onto the structure and phonon spectra of CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Dzhagan, V. M.; Lokteva, I.; Himcinschi, C.; Kolny-Olesiak, J.; Valakh, M. Ya.; Schulze, S.; Zahn, D. R. T.

    2011-04-01

    The influence of ligand exchange for pyridine onto the structure and phonon spectra of oleic acid-stabilized CdSe nanocrystals (NCs) is studied by resonant Raman and optical absorption spectroscopy, nuclear magnetic resonance and transmission electron microscopy. The removal of oleic acid ligand by pyridine treatment results in change of intensity ratio of the longitudinal optical (LO) phonon peak to its overtones. The latter effect is attributed to a changed electron-phonon coupling in NCs upon introduction of the hole-capturing ligand (pyridine). The upward shift and broadening of the LO phonon peak are also observed and supposed to be the result of interplay between partial oxidation of the NC and strain induced by surface reconstruction. The relative contribution of these two effects is found to be dependent on the NC size. The activation of two additional Raman features, in the low-frequency range and above the LO band, for pyridine-treated NCs is supposed to be related with induced disorder or reconstruction on the NC surface. No noticeable effect of the surface treatment and concomitant NC aggregation onto the surface optical phonon mode was observed.

  2. Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids

    NASA Astrophysics Data System (ADS)

    Rowland, Clare E.; Fedin, Igor; Zhang, Hui; Gray, Stephen K.; Govorov, Alexander O.; Talapin, Dmitri V.; Schaller, Richard D.

    2015-05-01

    Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting, wavelength downconversion in light-emitting diodes (LEDs), and optical biosensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells, non-contact chromophore pumping from a proximal LED, and markedly reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (0.12-1 ns; refs , , ) do not outpace biexciton Auger recombination (0.01-0.1 ns; ref. ), which impedes multiexciton-driven applications including electrically pumped lasers and carrier-multiplication-enhanced photovoltaics. Few-monolayer-thick semiconductor nanoplatelets (NPLs) with tens-of-nanometre lateral dimensions exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that interplate FRET (˜6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies.

  3. Synthesis and characterization of CdSe quantum dots dispersed in PVA matrix by chemical route

    NASA Astrophysics Data System (ADS)

    Khan, Zubair M. S. H.; Ganaie, Mohsin; Khan, Shamshad A.; Husain, M.; Zulfequar, M.

    2016-05-01

    CdSe quantum dots using polyvinyl alcohol as a capping agent have been synthesized via a simple heat induced thermolysis technique. The structural analysis of CdSe/PVA thin film was studied by X-ray diffraction, which confirms crystalline nature of the prepared film. The surface morphology and particle size of the prepared sample was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The SEM studies of CdSe/PVA thin film shows the average size of particles in the form of clusters of several quantum dots in the range of 10-20 nm. The morphology of CdSe/PVA thin film was further examined by TEM. The TEM image shows the fringes of tiny dots with average sizes of 4-7 nm. The optical properties of CdSe/PVA thin film were studied by UV-VIS absorption spectroscopy. The CdSe/PVA quantum dots follow the role of direct transition and the optical band gap is found to be 4.03 eV. From dc conductivity measurement, the observed value of activation energy was found to be 0.71 eV.

  4. Size dependence of the multiple exciton generation rate in CdSe quantum dots.

    PubMed

    Lin, Zhibin; Franceschetti, Alberto; Lusk, Mark T

    2011-04-26

    The multiplication rates of hot carriers in CdSe quantum dots are quantified using an atomistic pseudopotential approach and first-order perturbation theory. We consider both the case of an individual carrier (electron or hole) decaying into a trion and the case of an electron-hole pair decaying into a biexciton. The dependence on quantum dot volume of multiplication rate, density of final states, and effective Coulomb interaction are determined. We show that the multiplication rate of a photogenerated electron-hole pair decreases with dot size for a given absolute photon energy. However, if the photon energy is rescaled by the volume-dependent optical gap, then smaller dots exhibit an enhancement in carrier multiplication rate for a given relative photon energy. We find that holes have much higher multiplication rates than electrons of the same excess energy due to the larger density of final states (positive trions). When electron-hole pairs are generated by photon absorption, however, the net carrier multiplication rate is dominated by electrons because they have much higher excess energy on average. We also find, contrary to earlier studies, that the effective Coulomb coupling governing carrier multiplication is energy-dependent. PMID:21355556

  5. Electronic Structure of Ligated CdSe Clusters: Dependence on DFT Methodology

    SciTech Connect

    Albert, VV; Ivanov, SA; Tretiak, S; Kilina, SV

    2011-07-07

    Simulations of ligated semiconductor quantum dots (QDs) and their physical properties, such as morphologies, QD-ligand interactions, electronic structures, and optical transitions, are expected to be very sensitive to computational methodology. We utilize Density Functional Theory (DFT) and systematically study how the choice of density functional, atom-localized basis set, and a solvent affects the physical properties of the Cd{sub 33}Se{sub 33} cluster ligated with a trimethyl phosphine oxide ligand. We have found that qualitative performance of all exchange-correlation (XC) functionals is relatively similar in predicting strong QD-ligand binding energy ({approx}1 eV). Additionally, all functionals predict shorter Cd-Se bond lengths on the QD surface than in its core, revealing the nature and degree of QD surface reconstruction. For proper modeling of geometries and QD-ligand interactions, however, augmentation of even a moderately sized basis set with polarization functions (e.g., LANL2DZ* and 6-31G*) is very important. A polar solvent has very significant implications for the ligand binding energy, decreasing it to 0.2-0.5 eV. However, the solvent model has a minor effect on the optoelectronic properties, resulting in persistent blue shifts up to {approx}0.3 eV of the low-energy optical transitions. For obtaining reasonable energy gaps and optical transition energies, hybrid XC functionals augmented by a long-range Hartree-Fock orbital exchange have to be applied.

  6. Dispersion and Alignment of CdSe Nanorods in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Rasin, Boris; Frischknecht, Amalie; Diroll, Benjamin; Tsai, Lindsay; Murray, Christopher; Composto, Russell

    2014-03-01

    The thermodynamic factors that affect the dispersion of polymer-brush grafted nanorods (NR) added to homopolymer matrix films have been studied by both experiments and theory. Whereas prior studies have focused on gold nanorods with fixed diameter (12nm-16nm) and varying length (37nm to 98 nm), these studies investigate the smaller diameter (4 nm) CdSe nanorods with length 27 nm to determine if nanorod curvature increases wetting between brush and matrix chains. Here we investigate two chemically similar brush / matrix systems polystyrene (PS)-NR / PS and poly(ethylene oxide) (PEO)-NR/PEO as a function of matrix to brush degree of polymerization, P/N. For the PS-NR / PS system for P/N =.5 the nanorods observed in the polymer matrix are primarily either individual nanorods or individual chains of end to end positioned nanorods. For P/N =13 aggregates consisting of side to side positioned nanorods and side to side positioned nanorod chains are observed. Individual nanorods and individual nanorod chains are also observed. The transition from wet to dry brush is explored and compared with the gold NR studies as well as density functional theory calculations. The effect of electrical field alignment on nanorod orientation is also presented.

  7. Structure and Ultrafast Dynamics of White-Light-Emitting CdSe Nanocrystals

    SciTech Connect

    Bowers, Michael J; McBride, James; Garrett, Maria Danielle; Sammons, Jessica A.; Dukes, Albert; Schreuder, Michael A.; Watt, Tony L.; Lupini, Andrew R; Pennycook, Stephen J; Rosenthal, Sandra

    2009-01-01

    White-light emission from ultrasmall CdSe nanocrystals offers an alternative approach to the realization of solid-state lighting as an appealing technology for consumers. Unfortunately, their extremely small size limits the feasibility of traditional methods for nanocrystal characterization. This paper reports the first images of their structure, which were obtained using aberration-corrected atomic number contrast scanning transmission electron microscopy (Z-STEM). With subangstrom resolution, Z-STEM is one of the few available methods that can be used to directly image the nanocrystal's structure. The initial images suggest that they are crystalline and approximately four lattice planes in diameter. In addition to the structure, for the first time, the exciton dynamics were measured at different wavelengths of the white-light spectrum using ultrafast fluorescence upconversion spectroscopy. The data suggest that a myriad of trap states are responsible for the broad-spectrum emission. It is hoped that the information presented here will provide a foundation for the future development and improvement of white-light-emitting nanocrystals.

  8. Low Pressure Phase Transitions in Wurtzite CdSe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Meulenberg, Robert W.; Strouse, Geoffrey F.

    2001-03-01

    Over the last several years, significant efforts in understanding the effects of high pressures on quantum dots (QDs) have been reported. It has been shown that the high-pressure phase transition from wurtzite (WZ) to rock-salt for CdSe QDs is doubled (3 - 6 GPa), but the energy dependence of the absorption edge is near that of the bulk value (partialE/partialP 45 meV/GPa). Upon release of pressure, mixtures of both hexagonal and cubic (WZ and zinc blende (ZB), respectively) structures are seen, due to the low energy of interconversion of the lattice. Surprisingly, ZB is rarely observed for II-VI nanomaterials although it is thermodynamically preferred and moderate to low pressures should induce a WZ -> ZB phase transition. Experiments with pressures in lower pressure ranges (< 1 GPa) have been ignored and may give insight into these types of low energy phase transitions. We report findings of QD size dependent pressure coefficients and postulate that changes in the band structure of quantum confined semiconductors (which lead to these changes in the pressure coefficient) are a function of the compressibility and defect nature of the material, which induce surface reconstruction events. We present optical absorption and photoluminescence data, as well as time-resolved luminescence data to infer to the mechanism of the pressure dependence.

  9. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    SciTech Connect

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in the SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.

  10. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    DOE PAGESBeta

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in themore » SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.« less

  11. Photophysical and redox properties of molecule-like CdSe nanoclusters.

    PubMed

    Dolai, Sukanta; Dass, Amala; Sardar, Rajesh

    2013-05-21

    Advancing our understanding of the photophysical and electrochemical properties of semiconductor nanoclusters with a molecule-like HOMO-LUMO energy level will help lead to their application in photovoltaic devices and photocatalysts. Here we describe an approach to the synthesis and isolation of molecule-like CdSe nanoclusters, which displayed sharp transitions at 347 nm (3.57 eV) and 362 nm (3.43 eV) in the optical spectrum with a lower energy band extinction coefficient of ~121,000 M(-1) cm(-1). Mass spectrometry showed a single nanocluster molecular weight of 8502. From this mass and various spectroscopic analyses, the nanoclusters are determined to be of the single molecular composition Cd34Se20(SPh)28, which is a new nonstiochiometric nanocluster. Their reversible electrochemical band gap determined in Bu4NPF6/CH3CN was found to be 4.0 V. There was a 0.57 eV Coulombic interaction energy of the electron-hole pair involved. The scan rate dependent electrochemistry suggested diffusion-limited transport of nanoclusters to the electrode. The nanocluster diffusion coefficient (D = 5.4 × 10 (-4) cm(2)/s) in acetonitrile solution was determined from cyclic voltammetry, which suggested Cd34Se20(SPh)28 acts as a multielectron donor or acceptor. We also present a working model of the energy level structure of the newly discovered nanocluster based on its photophysical and redox properties. PMID:23621327

  12. Phase transition of CdSe nanocrystallines with controlled morphologies induced by ratios of ethanolamine and water in their mixed solution

    NASA Astrophysics Data System (ADS)

    Fan, Hai; Liang, Jianbo; Zhang, Yuanguang; Zhang, Maofeng; Xi, Baojuan; Wang, Xuyang; Qian, Yitai

    2008-07-01

    The phase transition of CdSe nanocrystallines from zinc blende to wurtzite phase can be controlled by varying the volume ratio of ethanolamine (EA) and water (WA) in their mixed solution and the morphologies of the CdSe nanocrystals are controlled simultaneously. The phase transition has been demonstrated by XRD patterns and HRTEM images. The samples are investigated by Raman spectrum. The Raman shifts of the samples show a gradual blue shift with the gradual transformation from zinc blende to wurtzite CdSe phase. This method is convenient and controllable which can provide a strategy way to control the phase and morphology of the nanomaterials and study their phase transitions in nanoscale field.

  13. Direct Observation of sp-d Exchange Interactions in Colloidal Mn2+- and Co2+-Doped CdSe Quantum Dots

    SciTech Connect

    Archer, Paul I.; Santangelo, Steven A.; Gamelin, Daniel R.

    2007-03-23

    The defining attribute of a diluted magnetic semiconductor (DMS) is the existence of dopant-carrier magnetic exchange interactions. In this letter, we report the first direct observation of such exchange interactions in colloidal doped CdSe nanocrystals. Doped CdSe quantum dots were synthesized by thermal decomposition of (Me4N)2[Cd4(SePh)10] in the presence of TMCl2 (TM2+ ) Mn2+ or Co2+) in hexadecylamine and were characterized by several analytical and spectroscopic techniques. Using magnetic circular dichroism spectroscopy, successful doping and the existence of giant excitonic Zeeman splittings in both Mn2+- and Co2+-doped wurtzite CdSe quantum dots are demonstrated unambiguously.

  14. Enhancing the conversion efficiency of red emission by spin-coating CdSe quantum dots on the green nanorod light-emitting diode.

    PubMed

    Lee, Ya-Ju; Lee, Chia-Jung; Cheng, Chun-Mao

    2010-11-01

    A hybrid structure of CdSe quantum dots (QDs) (λ = 640 nm) spin-coated on the indium gallium nitride (InGaN) nanorod light-emitting diode (LED, λ = 525 nm) is successfully fabricated. Experimental results indicate that the randomness and the minuteness of nanorods scatter the upcoming green light into the surrounding CdSe QDs efficiently, subsequently alleviating the likelihood of the emitted photons of red emission being recaptured by the CdSe QDs (self-absorption effect), and that increases the coupling probability of emission lights and the overall conversion efficiency. Moreover, the revealed structure with high color stability provides an alternative solution for general lighting applications of next generation. PMID:21165088

  15. Photoluminescence study of the substitution of Cd by Zn during the growth by atomic layer epitaxy of alternate CdSe and ZnSe monolayers

    SciTech Connect

    Hernández-Calderón, I.; Salcedo-Reyes, J. C.

    2014-05-15

    We present a study of the substitution of Cd atoms by Zn atoms during the growth of alternate ZnSe and CdSe compound monolayers (ML) by atomic layer epitaxy (ALE) as a function of substrate temperature. Samples contained two quantum wells (QWs), each one made of alternate CdSe and ZnSe monolayers with total thickness of 12 ML but different growth parameters. The QWs were studied by low temperature photoluminescence (PL) spectroscopy. We show that the Cd content of underlying CdSe layers is affected by the exposure of the quantum well film to the Zn flux during the growth of ZnSe monolayers. The amount of Cd of the quantum well film decreases with higher exposures to the Zn flux. A brief discussion about the difficulties to grow the Zn{sub 0.5}Cd{sub 0.5}Se ordered alloy (CuAu-I type) by ALE is presented.

  16. Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method

    SciTech Connect

    Kumar, Vijay Goswami, Y. C.; Rajaram, P.

    2015-08-28

    Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope shows the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.

  17. A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles

    SciTech Connect

    Sukanya, D.; Sagayaraj, P.

    2015-06-24

    II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM)

  18. Bowl-shaped superstructures of CdSe nanocrystals with the narrow-sized distribution for a high-performance photoswitch

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Shen, Yongtao; Feng, Yiyu; Qin, Chengqun; Huang, Zhengcheng; Feng, Wei

    2015-07-01

    The bowl-shaped CdSe superstructure with a diameter of 1-2 μm and the thickness of hundreds nanometers was synthesized using Cd(SA)2 and Se powder in an organic phase. The CdSe nanocrystals for assembling superstructures had a narrow-sized distribution indicated by a sharp emission peak in the photoluminescence (PL) spectrum. Moreover, an organic-inorganic hybrid photoswitch based on CdSe superstructures were fabricated. The device exhibited an on/off switching ratio of ∼100 with a good cycling stability. The excellent photo-responsible performance illustrates that the superstructures hold a great promise for the application of photoelectric devices.

  19. Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2 for regenerative quantum-dot-sensitized solar cells.

    PubMed

    Sauvage, Frédéric; Davoisne, Carine; Philippe, Laetitia; Elias, Jamil

    2012-10-01

    We investigated CdSe-sensitized TiO(2) solar cells by means of electrodeposition under galvanostatic control. The electrodeposition of CdSe within the mesoporous film of TiO(2) gives rise to a uniform, thickness controlled, conformal layer of nanostructured CdSe particles intimately wrapping the anatase TiO(2) nanoparticles. This technique has the advantage of providing not only a fast method for sensitization ( < 5 min) but also being easily scalable to the sensitization of large-area panels. XRD together with SAED analysis highlight that the deposit of CdSe is exclusively constituted of the hexagonal polymorph. In addition, hierarchical growth has also been shown, starting from the formation of a TiO(2)-CdSe core-shell structure followed by the growth of an assembly of CdSe nanoparticles resembling cauliflowers. This assembly exhibits at its core a mosaic texture with crystallites of about 3 nm in size, in contrast to a shell composed of well-crystallized single crystals between 5 and 10 nm in size. Preliminary results on the photovoltaic performance of such a nanostructured composite of TiO(2) and CdSe show 0.8% power conversion efficiency under A.M.1.5 G conditions-100 mW cm(-2) in association with a new regenerative redox couple based on cobalt(+III/+II) polypyridil complex (V(oc ) = 485 mV, J(sc ) = 4.26 mA cm (-2), ff=0.37). PMID:22972037

  20. Theoretical calculations of structural, electronic, and elastic properties of CdSe1‑x Te x : A first principles study

    NASA Astrophysics Data System (ADS)

    M, Shakil; Muhammad, Zafar; Shabbir, Ahmed; Muhammad Raza-ur-rehman, Hashmi; M, A. Choudhary; T, Iqbal

    2016-07-01

    The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of CdSe1‑x Te x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA+U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure CdSe and CdTe binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.

  1. A detailed examination of the growth of CdSe thin films through structural and optical characterization

    SciTech Connect

    Yükselici, M.H.; Aşıkoğlu Bozkurt, A.; Ömür, B. Can

    2013-07-15

    Highlights: ► Urbach tail width decreases by about 200 meV with the film thickness. ► A coefficient of strain of around 3 × 10{sup −3} along [0 0 2] axis was predicted. ► Compressive strain gives rise to about 11 meV red shift in the band gap energy. ► A relative shift of about 2 cm{sup −1} of LO{sub 1} phonon mode in Raman spectra was observed between different thickness films. - Abstract: Different thickness CdSe thin films were grown on glass substrates by physical vapor deposition and characterized by optical and structural investigations. Urbach energy related to the width of the optical absorption tail decreases from 430 meV for a film thickness of 50 nm to 200 meV for 450 nm. The film thickness dependent grain sizes were estimated by using effective mass model under quantum size effect from the shift of around 500 meV in the asymptotic absorption edge. The X-ray diffraction (XRD) pattern is consistent with CdSe hexagonal crystal structure which indicates crystal growth mode along c axis. XRD peaks broaden and shift depending on film thicknesses which are presumably due to strain and size effect. We observe both blue and red shift depending on thickness in Longitudinal Optical phonon frequency in Raman spectra with respect to that of the source CdSe powder which could also be due to strain on thin films and/or finite crystallite size. In this work we combine the results of optical absorption, Raman and XRD spectroscopies to study the evolution of grain size, strain and structural disorder depending on film thickness.

  2. Description of the Adsorption and Exciton Delocalizing Properties of p-Substituted Thiophenols on CdSe Quantum Dots.

    PubMed

    Aruda, Kenneth O; Amin, Victor A; Thompson, Christopher M; Lau, Bryan; Nepomnyashchii, Alexander B; Weiss, Emily A

    2016-04-12

    This work describes the quantitative characterization of the interfacial chemical and electronic structure of CdSe quantum dots (QDs) coated in one of five p-substituted thiophenolates (X-TP, X = NH2, CH3O, CH3, Cl, or NO2), and the dependence of this structure on the p-substituent X. (1)H NMR spectra of mixtures of CdSe QDs and X-TPs yield the number of X-TPs bound to the surface of each QD. The binding data, in combination with the shift in the energy of the first excitonic peak of the QDs as a function of the surface coverage of X-TP and Raman and NMR analysis of the mixtures, indicate that X-TP binds to CdSe QDs in at least three modes, two modes that are responsible for exciton delocalization and a third mode that does not affect the excitonic energy. The first two modes involve displacement of OPA from the QD core, whereas the third mode forms cadmium-thiophenolate complexes that are not electronically coupled to the QD core. Fits to the data using the dual-mode binding model also yield the values of Δr1, the average radius of exciton delocalization due to binding of the X-TP in modes 1 and 2. A 3D parametrized particle-in-a-sphere model enables the conversion of the measured value of Δr1 for each X-TP to the height of the potential barrier that the ligand presents for tunneling of excitonic hole into the interfacial region. The height of this barrier increases from 0.3 to 0.9 eV as the substituent, X, becomes more electron-withdrawing. PMID:27002248

  3. The influence of applied magnetic fields on the optical properties of zero- and one-dimensional CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Blumling, Daniel E.; McGill, Stephen; Knappenberger, Kenneth L.

    2013-09-01

    Shape-dependent exciton relaxation dynamics of CdSe 0-D nanocrystals and 1-D nanorods were studied using low-temperature (4.2 K), time-resolved and intensity-integrated magneto-photoluminscence (MPL) spectroscopy. Analysis of the average MPL rate constants from several different nanocrystal quantum dots and rods excited by 400 nm light in applied magnetic fields up to 17.5 T revealed size-dependent energy gaps separating bright and dark exciton fine-structure states. For 1-D nanorods under strong cross-sectional confinement and large length-to-diameter aspect ratios, efficient mixing of bright and dark exciton states was achieved using relatively low applied field strengths (<=4 T). The effect was attributed, in part, to decreased confinement of CdSe hole states associated with the long axis of the nanorod, which resulted in reduction of the energy gaps separating the bright and dark states. Increased control over the angle formed between the applied field vectors and the nanocrystal c-axis led to more efficient and uniform mixing of nanorod exciton states than for quantum dots. The findings suggest 1-D nanostructures are advantageous over 0-D ones for field-responsive applications.Shape-dependent exciton relaxation dynamics of CdSe 0-D nanocrystals and 1-D nanorods were studied using low-temperature (4.2 K), time-resolved and intensity-integrated magneto-photoluminscence (MPL) spectroscopy. Analysis of the average MPL rate constants from several different nanocrystal quantum dots and rods excited by 400 nm light in applied magnetic fields up to 17.5 T revealed size-dependent energy gaps separating bright and dark exciton fine-structure states. For 1-D nanorods under strong cross-sectional confinement and large length-to-diameter aspect ratios, efficient mixing of bright and dark exciton states was achieved using relatively low applied field strengths (<=4 T). The effect was attributed, in part, to decreased confinement of CdSe hole states associated with the long

  4. Raman analysis of chemical substitution of Cd atoms by Hg in CdSe quantum dots and rods

    NASA Astrophysics Data System (ADS)

    Cherevkov, Sergei A.; Baranov, Alexander V.; Ushakova, Elena V.; Litvin, Alexander P.; Fedorov, Anatoly V.; Prudnikau, Anatol V.; Artemyev, Mikhail V.

    2016-01-01

    We investigate nanocrystals of ternary compounds CdXHg1-XSe with 0CdSe NCs used for Cd/Hg substitution, either zinc blende or wurtzite, strongly affects the structural properties of the resultant CdXHg1-XSe quantum dots and rods.

  5. Ground-state zero-field splitting of Mn 2+ ions in ZnO and CdSe crystals

    NASA Astrophysics Data System (ADS)

    Kuang, Xiao-Yu

    1996-02-01

    ZnO and CdSe crystals have similar hexagonal wurtzite structures with a contraction along the c-axis of the crystal, but contrary electronic fine structures for ZnO:Mn 2+ ( D < 0) and CdSe:Mn 2+ ( D > 0) have been found in EPR experiments. We demonstrate that the ground-state splitting in ZnO:Mn 2+ is due to a trigonal ligand field, whereas the main physical mechanism of the splitting in CdSe:Mn 2+ can be attributed to the combined effect of a slight trigonal distortion and a covalence spin-orbit coupling interaction.

  6. Temperature-dependent photovoltaic behavior of CdSe quantum dots/P3HT hybrid thinfilm

    NASA Astrophysics Data System (ADS)

    Zhang, Hui-chao; Du, Xiao-wei; Wang, Yu-qiao; Guan, Qiu-mei; Sun, Yue-ming; Cui, Yi-ping; Zhang, Jia-yu

    2013-03-01

    An organic-inorganic hybrid solar cell based on CdSe quantum dots (QDs) and poly(3-hexylthiophene) (P3HT) was fabricated. Its temperature-dependent photovoltaic behaviors, such as I-V characteristic curves and open circuit voltage (Voc) transient response, were measured. The photovoltaic behavior of this hybrid thin film device was similar with that of organic thin film solar cells, according to analysis results based on the equivalent circuit method. The exact carrier lifetime was remarkably different between under low-temperature region and under temperature above 197 K.

  7. Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres

    SciTech Connect

    Mthethwa, T.P.; Moloto, M.J.; De Vries, A.; Matabola, K.P.

    2011-04-15

    Graphical abstract: SEM images of CdS/PMMA showing coiling as loading of CdS nanoparticles is increased. Thermal stability is increased with increase in %loading of both CdS and CdSe nanoparticles. Research highlights: {yields} TOPO-capped CdS and HDA-capped CdSe nanoparticles were synthesized and fully characterized. {yields} The nanoparticles were mixed with the polymer, PMMA using electrospinning technique using 2, 5 and 10% weight loadings. {yields} The mixture was spun to produce fibres with optical and thermal properties showing significant change and also the increase in loading causing bending or spiraling. {yields} Both TEM images for nanoparticles and SEM for fibres shows the morphology and sizes of the particles. -- Abstract: Electrospinning technique was used to fabricate poly(methyl methacrylate) (PMMA) fibres incorporating CdS and CdSe quantum dots (nanoparticles). Different nanoparticle loadings (2, 5 and 10 wt% with respect to PMMA) were used and the effect of the quantum dots on the properties of the fibres was studied. The optical properties of the hybrid composite fibres were investigated by photoluminescence and UV-vis spectrophotometry. Scanning electron microscopy (SEM), X-ray diffraction and FTIR spectrophotometry were also used to investigate the morphology and structure of the fibres. The optical studies showed that the size-tunable optical properties can be achieved in the polymer fibres by addition of quantum dots. SEM images showed that the morphologies of the fibres were dependent on the added amounts of quantum dots. A spiral type of morphology was observed with an increase in the concentration of CdS and CdSe nanoparticles. Less beaded structures and bigger diameter fibres were obtained at higher quantum dot concentrations. X-ray diffractometry detected the amorphous peaks of the polymer and even after the quantum dots were added and the FTIR analysis shows that there was no considerable interaction between the quantum dots and the

  8. The natural high-pressure phase of cubic CdSe in impact glass from Zhamanshin crater

    NASA Astrophysics Data System (ADS)

    Kartashov, P. M.; Gornostaeva, T. A.; Mokhov, A. V.; Bogatikov, O. A.

    2016-04-01

    A CdSe high-pressure polymorph of the NaCl structural type of a 0 = 0.549 nm and Fm-3m space group was discovered in nature for the first time. Its composition is within range of CdSe-CdSe1- x where x = 0.2 apfu. The phase was discovered as abundant nanosize inclusions in irgizite-type condensate glass separated from the sample of impact rock of the Zhamanshin crater (Central Kazakhstan). The treated mineral was presumably formed within a gas-plasma cloud at the moment of impact.

  9. Size-selective synthesis of ultrasmall hydrophilic CdSe nanoparticles in aqueous solution at room temperature.

    PubMed

    Park, Yeon-Su; Okamoto, Yukihiro; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2012-01-01

    Hydrophilic semiconductor nanoparticles are very attractive for various biological applications, such as in optical sensing, tracing, and imaging of biological molecules-of-interest, because of their broad excitation wavelength, tunable emission wavelength, strong photoluminescence, and relatively high stability against photobleaching and chemicals. Compared to organic phase synthesis and subsequent surface modification, aqueous phase synthesis approaches provide multiple advantages for obtaining hydrophilic semiconductor nanoparticles. Here, we describe methods for the size-selective growth and stabilization of ultrasmall hydrophilic CdSe nanoparticles in aqueous solution at room temperature by using amino acid cysteine or one of its derivatives as a surface capping agent. PMID:22791428

  10. Hybrid bulk heterojunction solar cells based on low band gap polymers and CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Dayneko, Sergey; Tameev, Alexey; Tedoradze, Marine; Martynov, Igor; Linkov, Pavel; Samokhvalov, Pavel; Nabiev, Igor; Chistyakov, Alexander

    2014-03-01

    Solar energy converters based on organic semiconductors are inexpensive, can be layered onto flexible surfaces, and show great promise for photovoltaics. In bulk heterojunction polymer solar cells, charges are separated at the interface of two materials, an electron donor and an electron acceptor. Typically, only the donor effectively absorbs light. Therefore, the use of an acceptor with a wide absorption spectrum and high extinction coefficient and charge mobility should increase the efficiency of bulk heterojunction polymer solar cells. Semiconductor nanocrystals (quantum dots and rods) are good candidate acceptors for these solar cells. Recently, most progress in the development of bulk heterojunction polymer solar cells was achieved using PCBM, a traditional fullerene acceptor, and two low band gap polymers, poly[N- 9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and poly4,8-bis[(2- ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b] thiophenediyl (PTB7). Therefore, the possibility of combining these polymers with semiconductor nanocrystals deserves consideration. Here, we present the first comparison of solar cells based on PCDTBT and PTB7 where CdSe quantum dots serve as acceptors. We have found that PTB7-based cells are more efficient than PCDTBT-based ones. The efficiency also strongly depends on the nanocrystal size. An increase in the QD diameter from 5 to 10 nm causes a more than fourfold increase in the cell efficiency. This is determined by the relationship between the nanoparticle size and energy spectrum, its pattern clearly demonstrating how the mutual positions of the donor and acceptor levels affect the solar cell efficiency. These results will help to develop novel, improved nanohybrid components of solar cells based on organic semiconductors and semiconductor nanocrystals.