Science.gov

Sample records for cdwo4 scintillating bolometer

  1. Search for double beta processes in 106Cd with enriched 106CdWO4 crystal scintillator in coincidence with four crystals HPGe detector

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Belli, P.; Bernabei, R.; Brudanin, V. B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D. M.; D'Angelo, S.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.; Tupitsyna, I. A.

    2015-10-01

    A radiopure cadmium tungstate crystal scintillator, enriched in 106Cd (106CdWO4), was used to search for double beta decay processes in 106Cd in coincidence with an ultra-low background set-up containing four high purity germanium (HPGe) detectors in a single cryostat. The experiment has been completed after 13085 h of data taking. New improved limits on most of the double beta processes in 106Cd have been set on the level of 1020-1021 yr. Tn particular, the half-life limit on the two neutrino electron capture with positron emission, T1/2 ≥ 1.8 × 1021 yr, reached the region of theoretical predictions.

  2. Search for 2 β decay of 106Cd with an enriched 106CdWO4 crystal scintillator in coincidence with four HPGe detectors

    NASA Astrophysics Data System (ADS)

    Belli, P.; Bernabei, R.; Brudanin, V. B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D. M.; Danevich, F. A.; d'Angelo, S.; Di Marco, A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.; Tupitsyna, I. A.

    2016-04-01

    A radiopure cadmium tungstate crystal scintillator, enriched in 106Cd to 66%, with mass of 216 g (106CdWO4 ), was used to search for double-β decay processes in 106Cd in coincidence with four ultra-low-background high-purity germanium detectors in a single cryostat. Improved limits on the double-β processes in 106Cd have been set on the level of 1020-1021 yr after 13 085 h of data taking. In particular, the half-life limit on the two-neutrino electron capture with positron emission, T1/2 2 ν ɛ β+≥1.1 ×1021 yr, has reached the region of theoretical predictions. With this half-life limit the effective nuclear matrix element for the 2 ν ɛ β+ decay is bounded as Meff2 ν ɛ β+≤1.1 . The resonant neutrinoless double-electron captures to the 2718-, 2741-, and 2748-keV excited states of 106Pd are restricted at the level of T1 /2≥(8.5 × 1020-1.4 ×1021 ) yr.

  3. Search for double beta decay of 116Cd with enriched 116CdWO4 crystal scintillators (Aurora experiment)

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D. M.; d’Angelo, S.; Incicchitti, A.; Kobychev, V. V.; Konovalov, S. I.; Laubenstein, M.; Mokina, V. M.; Poda, D. V.; Polischuk, O. G.; Shlegel, V. N.; Tretyak, V. I.; Umatov, V. I.

    2016-05-01

    The Aurora experiment to investigate double beta decay of 116 Cd with the help of 1.162 kg cadmium tungstate crystal scintillators enriched in 116 Cd to 82% is in progress at the Gran Sasso Underground Laboratory. The half-life of 116 Cd relatively to the two neutrino double beta decay is measured with the highest up-to-date accuracy T1/2 = (2.62 ± 0.14) × 1019 yr. The sensitivity of the experiment to the neutrinoless double beta decay of 116 Cd to the ground state of 116 Sn is estimated as T1/2 ≥ 1.9 × 1023 yr at 90% CL, which corresponds to the effective Majorana neutrino mass limit (mv) ≤ (1.2 — 1.8) eV. New limits are obtained for the double beta decay of 116 Cd to the excited levels of 116 Sn, and for the neutrinoless double beta decay with emission of majorons.

  4. Scintillating bolometers for the LUCIFER project

    NASA Astrophysics Data System (ADS)

    Pattavina, L.; LUCIFER Collaboration

    2016-05-01

    Neutrinoless double beta decay (0vββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature and masses of neutrinos. In order to explore the so-called inverted neutrino mass hierarchy region a further improvement on the upcoming 0vββ experiment is needed. In this respect, scintillating bolometers are the suitable technology for achieving such goal: they ensure excellent energy resolution and highly efficient particle discrimination. The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of 0vββ of 82Se. The matrix which embeds the source is an array of Zn 82Se crystals, where enriched 82Se is used as decay isotope. Taking advantage of the large Q-value (2997 keV) and of the particle discrimination, the expected background rate in the region of interest is as low as 10-3 c/keV/kg/y. The foreseen sensitivity after 2 years of live time will be 1.8×1025 years. We will report on the potential of such technology and on the present status of the project.

  5. Segmented CdWO4 detector for low background experiments at DUSEL

    NASA Astrophysics Data System (ADS)

    Mei, Dongming; Sun, Yongchen; Day, Alyssa; Thomas, Keenan; Perevozchikov, Oleg

    2010-11-01

    We propose to develop a segmented CdWO4 scintillator array for detecting geo-neutrinos, neutrinoless double-beta, and dark matter. The detection of geo-neutrinos can shed light on the sources of the terrestrial heat flow, on the present composition, and on the origins of the Earth. The development of a new technique to detect geo-neutrinos through charge current antineutrino capture processes on ^106Cd is very interesting. This target allows us to detect all of geo-neutrinos from uranium, thorium, and potassium decays. When it is built, the detector can be also used to detect neutrinoless double-beta decay with ^116Cd. Both enriched ^106Cd and ^116Cd can be used to search for dark matter from the Universe. This paper will present RD results on the energy response of gamma-rays and neutrons from three small CdWO4 detectors.

  6. Scintillating bolometers: A promising tool for rare decays search

    NASA Astrophysics Data System (ADS)

    Pattavina, L.

    2013-12-01

    The idea of using a scintillating bolometer was first suggested for solar neutrino experiments in 1989. After many years of developments, now we are able to exploit this experimental technique, based on the calorimetric approach with cryogenic particle detectors, to investigate rare events such as Neutrinoless Double Beta Decay and interaction of Dark Matter candidates. The possibility to have high resolution detectors in which a very large part of the natural background can be discriminated with respect to the weak expected signal is very appealing. The goal to distinguish the different types of interactions in the detector can be achieved by means of scintillating bolometer. The simultaneous read-out of the heat and scintillation signals made with two independent bolometers enable this precious feature leading to possible background free experiment. In the frame of the LUCIFER project we report on how exploiting this technique to investigate Double Beta Decay for different isotope candidates. Moreover we demonstrate how scintillating bolometers are suited for investigating other rare events such as α decays of long living isotopes of lead and bismuth.

  7. LUCIFER: scintillating bolometers for neutrinoless double-beta decay searches

    NASA Astrophysics Data System (ADS)

    Pattavina, Luca

    2014-09-01

    In the field of fundamental particle physics, the nature of the neutrino, if it is a Dirac or a Majorana particle, plays a crucial role not only in neutrino physics, but also in the overall framework of fundamental particle interactions and in cosmology. Neutrinoless double-beta decay (0vDBD) is the key tool for the investigation of this nature. Experimental techniques based on the calorimetric approach with cryogenic particle detectors have demonstrated suitability for the investigation of rare nuclear processes, profiting from excellent energy resolution and scalability to large masses. Unfortunately, the most relevant issue is related to background suppression. In fact, bolometers being fully-active detectors struggle to reach extremely low background level. The LUCIFER project aims to deploy the first array of enriched scintillating bolometers. Thanks to the double read-out - heat and scintillation light produced by scintillating bolometers - a highly efficient background identification and rejection is guaranteed, leading to a background-free experiment. We show the potential of such technology in ZnMoO4 and ZnSe prototypes. We describe the current status of the project, including results of the recent R&D activity.

  8. Scintillating Bolometers for Rare Events Searches: The LUCIFER Experiment

    NASA Astrophysics Data System (ADS)

    Cardani, L.

    2014-09-01

    The main goal of LUCIFER is the study of the neutrino-less double beta decay, a rare process that, if detected, could demonstrate the Majorana nature of neutrino and set the absolute mass of this particle. Dealing with rare decays, one of the most critical issues of the experiment is the background reduction. This requirement will be satisfied by LUCIFER thanks to the use of ZnSe scintillating bolometers: the simultaneous read-out of heat and light emitted by the interactions in the detector will allow to reject most of the spurious events, providing a background of 10 counts/keV/kg/year at the transition energy of Se (2,997 keV). The detector will be made by tens of 0.5 kg ZnSe crystals and Ge light detectors operated as bolometers at 10 mK. We present the results obtained with a single detector module in terms of energy resolution, radio-purity and background rejection capability. In addition, we discuss the feasibility of dark matter searches in the framework of the LUCIFER experiment.

  9. LUCIFER: Neutrinoless Double Beta decay search with scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Pattavina, Luca; LUCIFER Collaboration

    2011-12-01

    One of the fundamental open questions in elementary particle physics is the value of the neutrino mass and its nature of Dirac or Majorana particle. Neutrinoless double beta decay (DBD0ν) is a key tool for investigating these neutrino properties and for finding answers to the open questions concerning mass hierarchy and absolute scale. Experimental techniques based on the calorimetric approach with cryogenic particle detectors are proved to be suitable for the search of this rare decay, thanks to high energy resolution and large mass of the detectors. One of the main issues to access an increase of the experimental sensitivity is strictly related to background reduction, trying to perform possibly a zero background experiment. The LUCIFER (Low-background Underground Cryogenic Installation For Elusive Rates) project, funded by the European Research Council, aims at building a background-free DBD0ν experiment, with a discovery potential comparable with the present generation experiments. The idea of LUCIFER is to measure, simultaneously, heat and scintillation light with ZnSe bolometers. Detector features and operational procedures are reviewed. The expected performances and sensitivity are also discussed.

  10. Characterization of a ZnSe scintillating bolometer prototype for neutrinoless double beta decay search

    NASA Astrophysics Data System (ADS)

    Tenconi, M.; Giuliani, A.; Nones, C.; Pessina, G.; Plantevin, O.; Rusconi, C.

    2014-01-01

    As proposed in the LUCIFER project, ZnSe crystals are attractive materials to realize scintillating bolometers aiming at the search for neutrinoless double beta decay of the promising isotope 82Se. However, the optimization of the ZnSe-based detectors is rather complex and requires a wide-range investigation of the crystal features: optical properties, crystalline quality, scintillation yields and bolometric behaviour. Samples tested up to now show problems in the reproducibility of crucial aspects of the detector performance. In this work, we present the results obtained with a scintillating bolometer operated aboveground at about 25 mK. The detector energy absorber was a single 1 cm3 ZnSe crystal. The good energy resolution of the heat channel (about 14 keV at 1460 keV) and the excellent alpha/beta discrimination capability are very encouraging for a successful realization of the LUCIFER program. The bolometric measurements were completed by optical tests on the crystal (optical transmission and luminescence measurements down to 10 K) and investigation of the crystalline structure. The work here described provides a set of parameters and procedures useful for a complete pre-characterization of ZnSe crystals in view of the realization of highly performing scintillating bolometers.

  11. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Mancuso, M.; Beeman, J. W.; Giuliani, A.; Dumoulin, L.; Olivieri, E.; Pessina, G.; Plantevin, O.; Rusconi, C.; Tenconi, M.

    2014-01-01

    Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers) consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% - 35%) and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.

  12. Radiopure ZnMoO4 scintillating bolometers for the LUMINEU double-beta experiment

    NASA Astrophysics Data System (ADS)

    Poda, D. V.; Armengaud, E.; Arnaud, Q.; Augier, C.; Barabash, A. S.; Benoît, A.; Benoît, A.; Bergé, L.; Boiko, R. S.; Bergmann, T.; Blümer, J.; Broniatowski, A.; Brudanin, V.; Camus, P.; Cazes, A.; Censier, B.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; Coron, N.; Coulter, P.; Cox, G. A.; Danevich, F. A.; de Boissière, T.; Decourt, R.; De Jesus, M.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Eitel, K.; Enss, C.; Filosofov, D.; Fleischmann, A.; Fourches, N.; Gascon, J.; Gastaldo, L.; Gerbier, G.; Giuliani, A.; Gros, M.; Hehn, L.; Henry, S.; Hervé, S.; Heuermann, G.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kéfélian, C.; Kleifges, M.; Kluck, H.; Kobychev, V. V.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le Sueur, H.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Menshikov, A.; Nasonov, S. G.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Penichot, Y.; Pessina, G.; Piro, M. C.; Plantevin, O.; Redon, T.; Robinson, M.; Rodrigues, M.; Rozov, S.; Sanglard, V.; Schmidt, B.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vagneron, L.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.; Walker, R. J.; Weber, M.; Yakushev, E.; Zhang, X.; Zhdankov, V. N.

    2015-08-01

    The results of R&D of radiopure zinc molybdate (ZnMoO4) based scintillating bolometers for the LUMINEU (Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature) double-beta decay experiment are presented. A dedicated two-stage molybdenum purification technique (sublimation in vacuum and recrystallization from aqueous solutions) and an advanced directional solidification method (the low-thermal-gradient Czochralski technique) were utilized to produce high optical quality large mass (˜1 kg) ZnMoO4 crystal boules and first 100Mo (99.5%) enriched Zn100MoO4 crystal scintillator (mass of ˜0.2 kg). Scintillating bolometers based on ZnMoO4 (≈ 0.33 kg) and Zn100MoO4 (≈ 0.06 kg) scintillation elements and high purity Ge wafers were tested in the EDELWEISS set-up at the Modane Underground Laboratory (France). Long term low temperature tests demonstrate excellent detectors' performance and effectiveness of the purification and solidification procedures for the achievement of high radiopurity of the material, in particular with a bulk activity of 228Th and 226Ra below 4 µBq/kg. The adopted protocol was used to produce for the first time a large volume Zn100MoO4 crystal scintillator (mass of ˜1.4 kg, 100Mo enrichment is 99.5%) to search for neutrinoless double-beta decay of 100Mo in the framework of the LUMINEU project.

  13. Radiopure ZnMoO{sub 4} scintillating bolometers for the LUMINEU double-beta experiment

    SciTech Connect

    Poda, D. V.; Chernyak, D. M.; Armengaud, E.; Boissière, T. de; Fourches, N.; Gerbier, G.; Gros, M.; Hervé, S.; Magnier, P.; Navick, X-F.; Nones, C.; Paul, B.; Penichot, Y.; Arnaud, Q.; Augier, C.; Benoît, A.; Cazes, A.; Censier, B.; Charlieux, F.; De Jesus, M. [IPNL, Université de Lyon, Université Lyon 1, CNRS and others

    2015-08-17

    The results of R&D of radiopure zinc molybdate (ZnMoO{sub 4}) based scintillating bolometers for the LUMINEU (Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature) double-beta decay experiment are presented. A dedicated two-stage molybdenum purification technique (sublimation in vacuum and recrystallization from aqueous solutions) and an advanced directional solidification method (the low-thermal-gradient Czochralski technique) were utilized to produce high optical quality large mass (∼1 kg) ZnMoO{sub 4} crystal boules and first {sup 100}Mo (99.5%) enriched Zn{sup 100}MoO{sub 4} crystal scintillator (mass of ∼0.2 kg). Scintillating bolometers based on ZnMoO{sub 4} (≈ 0.33 kg) and Zn{sup 100}MoO{sub 4} (≈ 0.06 kg) scintillation elements and high purity Ge wafers were tested in the EDELWEISS set-up at the Modane Underground Laboratory (France). Long term low temperature tests demonstrate excellent detectors’ performance and effectiveness of the purification and solidification procedures for the achievement of high radiopurity of the material, in particular with a bulk activity of {sup 228}Th and {sup 226}Ra below 4 µBq/kg. The adopted protocol was used to produce for the first time a large volume Zn{sup 100}MoO{sub 4} crystal scintillator (mass of ∼1.4 kg, {sup 100}Mo enrichment is 99.5%) to search for neutrinoless double-beta decay of {sup 100}Mo in the framework of the LUMINEU project.

  14. A scintillating bolometer array for double beta decay studies: The LUCIFER experiment

    NASA Astrophysics Data System (ADS)

    Gironi, L.

    2016-07-01

    The main goal of the LUCIFER experiment is to study the neutrinoless double beta decay, a rare process allowed if neutrinos are Majorana particles. Although aiming at a discovery, in the case of insufficient sensitivity the LUCIFER technique will be the demonstrator for a higher mass experiment able to probe the entire inverted hierarchy region of the neutrino mass. In order to achieve this challenging result, high resolution detectors with active background discrimination capability are required. This very interesting possibility can be largely fulfilled by scintillating bolometers thanks to the simultaneous read-out of heat and light emitted by the interactions in the detector or by pulse shape analysis.

  15. Development of a Li2MoO4 scintillating bolometer for low background physics

    NASA Astrophysics Data System (ADS)

    Cardani, L.; Casali, N.; Nagorny, S.; Pattavina, L.; Piperno, G.; Barinova, O. P.; Beeman, J. W.; Bellini, F.; Danevich, F. A.; Di Domizio, S.; Gironi, L.; Kirsanova, S. V.; Orio, F.; Pessina, G.; Pirro, S.; Rusconi, C.; Tomei, C.; Tretyak, V. I.; Vignati, M.

    2013-10-01

    We present the performance of a 33 g Li2MoO4 crystal working as a scintillating bolometer. The crystal was tested for more than 400 h in a dilution refrigerator installed in the underground laboratory of Laboratori Nazionali del Gran Sasso (Italy). This compound shows promising features in the frame of neutron detection, dark matter search (solar axions) and neutrinoless double-beta decay physics. Low temperature scintillating properties were investigated by means of different α, β/γ and neutron sources, and for the first time the Light Yield for different types of interacting particle is estimated. The detector shows great ability of tagging fast neutron interactions and high intrinsic radiopurity levels ( < 90 μBq/kg for 238U and < 110 μBq/kg for 232Th).

  16. LUCIFER: A Scintillating Bolometer Array for the Search of Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Cardani, L.; Lucifer Collaboration

    2012-07-01

    One of the main limitations in the study of 0vDBD is the presence of a radioactive background in the energy region of interest. This limit can be overcome by the technological approach of the LUCIFER project, which is based the double read-out of the heat and scintillation light produced by ZnSe scintillating bolometers. This experiment aims at a background lower than 10-3counts/keV/kg/y in the energy region of the 0νDBD of 82Se. Such a low background level will provide a sensitivity on the effective neutrino mass of the order of 100 meV. In the following, the results of the recent R&D activity are discussed, the single module for the LUCIFER detector is described, and the process for the production of 82Se-enriched ZnSe crystals is presented.

  17. A bench-top megavoltage fan-beam CT using CdWO4-photodiode detectors. I. System description and detector characterization.

    PubMed

    Rathee, S; Tu, D; Monajemi, T T; Rickey, D W; Fallone, B G

    2006-04-01

    We describe the components of a bench-top megavoltage computed tomography (MVCT) scanner that uses an 80-element detector array consisting of CdWO4 scintillators coupled to photodiodes. Each CdWO4 crystal is 2.75 x 8 x 10 mm3. The detailed design of the detector array, timing control, and multiplexer are presented. The detectors show a linear response to dose (dose rate was varied by changing the source to detector distance) with a correlation coefficient (R2) nearly unity with the standard deviation of signal at each dose being less than 0.25%. The attenuation of a 6 MV beam by solid water measured by this detector array indicates a small, yet significant spectral hardening that needs to be corrected before image reconstruction. The presampled modulation transfer function is strongly affected by the detector's large pitch and a large improvement can be obtained by reducing the detector pitch. The measured detective quantum efficiency at zero spatial frequency is 18.8% for 6 MV photons which will reduce the dose to the patient in MVCT applications. The detector shows a less than a 2% reduction in response for a dose of 24.5 Gy accumulated in 2 h; however, the lost response is recovered on the following day. A complete recovery can be assumed within the experimental uncertainty (standard deviation <0.5%); however, any smaller permanent damage could not be assessed. PMID:16696485

  18. G0W0 band structure of CdWO4.

    PubMed

    Laasner, Raul

    2014-03-26

    The full quasiparticle band structure of CdWO4 is calculated within the single-shot GW (G0W0) approximation using maximally localized Wannier functions, which allows one to assess the validity of the commonly used scissor operator. Calculations are performed using the Godby-Needs plasmon pole model and the accurate contour deformation technique. It is shown that while the two methods yield identical band gap energies, the low-lying states are given inaccurately by the plasmon pole model. We report a band gap energy of 4.94 eV, including spin-orbit interaction at the DFT-LDA (density functional theory-local density approximation) level. Quasiparticle renormalization in CdWO4 is shown to be correlated with localization distance. Electron and hole effective masses are calculated at the DFT and G0W0 levels. PMID:24599225

  19. Low Thermal Gradient Czochralski growth of large CdWO4 crystals and electronic properties of (010) cleaved surface

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Galashov, E. N.; Khyzhun, O. Y.; Bekenev, V. L.; Pokrovsky, L. D.; Borovlev, Yu. A.; Zhdankov, V. N.

    2016-04-01

    The crystal growth of large high-quality inclusion-free CdWO4 crystals, 110 mm in diameter and mass up to 20 kg, has been carried out by the Low Thermal Gradient Czochralski (LTG Cz) technique. The high-purity CdWO4(010) surface has been prepared by cleavage and high structural quality of the surface has been verified by RHEED, revealing a system of Kikuchi lines. The chemical state and electronic structure of the surface have been studied using X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). The total and partial densities of states of the CdWO4 tungstate were calculated employing the first-principles full potential linearized augmented plane wave (FP-LAPW) method. The results indicate that the principal contributors to the valence band of CdWO4 are the Cd 4d, W 5d and O 2p states which contribute mainly at the bottom, in the central portion and at the top of the valence band, respectively, with also significant contributions of the mentioned states throughout the whole CdWO4 valence-band region. With respect to the occupation of the O 2p states, the results of the FP-LAPW calculations are confirmed by comparison on a common energy scale of the XPS valence-band spectrum and the XES band representing the energy distribution of the O 2p states in this compound. Additionally, the FP-LAPW data allow us to conclude that the CdWO4 tungstate is a non-direct semiconductor.

  20. LUCIFER: Scintillating bolometers for the search of Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Vignati, M.

    2012-08-01

    The nature of neutrino mass is one of the frontier problems of particle physics. Neutrinoless Double Beta Decay (0νDBD) is a powerful tool to measure the neutrino mass and to test possible extensions of the Standard Model. Bolometers are excellent detectors to search for this rare decay, thanks to their good energy resolution and to the low background conditions in which they can operate. The current challenge consists in the reduction of the background, represented by environmental γ's and α's, in view of a zero background experiment. We present the LUCIFER R&D, funded by an European grant, in which the background can be reduced by an order of magnitude with respect to the present generation experiments. The technique is based on the simultaneous bolometric measurement of the heat and of the scintillation light produced by a particle, that allows to discriminate between β and α particles. The γ background is reduced by choosing 0νDBD candidate isotopes with transition energy above the environmental γ's spectrum. The prospect of this R&D are discussed.

  1. Synthesis and photoelectrochemical properties of CdWO4 and CdS/CdWO4 nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Weina; Zheng, Chunhua; Hua, Hao; Yang, Qi; Chen, Lin; Xi, Yi; Hu, Chenguo

    2015-02-01

    A facile composite-salt-mediated strategy is employed for the first time to synthesize CdWO4 nanowire and nanoflower arrays on cadmium foil substrates. The photoelectrochemical (PEC) properties are measured on the electrodes made of the CdWO4 nanowire and nanoflower arrays under the simulated sunlight illumination. Both electrodes display high sensitive response and photocurrent stability. The photocurrent density of the nanowire arrays electrode reach 0.35 mA/cm2, which is about 3 times as much as that of the nanoflower array electrode. To improve the visible light photocurrent response, CdS nanoparticles are deposited on the CdWO4 nanowire arrays to form a CdS/CdWO4 heterojunction. Remarkably enhanced photoresponse is observed on the CdS/CdWO4 heterostructure and the photocurrent intensity is about twice as much as that of the electrode made of the pure CdWO4 nanowire arrays. The photoelectric mechanism is also discussed by the crystal structure and morphology characterization, optical band gap and carrier mobility analysis. This work presents a new design of a photoelectrochemical device for possible applications in photoelectrolysis of water and solar cells or highly sensitive light detection.

  2. Enriched ZnMoO scintillating bolometers to search for decay of Mo with the LUMINEU experiment

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.; Chernyak, D. M.; Danevich, F. A.; Giuliani, A.; Ivanov, I. M.; Makarov, E. P.; Mancuso, M.; Marnieros, S.; Nasonov, S. G.; Nones, C.; Olivieri, E.; Pessina, G.; Poda, D. V.; Shlegel, V. N.; Tenconi, M.; Tretyak, V. I.; Vasiliev, Ya. V.; Velazquez, M.; Zhdankov, V. N.

    2014-10-01

    The LUMINEU project aims at performing a demonstrator underground experiment searching for the neutrinoless double beta decay of the isotope $^{100}$Mo embedded in zinc molybdate (ZnMoO$_4$) scintillating bolometers. In this context, a zinc molybdate crystal boule enriched in $^{100}$Mo to 99.5\\% with a mass of 171 g was grown for the first time by the low-thermal-gradient Czochralski technique. The production cycle provided a high yield (the crystal boule mass was 84\\% of initial charge) and an acceptable level -- around 4\\% -- of irrecoverable losses of the costy enriched material. Two crystals of 59 g and 63 g, obtained from the enriched boule, were tested aboveground at milli-Kelvin temperature as scintillating bolometers. They showed a high detection performance, equivalent to that of previously developed natural ZnMoO$_4$ detectors. These results pave the way to future sensitive searches based on the LUMINEU technology, capable to approach and explore the inverted hierarchy region of the neutrino mass pattern.

  3. Aboveground test of an advanced Li2MoO4 scintillating bolometer to search for neutrinoless double beta decay of 100Mo

    NASA Astrophysics Data System (ADS)

    Bekker, T. B.; Coron, N.; Danevich, F. A.; Degoda, V. Ya.; Giuliani, A.; Grigorieva, V. D.; Ivannikova, N. V.; Mancuso, M.; de Marcillac, P.; Moroz, I. M.; Nones, C.; Olivieri, E.; Pessina, G.; Poda, D. V.; Shlegel, V. N.; Tretyak, V. I.; Velazquez, M.

    2016-01-01

    Large lithium molybdate (Li2MoO4) crystal boules were produced by using the low thermal gradient Czochralski growth technique from deeply purified molybdenum. A small sample from one of the boules was preliminary characterized in terms of X-ray-induced and thermally-excited luminescence. A large cylindrical crystalline element (with a size of ⊘40 × 40 mm) was used to fabricate a scintillating bolometer, which was operated aboveground at ˜15 mK by using a pulse-tube cryostat housing a high-power dilution refrigerator. The excellent detector performance in terms of energy resolution and α background suppression along with preliminary positive indications on the radiopurity of this material show the potentiality of Li2MoO4 scintillating bolometers for low-counting experiment to search for neutrinoless double beta decay of 100Mo.

  4. Effect of tungsten doping on ZnMoO4 scintillating bolometer performance

    NASA Astrophysics Data System (ADS)

    Chernyak, D. M.; Danevich, F. A.; Degoda, V. Ya.; Giuliani, A.; Ivanov, I. M.; Kogut, Ya. P.; Kraus, H.; Kropivyansky, B. N.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Mikhailik, V. B.; Mokina, V. M.; Moroz, I. M.; Nasonov, S. G.; Plantevin, O.; Poda, D. V.; Shlegel, V. N.; Tenconi, M.; Tretyak, V. I.; Velazquez, M.; Zhdankov, V. N.

    2015-11-01

    The introduction of a small quantity of tungsten oxide (in the range 0.2-0.5 wt%) into the melt improves the growth of ZnMoO4 crystals. No significant difference in the kinetics of scintillation decay, scintillation efficiency, emission spectra, optical transmittance was observed for three ZnMoO4 crystal samples grown from the melt of stoichiometric composition, with excess of molybdenum and doped with tungsten. Using CaWO4 as reference, the absolute light yield of ZnMoO4 is found to be equal to 3550 ± 550 ph/MeV at 77 K. For two ZnMoO4 samples 20 mm in diameter and 40 mm in length (grown from the melt of stoichiometric composition and doped with tungsten) it is confirmed that scintillation and bolometric response are similar at milli-Kelvin temperature.

  5. LUMINEU: a search for neutrinoless double beta decay based on ZnMoO4 scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Benoît, A.; Boiko, L. Bergé S.; Bergmann, T.; Blümer, J.; Broniatowski, A.; Brudanin, V.; Camus, P.; Cazes, A.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; Coron, N.; Coulter, P.; Danevich, F. A.; de Boissiére, T.; Decourt, R.; De Jesus, M.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Eitel, K.; Enss, C.; Filosofov, D.; Fleischmann, A.; Foerster, N.; Fourches, N.; Gascon, J.; Gastaldo, L.; Gerbier, G.; Giuliani, A.; Gray, D.; Gros, M.; Hehn, L.; Henry, S.; Hervé, S.; Heuermann, G.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kéfélian, C.; Kleifges, M.; Kluck, H.; Kobychev, V. V.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le Sueur, H.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Menshikov, A.; Nasonov, S. G.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Penichot, Y.; Pessina, G.; Piro, M. C.; Plantevin, O.; Poda, D. V.; Redon, T.; Robinson, M.; Rodrigues, M.; Rozov, S.; Sanglard, V.; Schmidt, B.; Scorza, S.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vagneron, L.; Vasiliev, Ya V.; Velazquez, M.; Viraphong, O.; Walker, R. J.; Weber, M.; Yakushev, E.; Zhang, X.; Zhdankov, V. N.

    2016-05-01

    The LUMINEU is designed to investigate the possibility to search for neutrinoless double beta decay in 100 Mo by means of a large array of scintillating bolometers based on ZnMoO4 crystals enriched in 100 Mo. High energy resolution and relatively fast detectors, which are able to measure both the light and the heat generated upon the interaction of a particle in a crystal, are very promising for the recognition and rejection of background events. We present the LUMINEU concepts and the experimental results achieved aboveground and underground with large-mass natural and enriched crystals. The measured energy resolution, the α/β discrimination power and the radioactive internal contamination are all within the specifications for the projected final LUMINEU sensitivity. Simulations and preliminary results confirm that the LUMINEU technology can reach zero background in the region of interest (around 3 MeV) with exposures of the order of hundreds kgxyears, setting the bases for a next generation 0v2β decay experiment capable to explore the inverted hierarchy region of the neutrino mass pattern.

  6. CdWO4-Boron FY 2000 Task 4 Completion Report

    SciTech Connect

    Z. W. Bell; M. W. Moyer

    2001-02-01

    The fabrication of boron-covered crystal scintillation detectors is described. Bulk boron-loaded epoxy material was cast and cut into 0.5 mm-thick wafers that were mounted on CdWO{sub 4} and CsI(Tl) crystals. The crystals were mounted on miniature photomultiplier tubes and gamma spectra were obtained with the detectors. The ability of these small detectors to produce spectra that can be analyzed to provide isotopic identification has been demonstrated. In addition, the detector can produce a signature indicating the presence of neutrons. The same miniature size of these detectors that makes them attractive for hand-held portable use, may be a limiting factor in their efficiency. The small size of the scintillation crystals makes them not as efficient as larger NaI(Tl) crystals simply by virtue of significantly decreased sensitive volume and surface area. It may be worthwhile to consider slightly larger crystals (approximately 15 mm cubic CdWO{sub 4}) mounted on rectangular photomultipliers in a detecting head connected to the electronics package by a signal cable.

  7. Development and underground test of radiopure ZnMoO4 scintillating bolometers for the LUMINEU 0ν2β project

    NASA Astrophysics Data System (ADS)

    Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Benoît, A.; Bergé, L.; Boiko, R. S.; Bergmann, T.; Blümer, J.; Broniatowski, A.; Brudanin, V.; Camus, P.; Cazes, A.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; Coron, N.; Coulter, P.; Danevich, F. A.; de Boissière, T.; Decourt, R.; De Jesus, M.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Eitel, K.; Enss, C.; Filosofov, D.; Fleischmann, A.; Foerster, N.; Fourches, N.; Gascon, J.; Gastaldo, L.; Gerbier, G.; Giuliani, A.; Gray, D.; Gros, M.; Hehn, L.; Henry, S.; Hervé, S.; Heuermann, G.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kéfélian, C.; Kleifges, M.; Kluck, H.; Kobychev, V. V.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le Sueur, H.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Menshikov, A.; Nasonov, S. G.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Penichot, Y.; Pessina, G.; Piro, M. C.; Plantevin, O.; Poda, D. V.; Redon, T.; Robinson, M.; Rodrigues, M.; Rozov, S.; Sanglard, V.; Schmidt, B.; Scorza, S.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vagneron, L.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.; Walker, R. J.; Weber, M.; Yakushev, E.; Zhang, X.; Zhdankov, V. N.

    2015-05-01

    The LUMINEU (Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature) project envisages a high-sensitivity search for neutrinoless double beta (0ν 2β) decay of 100Mo with the help of scintillating bolometers based on zinc molybdate (ZnMoO4) crystals. One of the crucial points for the successful performance of this experiment is the development of a protocol for producing high quality large mass ZnMoO4 crystal scintillators with extremely high internal radiopurity. Here we report a significant progress in the development of large volume ZnMoO4 crystalline boules (with mass up to 1 kg) from deeply purified materials. We present and discuss the results achieved with two ZnMoO4 samples (with mass of about 0.3 kg each): one is a precursor of the LUMINEU project, while the other one was produced in the framework of LUMINEU with an improved purification / crystallization procedure. The two crystals were measured deep underground as scintillating bolometers in the EDELWEISS dilution refrigerator at the Laboratoire Souterrain de Modane (France) protected by a rock overburden corresponding to 4800 m w.e. The results indicate that both tested crystals are highly radiopure. However, the advanced LUMINEU sample shows a clear improvement with respect to the precursor, exhibiting only a trace internal contamination related with 210Po at the level of 1 mBq/kg, while the activity of 226Ra and 228Th is below 0.005 mBq/kg. This demonstrates that the LUMINEU purification and crystal-growth procedures are very efficient and leads to radiopurity levels which exceedingly satisfy not only the LUMINEU goals but also the requirements of a next-generation 0ν 2β experiment.

  8. Status of LUMINEU program to search for neutrinoless double beta decay of {sup 100}Mo with cryogenic ZnMoO{sub 4} scintillating bolometers

    SciTech Connect

    Danevich, F. A. Boiko, R. S.; Chernyak, D. M.; Kobychev, V. V.; Bergé, L.; Chapellier, M.; Drillien, A.-A.; Dumoulin, L.; Humbert, V.; Marcillac, P. de; Marnieros, S.; Marrache-Kikuchi, C.; Olivieri, E.; Plantevin, O.; Tenconi, M.; Devoyon, L.; Koskas, F.; and others

    2015-10-28

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of {sup 100}Mo using radiopure ZnMoO{sub 4} crystals enriched in {sup 100}Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO{sub 4} crystal scintillators (∼ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in {sup 100}Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ∼ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.

  9. Status of LUMINEU program to search for neutrinoless double beta decay of 100Mo with cryogenic ZnMoO4 scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Bergé, L.; Boiko, R. S.; Chapellier, M.; Chernyak, D. M.; Coron, N.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Giuliani, A.; Gray, D.; Gros, M.; Hervé, S.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kobychev, V. V.; Koskas, F.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Navick, X.-F.; Nones, C.; Olivieri, E.; Paul, B.; Penichot, Y.; Pessina, G.; Plantevin, O.; Poda, D. V.; Redon, T.; Rodrigues, M.; Shlegel, V. N.; Strazzer, O.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.

    2015-10-01

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of 100Mo using radiopure ZnMoO4 crystals enriched in 100Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO4 crystal scintillators (˜ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in 100Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ˜ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.

  10. Nanowire Bolometers

    NASA Astrophysics Data System (ADS)

    Peterson, Jeffrey B.; Bolinger, A. T.; Berzyadin, A.; Bock, D.; Garcia, K.

    2003-02-01

    Cryogenic tests of a prototype superconducting nanowire bolometer are presented. The device has such low thermal conductance it should be sensitive when used as a direct detector. Because of the small size of the active area we anticipate that this bolometer may also be fast enough to be used as a wideband mixer.

  11. Alpha Background Rejection in Bolometer Detectors

    NASA Astrophysics Data System (ADS)

    Deporzio, Nicholas

    2016-03-01

    This study presents the modification of bolometer detectors used in particle searches to veto or otherwise reject alpha radiation background and the statistical advantages of doing so. Several techniques are presented in detail - plastic film scintillator vetoes, metallic film ionization vetoes, and scintillating bolometer vetoes. Plastic scintillator films are cooled to bolometer temperatures and bombarded with 1.4MeV to 6.0MeV alpha particles representative of documented detector background. Photomultipliers detect this scintillation light and produce a veto signal. Layered metallic films of a primary metal, dielectric, and secondary metal, such as gold-polyethylene-gold films, are cooled to milli-kelvin temperatures and biased to produce a current signal veto when incident 1.4MeV to 6.0MeV alpha particles ionize conduction paths through the film. Modified Zinc Molybdate Bolometers are used to produce scintillation light when stimulated by alpha background. Calibration of veto signal to background energy is presented. Results are used to quantify the statistical impact of such modifications on bolometer searches.

  12. Imaging bolometer

    DOEpatents

    Wurden, G.A.

    1999-01-19

    Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

  13. Imaging bolometer

    DOEpatents

    Wurden, Glen A.

    1999-01-01

    Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

  14. The First Tests of a Large-Area Light Detector Equipped with Metallic Magnetic Calorimeters for Scintillating Bolometers for the LUMINEU Neutrinoless Double Beta Decay Search

    NASA Astrophysics Data System (ADS)

    Gray, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Hassel, C.; Hengstler, D.; Kempf, S.; Loidl, M.; Navick, X. F.; Rodrigues, M.

    2016-02-01

    Future rare-event searches using scintillating crystals need very low background levels for high sensitivity; however, unresolved pile-up can limit this. We present the design and fabrication of large-area photon detectors based on metallic magnetic calorimeters (MMCs), optimized for fast rise times to resolve close pile-up. The first prototypes have been characterized using Fe-55 X-rays and ZnMoO4 crystal scintillation light. A fast intrinsic rise time of 25-30 \\upmu s has been measured and has been compared to the 250 \\upmu s scintillation light pulse rise time constant. The difference indicates that the scintillation process limits the light pulse rise time. The fast rise time allows for a reduction of background due to close pile-up events as well as the study of the inherent crystal scintillation process. MMC-based photon detectors are shown to be a promising tool for scintillating crystal based rare event searches.

  15. The First Tests of a Large-Area Light Detector Equipped with Metallic Magnetic Calorimeters for Scintillating Bolometers for the LUMINEU Neutrinoless Double Beta Decay Search

    NASA Astrophysics Data System (ADS)

    Gray, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Hassel, C.; Hengstler, D.; Kempf, S.; Loidl, M.; Navick, X. F.; Rodrigues, M.

    2016-08-01

    Future rare-event searches using scintillating crystals need very low background levels for high sensitivity; however, unresolved pile-up can limit this. We present the design and fabrication of large-area photon detectors based on metallic magnetic calorimeters (MMCs), optimized for fast rise times to resolve close pile-up. The first prototypes have been characterized using Fe-55 X-rays and ZnMoO4 crystal scintillation light. A fast intrinsic rise time of 25-30 \\upmu s has been measured and has been compared to the 250 \\upmu s scintillation light pulse rise time constant. The difference indicates that the scintillation process limits the light pulse rise time. The fast rise time allows for a reduction of background due to close pile-up events as well as the study of the inherent crystal scintillation process. MMC-based photon detectors are shown to be a promising tool for scintillating crystal based rare event searches.

  16. Femtosecond laser ablation of cadmium tungstate for scintillator arrays

    NASA Astrophysics Data System (ADS)

    Richards, S.; Baker, M. A.; Wilson, M. D.; Lohstroh, A.; Seller, P.

    2016-08-01

    Ultrafast pulsed laser ablation has been investigated as a technique to machine CdWO4 single crystal scintillator and segment it into small blocks with the aim of fabricating a 2D high energy X-ray imaging array. Cadmium tungstate (CdWO4) is a brittle transparent scintillator used for the detection of high energy X-rays and γ-rays. A 6 W Yb:KGW Pharos-SP pulsed laser of wavelength 1028 nm was used with a tuneable pulse duration of 10 ps to 190 fs, repetition rate of up to 600 kHz and pulse energies of up to 1 mJ was employed. The effect of varying the pulse duration, pulse energy, pulse overlap and scan pattern on the laser induced damage to the crystals was investigated. A pulse duration of ≥500 fs was found to induce substantial cracking in the material. The laser induced damage was minimised using the following operating parameters: a pulse duration of 190 fs, fluence of 15.3 J cm-2 and employing a serpentine scan pattern with a normalised pulse overlap of 0.8. The surface of the ablated surfaces was studied using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Ablation products were found to contain cadmium tungstate together with different cadmium and tungsten oxides. These laser ablation products could be removed using an ammonium hydroxide treatment.

  17. Alpha Background Rejection in Bolometer Detectors

    NASA Astrophysics Data System (ADS)

    Deporzio, Nicholas; Cuore Collaboration

    This study presents the modification of bolometer detectors used in particle searches to veto or otherwise reject alpha radiation background and the statistical advantages of doing so. Several techniques are presented in detail - plastic film scintillator vetoes, metallic film ionization vetoes, and Cherenkov radiation vetoes. Plastic scintillator films are cooled to bolometer temperatures and bombarded with 1.4MeV to 6.0MeV alpha particles representative of documented detector background. Quantum dot based liquid scintillator is similarly bombarded to produce a background induced scintillation light. Photomultipliers detect this scintillation light and produce a veto signal. Layered metallic films of a primary metal, dielectric, and secondary metal, such as gold-polyethylene-gold films, are cooled to milli-kelvin temperatures and biased to produce a current signal veto when incident 1.4MeV to 6.0MeV alpha particles ionize conduction paths through the film. Calibration of veto signal to background energy is presented. These findings are extrapolated to quantify the statistical impact of such modifications to bolometer searches. Effects of these techniques on experiment duration and signal-background ratio are discussed.

  18. Film Vetoes for Alpha Background Rejection in Bolometer Detectors

    NASA Astrophysics Data System (ADS)

    Deporzio, Nicholas; Bucci, Carlo; Canonica, Lucia; Divacri, Marialaura; Cuore Collaboration; Absurd Team

    2015-04-01

    This study characterizes the effectiveness of encasing bolometer detectors in scintillator, metal ionization, and more exotic films to veto alpha radiation background. Bolometers are highly susceptible to alpha background and a successful veto should boost the statistical strength, speed, and signal-background ratio of bolometer particle searches. Plastic scintillator films are cooled to bolometer temperatures and bombarded with 1.4 MeV to 6.0 MeV alpha particles representative of detector conditions. Photomultipliers detect the keV range scintillation light and produce a veto signal. Also, layered films of a primary metal, dielectric, and secondary metal, such as gold-polyethylene-gold films, are cooled to milli-kelvin temperatures and biased with 0.1V to 100V to produce a current signal when incident 1.4 MeV to 6.0 MeV alpha particles ionize conduction paths through the film. Veto signals are characterized by their affect on bolometer detection of 865 keV target signals. Similar methods are applied to more exotic films. Early results show scintillator films raise target signal count rate and suppress counts above target energy by at least a factor of 10. This indicates scintillation vetoes are effective and that metal ionization and other films under study will also be effective.

  19. Investigation of the effect of the scintillator material on the overall X-ray detection system performance by application of analytical models

    NASA Astrophysics Data System (ADS)

    Efthimiou, N.; Kalivas, N.; Patatoukas, G.; Konstantinidis, A.; Valais, I.; Nikolopoulos, D.; Gaitanis, A.; David, S.; Michail, C.; Loudos, G.; Cavouras, D.; Panayiotakis, G.; Kandarakis, I.

    2007-02-01

    The purpose of the present work was to model a modern X-ray detection system and to investigate the effect of the scintillator material on the detector's output signal. The scintillators were used in the form of screens. The parameters investigated were the Modulation Transfer Function (MTF), the Detective Quantum Efficiency (DQE) and the Energy Absorption Efficiency (EAE). The results for some well-known scintillators (Y 3Al 5O 12:Ce, Y 2O 3:Eu, ZnSCdS:Ag, Lu 3Al 5O 7, CdWO 4) are presented. Typical radiographic conditions were considered as input parameters. For simulation purposes, the intrinsic conversion efficiency ( ηc), the total number of optical photons produced per incident X-ray ( m0), the attenuation coefficients and other optical parameters of the scintillator materials, were taken as input data. The complete simulation procedure was performed in a specially designed Graphical User Interface (GUI). The results showed that the Y 2O 3:Eu scintillator presented similar behavior to that of ZnSCdS:Ag, exhibiting higher DQE at zero spatial frequencies. For higher frequencies, however, the DQE values of Lu 3Al 5O 7 and CdWO 4 prevailed.

  20. Double β experiments with the help of scintillation and HPGe detectors at Gran Sasso

    NASA Astrophysics Data System (ADS)

    Barabash, A.; Belli, P.; Bernabei, R.; Boiko, R. S.; Brudanin, V. B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D. M.; Danevich, F. A.; d'Angelo, S.; Di Marco, A.; Di Vacri, M. L.; Dossovitskiyj, A. E.; Galashov, E. N.; Grinyov, B. V.; Incicchitti, A.; Kobychev, V. V.; Konovalov, S. I.; Kovtun, G. P.; Kropivyansky, B. N.; Kudovbenko, V. M.; Laubenstein, M.; Mikhlin, A. L.; Nagornaya, L. L.; Nagorny, S. S.; Nagornyi, P. G.; Nisi, S.; Poda, D. V.; Podviyanuk, R. B.; Prosperi, D.; Polischuk, O. G.; Shcherban, A. P.; Shlegel, V. N.; Solopikhin, D. A.; Stenin, Y. G.; Suhonen, J.; Tolmachev, A. V.; Tretyak, V. I.; Umatov, V. I.; Vasiliev, Y. V.; Virich, V. D.; Vyshnevskyi, I. M.; Yavetskiy, R. P.; Yurchenko, S. S.

    2011-12-01

    A search for double beta decay of 64,70Zn, 180,186W was carried out by using low background ZnWO4 crystal scintillators, while a CeCl3 scintillation detector was applied to investigate 2β processes in 136,138,142Ce. A search for 2β decay of 96,104Ru, 156,158Dy, 190,198Pt and study of 2ν2β decay of 100Mo to the first excited 0+ level of 100Ru were realized by ultra-low background HPGe γ spectrometry. Moreover, CdWO4 crystal scintillators from enriched 106Cd and 116Cd isotopes were developed to search for 2β decay of 106Cd and 116Cd. Finally, experiments aimed to investigate 96,104Ru and 116Cd are in progress and a new phase of the experiment to search for 2β processes in 106Cd is in preparation.

  1. Precision bolometer bridge

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1968-01-01

    Prototype precision bolometer calibration bridge is manually balanced device for indicating dc bias and balance with either dc or ac power. An external galvanometer is used with the bridge for null indication, and the circuitry monitors voltage and current simultaneously without adapters in testing 100 and 200 ohm thin film bolometers.

  2. Bolometer Simulation Using SPICE

    NASA Technical Reports Server (NTRS)

    Jones, Hollis H.; Aslam, Shahid; Lakew, Brook

    2004-01-01

    A general model is presented that assimilates the thermal and electrical properties of the bolometer - this block model demonstrates the Electro-Thermal Feedback (ETF) effect on the bolometers performance. This methodology is used to construct a SPICE model that by way of analogy combines the thermal and electrical phenomena into one simulation session. The resulting circuit diagram is presented and discussed.

  3. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  4. Ideal Integrating Bolometer

    NASA Technical Reports Server (NTRS)

    Kogut, A.; DiPirro, M.; Moseley, S. H.

    2004-01-01

    We describe a new "ideal integrator" bolometer as a prototype for a new generation of sensitive, flexible far-IR detectors suitable for use in large arrays. The combination of a non-dissipative sensor coupled with a fast heat switch provides breakthrough capabilities in both sensitivity and operation. The bolometer temperature varies linearly with the integrated infrared power incident on the detector, and may be sampled intermittently without loss of information between samples. The sample speed and consequent dynamic range depend only on the heat switch reset cycle and can be selected in software. Between samples, the device acts as an ideal integrator with noise significantly lower than resistive bolometers. Since there is no loss of information between samples, the device is well-suited for large arrays. A single SQUID readout could process an entire column of detectors, greatly reducing the complexity, power requirements, and cost of readout electronics for large pixel arrays.

  5. Size effects on the properties of high z scintillator materials

    NASA Astrophysics Data System (ADS)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.; Villone, Janelle; Yang, Pin; Kinnan, Mark; Hoppe, Sarah; Thoma, Steve; Hattar, Khalid M.; Doty, F. P.

    2012-10-01

    Particle size effects of nano- and polycrystalline metal tungstate MWO4 (M = Ca, Pb, Cd) scintillators were examined through a comparison of commercially available powders and solution precipitation prepared nanoscaled materials. The scintillation behaviors of nanoparticles and commercial powders were examined with ion beam induced luminescence (IBIL), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy techniques. For commercial microns sized MWO4 powders, spectral emission differences between CL and PL were only observed for Cd and Pb tungstates when compared to reported single crystals. The IBIL wavelength emissions also differed from the commercial MWO4 CL and PL data and were red shifted by 28 and 14 nm for CaWO4 and CdWO4; respectively, while PbWO4 had no significant change. IBIL analysis on CaWO4 nanoparticles produced a 40 nm blue shift from the commercial powder emission. These preliminary results suggest that both size and cation Z may affect the emission properties of the MWO4 scintillators.

  6. HFI Bolometer Detectors Programmatic CDR

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2002-01-01

    Programmatic Critical Design Review (CDR) of the High Frequency Instrument (HFI) Bolometer Detector on the Planck Surveyor is presented. The topics include: 1) Scientific Requirements and Goals; 2) Silicon Nitride Micromesh 'Spider-Web' Bolometers; 3) Sub-Orbital Heritage: BOOMERANG; 4) Noise stability demonstrated in BOOMERANG; 5) Instrument Partners; 6) Bolometer Environment on Planck/HFI; 7) Bolometer Modules; and 8) Mechanical Interface. Also included are the status of the receivables and delivery plans with Europe. This paper is presented in viewgraph form.

  7. Frequency selective bolometers

    NASA Astrophysics Data System (ADS)

    Kowitt, M. S.; Fixsen, D. J.; Goldin, A.; Meyer, S. S.

    1996-10-01

    We propose a concept for radiometry in the millimeter, the submillimeter, and the far-IR spectral regions, the frequency selective bolometer (FSB). This system uses a bolometer as a coupled element of a tuned quasi-optical interference filter in which the absorption, the transmission, and the reflection characteristics of the filter depend on the frequency in a controlled manner. Several FSB's can be cascaded within a straight light pipe to produce a high-efficiency, compact, multiband radiometer. A prototype design is presented together with its anticipated performance based on a one-dimensional transmission-line model. Instruments based on FSB technology should have several advantages over current multiband bolometric radiometers including smaller and more compact cryogenic optics, reduced demands on cryostat size and weight, high coupling efficiency, minimum constraints on the geometry in the focal plane. An FSB system can be configured as a multiband, close-packed focal-plane array, permitting efficient use of the throughput of a telescope.

  8. MEMS: fabrication of cryogenic bolometers

    NASA Astrophysics Data System (ADS)

    Kunert, J.; Anders, S.; May, T.; Zakosarenko, V.; Zieger, G.; Kreysa, E.; Meyer, H.-G.

    2012-02-01

    Cryogenic bolometers are among the most sensitive devices for the detection of electromagnetic radiation in the submillimeter wavelength range. Such radiation is of interest for astronomical observations as well as for security checks. We describe how we fabricate an array of these bolometers. Standard contact lithography is sufficient for these relatively coarse features. To increase the sensitivity, it is imperative to weaken the thermal link between the thermistors (the sensing devices) and the temperature bath. This is achieved by placing them on a silicon nitride membrane that is structured so that the thermistors are placed on a platform which is held only by a few beams. The fabrication process does not require sophisticated lithographic techniques, but special care to achieve the desired yield of 100 % intact bolometers in one array. We discuss bolometer basics and requirements for our applications, critical fabrication issues, and show results of complete systems built for a radio telescope and for security cameras.

  9. Silicon Hot-Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Hsieh, Wen-Ting; Mitchell, Robert R.; Isenberg, Hal D.; Stahle, Carl M.; Cao, Nga T.; Schneider, Gideon; Travers, Douglas E.; Moseley, S. Harvey; Wollack, Edward J.

    2004-01-01

    We discuss a new type of direct detector, a silicon hot-electron bolometer, for measurements in the far-infrared and submillimeter spectral ranges. High performance bolometers can be made using the electron-phonon conductance in heavily doped silicon to provide thermal isolation from the cryogenic bath. Noise performance is expected to be near thermodynamic limits, allowing background limited performance for many far infrared and submillimeter photometric and spectroscopic applications.

  10. The GISMO-2 Bolometer Camera

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; Moseley, Samuel H.; Sharp, Elemer H.; Wollack, Edward J.

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  11. On 3He bolometer systems

    NASA Technical Reports Server (NTRS)

    Houck, J. R.

    1983-01-01

    A 3He cryostat which was constructed to cool a germanium bolometer for use as an infrared detector at submillimeter wavelength is discussed. The system had better sensitivity than any other existing system for these wavelengths; the system could be improved if better optical coupling could be achieved between the bolometer and the incoming photon stream. Considerable effort was expended to improve this coupling. Even the best results however, fell short of an ideal system by a factor of nearly 5 in coupling efficiency.

  12. Neutron transmutation doped Ge bolometers

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  13. First array of enriched Zn^{82}Se bolometers to search for double beta decay

    NASA Astrophysics Data System (ADS)

    Artusa, D. R.; Balzoni, A.; Beeman, J. W.; Bellini, F.; Biassoni, M.; Brofferio, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Cruciani, A.; D'Addabbo, A.; Dafinei, I.; Di Domizio, S.; di Vacri, M. L.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Keppel, G.; Maino, M.; Mancuso, M.; Martinez, M.; Morganti, S.; Nagorny, S.; Nastasi, M.; Nisi, S.; Nones, C.; Orio, F.; Orlandi, D.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Pirro, S.; Pozzi, S.; Previtali, E.; Puiu, A.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.; Zolotarova, A.

    2016-07-01

    The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in ^{82}Se, the Zn^{82}Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn^{82}Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-0.

  14. Bolometers - Ultimate sensitivity, optimization, and amplifier coupling

    NASA Technical Reports Server (NTRS)

    Mather, J. C.

    1984-01-01

    Theoretical expressions for Johnson noise and thermal noise in bolometers are considered, and optimization with respect to thermal conductivity and bias power is performed. Numerical approximations are given for the ultimate NEP of bolometers as a function of material parameters and compared with photon noise including photon correlations. A resonating capacitor is shown to improve the coupling to an amplifier, so that the amplifier need not limit performance even for very low temperature bolometers.

  15. Improved fabrication techniques for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Lange, A. E.; Kreysa, E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.

    1983-01-01

    Techniques are described for producing improved infrared bolometers from doped germanium. Ion implantation and sputter metalization have been used to make ohmic electrical contacts to Ge:Ga chips. This method results in a high yield of small monolithic bolometers with very little low-frequency noise. When one of these chips is used as the thermometric element of a composite bolometer, it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond has been measured and found to be undesirably large. A procedure for soldering the chip to a metalized portion of the substrate is described which reduced this resistance. The contribution of the metal film absorber to the heat capacity of a composite bolometer has been measured. The heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber has significantly lower heat capacity. A low temperature blackbody calibrator has been built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approx. 0.1 sr sq cm was constructed using the new techniques. In negligible background it has an optical NEP of 3.6 10((exp -15) W/sq root of Hz at 1.0 K with a time constant of 20 ms. The noise in this bolometer is white above 2.5 Hz and is somewhat below the value predicted by thermodynamic equilibrium theory. It is in agreement with calculations based on a recent nonequilibrium theory.

  16. Infrared-Bolometer Arrays with Reflective Backshorts

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Abrahams, John; Allen, Christine A.

    2011-01-01

    Integrated circuits that incorporate square arrays of superconducting-transition- edge bolometers with optically reflective backshorts are being developed for use in image sensors in the spectral range from far infrared to millimeter wavelengths. To maximize the optical efficiency (and, thus, sensitivity) of such a sensor at a specific wavelength, resonant optical structures are created by placing the backshorts at a quarter wavelength behind the bolometer plane. The bolometer and backshort arrays are fabricated separately, then integrated to form a single unit denoted a backshort-under-grid (BUG) bolometer array. In a subsequent fabrication step, the BUG bolometer array is connected, by use of single-sided indium bump bonding, to a readout device that comprises mostly a superconducting quantum interference device (SQUID) multiplexer circuit. The resulting sensor unit comprising the BUG bolometer array and the readout device is operated at a temperature below 1 K. The concept of increasing optical efficiency by use of backshorts at a quarter wavelength behind the bolometers is not new. Instead, the novelty of the present development lies mainly in several features of the design of the BUG bolometer array and the fabrication sequence used to implement the design. Prior to joining with the backshort array, the bolometer array comprises, more specifically, a square grid of free-standing molybdenum/gold superconducting-transition-edge bolometer elements on a 1.4- m-thick top layer of silicon that is part of a silicon support frame made from a silicon-on-insulator wafer. The backshort array is fabricated separately as a frame structure that includes support beams and contains a correspond - ing grid of optically reflective patches on a single-crystal silicon substrate. The process used to fabricate the bolometer array includes standard patterning and etching steps that result in the formation of deep notches in the silicon support frame. These notches are designed to

  17. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  18. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  19. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  20. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  1. 950 keV X-Band Linac For Material Recognition Using Two-Fold Scintillator Detector As A Concept Of Dual-Energy X-Ray System

    SciTech Connect

    Lee, Kiwoo; Natsui, Takuya; Hirai, Shunsuke; Uesaka, Mitsuru; Hashimoto, Eiko

    2011-06-01

    One of the advantages of applying X-band linear accelerator (Linac) is the compact size of the whole system. That shows us the possibility of on-site system such as the custom inspection system in an airport. As X-ray source, we have developed X-band Linac and achieved maximum X-ray energy 950 keV using the low power magnetron (250 kW) in 2 {mu}s pulse length. The whole size of the Linac system is 1x1x1 m{sup 3}. That is realized by introducing X-band system. In addition, we have designed two-fold scintillator detector in dual energy X-ray concept. Monte carlo N-particle transport (MCNP) code was used to make up sensor part of the design with two scintillators, CsI and CdWO4. The custom inspection system is composed of two equipments: 950 keV X-band Linac and two-fold scintillator and they are operated simulating real situation such as baggage check in an airport. We will show you the results of experiment which was performed with metal samples: iron and lead as targets in several conditions.

  2. Improved fabrication techniques for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Lange, A. E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Ion implantation and sputter metallization are used to produce ohmic electrical contacts to Ge:Ga chips. The method is shown to give a high yield of small monolithic bolometers with very little low-frequency noise. It is noted that when one of the chips is used as the thermometric element of a composite bolometer it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond is measured and found to be undesirably large. A procedure for soldering the chip to a metallized portion of the substrate in such a way as to reduce this resistance is outlined. An evaluation is made of the contribution of the metal film absorber to the heat capacity of a composite bolometer. It is found that the heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber possesses significantly lower heat capacity. A low-temperature blackbody calibrator is built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approximately 0.1 sr sq cm is constructed using the new techniques. The noise in this bolometer is white above 2.5 Hz and is slightly below the value predicted by thermodynamic equilibrium theory.

  3. Submillimeter Bolometer Array for the CSO

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Hunter, T. R.; Benford, D. J.; Phillips, T. G.

    We are building a bolometer array for use as a submillimeter continuum camera for the Caltech Submillimeter Observatory (CSO) located on Mauna Kea. This effort is a collaboration with Moseley et al. at Goddard Space Flight Center, who have developed the technique for fabricating monolithic bolometer arrays on Si wafers, as well as a sophisticated data taking system to use with these arrays (Moseley et al. 1984). Our primary goal is to construct a camera with 1x24 bolometer pixels operating at 350 and 450 microns using a 3He refrigerator. The monolithic bolometer arrays are fabricated using the techniques of photolithography and micromachining. Each pixel of the array is suspended by four thin Si legs 2 mm long and 12x14 square microns in cross section. These thin legs, obtained by wet Si etching, provide the weak thermal link between the bolometer pixel and the heat sink. A thermistor is formed on each bolometer pixel by P implantation compensated with 50% B. The bolometer array to be used for the camera will have a pixel size of 1x2 square millimeters, which is about half of the CSO beam size at a wavelength of 400 microns. We plan to use mirrors to focus the beam onto the pixels intead of Winston cones. In order to eliminate background radiation from warm surroundings reaching the bolometers, cold baffles will be inserted along the beam passages. To increase the bolometer absorption to radiation, a thin metal film will be deposited on the back of each bolometer pixel. It has been demonstrated that a proper impedance match of the bolometer element can increase the bolometer absorption efficiency to about 50% (Clarke et al., 1978). The use of baffle approach to illumination will make it easier for us to expand to more pixels in the future. The first stage amplification will be performed with cold FETs, connected to each bolometer pixel. Signals from each bolometer will be digitized using a 16 bit A/D with differential inputs. The digitizing frequency will be up to

  4. Semiconductor Bolometers Give Background-Limited Performance

    NASA Technical Reports Server (NTRS)

    Goebel, John; McMurray, Robert

    2006-01-01

    Semiconductor bolometers that are capable of detecting electromagnetic radiation over most or all of the infrared spectrum and that give background-limited performance at operating temperatures from 20 to 300 K have been invented. The term background-limited performance as applied to a bolometer, thermopile, or other infrared detector signifies that the ability to detect infrared signals that originate outside the detector is limited primarily by thermal noise attributable to the background radiation generated external to the bolometer. The signal-to-noise ratios and detectivities of the bolometers and thermopiles available prior to this invention have been lower than those needed for background-limited performance by factors of about 100 and 10, respectively. Like other electrically resistive bolometers, a device according to the invention exhibits an increase in electrical resistance when heated by infrared radiation. Depending on whether the device is operated under the customary constant- current or constant-voltage bias, the increase in electrical resistance can be measured in terms of an increase in voltage across the device or a decrease in current through the device, respectively. In the case of a semiconductor bolometer, it is necessary to filter out visible and shorter-wavelength light that could induce photoconductivity and thereby counteract all or part of the desired infrared- induced increase in resistance. The basic semiconductor material of a bolometer according to the invention is preferably silicon doped with one or more of a number of elements, each of which confers a different variable temperature coefficient of resistance. Suitable dopants include In, Ga, S, Se, Te, B, Al, As, P, and Sb. The concentration of dopant preferably lies in the range between 0.1 and 1,000 parts per billion.

  5. Array of Bolometers for Submillimeter- Wavelength Operation

    NASA Technical Reports Server (NTRS)

    Bock, James; Turner, Anthony

    2007-01-01

    A feed-horn-coupled monolithic array of micromesh bolometers is undergoing development for use in a photometric camera. The array is designed for conducting astrophysical observations in a wavelength band centered at 350 m. The bolometers are improved versions of previously developed bolometers comprising metalized Si3N4 micromesh radiation absorbers coupled with neutron- transmutation-doped Ge thermistors. Incident radiation heats the absorbers above a base temperature, changing the electrical resistance of each thermistor. In the present array of improved bolometers (see figure), the thermistors are attached to the micromesh absorbers by indium bump bonds and are addressed by use of lithographed, vapor-deposited electrical leads. This architecture reduces the heat capacity and minimizes the thermal conductivity to 1/20 and 1/300, respectively, of earlier versions of these detectors, with consequent improvement in sensitivity and speed of response. The micromesh bolometers, intended to operate under an optical background set by thermal emission from an ambient-temperature space-borne telescope, are designed such that the random arrival of photons ("photon noise") dominates the noise sources arising from the detector and readout electronics. The micromesh is designed to be a highly thermally and optically efficient absorber with a limiting response time of about 100 s. The absorber and thermistor heat capacity are minimized in order to give rapid speed of response. Due to the minimization of the absorber volume, the dominant source of heat capacity arises from the thermistor.

  6. Performance of new handheld IR camera using uncooled bolometer FPA

    NASA Astrophysics Data System (ADS)

    Sone, Takanori; Ohkawa, Norio; Kawashima, Yasuo; Matsui, Yasuji; Sugiura, Yosuke; Araki, Tomiharu; Kamozawa, Makoto; Ueno, Masashi; Kaneda, Osamu; Ishikawa, Tomohiro; Hata, Hisatoshi; Hashima, Kazuo; Nakagi, Yoshiyuki; Yamada, Akira; Kimata, Masafumi

    1996-06-01

    A camera using an uncooled infrared image sensor has been developed. This image sensor is a bolometer focal plane array (FPA), of which the readout circuit is designed to minimize the temperature drift or the pattern noise caused by the changes of the ambient temperature. The circuit has a bolometer for the load resistor, which has the same temperature coefficient of resistance as that of the pixel bolometer. Therefore the signal change induced by the temperature change of the FPA substrate is reduced because the resistance change of the load bolometer compensates for that of the pixel bolometer. The effectiveness of the drift- compensating circuit has been confirmed with a prototype handheld camera.

  7. Characterising the SCUBA-2 superconducting bolometer arrays

    NASA Astrophysics Data System (ADS)

    Bintley, Dan; MacIntosh, Michael J.; Holland, Wayne S.; Friberg, Per; Walther, Craig; Atkinson, David; Kelly, Dennis; Gao, Xiaofeng; Ade, Peter A. R.; Grainger, William; House, Julian; Moncelsi, Lorenzo; Hollister, Matthew I.; Woodcraft, Adam; Dunare, Camelia; Parkes, William; Walton, Anthony J.; Irwin, Kent D.; Hilton, Gene C.; Niemack, Michael; Reintsema, Carl D.; Amiri, Mandana; Burger, Bryce; Halpern, Mark; Hasselfield, Matthew; Hill, Jeff; Kycia, J. B.; Mugford, C. G. A.; Persaud, Lauren

    2010-07-01

    SCUBA-2 is a state of the art 10,000 pixel submillimeter camera installed and being commissioned at the James Clerk Maxwell Telescope (JCMT) providing wide-field simultaneous imaging at wavelengths of 450 and 850 microns. At each wavelength there are four 32 by 40 sub-arrays of superconducting Transition Edge Sensor (TES) bolometers, each packaged with inline SQUID multiplexed readout and amplifier. In this paper we present the results of characterising individual 1280 bolometer science grade sub-arrays, both in a dedicated 50mk dilution refrigerator test facility and in the instrument installed at the JCMT.

  8. The ITER bolometer diagnostic: status and plans.

    PubMed

    Meister, H; Giannone, L; Horton, L D; Raupp, G; Zeidner, W; Grunda, G; Kalvin, S; Fischer, U; Serikov, A; Stickel, S; Reichle, R

    2008-10-01

    A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration. PMID:19044656

  9. Optimization of the performance of segmented scintillators for radiotherapy imaging through novel binning techniques

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Choroszucha, Richard B.; Zhao, Qihua; Jiang, Hao; Liu, Langechuan

    2014-02-01

    Thick, segmented crystalline scintillators have shown increasing promise as replacement x-ray converters for the phosphor screens currently used in active matrix flat-panel imagers (AMFPIs) in radiotherapy, by virtue of providing over an order of magnitude improvement in the detective quantum efficiency (DQE). However, element-to-element misalignment in current segmented scintillator prototypes creates a challenge for optimal registration with underlying AMFPI arrays, resulting in degradation of spatial resolution. To overcome this challenge, a methodology involving the use of a relatively high resolution AMFPI array in combination with novel binning techniques is presented. The array, which has a pixel pitch of 0.127 mm, was coupled to prototype segmented scintillators based on BGO, LYSO and CsI:Tl materials, each having a nominal element-to-element pitch of 1.016 mm and thickness of ∼1 cm. The AMFPI systems incorporating these prototypes were characterized at a radiotherapy energy of 6 MV in terms of modulation transfer function, noise power spectrum, DQE, and reconstructed images of a resolution phantom acquired using a cone-beam CT geometry. For each prototype, the application of 8 × 8 pixel binning to achieve a sampling pitch of 1.016 mm was optimized through use of an alignment metric which minimized misregistration and thereby improved spatial resolution. In addition, the application of alternative binning techniques that exclude the collection of signal near septal walls resulted in further significant improvement in spatial resolution for the BGO and LYSO prototypes, though not for the CsI:Tl prototype due to the large amount of optical cross-talk resulting from significant light spread between scintillator elements in that device. The efficacy of these techniques for improving spatial resolution appears to be enhanced for scintillator materials that exhibit mechanical hardness, high density and high refractive index, such as BGO. Moreover, materials

  10. Optimization of the Performance of Segmented Scintillators for Radiotherapy Imaging through Novel Binning Techniques

    PubMed Central

    El-Mohri, Youcef; Antonuk, Larry E.; Choroszucha, Richard B.; Zhao, Qihua; Jiang, Hao; Liu, Langechuan

    2014-01-01

    Thick, segmented crystalline scintillators have shown increasing promise as replacement x-ray converters for the phosphor screens currently used in active matrix flat-panel imagers (AMFPIs) in radiotherapy, by virtue of providing over an order of magnitude improvement in the DQE. However, element-to-element misalignment in current segmented scintillator prototypes creates a challenge for optimal registration with underlying AMFPI arrays, resulting in degradation of spatial resolution. To overcome this challenge, a methodology involving the use of a relatively high resolution AMFPI array in combination with novel binning techniques is presented. The array, which has a pixel pitch of 0.127 mm, was coupled to prototype segmented scintillators based on BGO, LYSO and CsI:Tl materials, each having a nominal element-to-element pitch of 1.016 mm and thickness of ~1 cm. The AMFPI systems incorporating these prototypes were characterized at a radiotherapy energy of 6 MV in terms of MTF, NPS, DQE, and reconstructed images of a resolution phantom acquired using a cone-beam CT geometry. For each prototype, the application of 8×8 pixel binning to achieve a sampling pitch of 1.016 mm was optimized through use of an alignment metric which minimized misregistration and thereby improved spatial resolution. In addition, the application of alternative binning techniques that exclude the collection of signal near septal walls resulted in further significant improvement in spatial resolution for the BGO and LYSO prototypes, though not for the CsI:Tl prototype due to the large amount of optical cross-talk resulting from significant light spread between scintillator elements in that device. The efficacy of these techniques for improving spatial resolution appears to be enhanced for scintillator materials that exhibit mechanical hardness, high density and high refractive index, such as BGO. Moreover, materials that exhibit these properties as well as offer significantly higher light

  11. Optimization of the performance of segmented scintillators for radiotherapy imaging through novel binning techniques.

    PubMed

    El-Mohri, Youcef; Antonuk, Larry E; Choroszucha, Richard B; Zhao, Qihua; Jiang, Hao; Liu, Langechuan

    2014-02-21

    Thick, segmented crystalline scintillators have shown increasing promise as replacement x-ray converters for the phosphor screens currently used in active matrix flat-panel imagers (AMFPIs) in radiotherapy, by virtue of providing over an order of magnitude improvement in the detective quantum efficiency (DQE). However, element-to-element misalignment in current segmented scintillator prototypes creates a challenge for optimal registration with underlying AMFPI arrays, resulting in degradation of spatial resolution. To overcome this challenge, a methodology involving the use of a relatively high resolution AMFPI array in combination with novel binning techniques is presented. The array, which has a pixel pitch of 0.127 mm, was coupled to prototype segmented scintillators based on BGO, LYSO and CsI:Tl materials, each having a nominal element-to-element pitch of 1.016 mm and thickness of ∼ 1 cm. The AMFPI systems incorporating these prototypes were characterized at a radiotherapy energy of 6 MV in terms of modulation transfer function, noise power spectrum, DQE, and reconstructed images of a resolution phantom acquired using a cone-beam CT geometry. For each prototype, the application of 8 × 8 pixel binning to achieve a sampling pitch of 1.016 mm was optimized through use of an alignment metric which minimized misregistration and thereby improved spatial resolution. In addition, the application of alternative binning techniques that exclude the collection of signal near septal walls resulted in further significant improvement in spatial resolution for the BGO and LYSO prototypes, though not for the CsI:Tl prototype due to the large amount of optical cross-talk resulting from significant light spread between scintillator elements in that device. The efficacy of these techniques for improving spatial resolution appears to be enhanced for scintillator materials that exhibit mechanical hardness, high density and high refractive index, such as BGO. Moreover, materials

  12. High-temperature-superconducting magnetic susceptibility bolometer

    NASA Technical Reports Server (NTRS)

    Brasunas, J.; Lakew, B.; Lee, C.

    1992-01-01

    An infrared detector called the magnetic susceptibility bolometer is introduced which is based on the tmperature dependence of the diamagnetic screening of a high-Tc superconductor film near Tc. Results are reported for the response of a prototype model to modulated blackbody radiation. Possible improvements are discussed as is the potential sensitivity of an improved device.

  13. Multimode Bolometer Development for the PIXIE Instrument

    NASA Technical Reports Server (NTRS)

    Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.

    2016-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With approximately 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.

  14. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  15. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    SciTech Connect

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-07-15

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter.

  16. A 65 nm CMOS LNA for Bolometer Application

    NASA Astrophysics Data System (ADS)

    Huang, Tom Nan; Boon, Chirn Chye; Zhu, Forest Xi; Yi, Xiang; He, Xiaofeng; Feng, Guangyin; Lim, Wei Meng; Liu, Bei

    2016-04-01

    Modern bolometers generally consist of large-scale arrays of detectors. Implemented in conventional technologies, such bolometer arrays suffer from integrability and productivity issues. Recently, the development of CMOS technologies has presented an opportunity for the massive production of high-performance and highly integrated bolometers. This paper presents a 65-nm CMOS LNA designed for a millimeter-wave bolometer's pre-amplification stage. By properly applying some positive feedback, the noise figure of the proposed LNA is minimized at under 6 dB and the bandwidth is extended to 30 GHz.

  17. The Dielectric Bolometer, A New Type of Thermal Radiation Detector

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.

    1960-01-01

    Thermal detectors for the infrared, such as thermocouples and bolometers, are limited in their ultimate sensitivity predominantly by Johnson noise rather than temperature noise. Low noise figures are hard to achieve since Johnson noise preponderates temperature noise, which is the only essential noise for thermal detectors. The dielectric constants of some materials are sufficiently temperature dependent to make a new type of bolometer feasible. The basic theory of a dielectric bolometer, as shown here, promises noise figures below 3 decibels even at chopper frequencies well above the 1/tau value of the detector. Ferroelectrics such as barium-strontium titanate and others seem to be well suited for radiation-cooled dielectric bolometers.

  18. Testing of 100 mK bolometers for space applications

    NASA Technical Reports Server (NTRS)

    Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.

    1996-01-01

    Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.

  19. Massive composite bolometers for dark matter detection

    NASA Astrophysics Data System (ADS)

    Coron, N.; Artzner, G.; Leblanc, J.; Jegoudez, G.; de Marcillac, P.

    Massive composite bolometers cooled below 100 mK can detect recoil energy of particles with a very high efficiency. By using different absorber materials, some identification of dark matter particles will be possible. Resolutions in the 10 eV range for 1 kg of absorber are theoretically possible at 10 mK if the thermistor is well matched to the substrate (for the heat capacity) and to the electronics (for the impedance). A 25-gram sapphire bolometer at 100 mK obtain on a 60 KeV gamma line a 16/KeV FWHM resolution limited by extraneous noise. Bolometric spectra of radioactivity and cosmic-ray background obtained at sea level are presented.

  20. A monolithic bolometer array suitable for FIRST

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; LeDuc, H. G.; Lange, A. E.; Zmuidzinas, J.

    1997-01-01

    The development of arrays of infrared bolometers that are suitable for use in the Far Infrared and Submillimeter Telescope (FIRST) mission is reported. The array architecture is based on the silicon nitride micromesh bolometer currently baselined for use in the case of the Planck mission. This architecture allows each pixel to be efficiently coupled to one or both polarizations and to one or more spatial models of radiation. Micromesh structures are currently being developed, coupled with transistor-edge sensors and read out by a SQUID amplifier. If these devices are successful, then the relatively large cooling power available at 300 mK may enable a SQUID-based multiplexer to be integrated on the same wafer as the array, creating a monolithic, fully multiplexed, 2D array with relatively few connections to the sub-Kelvin stage.

  1. A Compact, Modular Superconducting Bolometer Array Package

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2008-01-01

    We have designed a detector package to house a superconducting bolometer array, SQUID multiplexers, bias and integration circuitry, optical filtering, electrical connectors, and thermal/mechanical interfaces. This package has been used successfully in the GISMO 2mm camera, a 128-pixel camera operating at a base temperature of 270mK. Operation at lower temperatures is allowed by providing direct heat sinking to the SQUIDS and bias resistors, which generate the bulk of the dissipation in the package. Standard electrical connectors provide reliable contact while enabling quick installation and removal of the package. Careful design has gone into the compensation for differing thermal expansions, the need for heat sinking of the bolometer array, and the placement of magnetic shielding in critical areas. In this presentation, we detail the design and performance of this detector package and describe its scalability to 1280- pixel arrays in the near future.

  2. Gold absorbing film for a composite bolometer

    NASA Technical Reports Server (NTRS)

    Dragovan, M.; Moseley, S. H.

    1984-01-01

    The principles governing the design of metal films are reviewed, with attention also given to the choice of metals. A description is then given of the characteristics of a bolometer with a gold absorbing film. It is demonstrated that gold is effective as an absorbing film for a millimeter bolometer operated at 1.5 K. At 1.5 K, gold is significantly better than bismuth since gold has a lower heat capacity for the absorbing film. At 0.3 K, gold and bismuth are both suitable. It is pointed out that at temperatures below 0.3 K, a superconducting absorbing film can have a heat capacity low enough not to dominate the heat capacity of the detector; for this reason, it may give better performance than a nonsuperconducting absorbing film.

  3. Fabrication of sensitive high Tc bolometers

    NASA Technical Reports Server (NTRS)

    Nahum, Michael; Verghese, S.; Hu, Qing; Richards, Paul L.; Char, K.; Newman, N.; Sachtjen, Scott A.

    1990-01-01

    The rapid change of resistance with temperature of high quality films of high T sub c superconductors can be used to make resistance thermometers with very low temperature noise. Measurements on c-axis yttrium barium copper oxide (YBCO) films have given a spectral intensity of temperature noise less than 4 times 10(exp -8) K/Hz(exp 1/2) at 10 Hz. Consequently, the opportunity exists to make useful bolometric infrared detectors that operate near 90 K which can be cooled with liquid nitrogen. The fabrication and measurement of two bolometer architectures are discussed. The first is a conventional bolometer which consists of a 3000 A thick YBCO film deposited in situ by laser ablation on top of a 500 A thick SrTiO3 thickness and diced into 1x1 mm(exp 2) bolometer chips. Gold black smoke was used as the radiation absorber. The voltage noise was less than the amplifier noise when the film was current biased. Optical measurements gave an NEP of 5 times 10(exp -11) W/Hz(exp 1/2) at 10 Hz. The second architecture is that of an antenna-coupled microbolometer which consists of a small (5x10 cubic microns) YBCO film deposited directly on a bulk substrate with a low thermal conductance (YSZ) and an impedance matched planar lithographed spiral or log-periodic antenna. This structure is produced by standard photolithographic techniques. Measurements gave an electrical NEP of 4.7 times 10(exp -12) W/Hz(exp 1/2) at 10 kHz. Measurements of the optical efficiency are in progress. The measured performance of both bolometers will be compared to other detectors operating at or above liquid nitrogen temperatures so as to identify potential applications.

  4. Performances of a large mass ZnSe bolometer to search for rare events

    NASA Astrophysics Data System (ADS)

    Beeman, J. W.; Bellini, F.; Cardani, L.; Casali, N.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Giuliani, A.; Nagorny, S.; Orio, F.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Tomei, C.; Vignati, M.

    2013-05-01

    Scintillating bolometers of ZnSe are the baseline choice of the LUCIFER experiment, whose aim is to observe the neutrinoless double beta decay of 82Se. The independent read-out of the heat and scintillation signals allows to identify and reject α particle interactions, the dominant background source for bolometric detectors. In this paper we report the performances of a ZnSe crystal operated within the LUCIFER R&D. We measured the scintillation yield, the energy resolution and the background in the energy region where the signal from 0νDBD decay of 82Se is expected with an exposure of 9.4 kg·days. With a newly developed analysis algorithm we improved the rejection of α events, and we estimated the increase in energy resolution obtained by the combination of the heat and light signals. For the first time we measured the light emitted by nuclear recoils, and found it to be compatible with zero. We conclude that the discrimination of nuclear recoils from β/γ interactions in the WIMPs energy region is possible, but low-noise light detectors are needed.

  5. Silicon nitride Micromesh Bolometer Array for Submillimeter Astrophysics.

    PubMed

    Turner, A D; Bock, J J; Beeman, J W; Glenn, J; Hargrave, P C; Hristov, V V; Nguyen, H T; Rahman, F; Sethuraman, S; Woodcraft, A L

    2001-10-01

    We present the design and performance of a feedhorn-coupled bolometer array intended for a sensitive 350-mum photometer camera. Silicon nitride micromesh absorbers minimize the suspended mass and heat capacity of the bolometers. The temperature transducers, neutron-transmutation-doped Ge thermistors, are attached to the absorber with In bump bonds. Vapor-deposited electrical leads address the thermistors and determine the thermal conductance of the bolometers. The bolometer array demonstrates a dark noise-equivalent power of 2.9 x 10(-17) W/ radicalHz and a mean heat capacity of 1.3 pJ/K at 390 mK. We measure the optical efficiency of the bolometer and feedhorn to be 0.45-0.65 by comparing the response to blackbody calibration sources. The bolometer array demonstrates theoretical noise performance arising from the photon and the phonon and Johnson noise, with photon noise dominant under the design background conditions. We measure the ratio of total noise to photon noise to be 1.21 under an absorbed optical power of 2.4 pW. Excess noise is negligible for audio frequencies as low as 30 mHz. We summarize the trade-offs between bare and feedhorn-coupled detectors and discuss the estimated performance limits of micromesh bolometers. The bolometer array demonstrates the sensitivity required for photon noise-limited performance from a spaceborne, passively cooled telescope. PMID:18364768

  6. Approaches on calibration of bolometer and establishment of bolometer calibration device

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong

    2015-10-01

    Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.

  7. Preparing the Alcator C bolometer system for use on MTX (Microwave Tokamak Experiment)

    NASA Astrophysics Data System (ADS)

    Marinak, Marty

    1988-02-01

    The Alcator C bolometer array has been modified to be compatible with electron cyclotron heating on the Microwave Tokamak Experiment. Fine wire mesh screens are mounted on the front of the bolometer collimator tubes to attenuate microwave heating of the bolometers. Structural changes eliminate openings in the seams of the bolometer housing, which represent pathways for microwaves to enter the system. This paper outlines the operational principles of the bolometer system, discusses the measured and predicted performance characteristics of the bolometer array, and includes a concise guide to the operation of the bolometer controller.

  8. Cosmic-ray backgrounds in infrared bolometers

    NASA Technical Reports Server (NTRS)

    Nolt, I. G.; Radostitz, J. V.; Carlotti, M.; Carli, B.; Mencaraglia, F.

    1985-01-01

    Model calculations for the production of cosmic ray events in IR detectors by energy impulses due to fast charged particles' ionization trails are presently compared to the pulse-amplitude spectrum observed from a balloon at an altitude of 38 km. The results are pertinent to the current understanding of cosmic ray backgrounds found in all high sensitivity bolometer applications. The observed signal transients are in all details consistent with the modeling of known cosmic charged particle flux characteristics and with the detector response. Generally, the optics design should minimize detector/substrate cross section.

  9. An adiabatic demagnetization refrigerator for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Britt, R. D.; Richards, P. L.

    1981-01-01

    Adiabatic demagnetization refrigerators have been built and installed in small portable liquid helium cryostats to test the feasibility of this method of cooling infrared bolometric detectors to temperatures below 0.3 K. Performance has been achieved which suggests that bolometer temperatures of 0.2 K can be maintained for periods of approximately 60 hours. Applications to sensitive infrared detection from ground-based telescopes and space satellites are discussed. Design data are given which permit the evaluation of refrigerator performance for a variety of design parameters.

  10. Neutron-transmutation-doped germanium bolometers

    NASA Technical Reports Server (NTRS)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  11. Rejection of Alpha Surface Background in Non-scintillating Bolometric Detectors: The ABSuRD Project

    NASA Astrophysics Data System (ADS)

    Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; di Vacri, M. L.; Gorla, P.; Pavan, M.; Yeh, M.

    2016-08-01

    Due to their excellent energy resolution values and the vast choice of possible materials, bolometric detectors are currently widely used in the physics of rare events. A limiting aspect for bolometers rises from their inability to discriminate among radiation types or surface from bulk events. It has been demonstrated that the main limitation to sensitivity for purely bolometric detectors is represented by surface alpha contaminations, causing a continuous background that cannot be discriminated. A new scintillation-based technique for the rejection of surface alpha background in non-scintillating bolometric experiments is proposed in this work. The idea is to combine a scintillating and a high sensitivity photon detector with a non-scintillating absorber. We present results showing the possibility to reject events due to alpha decay at or nearby the surface of the crystal.

  12. Characteristics of a custom integrated bolometer array

    NASA Astrophysics Data System (ADS)

    Thomas, Paul J.; Duggan, Philip; Pope, Timothy D.; Sinclair, Peter M.; Soffer, Raymond; Evstigneev, Alexander; Zackodnick, Nadine; George, Matthew

    1998-11-01

    Integration of detector arrays and digital CMOS circuitry can confer significant performance improvements on an imaging system. In this paper we present an integrated sensor array based on (Figure 1), micro bolometer (MB) elements deposited on a CMOS substrate containing electronics for random access readout, amplification, gain and offset control and digitization. Such integrated MB arrays are effective components in a novel implementation of an earth-horizon attitude sensor for satellites. The bolometer elements are used to distinguish the earth's thermal IR from the space background. For this application, the reduced detectivity of MB arrays compared with cooled IR detectors can be tolerated. Low mass, enhanced reliability, and low power consumption are gained by using an uncooled IR detector, and by using an integrated circuit design. These considerations are especially important for microsatellites. The low cost per array facilitates the use of multiple arrays, which allows significant flexibility in the optical and systems designs. The integrated chip design allows for random-access readout, on-chip gain and offset compensation and local control of pixel geometry, which contribute to the overall system effectiveness and help to allay any performance reductions that come from reduced detectivity.

  13. Amorphous silicon bolometer for fire/rescue

    NASA Astrophysics Data System (ADS)

    Francisco, Glenn L.

    2001-03-01

    Thermal imaging sensors have completely changed the way the world views fire and rescue applications. Recently, in the uncooled infrared camera and microbolometer detector areas, major strides have been made in manufacturing personal fire and rescue sensors. A family of new amorphous silicon microbolometers are being produced utilizing low cost, low weight, ultra low power, small size, high volume vacuum packaged silicon wafer-level focal plane array technologies. These bolometers contain no choppers or thermoelectric coolers, require no manual calibration and use readily available commercial off-the-shelf components. Manufacturing and packaging discoveries have allowed infrared sensitive silicon arrays to be produced with the same methods that have driven the rapidly advancing digital wireless telecommunications industries. Fire and rescue professionals are now able to conduct minimum time thermal imaging penetration, surveillance, detection, recognition, rescue and egress while maintaining situational awareness in a manner consistent with the modern technological applications. The purpose of this paper is to describe an uncooled micro bolometer infrared camera approach for meeting fire/rescue wants, needs and requirements, with application of recent technology advancements. This paper also details advances in bolometric focal plane arrays, optical and circuit card technologies, while providing a glimpse into the future of micro sensor growth. Technical barriers are addressed in light of constraints and lessons learned around this technology.

  14. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2014-07-15

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  15. Scintillators and applications thereof

    SciTech Connect

    Williams, Richard T.

    2015-09-01

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  16. BoA: a versatile software for bolometer data reduction

    NASA Astrophysics Data System (ADS)

    Schuller, Frédéric

    2012-09-01

    Together with the development of the Large APEX Bolometer Camera (LABOCA) for the Atacama Pathfinder Experiment (APEX), a new data reduction package has been written. This software naturally interfaces with the telescope control system, and provides all functionalities for the reduction, analysis and visualization of bolometer data. It is used at APEX for real time processing of observations performed with LABOCA and other bolometer arrays, providing feedback to the observer. Written in an easy-to-script language, BoA is also used offline to reduce APEX continuum data. In this paper, the general structure of this software is presented, and its online and offline capabilities are described.

  17. Investigation of electrical noise in selenium-immersed thermistor bolometers

    NASA Technical Reports Server (NTRS)

    Tarpley, J. L.; Sarmiento, P. D.

    1980-01-01

    The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.

  18. Antenna-coupled arrays of voltage-biased superconducting bolometers

    SciTech Connect

    Myers, Michael J.; Lee, Adrian T.; Richards, P.L.; Schwan, D.; Skidmore, J.T.; Smith, A.D.; Spieler, H.; Yoon, Jongsoo

    2001-07-23

    We report on the development of antenna-coupled Voltage-biased Superconducting Bolometers (VSBs) which use Transition-edge Sensors (TES). Antenna coupling can greatly simplify the fabrication of large multi-frequency bolometer arrays compared to horn-coupled techniques. This simplification can make it practical to implement 1000+ element arrays that fill the focal plane of mm/sub-mm wave telescopes. We have designed a prototype device with a double-slot dipole antenna, integrated band-defining filters, and a membrane-suspended bolometer. A test chip has been constructed and will be tested shortly.

  19. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  20. Scintillator materials for calorimetry

    SciTech Connect

    Weber, M.J.

    1994-09-01

    Requirements for fast, dense scintillator materials for calorimetry in high energy physics and approaches to satisfying these requirements are reviewed with respect to possible hosts and luminescent species. Special attention is given to cerium-activated crystals, core-valence luminescence, and glass scintillators. The present state of the art, limitations, and suggestions for possible new scintillator materials are presented.

  1. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  2. Scintillator reflective layer coextrusion

    SciTech Connect

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  3. Focal Plane Arrays of Voltage-Biased Superconducting Bolometers

    NASA Technical Reports Server (NTRS)

    Myers, Michael J.; Clarke, John; Gildemeister, J. M.; Lee, Adrian T.; Richards, P. L.; Schwan, Dan; Skidmore, J. T.; Spieler, Helmuth; Yoon, Jongsoo

    2001-01-01

    The 200-micrometer to 3-mm wavelength range has great astronomical and cosmological significance. Science goals include characterization of the cosmic microwave background, measurement of the Sunyaev-Zel'dovich effect in galaxy clusters, and observations of forming galaxies. Cryogenic bolometers are the most sensitive broadband detectors in this frequency range. Because single bolometer pixels are reaching the photon noise limit for many observations, the development of large arrays will be critical for future science progress. Voltage-biased superconducting bolometers (VSBs) have several advantages compared to other cryogenic bolometers. Their strong negative electrothermal feedback enhances their linearity, speed, and stability. The large noise margin of the SQUID readout enables multiplexed readout schemes, which are necessary for developing large arrays. In this paper, we discuss the development of a large absorber-coupled array, a frequency-domain SQUID readout multiplexer, and an antenna-coupled VSB design.

  4. Dual-gated bilayer graphene hot-electron bolometer.

    PubMed

    Yan, Jun; Kim, M-H; Elle, J A; Sushkov, A B; Jenkins, G S; Milchberg, H M; Fuhrer, M S; Drew, H D

    2012-07-01

    Graphene is an attractive material for use in optical detectors because it absorbs light from mid-infrared to ultraviolet wavelengths with nearly equal strength. Graphene is particularly well suited for bolometers-devices that detect temperature-induced changes in electrical conductivity caused by the absorption of light-because its small electron heat capacity and weak electron-phonon coupling lead to large light-induced changes in electron temperature. Here, we demonstrate a hot-electron bolometer made of bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The bolometer exhibits a noise-equivalent power (33 fW Hz(-1/2) at 5 K) that is several times lower, and intrinsic speed (>1 GHz at 10 K) three to five orders of magnitude higher than commercial silicon bolometers and superconducting transition-edge sensors at similar temperatures. PMID:22659611

  5. Superconducting cuprate heterostructures for hot electron bolometers

    NASA Astrophysics Data System (ADS)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  6. An Analysis Package for Bolometer Ground Testing

    NASA Astrophysics Data System (ADS)

    Schulz, B.; Zhang, L.; Ganga, K.; Nguyen, H.; Holmes, W.

    2005-12-01

    ESA's Herschel Space Observatory, to be launched in 2007, will be sensitive to far infrared wavelengths beyond 60 μm. The longer wavelength interval between 200 and 670 μm will be covered by SPIRE, a combination of broad band camera and Fourier transform spectrometer. SPIRE will use exclusively spiderweb bolometers as detectors, which are manufactured and tested at JPL. We describe a data analysis package developed at the NASA Herschel Science Center at IPAC in support of the testing activity, which expects to cover 12 detector arrays with between 24 and 144 channels each. The package consists of a widget based viewer allowing immediate display and limited processing of the 193 recorded data channels in the lab and a suite of subroutines and scripts, allowing fast and flexible pipeline data reduction.

  7. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  8. Infrared bolometers with silicon nitride micromesh absorbers

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Turner, A. D.; DelCastillo, H. M.; Beeman, J. W.; Lange, A. E.; Mauskopf, P. D.

    1996-01-01

    Sensitive far infrared and millimeter wave bolometers fabricated from a freestanding membrane of low stress silicon nitride are reported. The absorber, consisting of a metallized silicon nitride micromesh thermally isolated by radial legs of silicon nitride, is placed in an integrating cavity to efficiently couple to single mode or multiple mode infrared radiation. This structure provides low heat capacity, low thermal conduction and minimal cross section to energetic particles. A neutron transmutation doped Ge thermister is bump bonded to the center of the device and read out with evaporated Cr-Au leads. The limiting performance of the micromesh absorber is discussed and the recent results obtained from a 300 mK cold stage are summarized.

  9. Superconducting cuprate heterostructures for hot electron bolometers

    SciTech Connect

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-25

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La{sub 2−x}Sr{sub x}CuO{sub 4} layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV∼γI{sup 3}, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g{sub e−ph}≈1 W/K cm{sup 2} at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  10. The resistive bolometer for radiated power measurement on EAST

    SciTech Connect

    Duan, Y. M.; Hu, L. Q.; Mao, S. T.; Chen, K. Y.; Lin, S. Y.; Collaboration: EAST Diagnostics Team

    2012-09-15

    The resistive bolometer system has been successfully employed on experimental advanced superconducting tokamak for the first time to measure the radiated power of plasma. The bolometer detectors are based on 4 {mu}m thick Pt absorbers deposited on 1.5 {mu}m thick SiN membranes. The system consists of 3 cameras with a total of 48 channels. The detector and the system setup are described in detail. The detector calibration and typical measurement results are presented as well.

  11. Antenna-coupled bolometer arrays using transition-edgesensors

    SciTech Connect

    Myers, Michael J.; Ade, Peter; Engargiola, Greg; Holzapfel,William; Lee,Adrian T.; O'Brient, Roger; Richards, Paul L.; Smith, Andy; Spieler, Helmuth; Tran, Huan

    2004-06-08

    We describe the development of an antenna-coupled bolometer array for use in a Cosmic Microwave Background polarization experiment. Prototype single pixels using double-slot dipole antennas and integrated microstrip band defining filters have been built and tested. Preliminary results of optical testing and simulations are presented. A bolometer array design based on this pixel will also be shown and future plans for application of the technology will be discussed.

  12. UEDGE code comparisons with DIII-D bolometer DATA

    SciTech Connect

    Daniel, J.M.

    1995-01-01

    This paper describes the work done to develop a bolometer post processor that converts volumetric radiated power values taken from a UEDGE solution, to a line integrated radiated power along chords of the bolometers in the DIII-D tokamak. The UEDGE code calculates plasma physics quantities, such as plasma density, radiated power, or electron temperature, and compares them to actual diagnostic measurements taken from the scrape off layer (SOL) and divertor regions of the DIII-D tokamak. Bolometers are devices measuring radiated power within the tokamak. The bolometer interceptors are made up of two complete arrays, an upper array with a vertical view and a lower array with a horizontal view, so that a two dimensional profile of the radiated power may be obtained. The bolometer post processor stores line integrated values taken from UEDGE solutions into a file in tabular format. Experimental data is then put into tabular form and placed in another file. Comparisons can be made between the UEDGE solutions and actual bolometer data. Analysis has been done to determine the accuracy of the plasma physics involved in producing UEDGE simulations.

  13. UEDGE code comparisons with DIII-D bolometer data

    SciTech Connect

    Daniel, J.M.

    1994-12-01

    This paper describes the work done to develop a bolometer post processor that converts volumetric radiated power values taken from a UEDGE solution, to a line integrated radiated power along chords of the bolometers in the DIII-D tokamak. The UEDGE code calculates plasma physics quantities, such as plasma density, radiated power, or electron temperature, and compares them to actual diagnostic measurements taken from the scrape off layer (SOL) and divertor regions of the DIII-D tokamak. Bolometers are devices measuring radiated power within the tokamak. The bolometer interceptors are made up of two complete arrays, an upper array with a vertical view and a lower array with a horizontal view, so that a two dimensional profile of the radiated power may be obtained. The bolometer post processor stores line integrated values taken from UEDGE solutions into a file in tabular format. Experimental data is then put into tabular form and placed in another file. Comparisons can be made between the UEDGE solutions and actual bolometer data. Analysis has been done to determine the accuracy of the plasma physics involved in producing UEDGE simulations.

  14. Recent development in organic scintillators

    NASA Technical Reports Server (NTRS)

    Horrocks, D. L.; Wirth, H. O.

    1969-01-01

    Discussion on recent developments of organic scintillators includes studies of organic compounds that form glass-like masses which scintillate and are stable at room temperature, correlations between molecular structure of organic scintillators and self-quenching, recently developed fast scintillators, and applications of liquid-scintillation counters.

  15. Shifting scintillator neutron detector

    SciTech Connect

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  16. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  17. Extruded plastic scintillation detectors

    SciTech Connect

    Anna Pla-Dalmau, Alan D. Bross and Kerry L. Mellott

    1999-04-16

    As a way to lower the cost of plastic scintillation detectors, commercially available polystyrene pellets have been used in the production of scintillating materials that can be extruded into different profiles. The selection of the raw materials is discussed. Two techniques to add wavelength shifting dopants to polystyrene pellets and to extrude plastic scintillating strips are described. Data on light yield and transmittance measurements are presented.

  18. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-11-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested. {copyright} {ital 1998 American Institute of Physics.}

  19. Study of equatorial scintillations

    NASA Technical Reports Server (NTRS)

    Pomalaza, J.; Woodman, R.; Tisnado, G.; Nakasone, E.

    1972-01-01

    Observations of the amplitude scintillations produced by the F-region in equatorial areas are presented. The equipment used for conducting the observations is described. The use of transmissions from the ATS-1, ATS-3, and ATS-5 for obtaining data is described. The two principal subjects discussed are: (1) correlation between satellite and incoherent radar observations of scintillations and (2) simultaneous observations of scintillations at 136 MHz and 1550 MHz.

  20. A Two-Dimensional, Semiconducting Bolometer Array for HAWC

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Babu, Schidananda R.; Bartels, Arlin E.; Dowell, C. Darren; Dotson, Jessie; Harper, D. Al; Moseley, Harvey; Rennick, Timothy

    2004-01-01

    The Stratospheric Observatory For Infrared Astronomy's (SOFIA's) High resolution Airborne Wideband Camera (HAWC) will use an ion-implanted silicon bolometer array developed at NASA s Goddard Space Flight Center (GSFC). The GSFC Pop-Up Detectors (PUDs) use a unique folding technique to enable a 12 x 32 element closepacked array of bolometers with a filling factor greater than 95%. The HAWC detector uses a resistive metal film on silicon to provide frequency independent, approx. 50% absorption over the 40 - 300 micron band. The silicon bolometers are manufactured in 32-element rows within silicon frames using Micro Electro Mechanical Systems (MEMS) silicon etching techniques. The frames are then cut, "folded", and glued onto a metallized, ceramic, thermal bus "bar". Optical alignment using micrometer jigs ensures their uniformity and correct placement. The rows are then stacked side-by-side to create the final 12 x 32 element array. A kinematic Kevlar suspension system isolates the 200 mK bolometer cold stage from the rest of the 4K detector housing. GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The Junction Field Effect Transistor (JFET) preamplifiers for all the signal channels operate at 120 K, yet they are electrically connected and located in close proximity to the bolometers. The JFET module design provides sufficient thermal isolation and heat sinking for these, so that their heat is not detected by the bolometers. Preliminary engineering results from the flight detector dark test run are expected to be available in July 2004. This paper describes the array assembly and mechanical and thermal design of the HAWC detector and the JFET module.

  1. A two-dimensional semiconducting bolometer array for HAWC

    NASA Astrophysics Data System (ADS)

    Voellmer, George M.; Allen, Christine A.; Babu, Sachidananda R.; Bartels, Arlin E.; Dowell, Charles D.; Dotson, Jessie L.; Harper, Doyle A.; Moseley, S. H., Jr.; Rennick, Timothy; Shirron, Peter J.; Smith, W. W.; Wollack, Edward J.

    2004-10-01

    The Stratospheric Observatory For Infrared Astronomy's (SOFIA's) High resolution Airborne Wideband Camera (HAWC) will use an ion-implanted silicon bolometer array developed at NASA's Goddard Space Flight Center (GSFC). The GSFC Pop-Up Detectors (PUDs) use a unique "folding" technique to enable a 12 x 32 element close-packed array of bolometers with a filling factor greater than 95%. The HAWC detector uses a resistive metal film on silicon to provide frequency independent, ~50% absorption over the 40 - 300 micron band. The silicon bolometers are manufactured in 32-element rows within silicon frames using Micro Electro Mechanical Systems (MEMS) silicon etching techniques. The frames are then cut, "folded", and glued onto a metallized, ceramic, thermal bus "bar". Optical alignment using micrometer jigs ensures their uniformity and correct placement. The rows are then stacked side-by-side to create the final 12 x 32 element array. A kinematic Kevlar suspension system isolates the 200 mK bolometer cold stage from the rest of the 4K detector housing. GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The Junction Field Effect Transistor (JFET) preamplifiers for all the signal channels operate at 120 K, yet they are electrically connected and located in close proximity to the bolometers. The JFET module design provides sufficient thermal isolation and heat sinking for these, so that their heat is not detected by the bolometers. Preliminary engineering results from the flight detector dark test run are expected to be available in July 2004. This paper describes the array assembly and mechanical and thermal design of the HAWC detector and the JFET module.

  2. Ultralow-Background Large-Format Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Oegerle, William (Technical Monitor)

    2002-01-01

    In the coming decade, work will commence in earnest on large cryogenic far-infrared telescopes and interferometers. All such observatories - for example, SAFIR, SPIRIT, and SPECS - require large format, two dimensional arrays of close-packed detectors capable of reaching the fundamental limits imposed by the very low photon backgrounds present in deep space. In the near term, bolometer array architectures which permit 1000 pixels - perhaps sufficient for the next generation of space-based instruments - can be arrayed efficiently. Demonstrating the necessary performance, with Noise Equivalent Powers (NEPs) of order 10-20 W/square root of Hz, will be a hurdle in the coming years. Superconducting bolometer arrays are a promising technology for providing both the performance and the array size necessary. We discuss the requirements for future detector arrays in the far-infrared and submillimeter, describe the parameters of superconducting bolometer arrays able to meet these requirements, and detail the present and near future technology of superconducting bolometer arrays. Of particular note is the coming development of large format planar arrays with absorber-coupled and antenna-coupled bolometers.

  3. Epitaxial graphene quantum dots for high-performance terahertz bolometers

    NASA Astrophysics Data System (ADS)

    El Fatimy, Abdel; Myers-Ward, Rachael L.; Boyd, Anthony K.; Daniels, Kevin M.; Gaskill, D. Kurt; Barbara, Paola

    2016-04-01

    Light absorption in graphene causes a large change in electron temperature due to the low electronic heat capacity and weak electron–phonon coupling. This property makes graphene a very attractive material for hot-electron bolometers in the terahertz frequency range. Unfortunately, the weak variation of electrical resistance with temperature results in limited responsivity for absorbed power. Here, we show that, due to quantum confinement, quantum dots of epitaxial graphene on SiC exhibit an extraordinarily high variation of resistance with temperature (higher than 430 MΩ K‑1 below 6 K), leading to responsivities of 1 × 1010 V W‑1, a figure that is five orders of magnitude higher than other types of graphene hot-electron bolometer. The high responsivity, combined with an extremely low electrical noise-equivalent power (∼2 × 10‑16 W Hz‑1/2 at 2.5 K), already places our bolometers well above commercial cooled bolometers. Additionally, we show that these quantum dot bolometers demonstrate good performance at temperature as high as 77 K.

  4. First Astronomical Use of Multiplexed Transition Edge Sensor Bolometers

    NASA Technical Reports Server (NTRS)

    Staguhn, J. G.; Ames, T. A.; Benford, D. J.; Chervenak, J. A.; Grossman, E. N.; Irwin, K. D.; Khan, S. A.; Maffei, B.; Moseley, S. H.; Pajot, F.

    2004-01-01

    We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Delta lambda/lambda = 1/7 at a resolution of delta lambda/lambda approx. 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE operates in the 350 m and 450 m bands. These bands cover line emission from the important star formation tracers neutral carbon (CI) and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry.

  5. Predicting the response of a submillimeter bolometer to cosmic rays.

    PubMed

    Woodcraft, Adam L; Sudiwala, Rashmi V; Ade, Peter A R; Griffin, Matthew J; Wakui, Elley; Bhatia, Ravinder S; Lange, Andrew E; Bock, James J; Turner, Anthony D; Yun, Minhee H; Beeman, Jeffrey W

    2003-09-01

    Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model. PMID:12962375

  6. Epitaxial graphene quantum dots for high-performance terahertz bolometers.

    PubMed

    El Fatimy, Abdel; Myers-Ward, Rachael L; Boyd, Anthony K; Daniels, Kevin M; Gaskill, D Kurt; Barbara, Paola

    2016-04-01

    Light absorption in graphene causes a large change in electron temperature due to the low electronic heat capacity and weak electron-phonon coupling. This property makes graphene a very attractive material for hot-electron bolometers in the terahertz frequency range. Unfortunately, the weak variation of electrical resistance with temperature results in limited responsivity for absorbed power. Here, we show that, due to quantum confinement, quantum dots of epitaxial graphene on SiC exhibit an extraordinarily high variation of resistance with temperature (higher than 430 MΩ K(-1) below 6 K), leading to responsivities of 1 × 10(10) V W(-1), a figure that is five orders of magnitude higher than other types of graphene hot-electron bolometer. The high responsivity, combined with an extremely low electrical noise-equivalent power (∼2 × 10(-16) W Hz(-1/2) at 2.5 K), already places our bolometers well above commercial cooled bolometers. Additionally, we show that these quantum dot bolometers demonstrate good performance at temperature as high as 77 K. PMID:26727199

  7. Multiplexed Readout of Thermal Bolometers with Superconducting Transition Edge Thermometers

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Chervenak, James A.; Freund, Mino M.; Kutyrev, Alexander S.; Moseley, S. Harvey; Shafer, Richard A.; Staguhn, Johannes G.; Grossman, Erich N.; Hilton, Gene C.

    2001-01-01

    History shows that in astronomy, more is better. In the near future, direct detector arrays for the far-infrared and submillimeter will contain hundreds to thousands of elements. A multiplexed readout is necessary for practical implementation of such arrays, and has been developed using SQUIDs. The technology permits a 32 x 32 array of bolometers to be read out using approximately 100 wires rather than the >2000 needed with direct wiring. These bolometer arrays are made by micromachining techniques, using superconducting transition edge sensors as the thermistors. We describe the development of this multiplexed superconducting bolometer array architecture as a step toward bringing about the first astronomically useful arrays of this design. This technology will be used in the Submillimeter and Far Infrared Experiment (SAFIRE) instrument on Stratospheric Observatory for Infrared Astronomy (SOFIA), and is a candidate for a wide variety of other spectroscopic and photometric instruments.

  8. Physics and design of advanced IR bolometers and photoconductors

    NASA Technical Reports Server (NTRS)

    Haller, E. E.

    1985-01-01

    The state-of-the-art in photoconductors and bolometers is reviewed, centering on the materials development and concepts of extrinsic Si and Ge devices. It is suggested that in the field of 2-D detector arrays the hybrid circuits containing a photoconductor or a photodiode array, bonded with In solder to a switched MOS readout device with up to 60 x 60 elements, will produce superior performance. Other systems discussed include charge-coupled devices, developed for visible-light imaging and adapted to IR imaging, and charge-injection devices, a monolithic combination of a standard photoconductor and a metal-insulator-semiconductor capacitor. Finally, it is pointed out that a nonequilibrium theory of bolometer noise demonstrates the possibility of reducing the traditionally accepted noise limits by 60 percent for Johnson noise and 30 percent for the noise from phonons in the thermal link of the bolometer.

  9. Model for excess noise in voltage-biased superconducting bolometers.

    PubMed

    Gildemeister, J M; Lee, A T; Richards, P L

    2001-12-01

    We are developing superconducting transition-edge bolometers for far-infrared and millimeter wavelengths. The bolometers described here are suspended by thin legs of silicon nitride for thermal isolation. At frequencies between 200 mHz and 10-50 Hz these devices show white noise at their thermal fluctuation limit (NEP approximately 10(-17) W/ radicalHz). At higher frequencies a broad peak appears in the noise spectrum, which we attribute to a combination of thermal fluctuations in complex thermal circuits and electrothermal feedback. Detailed noise calculations fit the noise measured in three different devices that were specifically designed to test the model. We discuss how changes in bolometer materials can shift the noise peak above the frequency range of interest for most applications. PMID:18364926

  10. First results of the resistive bolometers on KSTAR.

    PubMed

    Seo, Dongcheol; Peterson, B J; Lee, Seung Hun

    2010-10-01

    The resistive bolometers have been successfully installed in the midplane of L-port in Korea Superconducting Tokamak Advanced Research (KSTAR) device. The spatial and temporal resolutions, 4.5 cm and ∼1 kHz, respectively, enable us to measure the radial profile of the total radiated power from magnetically confined plasma at a high temperature through radiation and neutral particles. The radiated power was measured at all shots. Even at low plasma current, the bolometer signal was detectable. The electron cyclotron resonance heating (ECH) has been used in tokamak for ECH assisted start-up and plasma control by local heating and current drive. The detectors of resistive bolometer, near the antenna of ECH, are affected by electron cyclotron wave. The tomographic reconstruction, using the Phillips-Tikhonov regularization method, will be carried out for a major radial profile of the radiation emissivity of the circular cross-section plasma. PMID:21033992

  11. First results of the resistive bolometers on KSTAR

    SciTech Connect

    Seo, Dongcheol; Peterson, B. J.; Lee, Seung Hun

    2010-10-15

    The resistive bolometers have been successfully installed in the midplane of L-port in Korea Superconducting Tokamak Advanced Research (KSTAR) device. The spatial and temporal resolutions, 4.5 cm and {approx}1 kHz, respectively, enable us to measure the radial profile of the total radiated power from magnetically confined plasma at a high temperature through radiation and neutral particles. The radiated power was measured at all shots. Even at low plasma current, the bolometer signal was detectable. The electron cyclotron resonance heating (ECH) has been used in tokamak for ECH assisted start-up and plasma control by local heating and current drive. The detectors of resistive bolometer, near the antenna of ECH, are affected by electron cyclotron wave. The tomographic reconstruction, using the Phillips-Tikhonov regularization method, will be carried out for a major radial profile of the radiation emissivity of the circular cross-section plasma.

  12. A progress report on using bolometers cooled by adiabatic demagnetization refrigeration

    NASA Technical Reports Server (NTRS)

    Lesyna, L.; Roellig, T.; Savage, M.; Werner, Michael W.

    1989-01-01

    For sensitive detection of astronomical continuum radiation in the 200 micron to 3 mm wavelength range, bolometers are presently the detectors of choice. In order to approach the limits imposed by photon noise in a cryogenically cooled telescope in space, bolometers must be operated at temperatures near 0.1 K. Researchers report progress in building and using bolometers that operate at these temperatures. The most sensitive bolometer had an estimated noise equivalent power (NEP) of 7 x 10(exp 017) W Hz(exp -1/2). Researchers also briefly discuss the durability of paramagnetic salts used to cool the bolometers.

  13. Infrared technology for satellite power conversion. [antenna arrays and bolometers

    NASA Technical Reports Server (NTRS)

    Campbell, D. P.; Gouker, M. A.; Gallagher, J. J.

    1984-01-01

    Successful fabrication of bismuth bolometers led to the observation of antenna action rom array elements. Fabrication of the best antennas arrays was made more facile with finding that increased argon flow during the dc sputtering produced more uniform bismuth films and bonding to antennas must be done with the substrate temperaure below 100 C. Higher temperatures damaged the bolometers. During the testing of the antennas, it was found that the use of a quasi-optical system provided a uniform radiation field. Groups of antennas were bonded in series and in parallel with the parallel configuration showing the greater response.

  14. The resistive bolometer for radiated power measurement on EAST.

    PubMed

    Duan, Y M; Hu, L Q; Mao, S T; Chen, K Y; Lin, S Y

    2012-09-01

    The resistive bolometer system has been successfully employed on experimental advanced superconducting tokamak for the first time to measure the radiated power of plasma. The bolometer detectors are based on 4 μm thick Pt absorbers deposited on 1.5 μm thick SiN membranes. The system consists of 3 cameras with a total of 48 channels. The detector and the system setup are described in detail. The detector calibration and typical measurement results are presented as well. PMID:23025621

  15. Thin film scintillators

    NASA Astrophysics Data System (ADS)

    McDonald, Warren; McKinney, George; Tzolov, Marian

    2015-03-01

    Scintillating materials convert energy flux (particles or electromagnetic waves) into light with spectral characteristic matching a subsequent light detector. Commercial scintillators such as yttrium aluminum garnet (YAG) and yttrium aluminum perovskite (YAP) are commonly used. These are inefficient at lower energies due to the conductive coating present on their top surface, which is needed to avoid charging. We hypothesize that nano-structured thin film scintillators will outperform the commercial scintillators at low electron energies. We have developed alternative thin film scintillators, zinc tungstate and zinc oxide, which show promise for higher sensitivity to lower energy electrons since they are inherently conductive. Zinc tungstate films exhibit photoluminescence quantum efficiency of 74%. Cathodoluminescence spectroscopy was applied in transmission and reflection geometries. The comparison between the thin films and the YAG and YAP commercial scintillators shows much higher light output from the zinc tungstate and zinc oxide at electron energies less than 5 keV. Our films were integrated in a backscattered electron detector. This detector delivers better images than an identical detector with commercial YAG scintillator at low electron energies. Dr. Nicholas Barbi from PulseTor LLC, Dr. Anura Goonewardene, NSF Grants: #0806660, #1058829, #0923047.

  16. Search for axioelectric effect of solar axions using BGO scintillating bolometer

    NASA Astrophysics Data System (ADS)

    Derbin, A. V.; Gironi, L.; Nagorny, S. S.; Pattavina, L.; Beeman, J. W.; Bellini, F.; Biassoni, M.; Capelli, S.; Clemenza, M.; Drachnev, I. S.; Ferri, E.; Giachero, A.; Gotti, C.; Kayunov, A. S.; Maiano, C.; Maino, M.; Muratova, V. N.; Pavan, M.; Pirro, S.; Semenov, D. A.; Sisti, M.; Unzhakov, E. V.

    2014-09-01

    A search for axioelectric absorption of solar axions produced in the reaction has been performed with a BGO detector placed in a low-background setup. A model-independent limit on the combination of axion-nucleon and axion-electron coupling constants has been obtained: for 90 % confidence level. The constraint of the axion-electron coupling constant has been obtained for hadronic axion with masses of (0.1-1) MeV:.

  17. Fast bolometer built in an artificial HPHT diamond matrix

    SciTech Connect

    Klokov, A Yu; Sharkov, A I; Galkina, T I; Khmelnitskii, R A; Dravin, V A; Gippius, Aleksei A

    2010-05-26

    A fast bolometer built in a plate of diamond grown at high pressure by the gradient growth method is developed and fabricated. The parameters of this structure are compared with these of the structures investigated earlier, which were fabricated based on chemical vapour deposited (CVD) diamond and natural type IIa diamond.

  18. Multimode Bolometer Development for the Primordial Inflation Explorer (PIXIE) Instrument

    NASA Technical Reports Server (NTRS)

    Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.

    2016-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background [1]. In this work, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a tensioning scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.

  19. Highly sensitive hot electron bolometer based on disordered graphene.

    PubMed

    Han, Qi; Gao, Teng; Zhang, Rui; Chen, Yi; Chen, Jianhui; Liu, Gerui; Zhang, Yanfeng; Liu, Zhongfan; Wu, Xiaosong; Yu, Dapeng

    2013-01-01

    A bolometer is a device that makes an electrical resistive response to the electromagnetic radiation resulted from a raise of temperature due to heating. The combination of the extremely weak electron-phonon interactions along with its small electron heat capacity makes graphene an ideal material for applications in ultra-fast and sensitive hot electron bolometer. However, a major issue is that the resistance of pristine graphene weakly depends on the electronic temperature. We propose using disordered graphene to obtain a strongly temperature dependent resistance. The measured electrical responsivity of the disordered graphene bolometer reaches 6 × 10(6) V/W at 1.5 K, corresponding to an optical responsivity of 1.6 × 10(5) V/W. The deduced electrical noise equivalent power is 1.2 fW/√Hz, corresponding to the optical noise equivalent power of 44 fW/√Hz. The minimal device structure and no requirement for high mobility graphene make a step forward towards the applications of graphene hot electron bolometers. PMID:24346418

  20. Highly sensitive hot electron bolometer based on disordered graphene

    PubMed Central

    Han, Qi; Gao, Teng; Zhang, Rui; Chen, Yi; Chen, Jianhui; Liu, Gerui; Zhang, Yanfeng; Liu, Zhongfan; Wu, Xiaosong; Yu, Dapeng

    2013-01-01

    A bolometer is a device that makes an electrical resistive response to the electromagnetic radiation resulted from a raise of temperature due to heating. The combination of the extremely weak electron-phonon interactions along with its small electron heat capacity makes graphene an ideal material for applications in ultra-fast and sensitive hot electron bolometer. However, a major issue is that the resistance of pristine graphene weakly depends on the electronic temperature. We propose using disordered graphene to obtain a strongly temperature dependent resistance. The measured electrical responsivity of the disordered graphene bolometer reaches 6 × 106 V/W at 1.5 K, corresponding to an optical responsivity of 1.6 × 105 V/W. The deduced electrical noise equivalent power is 1.2 , corresponding to the optical noise equivalent power of 44 . The minimal device structure and no requirement for high mobility graphene make a step forward towards the applications of graphene hot electron bolometers. PMID:24346418

  1. Technology developments toward large format long wavelength bolometer arrays

    NASA Astrophysics Data System (ADS)

    Allen, Christine A.; Benford, Dominic J.; Miller, Timothy M.; Moseley, S. Harvey; Staguhn, Johannes G.; Wollack, Edward J.

    2007-09-01

    We are developing a kilopixel, filled bolometer array for infrared astronomy. The array consists of three individual components, to be merged into a single, working unit; 1) a transition edge sensor (TES) bolometer array, operating in the milliKelvin regime, 2) quarter-wave resonance backshorts, and 3) superconducting quantum interference device (SQUID) multiplexer readout. The detector array is a filled, square-grid of suspended, silicon membrane bolometers with superconducting thermistors. The spacing of the backshort beneath the detector grid can be set from ~30-300 microns by adjusting two process parameters during fabrication. We have produced prototype, monolithic arrays having 1 mm and 2 mm pitch detectors. The key technologies required for kilopixel arrays of detectors to be hybridized to SQUID multiplexer readout circuits have been demonstrated. Mechanical models of large-format detector grids have been indium bump-bonded to dummy multiplexer readouts to study electrical continuity. A monolithic array of 1 mm pitch detectors has been mated to a backshort grid optimized for a 350 micron resonant wavelength. Through-wafer microvias, for electroplated, low-resistance electrical connection of detector elements, have been prototyped using deep reactive ion etching. The ultimate goal of this work is to develop large-format (thousands of pixels) bolometer array architecture with background-limited sensitivity, suitable for a wide range of long wavelengths and a wide range of astronomical applications such as imaging, spectroscopy, and polarimetry and applicable for ground-based, suborbital, and space-based instruments.

  2. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and

  3. Scintillator Measurements for SNO+

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, Tanner; SNO+ Collaboration

    2016-03-01

    SNO+ is a neutrino detector located 2km underground in the SNOLAB facility with the primary goal of searching for neutrinoless double beta decay. The detector will be filled with a liquid scintillator target primarily composed of linear alkyl benzene (LAB). As charged particles travel through the detector the LAB produces scintillation light which is detected by almost ten thousand PMTs. The LAB is loaded with Te130, an isotope known to undergo double beta decay. Additionally, the LAB is mixed with an additional fluor and wavelength shifter to improve the light output and shift the light to a wavelength regime in which the PMTs are maximally efficient. The precise scintillator optics drastically affect the ultimate sensitivity of SNO+. I will present work being done to measure the optical properties of the SNO+ scintillator cocktail. The measured properties are used as input to a scintillation model that allows us to extrapolate to the SNO+ scale and ultimately predict the sensitivity of the experiment. Additionally, I will present measurements done to characterize the R5912 PMT, a candidate PMT for the second phase of SNO+ that provides better light collection, improved charge resolution, and a narrower spread in timing.

  4. Scintillator plate calorimetry

    SciTech Connect

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin.

  5. A progress report on bolometers operating at 0.1 K using adiabatic demagnetization refrigeration

    NASA Technical Reports Server (NTRS)

    Roellig, T.; Lesyna, L.; Werner, M.; Kittel, P.

    1986-01-01

    Bolometers are still the detectors of choice for low background infrared observations at wavelengths longer than 200 microns. In the low background limit, bolometers become more sensitive as their operating temperature decreases, due to fundamental thermodynamic laws. The adiabatic demagnetization technique was evaluated by building a bolometer detection system operating at a wavelength of 1 millimeter for use at a ground based telescope. The system was fit checked at the telescope and is expected to take its first data in November, 1985.

  6. Development of neutron-transmutation-doped germanium bolometer material

    SciTech Connect

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium (< 1 mm/sup 3/) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit.

  7. A bolometer array for the spectral energy distribution (SPEED) camera

    NASA Astrophysics Data System (ADS)

    Silverberg, R. F.; Ali, S.; Bier, A.; Campano, B.; Chen, T. C.; Cheng, E. S.; Cottingham, D. A.; Crawford, T. M.; Downes, T.; Finkbeiner, F. M.; Fixsen, D. J.; Logan, D.; Meyer, S. S.; O'dell, C.; Perera, T.; Sharp, E. H.; Timbie, P. T.; Wilson, G. W.

    2004-03-01

    The Spectral Energy Distribution (SPEED) Camera is being developed to study the spectral energy distributions of high redshift galaxies. Its initial use will be on the Heinrich Hertz Telescope and eventually on the Large Millimeter Telescope. SPEED requires a small cryogenic detector array of 2×2 pixels with each pixel having four frequency bands in the 150-375GHz range. Here we describe the development of the detector array of these high-efficiency Frequency Selective Bolometers (FSB). The FSB design provides the multi-pixel, multi-spectral band capability required for SPEED in a compact stackable array. The SPEED bolometers will use proximity effect superconducting transition edge sensors as their temperature-sensing element, allowing for higher levels of electronic multiplexing in future applications.

  8. A bolometer array for the SPEctral Energy Distribution (SPEED) Camera

    NASA Astrophysics Data System (ADS)

    Silverberg, Robert F.; Campano, Barbara; Chen, Tina C.; Cheng, Edward; Cottingham, David A.; Crawford, Thomas M.; Downes, Tom; Finkbeiner, Fred M.; Fixsen, Dale J.; Logan, Dan; Meyer, Stephan S.; Perera, Thushara; Sharp, Elmer H.; Wilson, Grant W.

    2004-10-01

    The SPEED camera is being developed to study the spectral energy distributions of high redshift galaxies, Sunyaev-Zel'dovich effect in X-ray clusters and other cold objects in the universe. Its initial runs will be done on the 10 m Heinrich Hertz Submillimeter Telescope (HHSMT), with later runs using the Large Millimeter Telescope (LMT). SPEED requires a 2x2 pixel cryogenic detector array of Frequency Selective Bolometers (FSB). Each of the pixels will have four frequency bands in the ~150-350 GHz range. Here we describe the development of the detector array of these high efficiency FSBs. The FSB design provides the multi-pixel multi-spectral band capability required for SPEED in a compact, light weight, stackable array. The SPEED FSB bolometers will use proximity effect superconducting transition edge sensors (TES) as their temperature-sensing element permitting significantly higher levels of electronic multiplexing in future applications where larger numbers of detectors may be required.

  9. An Antenna-coupled bolometer with an integrated microstripbandpass filter

    SciTech Connect

    Myers, Michael J.; Holzapfel, William; Lee, Adrian T.; O'Brient,Roger; Richards, P.L.; Tran, Huan T.; Ade, Peter; Engargiola, Greg; Smith, Andy; Spieler, Helmuth

    2004-09-17

    We describe the fabrication and testing of antenna-coupled superconducting transition-edge bolometers for use at millimeter wavelengths. The design uses a double-slot dipole antenna connected to superconducting niobium microstrip. Band defining filters are implemented in the microstrip, which is then terminated with a load resistor. The power dissipated in the load resistor is measured by a superconducting transition-edge sensor TES. The load resistor and TES are thermally well connected and are supported by a silicon nitride substrate. The substrate is suspended by four narrow silicon nitride legs for thermal isolation. The bolometers have been optically characterized and the spectral response is presented. This detector is a prototype element for use in an array designed for studies of the cosmic microwave background polarization.

  10. Monolayer graphene bolometer as a sensitive far-IR detector

    NASA Astrophysics Data System (ADS)

    Karasik, Boris S.; McKitterick, Christopher B.; Prober, Daniel E.

    2014-07-01

    In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few μm2 of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature ~ 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity. The analysis shows that the readout contribution can be reduced to that of the bolometer phonon noise if the detector device is operated at 0.05 K and the JNT signal is read at about 10 GHz where the Johnson noise emitted in equilibrium is substantially reduced. Beside the high sensitivity (NEP < 10-20 W/Hz1/2), this bolometer does not have any hard saturation limit and thus can be used for far-IR sky imaging with arbitrary contrast. By changing the operating temperature of the bolometer the sensitivity can be fine tuned to accommodate the background photon flux in a particular application. By using a broadband low-noise kinetic inductance parametric amplifier, ~100s of graphene HEBs can be read simultaneously without saturation of the system output.

  11. Development of NTD Ge Sensors for Superconducting Bolometer

    NASA Astrophysics Data System (ADS)

    Garai, A.; Mathimalar, S.; Singh, V.; Dokania, N.; Nanal, V.; Pillay, R. G.; Ramakrishnan, S.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.

    2016-08-01

    Neutron transmutation-doped (NTD) Ge sensors have been prepared by irradiating device-grade Ge with thermal neutrons at Dhruva reactor, BARC, Mumbai. These sensors are intended to be used for the study of neutrinoless double beta decay in ^{124}Sn with a superconducting Tin bolometer. Resistance measurements are performed on NTD Ge sensors in the temperature range 100-350 mK. The observed temperature dependence is found to be consistent with the variable-range hopping mechanism.

  12. The 0.1K bolometers cooled by adiabatic demagnetization

    NASA Technical Reports Server (NTRS)

    Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.

    1983-01-01

    The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.

  13. Development of imaging bolometers for magnetic fusion reactors (invited)

    SciTech Connect

    Peterson, Byron J.; Parchamy, Homaira; Ashikawa, Naoko; Kawashima, Hisato; Konoshima, Shigeru; Kostryukov, Artem Yu.; Miroshnikov, Igor V.; Seo, Dongcheol; Omori, T.

    2008-10-15

    Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version of this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 {mu}m, 256x360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF{sub 2} optics and an aluminum mirror. The IRVB foil is 7 cmx9 cmx5 {mu}m tantalum. A noise equivalent power density of 300 {mu}W/cm{sup 2} is achieved with 40x24 channels and a time response of 10 ms or 23 {mu}W/cm{sup 2} for 16x12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U.

  14. Infrared Imaging Bolometer for the HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Gao, Jinming; Li, Wei; Lu, Jie; Xia, Zhiwei; Yi, Ping; Liu, Yi; Yang, Qingwei; HL-2A Team

    2016-06-01

    An infrared imaging bolometer diagnostic has been upgraded recently to be adapted for the complications of the signal-to-noise ratio arising from the low level of plasma radiation and high reflectivity of low energy photon (<6.2 eV). It utilizes a platinum foil, blackened on both sides with graphite spray, as the bolometer detector. The advantage of the blackened foil is the light absorption extending into the infrared. After a careful calibration of the foil, the incident power density distribution on the foil is determined by solving the heat diffusion equation with a numerical technique. The local plasma radiated power density is reconstructed with a minimum fisher information regularization method by assuming plasma emission toroidal symmetry. Comparisons of the results and the profiles measured by an ordinary bolometric detector demonstrate that this method is good enough to provide the plasma radiated power pattern. The typical plasma radiated power density distribution before and after high mode (H-mode) transition is firstly reconstructed with the infrared imaging bolometer. Moreover, during supersonic molecular beam injection (SMBI), an enhanced radiation region is observed at the edge of the plasma. supported by National Natural Science Foundation of China (Nos. 10805016 and 11175061), and the Chinese National Fusion Project for ITER (No. 2014GB109001)

  15. Development of imaging bolometers for magnetic fusion reactors (invited).

    PubMed

    Peterson, Byron J; Parchamy, Homaira; Ashikawa, Naoko; Kawashima, Hisato; Konoshima, Shigeru; Kostryukov, Artem Yu; Miroshnikov, Igor V; Seo, Dongcheol; Omori, T

    2008-10-01

    Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version of this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 microm, 256 x 360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF(2) optics and an aluminum mirror. The IRVB foil is 7 cm x 9 cm x 5 microm tantalum. A noise equivalent power density of 300 microW/cm(2) is achieved with 40 x 24 channels and a time response of 10 ms or 23 microW/cm(2) for 16 x 12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U. PMID:19044463

  16. A 90GHz Bolometer Camera Detector System for the Green

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  17. A Compact, Modular Package for Superconducting Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Benford, D.

    2008-01-01

    As bolometer arrays grow to ever-larger formats, packaging becomes a more critical engineering issue. We have designed a detector package to house a superconducting bolometer array, SQUID multiplexers, bias and filtering circuitry, and electrical connectors. The package includes an optical filter, magnetic shielding, and has well-defined thermal and mechanical interfaces. An early version of this package has been used successfully in the GISMO 2mm camera, a 128-pixel camera operating at a base temperature of 270mK. A more advanced package permits operation at lower temperatures by providing direct heat sinking to the SQUIDS and bias resistors, which generate the bulk of the dissipation in the package. Standard electrical connectors provide reliable contact while enabling quick installation and removal of the package. We describe how the design compensates for differing thermal expansions, allows heat sinking of the bolometer array, and features magnetic shielding in critical areas. We highlight the performance of this detector package and describe its scalability to 1280-pixel arrays in the near future.

  18. A monolithic Si bolometer array for the Caltech Submillimeter Observatory

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Hunter, T. R.; Benford, D. J.; Serabyn, E.; Phillips, T. G.; Moseley, S. H.

    1994-01-01

    We are developing a submillimeter continuum camera for the Caltech Submillimeter Observatory (CSO) located on Mauna Kea. The camera will employ a monolithic Si bolometer array which was developed by Moseley et al. at the NASA Goddard Space Flight Center (GSFC). The camera will be cooled to a temperature of about 300 mK in a He-3 cryostat, and will operate primarily at wavelengths of 350 and 450 micrometers. We plan to use a bolometer array with 1x24 directly illuminated pixels, each pixel of dimension 1x2 sq mm, which is about half of the F/4 beam size at these wavelengths. Each pixel is 10 to 12 micrometers thick and is supported only by four thin Si legs formed by wet chemical etch. The pixels are doped n-type by phosphorus implantation, compensated by boron implantation. Signals from the bolometer pixels are first amplified by cryogenically cooled FET's. The signals are further amplified by room-temperature amplifiers and then separately digitized by 16 bit A/D converters with differential inputs. The outputs of the A/D converters are fed into a digital signal processing board via fiber-optic cables. The electronics and data acquisition system were designed by the Goddard group. We will report the status of this effort.

  19. Polysiloxane scintillator composition

    DOEpatents

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  20. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  1. Boron loaded scintillator

    SciTech Connect

    Bell, Zane William; Brown, Gilbert Morris; Maya, Leon; Sloop, Jr., Frederick Victor; Sloop, Jr., Frederick Victor

    2009-10-20

    A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carbonate units can either be a carborane molecule dispersed in the rubber with the aid of a compatibilization agent or can be covalently bound to the silicone.

  2. Polysiloxane scintillator composition

    DOEpatents

    Walker, James K.

    1992-01-01

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  3. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder; Paul L.

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  4. Scintillator requirements for medical imaging

    SciTech Connect

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  5. Infrared detection with high-[Tc] bolometers and response of Nb tunnel junctions to picosecond voltage pulses

    SciTech Connect

    Verghese, S.

    1993-05-01

    Oxide superconductors with high critical temperature [Tc] make sensitive thermometers for several types of infrared bolometers. The authors built composite bolometers with YBa[sub 2]Cu[sub 3]O[sub 7[minus][delta

  6. Integrated Electron-tunneling Refrigerator and TES Bolometer for Millimeter Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Benford, D. J.; Chen, T. C.; Chervenak, J.; Finkbeiner, F.; Moseley, S. H.; Duncan, W.; Miller, N.; Schmidt, D.; Ullom, J.

    2005-01-01

    We describe progress in the development of a close-packed array of bolometers intended for use in photometric applications at millimeter wavelengths from ground- based telescopes. Each bolometer in the may uses a proximity-effect Transition Edge Sensor (TES) sensing element and each will have integrated Normal-Insulator-Superconductor (NIS) refrigerators to cool the bolometer below the ambient bath temperature. The NIS refrigerators and acoustic-phonon-mode-isolated bolometers are fabricated on silicon. The radiation-absorbing element is mechanically suspended by four legs, whose dimensions are used to control and optimize the thermal conductance of the bolometer. Using the technology developed at NIST, we fabricate NIS refrigerators at the base of each of the suspension legs. The NIS refrigerators remove hot electrons by quantum-mechanical tunneling and are expected to cool the biased (approx.10 pW) bolometers to <170 mK while the bolometers are inside a pumped 3He-cooled cryostat operating at approx.280 mK. This significantly lower temperature at the bolometer allows the detectors to approach background-limited performance despite the simple cryogenic system.

  7. Composite scintillator screen

    DOEpatents

    Zeman, Herbert D.

    1994-01-01

    A scintillator screen for an X-ray system includes a substrate of low-Z material and bodies of a high-Z material embedded within the substrate. By preselecting the size of the bodies embedded within the substrate, the spacial separation of the bodies and the thickness of the screen, the sensitivity of the screen to X-rays within a predetermined energy range can be predicted.

  8. Arrays of Bolometers for Far-infrared and Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Allen, C. A.; Babu, S.; Casey, S.; Dotson, J. L.; Dowell, C. D.; Jhabvala, M.; Harper, D. A.; Moseley, S. H.; Silverberg, R. F.

    2004-01-01

    We describe 12 x 32 arrays of semiconducting cryogenic bolometers designed for use in far-infrared and submillimeter cameras. These 12 x 32 arrays are constructed from 1 x 32 monolithic pop-up detectors developed at NASA Goddard Space Flight Center. The pop-up technology allows the construction of large arrays with high filling factors that provide efficient use of space in the focal planes of far-infrared and submillimeter astronomical instruments. This directly leads to a significant decrease in observing time. The prototype array is currently operating in SHARC II, a facility instrument in use at the Caltech Submillimeter Observatory (CSO). The elements of this array employ a bismuth absorber coating and quarter wave backshort to optimize the bolometer absorption for a passband centered at 350 microns. However, this resonant structure also provides good bolometer performance at 450 and 850 microns, the two additional SHARC II passbands. A second array is to be installed in the High-resolution Airborne Widebandwidth Camera (HAWC), a far-infrared imaging camera for the Stratospheric Observatory for Infrared Astronomy (SOFIA). This array is currently in the final stage of construction, and its completion is expected in early 2004. HAWC is scheduled for commissioning in 2005. The HAWC array employs titanium-gold absorbers and is optimized for uniform absorption from 40 to 300 microns to accommodate all four of its far-infrared passbands. We describe the details of the array construction including the mechanical design and electrical characterization of the constituent linear arrays, comparing the SHARC II and HAWC cases. We also summarize the overall characteristics of the final two-dimensional arrays. Finally, we show examples of array performance in the form of images obtained with SHARC II.

  9. Submillimeter video imaging with a superconducting bolometer array

    NASA Astrophysics Data System (ADS)

    Becker, Daniel Thomas

    Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bombers and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) bolometers makes them ideal for passive imaging of thermal signals at millimeter and submillimeter wavelengths. I have built a 350 GHz video-rate imaging system using an array of feedhorn-coupled TES bolometers. The system operates at standoff distances of 16 m to 28 m with a measured spatial resolution of 1.4 cm (at 17 m). It currently contains one 251-detector sub-array, and can be expanded to contain four sub-arrays for a total of 1004 detectors. The system has been used to take video images that reveal the presence of weapons concealed beneath a shirt in an indoor setting. This dissertation describes the design, implementation and characterization of this system. It presents an overview of the challenges associated with standoff passive imaging and how these problems can be overcome through the use of large-format TES bolometer arrays. I describe the design of the system and cover the results of detector and optical characterization. I explain the procedure used to generate video images using the system, and present a noise analysis of those images. This analysis indicates that the Noise Equivalent Temperature Difference (NETD) of the video images is currently limited by artifacts of the scanning process. More sophisticated image processing algorithms can eliminate these artifacts and reduce the NETD to 100 mK, which is the target value for the most demanding passive imaging scenarios. I finish with an overview of future directions for this system.

  10. New scintillator and waveshifter materials

    SciTech Connect

    Zheng, H.; Baumbaugh, B.; Gerig, A.; Marchant, J.; Reynolds, K.; Ruchti, R.; Warchol, J; Wayne, M. Hurlbut, C. Kauffman, J. Pla-Dalmau, A.

    1998-11-01

    Experimental applications requiring fast timing and/or high efficiency position and energy measurements typically use scintillation materials. Scintillators utilized for triggering, tracking, and calorimetry in colliding beam detectors are vulnerable to the high radiation fields associated with such experiments. We have begun an investigation of several fluorescent dyes which might lead to fast, efficient, and radiation resistant scintillators. Preliminary results of spectral analysis and efficiency are presented. {copyright} {ital 1998 American Institute of Physics.}

  11. Lunar components in Lunping scintillations

    SciTech Connect

    Koster, J.R.; Lue, H.Y.; Wu, Hsi-Shu; Huang, Yinn-Nien

    1993-08-01

    The authors report on an anlysis of a 14 year data set of ionospheric scintillation data for 136 MHz signals transmitted from a Japanese satellite. They use a lunar age superposition method to analyze this data, breaking the data into blocks by seasons of the year. They observe a number of different scintillation types in the record, as well as impacts of lunar tides on the time record. They attempt to provide an origin for the different scintillation types.

  12. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  13. Statistical analysis of scintillation data

    SciTech Connect

    Chua, S.; Noonan, J.P.; Basu, S.

    1981-09-01

    The Nakagami-m distribution has traditionally been used successfully to model the probability characteristics of ionospheric scintillations at UHF. This report investigates the distribution properties of scintillation data in the L-band range. Specifically, the appropriateness of the Nakagami-m and lognormal distributions is tested. Briefly the results confirm that the Nakagami-m is appropriate for UHF but not for L-band scintillations. The lognormal provides a better fit to the distribution of L-band scintillations and is an adequate model allowing for an error of + or - 0.1 or smaller in predicted probability with a sample size of 256.

  14. A plastic scintillation counter prototype.

    PubMed

    Furuta, Etsuko; Kawano, Takao

    2015-10-01

    A new prototype device for beta-ray measurement, a plastic scintillation counter, was assembled as an alternative device to liquid scintillation counters. This device uses plastic scintillation sheets (PS sheets) as a sample applicator without the use of a liquid scintillator. The performance was evaluated using tritium labeled compounds, and good linearity was observed between the activity and net count rate. The calculated detection limit of the device was 0.01 Bq mL(-1) after 10 h measurement for 2 mL sample. PMID:26164628

  15. Scintillation properties of Bi{sub 4}Ge{sub 3}O{sub 12} down to 3 K under {gamma} rays

    SciTech Connect

    Verdier, M.-A.; Di Stefano, P. C. F.; Dujardin, C.

    2011-12-01

    Bismuth germanate (BGO) has been widely used as a room-temperature scintillator in many applications for decades. Interest in it has recently increased as a low-temperature scintillator to be used in bolometers for rare-event detection. We present our time-resolved-scintillation studies of BGO down to 3 K under {gamma}-ray excitation. Our multiple-photon-counting-coincidence-based setup allows clear identification of {gamma}-line energies at least as low as 122 keV down to base temperature and the measurement of the light yield and decay-time constants as a function of temperature. We also discuss the time structure of the pulses and report a previously unappreciated but significant, very slow component assigned to afterglow. Finally, we demonstrate that nonlinearity of the light yield as a function of energy persists at low temperatures.

  16. The estimation of thermal properties of μ-bolometers in a FPA with some selected structures and pitches

    NASA Astrophysics Data System (ADS)

    Park, Seung-man; Han, Seungoh; Han, Chang Suk; Lee, Hee Chul

    2012-06-01

    We present a thermal property estimation method required for a bolometer design and demonstrate the utilization of a presented method to the scaled μ-bolometers. The estimated thermal properties of 25μm pitch VOx bolometers with our presented method shows K=1.33x10-8 W/K, H=1.36x10-10 J/K, τth=10.2 ms for an active bolometer and K=1.64x10-6 W/K, H=1.82x10-10 J/K, τth=111 μs for a reference bolometer. These estimated thermal properties have a good agreement with the previous reports and with results from the FEM analyses carried on the same bolometer designs. The presented method is useful to estimate thermal properties of a scaled bolometer and to estimate thermal properties of a specific design.

  17. Bolometer detection of magnetic resonances in nanoscaled objects

    NASA Astrophysics Data System (ADS)

    Rod, Irina; Meckenstock, Ralf; Zähres, Horst; Derricks, Christian; Mushenok, Fedor; Reckers, Nathalie; Kijamnajsuk, Puchong; Wiedwald, Ulf; Farle, Michael

    2014-10-01

    We report on a nanoscaled thermocouple (ThC) as a temperature sensor of a highly sensitive bolometer for probing the dissipative damping of spin dynamics in nanosized Permalloy (Py) stripes. The Au-Pd ThC based device is fabricated by standard electron beam lithography on a 200 nm silicon nitride membrane to minimize heat dissipation through the substrate. We show that this thermal sensor allows not only measurements of the temperature change on the order of a few mK due to the uniform resonant microwave (MW) absorption by the Py stripe but also detection of standing spin waves of different mode numbers. Using a 3D finite element method, we estimate the absorbed MW power by the stripe in resonance and prove the necessity of using substrates with an extremely low heat dissipation like a silicon nitride membrane for successful thermal detection. The voltage responsivity and the noise equivalent power for the ThC-based bolometer are equal to 15 V W-1 and 3 nW Hz-1/2, respectively. The ThC device offers a magnetic resonance response of 1 nV/(μB W) corresponding to a sensitivity of 109 spins and a temperature resolution of 300 μK under vacuum conditions.

  18. Bolometer detection of magnetic resonances in nanoscaled objects.

    PubMed

    Rod, Irina; Meckenstock, Ralf; Zähres, Horst; Derricks, Christian; Mushenok, Fedor; Reckers, Nathalie; Kijamnajsuk, Puchong; Wiedwald, Ulf; Farle, Michael

    2014-10-24

    We report on a nanoscaled thermocouple (ThC) as a temperature sensor of a highly sensitive bolometer for probing the dissipative damping of spin dynamics in nanosized Permalloy (Py) stripes. The Au-Pd ThC based device is fabricated by standard electron beam lithography on a 200 nm silicon nitride membrane to minimize heat dissipation through the substrate. We show that this thermal sensor allows not only measurements of the temperature change on the order of a few mK due to the uniform resonant microwave (MW) absorption by the Py stripe but also detection of standing spin waves of different mode numbers. Using a 3D finite element method, we estimate the absorbed MW power by the stripe in resonance and prove the necessity of using substrates with an extremely low heat dissipation like a silicon nitride membrane for successful thermal detection. The voltage responsivity and the noise equivalent power for the ThC-based bolometer are equal to 15 V W(-1) and 3 nW Hz(-1/2), respectively. The ThC device offers a magnetic resonance response of 1 nV/(μ(B) W) corresponding to a sensitivity of 10(9) spins and a temperature resolution of 300 μK under vacuum conditions. PMID:25271896

  19. Design analysis of a novel low temperature bolometer

    SciTech Connect

    Nahum, M.; Richards, P.L. . Dept. of Physics Lawrence Berkeley Lab., CA )

    1990-09-01

    We propose a novel antenna-coupled superconducting bolometer which makes use of the thermal boundary resistance available at low temperatures. The radiation is collected by a planar self-complementary antenna and thermalized in a small thin film resistor. The resulting temperature rise is detected by a transition edge thermometer which can be (but need not be) a separate film. All components are deposited directly on a substrate so that arrays can be conveniently produced by conventional lithographic techniques. The active area of the bolometer is thermally decoupled by its small size and by the thermal resistance of the boundaries with the substrate and the antenna terminals. Design calculations based on a 2 {times} 2 {mu}m square film of a superconductor with {Tc} {approx}0 .1 K give an NEP {approx} 10{sup {minus}18} WHz{sup {minus}1/2}, time constant {approx}10{sup {minus}6} s and responsivities up to {approx}10{sup 9} V/W. These specifications meet the requirements for NASA's Space Infrared Telescope Facility and Sub-Millimeter Moderate Mission. Useful applications also exist at {sup 3}He and {sup 4}He temperatures. The calculated NEP scales as T{sup 5/2}. Materials, architectures, and readout schemes will be discussed. 22 refs., 3 figs.

  20. Status of NTD Ge bolometer material and devices

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Haegel, N. M.; Park, I. S.

    1986-01-01

    The first IR Detector Technology Workshop took place at NASA Ames Research Center on July 12 and 13, 1983. The conclusions presented at that meeting are still valid. More was learned about the physics of hopping conduction at very low temperatures which will be important for bolometer design and operation at ever decreasing temperatures. Resistivity measurements were extended down to 50 mK. At such low temperatures, precise knowledge of the neutron capture cross sections sigma (sub n) of the various Ge isotopes is critical if one is to make an accurate prediction of the dopant concentrations and compensation, and therefore resistivity, that will result from a given irradiation. An empirical approach for obtaining the desired resistivity material is described and the process of conducting a set of experiments which will improve the knowledge of the effective sigma (sub n) values for a given location in a particular reactor is discussed. A wider range of NTD Ge samples is now available. Noise measurements on bolometers with ion implanted contacts show the no 1/f noise component appears down to 1 Hz and probably lower.

  1. Lithium-loaded liquid scintillators

    DOEpatents

    Dai, Sheng; Kesanli, Banu; Neal, John S.

    2012-05-15

    The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

  2. Development of radiation hard scintillators

    NASA Astrophysics Data System (ADS)

    Markley, F.; Davidson, M.; Keller, J.; Foster, G.; Pla-Dalmau, A.; Harmon, J.; Biagtan, E.; Schueneman, G.; Senchishin, V.; Gustfason, H.

    1993-11-01

    The authors have demonstrated that the radiation stability of scintillators made from styrene polymer is very much improved by compounding with pentaphenyl trimethyl trisiloxane (DC 705 vacuum pump oil). The resulting scintillators are softer than desired, so they decided to make the scintillators directly from monomer where the base resin could be easily crosslinked to improve the mechanical properties. They can now demonstrate that scintillators made directly from the monomer, using both styrene and 4-methyl styrene, are also much more radiation resistant when modified with DC705 oil. In fact, they retain from 92% to 95% of their original light output after gamma irradiation to 10 Mrads in nitrogen with air annealing. When these scintillators made directly from monomer are compared with scintillators of the same composition made from polymer the latter have much higher light outputs. They commonly reach 83% while those made from monomer give only 50% to 60% relative to the reference, BC408. When oil modified scintillators using both p-terphenyl and tetra phenyl butadiene are compared with identical scintillators except that they use 3 hydroxy-flavone as the only luminophore the radiation stability is the same. However the 3HF system gives only 30% as much light as BC408 instead of 83% when both are measured with a green extended Phillips XP2081B phototube.

  3. Free liquid scintillation counting bibliography

    SciTech Connect

    1996-12-31

    Packard Instrument Company announces the availability of its newly updated Bibliography of Packard Tri-Carb Liquid Scintillation Analyzers. This unique new booklet lists 628 references in which Packard Tri-Carb{reg_sign} liquid scintillation analyzers have been used in life science, environmental, nuclear power and archaeological measurements. All listings are cross-referenced by radionuclide, specific field of study and author.

  4. Development of intrinsic IPT scintillator

    SciTech Connect

    Bross, A.D.

    1989-07-31

    We report on the development of a new polystyrene based plastic scintillator. Optical absorption, fluorescence and light output measurements are presented. Preliminary results of radiation damage effects are also given and compared to the effects on a commercial plastic scintillator, NE 110. 6 refs., 12 figs.

  5. Development of radiation hard scintillators

    SciTech Connect

    Markley, F.; Davidson, M.; Keller, J.; Foster, G.; Pla-Dalmau, A.; Harmon, J.; Biagtan, E.; Schueneman, G.; Senchishin, V.; Gustfason, H.; Rivard, M.

    1993-11-01

    The authors have demonstrated that the radiation stability of scintillators made from styrene polymer is very much improved by compounding with pentaphenyltrimethyltrisiloxane (DC 705 vacuum pump oil). The resulting scintillators are softer than desired, so they decided to make the scintillators directly from monomer where the base resin could be easily crosslinked to improve the mechanical properties. They can now demonstrate that scintillators made directly from the monomer, using both styrene and 4-methyl styrene, are also much more radiation resistant when modified with DC705 oil. In fact, they retain from 92% to 95% of their original light output after gamma irradiation to 10 Mrads in nitrogen with air annealing. When these scintillators made directly from monomer are compared with scintillators of the same composition made from polymer the latter have much higher light outputs. They commonly reach 83% while those made form monomer give only 50% to 60% relative to the reference, BC408. When oil modified scintillators using both p-terphenyl and tetraphenylbutadiene are compared with identical scintillators except that they use 3 hydroxy-flavone as the only luminophore the radiation stability is the same. However the 3HF system gives only 30% as much light as BC408 instead of 83% when both are measured with a green extended Phillips XP2081B phototube.

  6. Hybrid scintillators for neutron discrimination

    DOEpatents

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  7. Extruding plastic scintillator at Fermilab

    SciTech Connect

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  8. Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers

    SciTech Connect

    Lindeman, M. A. Bonetti, J. A.; Bumble, B.; Day, P. K.; Holmes, W. A.; Kleinsasser, A. W.; Eom, B. H.

    2014-06-21

    We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devices and present measurements of their sensitivity.

  9. Design of high-T{sub c} superconducting bolometers for a far infrared imaging array

    SciTech Connect

    Verghese, S.; Richards, P.L.; Fork, D.K.; Char, K.; Geballe, T.H.

    1992-08-01

    The design of high-{Tc} superconducting bolometers for use in a far infrared imaging array from wavelengths 30--100{mu}m is discussed. Measurements of the voltage noise in thin films of YBa{sub 2}CU{sub 3}O{sub 7-{var_sigma}} on yttria-stabilized zirconia buffer layers on silicon substrates are used to make performance estimates. Useful opportunities exist for imaging and spectroscopy with bolometer arrays made on micro-machined silicon membranes. A circuit on each pixel which performs some signal integration can improve the sensitivity of large two-dimensional arrays of bolometers which use multiplexed readout amplifiers.

  10. Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers

    NASA Astrophysics Data System (ADS)

    Lindeman, M. A.; Bonetti, J. A.; Bumble, B.; Day, P. K.; Eom, B. H.; Holmes, W. A.; Kleinsasser, A. W.

    2014-06-01

    We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devices and present measurements of their sensitivity.

  11. The 160 TES bolometer read-out using FDM for SAFARI

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; den Hartog, R. H.; van der Linden, A. J.; Ridder, M.; Bruijn, M. P.; van der Kuur, J.; van Leeuwen, B. J.; van Winden, P.; Jackson, B.

    2014-07-01

    For the read out of the Transition Edge Sensors (TES) bolometer arrays of the SAFARI instrument on the Japanese background-limited far-IR SPICA mission SRON is developing a Frequency Domain Multiplexing (FDM) read-out system. The next step after the successful demonstration of the read out of 38 TES bolometers using FDM was to demonstrate the FDM readout of the required 160 TES bolometers. Of the 160 LC filter and TES bolometer chains 151 have been connected and after cooldown 148 of the resonances could be identified. Although initial operation and locking of the pixels went smoothly the experiment revealed several complications. In this paper we describe the 160 pixel FDM set-up, show the results and discuss the issues faced during operation of the 160 pixel FDM experiment.

  12. Preliminary performance measurements of bolometers for the planck high frequency instrument

    NASA Technical Reports Server (NTRS)

    Holmes, W.; Bock, J.; Ganga, K.; Hristov, V. V.; Hustead, L.; Koch, T.; Lange, A. E.; Paine, C.; Yun, M.

    2002-01-01

    We report on the characterization of bolometers fabricated at the Jet Propulsion Laboratory for the High Frequency Instrument (HFI) of the joint ESA/NASA Herschel/Planck mission to be launched in 2007.

  13. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  14. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  15. Monolayer Graphene Bolometer as a Sensitive Far-IR Detector

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McKitterick, Christopher B.; Prober, Daniel E.

    2014-01-01

    In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few micro m(sup 2) of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature approx. 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity.

  16. Optical characterization of ultra-sensitive TES bolometers for SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gerhard; Gao, Jian-Rong; Khosropanah, Pourya; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.; Doherty, Stephen; Withington, Stafford

    2014-07-01

    We have characterized the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays will image a 2'×2' field of view with spectral information over the wavelength range 34—210 μm. SAFARI requires extremely sensitive detectors (goal NEP ~ 0.2 aW/√Hz), with correspondingly low saturation powers (~5 fW), to take advantage of SPICA's cooled optics. We have constructed an ultra-low background optical test facility containing an internal cold black-body illuminator and have recently added an internal hot black-body source and a light-pipe for external illumination. We illustrate the performance of the test facility with results including spectral-response measurements. Based on an improved understanding of the optical throughput of the test facility we find an optical efficiency of 60% for prototype SAFARI detectors.

  17. A 100 micro Kelvin bolometer system for SIRTF

    NASA Technical Reports Server (NTRS)

    Bernstein, G. M.; Timbie, P. T.; Richards, P. L.

    1989-01-01

    Progress toward a prototype of 100 mK bolometric detection system for the Space Infrared Telescope Facility (SIRTF) is described. Two adiabatic demagnetization refrigerators (ADR's) were constructed and used to investigate the capabilities necessary for orbital operation. The first, a laboratory ADR, demonstrated a hold time at 0.1 K of over 12 hours, with temperature stability approx. 3 micro-K RMS achieved by controlling the magnetic field. A durable salt pill and an efficient support system have been demonstrated. A second ADR, the SIRTF flight prototype, has been built and will be flown on a balloon. Techniques for magnetic shielding, low heat leak current leads, and a mechanical heat switch are being developed in this ADR. Plans for construction of 100 mK bolometers are discussed. Three important cosmological investigations which will be carried out by these longest wavelength SIRTF detectors are described.

  18. Properties of scintillator solutes

    SciTech Connect

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, {lambda}{sub avg}, at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, {lambda}{sub max}, and emission {lambda}{sub avg} values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs.

  19. A frequency selective bolometer camera for measuring millimeter spectral energy distributions

    NASA Astrophysics Data System (ADS)

    Logan, Daniel William

    2009-06-01

    Bolometers are the most sensitive detectors for measuring millimeter and submillimeter wavelength astrophysical signals. Cameras comprised of arrays of bolometers have already made significant contributions to the field of astronomy. A challenge for bolometer cameras is obtaining observations at multiple wavelengths. Traditionally, observing in multiple bands requires a partial disassembly of the instrument to replace bandpass filters, a task which prevents immediate spectral interrogation of a source. More complex cameras have been constructed to observe in several bands using beam splitters and dichroic filters, but the added complexity leads to physically larger instruments with reduced efficiencies. The SPEctral Energy Distribution camera (SPEED) is a new type of bolometer camera designed to efficiently observe in multiple wavebands without the need for excess bandpass filters and beam splitters. SPEED is a ground-based millimeter-wave bolometer camera designed to observe at 2.1, 1.3, 1.1, and 0.85 mm simultaneously. SPEED makes use of a new type of bolometer, the frequency selective bolometer (FSB), to observe all of the wavebands within each of the camera's four pixels. FSBs incorporate frequency selective dipole surfaces as absorbing elements allowing each detector to absorb a single, narrow band of radiation and pass all other radiation with low loss. Each FSB also contains a superconducting transition-edge sensor (TES) that acts as a sensitive thermistor for measuring the temperature of the FSB. This thesis describes the development of the SPEED camera and FSB detectors. The design of the detectors used in the instrument is described as well as the the general optical performance of frequency selective dipole surfaces. Laboratory results of both the optical and thermal properties of millimeter- wave FSBs are also presented. The SPEED instrument and its components are highlighted and the optical design of the optics which couple SPEED to the Heinrich Hertz

  20. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, W.W.

    1991-05-14

    An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

  1. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, William W.

    1991-01-01

    An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

  2. A strained silicon cold electron bolometer using Schottky contacts

    SciTech Connect

    Brien, T. L. R. Ade, P. A. R.; Barry, P. S.; Dunscombe, C.; Morozov, D. V.; Sudiwala, R. V.; Leadley, D. R.; Myronov, M.; Parker, E. H. C.; Prest, M. J.; Whall, T. E.; Prunnila, M.; Mauskopf, P. D.

    2014-07-28

    We describe optical characterisation of a strained silicon cold electron bolometer (CEB), operating on a 350 mK stage, designed for absorption of millimetre-wave radiation. The silicon cold electron bolometer utilises Schottky contacts between a superconductor and an n{sup ++} doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to 160 GHz and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of 50% for radiation coupled into the device by the planar antenna and an overall noise equivalent power, referred to absorbed optical power, of 1.1×10{sup −16} W Hz{sup −1/2} when the detector is observing a 300 K source through a 4 K throughput limiting aperture. Even though this optical system is not optimized, we measure a system noise equivalent temperature difference of 6 mK Hz{sup −1/2}. We measure the noise of the device using a cross-correlation of time stream data, measured simultaneously with two junction field-effect transistor amplifiers, with a base correlated noise level of 300 pV Hz{sup −1/2} and find that the total noise is consistent with a combination of photon noise, current shot noise, and electron-phonon thermal noise.

  3. PolKa: a polarimeter for submillimeter bolometer arrays

    NASA Astrophysics Data System (ADS)

    Siringo, Giorgio

    2003-04-01

    Starting from measurements of the linear polarization of the radiation emitted by celestial objects it is possible to estimate some physical parameters of the source. For example, magnetic field intensities and directions or, when the magnetic field is already known, the processes producing the polarization. A new concept of polarimeter has been designed to be used together with the arrays of bolometers developed in the Bolometer Group at the Max-Planck-Institut fuer Radioastronomie in Bonn. The new polarimeter has the unique characteristic of being tunable over a wide range of wavelengths and of producing a negligible absorption. It has been used at the Heinrich Hertz telescope in Arizona, to measure the linear polarization of some quasars and of some extended sources inside our galaxy. Some results are presented. We detected polarization on the quasars 3C279 and 1633+382. On 3C279 we also detected polarization variability on a time scale of a week. Three maps of extended sources are presented: the BN/KL complex in Orion OMC-1, a filament cloud in Orion OMC-3 and the massive star forming region IRAS 05358+3543. The first map shows the polarization pattern in OMC-1 over an extended sky area with high signal-to-noise and accurate detection of the position angle. The filament in OMC-3 was observed for a short integration time and is presented here only to show the agreement with published data even under conditions of a weak signal-to-noise. The third map is the first detection of polarization in the high-mass star forming region IRAS 05358+3543. The polarimeter has low spurious polarization and a good efficiency and the tests at the telescope show that it is well suited to become a permanent facility.

  4. Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements.

    PubMed

    Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R

    2012-07-01

    A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors. PMID:22852677

  5. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  6. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom; Spector, Garry B.

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  7. Photon statistics in scintillation crystals

    NASA Astrophysics Data System (ADS)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  8. About NICADD extruded scintillating strips

    SciTech Connect

    Dyshkant, A.; Beznosko, D.; Blazey, G.; Chakraborty, D.; Francis, K.; Kubik, D.; Lima, J.G.; Rykalin, V.; Zutshi, v.; Baldina, E.; Bross, A.; Deering, P.; Nebel, T.; Pla-Dalmau, A.; Schellpfeffer, J.; Serritella, C.; Zimmerman, J.; /Fermilab

    2005-04-01

    The results of control measurements of extruded scintillating strip responses to a radioactive source Sr-90 are provided, and details of strip choice, preparation, and method of measurement are included. About four hundred one meter long extruded scintillating strips were measured at four different points. These results were essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  9. Ionospheric Scintillation Effects on GPS

    NASA Astrophysics Data System (ADS)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  10. Extruded plastic scintillator including inorganic powders

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  11. PMT calibration of a scintillation detector using primary scintillation

    NASA Astrophysics Data System (ADS)

    Freitas, E. D. C.; Fernandes, L. M. P.; Yahlali, N.; Pérez, J.; Álvarez, V.; Borges, F. I. G.; Camargo, M.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Díaz, J.; Esteve, R.; Ferrario, P.; Ferreira, A. L.; Gehman, V. M.; Goldschmidt, A.; Gómez, H.; Gómez-Cadenas, J. J.; González Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Irastorza, I. G.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Martínez Lema, G.; Miller, T.; Monrabal, F.; Monserrate, M.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Nebot Guinot, M.; Nygren, D.; Oliveira, C. A. B.; Pérez, J.; Pérez Aparicio, J. L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; Dos Santos, J. M. F.; Seguí, L.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R.; White, J.; Monteiro, C. M. B.

    2015-02-01

    We have studied the calibration of PMTs in scintillation detectors, inducing single electron response on the PMT from primary scintillation produced by x-ray interaction. The results agree with those obtained by the commonly used single electron response (SER) method, which uses LED light pulses to induce the PMT SER. The use of the primary scintillation for PMT calibration will be convenient in situations where the PMT is already in situ, when it becomes difficult or even impossible to apply the SER method, e.g. in commercial sealed scintillator/PMT devices. Furthermore, we have experimentally investigated the possibility of fitting the high-charge tail of the PMT SER pulse-height distribution to an exponential function, inferring the PMT gain from the inverse of the exponent. The results of the exponential fit method agree with those obtained by the SER method for pulse-height distributions resulting from an average number of around 1.0 photoelectrons reaching the first dynode per light/scintillation pulse. The SER method has higher precision and, therefore, is used in a larger number of applications. Nevertheless, the exponential fit method will be useful in situations where the single photoelectron peak is under the background or noise peak and it may present an alternative, simple way, for relative gain calibration of PMT arrays as well as for monitoring the PMT gain variations.

  12. FNAL-NICADD extruded scintillator

    SciTech Connect

    Beznosko, D.; Bross, A.; Dyshkant, A.; Pla-Dalmau, A.; Rykalin, V.; /Northern Illinois U.

    2005-09-01

    The possibility to produce a scintillator that satisfies the demands of physicists from different science areas has emerged with the installation of an extrusion line at Fermi National Accelerator Laboratory (FNAL). The extruder is the product of the fruitful collaboration between FNAL and Northern Illinois Center for Accelerator and Detector Development (NICADD) at Northern Illinois University (NIU). The results from the light output, light attenuation length and mechanical tolerance indicate that FNAL-NICADD scintillator is of high quality. Improvements in the extrusion die will yield better scintillator profiles and decrease the time needed for initial tuning. This paper will present the characteristics of the FNAL-NICADD scintillator based on the measurements performed. They include the response to MIPs from cosmic rays for individual extruded strips and irradiation studies where extruded samples were irradiated up to 1 Mrad. We will also discuss the results achieved with a new die design. The attractive perspective of using the extruded scintillator with MRS (Metal Resistive Semiconductor) photodetector readout will also be shown.

  13. A new readout system for bolometers with improved low frequency stability

    NASA Astrophysics Data System (ADS)

    Gaertner, S.; Benoit, A.; Lamarre, J.-M.; Giard, M.; Bret, J.-L.; Chabaud, J.-P.; Desert, F.-X.; Faure, J.-P.; Jegoudez, G.; Lande, J.; Leblanc, J.; Lepeltier, J.-P.; Narbonne, J.; Piat, M.; Pons, R.; Serra, G.; Simiand, G.

    1997-11-01

    A new readout electronic system for bolometers is presented in this paper. The bolometer resistance is measured in a bridge with a capacitive load, using a periodic square wave bias current. The bias voltages at both ends of the bridge are balanced in order to keep the middle point around zero. Only changes around this zero value are amplified and detected synchronously with the bias signal. These features shift the measurement frequency out of the electrical low frequency noises (JFETs), and reduces the dynamics required from the amplification chain. The bias voltages are fully controlled by computer, and the lock-in detection is digital. This readout electronic has many advantages over previous ones. In particular, it proved to be able to read the total power of the radiation reaching the bolometer, and to perform measurements down to low frequencies (<= 0.1 Hz) without significant additional noise. These features open new observation strategies such as full sky scanning to bolometer instruments on board future submillimetre space projects having high thermal background levels (warm telescope). The different steps of the development of this new readout electronics on the ground-based Diabolo experiment are described, the performances reached are discussed, and a version suitable for the readout of the arrays of bolometers on the COBRAS/SAMBA satellite mission is presented.

  14. Development of Uncooled Micro-bolometer Arrays Based on Hole-doped Rare-Earth Manganites

    NASA Astrophysics Data System (ADS)

    Tanyi, E.; Yong, Grace; Keshavarz, Camron; Sharma, Prakash; Rubin, Christopher; Kolagani, Rajeswari; Gross, Steven

    2013-03-01

    Material properties indicate that rare earth manganites have a competitive advantage over VOx which is a material commonly employed as bolometric sensors in state of the art uncooled imaging arrays. We will present the results of our work on developing manganite thin films for uncooled micro-bolometer arrays. By fine tuning the cation composition and stoichiometry, we have identified material compositions suitable for uncooled bolometer operation and developed thin films of these materials by Pulsed Laser Deposition (PLD) on Si. For hetero-epitaxy on Si, we employ lattice engineering schemes to circumvent problems such as chemical incompatibility and amorphization of the substrate surface due to the native oxide. We are in the process of fabricating single test bolometers and micro-bolometer arrays. We will discuss the results of materials development and device fabrication efforts and will present performance parameters and estimated figures of merit for test bolometers. We will also discuss efforts towards understanding and alleviating material problems such as the residual stresses in the thin film heterostructures which are of critical importance for the fabrication of suspended microstructures. We acknowledge support from the NSF grant ECCS 1128586 at Towson University.

  15. Operation of a Wideband Terahertz Superconducting Bolometer Responding to Quantum Cascade Laser Pulses

    NASA Astrophysics Data System (ADS)

    Cibella, S.; Beck, M.; Carelli, P.; Castellano, M. G.; Chiarello, F.; Faist, J.; Leoni, R.; Ortolani, M.; Sabbatini, L.; Scalari, G.; Torrioli, G.; Turcinkova, D.

    2012-06-01

    We make use of a niobium film to produce a micrometric vacuum-bridge superconducting bolometer responding to THz frequency. The bolometer works anywhere in the temperature range 2-7 K, which can be easily reached in helium bath cryostats or closed-cycle cryocoolers. In this work the bolometer is mounted on a pulse tube refrigerator and operated to measure the equivalent noise power (NEP) and the response to fast (μs) terahertz pulses. The NEP above 100 Hz equals that measured in a liquid helium cryostat showing that potential drawbacks related to the use of a pulse tube refrigerator (like mechanical and thermal oscillations, electromagnetic interference, noise) are irrelevant. At low frequency, instead, the pulse tube expansion-compression cycles originate lines at 1 Hz and harmonics in the noise spectrum. The bolometer was illuminated with THz single pulses coming either from a Quantum Cascade Laser operating at liquid nitrogen temperature or from a frequency-multiplied electronic oscillator. The response of the bolometer to the single pulses show that the device can track signals with a rise time as fast as about 450 ns.

  16. Neutron spectroscopy with {sup 6}LiF bolometers

    SciTech Connect

    Gironnet, J.; Brandt, B. van den; Hautle, P.; Filges, U.; Konter, J. A.; Coron, N.; Marcillac, P. de; Torres, L.

    2009-12-16

    A compact and semi-portable neutron detector has been built based on the bolometric technique. Its unique features open new possibilities for the radioprotection survey of fast neutrons at nuclear installations and the investigations of background problems of sensitive neutron scattering instruments. This cryogenic detector, operated at 300-400 mK, consists of a 0.5 g LiF 95%{sup 6}Li enriched crystal read out by a NTD-Ge sensor and is based on the {sup 6}Li(n, {alpha}){sup 3}H neutron capture reaction. It is used to define the energy of neutrons up to 5 MeV. Measurements with {sup 252}Cf source have been performed to determine the energy resolution of the detector. We report the first results obtained with this neutron detector. From developments made in view of the ROSEBUD (Rare Objects SEarch with Bolometers UndergrounD) collaboration we suggest a possible further improvement of the neutron detector by employing a combined heat and light detection. In the case of dark matter experiments, such a detector would allow to monitor the residual fast neutron component.

  17. PolKa: A Tunable Polarimeter for Submillimeter Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Siringo, G.; Kreysa, E.; Menten, K. M.; Reichertz, L. A.

    2005-12-01

    A new polarimeter has been constructed to be used with the bolometer arrays developed at the Max-Planck-Institut für Radioastronomie in Bonn. The new polarimeter has the unique characteristic of being tunable over a wide range of wavelengths and of producing negligible absorption. It has been used at the Heinrich Hertz Telescope to measure the linear polarization of quasars and of extended sources inside our Galaxy. We detected polarization in the quasars 3C 279 and QSO B1633+382. In 3C 279 we also detected polarization variability on a time scale of a week. We also produced maps of three extended sources: the Becklin-Neugebauer/Kleinmann-Low complex in the Orion Molecular Cloud 1 (OMC 1), a filamentary cloud in OMC 3, and the massive star-forming region IRAS 05358+3543. The polarimeter has low spurious polarization and a high modulation efficiency, and the tests at the telescope show that it is well suited to become a permanent facility.

  18. A new polarimeter for (sub)millimeter bolometer arrays

    NASA Astrophysics Data System (ADS)

    Siringo, G.; Kreysa, E.; Reichertz, L. A.; Menten, K. M.

    2004-08-01

    A new polarimeter concept has been designed to be used together with the bolometer arrays developed at the Max-Planck-Institut für Radioastronomie in Bonn. The new polarimeter has the unique characteristic of being tunable over a wide range of wavelengths and of producing negligible absorption. It has been used at the Heinrich Hertz Telescope to measure the linear polarization of several quasars and of extended sources inside our Galaxy. Some results are presented here. We detected polarization in the quasars 3C 279 and QSO B1633+382. In 3C 279 we also detected polarization variability on a time scale of a week. We also produced maps of three extended sources: the Becklin-Neugebauer/Kleinmann-Low (BNKL) complex in the Orion Molecular Cloud 1 (OMC 1), a filamentary cloud in OMC 3, and the massive star-forming region IRAS 05358+3543. The polarimeter has low spurious polarization and a high modulation efficiency, and the tests at the telescope show that it is well suited to become a permanent facility.

  19. Frequency selective bolometer development at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Datesman, Aaron; Pearson, John; Wang, Gensheng; Yefremenko, Volodymyr; Divan, Ralu; Downes, Thomas; Chang, Clarence; McMahon, Jeff; Meyer, Stephan; Carlstrom, John; Logan, Daniel; Perera, Thushara; Wilson, Grant; Novosad, Valentyn

    2008-07-01

    We discuss the development, at Argonne National Laboratory, of a four-pixel camera suitable for photometry of distant dusty galaxies located by Spitzer and SCUBA, and for study of other millimeter-wave sources such as ultra-luminous infrared galaxies, the Sunyaev-Zeldovich (SZ) effect in clusters, and galactic dust. Utilizing Frequency Selective Bolometers (FSBs) with superconducting Transition-Edge Sensors (TESs), each of the camera's four pixels is sensitive to four colors, with frequency bands centered approximately at 150, 220, 270, and 360 GHz. The current generation of these devices utilizes proximity effect superconducting bilayers of Mo/Au or Ti/Au for TESs, along with frequency selective circuitry on membranes of silicon nitride 1 cm across and 1 micron thick. The operational properties of these devices are determined by this circuitry, along with thermal control structures etched into the membranes. These etched structures do not perforate the membrane, so that the device is both comparatively robust mechanically and carefully tailored in terms of its thermal transport properties. In this paper, we report on development of the superconducting bilayer TES technology and characterization of the FSB stacks. This includes the use of new materials, the design and testing of thermal control structures, the introduction of desirable thermal properties using buried layers of crystalline silicon underneath the membrane, detector stability control, and optical and thermal test results. The scientific motivation, FSB design, FSB fabrication, and measurement results are discussed.

  20. TES development for a frequency selective bolometer camera.

    SciTech Connect

    Datesman, A. M.; Downes, T. P.; Perera, T. A.; Wang, G.; Yefremenko, V. G.; Pearson, J. E.; Novosad, V.; Divan, R.; Chang, C. L.; Logan, D. W.; Meyer, S. S.; Wilson , G. W.; Bleem, L. E.; Crites, A. T.; McMahon, J. J.; Carlstrom, J. E.; Materials Science Division; Kavli Inst. Cosmological Phys.; Univ. of Massachusetts

    2009-06-01

    We discuss the development, at Argonne National Laboratory (ANL), of a four-pixel camera with four spectral channels centered at 150, 220, 270, and 360 GHz. The scientific motivation involves photometry of distant dusty galaxies located by Spitzer and SCUBA, as well as the study of other millimeter-wave sources such as ultra-luminous infrared galaxies, the Sunyaev-Zeldovich effect in clusters, and galactic dust. The camera incorporates Frequency Selective Bolometer (FSB) and superconducting Transition-Edge Sensor (TES) technology. The current generation of TES devices we examine utilizes proximity effect superconducting bilayers of Mo/Au, Ti, or Ti/Au as TESs, located along with frequency selective absorbing structures on silicon nitride membranes. The detector incorporates lithographically patterned structures designed to address both TES device stability and detector thermal transport concerns. The membrane is not perforated, resulting in a detector which is comparatively robust mechanically. In this paper, we report on the development of the superconducting bilayer TES technology, the design and testing of the detector thermal transport and device stability control structures, optical and thermal test results, and the use of new materials.

  1. Frequency selective bolometer development at Argonne National Laboratory.

    SciTech Connect

    Datesman, A.; Pearson, J.; Wang, G.; Yefremenko, V.; Divan, R.; Downes, T.; Chang, C.; McMahon, J.; Meyer, S.; Carlstrom, J.; Logan, D.; Perera, T.; Wilson, G.; Novosad, V.; Univ. of Chicago; Univ. of Massachusetts

    2008-07-01

    We discuss the development, at Argonne National Laboratory, of a four-pixel camera suitable for photometry of distant dusty galaxies located by Spitzer and SCUBA, and for study of other millimeter-wave sources such as ultra-luminous infrared galaxies, the Sunyaev-Zeldovich (SZ) effect in clusters, and galactic dust. Utilizing Frequency Selective Bolometers (FSBs) with superconducting Transition-Edge Sensors (TESs), each of the camera's four pixels is sensitive to four colors, with frequency bands centered approximately at 150, 220, 270, and 360 GHz. The current generation of these devices utilizes proximity effect superconducting bilayers of Mo/Au or Ti/Au for TESs, along with frequency selective circuitry on membranes of silicon nitride 1 cm across and 1 micron thick. The operational properties of these devices are determined by this circuitry, along with thermal control structures etched into the membranes. These etched structures do not perforate the membrane, so that the device is both comparatively robust mechanically and carefully tailored in terms of its thermal transport properties. In this paper, we report on development of the superconducting bilayer TES technology and characterization of the FSB stacks. This includes the use of new materials, the design and testing of thermal control structures, the introduction of desirable thermal properties using buried layers of crystalline silicon underneath the membrane, detector stability control, and optical and thermal test results. The scientific motivation, FSB design, FSB fabrication, and measurement results are discussed.

  2. Dual Transition Edge Sensor Bolometer for Enhanced Dynamic Range

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Benford, D. J.; Moseley, S. H.; Irwin, K. D.

    2004-01-01

    Broadband surveys at the millimeter and submillimeter wavelengths will require bolometers that can reach new limits of sensitivity and also operate under high background conditions. To address this need, we present results on a dual transition edge sensor (TES) device with two operating modes: one for low background, ultrasensitive detection and one for high background, enhanced dynamic range detection. The device consists of a detector element with two transition temperatures (T(sub c)) of 0.25 and 0.51 K located on the same micromachined, thermally isolated membrane structure. It can be biased on either transition, and features phonon-limited noise performance at the lower T(sub c). We measure noise performance on the lower transition 7 x 10(exp -18) W/rt(Hz) and the bias power on the upper transition of 12.5 pW, giving a factor of 10 enhancement of the dynamic range for the device. We discuss the biasable range of this type of device and present a design concept to optimize utility of the device.

  3. Characterization of MgB2 Superconducting Hot Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Cunnane, D.; Kawamura, J. H.; Wolak, M. A.; Acharya, N.; Tan, T.; Xi, X. X.; Karasik, B. S.

    2014-01-01

    Hot-Electron Bolometer (HEB) mixers have proven to be the best tool for high-resolution spectroscopy at the Terahertz frequencies. However, the current state of the art NbN mixers suffer from a small intermediate frequency (IF) bandwidth as well as a low operating temperature. MgB2 is a promising material for HEB mixer technology in view of its high critical temperature and fast thermal relaxation allowing for a large IF bandwidth. In this work, we have fabricated and characterized thin-film (approximately 15 nanometers) MgB2-based spiral antenna-coupled HEB mixers on SiC substrate. We achieved the IF bandwidth greater than 8 gigahertz at 25 degrees Kelvin and the device noise temperature less than 4000 degrees Kelvin at 9 degrees Kelvin using a 600 gigahertz source. Using temperature dependencies of the radiation power dissipated in the device we have identified the optical loss in the integrated microantenna responsible as a cause of the limited sensitivity of the current mixer devices. From the analysis of the current-voltage (IV) characteristics, we have derived the effective thermal conductance of the mixer device and estimated the required local oscillator power in an optimized device to be approximately 1 microwatts.

  4. Radiopure Metal-Loaded Liquid Scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  5. Radiopure metal-loaded liquid scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-08-17

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  6. Fracture-resistant lanthanide scintillators

    DOEpatents

    Doty, F. Patrick

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  7. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  8. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  9. Development of radiation hard scintillators

    SciTech Connect

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G. ); Blackburn, R. )

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro.

  10. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  11. Nanophosphor composite scintillator with a liquid matrix

    DOEpatents

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  12. Liquid scintillating fiber calorimetry prototype

    SciTech Connect

    Gui, M.; Brookes, D.; David, A.

    1995-08-01

    A full size liquid scintillating fiber spaghetti-hadronic calorimeter has been constructed and tested using cosmic rays at Texas A and M University. The purpose of this research is to find practical solutions for detectors to be used in extremely high radiation environments. The details of design and construction of this module are presented. The advantages of using liquid scintillating materials were investigated. Relevant subjects are addressed. Cosmic ray test results are compared with that of GEANT Monte Carlo simulations. Over all, they agree well with each other. The conclusion is that calorimeters utilizing this technique can be used in high radiation environments such as SSC colliding area.

  13. Magnetic fields and scintillator performance

    SciTech Connect

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  14. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  15. Composite scintillators for detection of ionizing radiation

    DOEpatents

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  16. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  17. Photonic crystal scintillators and methods of manufacture

    SciTech Connect

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  18. Searching for neutrinoless double beta decay of Te-130 with CUORE bolometers

    NASA Astrophysics Data System (ADS)

    Han, Ke; Cuore Collaboration

    2015-10-01

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of Te-130. CUORE large-mass bolometer array will consist of 988 tellurium oxide bolometer modules and a total of 206 kg of Te-130 in one single cryostat at 10 mK. It will be sensitive to an effective Majorana neutrino mass of 50-130 meV and is one of the most sensitive experiments under construction. The detector and the cryostat are in an advanced stage of installation and is expected to start operation by the end of 2015. Recents results from CUORE-0, a prototype experiment to CUORE, have validated the performance and background predictions of TeO2 bolometer arrays. In this talk, we will present the latest results from CUORE-0, the construction status, as well as sensitivity projection of CUORE. On behalf of the CUORE Collaboration.

  19. Enhancing the spectral response of filled bolometer arrays for submillimeter astronomy.

    PubMed

    Revéret, Vincent; Rodriguez, Louis; Agnèse, Patrick

    2010-12-10

    Future missions for astrophysical studies in the submillimeter region will need detectors with very high sensitivity and large fields of view. Bolometer arrays can fulfill these requirements over a very broad band. We describe a technique that enables bolometer arrays that use quarter-wave cavities to have a high spectral response over most of the submillimeter band. This technique is based on the addition on the front of the array of an antireflecting dielectric layer. The optimum parameters (layer thickness and distance to the array) are determined by a 2D analytic code. This general principle is applied to the case of Herschel PACS bolometers (optimized for the 60 to 210 μm band). As an example, we demonstrate experimentally that a PACS array covered by a 138 μm thick silicon layer can improve the spectral response by a factor of 1.7 in the 450 μm band. PMID:21151229

  20. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    NASA Astrophysics Data System (ADS)

    Santiago, L. M.; Bagán, H.; Tarancón, A.; Garcia, J. F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3H, 51.2% for 14C, 180.6% for 90Sr/90Y and 76.7% for 241Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition of

  1. Enhanced performance of VOx-based bolometer using patterned gold black absorber

    NASA Astrophysics Data System (ADS)

    Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.

    2015-06-01

    Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.

  2. A highly linear superconducting bolometer for quantitative THz Fourier transform spectroscopy.

    PubMed

    Kehrt, Mathias; Monte, Christian; Beyer, Jörn; Hollandt, Jörg

    2015-05-01

    A superconducting transition edge sensor (TES) bolometer operating in the spectral range from 0.1 THz to 3 THz was designed. It is especially intended for Fourier transform spectroscopy and features a higher dynamic range and a highly linear response at a similar response compared to commercially available silicon composite bolometers. The design is based on a thin film metal mesh absorber, a superconducting thermistor and Si3N4 membrane technology. A prototype was set up, characterized and successfully used in first applications. PMID:25969213

  3. A Planar Two-Dimensional Superconducting Bolometer Array for the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Staguhn, Johannes G.; Chervenak, James A.; Chen, Tina C.; Moseley, S. Harvey; Wollack, Edward J.; Devlin, Mark J.; Dicker, Simon R.; Supanich, Mark

    2004-01-01

    In order to provide high sensitivity rapid imaging at 3.3mm (90GHz) for the Green Bank Telescope - the world's largest steerable aperture - a camera is being built by the University of Pennsylvania, NASA/GSFC, and NRAO. The heart of this camera is an 8x8 close-packed, Nyquist-sampled detector array. We have designed and are fabricating a functional superconducting bolometer array system using a monolithic planar architecture. Read out by SQUID multiplexers, the superconducting transition edge sensors will provide fast, linear, sensitive response for high performance imaging. This will provide the first ever superconducting bolometer array on a facility instrument.

  4. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  5. SNO+ Scintillator Purification and Assay

    SciTech Connect

    Ford, R.; Vazquez-Jauregui, E.; Chen, M.; Chkvorets, O.; Hallman, D.

    2011-04-27

    We describe the R and D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O{sub 2}, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed ''natural'' radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  6. Boron Doped Plastic Scintillator Efficiency

    NASA Astrophysics Data System (ADS)

    Mahl, Adam; Chouinard-Dussault, Pascale; Pecinovsky, Cory; Potter, Andrew; Remedes, Tyler; Dorgan, John; Greife, Uwe

    2013-04-01

    This talk will describe the progress made in an interdisciplinary development project aimed at cost-effective, neutron sensitive, plastic scintillator. Colorado School of Mines researchers with backgrounds in Physics, Chemistry, and Chemical Engineering have worked on the incorporation of ^10B in plastics through extrusion. First results on transparent samples using fluorescent spectroscopy and beta excitation will be presented.

  7. Scintillating fiber ribbon --- tungsten calorimeter

    SciTech Connect

    Bross, A.; Crisler, M.; Kross, B.; Wrbanek, J.

    1989-07-14

    We describe an ultra-high density scintillating fiber and tungsten calorimeter used as an active beam-dump for electrons. Data showing the calorimeter response to electrons with momenta between 50 and 350 GeV/c are presented. 9 figs.

  8. Terahertz hot electron bolometer waveguide mixers for GREAT

    NASA Astrophysics Data System (ADS)

    Pütz, P.; Honingh, C. E.; Jacobs, K.; Justen, M.; Schultz, M.; Stutzki, J.

    2012-06-01

    Context. Supplementing the publications based on the first-light observations with the German REceiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. This Letter complements the GREAT instrument Letter and focuses on the mixers itself. Aims: We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on their operation in GREAT is given. Methods: Our mixer units are waveguide-based and couple to free-space radiation via a feedhorn antenna. The HEB mixers are designed, fabricated, characterized, and flight-qualified in-house. We are able to use the full intermediate frequency bandwidth of the mixers using silicon-germanium multi-octave cryogenic low-noise amplifiers with very low input return loss. Results: Superconducting HEB mixers have proven to be practical and sensitive detectors for high-resolution THz frequency spectroscopy on SOFIA. We show that our niobium-titanium-nitride (NbTiN) material HEBs on silicon nitride (SiN) membrane substrates have an intermediate frequency (IF) noise roll-off frequency above 2.8 GHz, which does not limit the current receiver IF bandwidth. Our mixer technology development efforts culminate in the first successful operation of a waveguide-based HEB mixer at 2.5 THz and deployment for radioastronomy. A significant contribution to the success of GREAT is made by technological development, thorough characterization and performance optimization of the mixer and its IF interface for receiver operation on SOFIA. In particular, the development of an optimized mixer IF interface contributes to the low passband ripple and excellent stability, which GREAT demonstrated during its initial successful astronomical observation runs.

  9. Operation of a tangential bolometer on the PBX tokamak

    SciTech Connect

    Paul, S.F.; Fonck, R.J.; Schmidt, G.L.

    1987-04-01

    A compact 15-channel bolometer array that views plasma emission tangentially across the midplane has been installed on the PBX tokamak to supplement a 19-channel poloidal array which views the plasma perpendicular to the toroidal direction. By comparing measurements from these arrays, poloidal asymmetries in the emission profile can be assessed. The detector array consists of 15 discrete 2-mm x 2-mm Thinistors, a mixed semiconductor material whose temperature coefficient of resistance is relatively high. The accumulated heat incident on a detector gives rise to a change in the resistance in each active element. Operated in tandem with an identical blind detector, the resistance in each pair is compared in a Wheatstone bridge circuit. The variation in voltage resulting from the change in resistance is amplified, stored on a CAMAC transient recorder during the plasma discharge, and transferred to a VAX data acquisition computer. The instantaneous power is obtained by digitally smoothing and differentiating the signals in time, with suitable compensation for the cooling of the detector over the course of a plasma discharge. The detectors are ''free standing,'' i.e., they are supported only by their electrical leads. Having no substrate in contact with the detector reduces the response time and increases the time it takes for the detector to dissipate its accumulated heat, reducing the compensation for cooling required in the data analysis. The detectors were absolutely calibrated with a tungsten-halogen filament lamp and were found to vary by +-3%. The irradiance profiles are inverted to reveal the radially resolved emitted power density from the plasma, which is typically in the 0.1 to 0.5 W/cm/sup 3/ range.

  10. Scintillating lustre induced by radial fins.

    PubMed

    Takahashi, Kohske; Fukuda, Haruaki; Watanabe, Katsumi; Ueda, Kazuhiro

    2012-01-01

    Radial lines of Ehrenstein patterns induce illusory scintillating lustre in gray disks inserted into the central gaps (scintillating-lustre effect). We report a novel variant of this illusion by replacing the radial lines with white and black radial fins. Both white and gray disks inserted into the central gaps were perceived as scintillating, if the ratio of the black/white fin width were balanced (ie, close to 1.0). Thus, the grayness of the central disk is not a prerequisite for the scintillation. However, the scintillation was drastically reduced when the ratio was imbalanced. Furthermore, the optimal ratio depended on the color of the center disks. PMID:23145270