Science.gov

Sample records for cell adhesion motility

  1. Mutant p53 in cell adhesion and motility.

    PubMed

    Yeudall, W Andrew; Wrighton, Katharine H; Deb, Sumitra

    2013-01-01

    Pro-oncogenic properties of mutant p53 were investigated with the aid of migration assays, adhesion assays, and soft agar growth assays using cells stably expressing gain-of-function p53 mutants. To determine cell migration, "wound-healing" (scratch) assays and haptotactic (chamber) assays were used. H1299 cells expressing mutant p53 were found to migrate more rapidly than cells transfected with empty vector alone. Results from both types of migration assay were broadly similar. Migratory ability differed for different p53 mutants, suggesting allele-specific effects. Cells expressing p53 mutants also showed enhanced adhesion to extracellular matrix compare to controls. Furthermore, stable transfection of mutant p53-H179L into NIH3T3 fibroblasts was sufficient to allow anchorage-independent growth in soft agar. PMID:23150443

  2. Effects of Adhesion Dynamics and Substrate Compliance on the Shape and Motility of Crawling Cells

    PubMed Central

    Ziebert, Falko; Aranson, Igor S.

    2013-01-01

    Computational modeling of eukaryotic cells moving on substrates is an extraordinarily complex task: many physical processes, such as actin polymerization, action of motors, formation of adhesive contacts concomitant with both substrate deformation and recruitment of actin etc., as well as regulatory pathways are intertwined. Moreover, highly nontrivial cell responses emerge when the substrate becomes deformable and/or heterogeneous. Here we extended a computational model for motile cell fragments, based on an earlier developed phase field approach, to account for explicit dynamics of adhesion site formation, as well as for substrate compliance via an effective elastic spring. Our model displays steady motion vs. stick-slip transitions with concomitant shape oscillations as a function of the actin protrusion rate, the substrate stiffness, and the rates of adhesion. Implementing a step in the substrate’s elastic modulus, as well as periodic patterned surfaces exemplified by alternating stripes of high and low adhesiveness, we were able to reproduce the correct motility modes and shape phenomenology found experimentally. We also predict the following nontrivial behavior: the direction of motion of cells can switch from parallel to perpendicular to the stripes as a function of both the adhesion strength and the width ratio of adhesive to non-adhesive stripes. PMID:23741334

  3. Autocrine netrin function inhibits glioma cell motility and promotes focal adhesion formation.

    PubMed

    Jarjour, Andrew A; Durko, Margaret; Luk, Tamarah L; Marçal, Nathalie; Shekarabi, Masoud; Kennedy, Timothy E

    2011-01-01

    Deregulation of mechanisms that control cell motility plays a key role in tumor progression by promoting tumor cell dissemination. Secreted netrins and their receptors, Deleted in Colorectal Cancer (DCC), neogenin, and the UNC5 homologues, regulate cell and axon migration, cell adhesion, and tissue morphogenesis. Netrin and netrin receptor expression have previously been shown to be disrupted in invasive tumors, including glioblastoma. We determined that the human glioblastoma cell lines U87, U343, and U373 all express neogenin, UNC5 homologues, and netrin-1 or netrin-3, but only U87 cells express DCC. Using transfilter migration assays, we demonstrate DCC-dependent chemoattractant migration of U87 cells up a gradient of netrin-1. In contrast, U343 and U373 cells, which do not express DCC, were neither attracted nor repelled. Ectopic expression of DCC by U343 and U373 cells resulted in these cells becoming competent to respond to a gradient of netrin-1 as a chemoattractant, and also slowed their rate of spontaneous migration. Here, in addition to netrins' well-characterized chemotropic activity, we demonstrate an autocrine function for netrin-1 and netrin-3 in U87 and U373 cells that slows migration. We provide evidence that netrins promote the maturation of focal complexes, structures associated with cell movement, into focal adhesions. Consistent with this, netrin, DCC, and UNC5 homologues were associated with focal adhesions, but not focal complexes. Disrupting netrin or DCC function did not alter cell proliferation or survival. Our findings provide evidence that DCC can slow cell migration, and that neogenin and UNC5 homologues are not sufficient to substitute for DCC function in these cells. Furthermore, we identify a role for netrins as autocrine inhibitors of cell motility that promote focal adhesion formation. These findings suggest that disruption of netrin signalling may disable a mechanism that normally restrains inappropriate cell migration. PMID

  4. Tumor suppressor KAI1 affects integrin {alpha}v{beta}3-mediated ovarian cancer cell adhesion, motility, and proliferation

    SciTech Connect

    Ruseva, Zlatna; Geiger, Pamina Xenia Charlotte; Hutzler, Peter; Kotzsch, Matthias; Luber, Birgit; Schmitt, Manfred; Gross, Eva; Reuning, Ute

    2009-06-10

    The tetraspanin KAI1 had been described as a metastasis suppressor in many different cancer types, a function for which associations of KAI1 with adhesion and signaling receptors of the integrin superfamily likely play a role. In ovarian cancer, integrin {alpha}v{beta}3 correlates with tumor progression and its elevation in vitro provoked enhanced cell adhesion accompanied by significant increases in cell motility and proliferation in the presence of its major ligand vitronectin. In the present study, we characterized integrin {alpha}v{beta}3-mediated tumor biological effects as a function of cellular KAI1 restoration and proved for the first time that KAI1, besides its already known physical crosstalk with {beta}1-integrins, also colocalizes with integrin {alpha}v{beta}3. Functionally, elevated KAI1 levels drastically increased integrin {alpha}v{beta}3/vitronectin-dependent ovarian cancer cell adhesion. Since an intermediate level of cell adhesive strength is required for optimal cell migration, we next studied ovarian cancer cell motility as a function of KAI1 restoration. By time lapse video microscopy, we found impaired integrin {alpha}v{beta}3/vitronectin-mediated cell migration most probably due to strongly enhanced cellular immobilization onto the adhesion-supporting matrix. Moreover, KAI1 reexpression significantly diminished cell proliferation. These data strongly indicate that KAI1 may suppress ovarian cancer progression by inhibiting integrin {alpha}v{beta}3/vitronectin-provoked tumor cell motility and proliferation as important hallmarks of the oncogenic process.

  5. Cadherin-mediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot.

    PubMed

    Tanaka-Matakatsu, M; Uemura, T; Oda, H; Takeichi, M; Hayashi, S

    1996-12-01

    Coordination of cell motility and adhesion is essential for concerted movement of tissues during animal morphogenesis. The Drosophila tracheal network is formed by branching, migration and fusion of tubular ectodermal epithelia. Tracheal tip cells, located at the end of each branch that is going to fuse, extend filopodia to search for targets and later change their cell shape to a seamless ring to allow passage of lumen. The cell adhesion molecule DE-cadherin accumulates at the site of contact to form a ring that marks the site of lumen entry and is essential for the fusion. DE-cadherin expression in tip cells of a subset of branches is dependent on escargot, a zinc finger gene expressed in all tip cells. Such escargot mutant tip cells failed to adhere to each other and continued to search for alternative targets by extending long filopodia. We present evidence indicating escargot positively regulates transcription of the DE-cadherin gene, shotgun. Overexpression of DE-cadherin rescued the defect in one of the fusion points in escargot mutants, demonstrating an essential role of DE-cadherin in target recognition and identifying escargot as a key regulator of cell adhesion and motility in tracheal morphogenesis. PMID:9012491

  6. An Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape

    PubMed Central

    Barnhart, Erin L.; Lee, Kun-Chun; Keren, Kinneret; Mogilner, Alex; Theriot, Julie A.

    2011-01-01

    Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes. PMID:21559321

  7. Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.

    PubMed

    Gratzinger, Dita; Canosa, Sandra; Engelhardt, Britta; Madri, Joseph A

    2003-08-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1), an immunoglobulin family vascular adhesion molecule, is involved in endothelial cell migration and angiogenesis (1, 2). We found that endothelial cells lacking PECAM-1 exhibit increased single cell motility and extension formation but poor wound healing migration, reminiscent of cells in which Rho activity has been suppressed by overexpressing a GTPase-activating protein (3). The ability of PECAM-1 to restore wound healing migration to PECAM-1-deficient cells was independent of its extracellular domain or signaling via its immunoreceptor tyrosine-based inhibitory motif. PECAM-1-deficient endothelial cells had a selective defect in RhoGTP loading, and inhibition of Rho activity mimicked the PECAM-1-deficient phenotype of increased chemokinetic single cell motility at the expense of coordinated wound healing migration. The wound healing advantage of PECAM-1-positive endothelial cells was not only Rho mediated but pertussis toxin inhibitable, characteristic of migration mediated by heterotrimeric G-protein-linked seven-transmembrane receptor signaling such as signaling in response to the serum sphingolipid sphingosine-1-phosphate (S1P) (4, 5). Indeed, we found that the wound healing defect of PECAM-1 null endothelial cells is minimized in sphingolipid-depleted media; moreover, PECAM-1 null endothelial cells fail to increase their migration in response to S1P. We have also found that PECAM-1 localizes to rafts and that in its absence heterotrimeric G-protein components are differentially recruited to rafts, providing a potential mechanism for PECAM-1-mediated coordination of S1P signaling. PECAM-1 may thus support the effective S1P/RhoGTP signaling required for wound healing endothelial migration by allowing for the spatially directed, coordinated activation of Galpha signaling pathways. PMID:12890700

  8. Triterpene glycoside cucumarioside A(2)-2 from sea cucumber stimulates mouse immune cell adhesion, spreading, and motility.

    PubMed

    Aminin, Dmitry L; Gorpenchenko, Tatyana Y; Bulgakov, Viktor P; Andryjashchenko, Polina V; Avilov, Sergey A; Kalinin, Vladimir I

    2011-06-01

    Holothurian triterpene glycosides are known to possess multiple biological activities. Here we show that cucumarioside A(2)-2 from the Far-Eastern edible holothurian Cucumaria japonica possesses potent immunomodulatory properties. The present studies were done to determine if cucumarioside A(2)-2 would affect macrophage adhesion, spreading, and motility. Resident peritoneal macrophages, collected from BALB/c mice, were exposed in vitro to low concentrations of cucumarioside A(2)-2 and compared with appropriate controls. Results indicate that 0.02 μg/mL cucumarioside A(2)-2 significantly enhanced macrophage morphology parameters and behavior. The glycoside stimulated these parameters by increasing the number of cells with increased adhesion properties as well as the spreading reaction and motility velocity by at least almost twofold. The data are discussed in terms of possible mechanisms underlying the immunomodulatory properties of cucumarioside A(2)-2. PMID:21554137

  9. Stonin1 mediates endocytosis of the proteoglycan NG2 and regulates focal adhesion dynamics and cell motility

    PubMed Central

    Feutlinske, Fabian; Browarski, Marietta; Ku, Min-Chi; Trnka, Philipp; Waiczies, Sonia; Niendorf, Thoralf; Stallcup, William B.; Glass, Rainer; Krause, Eberhard; Maritzen, Tanja

    2015-01-01

    Cellular functions, ranging from focal adhesion (FA) dynamics and cell motility to tumour growth, are orchestrated by signals cells receive from outside via cell surface receptors. Signalling is fine-tuned by the exo–endocytic cycling of these receptors to control cellular responses such as FA dynamics, which determine cell motility. How precisely endocytosis regulates turnover of the various cell surface receptors remains unclear. Here we identify Stonin1, an endocytic adaptor of unknown function, as a regulator of FA dynamics and cell motility, and demonstrate that it facilitates the internalization of the oncogenic proteoglycan NG2, a co-receptor of integrins and platelet-derived growth factor receptor. Embryonic fibroblasts obtained from Stonin1-deficient mice display a marked surface accumulation of NG2, increased cellular signalling and defective FA disassembly as well as altered cellular motility. These data establish Stonin1 as a specific adaptor for the endocytosis of NG2 and as an important factor for FA dynamics and cell migration. PMID:26437238

  10. Regulation of T-lymphocyte motility, adhesion and de-adhesion by a cell surface mechanism directed by low density lipoprotein receptor-related protein 1 and endogenous thrombospondin-1

    PubMed Central

    Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta

    2014-01-01

    T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130 000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1–calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion. PMID:24877199

  11. Human epididymis protein 4 (HE4) plays a key role in ovarian cancer cell adhesion and motility

    SciTech Connect

    Lu, Renquan; Sun, Xinghui; Xiao, Ran; Zhou, Lei; Gao, Xiang; Guo, Lin

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We generated stable transduced HE4 overexpression and knockdown cells. Black-Right-Pointing-Pointer HE4 was associated with EOC cell adhesion and motility. Black-Right-Pointing-Pointer HE4 might have some effects on activation of EGFR-MAPK signaling pathway. Black-Right-Pointing-Pointer HE4 play an important role in EOC tumorigenicity. -- Abstract: Human epididymis protein 4 (HE4) is a novel and specific biomarker for epithelial ovarian cancer (EOC). We previously demonstrated that serum HE4 levels were significantly elevated in the majority of EOC patients but not in subjects with benign disease or healthy controls. However, the precise mechanism of HE4 protein function is unknown. In this study, we generated HE4-overexpressing SKOV3 cells and found that stably transduced cells promoted cell adhesion and migration. Knockdown of HE4 expression was achieved by stable transfection of SKOV3 cells with a construct encoding a short hairpin DNA directed against the HE4 gene. Correspondingly, the proliferation and spreading ability of HE4-expressed cells were inhibited by HE4 suppression. Mechanistically, impaired EGFR and Erk1/2 phosphorylation were observed in cells with HE4 knockdown. The phosphorylation was restored when the knockdown cells were cultured in conditioned medium containing HE4. Moreover, in vivo tumorigenicity showed that HE4 suppression markedly inhibited the growth of tumors. This suggests that expression of HE4 is associated with cancer cell adhesion, migration and tumor growth, which can be related to its effects on the EGFR-MAPK signaling pathway. Our results provide evidence of the cellular and molecular mechanisms that may underlie the motility-promoting role of HE4 in EOC progression. The role of HE4 as a target for gene-based therapy might be considered in future studies.

  12. Coupling actin flow, adhesion, and morphology in a computational cell motility model

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    2014-03-01

    Eukaryotic cells crawl by means of the coordinated spatiotemporal dynamics of an active polymer gel, consisting of actin, myosin and regulators thereof. Motility is necessarily coupled to shape, as the force generating mechanisms such as polymerization-based protrusions interact with the elasticity of the cell membrane and thereby determine the cell morphology. We have introduced a ``phase-field'' model of crawling cells, utilizing a mathematical approach originally developed for morphology problems arising in the field of liquid-solid phase transitions. Our model can be used to explain the pattern of traction forces applied to the substrate as well as some recent observations concerning oscillatory instabilities of cells moving on one-dimensional fiber tracks.

  13. Neutrophils lacking platelet-endothelial cell adhesion molecule-1 exhibit loss of directionality and motility in CXCR2-mediated chemotaxis.

    PubMed

    Wu, Yue; Stabach, Paul; Michaud, Michael; Madri, Joseph A

    2005-09-15

    Time-lapsed videomicroscopy was used to study the migration of platelet-endothelial cell adhesion molecule-1-deficient (PECAM-1(-/-)) murine neutrophils undergoing chemotaxis in Zigmond chambers containing IL-8, KC, or fMLP gradients. PECAM-1(-/-) neutrophils failed to translocate up the IL-8, KC, and fMLP gradients. Significant reductions in cell motility and cell spreading were also observed in IL-8 or KC gradients. In wild-type neutrophils, PECAM-1 and F-actin were colocalized at the leading fronts of polarized cells toward the gradient. In contrast, in PECAM-1(-/-) neutrophils, although F-actin also localized to the leading front of migrating cells, F-actin polymerization was unstable, and cycling was remarkably increased compared with that of wild-type neutrophils. This may be due to the decreased cytokine-induced mobilization of the actin-binding protein, moesin, into the cytoskeleton of PECAM-1(-/-) neutrophils. PECAM-1(-/-) neutrophils also exhibited intracellularly dislocalized Src homology 2 domain containing phosphatase 1 (SHP-1) and had less IL-8-induced SHP-1 phosphatase activity. These results suggest that PECAM-1 regulates neutrophil chemotaxis by modulating cell motility and directionality, in part through its effects on SHP-1 localization and activation. PMID:16148090

  14. Mechanics of motility initiation and motility arrest in crawling cells

    NASA Astrophysics Data System (ADS)

    Recho, Pierre; Putelat, Thibaut; Truskinovsky, Lev

    2015-11-01

    Motility initiation in crawling cells requires transformation of a symmetric state into a polarized state. In contrast, motility arrest is associated with re-symmetrization of the internal configuration of a cell. Experiments on keratocytes suggest that polarization is triggered by the increased contractility of motor proteins but the conditions of re-symmetrization remain unknown. In this paper we show that if adhesion with the extra-cellular substrate is sufficiently low, the progressive intensification of motor-induced contraction may be responsible for both transitions: from static (symmetric) to motile (polarized) at a lower contractility threshold and from motile (polarized) back to static (symmetric) at a higher contractility threshold. Our model of lamellipodial cell motility is based on a 1D projection of the complex intra-cellular dynamics on the direction of locomotion. In the interest of analytical transparency we also neglect active protrusion and view adhesion as passive. Despite the unavoidable oversimplifications associated with these assumptions, the model reproduces quantitatively the motility initiation pattern in fish keratocytes and reveals a crucial role played in cell motility by the nonlocal feedback between the mechanics and the transport of active agents. A prediction of the model that a crawling cell can stop and re-symmetrize when contractility increases sufficiently far beyond the motility initiation threshold still awaits experimental verification.

  15. The Shape of Motile Cells

    PubMed Central

    Mogilner, Alex; Keren, Kinneret

    2010-01-01

    Motile cells — fan-like keratocytes, hand-shaped nerve growth cones, polygonal fibroblasts, to name but a few — come in different shapes and sizes. We discuss the origins of this diversity as well as what shape tells us about the physics and biochemistry underlying cell movement. We start with geometric rules describing cell-edge kinetics that govern cell shape, followed by a discussion of the underlying biophysics; we consider actin treadmilling, actin–myosin contraction, cell-membrane deformations, adhesion, and the complex interactions between these modules, as well as their regulation by microtubules and Rho GTPases. Focusing on several different cell types, including keratocytes and fibroblasts, we discuss how dynamic cell morphology emerges from the interplay between the different motility modules and the environment. PMID:19906578

  16. Autophagy Promotes Focal Adhesion Disassembly and Cell Motility of Metastatic Tumor Cells through the Direct Interaction of Paxillin with LC3.

    PubMed

    Sharifi, Marina N; Mowers, Erin E; Drake, Lauren E; Collier, Chris; Chen, Hong; Zamora, Marta; Mui, Stephanie; Macleod, Kay F

    2016-05-24

    Autophagy is a conserved catabolic process that plays a housekeeping role in eliminating protein aggregates and organelles and is activated during nutrient deprivation to generate metabolites and energy. Autophagy plays a significant role in tumorigenesis, although opposing context-dependent functions of autophagy in cancer have complicated efforts to target autophagy for therapeutic purposes. We demonstrate that autophagy inhibition reduces tumor cell migration and invasion in vitro and attenuates metastasis in vivo. Numerous abnormally large focal adhesions (FAs) accumulate in autophagy-deficient tumor cells, reflecting a role for autophagy in FA disassembly through targeted degradation of paxillin. We demonstrate that paxillin interacts with processed LC3 through a conserved LIR motif in the amino-terminal end of paxillin and that this interaction is regulated by oncogenic SRC activity. Together, these data establish a function for autophagy in FA turnover, tumor cell motility, and metastasis. PMID:27184837

  17. Flagellar motility is necessary for Aeromonas hydrophila adhesion.

    PubMed

    Qin, Yingxue; Lin, Guifang; Chen, Wenbo; Xu, Xiaojin; Yan, Qingpi

    2016-09-01

    Adhesion to host surface or cells is the initial step in bacterial pathogenesis, and the adhesion mechanisms of the fish pathogenic bacteria Aeromonas hydrophila were investigated in this study. First, a mutagenesis library of A. hydrophila that contained 332 random insertion mutants was constructed via mini-Tn10 Km mutagenesis. Four mutants displayed the most attenuated adhesion. Sequence analysis revealed that the mini-Tn10 insertion sites in the four mutant strains were flgC(GenBank accession numbers KX261880), cytb4(GenBank accession numbers JN133621), rbsR(GenBank accession numbers KX261881) and flgE(GenBank accession numbers JQ974982). To further study the roles of flgC and flgE in the adhesion of A. hydrophila, some biological characteristics of the wild-type strain B11, the mutants M121 and M240, and the complemented strains C121 and C240 were investigated. The results showed that the mutation in flgC or flgE led to the flagellar motility of A. hydrophila significant reduction or abolishment. flgC was not necessary for flagellar biosynthesis but was necessary for the full motility of A. hydrophila, flgE was involved in both flagellar biosynthesis and motility. The flagellar motility is necessary for A. hydrophila to adhere to the host mucus, which suggests flagellar motility plays crucial roles in the early infection process of this bacterium. PMID:27432325

  18. Cell motility on nanotopography

    NASA Astrophysics Data System (ADS)

    Kimura, Masahiro; Tsai, Irene; Green, Angelo; Jacobson, Bruce; Russell, Thomas

    2003-03-01

    Cell motility is strongly influenced by the structure of the substratum. Understanding cells motility on a surface has significant applications both in vivo and in vitro applications, such as biological sensors and hip replacement. A gradient surface is used to study the effect of the lateral nanotopography on cell motility. A gradient surface is generated by block copolymer and homopolymer blends, where the concentration of the components varies uniformly across the surface. The two homopolymers phase separate on the micron scale and this length scale gradually decrease to the nanoscopic, i.e. microphase separation of the diblock, as the copolymer concentration increases. Quantitative analysis of the speed of cell migration is correlated to the lateral length scale of the surface.

  19. Modeling collective cell motility

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan

    Eukaryotic cells often move in groups, a critical aspect of many biological and medical processes including wound healing, morphogenesis and cancer metastasis. Modeling can provide useful insights into the fundamental mechanisms of collective cell motility. Constructing models that incorporate the physical properties of the cells, however, is challenging. Here, I discuss our efforts to build a comprehensive cell motility model that includes cell membrane properties, cell-substrate interactions, cell polarity, and cell-cell interaction. The model will be applied to a variety of systems, including motion on micropatterned substrates and the migration of border cells in Drosophila. This work was supported by NIH Grant No. P01 GM078586 and NSF Grant No. 1068869.

  20. Protein 4.1R regulates cell adhesion, spreading, migration and motility of mouse keratinocytes by modulating surface expression of β1 integrin

    PubMed Central

    Chen, Lixiang; Hughes, Richard A.; Baines, Anthony J.; Conboy, John; Mohandas, Narla; An, Xiuli

    2011-01-01

    Protein 4.1R is a membrane-cytoskeleton adaptor protein that has diverse roles in controlling the cell surface expression and/or function of transmembrane proteins, and in organizing F-actin. 4.1R is expressed in keratinocytes, but its role in these cells has not been explored. Here, we have investigated the role of 4.1R in skin using 4.1R−/− mice. Cell adhesion, spreading, migration and motility were significantly impaired in 4.1R−/− keratinocytes, and 4.1R−/− mice exhibited defective epidermal wound healing. Cultured 4.1R−/− keratinocytes on fibronectin failed to form actin stress fibres and focal adhesions. Furthermore, in the absence of 4.1R, the surface expression, and consequently the activity of β1 integrin were reduced. These data enabled the identification of a functional role for protein 4.1R in keratinocytes by modulating the surface expression of β1 integrin, possibly through a direct association between 4.1R and β1 integrin. PMID:21693581

  1. Protein 4.1R regulates cell adhesion, spreading, migration and motility of mouse keratinocytes by modulating surface expression of beta1 integrin.

    PubMed

    Chen, Lixiang; Hughes, Richard A; Baines, Anthony J; Conboy, John; Mohandas, Narla; An, Xiuli

    2011-07-15

    Protein 4.1R is a membrane-cytoskeleton adaptor protein that has diverse roles in controlling the cell surface expression and/or function of transmembrane proteins, and in organizing F-actin. 4.1R is expressed in keratinocytes, but its role in these cells has not been explored. Here, we have investigated the role of 4.1R in skin using 4.1R(-/-) mice. Cell adhesion, spreading, migration and motility were significantly impaired in 4.1R(-/-) keratinocytes, and 4.1R(-/-) mice exhibited defective epidermal wound healing. Cultured 4.1R(-/-) keratinocytes on fibronectin failed to form actin stress fibres and focal adhesions. Furthermore, in the absence of 4.1R, the surface expression, and consequently the activity of β1 integrin were reduced. These data enabled the identification of a functional role for protein 4.1R in keratinocytes by modulating the surface expression of β1 integrin, possibly through a direct association between 4.1R and β1 integrin. PMID:21693581

  2. Targeting tumor cell motility to prevent metastasis

    PubMed Central

    Palmer, Trenis D.; Ashby, William J.; Lewis, John D.; Zijlstra, Andries

    2011-01-01

    Mortality and morbidity in patients with solid tumors invariably results from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities. PMID:21664937

  3. The cag-pathogenicity island encoded CncR1 sRNA oppositely modulates Helicobacter pylori motility and adhesion to host cells.

    PubMed

    Vannini, Andrea; Roncarati, Davide; Danielli, Alberto

    2016-08-01

    Small regulatory RNAs (sRNAs) are emerging as key post-transcriptional regulators in many bacteria. In the human pathobiont Helicobacter pylori a plethora of trans- and cis-encoded sRNAs have been pinpointed by a global transcriptome study. However, only two have been studied in depth at the functional level. Here we report the characterization of CncR1, an abundant and conserved sRNA encoded by the virulence-associated cag pathogenicity island (cag-PAI) of H. pylori. Growth-phase dependent transcription of CncR1 is directed by the PcagP promoter, which resulted to be a target of the essential transcriptional regulator HsrA (HP1043). We demonstrate that the 213 nt transcript arising from this promoter ends at an intrinsic terminator, few bases upstream of the annotated cagP open reading frame, establishing CncR1 as the predominant gene product encoded by the cagP (cag15) locus. Interestingly, the deletion of the locus resulted in the deregulation en masse of σ(54)-dependent genes, linking CncR1 to flagellar functions. Accordingly, the enhanced motility recorded for cncR1 deletion mutants was complemented by ectopic reintroduction of the allele in trans. In silico prediction identified fliK, encoding a flagellar checkpoint protein, as likely regulatory target of CncR1. The interaction of CncR1 with the fliK mRNA was thus further investigated in vitro, demonstrating the formation of strand-specific interactions between the two RNA molecules. Accordingly, the full-length translational fusions of fliK with a lux reporter gene were induced in a cncR1 deletion mutant in vivo. These data suggest the involvement of CncR1 in the post-transcriptional modulation of H. pylori motility functions through down-regulation of a critical flagellar checkpoint factor. Concurrently, the cncR1 mutant revealed a decrease of transcript levels for several H. pylori adhesins, resulting in a phenotypically significant impairment of bacterial adhesion to a host gastric cell line. The data

  4. Hydrodynamic Contributions to Amoeboid Cell Motility

    NASA Astrophysics Data System (ADS)

    Lewis, Owen; Guy, Robert

    2012-11-01

    Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use a simply analytic model in conjuction with computational experiments to investigate intracellular fluid flow in a simple model of Physarum. Of particlar interest are stresses generated by cytoplasmic flow which may be used to aid in cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, flow waves, adhesion, and locomotive forces in an attempt to characterize conditions necessary to generate directed motion.

  5. A mechanism for cell motility by active polar gels

    PubMed Central

    Marth, W.; Praetorius, S.; Voigt, A.

    2015-01-01

    We analyse a generic motility model, with the motility mechanism arising by contractile stress due to the interaction of myosin and actin. A hydrodynamic active polar gel theory is used to model the cytoplasm of a cell and is combined with a Helfrich-type model to account for membrane properties. The overall model allows consideration of the motility without the necessity for local adhesion. Besides a detailed numerical approach together with convergence studies for the highly nonlinear free boundary problem, we also compare the induced flow field of the motile cell with that of classical squirmer models and identify the motile cell as a puller or pusher, depending on the strength of the myosin–actin interactions. PMID:25926698

  6. Alternative Splicing in Adhesion- and Motility-Related Genes in Breast Cancer

    PubMed Central

    Aversa, Rosanna; Sorrentino, Anna; Esposito, Roberta; Ambrosio, Maria Rosaria; Amato, Angela; Zambelli, Alberto; Ciccodicola, Alfredo; D’Apice, Luciana; Costa, Valerio

    2016-01-01

    Breast cancer is the most common tumor and the second leading cause of cancer death among woman, mainly caused by the metastatic spread. Tumor invasiveness is due to an altered expression of adhesion molecules. Among them, semaphorins are of peculiar interest. Cancer cells can manipulate alternative splicing patterns to modulate the expression of adhesion- and motility-related molecules, also at the isoform level. In this study, combining RNA-Sequencing on MCF-7 to targeted experimental validations—in human breast cell lines and breast tumor biopsies—we identified 12 new alternative splicing transcripts in genes encoding adhesion- and motility-related molecules, including semaphorins, their receptors and co-receptors. Among them, a new SEMA3F transcript is expressed in all breast cell lines and breast cancer biopsies, and is translated into a new semaphorin 3F isoform. In silico analysis predicted that most of the new putative proteins lack functional domains, potentially missing some functions and acquiring new ones. Our findings better describe the extent of alternative splicing in breast cancer and highlight the need to further investigate adhesion- and motility-related molecules to gain insights into breast cancer progression. PMID:26784191

  7. CD44-mediated Adhesion to Hyaluronic Acid Contributes to Mechanosensing and Invasive Motility

    PubMed Central

    Kim, Yushan; Kumar, Sanjay

    2014-01-01

    The high molecular weight glycosaminoglycan, hyaluronic acid (HA), makes up a significant portion of the brain extracellular matrix (ECM). Glioblastoma multiforme (GBM), a highly invasive brain tumor, is associated with aberrant HA secretion, tissue stiffening, and overexpression of the HA receptor CD44. Here, transcriptomic analysis, engineered materials, and measurements of adhesion, migration, and invasion were used to investigate how HA/CD44 ligation contributes to the mechanosensing and invasive motility of GBM tumor cells, both intrinsically and in the context of RGD/integrin adhesion. Analysis of transcriptomic data from The Cancer Genome Atlas (TCGA) reveals up-regulation of transcripts associated with HA/CD44 adhesion. CD44 suppression in culture reduces cell adhesion to HA on short time scales (0.5h post-incubation) even if RGD is present, whereas maximal adhesion on longer time scales (3h) requires both CD44 and integrins. Moreover, time-lapse imaging demonstrates that cell adhesive structures formed during migration on bare HA matrices are more short-lived than cellular protrusions formed on surfaces containing RGD. Interestingly, adhesion and migration speed were dependent on HA hydrogel stiffness, implying that CD44-based signaling is intrinsically mechanosensitive. Finally, CD44 expression paired with an HA-rich microenvironment maximized three-dimensional invasion, whereas CD44 suppression or abundant integrin-based adhesion limited it. These findings demonstrate that CD44 transduces HA-based stiffness cues, temporally precedes integrin-based adhesion maturation, and facilitates invasion. PMID:24962319

  8. Elastic mismatch enhances cell motility

    NASA Astrophysics Data System (ADS)

    Bresler, Yony; Palmieri, Benoit; Grant, Martin

    In recent years, the study of physics phenomena in cancer has drawn considerable attention. In cancer metastasis, a soft cancer cell leaves the tumor, and must pass through the endothelium before reaching the bloodstream. Using a phase-field model we have shown that the elasticity mismatch between cells alone is sufficient to enhance the motility of thesofter cancer cell by means of bursty migration, in agreement with experiment. We will present further characterization of these behaviour, as well as new possible applications for this model.

  9. Balance between cell−substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes

    PubMed Central

    Barnhart, Erin; Lee, Kun-Chun; Allen, Greg M.; Theriot, Julie A.; Mogilner, Alex

    2015-01-01

    Cells are dynamic systems capable of spontaneously switching among stable states. One striking example of this is spontaneous symmetry breaking and motility initiation in fish epithelial keratocytes. Although the biochemical and mechanical mechanisms that control steady-state migration in these cells have been well characterized, the mechanisms underlying symmetry breaking are less well understood. In this work, we have combined experimental manipulations of cell−substrate adhesion strength and myosin activity, traction force measurements, and mathematical modeling to develop a comprehensive mechanical model for symmetry breaking and motility initiation in fish epithelial keratocytes. Our results suggest that stochastic fluctuations in adhesion strength and myosin localization drive actin network flow rates in the prospective cell rear above a critical threshold. Above this threshold, high actin flow rates induce a nonlinear switch in adhesion strength, locally switching adhesions from gripping to slipping and further accelerating actin flow in the prospective cell rear, resulting in rear retraction and motility initiation. We further show, both experimentally and with model simulations, that the global levels of adhesion strength and myosin activity control the stability of the stationary state: The frequency of symmetry breaking decreases with increasing adhesion strength and increases with increasing myosin contraction. Thus, the relative strengths of two opposing mechanical forces—contractility and cell−substrate adhesion—determine the likelihood of spontaneous symmetry breaking and motility initiation. PMID:25848042

  10. 3D Timelapse Analysis of Muscle Satellite Cell Motility

    PubMed Central

    Siegel, Ashley L; Atchison, Kevin; Fisher, Kevin E; Davis, George E; Cornelison, DDW

    2009-01-01

    Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin α7β1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of “pathfinding” cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues. Stem Cells 2009;27:2527–2538 PMID:19609936

  11. 3D timelapse analysis of muscle satellite cell motility.

    PubMed

    Siegel, Ashley L; Atchison, Kevin; Fisher, Kevin E; Davis, George E; Cornelison, D D W

    2009-10-01

    Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin alpha 7 beta 1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of "pathfinding" cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues. PMID:19609936

  12. Extending the molecular clutch beyond actin-based cell motility

    NASA Astrophysics Data System (ADS)

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-10-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton.

  13. Cooperative cell motility during tandem locomotion of amoeboid cells.

    PubMed

    Bastounis, Effie; Álvarez-González, Begoña; Del Álamo, Juan C; Lasheras, Juan C; Firtel, Richard A

    2016-04-15

    Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion ofDictyosteliumtandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I-coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs' reuse results from the mechanical synchronization of the leading and trailing cells' protrusions and retractions (motility cycles) aided by the cell-cell adhesions. PMID:26912787

  14. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  15. LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase

    PubMed Central

    Choi, Insup; Kim, Beomsue; Byun, Ji-Won; Baik, Sung Hoon; Huh, Yun Hyun; Kim, Jong-Hyeon; Mook-Jung, Inhee; Song, Woo Keun; Shin, Joo-Ho; Seo, Hyemyung; Suh, Young Ho; Jou, Ilo; Park, Sang Myun; Kang, Ho Chul; Joe, Eun-Hye

    2015-01-01

    In response to brain injury, microglia rapidly extend processes that isolate lesion sites and protect the brain from further injury. Here we report that microglia carrying a pathogenic mutation in the Parkinson's disease (PD)-associated gene, G2019S-LRRK2 (GS-Tg microglia), show retarded ADP-induced motility and delayed isolation of injury, compared with non-Tg microglia. Conversely, LRRK2 knockdown microglia are highly motile compared with control cells. In our functional assays, LRRK2 binds to focal adhesion kinase (FAK) and phosphorylates its Thr–X–Arg/Lys (TXR/K) motif(s), eventually attenuating FAK activity marked by decreased pY397 phosphorylation (pY397). GS-LRRK2 decreases the levels of pY397 in the brain, microglia and HEK cells. In addition, treatment with an inhibitor of LRRK2 kinase restores pY397 levels, decreased pTXR levels and rescued motility of GS-Tg microglia. These results collectively suggest that G2019S mutation of LRRK2 may contribute to the development of PD by inhibiting microglial response to brain injury. PMID:26365310

  16. T Cell Motility as Modulator of Interactions with Dendritic Cells

    PubMed Central

    Stein, Jens V.

    2015-01-01

    It is well established that the balance of costimulatory and inhibitory signals during interactions with dendritic cells (DCs) determines T cell transition from a naïve to an activated or tolerant/anergic status. Although many of these molecular interactions are well reproduced in reductionist in vitro assays, the highly dynamic motility of naïve T cells in lymphoid tissue acts as an additional lever to fine-tune their activation threshold. T cell detachment from DCs providing suboptimal stimulation allows them to search for DCs with higher levels of stimulatory signals, while storing a transient memory of short encounters. In turn, adhesion of weakly reactive T cells to DCs presenting peptides presented on major histocompatibility complex with low affinity is prevented by lipid mediators. Finally, controlled recruitment of CD8+ T cells to cognate DC–CD4+ T cell clusters shapes memory T cell formation and the quality of the immune response. Dynamic physiological lymphocyte motility therefore constitutes a mechanism to mitigate low avidity T cell activation and to improve the search for “optimal” DCs, while contributing to peripheral tolerance induction in the absence of inflammation. PMID:26579132

  17. Cooperative cell motility during tandem locomotion of amoeboid cells

    PubMed Central

    Bastounis, Effie; Álvarez-González, Begoña; del Álamo, Juan C.; Lasheras, Juan C.; Firtel, Richard A.

    2016-01-01

    Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion of Dictyostelium tandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I–coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs’ reuse results from the mechanical synchronization of the leading and trailing cells’ protrusions and retractions (motility cycles) aided by the cell–cell adhesions. PMID:26912787

  18. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    PubMed

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern. PMID:23857825

  19. Computational and Modeling Strategies for Cell Motility

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Yang, Xiaofeng; Adalsteinsson, David; Elston, Timothy C.; Jacobson, Ken; Kapustina, Maryna; Forest, M. Gregory

    A predictive simulation of the dynamics of a living cell remains a fundamental modeling and computational challenge. The challenge does not even make sense unless one specifies the level of detail and the phenomena of interest, whether the focus is on near-equilibrium or strongly nonequilibrium behavior, and on localized, subcellular, or global cell behavior. Therefore, choices have to be made clear at the outset, ranging from distinguishing between prokaryotic and eukaryotic cells, specificity within each of these types, whether the cell is "normal," whether one wants to model mitosis, blebs, migration, division, deformation due to confined flow as with red blood cells, and the level of microscopic detail for any of these processes. The review article by Hoffman and Crocker [48] is both an excellent overview of cell mechanics and an inspiration for our approach. One might be interested, for example, in duplicating the intricate experimental details reported in [43]: "actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process," or to duplicate experimental evidence of traveling waves in cells recovering from actin depolymerization [42, 35]. Modeling studies of lamellipodial structure, protrusion, and retraction behavior range from early mechanistic models [84] to more recent deterministic [112, 97] and stochastic [51] approaches with significant biochemical and structural detail. Recent microscopic-macroscopic models and algorithms for cell blebbing have been developed by Young and Mitran [116], which update cytoskeletal microstructure via statistical sampling techniques together with fluid variables. Alternatively, whole cell compartment models (without spatial details) of oscillations in spreading cells have been proposed [35, 92, 109] which show positive and negative feedback

  20. Mechanism of shape determination in motile cells

    PubMed Central

    Keren, Kinneret; Pincus, Zachary; Allen, Greg M.; Barnhart, Erin L.; Marriott, Gerard; Mogilner, Alex; Theriot, Julie A.

    2010-01-01

    The shape of motile cells is determined by many dynamic processes spanning several orders of magnitude in space and time, from local polymerization of actin monomers at subsecond timescales to global, cell-scale geometry that may persist for hours. Understanding the mechanism of shape determination in cells has proved to be extremely challenging due to the numerous components involved and the complexity of their interactions. Here we harness the natural phenotypic variability in a large population of motile epithelial keratocytes from fish (Hypsophrys nicaraguensis) to reveal mechanisms of shape determination. We find that the cells inhabit a low-dimensional, highly correlated spectrum of possible functional states. We further show that a model of actin network treadmilling in an inextensible membrane bag can quantitatively recapitulate this spectrum and predict both cell shape and speed. Our model provides a simple biochemical and biophysical basis for the observed morphology and behaviour of motile cells. PMID:18497816

  1. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  2. Radiation-induced motility alterations in medulloblastoma cells.

    PubMed

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Weber, Klaus J; Debus, Jürgen; Combs, Stephanie E

    2015-05-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α5. The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α5, which lead to increased cell adherence to extracellular matrix proteins. PMID:25736470

  3. The mysterious nature of bacterial surface (gliding) motility: A focal adhesion-based mechanism in Myxococcus xanthus.

    PubMed

    Islam, Salim T; Mignot, Tâm

    2015-10-01

    Motility of bacterial cells promotes a range of important physiological phenomena such as nutrient detection, harm avoidance, biofilm formation, and pathogenesis. While much research has been devoted to the mechanism of bacterial swimming in liquid via rotation of flagellar filaments, the mechanisms of bacterial translocation across solid surfaces are poorly understood, particularly when cells lack external appendages such as rotary flagella and/or retractile type IV pili. Under such limitations, diverse bacteria at the single-cell level are still able to "glide" across solid surfaces, exhibiting smooth translocation of the cell along its long axis. Though multiple gliding mechanisms have evolved in different bacterial classes, most remain poorly characterized. One exception is the gliding motility mechanism used by the Gram-negative social predatory bacterium Myxococcus xanthus. The available body of research suggests that M. xanthus gliding motility is mediated by trafficked multi-protein (Glt) cell envelope complexes, powered by proton-driven flagellar stator homologues (Agl). Through coupling to the substratum via polysaccharide slime, Agl-Glt assemblies can become fixed relative to the substratum, forming a focal adhesion site. Continued directional transport of slime-associated substratum-fixed Agl-Glt complexes would result in smooth forward movement of the cell. In this review, we have provided a comprehensive synthesis of the latest mechanistic and structural data for focal adhesion-mediated gliding motility in M. xanthus, with emphasis on the role of each Agl and Glt protein. Finally, we have also highlighted the possible connection between the motility complex and a new type of spore coat assembly system, suggesting that gliding and cell envelope synthetic complexes are evolutionarily linked. PMID:26520023

  4. Two-Dimensional Motility of a Macrophage Cell Line on Microcontact-Printed Fibronectin

    PubMed Central

    Hind, Laurel E.; MacKay, Joanna L.; Cox, Dianne; Hammer, Daniel A.

    2014-01-01

    The ability of macrophages to migrate to sites of infection and inflammation is critical for their role in the innate immune response. Macrophage cell lines have made it possible to study the roles of individual proteins responsible for migration using molecular biology, but it has not been possible to reliably elicit the motility of macrophage cell lines in two-dimensions. In the past, measurements of the motility of macrophage cell lines have been largely limited to transwell assays which provide limited quantitative information on motility and limited ability to visualize cell morphology. We used microcontact printing to create polydimethylsiloxane (PDMS) surfaces functionalized with fibronectin that otherwise support little macrophage adhesion. We used these surfaces to measure macrophage migration in two-dimensions and found that these cells migrate efficiently in a uniform field of colony-stimulating factor-1, CSF-1. Knockdown of Cdc42 led to a non-statistically significant reduction in motility, whereas chemical inhibition of PI3K activity led to a complete loss of motility. Inhibition of the RhoA kinase, ROCK, did not abolish the motility of these cells but caused a quantitative change in motility, reducing motility significantly on high concentrations of fibronectin but not on low concentrations. This study illustrates the importance of studying cell motility on well controlled materials to better understand the exact roles of specific proteins on macrophage migration. PMID:25186818

  5. Transglutaminase 2 expression in acute myeloid leukemia: Association with adhesion molecule expression and leukemic blast motility

    PubMed Central

    Meyer, Stefan; Ravandi-Kashani, Farhad; Borthakur, Gautam; Coombes, Kevin R.; Zhang, Nianxiang; Kornblau, Steven

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. PMID:23576428

  6. Stathmin Activity Influences Sarcoma Cell Shape, Motility, and Metastatic Potential

    PubMed Central

    Belletti, Barbara; Nicoloso, Milena S.; Schiappacassi, Monica; Berton, Stefania; Lovat, Francesca; Wolf, Katarina; Canzonieri, Vincenzo; D'Andrea, Sara; Zucchetto, Antonella; Friedl, Peter; Colombatti, Alfonso

    2008-01-01

    The balanced activity of microtubule-stabilizing and -destabilizing proteins determines the extent of microtubule dynamics, which is implicated in many cellular processes, including adhesion, migration, and morphology. Among the destabilizing proteins, stathmin is overexpressed in different human malignancies and has been recently linked to the regulation of cell motility. The observation that stathmin was overexpressed in human recurrent and metastatic sarcomas prompted us to investigate stathmin contribution to tumor local invasiveness and distant dissemination. We found that stathmin stimulated cell motility in and through the extracellular matrix (ECM) in vitro and increased the metastatic potential of sarcoma cells in vivo. On contact with the ECM, stathmin was negatively regulated by phosphorylation. Accordingly, a less phosphorylable stathmin point mutant impaired ECM-induced microtubule stabilization and conferred a higher invasive potential, inducing a rounded cell shape coupled with amoeboid-like motility in three-dimensional matrices. Our results indicate that stathmin plays a significant role in tumor metastasis formation, a finding that could lead to exploitation of stathmin as a target of new antimetastatic drugs. PMID:18305103

  7. Paxillin controls directional cell motility in response to physical cues

    PubMed Central

    Sero, Julia E.; German, Alexandra E.; Mammoto, Akiko; Ingber, Donald E.

    2012-01-01

    Physical cues from the extracellular environment that influence cell shape and directional migration are transduced into changes in cytoskeletal organization and biochemistry through integrin-based cell adhesions to extracellular matrix (ECM). Paxillin is a focal adhesion (FA) scaffold protein that mediates integrin anchorage to the cytoskeleton, and has been implicated in regulation of FA assembly and cell migration. To determine whether paxillin is involved in coupling mechanical distortion with directional movement, cell shape was physically constrained by culturing cells on square-shaped fibronectin-coated adhesive islands surrounded by non-adhesive barrier regions that were created with a microcontact printing technique. Square-shaped cells preferentially formed FAs and extended lamellipodia from their corner regions when stimulated with PDGF, and loss of paxillin resulted in loss of this polarized response. Selective expression of the N- and C-terminal domains of paxillin produced opposite, but complementary, effects on suppressing or promoting lamellipodia formation in different regions of square cells, which corresponded to directional motility defects in vitro. Paxillin loss or mutation was also shown to affect the formation of circular dorsal ruffles, and this corresponded to changes in cell invasive behavior in 3D. This commentary addresses the implications of these findings in terms of how a multifunctional FA scaffold protein can link physical cues to cell adhesion, protrusion and membrane trafficking so as to control directional migration in 2D and 3D. We also discuss how microengineered ECM islands and in vivo model systems can be used to further elucidate the functions of paxillin in directional migration. PMID:23076140

  8. Hyaluronan stimulates pancreatic cancer cell motility

    PubMed Central

    Cheng, Xiao-Bo; Kohi, Shiro; Koga, Atsuhiro; Hirata, Keiji; Sato, Norihiro

    2016-01-01

    Hyaluronan (HA) accumulates in pancreatic ductal adenocarcinoma (PDAC), but functional significance of HA in the aggressive phenotype remains unknown. We used different models to investigate the effect of HA on PDAC cell motility by wound healing and transwell migration assay. Changes in cell motility were examined in 8 PDAC cell lines in response to inhibition of HA production by treatment with 4-methylumbelliferone (4-MU) and to promotion by treatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or by co-culture with tumor-derived stromal fibroblasts. We also investigated changes in cell motility by adding exogenous HA. Additionally, mRNA expressions of hyaluronan synthases and hyaluronidases were examined using real time RT-PCR. Inhibition of HA by 4-MU significantly decreased the migration, whereas promotion of HA by TPA or co-culture with tumor-derived fibroblasts significantly increased the migration of PDAC cells. The changes in HA production by these treatments tended to be associated with changes in HAS3 mRNA expression. Furthermore, addition of exogenous HA, especially low-molecular-weight HA, significantly increased the migration of PDAC cells. These findings suggest that HA stimulates PDAC cell migration and thus represents an ideal therapeutic target to prevent invasion and metastasis. PMID:26684359

  9. Motile responses in outer hair cells.

    PubMed

    Zenner, H P

    1986-01-01

    Motile responses of cochlear hair cells open new perspectives for the understanding of cochlear hearing mechanisms and hearing disorders located in hair cells. Direct visualization of hair cell motility was achieved by a method for the study of living isolated mammalian outer hair cells (OHCs) which has overcome some of the complexities in dealing with the heterogeneous organ of Corti. Electrophysiological giga-seal whole-cell recordings of single OHC prepared by this approach had revealed negative cell potentials ranging from -32 mV to -70 mV (Gitter et al. (1986) Oto-Rhino-Laryngol. in press). Elucidation of HC motility has come from two lines of experiments. One follows from the observation that exposure of the lateral and basal membrane parts of living OHCs to increasing bath K+ concentrations resulted in a sustained reversible depolarization of the cell. Here, we report that by depolarization of the cell membrane in the presence of 25-125 mM K+/Cl- a sustained contraction of OHC was induced. This was followed by relaxation in the presence of artificial perilymph containing 5.4 mM K+/Cl-. By alternating these procedures OHCs were made to undergo as many as five cycles of contraction and relaxation. External Ca2+ was not required for the initial contraction but was essential for relaxation. Following repeated contraction/relaxation cycles the cytoplasm of individual OHCs exhibited a filamentous network, correlating with a new infracuticular anti-actin binding capacity. The second series of experiments originates in the observation that permeabilized OHCs contracted in the presence of ATP. No response was seen in the presence of control nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3733547

  10. Hydrodynamic Contributions to Amoeboid Cell Motility

    NASA Astrophysics Data System (ADS)

    Lewis, Owen; Guy, Robert

    2011-11-01

    Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use both analytic and computational models to investigate intracellular fluid flow in a simple model of Physarum. In both models, of we are specifically interested in stresses generated by cytoplasmic flow which act in the direction of cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, low waves and locomotive forces, and attempt characterize conditions necessary to generate directed motion.

  11. Interstitial flows promote an amoeboid cell phenotype and motility of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Tung, Chih-Kuan; Huang, Yu Ling; Zheng, Angela; Wu, Mingming

    2015-03-01

    Lymph nodes, the drainage systems for interstitial flows, are clinically known to be the first metastatic sites of many cancer types including breast and prostate cancers. Here, we demonstrate that breast cancer cell morphology and motility is modulated by interstitial flows in a cell-ECM adhesion dependent manner. The average aspect ratios of the cells are significantly lower (or are more amoeboid like) in the presence of the flow in comparison to the case when the flow is absent. The addition of exogenous adhesion molecules within the extracellular matrix (type I collagen) enhances the overall aspect ratio (or are more mesenchymal like) of the cell population. Using measured cell trajectories, we find that the persistence of the amoeboid cells (aspect ratio less than 2.0) is shorter than that of mesenchymal cells. However, the maximum speed of the amoeboid cells is larger than that of mesenchymal cells. Together these findings provide the novel insight that interstitial flows promote amoeboid cell morphology and motility and highlight the plasticity of tumor cell motility in response to its biophysical environment. Supported by NIH Grant R21CA138366.

  12. Mathematics of cell motility: have we got its number?

    PubMed Central

    2010-01-01

    Mathematical and computational modeling is rapidly becoming an essential research technique complementing traditional experimental biological methods. However, lack of standard modeling methods, difficulties of translating biological phenomena into mathematical language, and differences in biological and mathematical mentalities continue to hinder the scientific progress. Here we focus on one area—cell motility—characterized by an unusually high modeling activity, largely due to a vast amount of quantitative, biophysical data, ‘modular’ character of motility, and pioneering vision of the area’s experimental leaders. In this review, after brief introduction to biology of cell movements, we discuss quantitative models of actin dynamics, protrusion, adhesion, contraction, and cell shape and movement that made an impact on the process of biological discovery. We also comment on modeling approaches and open questions. PMID:18461331

  13. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility

    PubMed Central

    Bastounis, Effie; Meili, Ruedi; Álvarez-González, Begoña; Francois, Joshua; del Álamo, Juan C.; Lasheras, Juan C.

    2014-01-01

    Chemotaxing Dictyostelium discoideum cells adapt their morphology and migration speed in response to intrinsic and extrinsic cues. Using Fourier traction force microscopy, we measured the spatiotemporal evolution of shape and traction stresses and constructed traction tension kymographs to analyze cell motility as a function of the dynamics of the cell’s mechanically active traction adhesions. We show that wild-type cells migrate in a step-wise fashion, mainly forming stationary traction adhesions along their anterior–posterior axes and exerting strong contractile axial forces. We demonstrate that lateral forces are also important for motility, especially for migration on highly adhesive substrates. Analysis of two mutant strains lacking distinct actin cross-linkers (mhcA− and abp120− cells) on normal and highly adhesive substrates supports a key role for lateral contractions in amoeboid cell motility, whereas the differences in their traction adhesion dynamics suggest that these two strains use distinct mechanisms to achieve migration. Finally, we provide evidence that the above patterns of migration may be conserved in mammalian amoeboid cells. PMID:24637328

  14. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility.

    PubMed

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility. PMID:27367677

  15. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility

    PubMed Central

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility. PMID:27367677

  16. Mechanics and polarity in cell motility

    NASA Astrophysics Data System (ADS)

    Ambrosi, D.; Zanzottera, A.

    2016-09-01

    The motility of a fish keratocyte on a flat substrate exhibits two distinct regimes: the non-migrating and the migrating one. In both configurations the shape is fixed in time and, when the cell is moving, the velocity is constant in magnitude and direction. Transition from a stable configuration to the other one can be produced by a mechanical or chemotactic perturbation. In order to point out the mechanical nature of such a bistable behaviour, we focus on the actin dynamics inside the cell using a minimal mathematical model. While the protein diffusion, recruitment and segregation govern the polarization process, we show that the free actin mass balance, driven by diffusion, and the polymerized actin retrograde flow, regulated by the active stress, are sufficient ingredients to account for the motile bistability. The length and velocity of the cell are predicted on the basis of the parameters of the substrate and of the cell itself. The key physical ingredient of the theory is the exchange among actin phases at the edges of the cell, that plays a central role both in kinematics and in dynamics.

  17. Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility

    PubMed Central

    Ruprecht, Verena; Wieser, Stefan; Callan-Jones, Andrew; Smutny, Michael; Morita, Hitoshi; Sako, Keisuke; Barone, Vanessa; Ritsch-Marte, Monika; Sixt, Michael; Voituriez, Raphaël; Heisenberg, Carl-Philipp

    2015-01-01

    Summary 3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype. PMID:25679761

  18. From molecular signal activation to locomotion: an integrated, multiscale analysis of cell motility on defined matrices.

    PubMed

    Pathak, Amit; Kumar, Sanjay

    2011-01-01

    The adhesion, mechanics, and motility of eukaryotic cells are highly sensitive to the ligand density and stiffness of the extracellular matrix (ECM). This relationship bears profound implications for stem cell engineering, tumor invasion and metastasis. Yet, our quantitative understanding of how ECM biophysical properties, mechanotransductive signals, and assembly of contractile and adhesive structures collude to control these cell behaviors remains extremely limited. Here we present a novel multiscale model of cell migration on ECMs of defined biophysical properties that integrates local activation of biochemical signals with adhesion and force generation at the cell-ECM interface. We capture the mechanosensitivity of individual cellular components by dynamically coupling ECM properties to the activation of Rho and Rac GTPases in specific portions of the cell with actomyosin contractility, cell-ECM adhesion bond formation and rupture, and process extension and retraction. We show that our framework is capable of recreating key experimentally-observed features of the relationship between cell migration and ECM biophysical properties. In particular, our model predicts for the first time recently reported transitions from filopodial to "stick-slip" to gliding motility on ECMs of increasing stiffness, previously observed dependences of migration speed on ECM stiffness and ligand density, and high-resolution measurements of mechanosensitive protrusion dynamics during cell motility we newly obtained for this study. It also relates the biphasic dependence of cell migration speed on ECM stiffness to the tendency of the cell to polarize. By enabling the investigation of experimentally-inaccessible microscale relationships between mechanotransductive signaling, adhesion, and motility, our model offers new insight into how these factors interact with one another to produce complex migration patterns across a variety of ECM conditions. PMID:21483802

  19. GAR22β regulates cell migration, sperm motility, and axoneme structure

    PubMed Central

    Gamper, Ivonne; Fleck, David; Barlin, Meltem; Spehr, Marc; Sayad, Sara El; Kleine, Henning; Maxeiner, Sebastian; Schalla, Carmen; Aydin, Gülcan; Hoss, Mareike; Litchfield, David W.; Lüscher, Bernhard; Zenke, Martin; Sechi, Antonio

    2016-01-01

    Spatiotemporal cytoskeleton remodeling is pivotal for cell adhesion and migration. Here we investigated the function of Gas2-related protein on chromosome 22 (GAR22β), a poorly characterized protein that interacts with actin and microtubules. Primary and immortalized GAR22β−/− Sertoli cells moved faster than wild-type cells. In addition, GAR22β−/− cells showed a more prominent focal adhesion turnover. GAR22β overexpression or its reexpression in GAR22β−/− cells reduced cell motility and focal adhesion turnover. GAR22β–actin interaction was stronger than GAR22β–microtubule interaction, resulting in GAR22β localization and dynamics that mirrored those of the actin cytoskeleton. Mechanistically, GAR22β interacted with the regulator of microtubule dynamics end-binding protein 1 (EB1) via a novel noncanonical amino acid sequence, and this GAR22β–EB1 interaction was required for the ability of GAR22β to modulate cell motility. We found that GAR22β is highly expressed in mouse testes, and its absence resulted in reduced spermatozoa generation, lower actin levels in testes, and impaired motility and ultrastructural disorganization of spermatozoa. Collectively our findings identify GAR22β as a novel regulator of cell adhesion and migration and provide a foundation for understanding the molecular basis of diverse cytoskeleton-dependent processes. PMID:26564797

  20. Correlation of cell membrane dynamics and cell motility

    PubMed Central

    2011-01-01

    Background Essential events of cell development and homeostasis are revealed by the associated changes of cell morphology and therefore have been widely used as a key indicator of physiological states and molecular pathways affecting various cellular functions via cytoskeleton. Cell motility is a complex phenomenon primarily driven by the actin network, which plays an important role in shaping the morphology of the cells. Most of the morphology based features are approximated from cell periphery but its dynamics have received none to scant attention. We aim to bridge the gap between membrane dynamics and cell states from the perspective of whole cell movement by identifying cell edge patterns and its correlation with cell dynamics. Results We present a systematic study to extract, classify, and compare cell dynamics in terms of cell motility and edge activity. Cell motility features extracted by fitting a persistent random walk were used to identify the initial set of cell subpopulations. We propose algorithms to extract edge features along the entire cell periphery such as protrusion and retraction velocity. These constitute a unique set of multivariate time-lapse edge features that are then used to profile subclasses of cell dynamics by unsupervised clustering. Conclusions By comparing membrane dynamic patterns exhibited by each subclass of cells, correlated trends of edge and cell movements were identified. Our findings are consistent with published literature and we also identified that motility patterns are influenced by edge features from initial time points compared to later sampling intervals. PMID:22372978

  1. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production

    PubMed Central

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B.; Igoshin, Oleg A.

    2016-01-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics. PMID:27362260

  2. Cell-cell signaling and adhesion in phagocytosis and early development of Dictyostelium.

    PubMed

    Bracco, E; Pergolizzi, B; Peracino, B; Ponte, E; Balbo, A; Mai, A; Ceccarelli, A; Bozzaro, S

    2000-01-01

    Cell-cell signaling and adhesion regulate transition from the unicellular to the multicellular stage of development in the cellular slime mold Dictyostelium. Essential gene networks involved in these processes have been identified and their interplay dissected. Heterotrimeric G protein-linked signal transduction plays a key role in regulating expression of genes mediating chemotaxis or cell adhesion, as well as coordinating actin-based cell motility during phagocytosis and chemotaxis. Two classes of cell adhesion molecules, one cadherin-like and the second belonging to the IgG superfamily, contribute to the strength of adhesion in Dictyostelium aggregates. The developmental role of genes involved in motility and adhesion, and their degree of redundancy, have been re-assessed by using novel developmental assay conditions which are closer to development in nature. PMID:11061438

  3. Swimming motility plays a key role in the stochastic dynamics of cell clumping

    NASA Astrophysics Data System (ADS)

    Qi, Xianghong; Nellas, Ricky B.; Byrn, Matthew W.; Russell, Matthew H.; Bible, Amber N.; Alexandre, Gladys; Shen, Tongye

    2013-04-01

    Dynamic cell-to-cell interactions are a prerequisite to many biological processes, including development and biofilm formation. Flagellum induced motility has been shown to modulate the initial cell-cell or cell-surface interaction and to contribute to the emergence of macroscopic patterns. While the role of swimming motility in surface colonization has been analyzed in some detail, a quantitative physical analysis of transient interactions between motile cells is lacking. We examined the Brownian dynamics of swimming cells in a crowded environment using a model of motorized adhesive tandem particles. Focusing on the motility and geometry of an exemplary motile bacterium Azospirillum brasilense, which is capable of transient cell-cell association (clumping), we constructed a physical model with proper parameters for the computer simulation of the clumping dynamics. By modulating mechanical interaction (‘stickiness’) between cells and swimming speed, we investigated how equilibrium and active features affect the clumping dynamics. We found that the modulation of active motion is required for the initial aggregation of cells to occur at a realistic time scale. Slowing down the rotation of flagellar motors (and thus swimming speeds) is correlated to the degree of clumping, which is consistent with the experimental results obtained for A. brasilense.

  4. Fibroblastic reticular cell-derived lysophosphatidic acid regulates confined intranodal T-cell motility

    PubMed Central

    Takeda, Akira; Kobayashi, Daichi; Aoi, Keita; Sasaki, Naoko; Sugiura, Yuki; Igarashi, Hidemitsu; Tohya, Kazuo; Inoue, Asuka; Hata, Erina; Akahoshi, Noriyuki; Hayasaka, Haruko; Kikuta, Junichi; Scandella, Elke; Ludewig, Burkhard; Ishii, Satoshi; Aoki, Junken; Suematsu, Makoto; Ishii, Masaru; Takeda, Kiyoshi; Jalkanen, Sirpa; Miyasaka, Masayuki; Umemoto, Eiji

    2016-01-01

    Lymph nodes (LNs) are highly confined environments with a cell-dense three-dimensional meshwork, in which lymphocyte migration is regulated by intracellular contractile proteins. However, the molecular cues directing intranodal cell migration remain poorly characterized. Here we demonstrate that lysophosphatidic acid (LPA) produced by LN fibroblastic reticular cells (FRCs) acts locally to LPA2 to induce T-cell motility. In vivo, either specific ablation of LPA-producing ectoenzyme autotaxin in FRCs or LPA2 deficiency in T cells markedly decreased intranodal T cell motility, and FRC-derived LPA critically affected the LPA2-dependent T-cell motility. In vitro, LPA activated the small GTPase RhoA in T cells and limited T-cell adhesion to the underlying substrate via LPA2. The LPA-LPA2 axis also enhanced T-cell migration through narrow pores in a three-dimensional environment, in a ROCK-myosin II-dependent manner. These results strongly suggest that FRC-derived LPA serves as a cell-extrinsic factor that optimizes T-cell movement through the densely packed LN reticular network. DOI: http://dx.doi.org/10.7554/eLife.10561.001 PMID:26830463

  5. Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells

    PubMed Central

    Mo, Wei-Chuan; Zhang, Zi-Jian; Wang, Dong-Liang; Liu, Ying; Bartlett, Perry F.; He, Rong-Qiao

    2016-01-01

    Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their GMF sensation but remain poorly understood so far. Previously, we found that the HMF represses expressions of genes associated with cell migration and cytoskeleton assembly in human neuroblastoma cells (SH-SY5Y cell line). Here, we measured the HMF-induced changes on cell morphology, adhesion, motility and actin cytoskeleton in SH-SY5Y cells. The HMF inhibited cell adhesion and migration accompanied with a reduction in cellular F-actin amount. Moreover, following exposure to the HMF, the number of cell processes was reduced and cells were smaller in size and more round in shape. Furthermore, disordered kinetics of actin assembly in vitro were observed during exposure to the HMF, as evidenced by the presence of granule and meshed products. These results indicate that elimination of the GMF affects assembly of the motility-related actin cytoskeleton, and suggest that F-actin is a target of HMF exposure and probably a mediator of GMF sensation. PMID:27029216

  6. Plakoglobin regulates cell motility through Rho- and fibronectin-dependent Src signaling

    PubMed Central

    Todorović, Viktor; Desai, Bhushan V.; Patterson, Melanie J. Schroeder; Amargo, Evangeline V.; Dubash, Adi D.; Yin, Taofei; Jones, Jonathan C. R.; Green, Kathleen J.

    2010-01-01

    We previously showed that the cell–cell junction protein plakoglobin (PG) not only suppresses motility of keratinocytes in contact with each other, but also, unexpectedly, of single cells. Here we show that PG deficiency results in extracellular matrix (ECM)-dependent disruption of mature focal adhesions and cortical actin organization. Plating PG−/− cells onto ECM deposited by PG+/− cells partially restored normal cell morphology and inhibited PG−/− cell motility. In over 70 adhesion molecules whose expression we previously showed to be altered in PG−/− cells, a substantial decrease in fibronectin (FN) in PG−/− cells stood out. Re-introduction of PG into PG−/− cells restored FN expression, and keratinocyte motility was reversed by plating PG−/− cells onto FN. Somewhat surprisingly, based on previously reported roles for PG in regulating gene transcription, PG-null cells exhibited an increase, not a decrease, in FN promoter activity. Instead, PG was required for maintenance of FN mRNA stability. PG−/− cells exhibited an increase in activated Src, one of the kinases controlled by FN, a phenotype reversed by plating PG−/− cells on ECM deposited by PG+/− keratinocytes. PG−/− cells also exhibited Src-independent activation of the small GTPases Rac1 and RhoA. Both Src and RhoA inhibition attenuated PG−/− keratinocyte motility. We propose a novel role for PG in regulating cell motility through distinct ECM–Src and RhoGTPase-dependent pathways, influenced in part by PG-dependent regulation of FN mRNA stability. PMID:20876660

  7. Cortactin Controls Cell Motility and Lamellipodial Dynamics by Regulating ECM Secretion

    PubMed Central

    Sung, Bong Hwan; Zhu, Xiaodong; Kaverina, Irina; Weaver, Alissa

    2011-01-01

    Background Branched actin assembly is critical for both cell motility and membrane trafficking. The branched actin regulator, cortactin, is generally considered to promote cell migration by controlling leading edge lamellipodial dynamics. However, recent reports indicate that lamellipodia are not required for cell movement, suggesting an alternate mechanism. Results Since cortactin also regulates membrane trafficking and adhesion dynamics, we hypothesized that altered secretion of extracellular matrix (ECM) and/or integrin trafficking might underlie motility defects of cortactin-knockdown (KD) cells. Consistent with a primary defect in ECM secretion, both motility and lamellipodial defects of cortactin-KD cells were fully rescued by plating on increasing concentrations of exogenous ECM. Furthermore, cortactin-KD cell speed defects were rescued on cell-free autocrine ECM produced by control cells but not on ECM produced by cortactin-KD cells. Investigation of the mechanism revealed that whereas endocytosed FN is redeposited at the basal cell surface by control cells, cortactin-KD cells exhibit defective FN secretion and abnormal FN retention in a late endocytic/lysosomal compartment. Cortactin-KD motility and FN deposition defects were phenocopied by KD in control cells of the lysosomal fusion regulator Synaptotagmin-7. Rescue of cortactin-KD cells by expression of cortactin binding domain mutants revealed that interaction with Arp2/3 complex and actin filaments is essential for rescue of both cell motility and autocrine ECM secretion phenotypes whereas binding of SH3 domain partners is not required. Conclusions Efficient cell motility, promoted by cortactin regulation of branched actin networks, involves processing and resecretion of internalized ECM from a late endosomal/lysosomal compartment. PMID:21856159

  8. Differential Function of N-Cadherin and Cadherin-7 in the Control of Embryonic Cell Motility

    PubMed Central

    Dufour, Sylvie; Beauvais-Jouneau, Alice; Delouvée, Annie; Thiery, Jean Paul

    1999-01-01

    Similar amounts of N-cadherin and cadherin-7, the prototypes of type I and type II cadherin, induced cell-cell adhesion in murine sarcoma 180 transfectants, Ncad-1 and cad7-29, respectively. However, in the initial phase of aggregation, Ncad-1 cells aggregated more rapidly than cad7-29 cells. Isolated Ncad-1 and cad7-29 cells adhered and spread in a similar manner on fibronectin (FN), whereas aggregated cad7-29 cells were more motile and dispersed than aggregated Ncad-1 cells. cad7-29 cells established transient contacts with their neighbors which were stabilized if FN-cell interactions were perturbed. In contrast, Ncad-1 cells remained in close contact when they migrated on FN. Both β-catenin and cadherin were more rapidly downregulated in cad7-29 than in Ncad-1 cells treated with cycloheximide, suggesting a higher turnover rate for cadherin-7–mediated cell-cell contacts than for those mediated by N-cadherin. The extent of FN-dependent focal adhesion kinase phosphorylation was much lower if the cells had initiated N-cadherin–mediated rather than cadherin-7–mediated cell adhesion before plating. On grafting into the embryo, Ncad-1 cells did not migrate and remained at or close to the graft site, even after 48 h, whereas grafted cad7-29 cells dispersed efficiently into embryonic structures. Thus, the adhesive phenotype of cadherin-7–expressing cells is regulated by the nature of the extracellular matrix environment which also controls the migratory behavior of the cells. In addition, adhesions mediated by different cadherins differentially regulate FN-dependent signaling. The transient contacts specifically observed in cadherin- 7–expressing cells may also be important in the control of cell motility. PMID:10427101

  9. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics

    NASA Astrophysics Data System (ADS)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  10. Daucus carota Pentane/Diethyl Ether Fraction Inhibits Motility and Reduces Invasion of Cancer Cells.

    PubMed

    Zgheib, Perla; Daher, Costantine F; Mroueh, Mohamad; Nasrallah, Anita; Taleb, Robin I; El-Sibai, Mirvat

    2014-01-01

    Daucus carota (DC) is a herb used in folklore medicine in Lebanon to treat numerous diseases including cancer. Recent studies in our laboratory on DC oil and its fractions revealed potent anticancer activities in vitro and in vivo. The present study aims to investigate the effect of the most potent DC fraction, pentane/diethyl ether (50:50), on lung, skin, breast and glioblastoma cancer cell motility and invasion. Upon treatment, a pronounced decrease in cancer cell motility was observed in the 4 cell lines. The treatment also led to a decrease in cancer cell invasion and an increased cell adhesion. Additionally, the DC fraction caused a decrease in the activation of the ρ-GTPases Rac and CDC42, a finding that may partially explain the treatment-induced decrease in cell motility. The current study demonstrates a crucial effect of the DC pentane/diethyl ether fraction on cancer cell motility and metastasis, making it a potential candidate for cancer therapy specifically targeting cancer motility and metastasis. PMID:26088465

  11. SHP-2 phosphatase activity is required for PECAM-1-dependent cell motility.

    PubMed

    Zhu, Jing-Xu; Cao, Gaoyuan; Williams, James T; Delisser, Horace M

    2010-10-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in endothelial cell motility during angiogenesis. Although there is evidence that SHP-2 plays a role in PECAM-1-dependent cell motility, the molecular basis of the activity of SHP-2 in this process has not been defined. To investigate the requirement of SHP-2 in PECAM-1-dependent cell motility, studies were done in which various constructs of SHP-2 were expressed in cell transfectants expressing PECAM-1. We observed that the levels of PECAM-1 tyrosine phosphorylation and SHP-2 association with PECAM-1 were significantly increased in cells expressing a phosphatase-inactive SHP-2 mutant, suggesting that the level of PECAM-1 tyrosine phosphorylation, and thus SHP-2 binding are regulated in part by bound, catalytically active SHP-2. We subsequently found that expression of PECAM-1 stimulated wound-induced migration and the formation of filopodia (a morphological feature of motile cells). These activities were associated with increased mitogen-activated protein kinase (MAPK) activation and the dephosphorylation of paxillin (an event implicated in the activation of MAPK). The phosphatase-inactive SHP-2 mutant, however, suppressed these PECAM-1-dependent phenomena, whereas the activity of PECAM-1 expressing cells was not altered by expression of wild-type SHP-2 or SHP-2 in which the scaffold/adaptor function had been disabled. Pharmacological inhibition of SHP-2 phosphatase activity also suppressed PECAM-1-dependent motility. Furthermore, PECAM-1 expression also stimulates tube formation, but none of the SHP-2 constructs affected this process. These findings therefore suggest a model for the involvement of SHP-2 in PECAM-1-dependent motility in which SHP-2, recruited by its interaction with PECAM-1, targets paxillin to ultimately activate the MAPK pathway and downstream events required for cell motility. PMID:20631249

  12. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  13. Notch-Mediated Cell Adhesion.

    PubMed

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  14. Vimentin-mediated regulation of cell motility through modulation of beta4 integrin protein levels in oral tumor derived cells.

    PubMed

    Dmello, Crismita; Sawant, Sharada; Alam, Hunain; Gangadaran, Prakash; Tiwari, Richa; Dongre, Harsh; Rana, Neha; Barve, Sai; Costea, Daniela Elena; Chaukar, Davendra; Kane, Shubhada; Pant, Harish; Vaidya, Milind

    2016-01-01

    Vimentin expression correlates well with migratory and invasive potential of the carcinoma cells. The molecular mechanism by which vimentin regulates cell motility is not yet clear. Here, we addressed this issue by depleting vimentin in oral squamous cell carcinoma derived cell line. Vimentin knockdown cells showed enhanced adhesion and spreading to laminin-5. However, we found that they were less invasive as compared to the vector control cells. In addition, signaling associated with adhesion behavior of the cell was increased in vimentin knockdown clones. These findings suggest that the normal function of β4 integrin as mechanical adhesive device is enhanced upon vimentin downregulation. As a proof of principle, the compromised invasive potential of vimentin depleted cells could be rescued upon blocking with β4 integrin adhesion-blocking (ASC-8) antibody or downregulation of β4 integrin in vimentin knockdown background. Interestingly, plectin which associates with α6β4 integrin in the hemidesmosomes, was also found to be upregulated in vimentin knockdown clones. Furthermore, experiments on lysosome and proteasome inhibition revealed that perhaps vimentin regulates the turnover of β4 integrin and plectin. Moreover, an inverse association was observed between vimentin expression and β4 integrin in oral squamous cell carcinoma (OSCC). Collectively, our results show a novel role of vimentin in modulating cell motility by destabilizing β4 integrin-mediated adhesive interactions. Further, vimentin-β4 integrin together may prove to be useful markers for prognostication of human oral cancer. PMID:26646105

  15. Role of the RNA-binding protein IMP-2 in muscle cell motility.

    PubMed

    Boudoukha, Selim; Cuvellier, Sylvain; Polesskaya, Anna

    2010-12-01

    Insulin-like growth factor 2 (IGF-2) mRNA-binding proteins (IMPs) are a family of posttranscriptional regulatory factors with well-understood roles in embryonic development and cancer but with poorly characterized functions in normal adult cells and tissues. We now show that IMP-2, the most ubiquitously expressed member of the family, is abundant in human and mouse adult skeletal myoblasts, where it is indispensable for cell motility and for stabilization of microtubules. To explore the functions of IMP-2, we analyzed the transcripts that were differentially regulated in IMP-2-depleted myoblasts and bound to IMP-2 in normal myoblasts. Among them were the mRNAs of PINCH-2, an important mediator of cell adhesion and motility, and MURF-3, a microtubule-stabilizing protein. By gain- and loss-of-function assays and gel shift experiments, we show that IMP-2 regulates the expression of PINCH-2 and MURF-3 proteins via direct binding to their mRNAs. Upregulation of PINCH-2 in IMP-2-depleted myoblasts is the key event responsible for their decreased motility. Our data reveal how the posttranscriptional regulation of gene expression by IMP-2 contributes to the control of adhesion structures and stable microtubules and demonstrate an important function for IMP-2 in cellular motility. PMID:20956565

  16. Microfabricated ratchet structures for concentrating and patterning motile bacterial cells

    NASA Astrophysics Data System (ADS)

    Yub Kim, Sang; Lee, Eun Se; Lee, Ho Jae; Lee, Se Yeon; Kuk Lee, Sung; Kim, Taesung

    2010-09-01

    We present a novel microfabricated concentrator for Escherichia coli that can be a stand-alone and self-contained microfluidic device because it utilizes the motility of cells. First of all, we characterize the motility of E. coli cells and various ratcheting structures that can guide cells to move in a desired direction in straight and circular channels. Then, we combine these ratcheting microstructures with the intrinsic tendency of cells to swim on the right side in microchannels to enhance the concentration rates up to 180 fold until the concentrators are fully filled with cells. Furthermore, we demonstrate that cells can be positioned and concentrated with a constant spacing distance on a surface, allowing spatial patterning of motile cells. These results can be applied to biosorption or biosensor devices that are powered by motile cells because they can be highly concentrated without any external mechanical and electrical energy sources. Hence, we believe that the concentrator design holds considerable potential to be applied for concentrating and patterning other motile microbes and providing a versatile structure for motility study of bacterial cells.

  17. Epithelial to mesenchymal transition-the roles of cell morphology, labile adhesion and junctional coupling.

    PubMed

    Abdulla, Tariq; Luna-Zurita, Luis; de la Pompa, José Luis; Schleich, Jean-Marc; Summers, Ron

    2013-08-01

    Epithelial to mesenchymal transition (EMT) is a fundamental process during development and disease, including development of the heart valves and tumour metastases. An extended cellular Potts model was implemented to represent the behaviour emerging from autonomous cell morphology, labile adhesion, junctional coupling and cell motility. Computer simulations normally focus on these functional changes independently whereas this model facilitates exploration of the interplay between cell shape changes, adhesion and migration. The simulation model is fitted to an in vitro model of endocardial EMT, and agrees with the finding that Notch signalling increases cell-matrix adhesion in addition to modulating cell-cell adhesion. PMID:23787029

  18. A Comparison of Computational Models for Eukaryotic Cell Shape and Motility

    PubMed Central

    Holmes, William R.; Edelstein-Keshet, Leah

    2012-01-01

    Eukaryotic cell motility involves complex interactions of signalling molecules, cytoskeleton, cell membrane, and mechanics interacting in space and time. Collectively, these components are used by the cell to interpret and respond to external stimuli, leading to polarization, protrusion, adhesion formation, and myosin-facilitated retraction. When these processes are choreographed correctly, shape change and motility results. A wealth of experimental data have identified numerous molecular constituents involved in these processes, but the complexity of their interactions and spatial organization make this a challenging problem to understand. This has motivated theoretical and computational approaches with simplified caricatures of cell structure and behaviour, each aiming to gain better understanding of certain kinds of cells and/or repertoire of behaviour. Reaction–diffusion (RD) equations as well as equations of viscoelastic flows have been used to describe the motility machinery. In this review, we describe some of the recent computational models for cell motility, concentrating on simulations of cell shape changes (mainly in two but also three dimensions). The problem is challenging not only due to the difficulty of abstracting and simplifying biological complexity but also because computing RD or fluid flow equations in deforming regions, known as a “free-boundary” problem, is an extremely challenging problem in applied mathematics. Here we describe the distinct approaches, comparing their strengths and weaknesses, and the kinds of biological questions that they have been able to address. PMID:23300403

  19. PRL-3 promotes cell adhesion by interacting with JAM2 in colon cancer

    PubMed Central

    Lian, Shenyi; Meng, Lin; Xing, Xiaofang; Yang, Yongyong; Qu, Like; Shou, Chengchao

    2016-01-01

    Phosphatase of regenerating liver-3 (PRL-3), also termed PTP4A3, is a metastasis-related protein tyrosine phosphatase. Its expression levels are significantly correlated with the progression and survival of a wide range of malignant tumors. However, the mechanism by which PRL-3 promotes tumor invasion and metastasis is not clear. In the present study, the functions of PRL-3 were systemically analyzed in the key events of metastasis including, motility and adhesion. A cell wounding assay, cell spread assay and cell-matrix adhesion assay were carried out to analyze the cell movement and cell adhesion ability of colon cancer, immunoprecipitation and immunofluorescence assay was confirmed the interaction of PRL-3 and JAM2. It was demonstrated that PRL-3 promoted the motility of Flp-In-293 and LoVo colon cancer cells and increased the distribution of cell skeleton proteins on the cell protrusions. In addition, stably expressing PRL-3 reduced the spreading speed of colon cancer cells and cell adhesion on uncoated, fibronectin-coated and collagen I-coated plates. Mechanistically, junction adhesion molecular 2 (JAM2) was identified as a novel interacting protein of PRL-3. The findings of the present study revealed the roles of PRL-3 in cancer cell motility and adhesion process, and provided information on the possibility of PRL-3 increase cell-cell adhesion by associating with JAM2.

  20. Single cell motility and trail formation in populations of microglia

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung Jin

    2009-03-01

    Microglia are a special type of glia cell in brain that has immune responses. They constitute about 20 % of the total glia population within the brain. Compared to other glia cells, microglia are very motile, constantly moving to destroy pathogens and to remove dead neurons. While doing so, they exhibit interesting body shapes, have cell-to-cell communications, and have chemotatic responses to each other. Interestingly, our recent in vitro studies show that their unusual motile behaviors can self-organize to form trails, similar to those in populations of ants. We have studied the changes in the physical properties of these trails by varying the cell population density and by changing the degree of spatial inhomogeneities (``pathogens''). Our experimental observations can be quite faithfully reproduced by a simple mathematical model involving many motile cells whose mechanical motion are driven by actin polymerization and depolymerization process within the individual cell body and by external chemical gradients.

  1. Cell motility and antibiotic tolerance of bacterial swarms

    NASA Astrophysics Data System (ADS)

    Zuo, Wenlong

    Many bacteria species can move across moist surfaces in a coordinated manner known as swarming. It is reported that swarm cells show higher tolerance to a wide variety of antibiotics than planktonic cells. We used the model bacterium E. coli to study how motility affects the antibiotic tolerance of swarm cells. Our results provide new insights for the control of pathogenic invasion via regulating cell motility. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: zwlong@live.com.

  2. Form and Function in Cell Motility: From Fibroblasts to Keratocytes

    PubMed Central

    Herant, Marc; Dembo, Micah

    2010-01-01

    Abstract It is plain enough that a horse is made for running, but similar statements about motile cells are not so obvious. Here the basis for structure-function relations in cell motility is explored by application of a new computational technique that allows realistic three-dimensional simulations of cells migrating on flat substrata. With this approach, some cyber cells spontaneously display the classic irregular protrusion cycles and handmirror morphology of a crawling fibroblast, and others the steady gliding motility and crescent morphology of a fish keratocyte. The keratocyte motif is caused by optimal recycling of the cytoskeleton from the back to the front so that more of the periphery can be devoted to protrusion. These calculations are a step toward bridging the gap between the integrated mechanics and biophysics of whole cells and the microscopic molecular biology of cytoskeletal components. PMID:20409459

  3. Alterations in cell adhesion proteins and cardiomyopathy

    PubMed Central

    Li, Jifen

    2014-01-01

    Cell adhesive junction is specialized intercellular structure composed of cell adhesion proteins. They are essential to connect adjacent heart muscle cell and make heart contraction effectively and properly. Clinical and genetic studies have revealed close relationship between cell adhesive proteins and the occurrence of various cardiomyopathies. Here we will review recent development on the disease phenotype, potential cellular and molecular mechanism related to cell adhesion molecules, with particular disease pathogenesis learned from genetic manipulated murine models. PMID:24944760

  4. Knockdown of Golgi phosphoprotein 2 inhibits hepatocellular carcinoma cell proliferation and motility

    PubMed Central

    Liu, Yiming; Zhang, Xiaodi; Sun, Ting; Jiang, Junchang; Li, Ying; Chen, Mingliang; Wei, Zhen; Jiang, Weiqin; Zhou, Linfu

    2016-01-01

    Golgi phosphoprotein 2 (GP73) is highly expressed in hepatocellular carcinoma (HCC) cells, where it serves as a biomarker and indicator of disease progression. We used MTS assays, anchorage-independent cell colony formation assays and a xenograft tumor model to show that GP73-specific siRNAs inhibit HCC proliferation in HepG2, SMMC-7721, and Huh7 cell lines and in vivo. Following GP73 silencing, levels of p-Rb, a factor related to metastasis, were reduced, but cell cycle progression was unaffected. Our results suggest that GP73 silencing may not directly suppress proliferation, but may instead inhibit cell motility. Results from proliferation assays suggest GP73 reduces expression of epithelial mesenchymal transition (EMT)-related factors and promotes cell motility, while transwell migration and invasion assays indicated a possible role in metastasis. Immunofluorescence co-localization microscopy and immunoblotting showed that GP73 decreases expression of N-cadherin and E-cadherin, two key factors in EMT, which may in turn decrease intracellular adhesive forces and promote cell motility. This study confirmed that GP73 expression leads to increased expression of EMT-related proteins and that GP73 silencing reduces HCC cell migration in vitro. These findings suggest that GP73 silencing through siRNA delivery may provide a novel low-toxicity therapy for the inhibition of tumor proliferation and metastasis. PMID:26870893

  5. Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule

    PubMed Central

    Yang, Muhua; Adla, Shalini; Temburni, Murali K; Patel, Vivek P; Lagow, Errin L; Brady, Owen A; Tian, Jing; Boulos, Magdy I; Galileo, Deni S

    2009-01-01

    Background Malignant glioma cells are particularly motile and can travel diffusely through the brain parenchyma, apparently without following anatomical structures to guide their migration. The neural adhesion/recognition protein L1 (L1CAM; CD171) has been implicated in contributing to stimulation of motility and metastasis of several non-neural cancer types. We explored the expression and function of L1 protein as a stimulator of glioma cell motility using human high-grade glioma surgical specimens and established rat and human glioma cell lines. Results L1 protein expression was found in 17 out of 18 human high-grade glioma surgical specimens by western blotting. L1 mRNA was found to be present in human U-87/LacZ and rat C6 and 9L glioma cell lines. The glioma cell lines were negative for surface full length L1 by flow cytometry and high resolution immunocytochemistry of live cells. However, fixed and permeablized cells exhibited positive staining as numerous intracellular puncta. Western blots of cell line extracts revealed L1 proteolysis into a large soluble ectodomain (~180 kDa) and a smaller transmembrane proteolytic fragment (~32 kDa). Exosomal vesicles released by the glioma cell lines were purified and contained both full-length L1 and the proteolyzed transmembrane fragment. Glioma cell lines expressed L1-binding αvβ5 integrin cell surface receptors. Quantitative time-lapse analyses showed that motility was reduced significantly in glioma cell lines by 1) infection with an antisense-L1 retroviral vector and 2) L1 ectodomain-binding antibodies. Conclusion Our novel results support a model of autocrine/paracrine stimulation of cell motility in glioma cells by a cleaved L1 ectodomain and/or released exosomal vesicles containing L1. This mechanism could explain the diffuse migratory behavior of high-grade glioma cancer cells within the brain. PMID:19874583

  6. Helical motion of the cell body enhances Caulobacter crescentus motility

    PubMed Central

    Liu, Bin; Gulino, Marco; Morse, Michael; Tang, Jay X.; Powers, Thomas R.; Breuer, Kenneth S.

    2014-01-01

    We resolve the 3D trajectory and the orientation of individual cells for extended times, using a digital tracking technique combined with 3D reconstructions. We have used this technique to study the motility of the uniflagellated bacterium Caulobacter crescentus and have found that each cell displays two distinct modes of motility, depending on the sense of rotation of the flagellar motor. In the forward mode, when the flagellum pushes the cell, the cell body is tilted with respect to the direction of motion, and it precesses, tracing out a helical trajectory. In the reverse mode, when the flagellum pulls the cell, the precession is smaller and the cell has a lower translation distance per rotation period and thus a lower motility. Using resistive force theory, we show how the helical motion of the cell body generates thrust and can explain the direction-dependent changes in swimming motility. The source of the cell body precession is believed to be associated with the flexibility of the hook that connects the flagellum to the cell body. PMID:25053810

  7. Cell-Substrate Adhesion by Amoeboid Cells

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Panta, Krishna

    Amoeboid migration is a rapid (10 μm min-1) mode of migration that some tumor cells exhibit. To permit such rapid movement, the adhesive contacts between the cell and the substrate must be relatively short-lived and weak. In this study, we investigate the basic adhesive character of amoeboid cells (D. discoideum) in contact with silanized glass substrates. We observe the initiation and spreading of the adhesive contacts that these cells establish as they settle under gravity onto the substrate and relax towards mechanical equilibrium. The use of interference reflection microscopy and cellular tethering measurements have allowed us to determine the basic adhesive properties of the cell: the membrane-medium interfacial energy; the bending modulus; the equilibrium contact angle; and the work of adhesion. We find the time scale on which settling occurs to be longer than expected. Implications of these results on adhesion and migration will be discussed. The authors are grateful for support from NSF (CBET-1451903) and NIH (1R21EY026392).

  8. RHOA and PRKCZ control different aspects of cell motility in pancreatic cancer metastatic clones

    PubMed Central

    2010-01-01

    Background Our understanding of the mechanism regulating pancreatic cancer metastatic phenotype is limited. We analyzed the role of RHOA and PRKCZ in the motility attitude of two subclones of the pancreatic adenocarcinoma cell line SUIT-2 (S2), with different in vivo metastatic potential in nude mice: S2-m with a low metastatic potential and highly metastatic S2-CP9 using RHOA and PRKCZ cell-permeable inhibitory peptides. Methods Adhesion assays, cell permeable peptides, RHOA activity assay, western blotting Results When used in combination cell-permeable inhibitory peptides partially inhibited cell adhesion by about 50% in clone S2-CP9. In clone S2-m, the effect was limited to 15% inhibition. In a wound healing assay, S2-CP9 was sensitive only to treatment with the combination of both RHOA and PRKCZ inhibitory peptides. Conversely, S2-m was unable to migrate toward both ends of the wound in basal conditions. Migration of cells through a membrane with 8 μm pores was completely abolished in both clones by individual treatment with RHOA and PRKCZ inhibitory peptides. Conclusion Herein, we demonstrate a critical role for RHOA and PRKCZ in the regulation of different aspects of cell motility of pancreatic adenocarcinoma and demonstrate the need to inhibit both pathways to obtain a functionally relevant effect in most assays. These results indicate that RHOA and PRKCZ, and their downstream effectors, can represent important pharmacological targets that could potentially control the highly metastatic attitude of PDAC. PMID:20236512

  9. Cystinosin deficiency causes podocyte damage and loss associated with increased cell motility.

    PubMed

    Ivanova, Ekaterina A; Arcolino, Fanny O; Elmonem, Mohamed A; Rastaldi, Maria P; Giardino, Laura; Cornelissen, Elisabeth M; van den Heuvel, Lambertus P; Levtchenko, Elena N

    2016-05-01

    The involvement of the glomerulus in the pathogenesis of cystinosis, caused by loss-of-function mutations in cystinosin (CTNS, 17p13), is a matter of controversy. Although patients with cystinosis demonstrate glomerular lesions and high-molecular-weight proteinuria starting from an early age, a mouse model of cystinosis develops only signs of proximal tubular dysfunction. Here we studied podocyte damage in patients with cystinosis by analyzing urinary podocyte excretion and by in vitro studies of podocytes deficient in cystinosin. Urine from patients with cystinosis presented a significantly higher amount of podocytes compared with controls. In culture, cystinotic podocytes accumulated cystine compatible with cystinosin deficiency. The expression of podocyte specific genes CD2AP, podocalyxin, and synaptopodin and of the WT1 protein was evident in all cell lines. Conditionally immortalized podocyte lines of 2 patients with different CTNS mutations had altered cytoskeleton, impaired cell adhesion sites, and increased individual cell motility. Moreover, these cells showed enhanced phosphorylation of both Akt1 and Akt2 (isoforms of protein kinase B). Inhibition of Akt by a specific inhibitor (Akti inhibitor 1/2) resulted in normalization of the hypermotile phenotype. Thus, our study extends the list of genetic disorders causing podocyte damage and provides the evidence of altered cell signaling cascades resulting in impaired cell adhesion and enhanced cell motility in cystinosis. PMID:27083281

  10. Rapid Actin-Dependent Viral Motility in Live Cells

    PubMed Central

    Vaughan, Joshua C.; Brandenburg, Boerries; Hogle, James M.; Zhuang, Xiaowei

    2009-01-01

    During the course of an infection, viruses take advantage of a variety of mechanisms to travel in cells, ranging from diffusion within the cytosol to active transport along cytoskeletal filaments. To study viral motility within the intrinsically heterogeneous environment of the cell, we have developed a motility assay that allows for the global and unbiased analysis of tens of thousands of virus trajectories in live cells. Using this assay, we discovered that poliovirus exhibits anomalously rapid intracellular movement that was independent of microtubules, a common track for fast and directed cargo transport. Such rapid motion, with speeds of up to 5 μm/s, allows the virus particles to quickly explore all regions of the cell with the exception of the nucleus. The rapid, microtubule-independent movement of poliovirus was observed in multiple human-derived cell lines, but appeared to be cargo-specific. Other cargo, including a closely related picornavirus, did not exhibit similar motility. Furthermore, the motility is energy-dependent and requires an intact actin cytoskeleton, suggesting an active transport mechanism. The speed of this microtubule-independent but actin-dependent movement is nearly an order of magnitude faster than the fastest speeds reported for actin-dependent transport in animal cells, either by actin polymerization or by myosin motor proteins. PMID:19751669

  11. Spatial anisotropy and heterogeneity in contractility and adhesion distribution may contribute to cell steering during migration

    NASA Astrophysics Data System (ADS)

    Soumya S S; Kolwankar, Subodh; George, Edna; Basu, Santanu K.; Sen, Shamik; Inamdar, Mandar M.

    2014-02-01

    Transition from random to persistent cell motility requires spatiotemporal organization of the cytoskeleton and focal adhesions. The influence of these two structures on cell steering can also be gleaned from trypsin de-adhesion experiments, wherein cells exposed to trypsin round up, exhibiting a combination of rotation and translation. Here, we present a model to evaluate the contributions of contractility and bond distribution to experimentally observed de-adhesion. We show that while asymmetry in bond distribution causes only cell translation, a combination of asymmetric bond distribution and non-uniform contractility is required for translation and rotation and may guide cell migration.

  12. PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway

    PubMed Central

    Wang, Yuan; Yan, Feng; Ye, Qing; Wu, Xiao; Jiang, Fan

    2016-01-01

    Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised. PMID:27052191

  13. HES6 enhances the motility of alveolar rhabdomyosarcoma cells

    SciTech Connect

    Wickramasinghe, Caroline M; Domaschenz, Renae; Amagase, Yoko; Williamson, Daniel; Missiaglia, Edoardo; Shipley, Janet; Murai, Kasumi; Jones, Philip H

    2013-01-01

    Absract: HES6, a member of the hairy-enhancer-of-split family of transcription factors, plays multiple roles in myogenesis. It is a direct target of the myogenic transcription factor MyoD and has been shown to regulate the formation of the myotome in development, myoblast cell cycle exit and the organization of the actin cytoskeleton during terminal differentiation. Here we investigate the expression and function of HES6 in rhabdomyosarcoma, a soft tissue tumor which expresses myogenic genes but fails to differentiate into muscle. We show that HES6 is expressed at high levels in the subset of alveolar rhabdomyosarcomas expressing PAX/FOXO1 fusion genes (ARMSp). Knockdown of HES6 mRNA in the ARMSp cell line RH30 reduces proliferation and cell motility. This phenotype is rescued by expression of mouse Hes6 which is insensitive to HES6 siRNA. Furthermore, expression microarray analysis indicates that the HES6 knockdown is associated with a decrease in the levels of Transgelin, (TAGLN), a regulator of the actin cytoskeleton. Knockdown of TAGLN decreases cell motility, whilst TAGLN overexpression rescues the motility defect resulting from HES6 knockdown. These findings indicate HES6 contributes to the pathogenesis of ARMSp by enhancing both proliferation and cell motility.

  14. Attachment of motile bacterial cells to prealigned holed microarrays.

    PubMed

    Rozhok, Sergey; Fan, Zhifang; Nyamjav, Dorjderem; Liu, Chang; Mirkin, Chad A; Holz, Richard C

    2006-12-19

    Construction of biomotors is an exciting area of scientific research that holds great promise for the development of new technologies with broad potential applications in areas such as the energy industry and medicine. Herein, we demonstrate the fabrication of prealigned microarrays of motile Escherichia coli bacterial cells on SiOx substrates. To prepare these arrays, holed surfaces with a gold layer on the bottom of the holes were utilized. The attachment of bacteria to the holes was achieved via nonspecific interactions using poly-l-lysine hydrobromide (PLL). Our data suggest that a single motile bacterial cell can be selectively attached to an individual hole on a surface and bacterial cell binding can be controlled by altering the pH, with the greatest occupancy occurring at pH 7.8. Cells attached to hole arrays remained motile for at least 4 h. These data indicate that holed surface structures provide a promising footprint for the attachment of motile bacterial cells to form high-density site-specific functional bacterial microarrays. PMID:17154612

  15. Na,K-ATPase β-Subunit Is Required for Epithelial Polarization, Suppression of Invasion, and Cell Motility

    PubMed Central

    Rajasekaran, Sigrid A.; Palmer, Lawrence G.; Quan, Karina; Harper, Jeffrey F.; Ball, William J.; Bander, Neil H.; Soler, Alejandro Peralta; Rajasekaran, Ayyappan K.

    2001-01-01

    The cell adhesion molecule E-cadherin has been implicated in maintaining the polarized phenotype of epithelial cells and suppression of invasiveness and motility of carcinoma cells. Na,K-ATPase, consisting of an α- and β-subunit, maintains the sodium gradient across the plasma membrane. A functional relationship between E-cadherin and Na,K-ATPase has not previously been described. We present evidence that the Na,K-ATPase plays a crucial role in E-cadherin–mediated development of epithelial polarity, and suppression of invasiveness and motility of carcinoma cells. Moloney sarcoma virus-transformed Madin-Darby canine kidney cells (MSV-MDCK) have highly reduced levels of E-cadherin and β1-subunit of Na,K-ATPase. Forced expression of E-cadherin in MSV-MDCK cells did not reestablish epithelial polarity or inhibit the invasiveness and motility of these cells. In contrast, expression of E-cadherin and Na,K-ATPase β1-subunit induced epithelial polarization, including the formation of tight junctions and desmosomes, abolished invasiveness, and reduced cell motility in MSV-MDCK cells. Our results suggest that E-cadherin–mediated cell-cell adhesion requires the Na,K-ATPase β-subunit's function to induce epithelial polarization and suppress invasiveness and motility of carcinoma cells. Involvement of the β1-subunit of Na,K-ATPase in the polarized phenotype of epithelial cells reveals a novel link between the structural organization and vectorial ion transport function of epithelial cells. PMID:11179415

  16. α-Actinin-4 Enhances Colorectal Cancer Cell Invasion by Suppressing Focal Adhesion Maturation

    PubMed Central

    Yamada, Tesshi; Takenawa, Tadaomi

    2015-01-01

    α-Actinins (ACTNs) are known to crosslink actin filaments at focal adhesions in migrating cells. Among the four isoforms of mammalian ACTNs, ACTN1 and ACTN4 are ubiquitously expressed. Recently, ACTN4 was reported to enhance cancer cell motility, invasion, and metastasis. However, the mechanism by which ACTN4 drives these malignant phenotypes remains unclear. Here, we show that ACTN4, but not ACTN1, induces the formation of immature focal adhesions in DLD-1 cells, leading to the rapid turnover of focal adhesions. Interestingly, zyxin (ZYX) assembly to focal adhesions was markedly decreased in ACTN4-expressing DLD-1 cells, while the recruitment of paxillin (PAX) occurred normally. On the other hand, in ACTN1-expressing DLD-1 cells, PAX and ZYX were normally recruited to focal adhesions, suggesting that ACTN4 specifically impairs focal adhesion maturation by inhibiting the recruitment of ZYX to focal complexes. Using purified recombinant proteins, we found that ZYX binding to ACTN4 was defective under conditions where ZYX binding to ACTN1 was observed. Furthermore, Matrigel invasion of SW480 cells that express high endogenous levels of ACTN4 protein was inhibited by ectopic expression of ACTN1. Altogether, our results suggest that ZYX defective binding to ACTN4, which occupies focal adhesions instead of ACTN1, induces the formation of immature focal adhesions, resulting in the enhancement of cell motility and invasion. PMID:25860875

  17. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells

    PubMed Central

    Moreb, Jan S; Baker, Henry V; Chang, Lung-Ji; Amaya, Maria; Lopez, M Cecilia; Ostmark, Blanca; Chou, Wayne

    2008-01-01

    Background Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied. Methods We have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA. Results We confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by ≥ 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways. Conclusion These molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer. PMID:19025616

  18. Cell Motility Resulting form Spontaneous Polymerization Waves

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten

    2014-03-01

    The crawling of living cells on solid substrates is often driven by the actin cytoskeleton, a network of structurally polar filamentous proteins that is intrinsically driven by the hydrolysis of ATP. How cells organize their actin network during crawling is still poorly understood. A possible general mechanism underlying actin organization has been offered by the observation of spontaneous actin polymerization waves in various different cell types. We use a theoretical approach to investigate the possible role of spontaneous actin waves on cell crawling. To this end, we develop a meanfield framework for studying spatiotemporal aspects of actin assembly dynamics, which helped to identify possible origins of self-organized actin waves. The impact of these waves on cell crawling is then investigated by using a phase-field approach to confine the actin network to a cellular domain. We find that spontaneous actin waves can lead to directional or amoeboidal crawling. In the latter case, the cell performs a random walk. Within our deterministic framework, this behavior is due to complex spiral waves inside the cell. Finally, we compare the seemingly random motion of our model cells to the dynamics of cells of the human immune system. These cells patrol the body in search for infected cells and we discuss possible implications of our theory for the search process' efficiency. Work was funded by the DFG through KR3430/1, GK1276, and SFB 1027.

  19. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  20. The actin-bundling protein L-plastin supports T-cell motility and activation

    PubMed Central

    Morley, Sharon Celeste

    2013-01-01

    Summary Tight regulation of actin dynamics is essential for T-cell trafficking and activation. Recent studies in human and murine T cells reveal that T-cell motility and full T-cell activation require the hematopoietic-specific, actin-bundling protein L-plastin. T cells lacking L-plastin do not form fully mature synapses and thus demonstrate reduced cytokine production and proliferation. Reduction or loss of L-plastin expression also reduces the velocity of T cells and impairs thymic egress and intranodal motility. While dispensable for proximal T-cell receptor and chemokine receptor signaling, L-plastin is critical to the later stages of synapse maturation and cellular polarization. Serine phosphorylation, calcium, and calmodulin binding regulate the bundling activity and localization of LPL following T-cell receptor and chemokine receptor engagement. However, the interaction between these regulatory domains and resulting changes in local control of actin cytoskeletal structures has not been fully elucidated. Circumstantial evidence suggests a function for L-plastin in either the formation or maintenance of integrin-associated adhesion structures. As L-plastin may be a target of the commonly used immunosuppressive agent dexamethasone, full elucidation of the regulation and function of L-plastin in T-cell biology may illuminate new pathways for clinically useful immunotherapeutics. PMID:24117812

  1. Where to Go: Breaking the Symmetry in Cell Motility

    PubMed Central

    2016-01-01

    Cell migration in the “correct” direction is pivotal for many biological processes. Although most work is devoted to its molecular mechanisms, the cell’s preference for one direction over others, thus overcoming intrinsic random motility, epitomizes a profound principle that underlies all complex systems: the choice of one axis, in structure or motion, from a uniform or symmetric set of options. Explaining directional motility by an external chemo-attractant gradient does not solve but only shifts the problem of causation: whence the gradient? A new study in PLOS Biology shows cell migration in a self-generated gradient, offering an opportunity to take a broader look at the old dualism of extrinsic instruction versus intrinsic symmetry-breaking in cell biology. PMID:27196433

  2. Possible roles of the endocytic cycle in cell motility.

    PubMed

    Traynor, David; Kay, Robert R

    2007-07-15

    Starving, highly motile Dictyostelium cells maintain an active endocytic cycle, taking up their surface about every 11 minutes. Cell motility depends on a functional NSF (N-ethylmaleimide sensitive factor) protein--also essential for endocytosis and membrane trafficking generally--and we, therefore, investigated possible ways in which the endocytic cycle might be required for cell movement. First, NSF, and presumably membrane trafficking, are not required for the initial polarization of the leading edge in a cyclic-AMP gradient. Second, we can detect no evidence for membrane flow from the leading edge, as photobleached or photoactivated marks in the plasma membrane move forward roughly in step with the leading edge, rather than backwards from it. Third, we find that the surface area of a cell--measured from confocal reconstructions--constantly fluctuates during movement as it projects pseudopodia and otherwise changes shape; increases of 20-30% can often occur over a few minutes. These fluctuations cannot be explained by reciprocal changes in filopodial surface area and they substantially exceed the 2-3% by which membranes can stretch. We propose that the endocytic cycle has a key function in motility by allowing adjustment of cell surface area to match changes in shape and that, without this function, movement is severely impaired. PMID:17606987

  3. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  4. The Influence of Electric Field and Confinement on Cell Motility

    PubMed Central

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C.

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D. PMID:23555674

  5. Quantitation of Endothelial Cell Adhesiveness In Vitro

    PubMed Central

    Lowe, Donna J.; Raj, Kenneth

    2015-01-01

    One of the cardinal processes of inflammation is the infiltration of immune cells from the lumen of the blood vessel to the surrounding tissue. This occurs when endothelial cells, which line blood vessels, become adhesive to circulating immune cells such as monocytes. In vitro measurement of this adhesiveness has until now been done by quantifying the total number of monocytes that adhere to an endothelial layer either as a direct count or by indirect measurement of the fluorescence of adherent monocytes. While such measurements do indicate the average adhesiveness of the endothelial cell population, they are confounded by a number of factors, such as cell number, and do not reveal the proportion of endothelial cells that are actually adhesive. Here we describe and demonstrate a method which allows the enumeration of adhesive cells within a tested population of endothelial monolayer. Endothelial cells are grown on glass coverslips and following desired treatment are challenged with monocytes (that may be fluorescently labeled). After incubation, a rinsing procedure, involving multiple rounds of immersion and draining, the cells are fixed. Adhesive endothelial cells, which are surrounded by monocytes are readily identified and enumerated, giving an adhesion index that reveals the actual proportion of endothelial cells within the population that are adhesive. PMID:26132714

  6. ADAM17 Promotes Motility, Invasion, and Sprouting of Lymphatic Endothelial Cells.

    PubMed

    Mężyk-Kopeć, Renata; Wyroba, Barbara; Stalińska, Krystyna; Próchnicki, Tomasz; Wiatrowska, Karolina; Kilarski, Witold W; Swartz, Melody A; Bereta, Joanna

    2015-01-01

    Tumor-associated lymphatic vessels actively participate in tumor progression and dissemination. ADAM17, a sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules, is believed to promote tumor development, facilitating both tumor cell proliferation and migration, as well as tumor angiogenesis. In this work we addressed the issue of whether ADAM17 may also promote tumor lymphangiogenesis. First, we found that ADAM17 is important for the migratory potential of immortalized human dermal lymphatic endothelial cells (LEC). When ADAM17 was stably silenced in LEC, their proliferation was not affected, but: (i) single-cell motility, (ii) cell migration through a 3D Matrigel/collagen type I matrix, and (iii) their ability to form sprouts in a 3D matrix were significantly diminished. The differences in the cell motility between ADAM17-proficient and ADAM17-silenced cells were eliminated by inhibitors of EGFR and HER2, indicating that ADAM17-mediated shedding of growth factors accounts for LEC migratory potential. Interestingly, ADAM17 depletion affected the integrin surface expression/functionality in LEC. ADAM17-silenced cells adhered to plastic, type I collagen, and fibronectin faster than their ADAM17-proficient counterparts. The difference in adhesion to fibronectin was abolished by a cyclic RGD peptide, emphasizing the involvement of integrins in the process. Using a soluble receptor array, we identified BIG-H3 among several candidate proteins involved in the phenotypic and behavioral changes of LEC upon ADAM17 silencing. In additional assays, we confirmed the increased expression of BIG-H3, as well as TGFβ2 in ADAM17-silenced LEC. The antilymphangiogenic effects of ADAM17 silencing in lymphatic endothelial cells suggest further relevance of ADAM17 as a potential target in cancer therapy. PMID:26176220

  7. Quantitative methods for analyzing cell-cell adhesion in development.

    PubMed

    Kashef, Jubin; Franz, Clemens M

    2015-05-01

    During development cell-cell adhesion is not only crucial to maintain tissue morphogenesis and homeostasis, it also activates signalling pathways important for the regulation of different cellular processes including cell survival, gene expression, collective cell migration and differentiation. Importantly, gene mutations of adhesion receptors can cause developmental disorders and different diseases. Quantitative methods to measure cell adhesion are therefore necessary to understand how cells regulate cell-cell adhesion during development and how aberrations in cell-cell adhesion contribute to disease. Different in vitro adhesion assays have been developed in the past, but not all of them are suitable to study developmentally-related cell-cell adhesion processes, which usually requires working with low numbers of primary cells. In this review, we provide an overview of different in vitro techniques to study cell-cell adhesion during development, including a semi-quantitative cell flipping assay, and quantitative single-cell methods based on atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS) or dual micropipette aspiration (DPA). Furthermore, we review applications of Förster resonance energy transfer (FRET)-based molecular tension sensors to visualize intracellular mechanical forces acting on cell adhesion sites. Finally, we describe a recently introduced method to quantitate cell-generated forces directly in living tissues based on the deformation of oil microdroplets functionalized with adhesion receptor ligands. Together, these techniques provide a comprehensive toolbox to characterize different cell-cell adhesion phenomena during development. PMID:25448695

  8. Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion.

    PubMed

    Malet-Engra, Gema; Yu, Weimiao; Oldani, Amanda; Rey-Barroso, Javier; Gov, Nir S; Scita, Giorgio; Dupré, Loïc

    2015-01-19

    Collective cell migration is a widespread biological phenomenon, whereby groups of highly coordinated, adherent cells move in a polarized fashion. This migration mode is a hallmark of tissue morphogenesis during development and repair and of solid tumor dissemination. In addition to circulating as solitary cells, lymphoid malignancies can assemble into tissues as multicellular aggregates. Whether malignant lymphocytes are capable of coordinating their motility in the context of chemokine gradients is, however, unknown. Here, we show that, upon exposure to CCL19 or CXCL12 gradients, malignant B and T lymphocytes assemble into clusters that migrate directionally and display a wider chemotactic sensitivity than individual cells. Physical modeling recapitulates cluster motility statistics and shows that intracluster cell cohesion results in noise reduction and enhanced directionality. Quantitative image analysis reveals that cluster migration runs are periodically interrupted by transitory rotation and random phases that favor leader cell turnover. Additionally, internalization of CCR7 in leader cells is accompanied by protrusion retraction, loss of polarity, and the ensuing replacement by new leader cells. These mechanisms ensure sustained forward migration and resistance to chemorepulsion, a behavior of individual cells exposed to steep CCL19 gradients that depends on CCR7 endocytosis. Thus, coordinated cluster dynamics confer distinct chemotactic properties, highlighting unexpected features of lymphoid cell migration. PMID:25578904

  9. Modelling cell motility and chemotaxis with evolving surface finite elements

    PubMed Central

    Elliott, Charles M.; Stinner, Björn; Venkataraman, Chandrasekhar

    2012-01-01

    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction–diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html. PMID:22675164

  10. Membrane tension and cytoskeleton organization in cell motility

    NASA Astrophysics Data System (ADS)

    Sens, Pierre; Plastino, Julie

    2015-07-01

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

  11. Live cell imaging of neuronal growth cone motility and guidance in vitro

    PubMed Central

    Suter, Daniel M.

    2013-01-01

    Summary The neuronal growth cone, a highly motile structure at the tip of neuronal processes, is an excellent model system for studying directional cell movements. While biochemical and genetic approaches unveiled molecular interactions between ligand, receptor, signaling and cytoskeleton-associated proteins controlling axonal growth and guidance, in vitro live cell imaging has emerged as a crucial approach for dissecting cellular mechanisms of growth cone motility and guidance. Important insights into these mechanisms have been gained from studies using the large growth cones elaborated by Aplysia californica neurons, an outstanding model system for live cell imaging for a number of reasons. Identified neurons can be isolated and imaged at room temperature. Aplysia growth cones are 5–10 times larger than growth cones from other species, making them suitable for quantitative high-resolution imaging of cytoskeletal protein dynamics and biophysical approaches. Lastly, protein, RNA, fluorescent probes and small molecules can be microinjected into the neuronal cell body for localization and functional studies. The following chapter describes culturing of Aplysia bag cell neurons, live cell imaging of neuronal growth cones using differential interference contrast and fluorescent speckle microscopy as well as the restrained bead interaction assay to induce adhesion-mediated growth cone guidance in vitro. PMID:21748670

  12. Modulation of Intracellular Calcium Levels by Calcium Lactate Affects Colon Cancer Cell Motility through Calcium-Dependent Calpain

    PubMed Central

    Sundaramoorthy, Pasupathi; Sim, Jae Jun; Jang, Yeong-Su; Mishra, Siddhartha Kumar; Jeong, Keun-Yeong; Mander, Poonam; Chul, Oh Byung; Shim, Won-Sik; Oh, Seung Hyun; Nam, Ky-Youb; Kim, Hwan Mook

    2015-01-01

    Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer. PMID:25629974

  13. Membrane tension feedback on shape and motility of eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko

    2016-04-01

    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell's two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane's bending energy to the shape and integrity of the cell. As in experiments, we investigate two pertinent observables - the cell's velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.

  14. Interstitial flows promote an amoeboid over mesenchymal motility of breast cancer cells revealed by a three dimensional microfluidic model

    PubMed Central

    Huang, Yu Ling; Tung, Chih-kuan; Zheng, Anqi; Kim, Beum Jun; Wu, Mingming

    2015-01-01

    Malignant tumors are often associated with an elevated fluid pressure due to the abnormal growth of vascular vessels, and thus an increased interstitial flow out of the tumor. Recent in vitro work revealed that interstitial flows critically regulated tumor cell migration within a three dimensional biomatrix, and breast cancer cell migration behavior depended sensitively on the cell seeding density, chemokine availability and flow rates. In this paper, we focus on roles of interstitial flows in modulating heterogeneity of cancer cell motility phenotype within a three dimensional biomatrix. Using a newly developed microfluidic model, we show that breast cancer cells (MDA-MB-231) embedded in a 3D type I collagen matrix exhibit both an amoeboid and a mesenchymal motility, and interstitial flows promote the cell population towards the amoeboid motility phenotype. Furthermore, the addition of exogenous adhesion molecules (fibronectin) within the extracellular matrix (type I collagen) partially rescues the mesenchymal phenotype in the presence of the flow. Quantitative analysis of cell tracks and cell shape shows distinct differential migration characteristics of amoeboid and mesenchymal cells. Notably, the fastest moving cells belong to the subpopulation of amoeboid cells. Together, these findings highlight the important roles of biophysical forces in modulating tumor cell migration heterogeneity and plasticity, as well as the suitability of microfluidic models in interrogating tumor cell dynamics at single-cell and subpopulation level. PMID:26235230

  15. Interstitial flows promote amoeboid over mesenchymal motility of breast cancer cells revealed by a three dimensional microfluidic model.

    PubMed

    Huang, Yu Ling; Tung, Chih-Kuan; Zheng, Anqi; Kim, Beum Jun; Wu, Mingming

    2015-11-01

    Malignant tumors are often associated with an elevated fluid pressure due to the abnormal growth of vascular vessels, and thus an increased interstitial flow out of the tumors. Recent in vitro works revealed that interstitial flows critically regulated tumor cell migration within a three dimensional biomatrix, and breast cancer cell migration behavior depended sensitively on the cell seeding density, chemokine availability and flow rates. In this paper, we focus on the role of interstitial flows in modulating the heterogeneity of cancer cell motility phenotype within a three dimensional biomatrix. Using a newly developed microfluidic model, we show that breast cancer cells (MDA-MB-231) embedded in a 3D type I collagen matrix exhibit both amoeboid and mesenchymal motility, and interstitial flows promote the cell population towards the amoeboid motility phenotype. Furthermore, the addition of exogenous adhesion molecules (fibronectin) within the extracellular matrix (type I collagen) partially rescues the mesenchymal phenotype in the presence of the flow. Quantitative analysis of cell tracks and cell shapes shows distinct differential migration characteristics of amoeboid and mesenchymal cells. Notably, the fastest moving cells belong to the subpopulation of amoeboid cells. Together, these findings highlight the important role of biophysical forces in modulating tumor cell migration heterogeneity and plasticity, as well as the suitability of microfluidic models in interrogating tumor cell dynamics at single-cell and subpopulation level. PMID:26235230

  16. Interplay of differential cell mechanical properties, motility, and proliferation in emergent collective behavior of cell co-cultures

    NASA Astrophysics Data System (ADS)

    Sutter, Leo; Kolbman, Dan; Wu, Mingming; Ma, Minglin; Das, Moumita

    The biophysics of cell co-cultures, i.e. binary systems of cell populations, is of great interest in many biological processes including formation of embryos, and tumor progression. During these processes, different types of cells with different physical properties are mixed with each other, with important consequences for cell-cell interaction, aggregation, and migration. The role of the differences in their physical properties in their collective behavior remains poorly understood. Furthermore, until recently most theoretical studies of collective cell migration have focused on two dimensional systems. Under physiological conditions, however, cells often have to navigate three dimensional and confined micro-environments. We study a confined, three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as deformability, motility, adhesion, and division rates using Langevin Dynamics simulations. Our findings may provide insights into how the differences in and interplay between cell mechanical properties, division, and motility influence emergent collective behavior such as cell aggregation and segregation experimentally observed in co-cultures of breast cancer cells and healthy breast epithelial cells. This work was partially supported by a Cottrell College Science Award.

  17. Tetanus neurotoxin-mediated cleavage of cellubrevin impairs epithelial cell migration and integrin-dependent cell adhesion

    PubMed Central

    Proux-Gillardeaux, Véronique; Gavard, Julie; Irinopoulou, Theano; Mège, René-Marc; Galli, Thierry

    2005-01-01

    A role for endocytosis and exocytosis in cell migration has been proposed but not yet demonstrated. Here, we show that cellubrevin (Cb), an early endosomal v-SNARE, mediates trafficking in the lamellipod of migrating epithelial cells and partially colocalizes with markers of focal contacts. Expression of tetanus neurotoxin, which selectively cleaves Cb, significantly reduced the speed of migrating epithelial cells. Furthermore, expression of tetanus neurotoxin enhanced the adhesion of epithelial cells to collagen, laminin, fibronectin, and E-cadherin; altered spreading on collagen; and impaired the recycling of β1 integrins. These results suggest that Cb-dependent membrane trafficking participates in cell motility through the regulation of cell adhesion. PMID:15851685

  18. Diminished expression of h2-calponin in prostate cancer cells promotes cell proliferation, migration and the dependence of cell adhesion on substrate stiffness.

    PubMed

    Moazzem Hossain, M; Wang, Xin; Bergan, Raymond C; Jin, J-P

    2014-01-01

    Calponin is an actin filament-associated protein and its h2 isoform inhibits cell motility. Here we report significant expression of h2-calponin in prostate epithelial cells, which is diminished in cancerous cells. Comparison between a prostate cancer cell line PC3 and its metastatic derivative PC3-M showed lower levels of h2-calponin in PC3-M, corresponding to faster rates of cell proliferation and migration. Substrate adhesion of PC3 and PC3-M cells was positively correlated to the level of h2-calponin and the adhesion of PC3-M exhibited a higher dependence on substrate stiffness. Such effects of h2-calponin on cell proliferation, migration and substrate adhesion were also seen in normal versus cancerous primary prostate cells. Further supporting the role of h2-calponin in inhibiting cell motility, fibroblasts isolated from h2-calponin knockout mice proliferated and migrated faster than that of wild type fibroblasts. Transfective over-expression of h2-calponin in PC3-M cells effectively inhibited cell proliferation and migration. The results suggest that the diminished expression of h2-calponin in prostate cancer cells increases cell motility, decreases substrate adhesion, and promotes adhesion on high stiffness substrates. PMID:25161871

  19. Diminished expression of h2-calponin in prostate cancer cells promotes cell proliferation, migration and the dependence of cell adhesion on substrate stiffness

    PubMed Central

    Moazzem Hossain, M.; Wang, Xin; Bergan, Raymond C.; Jin, J.-P.

    2014-01-01

    Calponin is an actin filament-associated protein and its h2 isoform inhibits cell motility. Here we report significant expression of h2-calponin in prostate epithelial cells, which is diminished in cancerous cells. Comparison between a prostate cancer cell line PC3 and its metastatic derivative PC3-M showed lower levels of h2-calponin in PC3-M, corresponding to faster rates of cell proliferation and migration. Substrate adhesion of PC3 and PC3-M cells was positively correlated to the level of h2-calponin and the adhesion of PC3-M exhibited a higher dependence on substrate stiffness. Such effects of h2-calponin on cell proliferation, migration and substrate adhesion were also seen in normal versus cancerous primary prostate cells. Further supporting the role of h2-calponin in inhibiting cell motility, fibroblasts isolated from h2-calponin knockout mice proliferated and migrated faster than that of wild type fibroblasts. Transfective over-expression of h2-calponin in PC3-M cells effectively inhibited cell proliferation and migration. The results suggest that the diminished expression of h2-calponin in prostate cancer cells increases cell motility, decreases substrate adhesion, and promotes adhesion on high stiffness substrates. PMID:25161871

  20. Lattice-free models of directed cell motility

    NASA Astrophysics Data System (ADS)

    Irons, Carolyn; Plank, Michael J.; Simpson, Matthew J.

    2016-01-01

    Directed cell migration often occurs when individual cells move in response to an external chemical stimulus. Cells can respond by moving in either the direction of increasing (chemoattraction) or decreasing (chemorepulsion) concentration. Many previous models of directed cell migration use a lattice-based framework where agents undergo a lattice-based random walk and the direction of nearest-neighbour motility events is biased in a preferred direction. Such lattice-based models can lead to unrealistic configurations of agents, since the agents always move on an artificial lattice structure which is never observed experimentally. We present a lattice-free model of directed cell migration that incorporates two key features. First, agents move on a continuous domain, with the possibility that there is some preferred direction of motion. Second, to be consistent with experimental observations, we enforce a crowding mechanism so that motility events that would lead to agent overlap are not permitted. We compare simulation data from the new lattice-free model with a more traditional lattice-based model. To provide additional insight into the lattice-free model, we construct an approximate conservation statement which corresponds to a nonlinear advection-diffusion equation in the continuum limit. The solution of this mean-field model compares well with averaged data from the individual-based model.

  1. Loss of SNAP29 Impairs Endocytic Recycling and Cell Motility

    PubMed Central

    Rapaport, Debora; Lugassy, Yevgenia; Sprecher, Eli; Horowitz, Mia

    2010-01-01

    Intracellular membrane trafficking depends on the ordered formation and consumption of transport intermediates and requires that membranes fuse with each other in a tightly regulated and highly specific manner. Membrane anchored SNAREs assemble into SNARE complexes that bring membranes together to promote fusion. SNAP29 is a ubiquitous synaptosomal-associated SNARE protein. It interacts with several syntaxins and with the EH domain containing protein EHD1. Loss of functional SNAP29 results in CEDNIK syndrome (Cerebral Dysgenesis, Neuropathy, Ichthyosis and Keratoderma). Using fibroblast cell lines derived from CEDNIK patients, we show that SNAP29 mediates endocytic recycling of transferrin and β1-integrin. Impaired β1-integrin recycling affected cell motility, as reflected by changes in cell spreading and wound healing. No major changes were detected in exocytosis of VSVG protein from the Golgi apparatus, although the Golgi system acquired a dispersed morphology in SNAP29 deficient cells. Our results emphasize the importance of SNAP29 mediated membrane fusion in endocytic recycling and consequently, in cell motility. PMID:20305790

  2. Rab11-FIP3 is a Rab11-binding protein that regulates breast cancer cell motility by modulating the actin cytoskeleton

    PubMed Central

    Jing, Jian; Tarbutton, Elizabeth; Wilson, Gayle; Prekeris, Rytis

    2009-01-01

    Cell adhesion and motility are very dynamic processes that require the temporal and spatial coordination of many cellular structures. ADP-ribosylation factor 6 (Arf6) has emerged as master regulator of endocytic membrane traffic and cytoskeletal dynamics during cell movement. Recently, a novel Arf6-binding protein known as FIP3/arfophilin/eferin has been identified. In addition to Arf6, FIP3 also interacts with Rab11, a small monomeric GTPase that regulates endocytic membrane transport. Both Arf6 and Rab11 GTPases have been implicated in regulation of cell motility. Here we test the role of FIP3 in breast carcinoma cell motility. First, we demonstrate that FIP3 is associated with recycling endosomes that are present at the leading edge of motile cells. Second, we show that FIP3 is required for the motility of MDA-MB-231 breast carcinoma cells. Third, we demonstrate that FIP3 regulates Rac1-dependent actin cytoskeleton dynamics and modulates the formation and ruffling of lamellipodia. Finally, we demonstrate that FIP3 regulates the localization of Arf6 at the plasma membrane of MDA-MB-231 cells. Based on our data we propose that FIP3 affects cell motility by regulating Arf6 localization to the plasma membrane of the leading edge, thus regulating polarized Rac1 activation and actin dynamics. PMID:19327867

  3. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Park, So-Yeon; Nguyen, Thanh Thi; Yu, Young Hyun; Nguyen, Tru Van; Sun, Eun Gene; Udeni, Jayalal; Jeong, Min-Hye; Pereira, Iris; Moon, Cheol; Ha, Hyung-Ho; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2015-01-01

    Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3'-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. PMID:26371759

  4. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Park, So-Yeon; Nguyen, Thanh Thi; Yu, Young Hyun; Nguyen, Tru Van; Sun, Eun Gene; Udeni, Jayalal; Jeong, Min-Hye; Pereira, Iris; Moon, Cheol; Ha, Hyung-Ho; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2015-01-01

    Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3’-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. PMID:26371759

  5. Patterns of periodic holes created by increased cell motility

    PubMed Central

    Chen, Ting-Hsuan; Guo, Chunyan; Zhao, Xin; Yao, Yucheng; Boström, Kristina I.; Wong, Margaret N.; Tintut, Yin; Demer, Linda L.; Ho, Chih-Ming; Garfinkel, Alan

    2012-01-01

    The reaction and diffusion of morphogens is a mechanism widely used to explain many spatial patterns in physics, chemistry and developmental biology. However, because experimental control is limited in most biological systems, it is often unclear what mechanisms account for the biological patterns that arise. Here, we study a biological model of cultured vascular mesenchymal cells (VMCs), which normally self-organize into aggregates that form into labyrinthine configurations. We use an experimental control and a mathematical model that includes reacting and diffusing morphogens and a third variable reflecting local cell density. With direct measurements showing that cell motility was increased ninefold and threefold by inhibiting either Rho kinase or non-muscle myosin-II, respectively, our experimental results and mathematical modelling demonstrate that increased motility alters the multicellular pattern of the VMC cultures, from labyrinthine to a pattern of periodic holes. These results suggest implications for the tissue engineering of functional replacements for trabecular or spongy tissue such as endocardium and bone. PMID:22649581

  6. CD34 Promotes Satellite Cell Motility and Entry into Proliferation to Facilitate Efficient Skeletal Muscle Regeneration

    PubMed Central

    Alfaro, Leslie Ann So; Dick, Sarah A.; Siegel, Ashley L.; Anonuevo, Adam S.; McNagny, Kelly M.; Megeney, Lynn A.; Cornelison, Dawn D.W.; Rossi, Fabio M.V.

    2013-01-01

    Expression of the cell surface sialomucin CD34 is common to many adult stem cell types, including muscle satellite cells. However, no clear stem cell or regeneration-related phenotype has ever been reported in mice lacking CD34, and its function on these cells remains poorly understood. Here, we assess the functional role of CD34 on satellite cell-mediated muscle regeneration. We show that Cd34−/− mice, which have no obvious developmental phenotype, display a defect in muscle regeneration when challenged with either acute or chronic muscle injury. This regenerative defect is caused by impaired entry into proliferation and delayed myogenic progression. Consistent with the reported anti-adhesive function of CD34, knock out satellite cells also show decreased motility along their host myofiber. Altogether, our results identify a role for CD34 in the poorly understood early steps of satellite cell activation, and provide the first evidence that beyond being a stem cell marker, CD34 may play an important function in modulating stem cell activity. PMID:21997891

  7. Fibulin-3 is uniquely upregulated in malignant gliomas and promotes tumor cell motility and invasion.

    PubMed

    Hu, Bin; Thirtamara-Rajamani, Keerthi K; Sim, Hosung; Viapiano, Mariano S

    2009-11-01

    Malignant gliomas are highly invasive tumors with an almost invariably rapid and lethal outcome. Surgery and chemoradiotherapy fail to remove resistant tumor cells that disperse within normal tissue, which are a major cause for disease progression and therapy failure. Infiltration of the neural parenchyma is a distinctive property of malignant gliomas compared with other solid tumors. Thus, glioma cells are thought to produce unique molecular changes that remodel the neural extracellular matrix and form a microenvironment permissive for their motility. Here, we describe the unique expression and proinvasive role of fibulin-3, a mesenchymal matrix protein specifically upregulated in gliomas. Fibulin-3 is downregulated in peripheral tumors and is thought to inhibit tumor growth. However, we found fibulin-3 highly upregulated in gliomas and cultured glioma cells, although the protein was undetectable in normal brain or cultured astrocytes. Overexpression and knockdown experiments revealed that fibulin-3 did not seem to affect glioma cell morphology or proliferation, but enhanced substrate-specific cell adhesion and promoted cell motility and dispersion in organotypic cultures. Moreover, orthotopic implantation of fibulin-3-overexpressing glioma cells resulted in diffuse tumors with increased volume and rostrocaudal extension compared with controls. Tumors and cultured cells overexpressing fibulin-3 also showed elevated expression and activity of matrix metalloproteases, such as MMP-2/MMP-9 and ADAMTS-5. Taken together, our results suggest that fibulin-3 has a unique expression and protumoral role in gliomas, and could be a potential target against tumor progression. Strategies against this glioma-specific matrix component could disrupt invasive mechanisms and restrict the dissemination of these tumors. PMID:19887559

  8. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.

    PubMed

    Luciani, Paola; Deledda, Cristiana; Benvenuti, Susanna; Squecco, Roberta; Cellai, Ilaria; Fibbi, Benedetta; Marone, Ilaria Maddalena; Giuliani, Corinna; Modi, Giulia; Francini, Fabio; Vannelli, Gabriella Barbara; Peri, Alessandro

    2013-01-01

    Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i) the evaluation of neurite-like protrusions in 3D cell cultures, ii) the analysis of the expression of neuronal markers and iii) electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties. PMID:23990978

  9. Micropatterning cell adhesion on polyacrylamide hydrogels.

    PubMed

    Zhang, Jian; Guo, Wei-Hui; Rape, Andrew; Wang, Yu-Li

    2013-01-01

    Cell shape and substrate rigidity play critical roles in regulating cell behaviors and fate. Controlling cell shape on elastic adhesive materials holds great promise for creating a physiologically relevant culture environment for basic and translational research and clinical applications. However, it has been technically challenging to create high-quality adhesive patterns on compliant substrates. We have developed an efficient and economical method to create precise micron-scaled adhesive patterns on the surface of a hydrogel (Rape et al., Biomaterials 32:2043-2051, 2011). This method will facilitate the research on traction force generation, cellular mechanotransduction, and tissue engineering, where precise controls of both materials rigidity and adhesive patterns are important. PMID:23955741

  10. Synchronization of Spontaneous Active Motility of Hair Cell Bundles

    PubMed Central

    Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores

    2015-01-01

    Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409

  11. Synchronization of Spontaneous Active Motility of Hair Cell Bundles.

    PubMed

    Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores

    2015-01-01

    Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409

  12. Promotion of Cell Migration by Neural Cell Adhesion Molecule (NCAM) Is Enhanced by PSA in a Polysialyltransferase-Specific Manner

    PubMed Central

    Guan, Feng; Wang, Xin; He, Fa

    2015-01-01

    Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components. PMID:25885924

  13. Promotion of cell migration by neural cell adhesion molecule (NCAM) is enhanced by PSA in a polysialyltransferase-specific manner.

    PubMed

    Guan, Feng; Wang, Xin; He, Fa

    2015-01-01

    Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components. PMID:25885924

  14. Bistability of Cell Adhesion in Shear Flow

    PubMed Central

    Efremov, Artem; Cao, Jianshu

    2011-01-01

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area—bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms. PMID:21889439

  15. Migratory and adhesive properties of Xenopus laevis primordial germ cells in vitro

    PubMed Central

    Dzementsei, Aliaksandr; Schneider, David; Janshoff, Andreas; Pieler, Tomas

    2013-01-01

    Summary The directional migration of primordial germ cells (PGCs) to the site of gonad formation is an advantageous model system to study cell motility. The embryonic development of PGCs has been investigated in different animal species, including mice, zebrafish, Xenopus and Drosophila. In this study we focus on the physical properties of Xenopus laevis PGCs during their transition from the passive to the active migratory state. Pre-migratory PGCs from Xenopus laevis embryos at developmental stages 17–19 to be compared with migratory PGCs from stages 28–30 were isolated and characterized in respect to motility and adhesive properties. Using single-cell force spectroscopy, we observed a decline in adhesiveness of PGCs upon reaching the migratory state, as defined by decreased attachment to extracellular matrix components like fibronectin, and a reduced adhesion to somatic endodermal cells. Data obtained from qPCR analysis with isolated PGCs reveal that down-regulation of E-cadherin might contribute to this weakening of cell-cell adhesion. Interestingly, however, using an in vitro migration assay, we found that movement of X. laevis PGCs can also occur independently of specific interactions with their neighboring cells. The reduction of cellular adhesion during PGC development is accompanied by enhanced cellular motility, as reflected in increased formation of bleb-like protrusions and inferred from electric cell-substrate impedance sensing (ECIS) as well as time-lapse image analysis. Temporal alterations in cell shape, including contraction and expansion of the cellular body, reveal a higher degree of cellular dynamics for the migratory PGCs in vitro. PMID:24285703

  16. The interplay between cell motility and tissue architecture

    NASA Astrophysics Data System (ADS)

    Tanner, Kandice

    2013-03-01

    Glandular tissue form arboreal networks comprised of acini and tubes. Loss of structure is concomitant with the in vivo pathologic state. In vitro models have been shown to recapitulate the functional units of the mammary gland and other organs. Despite our much improved understanding gleaned from both in vitro and in vivo interrogation, the mechanisms by which cells are able to achieve the correct tissue organization remain elusive. How do single mammary epithelial cells form polarized acini when cultured in a surrogate basement membrane gel but not on 2D surfaces? Simply put, how does a cell know which way is up? Why do malignant breast cells show a differential response in that they form non-polarized aggregates? Recently, it was determined that non-malignant cells undergo multiple rotations to establish acini while tumor cells are randomly motile during tumor formation. Can it be that a tumor cell has simply lost its way. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute.

  17. Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea

    PubMed Central

    Orell, Alvaro; Peeters, Eveline; Vassen, Victoria; Jachlewski, Silke; Schalles, Sven; Siebers, Bettina; Albers, Sonja-Verena

    2013-01-01

    Like bacteria, archaea predominately exist as biofilms in nature. However, the environmental cues and the molecular mechanisms driving archaeal biofilm development are not characterized. Here we provide data suggesting that the transcriptional regulators belonging to the Lrs14-like protein family constitute a key regulatory factor during Sulfolobus biofilm development. Among the six lrs14-like genes encoded by Sulfolobus acidocaldarius, the deletion of three led to markedly altered biofilm phenotypes. Although Δsaci1223 and Δsaci1242 deletion mutants were impaired in biofilm formation, the Δsaci0446 deletion strain exhibited a highly increased extracellular polymeric substance (EPS) production, leading to a robust biofilm structure. Moreover, although the expression of the adhesive pili (aap) genes was upregulated, the genes of the motility structure, the archaellum (fla), were downregulated rendering the Δsaci0446 strain non-motile. Gel shift assays confirmed that Saci0446 bound to the promoter regions of fla and aap thus controlling the expression of both cell surface structures. In addition, genetic epistasis analysis using Δsaci0446 as background strain identified a gene cluster involved in the EPS biosynthetic pathway of S. acidocaldarius. These results provide insights into both the molecular mechanisms that govern biofilm formation in Crenarchaea and the functionality of the Lrs14-like proteins, an archaea-specific class of transcriptional regulators. PMID:23657363

  18. Characterizing Cell Adhesion by Using Micropipette Aspiration

    PubMed Central

    Hogan, Brenna; Babataheri, Avin; Hwang, Yongyun; Barakat, Abdul I.; Husson, Julien

    2015-01-01

    We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results. PMID:26200857

  19. Characterizing cell adhesion by using micropipette aspiration.

    PubMed

    Hogan, Brenna; Babataheri, Avin; Hwang, Yongyun; Barakat, Abdul I; Husson, Julien

    2015-07-21

    We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results. PMID:26200857

  20. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    PubMed Central

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  1. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    PubMed

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  2. A Continuum Approach to Modelling Cell-Cell Adhesion

    PubMed Central

    Armstrong, Nicola J.; Painter, Kevin J.; Sherratt, Jonathan A.

    2007-01-01

    Cells adhere to each other through the binding of cell adhesion molecules at the cell surface. This process, known as cell-cell adhesion, is fundamental in many areas of biology, including early embryo development, tissue homeostasis and tumour growth. In this paper we develop a new continuous mathematical model of this phenomenon by considering the movement of cells in response to the adhesive forces generated through binding. We demonstrate that our model predicts the aggregation behaviour of a disassociated adhesive cell population. Further, when the model is extended to represent the interactions between multiple populations, we demonstrate that it is capable of replicating the different types of cell sorting behaviour observed experimentally. The resulting pattern formation is a direct consequence of the relative strengths of self-population and cross-population adhesive bonds in the model. While cell sorting behaviour has been captured previously with discrete approaches, it has not, until now, been observed with a fully continuous model. PMID:16860344

  3. Yielding Elastic Tethers Stabilize Robust Cell Adhesion

    PubMed Central

    Whitfield, Matt J.; Luo, Jonathon P.; Thomas, Wendy E.

    2014-01-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds. PMID:25473833

  4. Cyclin D1 interacts and collaborates with Ral GTPases enhancing cell detachment and motility.

    PubMed

    Fernández, R M H; Ruiz-Miró, M; Dolcet, X; Aldea, M; Garí, E

    2011-04-21

    Alterations in the levels of adhesion and motility of cells are critical events in the development of metastasis. Cyclin D1 (CycD1) is one of the most frequently amplified oncogenes in many types of cancers and it is also associated with the development of metastasis. Despite this, we still do not know which are all the relevant pathways by which CycD1 induces oncogenic processes. CycD1 functions can be either dependent or independent of the cyclin-dependent kinase Cdk4, and they affect several cellular aspects such as proliferation, cell attachment and migration. In this work, we reveal a novel function of CycD1 that fosters our understanding of the oncogenic potential of CycD1. We show that CycD1 binds to the small GTPases Ral A and B, which are involved, through exocyst regulation, in the progression of metastatic cancers, inducing anchorage-independent growth and cell survival of transformed cells. We show that CycD1 binds active Ral complexes and the exocyst protein Sec6, and co-localizes with Ral GTPases in trans-Golgi and exocyst-rich regions. We have also observed that CycD1-Cdk4 phosphorylates the Ral GEF Rgl2 'in vitro' and that CycD1-Cdk4 activity stimulates accumulation of the Ral GTP active forms. In accordance with this, our data suggest that CycD1-Cdk4 enhances cell detachment and motility in collaboration with Ral GTPases. This new function may help explain the contribution of CycD1 to tumor spreading. PMID:21242975

  5. Local anesthetics inhibit kinesin motility and microtentacle protrusions in human epithelial and breast tumor cells.

    PubMed

    Yoon, Jennifer R; Whipple, Rebecca A; Balzer, Eric M; Cho, Edward H; Matrone, Michael A; Peckham, Michelle; Martin, Stuart S

    2011-10-01

    Detached breast tumor cells produce dynamic microtubule protrusions that promote reattachment of cells and are termed tubulin microtentacles (McTNs) due to their mechanistic distinctions from actin-based filopodia/invadopodia and tubulin-based cilia. McTNs are enriched with vimentin and detyrosinated α-tubulin, (Glu-tubulin). Evidence suggests that vimentin and Glu-tubulin are cross-linked by kinesin motor proteins. Using known kinesin inhibitors, Lidocaine and Tetracaine, the roles of kinesins in McTN formation and function were tested. Live-cell McTN counts, adhesion assays, immunofluorescence, and video microscopy were performed to visualize inhibitor effects on McTNs. Viability and apoptosis assays were used to confirm the non-toxicity of the inhibitors. Treatments of human non-tumorigenic mammary epithelial and breast tumor cells with Lidocaine or Tetracaine caused rapid collapse of vimentin filaments. Live-cell video microscopy demonstrated that Tetracaine reduces motility of intracellular GFP-kinesin and causes centripetal collapse of McTNs. Treatment with Tetracaine inhibited the extension of McTNs and their ability to promote tumor cell aggregation and reattachment. Lidocaine showed similar effects but to a lesser degree. Our current data support a model in which the inhibition of kinesin motor proteins by Tetracaine leads to the reductions in McTNs, and provides a novel mechanism for the ability of this anesthetic to decrease metastatic progression. PMID:21069453

  6. Physics of cell elasticity, shape and adhesion

    NASA Astrophysics Data System (ADS)

    Safran, S. A.; Gov, N.; Nicolas, A.; Schwarz, U. S.; Tlusty, T.

    2005-07-01

    We review recent theoretical work that analyzes experimental measurements of the shape, fluctuations and adhesion properties of biological cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the shape and adhesion of elastic cells with fluid-filled vesicles. In red blood cells (RBC), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wavevector and frequency dependence of the fluctuation spectrum of RBC indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton-membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect topological defects induced in the cytoskeleton network by ATP. The shapes of cells that adhere to a substrate are strongly determined by the cytoskeletal elasticity that can be varied experimentally by drugs that depolymerize the cytoskeleton. This leads to a tension-driven retraction of the cell body and a pearling instability of the resulting ray-like protrusions. Recent experiments have shown that adhering cells exert polarized forces on substrates. The interactions of such “force dipoles” in either bulk gels or on surfaces can be used to predict the nature of self-assembly of cell aggregates and may be important in the formation of artificial tissues. Finally, we note that cell adhesion strongly depends on the forces exerted on the adhesion sites by the tension of the cytoskeleton. The size and shape of the adhesion regions are strongly modified as the tension is varied and we present an elastic model that relates this tension to deformations that induce the recruitment of new molecules to the adhesion region. In all these examples, cell shape and adhesion differ from vesicle shape and

  7. Id-1 promotes TGF-{beta}1-induced cell motility through HSP27 activation and disassembly of adherens junction in prostate epithelial cells

    SciTech Connect

    Di Kaijun; Wong, Y.C. Wang Xianghong

    2007-11-15

    Id-1 (inhibitor of differentiation or DNA binding-1) has been positively associated with cell proliferation, cell cycle progression, and invasiveness during tumorigenesis. In addition, Id-1 has been shown to modulate cellular sensitivity to TGF-{beta}1 (transforming growth factor {beta}1). Here we demonstrate a novel role of Id-1 in promoting TGF-{beta}1-induced cell motility in a non-malignant prostate epithelial cell line, NPTX. We found that Id-1 promoted F-actin stress fiber formation in response to TGF-{beta}1, which was associated with increased cell-substrate adhesion and cell migration in NPTX cells. In addition, this positive effect of Id-1 on TGF-{beta}1-induced cell motility was mediated through activation of MEK-ERK signaling pathway and subsequent phosphorylation of HSP27 (heat shock protein 27). Furthermore, Id-1 disrupted the adherens junction complex in TGF-{beta}1-treated cells through down-regulation of E-cadherin, redistribution of {beta}-catenin, along with up-regulation of N-cadherin. These lines of evidence reveal a novel tumorigenic role of Id-1 through reorganization of actin cytoskeleton and disassembly of cell-cell adhesion in response to TGF-{beta}1 in human prostate epithelial cells, and suggest that intracellular Id-1 levels might be a determining factor for switching TGF-{beta}1 from a growth inhibitor to a tumor promoter during prostate carcinogenesis.

  8. Integrative analysis of T cell motility from multi-channel microscopy data using TIAM.

    PubMed

    Mayya, Viveka; Neiswanger, Willie; Medina, Ricardo; Wiggins, Chris H; Dustin, Michael L

    2015-01-01

    Integrative analytical approaches are needed to study and understand T cell motility as it is a highly coordinated and complex process. Several computational algorithms and tools are available to track motile cells in time-lapse microscopy images. In contrast, there has only been limited effort towards the development of tools that take advantage of multi-channel microscopy data and facilitate integrative analysis of cell-motility. We have implemented algorithms for detecting, tracking, and analyzing cell motility from multi-channel time-lapse microscopy data. We have integrated these into a MATLAB-based toolset we call TIAM (Tool for Integrative Analysis of Motility). The cells are detected by a hybrid approach involving edge detection and Hough transforms from transmitted light images. Cells are tracked using a modified nearest-neighbor association followed by an optimization routine to join shorter segments. Cell positions are used to perform local segmentation for extracting features from transmitted light, reflection and fluorescence channels and associating them with cells and cell-tracks to facilitate integrative analysis. We found that TIAM accurately captures the motility behavior of T cells and performed better than DYNAMIK, Icy, Imaris, and Volocity in detecting and tracking motile T cells. Extraction of cell-associated features from reflection and fluorescence channels was also accurate with less than 10% median error in measurements. Finally, we obtained novel insights into T cell motility that were critically dependent on the unique capabilities of TIAM. We found that 1) the CD45RO subset of human CD8 T cells moved faster and exhibited an increased propensity to attach to the substratum during CCL21-driven chemokinesis when compared to the CD45RA subset; and 2) attachment area and arrest coefficient during antigen-induced motility of the CD45A subset is correlated with surface density of integrin LFA1 at the contact. PMID:25445324

  9. Moscatilin inhibits lung cancer cell motility and invasion via suppression of endogenous reactive oxygen species.

    PubMed

    Kowitdamrong, Akkarawut; Chanvorachote, Pithi; Sritularak, Boonchoo; Pongrakhananon, Varisa

    2013-01-01

    Lung cancer is the leading cause of death among cancer patients worldwide, and most of them have died from metastasis. Migration and invasion are prerequisite processes associated with high metastasis potential in cancers. Moscatilin, a bibenzyl derivative isolated from the Thai orchid Dendrobium pulchellum, has been shown to have anticancer effect against numerous cancer cell lines. However, little is known regarding the effect of moscatilin on cancer cell migration and invasion. The present study demonstrates that nontoxic concentrations of moscatilin were able to inhibit human nonsmall cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS), in which hydroxyl radical (OH(∙)) was identified as a dominant species in the suppression of filopodia formation. Western blot analysis also revealed that moscatilin downregulated activated focal adhesion kinase (phosphorylated FAK, Tyr 397) and activated ATP-dependent tyrosine kinase (phosphorylated Akt, Ser 473), whereas their parental counterparts were not detectable changed. In conclusion, our results indicate the novel molecular basis of moscalitin-inhibiting lung cancer cell motility and invasion and demonstrate a promising antimetastatic potential of such an agent for lung cancer therapy. PMID:23738332

  10. Moscatilin Inhibits Lung Cancer Cell Motility and Invasion via Suppression of Endogenous Reactive Oxygen Species

    PubMed Central

    Kowitdamrong, Akkarawut; Chanvorachote, Pithi; Sritularak, Boonchoo

    2013-01-01

    Lung cancer is the leading cause of death among cancer patients worldwide, and most of them have died from metastasis. Migration and invasion are prerequisite processes associated with high metastasis potential in cancers. Moscatilin, a bibenzyl derivative isolated from the Thai orchid Dendrobium pulchellum, has been shown to have anticancer effect against numerous cancer cell lines. However, little is known regarding the effect of moscatilin on cancer cell migration and invasion. The present study demonstrates that nontoxic concentrations of moscatilin were able to inhibit human nonsmall cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS), in which hydroxyl radical (OH∙) was identified as a dominant species in the suppression of filopodia formation. Western blot analysis also revealed that moscatilin downregulated activated focal adhesion kinase (phosphorylated FAK, Tyr 397) and activated ATP-dependent tyrosine kinase (phosphorylated Akt, Ser 473), whereas their parental counterparts were not detectable changed. In conclusion, our results indicate the novel molecular basis of moscalitin-inhibiting lung cancer cell motility and invasion and demonstrate a promising antimetastatic potential of such an agent for lung cancer therapy. PMID:23738332

  11. Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells

    PubMed Central

    Gueron, Geraldine; Giudice, Jimena; Valacco, Pia; Paez, Alejandra; Elguero, Belen; Toscani, Martin; Jaworski, Felipe; Leskow, Federico Coluccio; Cotignola, Javier; Marti, Marcelo; Binaghi, Maria; Navone, Nora; Vazquez, Elba

    2014-01-01

    Prostate cancer (PCa) is the second leading cause of cancer death in men. Although previous studies in PCa have focused on cell adherens junctions (AJs), key players in metastasis, they have left the molecular mechanisms unexplored. Inflammation and the involvement of reactive oxygen species (ROS) are critical in the regulation of cell adhesion and the integrity of the epithelium. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage. Here, we investigated whether HO-1 is implicated in the adhesive and morphological properties of tumor cells. Genes differentially regulated by HO-1 were enriched for cell motility and adhesion biological processes. HO-1 induction, increased E-cadherin and β-catenin levels. Immunofluorescence analyses showed a striking remodeling of E-cadherin/β-catenin based AJs under HO-1 modulation. Interestingly, the enhanced levels of E-cadherin and β-catenin coincided with a markedly change in cell morphology. To further our analysis we sought to identify HO-1 binding proteins that might participate in the regulation of cell morphology. A proteomics approach identified Muskelin, as a novel HO-1 partner, strongly implicated in cell morphology regulation. These results define a novel role for HO-1 in modulating the architecture of cell-cell interactions, favoring a less aggressive phenotype and further supporting its anti-tumoral function in PCa. PMID:24961479

  12. Cell adhesion molecules involved in intrathymic T cell development.

    PubMed

    Patel, D D; Haynes, B F

    1993-08-01

    During stem cell migration to the thymus, intrathymic maturation of T cells, and emigration of mature T cells out of the thymus, intercellular interactions of developing T cells with a myriad of cell types are required for normal T cell development. Intercellular interactions of T cell precursors with endothelial cells, thymic epithelial cells, fibroblasts, thymic macrophages and dendritic cells are all mediated by adhesion molecules on immature T cells binding to ligands on thymic microenvironment cells. While many receptor-ligand interactions that are important in intrathymic T cell development are known, the adhesion molecules that are important for migration of T cell precursors to the thymus and for emigration of mature thymocytes from the thymus are poorly understood. An emerging concept is that select adhesion molecules at discrete stages of T cell maturation participate in and regulate the complex processes of T cell development. PMID:7693023

  13. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    PubMed Central

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  14. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.

    PubMed

    Doyle, Andrew D; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  15. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  16. In vitro cell motility as a potential mesenchymal stem cell marker for multipotency.

    PubMed

    Bertolo, Alessandro; Gemperli, Armin; Gruber, Marco; Gantenbein, Benjamin; Baur, Martin; Pötzel, Tobias; Stoyanov, Jivko

    2015-01-01

    Mesenchymal stem cells (MSCs) are expected to have a fundamental role in future cell-based therapies because of their high proliferative ability, multilineage potential, and immunomodulatory properties. Autologous transplantations have the "elephant in the room" problem of wide donor variability, reflected by variability in MSC quality and characteristics, leading to uncertain outcomes in the use of these cells. We propose life imaging as a tool to characterize populations of human MSCs. Bone marrow MSCs from various donors and in vitro passages were evaluated for their in vitro motility, and the distances were correlated to the adipogenic, chondrogenic, and osteogenic differentiation potentials and the levels of senescence and cell size. Using life-image measuring of track lengths of 70 cells per population for a period of 24 hours, we observed that slow-moving cells had the higher proportion of senescent cells compared with fast ones. Larger cells moved less than smaller ones, and spindle-shaped cells had an average speed. Both fast cells and slow cells were characterized by a low differentiation potential, and average-moving cells were more effective in undergoing all three lineage differentiations. Furthermore, heterogeneity in single cell motility within a population correlated with the average-moving cells, and fast- and slow-moving cells tended toward homogeneity (i.e., a monotonous moving pattern). In conclusion, in vitro cell motility might be a useful tool to quickly characterize and distinguish the MSC population's differentiation potential before additional use. PMID:25473086

  17. Asynchrony in the growth and motility responses to environmental changes by individual bacterial cells

    SciTech Connect

    Umehara, Senkei; Hattori, Akihiro; Inoue, Ippei; Yasuda, Kenji . E-mail: yasuda.bmi@tmd.ac.jp

    2007-05-04

    Knowing how individual cells respond to environmental changes helps one understand phenotypic diversity in a bacterial cell population, so we simultaneously monitored the growth and motility of isolated motile Escherichia coli cells over several generations by using a method called on-chip single-cell cultivation. Starved cells quickly stopped growing but remained motile for several hours before gradually becoming immotile. When nutrients were restored the cells soon resumed their growth and proliferation but remained immotile for up to six generations. A flagella visualization assay suggested that deflagellation underlies the observed loss of motility. This set of results demonstrates that single-cell transgenerational study under well-characterized environmental conditions can provide information that will help us understand distinct functions within individual cells.

  18. Collective cell streams in epithelial monolayers depend on cell adhesion

    NASA Astrophysics Data System (ADS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-07-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell-cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns.

  19. Cell adhesion during bullet motion in capillaries.

    PubMed

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. PMID:27261363

  20. Influence of Helical Cell Shape on Motility of Helicobacter Pylori

    NASA Astrophysics Data System (ADS)

    Hardcastle, Joseph; Martinez, Laura; Salama, Nina; Bansil, Rama; Boston University Collaboration; University of Washington Collaboration

    2014-03-01

    Bacteria's body shape plays an important role in motility by effecting chemotaxis, swimming mechanisms, and swimming speed. A prime example of this is the bacteria Helicobacter Pylori;whose helical shape has long been believed to provide an advantage in penetrating the viscous mucus layer protecting the stomach lining, its niche environment. To explore this we have performed bacteria tracking experiments of both wild-type bacteria along with mutants, which have a straight rod shape. A wide distribution of speeds was found. This distribution reflects both a result of temporal variation in speed and different shape morphologies in the bacterial population. Our results show that body shape plays less role in a simple fluid. However, in a more viscous solution the helical shape results in increased swimming speeds. In addition, we use experimentally obtained cell shape measurements to model the hydrodynamic influence of cell shape on swimming speed using resistive force theory. The results agree with the experiment, especially when we fold in the temporal distribution. Interestingly, our results suggest distinct wild-type subpopulations with varying number of half helices can lead to different swimming speeds. NSF PHY

  1. High-Resolution Quantification of Focal Adhesion Spatiotemporal Dynamics in Living Cells

    PubMed Central

    Hahn, Klaus M.; Gomez, Shawn M.

    2011-01-01

    Focal adhesions (FAs) are macromolecular complexes that provide a linkage between the cell and its external environment. In a motile cell, focal adhesions change size and position to govern cell migration, through the dynamic processes of assembly and disassembly. To better understand the dynamic regulation of focal adhesions, we have developed an analysis system for the automated detection, tracking, and data extraction of these structures in living cells. This analysis system was used to quantify the dynamics of fluorescently tagged Paxillin and FAK in NIH 3T3 fibroblasts followed via Total Internal Reflection Fluorescence Microscopy (TIRF). High content time series included the size, shape, intensity, and position of every adhesion present in a living cell. These properties were followed over time, revealing adhesion lifetime and turnover rates, and segregation of properties into distinct zones. As a proof-of-concept, we show how a single point mutation in Paxillin at the Jun-kinase phosphorylation site Serine 178 changes FA size, distribution, and rate of assembly. This study provides a detailed, quantitative picture of FA spatiotemporal dynamics as well as a set of tools and methodologies for advancing our understanding of how focal adhesions are dynamically regulated in living cells. A full, open-source software implementation of this pipeline is provided at http://gomezlab.bme.unc.edu/tools. PMID:21779367

  2. Repulsive cues combined with physical barriers and cell-cell adhesion determine progenitor cell positioning during organogenesis.

    PubMed

    Paksa, Azadeh; Bandemer, Jan; Hoeckendorf, Burkhard; Razin, Nitzan; Tarbashevich, Katsiaryna; Minina, Sofia; Meyen, Dana; Biundo, Antonio; Leidel, Sebastian A; Peyrieras, Nadine; Gov, Nir S; Keller, Philipp J; Raz, Erez

    2016-01-01

    The precise positioning of organ progenitor cells constitutes an essential, yet poorly understood step during organogenesis. Using primordial germ cells that participate in gonad formation, we present the developmental mechanisms maintaining a motile progenitor cell population at the site where the organ develops. Employing high-resolution live-cell microscopy, we find that repulsive cues coupled with physical barriers confine the cells to the correct bilateral positions. This analysis revealed that cell polarity changes on interaction with the physical barrier and that the establishment of compact clusters involves increased cell-cell interaction time. Using particle-based simulations, we demonstrate the role of reflecting barriers, from which cells turn away on contact, and the importance of proper cell-cell adhesion level for maintaining the tight cell clusters and their correct positioning at the target region. The combination of these developmental and cellular mechanisms prevents organ fusion, controls organ positioning and is thus critical for its proper function. PMID:27088892

  3. Multiple scale model for cell migration in monolayers: Elastic mismatch between cells enhances motility.

    PubMed

    Palmieri, Benoit; Bresler, Yony; Wirtz, Denis; Grant, Martin

    2015-01-01

    We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. In the model, the two types of cells have identical properties except for their elasticity; cancer cells are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch on the migration potential of cancer cells in the absence of other contributions that are present in real cells. The methodology is based on a phase-field description where each cell is modeled as a highly-deformable self-propelled droplet. We simulated two types of nearly confluent monolayers. One contains a single cancer cell in a layer of normal cells and the other contains normal cells only. The simulation results demonstrate that elasticity mismatch alone is sufficient to increase the motility of the cancer cell significantly. Further, the trajectory of the cancer cell is decorated by several speed "bursts" where the cancer cell quickly relaxes from a largely deformed shape and consequently increases its translational motion. The increased motility and the amplitude and frequency of the bursts are in qualitative agreement with recent experiments. PMID:26134134

  4. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells

    SciTech Connect

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-04-12

    Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.

  5. Cell adhesion in regulation of asymmetric stem cell division

    PubMed Central

    Yamashita, Yukiko M.

    2010-01-01

    Adult stem cells inevitably communicate with their cellular neighbors within the tissues they sustain. Indeed, such communication, particularly with components of the stem cell niche, is essential for many aspects of stem cell behavior, including the maintenance of stem cell identity and asymmetric cell division. Cell adhesion mediates this communication by placing stem cells in close proximity to the signaling source and by providing a polarity cue that orients stem cells. Here, I review the recent discovery that cell adhesion molecules govern the behavior of stem cells. PMID:20724132

  6. CHRNA5 as negative regulator of nicotine signaling in normal and cancer bronchial cells: effects on motility, migration and p63 expression.

    PubMed

    Krais, Annette M; Hautefeuille, Agnès H; Cros, Marie-Pierre; Krutovskikh, Vladimir; Tournier, Jean-Marie; Birembaut, Philippe; Thépot, Amélie; Paliwal, Anupam; Herceg, Zdenko; Boffetta, Paolo; Brennan, Paul; Hainaut, Pierre L

    2011-09-01

    Genome-wide association studies have linked lung cancer risk with a region of chromosome 15q25.1 containing CHRNA3, CHRNA5 and CHRNB4 encoding α3, α5 and β4 subunits of nicotinic acetylcholine receptors (nAChR), respectively. One of the strongest associations was observed for a non-silent single-nucleotide polymorphism at codon 398 in CHRNA5. Here, we have used pharmacological (antagonists) or genetic (RNA interference) interventions to modulate the activity of CHRNA5 in non-transformed bronchial cells and in lung cancer cell lines. In both cell types, silencing CHRNA5 or inhibiting receptors containing nAChR α5 with α-conotoxin MII exerted a nicotine-like effect, with increased motility and invasiveness in vitro and increasing calcium influx. The effects on motility were enhanced by addition of nicotine but blocked by inhibiting CHRNA7, which encodes the homopentameric receptor α7 subunit. Silencing CHRNA5 also decreased the expression of cell adhesion molecules P120 and ZO-1 in lung cancer cells as well as the expression of DeltaNp63α in squamous cell carcinoma cell lines. These results demonstrate a role for CHRNA5 in modulating adhesion and motility in bronchial cells, as well as in regulating p63, a potential oncogene in squamous cell carcinoma. PMID:21586512

  7. CHRNA5 as negative regulator of nicotine signaling in normal and cancer bronchial cells: effects on motility, migration and p63 expression

    PubMed Central

    Krais, Annette M.; Hautefeuille, Agnès H.; Cros, Marie-Pierre; Krutovskikh, Vladimir; Tournier, Jean-Marie; Birembaut, Philippe; Thépot, Amélie; Paliwal, Anupam; Herceg, Zdenko; Boffetta, Paolo; Brennan, Paul; Hainaut, Pierre L.

    2011-01-01

    Genome-wide association studies have linked lung cancer risk with a region of chromosome 15q25.1 containing CHRNA3, CHRNA5 and CHRNB4 encoding α3, α5 and β4 subunits of nicotinic acetylcholine receptors (nAChR), respectively. One of the strongest associations was observed for a non-silent single-nucleotide polymorphism at codon 398 in CHRNA5. Here, we have used pharmacological (antagonists) or genetic (RNA interference) interventions to modulate the activity of CHRNA5 in non-transformed bronchial cells and in lung cancer cell lines. In both cell types, silencing CHRNA5 or inhibiting receptors containing nAChR α5 with α-conotoxin MII exerted a nicotine-like effect, with increased motility and invasiveness in vitro and increasing calcium influx. The effects on motility were enhanced by addition of nicotine but blocked by inhibiting CHRNA7, which encodes the homopentameric receptor α7 subunit. Silencing CHRNA5 also decreased the expression of cell adhesion molecules P120 and ZO-1 in lung cancer cells as well as the expression of DeltaNp63α in squamous cell carcinoma cell lines. These results demonstrate a role for CHRNA5 in modulating adhesion and motility in bronchial cells, as well as in regulating p63, a potential oncogene in squamous cell carcinoma. PMID:21586512

  8. Theory of deformable substrates for cell motility studies.

    PubMed Central

    Peterson, M A

    1996-01-01

    Linear theory is used to relate the tractions F applied by a cell to the resulting deformation of fluid, viscoelastic, or solid substrates. The theory is used to fit data in which the motion of a fluid surface in the neighborhood of a motile keratocyte is visualized with the aid of embedded beads. The data are best fit by modeling the surface layer as a two-dimensional, nearly incompressible fluid. The data favor this model over another plausible model, the planar free boundary of a three-dimensional fluid. In the resulting diagrams for the distribution of F, it is found that both curl F and div F are concentrated in the lateral extrema of the lamellipodium. In a second investigation, a nonlinear theory of weak wrinkles in a solid substrate is proposed. The in-plane stress tensor plays the role of a metric. Compression wrinkles are found in regions where this metric is negative definite. Tension wrinkles arise, in linear approximation, at points on the boundary between positive definite and indefinite regions, and are conjectured to be stabilized by nonlinear effects. Data for the wrinkles that would be produced by keratocyte traction are computed, and these agree qualitatively with observed keratocyte wrinkles. Images FIGURE 7 PMID:8842205

  9. Effects of cochlear loading on the motility of active outer hair cells

    PubMed Central

    Ó Maoiléidigh, Dáibhid; Hudspeth, A. J.

    2013-01-01

    Outer hair cells (OHCs) power the amplification of sound-induced vibrations in the mammalian inner ear through an active process that involves hair-bundle motility and somatic motility. It is unclear, though, how either mechanism can be effective at high frequencies, especially when OHCs are mechanically loaded by other structures in the cochlea. We address this issue by developing a model of an active OHC on the basis of observations from isolated cells, then we use the model to predict the response of an active OHC in the intact cochlea. We find that active hair-bundle motility amplifies the receptor potential that drives somatic motility. Inertial loading of a hair bundle by the tectorial membrane reduces the bundle’s reactive load, allowing the OHC’s active motility to influence the motion of the cochlear partition. The system exhibits enhanced sensitivity and tuning only when it operates near a dynamical instability, a Hopf bifurcation. This analysis clarifies the roles of cochlear structures and shows how the two mechanisms of motility function synergistically to create the cochlear amplifier. The results suggest that somatic motility evolved to enhance a preexisting amplifier based on active hair-bundle motility, thus allowing mammals to hear high-frequency sounds. PMID:23509256

  10. Cell locomotion and focal adhesions are regulated by substrate flexibility

    PubMed Central

    Pelham, Robert J.; Wang, Yu-li

    1997-01-01

    Responses of cells to mechanical properties of the adhesion substrate were examined by culturing normal rat kidney epithelial and 3T3 fibroblastic cells on a collagen-coated polyacrylamide substrate that allows the flexibility to be varied while maintaining a constant chemical environment. Compared with cells on rigid substrates, those on flexible substrates showed reduced spreading and increased rates of motility or lamellipodial activity. Microinjection of fluorescent vinculin indicated that focal adhesions on flexible substrates were irregularly shaped and highly dynamic whereas those on firm substrates had a normal morphology and were much more stable. Cells on flexible substrates also contained a reduced amount of phosphotyrosine at adhesion sites. Treatment of these cells with phenylarsine oxide, a tyrosine phosphatase inhibitor, induced the formation of normal, stable focal adhesions similar to those on firm substrates. Conversely, treatment of cells on firm substrates with myosin inhibitors 2,3-butanedione monoxime or KT5926 caused the reduction of both vinculin and phosphotyrosine at adhesion sites. These results demonstrate the ability of cells to survey the mechanical properties of their surrounding environment and suggest the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process. Such response to physical parameters likely represents an important mechanism of cellular interaction with the surrounding environment within a complex organism. PMID:9391082

  11. Three-dimensional patterning of multiple cell populations through orthogonal genetic control of cell motility

    PubMed Central

    MacKay, Joanna L.; Sood, Anshum

    2013-01-01

    The ability to independently assemble multiple cell types within a three-dimensional matrix would be a powerful enabling tool for modeling and engineering complex tissues. Here we introduce a strategy to dynamically pattern distinct subpopulations of cells through genetic regulation of cell motility. We first describe glioma cell lines that were genetically engineered to stably express constitutively active or dominant negative Rac1 GTPase mutants under the control of either a doxycycline-inducible or cumate-inducible promoter. We culture each population as multicellular spheroids and show that by adding or withdrawing the appropriate inducer at specific times, we can control the timing and extent of Rac1-dependent cell migration into three-dimensional collagen matrices. We then report results with mixed spheroids in which one subpopulation of cells expresses dominant negative Rac1 under a doxycycline-inducible promoter and the other expresses dominant negative Rac1 under a cumate-inducible promoter. Using this system, we demonstrate that doxycycline and cumate addition suppress Rac1-dependent motility in a subpopulation-specific and temporally-controlled manner. This allows us to orthogonally control the motility of each subpopulation and spatially assemble the cells into radially symmetric three-dimensional patterns through the synchronized addition and removal of doxycycline and cumate. This synthetic biology-inspired strategy offers a novel means of spatially organizing multiple cell populations in conventional matrix scaffolds and complements the emerging suite of technologies that seek to pattern cells by engineering extracellular matrix properties. PMID:24622945

  12. Loss of Myoferlin Redirects Breast Cancer Cell Motility towards Collective Migration

    PubMed Central

    Volakis, Leonithas I.; Li, Ruth; Ackerman, William E.; Mihai, Cosmin; Bechel, Meagan; Summerfield, Taryn L.; Ahn, Christopher S.; Powell, Heather M.; Zielinski, Rachel; Rosol, Thomas J.

    2014-01-01

    Cell migration plays a central role in the invasion and metastasis of tumors. As cells leave the primary tumor, they undergo an epithelial to mesenchymal transition (EMT) and migrate as single cells. Epithelial tumor cells may also migrate in a highly directional manner as a collective group in some settings. We previously discovered that myoferlin (MYOF) is overexpressed in breast cancer cells and depletion of MYOF results in a mesenchymal to epithelial transition (MET) and reduced invasion through extracellular matrix (ECM). However, the biomechanical mechanisms governing cell motility during MYOF depletion are poorly understood. We first demonstrated that lentivirus-driven shRNA-induced MYOF loss in MDA-MB-231 breast cancer cells (MDA-231MYOF-KD) leads to an epithelial morphology compared to the mesenchymal morphology observed in control (MDA- 231LTVC) and wild-type cells. Knockdown of MYOF led to significant reductions in cell migration velocity and MDA- 231MYOF-KD cells migrated directionally and collectively, while MDA-231LTVC cells exhibited single cell migration. Decreased migration velocity and collective migration were accompanied by significant changes in cell mechanics. MDA-231MYOF-KD cells exhibited a 2-fold decrease in cell stiffness, a 2-fold increase in cell-substrate adhesion and a 1.5-fold decrease in traction force generation. In vivo studies demonstrated that when immunocompromised mice were implanted with MDA- 231MYOF-KD cells, tumors were smaller and demonstrated lower tumor burden. Moreover, MDA- 231MYOF-KD tumors were highly circularized and did not invade locally into the adventia in contrast to MDA- 231LTVC-injected animals. Thus MYOF loss is associated with a change in tumor formation in xenografts and leads to smaller, less invasive tumors. These data indicate that MYOF, a previously unrecognized protein in cancer, is involved in MDA-MB-231 cell migration and contributes to biomechanical alterations. Our results indicate that changes in

  13. CLIC4 regulates cell adhesion and β1 integrin trafficking.

    PubMed

    Argenzio, Elisabetta; Margadant, Coert; Leyton-Puig, Daniela; Janssen, Hans; Jalink, Kees; Sonnenberg, Arnoud; Moolenaar, Wouter H

    2014-12-15

    Chloride intracellular channel protein 4 (CLIC4) exists in both soluble and membrane-associated forms, and is implicated in diverse cellular processes, ranging from ion channel formation to intracellular membrane remodeling. CLIC4 is rapidly recruited to the plasma membrane by lysophosphatidic acid (LPA) and serum, suggesting a possible role for CLIC4 in exocytic-endocytic trafficking. However, the function and subcellular target(s) of CLIC4 remain elusive. Here, we show that in HeLa and MDA-MB-231 cells, CLIC4 knockdown decreases cell-matrix adhesion, cell spreading and integrin signaling, whereas it increases cell motility. LPA stimulates the recruitment of CLIC4 to β1 integrin at the plasma membrane and in Rab35-positive endosomes. CLIC4 is required for both the internalization and the serum- or LPA-induced recycling of β1 integrin, but not for EGF receptor trafficking. Furthermore, we show that CLIC4 suppresses Rab35 activity and antagonizes Rab35-dependent regulation of β1 integrin trafficking. Our results define CLIC4 as a regulator of Rab35 activity and serum- and LPA-dependent integrin trafficking. PMID:25344254

  14. Cell Division Resets Polarity and Motility for the Bacterium Myxococcus xanthus

    PubMed Central

    Harvey, Cameron W.; Madukoma, Chinedu S.; Mahserejian, Shant; Alber, Mark S.

    2014-01-01

    Links between cell division and other cellular processes are poorly understood. It is difficult to simultaneously examine division and function in most cell types. Most of the research probing aspects of cell division has experimented with stationary or immobilized cells or distinctly asymmetrical cells. Here we took an alternative approach by examining cell division events within motile groups of cells growing on solid medium by time-lapse microscopy. A total of 558 cell divisions were identified among approximately 12,000 cells. We found an interconnection of division, motility, and polarity in the bacterium Myxococcus xanthus. For every division event, motile cells stop moving to divide. Progeny cells of binary fission subsequently move in opposing directions. This behavior involves M. xanthus Frz proteins that regulate M. xanthus motility reversals but is independent of type IV pilus “S motility.” The inheritance of opposing polarity is correlated with the distribution of the G protein RomR within these dividing cells. The constriction at the point of division limits the intracellular distribution of RomR. Thus, the asymmetric distribution of RomR at the parent cell poles becomes mirrored at new poles initiated at the site of division. PMID:25157084

  15. Optical biosensors for cell adhesion.

    PubMed

    Ramsden, Jeremy J; Horvath, Robert

    2009-01-01

    Planar optical waveguides offer an ideal substratum for cells on which to reside. The materials from which the waveguides are made--high refractive index transparent dielectrics--correspond to the coatings of medical implants (e.g., the oxides of niobium, tantalum, and titanium) or the high molecular weight polymers used for culture flasks (e.g., polystyrene). The waveguides can furthermore be modified both chemically and morphologically while retaining their full capability for generating an evanescent optical field that has its greatest strength at the interface between the solid substratum and the liquid phase with which it is invariably in contact (i.e., the culture medium bathing the cells), decaying exponentially perpendicular to the interface at a rate controllable by varying the material parameters of the waveguide. Analysis of the perturbation of the evanescent field by the presence of living cells within it enables their size, number density, shape, refractive index (linked to their constitution) and so forth to be determined, the number of parameters depending on the number of waveguide lightmodes analyzed. No labeling of any kind is necessary, and convenient measurement setups are fully compatible with maintaining the cells in their usual environment. If the temporal evolution of the perturbation is analyzed, even more information can be obtained, such as the amount of material (microexudate) secreted by the cell while residing on the surface. Separation of parallel effects simultaneously contributing to the perturbation of the evanescent field can be accomplished by analysis of coupling peak shape when a grating coupler is used to measure the propagation constants of the waveguide lightmodes. PMID:19635032

  16. Anchoring stem cells in the niche by cell adhesion molecules

    PubMed Central

    2009-01-01

    Adult stem cells generally reside in supporting local micro environments or niches, and intimate stem cell and niche association is critical for their long-term maintenance and function. Recent studies in model organisms especially Drosophila have started to unveil the underlying mechanisms of stem anchorage in the niche at the molecular and cellular level. Two types of cell adhesion molecules are emerging as essential players: cadherin-mediated cell adhesion for keeping stem cells within stromal niches, whereas integrin-mediated cell adhesion for keeping stem cells within epidermal niches. Further understanding stem cell anchorage and release in coupling with environmental changes should provide further insights into homeostasis control in tissues that harbor stem cells. PMID:19421010

  17. Control cell adhesion with dynamic bilayer films

    NASA Astrophysics Data System (ADS)

    Kourouklis, Andreas; Lerum, Ronald; Bermudez, Harry

    2012-02-01

    Interfacially-directed assembly of amphiphilic block copolymers was employed to create ultrathin films having the potential to correlate the dynamics of ECM cues with cell adhesion and cytoskeletally-generated forces. The mobility of the polymeric bilayer films were tuned by the incorporation of hydrophobic homopolymer chains, which are thought to reduce interlayer friction. Labeling of the block copolymer chains with an adhesive peptide ligand (RGD) provided a specific means to study integrin-mediated cellular processes and the corresponding mechanotransduction. By seeding anchorage-dependent cells on ``dynamic'' (laterally mobile) and ``static'' films that display the same amount of RGD, we have found that cells recognize the difference in RGD diffusivity and develop distinct responses over time. We intend to examine changes in cell response by controlling the extent of cytoskeletally-generated forces and the assembly dynamics of focal adhesion complexes. Such films provide a unique platform to unveil the biomechanical signals related with ECM dynamics, and may ultimately facilitate a deeper understanding of cellular processes.

  18. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    PubMed

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. PMID:26477544

  19. Weak Power Frequency Magnetic Field Acting Similarly to EGF Stimulation, Induces Acute Activations of the EGFR Sensitive Actin Cytoskeleton Motility in Human Amniotic Cells

    PubMed Central

    Wu, Xia; Cao, Mei-Ping; Shen, Yun-Yun; Chu, Ke-Ping; Tao, Wu-Bin; Song, Wei-Tao; Liu, Li-Ping; Wang, Xiang-Hui; Zheng, Yu-Fang; Chen, Shu-De; Zeng, Qun-Li; Xia, Ruo-Hong

    2014-01-01

    In this article, we have examined the motility-related effects of weak power frequency magnetic fields (MFs) on the epidermal growth factor receptor (EGFR)-sensitive motility mechanism, including the F-actin cytoskeleton, growth of invasive protrusions and the levels of signal molecules in human amniotic epithelial (FL) cells. Without extracellular EGF stimulation, the field stimulated a large growth of new protrusions, especially filopodia and lamellipodia, an increased population of vinculin-associated focal adhesions. And, an obvious reduction of stress fiber content in cell centers was found, corresponding to larger cell surface areas and decreased efficiency of actin assembly of FL cells in vitro, which was associated with a decrease in overall F-actin content and special distributions. These effects were also associated with changes in protein content or distribution patterns of the EGFR downstream motility-related signaling molecules. All of these effects are similar to those following epidermal growth factor (EGF) stimulation of the cells and are time dependent. These results suggest that power frequency MF exposure acutely affects the migration/motility-related actin cytoskeleton reorganization that is regulated by the EGFR-cytoskeleton signaling pathway. Therefore, upon the MF exposure, cells are likely altered to be ready to transfer into a state of migration in response to the stimuli. PMID:24505297

  20. Force nanoscopy of cell mechanics and cell adhesion

    NASA Astrophysics Data System (ADS)

    Dufrêne, Yves F.; Pelling, Andrew E.

    2013-05-01

    Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.

  1. NMU signaling promotes endometrial cancer cell progression by modulating adhesion signaling.

    PubMed

    Lin, Ting-Yu; Wu, Fang-Ju; Chang, Chia-Lin; Li, Zhongyou; Luo, Ching-Wei

    2016-03-01

    Neuromedin U (NMU) was originally named based on its strong uterine contractile activity, but little is known regarding its signaling/functions in utero. We identified that NMU and one of its receptors, NMUR2, are not only present in normal uterine endometrium but also co-expressed in endometrial cancer tissues, where the NMU level is correlated with the malignant grades and survival of patients. Cell-based assays further confirmed that NMU signaling can promote cell motility and proliferation of endometrial cancer cells derived from grade II tumors. Activation of NMU pathway in these endometrial cancer cells is required in order to sustain expression of various adhesion molecules, such as CD44 and integrin alpha1, as well as production of their corresponding extracellular matrix ligands, hyaluronan and collagen IV; it also increased the activity of SRC and its downstream proteins RHOA and RAC1. Thus, it is concluded that NMU pathway positively controls the adhesion signaling-SRC-Rho GTPase axis in the tested endometrial cancer cells and that changes in cell motility and proliferation can occur when there is manipulation of NMU signaling in these cells either in vitro or in vivo. Intriguingly, this novel mechanism also explains how NMU signaling promotes the EGFR-driven and TGFβ receptor-driven mesenchymal transitions. Through the above axis, NMU signaling not only can promote malignancy of the tested endometrial cancer cells directly, but also helps these cells to become more sensitive to niche growth factors in their microenvironment. PMID:26849234

  2. NMU signaling promotes endometrial cancer cell progression by modulating adhesion signaling

    PubMed Central

    Lin, Ting-Yu; Wu, Fang-Ju; Chang, Chia-Lin; Li, Zhongyou; Luo, Ching-Wei

    2016-01-01

    Neuromedin U (NMU) was originally named based on its strong uterine contractile activity, but little is known regarding its signaling/functions in utero. We identified that NMU and one of its receptors, NMUR2, are not only present in normal uterine endometrium but also co-expressed in endometrial cancer tissues, where the NMU level is correlated with the malignant grades and survival of patients. Cell-based assays further confirmed that NMU signaling can promote cell motility and proliferation of endometrial cancer cells derived from grade II tumors. Activation of NMU pathway in these endometrial cancer cells is required in order to sustain expression of various adhesion molecules, such as CD44 and integrin alpha1, as well as production of their corresponding extracellular matrix ligands, hyaluronan and collagen IV; it also increased the activity of SRC and its downstream proteins RHOA and RAC1. Thus, it is concluded that NMU pathway positively controls the adhesion signaling-SRC-Rho GTPase axis in the tested endometrial cancer cells and that changes in cell motility and proliferation can occur when there is manipulation of NMU signaling in these cells either in vitro or in vivo. Intriguingly, this novel mechanism also explains how NMU signaling promotes the EGFR-driven and TGFβ receptor-driven mesenchymal transitions. Through the above axis, NMU signaling not only can promote malignancy of the tested endometrial cancer cells directly, but also helps these cells to become more sensitive to niche growth factors in their microenvironment. PMID:26849234

  3. Cell Proliferation and Motility Are Inhibited by G1 Phase Arrest in 15-kDa Selenoprotein-Deficient Chang Liver Cells

    PubMed Central

    Bang, Jeyoung; Huh, Jang Hoe; Na, Ji-Woon; Lu, Qiao; Carlson, Bradley A.; Tobe, Ryuta; Tsuji, Petra A.; Gladyshev, Vadim N.; Hatfield, Dolph L.; Lee, Byeong Jae

    2015-01-01

    The 15-kDa selenoprotein (Sep15) is a selenoprotein residing in the lumen of the endoplasmic reticulum (ER) and implicated in quality control of protein folding. Herein, we established an inducible RNAi cell line that targets Sep15 mRNA in Chang liver cells. RNAi-induced Sep15 deficiency led to inhibition of cell proliferation, whereas cell growth was resumed after removal of the knockdown inducer. Sep15-deficient cells were arrested at the G1 phase by upregulating p21 and p27, and these cells were also characterized by ER stress. In addition, Sep15 deficiency led to the relocation of focal adhesions to the periphery of the cell basement and to the decrease of the migratory and invasive ability. All these changes were reversible depending on Sep15 status. Rescuing the knockdown state by expressing a silent mutant Sep15 mRNA that is resistant to siRNA also reversed the phenotypic changes. Our results suggest that SEP15 plays important roles in the regulation of the G1 phase during the cell cycle as well as in cell motility in Chang liver cells, and that this selenoprotein offers a novel functional link between the cell cycle and cell motility. PMID:25728752

  4. Automated detection of whole-cell mitochondrial motility and its dependence on cytoarchitectural integrity.

    PubMed

    Kandel, Judith; Chou, Philip; Eckmann, David M

    2015-07-01

    Current methodologies used for mitochondrial motility analysis tend to either overlook individual mitochondrial tracks or analyze only peripheral mitochondria instead of mitochondria in all regions of the cell. Furthermore, motility analysis of an individual mitochondrion is usually quantified by establishing an arbitrary threshold for "directed" motion. In this work, we created a custom, publicly available computational algorithm based on a previously published approach (Giedt et al., 2012. Ann Biomed Eng 40:1903-1916) in order to characterize the distribution of mitochondrial movements at the whole-cell level, while still preserving information about single mitochondria. Our technique is easy to use, robust, and computationally inexpensive. Images are first pre-processed for increased resolution, and then individual mitochondria are tracked based on object connectivity in space and time. When our method is applied to microscopy fields encompassing entire cells, we reveal that the mitochondrial net distances in fibroblasts follow a lognormal distribution within a given cell or group of cells. The ability to model whole-cell mitochondrial motility as a lognormal distribution provides a new quantitative paradigm for comparing mitochondrial motility in naïve and treated cells. We further demonstrate that microtubule and microfilament depolymerization shift the lognormal distribution in directions which indicate decreased and increased mitochondrial movement, respectively. These findings advance earlier work on neuronal axons (Morris and Hollenbeck, 1993. J Cell Sci 104:917-927) by relating them to a different cell type, applying them on a global scale, and automating measurement of mitochondrial motility in general. PMID:25678368

  5. Automated single-cell motility analysis on a chip using lensfree microscopy

    NASA Astrophysics Data System (ADS)

    Pushkarsky, Ivan; Lyb, Yunbo; Weaver, Westbrook; Su, Ting-Wei; Mudanyali, Onur; Ozcan, Aydogan; di Carlo, Dino

    2014-04-01

    Quantitative cell motility studies are necessary for understanding biophysical processes, developing models for cell locomotion and for drug discovery. Such studies are typically performed by controlling environmental conditions around a lens-based microscope, requiring costly instruments while still remaining limited in field-of-view. Here we present a compact cell monitoring platform utilizing a wide-field (24 mm2) lensless holographic microscope that enables automated single-cell tracking of large populations that is compatible with a standard laboratory incubator. We used this platform to track NIH 3T3 cells on polyacrylamide gels over 20 hrs. We report that, over an order of magnitude of stiffness values, collagen IV surfaces lead to enhanced motility compared to fibronectin, in agreement with biological uses of these structural proteins. The increased throughput associated with lensfree on-chip imaging enables higher statistical significance in observed cell behavior and may facilitate rapid screening of drugs and genes that affect cell motility.

  6. Cell Shapes and Traction Forces Determine Stress in Motile Confluent Tissue

    NASA Astrophysics Data System (ADS)

    Yang, Xingbo; Bi, Dapeng; Czajkowski, Michael; Manning, Lisa; Marchetti, Cristina

    Collective cell migration is a highly regulated process involved in wound healing, cancer metastasis and morphogenesis. The understanding of the regulatory mechanism requires the study of mechanical interactions among cells that coordinate their active motion. To this end, we develop a method that determines cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces. This approach allows us for the first time to calculate membrane tensions and hydrostatic pressures at a cellular level in collective migrating cell layers out of equilibrium. It helps us understand the mechanical origin of tissue stresses as previous inferred using Traction Force Microscopy (TFM). We test this approach on a new model of motile confluent tissue, which we term Self-propelled Voronoi Model (SPV) that incorporates cell elasticity, Contractility and motility. With the model, we explore the mechanical properties of confluent motile tissue as a function of cell activities and cell shapes in various geometries.

  7. Regulation of Motility, Invasion and Metastatic Potential of Squamous Cell Carcinoma by 1,25D3

    PubMed Central

    Ma, Yingyu; Yu, Wei-Dong; Su, Bing; Seshadri, Mukund; Luo, Wei; Trump, Donald L.; Johnson, Candace S.

    2012-01-01

    BACKGROUND 1,25D3, the active metabolite of vitamin D, has been shown to exhibit broad spectrum anti-tumor activity in xenograft animal models. However, its activity against metastatic disease has not been extensively investigated. METHODS Squamous cell carcinoma (SCC) or 1,25D3-resistant variant SCC-DR cells were treated with 1,25D3. Actin organization was examined by immunofluorescence assay. Cell migration was assessed by “wound” healing and chemotactic migration assay. Cell invasion was assessed by Matrigel-based invasion assay and in situ zymography. MMP-2 and MMP-9 expression and secretion was examined by immunoblot analysis and ELISA, respectively. E-cadherin expression was assessed by flow cytometry, immunoblot analysis and immunohistochemistry. Knockdown of E-cadherin was achieved by siRNA. Experimental metastasis mouse model was done by intravenous injection of tumor cells. Lung tumor development was assessed by magnetic resonance imaging, gross observation and histology. RESULTS SCC cellular morphology and actin organization were altered by 10 nM of 1,25D3. 1,25D3 inhibited SCC cell motility and invasion, which was associated with reduced expression and secretion of MMP-2 and MMP-9. 1,25D3 promoted the expression of E-cadherin. These findings were not observed in SCC-DR cells. Knock down of E-cadherin rescued 1,25D3-inhibited cell migration. Intravenous injection of SCC or SCC-DR cells resulted in the establishment of extensive pulmonary lesions in saline-treated C3H mice. Treatment with 1,25D3 resulted in a marked reduction in the formation of lung tumor colonies in animals injected with SCC but not SCC-DR cells. CONCLUSIONS 1,25D3 suppresses SCC cell motility, invasion and metastasis, partially through the promotion of E-cadherin-mediated cell-cell adhesion. PMID:22833444

  8. Computer-assisted quantification of motile and invasive capabilities of cancer cells

    PubMed Central

    Kumar, Karthiga Santhana; Pillong, Max; Kunze, Jens; Burghardt, Isabel; Weller, Michael; Grotzer, Michael A.; Schneider, Gisbert; Baumgartner, Martin

    2015-01-01

    High-throughput analysis of cancer cell dissemination and its control by extrinsic and intrinsic cellular factors is hampered by the lack of adequate and efficient analytical tools for quantifying cell motility. Oncology research would greatly benefit from such a methodology that allows to rapidly determine the motile behaviour of cancer cells under different environmental conditions, including inside three-dimensional matrices. We combined automated microscopy imaging of two- and three-dimensional cell cultures with computational image analysis into a single assay platform for studying cell dissemination in high-throughput. We have validated this new approach for medulloblastoma, a metastatic paediatric brain tumour, in combination with the activation of growth factor signalling pathways with established pro-migratory functions. The platform enabled the detection of primary tumour and patient-derived xenograft cell sensitivity to growth factor-dependent motility and dissemination and identified tumour subgroup-specific responses to selected growth factors of excellent diagnostic value. PMID:26486848

  9. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour

    PubMed Central

    Fokkelman, Michiel; Balcıoğlu, Hayri E.; Klip, Janna E.; Yan, Kuan; Verbeek, Fons J.; Danen, Erik H. J.; van de Water, Bob

    2016-01-01

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518

  10. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis

    PubMed Central

    Zinselmeyer, Bernd H.; Heydari, Sara; Sacristán, Catarina; Nayak, Debasis; Cammer, Michael; Herz, Jasmin; Cheng, Xiaoxiao; Davis, Simon J.; Dustin, Michael L.

    2013-01-01

    Immune responses to persistent viral infections and cancer often fail because of intense regulation of antigen-specific T cells—a process referred to as immune exhaustion. The mechanisms that underlie the induction of exhaustion are not completely understood. To gain novel insights into this process, we simultaneously examined the dynamics of virus-specific CD8+ and CD4+ T cells in the living spleen by two-photon microscopy (TPM) during the establishment of an acute or persistent viral infection. We demonstrate that immune exhaustion during viral persistence maps anatomically to the splenic marginal zone/red pulp and is defined by prolonged motility paralysis of virus-specific CD8+ and CD4+ T cells. Unexpectedly, therapeutic blockade of PD-1–PD-L1 restored CD8+ T cell motility within 30 min, despite the presence of high viral loads. This result was supported by planar bilayer data showing that PD-L1 localizes to the central supramolecular activation cluster, decreases antiviral CD8+ T cell motility, and promotes stable immunological synapse formation. Restoration of T cell motility in vivo was followed by recovery of cell signaling and effector functions, which gave rise to a fatal disease mediated by IFN-γ. We conclude that motility paralysis is a manifestation of immune exhaustion induced by PD-1 that prevents antiviral CD8+ T cells from performing their effector functions and subjects them to prolonged states of negative immune regulation. PMID:23530125

  11. Cell Adhesion on Surface-Functionalized Magnesium.

    PubMed

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  12. Chronic lymphocytic leukemia cells induce defective LFA-1–directed T-cell motility by altering Rho GTPase signaling that is reversible with lenalidomide

    PubMed Central

    Evans, Rachel; Kiaii, Shahryar; Svensson, Lena; Hogg, Nancy; Gribben, John G.

    2013-01-01

    T lymphocytes have an essential role in adaptive immunity and rely on the activation of integrin lymphocyte function–associated antigen-1 (LFA-1) to mediate cell arrest and migration. In cancer, malignant cells modify the immune microenvironment to block effective host antitumor responses. We show for the first time that CD4 and CD8 T cells from patients with chronic lymphocytic leukemia (CLL) exhibit globally impaired LFA-1–mediated migration and that this defect is mediated by direct tumor cell contact. We show that following the coculture of previously healthy T cells with CLL cells, subsequent LFA-1 engagement leads to altered Rho GTPase activation signaling by downregulating RhoA and Rac1, while upregulating Cdc42. Of clinical relevance, repair of this T-cell defect was demonstrated using the immunomodulatory drug lenalidomide, which completely rescued adhesion and motility function by restoring normal Rho GTPase activation signaling. Our report identifies a novel cancer immune evasion mechanism whereby tumor cells induce Rho GTPase signaling defects in T cells that prevent appropriate LFA-1 activation and motility. We believe these findings identify important biomarkers and highlight the clinical utility of immunotherapy to rescue normal T-cell function in CLLs that are likely to have relevance in other cancers. PMID:23325833

  13. Human NK cell development requires CD56-mediated motility and formation of the developmental synapse.

    PubMed

    Mace, Emily M; Gunesch, Justin T; Dixon, Amera; Orange, Jordan S

    2016-01-01

    While distinct stages of natural killer (NK) cell development have been defined, the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which, through contact-dependent mechanisms, promote the generation of mature, functional human NK cells from CD34(+) precursors. We show that developing NK cells undergo unique, developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells, and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells, which we term the developmental synapse. Finally, we identify a role for CD56 in developmental synapse structure, NK cell motility and NK cell development. Thus, we define the developmental synapse leading to human NK cell functional maturation. PMID:27435370

  14. Human NK cell development requires CD56-mediated motility and formation of the developmental synapse

    PubMed Central

    Mace, Emily M.; Gunesch, Justin T.; Dixon, Amera; Orange, Jordan S.

    2016-01-01

    While distinct stages of natural killer (NK) cell development have been defined, the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which, through contact-dependent mechanisms, promote the generation of mature, functional human NK cells from CD34+ precursors. We show that developing NK cells undergo unique, developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells, and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells, which we term the developmental synapse. Finally, we identify a role for CD56 in developmental synapse structure, NK cell motility and NK cell development. Thus, we define the developmental synapse leading to human NK cell functional maturation. PMID:27435370

  15. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion

    PubMed Central

    Tang, Nan-Hong; Chen, Yan-Ling; Wang, Xiao-Qian; Li, Xiu-Jin; Yin, Feng-Zhi; Wang, Xiao-Zhong

    2004-01-01

    AIM: To explore the cooperative effects of antisense oligonucleotide (ASON) of cell adhesion molecules and cimetidine on the expression of E-selectin and ICAM-1 in endothelial cells and their adhesion to tumor cells. METHODS: After treatment of endothelial cells with ASON and/or cimetidine and induction with TNF-α, the protein and mRNA changes of E-selectin and ICAM-1 in endothelial cells were examined by flow cytometry and RT-PCR, respectively. The adhesion rates of endothelial cells to tumor cells were measured by cell adhesion experiment. RESULTS: In comparison with TNF-α inducing group, lipo-ASON and lipo-ASON/cimetidine could significantly decrease the protein and mRNA levels of E-selectin and ICAM-1 in endothelial cells, and lipo-ASON/cimetidine had most significant inhibitory effect on E-selectin expression (from 36.37 ± 1.56% to 14.23 ± 1.07%, P < 0.001). Meanwhile, cimetidine alone could inhibit the expression of E-selectin (36.37 ± 1.56% vs 27.2 ± 1.31%, P < 0.001), but not ICAM-1 (69.34 ± 2.50% vs 68.07 ± 2.10%, P > 0.05)and the two kinds of mRNA, either. Compared with TNF-α inducing group, the rate of adhesion was markedly decreased in lipo-E-selectin ASON and lipo-E-selectin ASON/cimetidine treated groups(P < 0.05), and lipo-E-selectin ASON/cimetidine worked better than lipo-E-selectin ASON alone except for HepG2/ECV304 group (P < 0.05). However, the decrease of adhesion was not significant in lipo-ICAM-1 ASON and lipo-ICAM-1 ASON/cimetidine treated groups except for HepG2/ECV304 group (P > 0.05). CONCLUSION: These data demonstrate that ASON in combination with cimetidine in vitro can significantly reduce the adhesion between endothelial cells and hepatic or colorectal cancer cells, which is stronger than ASON or cimetidine alone. This study provides some useful proofs for gene therapy of antiadhesion. PMID:14695770

  16. Effect of surface potential on epithelial cell adhesion, proliferation and morphology.

    PubMed

    Chang, Hsun-Yun; Kao, Wei-Lun; You, Yun-Wen; Chu, Yi-Hsuan; Chu, Kuo-Jui; Chen, Peng-Jen; Wu, Chen-Yi; Lee, Yu-Hsuan; Shyue, Jing-Jong

    2016-05-01

    Cell adhesion is the basis of individual cell survival, division and motility. Hence, understanding the effects that the surface properties have on cell adhesion, proliferation and morphology are crucial. In particular, surface charge/potential has been identified as an important factor that affects cell behavior. However, how cells respond to incremental changes in surface potential remains unclear. By using binary self-assembled monolayer (SAM) modified Au surfaces that are similar in mechanical/chemical properties and provide a series of surface potentials, the effect of surface potential on the behavior of cells can be studied. In this work, the effect of surface potential on epithelial cells, including human embryonic kidney (HEK293T) and human hepatocellular carcinoma (HepG2), were examined. The results showed that the adhesion density of epithelial cells increased with increasing surface potential, which is similar to but varied more significantly compared with fibroblasts. The proliferation rate is found to be independent of surface potential in both cell types. Furthermore, epithelial cells show no morphological change with respect to surface potential, whereas the morphology of the fibroblasts clearly changed with the surface potential. These differences between the cell types were rationalized by considering the difference in extracellular matrix composition. Laminin-dominant epithelial cells showed higher adhesion density and less morphological change than did fibronectin-dominant fibroblasts because the more significant adsorption of positively charged laminin on the surface enhanced the adhesion of epithelial cells. In contrast, due to the dominance of negatively charged fibronectin that adsorbed weakly on the surface, fibroblasts had to change their morphology to fit the inhomogeneous fibronectin-adsorbed area. PMID:26852101

  17. Overexpression of engulfment and cell motility 1 promotes cell invasion and migration of hepatocellular carcinoma.

    PubMed

    Jiang, Jiarui; Liu, Guoqing; Miao, Xiongying; Hua, Songwen; Zhong, Dewu

    2011-05-01

    Engulfment and cell motility 1 (Elmo1) has been linked to the invasive phenotype of glioma cells. The use of Elmo1 inhibitors is currently being evaluated in hepato-cellular carcinoma (HCC), but the molecular mechanisms of their therapeutic effect have yet to be determined. Elmo1 expression in HCC tissue samples from 131 cases and in 5 HCC cell lines was determined by immunohistochemistry, quantitative RT-PCR and Western blotting. To functionally characterize Elmo1 in HCC, Elmo1 expression in the HCCLM3 cell line was blocked by siRNA. Cell migration was measured by wound healing and transwell migration assays in vitro. Elmo1 overexpression was significantly correlated with cell invasion and the poor prognosis of HCC. Elmo1-siRNA-treated HCCLM3 cells demonstrated a reduction in cell migration. The present study demonstrated for the first time that the suppression of Elmo1 expression inhibits cell invasion in HCC. PMID:22977532

  18. β-Catenin–regulated myeloid cell adhesion and migration determine wound healing

    PubMed Central

    Amini-Nik, Saeid; Cambridge, Elizabeth; Yu, Winston; Guo, Anne; Whetstone, Heather; Nadesan, Puviindran; Poon, Raymond; Hinz, Boris; Alman, Benjamin A.

    2014-01-01

    A β-catenin/T cell factor–dependent transcriptional program is critical during cutaneous wound repair for the regulation of scar size; however, the relative contribution of β-catenin activity and function in specific cell types in the granulation tissue during the healing process is unknown. Here, cell lineage tracing revealed that cells in which β-catenin is transcriptionally active express a gene profile that is characteristic of the myeloid lineage. Mice harboring a macrophage-specific deletion of the gene encoding β-catenin exhibited insufficient skin wound healing due to macrophage-specific defects in migration, adhesion to fibroblasts, and ability to produce TGF-β1. In irradiated mice, only macrophages expressing β-catenin were able to rescue wound-healing deficiency. Evaluation of scar tissue collected from patients with hypertrophic and normal scars revealed a correlation between the number of macrophages within the wound, β-catenin levels, and cellularity. Our data indicate that β-catenin regulates myeloid cell motility and adhesion and that β-catenin–mediated macrophage motility contributes to the number of mesenchymal cells and ultimate scar size following cutaneous injury. PMID:24837430

  19. Differential adhesiveness between blood and marrow leukemic cells having similar pattern of VLA adhesion molecule expression.

    PubMed

    Thomas, X; Anglaret, B; Bailly, M; Maritaz, O; Magaud, J P; Archimbaud, E

    1998-10-01

    Functional adhesion of blood and marrow leukemic cells from 14 acute myeloid leukemia patients presenting with hyperleukocytosis was evaluated by performing cytoadhesion assays on purified (extracellular matrix proteins) and non-purified supports (MRC5 fibroblastic cell line). Results, in 30-min chromium release assay, show a mean +/- S.D. adhesion to fibronectin, collagen, and laminin respectively of 30 +/- 17%, 20 +/- 13%, 25 +/- 17% for blood leukemic cells and 18 +/- 11%, 11 +/- 10%, 11 +/- 8% for marrow leukemic cells. These differences between blood and marrow cells were statistically significant (respectively P = 0.005, P = 0.01 and P = 0.002), while no difference was noted regarding adhesion to non-purified supports. The higher adhesion of blood blast cells to purified supports was observed regardless of CD34 expression. No significant difference was observed in the expression of cell surface VLA-molecules (CD29, CD49b, CD49d, CD49e, CD49f) between blood and marrow blast cells. The addition of GM-CSF or G-CSF induced increased adhesion of marrow blasts and decreased adhesion of blood blasts leading to a loss of the difference between blood and marrow cells. In a 60-min chromium release assay, marrow blasts adhered even more than blood leukemic cells to fibronectin. In contrast, marrow blasts from 'aleukemic' acute myeloid leukemia patients did not show any modification regarding their adhesion to extracellular matrix proteins when co-cultured with growth factors. PMID:9766756

  20. Flagellum Density Regulates Proteus mirabilis Swarmer Cell Motility in Viscous Environments

    PubMed Central

    Tuson, Hannah H.; Copeland, Matthew F.; Carey, Sonia; Sacotte, Ryan

    2013-01-01

    Proteus mirabilis is an opportunistic pathogen that is frequently associated with urinary tract infections. In the lab, P. mirabilis cells become long and multinucleate and increase their number of flagella as they colonize agar surfaces during swarming. Swarming has been implicated in pathogenesis; however, it is unclear how energetically costly changes in P. mirabilis cell morphology translate into an advantage for adapting to environmental changes. We investigated two morphological changes that occur during swarming—increases in cell length and flagellum density—and discovered that an increase in the surface density of flagella enabled cells to translate rapidly through fluids of increasing viscosity; in contrast, cell length had a small effect on motility. We found that swarm cells had a surface density of flagella that was ∼5 times larger than that of vegetative cells and were motile in fluids with a viscosity that inhibits vegetative cell motility. To test the relationship between flagellum density and velocity, we overexpressed FlhD4C2, the master regulator of the flagellar operon, in vegetative cells of P. mirabilis and found that increased flagellum density produced an increase in cell velocity. Our results establish a relationship between P. mirabilis flagellum density and cell motility in viscous environments that may be relevant to its adaptation during the infection of mammalian urinary tracts and movement in contact with indwelling catheters. PMID:23144253

  1. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    SciTech Connect

    Premnath, Priyatha; Venkatakrishnan, Krishnan

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  2. The mechanism of binding of neural cell adhesion molecules.

    PubMed

    Hoffman, S; Edelman, G M

    1984-01-01

    The experimental results reviewed in this paper strongly suggest that the molecular mechanism of N-CAM-mediated cell adhesion involves the direct interaction of N-CAM molecules on one cell with N-CAM molecules on a second cell. The rate of this aggregation has a high-order dependence on the local N-CAM concentration, and is inversely related to the sialic acid content of the N-CAM molecules involved. In accordance with their relative sialic acid concentrations, the relative rates of aggregation mediated by E and A forms of N-CAM are A-A greater than A-E greater than E-E. Further removal of sialic acid from N-CAM below the level found in the A form gives little further enhancement of aggregation. These results provide one basis upon which to interpret the modulation hypothesis (Edelman, 1983) for control of N-CAM function, i.e. the adhesive strength of N-CAM bonds in an in vitro system can be altered in a graded manner over a wide range by variations in the local surface density of N-CAM or by chemical modification of N-CAM (differential sialylation). It is important to stress that these results do not preclude the possibility of other forms of modulation of N-CAM function or the function of other molecules in cell-cell interactions. It will be much more difficult to assess the role of N-CAM and the modulation of its function on pattern formation in vivo. It is pertinent to mention, however, that recent experiments on transformed neural cells (Greenberg et al., 1984) show loss of N-CAM following transformation with accompanying loss of aggregation and increased motility of the transformed cells. Aside from the possible implications for metastasis (transformation has for the first time been shown to affect a defined CAM and alter cellular sociology), these findings are consonant with the notion that alteration of surface N-CAM affects expression of other cellular processes. Clearly additional experiments are required to define the mechanisms by which this occurs. In

  3. Suppressive effects of 3-bromopyruvate on the proliferation and the motility of hepatocellular carcinoma cells.

    PubMed

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2016-01-01

    The compound 3-bromopyruvate (3BP) is an analogue of pyruvate, which is the final product of glycolysis that enters the citric acid cycle. The present study aimed to investigate the suppressive effects of 3BP on the proliferation and motility of hepatocellular carcinoma (HCC) cells. HLF and PLC/PRF/5 cells were cultured with 3BP and subjected to an MTS assay. Apoptosis was analyzed by hematoxylin and eosin staining. Cell motility was analyzed using a scratch assay. Real-time quantitative polymerase chain reaction (PCR) was performed to determine the expression levels of cyclin D1 and matrix metalloproteinase (MMP)9. Proliferation of both cell lines was significantly suppressed by 3BP at 100 µM (P<0.05). The expression level of cyclin D1 was decreased after 3BP treatment at 100 µM in both cell lines (P<0.05). Pyknotic nuclei were observed in the cells cultured with 3BP at 100 µM. These results revealed that 3BP suppressed cell proliferation, decreased the expression of cyclin D1, and induced apoptosis in HCC cells. 3BP significantly suppressed motility in both cell lines (P<0.05). The expression level of MMP9 was significantly decreased (P<0.05). 3BP suppressed the proliferation and motility of HCC cells by decreasing the expression of cyclin D1 and MMP9. PMID:26530887

  4. Cadherin Cell Adhesion System in Canine Mammary Cancer: A Review

    PubMed Central

    Gama, Adelina; Schmitt, Fernando

    2012-01-01

    Cadherin-catenin adhesion complexes play important roles by providing cell-cell adhesion and communication in different organ systems. Abnormal expression of cadherin adhesion molecules constitutes a common phenomenon in canine mammary cancer and has been frequently implicated in tumour progression. This paper summarizes the current knowledge on cadherin/catenin adhesion molecules (E-cadherin, β-catenin, and P-cadherin) in canine mammary cancer, focusing on the putative biological functions and clinical significance of these molecules in this disease. This paper highlights the need for further research studies in this setting in order to elucidate the role of these adhesion molecules during tumour progression and metastasis. PMID:22973534

  5. SPAG9 controls the cell motility, invasion and angiogenesis of human osteosarcoma cells

    PubMed Central

    YANG, XIAORONG; ZHOU, WENLAI; LIU, SHIQING

    2016-01-01

    Sperm-associated antigen 9 (SPAG9) is an oncoprotein involved in the progression of various human malignancies; however, its role in osteosarcoma (OS) remains poorly evaluated. The present study used Matrigel™ cell migration and invasion assays, tube formation assay, Cell Counting kit-8, quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay to investigate the role of SPAG9 in OS cell motility, invasion and angiogenesis. The results of the present study demonstrated that SPAG9 expression was upregulated in OS tissues, as compared with adjacent normal tissues, and knockdown of SPAG9 in an OS cell line inhibited cell motility and invasion via inactivation of metalloproteinase (MMP)-2 and MMP-9. Furthermore, the present study demonstrated that silencing of SPAG9 in OS cells inhibited tube formation, the proliferation of human umbilical vascular endothelial cells, and suppressed vascular endothelial growth factor (VEGF) expression and secretion, contributing to a reduction in angiogenesis. The results of the present study indicated that SPAG9 may be an important regulator in OS and may be involved in metastasis. Therefore SPAG9 may be a promising target for the treatment of metastatic OS. PMID:26893659

  6. Repulsive cues combined with physical barriers and cell–cell adhesion determine progenitor cell positioning during organogenesis

    PubMed Central

    Paksa, Azadeh; Bandemer, Jan; Hoeckendorf, Burkhard; Razin, Nitzan; Tarbashevich, Katsiaryna; Minina, Sofia; Meyen, Dana; Biundo, Antonio; Leidel, Sebastian A.; Peyrieras, Nadine; Gov, Nir S.; Keller, Philipp J.; Raz, Erez

    2016-01-01

    The precise positioning of organ progenitor cells constitutes an essential, yet poorly understood step during organogenesis. Using primordial germ cells that participate in gonad formation, we present the developmental mechanisms maintaining a motile progenitor cell population at the site where the organ develops. Employing high-resolution live-cell microscopy, we find that repulsive cues coupled with physical barriers confine the cells to the correct bilateral positions. This analysis revealed that cell polarity changes on interaction with the physical barrier and that the establishment of compact clusters involves increased cell–cell interaction time. Using particle-based simulations, we demonstrate the role of reflecting barriers, from which cells turn away on contact, and the importance of proper cell–cell adhesion level for maintaining the tight cell clusters and their correct positioning at the target region. The combination of these developmental and cellular mechanisms prevents organ fusion, controls organ positioning and is thus critical for its proper function. PMID:27088892

  7. Metastasis-associated 5T4 antigen disrupts cell-cell contacts and induces cellular motility in epithelial cells.

    PubMed

    Carsberg, C J; Myers, K A; Stern, P L

    1996-09-27

    The 5T4 antigen is defined by a monoclonal antibody (MAb) specific for human trophoblast. It is also expressed by many types of tumour cell and has been associated with metastasis and poor clinical outcome in a number of cancers. This pattern of expression is consistent with a mechanistic involvement of 5T4 molecules in the spread of cancer cells. The 5T4 antigen is a transmembrane glycoprotein with a 310 amino acid extracellular domain and a 44 amino acid cytoplasmic domain. Transfection of full-length 5T4 cDNA into epithelial cells alters cell-cell contacts and cellular motility. Thus, in 5T4-transfected CL-S1 murine mammary cells, 5T4 expression is associated with dendritic morphology, accompanied by abrogation of actin/cadherin-containing contacts and increased motility. In transfected MDCK canine kidney epithelial cells, 5T4 over-expression also results in increased motility, but disruption of cell-cell contacts, either by culturing cells in low calcium medium or by addition of HGF/SF, is needed. The effects of 5T4 expression on morphology and motility are separable since cells transfected with a truncated form of 5T4 cDNA in which the cytoplasmic domain is deleted reveal that the latter is necessary to abrogate actin/cadherin-containing contacts but does not influence the effects on motility. Thus, 5T4 molecules can deliver signals through both the extracellular and intracellular domains, and the resultant effects are consistent with a role for 5T4 molecules in invasion processes. PMID:8895545

  8. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance.

    PubMed

    Martinez, Jessica S; Schlenoff, Joseph B; Keller, Thomas C S

    2016-08-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as 'leader' cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as 'follower' cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all surfaces

  9. Actions of translocator protein ligands on neutrophil adhesion and motility induced by G-protein coupled receptor signaling.

    PubMed

    de Lima, Camila Bento; Tamura, Eduardo K; Montero-Melendez, Trindad; Palermo-Neto, João; Perretti, Mauro; Markus, Regina P; Farsky, Sandra Helena Poliselli

    2012-01-13

    The 18 kDa translocator protein (TSPO) also known as the peripheral benzodiazepine receptor (PBR), mediates the transportation of cholesterol and anions from the outer to the inner mitochondrial membrane in different cells types. Although recent evidences indicate a potential role for TSPO in the development of inflammatory processes, the mechanisms involved have not been elucidated. The present study investigated the ability of the specific TSPO ligands, the isoquinoline carboxamide PK11195 and benzodiazepine Ro5-4864, on neutrophil recruitment promoted by the N-formylmethionyl-leucyl-phenylalanine peptide (fMLP), an agonist of G-protein coupled receptor (GPCR). Pre-treatment with Ro5-4864 abrograted fMLP-induced leukocyte-endothelial interactions in mesenteric postcapillary venules in vivo. Moreover, in vitro Ro5-4864 treatment prevented fMLP-induced: (i) L-selectin shedding and overexpression of PECAM-1 on the neutrophil cell surface; (ii) neutrophil chemotaxis and (iii) enhancement of intracellular calcium cations (iCa(+2)). Intriguingly, the two latter effects were augmented by cell treatment with PK11195. An allosteric agonist/antagonist relation may be suggested, as the effects of Ro5-4864 on fMLP-stimulated neutrophils were reverted by simultaneous treatment with PK11195. Taken together, these data highlight TSPO as a modulator of pathways of neutrophil adhesion and locomotion induced by GPCR, connecting TSPO actions and the onset of an innate inflammatory response. PMID:22209795

  10. Polymerization, bending, tension: What happens at the leading edge of motile cells?

    NASA Astrophysics Data System (ADS)

    Falcke, M.; Zimmermann, J.

    2014-06-01

    The forces experienced by filaments in actin based propulsion in reconstituted systems and cell motility, the mechanical properties of the lamellipodium of motile cells due to filament branching and cross-linking, the free filament contour length between branch points, the mechanisms of the force-velocity relation and velocity oscillations are all topics of ongoing debate. Here, we review results with a modelling concept considering the F-actin network as weakly cross-linked in a region with dynamic depth close to the propelled obstacle and gel-like further back. It offers quantitative explanations for steady motion and oscillation mechanisms in reconstituted systems and motile cells, and the force-velocity relation of fish keratocytes.

  11. The Interplay between Signaling and Metabolism in Breast Cancer Cell Motility and Metastasis

    NASA Astrophysics Data System (ADS)

    Tsarfaty, Ilan

    2013-03-01

    The initiation and growth of tumor metastases require tumor cells go through a transition between collective-to-individual cell migration. Understanding the molecular, cellular and physical mechanisms of these different migration modes is limited. We focus on the tumor cell migration induced by Hepatocyte Growth Factor / Scatter Factor (HGF/SF) - Met-signaling, a master regulator of cell motility in normal and malignant processes. Met has been implicated in tumorigenesis and metastasis and several Met targeting agents have been introduced into the clinic, and are currently in all phases of clinical trials Our analysis demonstrates that Met signaling dramatically alter the morpho-kinetic dynamics of collective migration of tumor cells. It induce a ``wave'' of increasing velocities that propagates back from the leading edge, increases cells' orientation and cooperation capabilities. In parallel Met signaling induces amoeboid cell motility that increased cell individuality. The decision making regarding the motility mode is dependent on the extent of activation of unique signal and metabolic cues. We present a combination of molecular imaging, conceptual and modeling framework for the analysis and assessment of the collective mesenchymal to epithelial versus amoeboid motility. Combined together our analysis can contribute to the understanding of metastasis and personalizing anti Met targeted therapy.

  12. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  13. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  14. Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling.

    PubMed

    Wangpu, Xiongzhi; Lu, Jiaoyang; Xi, Ruxing; Yue, Fei; Sahni, Sumit; Park, Kyung Chan; Menezes, Sharleen; Huang, Michael L H; Zheng, Minhua; Kovacevic, Zaklina; Richardson, Des R

    2016-05-01

    Metastasis is a complex process that is regulated by multiple signaling pathways, with the focal adhesion kinase (FAK)/paxillin pathway playing a major role in the formation of focal adhesions and cell motility. N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor in many solid tumor types, including prostate and colon cancer. Considering the antimetastatic effect of NDRG1 and the crucial involvement of the FAK/paxillin pathway in cellular migration and cell-matrix adhesion, we assessed the effects of NDRG1 on this important oncogenic pathway. In the present study, NDRG1 overexpression and silencing models of HT29 colon cancer and DU145 prostate cancer cells were used to examine the activation of FAK/paxillin signaling and the formation of focal adhesions. The expression of NDRG1 resulted in a marked and significant decrease in the activating phosphorylation of FAK and paxillin, whereas silencing of NDRG1 resulted in an opposite effect. The expression of NDRG1 also inhibited the formation of focal adhesions as well as cell migration and cell-collagen adhesion. Incubation of cells with novel thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, that upregulate NDRG1 also resulted in decreased phosphorylation of FAK and paxillin. The ability of these thiosemicarbazones to inhibit cell migration and metastasis could be mediated, at least in part, through the FAK/paxillin pathway. PMID:26895766

  15. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    PubMed

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation. PMID:19736327

  16. Adhesion in the stem cell niche: biological roles and regulation

    PubMed Central

    Chen, Shuyi; Lewallen, Michelle; Xie, Ting

    2013-01-01

    Stem cell self-renewal is tightly controlled by the concerted action of stem cell-intrinsic factors and signals within the niche. Niche signals often function within a short range, allowing cells in the niche to self-renew while their daughters outside the niche differentiate. Thus, in order for stem cells to continuously self-renew, they are often anchored in the niche via adhesion molecules. In addition to niche anchoring, however, recent studies have revealed other important roles for adhesion molecules in the regulation of stem cell function, and it is clear that stem cell-niche adhesion is crucial for stem cell self-renewal and is dynamically regulated. Here, we highlight recent progress in understanding adhesion between stem cells and their niche and how this adhesion is regulated. PMID:23250203

  17. Actin–myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility

    PubMed Central

    Yam, Patricia T.; Wilson, Cyrus A.; Ji, Lin; Hebert, Benedict; Barnhart, Erin L.; Dye, Natalie A.; Wiseman, Paul W.; Danuser, Gaudenz; Theriot, Julie A.

    2007-01-01

    We have analyzed the spontaneous symmetry breaking and initiation of actin-based motility in keratocytes (fish epithelial cells). In stationary keratocytes, the actin network flow was inwards and radially symmetric. Immediately before motility initiation, the actin network flow increased at the prospective cell rear and reoriented in the perinuclear region, aligning with the prospective axis of movement. Changes in actin network flow at the cell front were detectable only after cell polarization. Inhibition of myosin II or Rho kinase disrupted actin network organization and flow in the perinuclear region and decreased the motility initiation frequency, whereas increasing myosin II activity with calyculin A increased the motility initiation frequency. Local stimulation of myosin activity in stationary cells by the local application of calyculin A induced directed motility initiation away from the site of stimulation. Together, these results indicate that large-scale actin–myosin network reorganization and contractility at the cell rear initiate spontaneous symmetry breaking and polarized motility of keratocytes. PMID:17893245

  18. High Avidity CD8+ T Cells Efficiently Eliminate Motile HIV-Infected Targets and Execute a Locally Focused Program of Anti-Viral Function

    PubMed Central

    Foley, Maria Hottelet; Forcier, Talitha; McAndrew, Elizabeth; Gonzalez, Michael; Chen, Huabiao; Juelg, Boris; Walker, Bruce D.; Irvine, Darrell J.

    2014-01-01

    The dissemination of HIV from an initial site of infection is facilitated by motile HIV-infected CD4+ T-cells. However, the impact of infected target cell migration on antigen recognition by HIV-specific CD8+ T-cells is unclear. Using a 3D in vitro model of tissue, we visualized dynamic interactions between HIV-infected or peptide-pulsed CD4+ T-cells and HIV-specific CD8+ T-cells. CTLs engaged motile HIV-infected targets, but ∼50% of targets broke contact and escaped. In contrast, immobilized target cells were readily killed, indicating target motility directly inhibits CD8+ T-cell function. Strong calcium signals occurred in CTLs killing a motile target but calcium signaling was weak or absent in CTLs which permitted target escape. Neutralization of adhesion receptors LFA-1 and CD58 inhibited CD8+ T-cell function within the 3D matrix, demonstrating that efficient motile target lysis as dependent on adhesive engagement of targets. Antigen sensitivity (a convolution of antigen density, TCR avidity and CD8 coreceptor binding) is also critical for target recognition. We modulated this parameter (known as functional avidity but referred to here as “avidity” for the sake of simplicity) by exploiting common HIV escape mutations and measured their impact on CTL function at the single-cell level. Targets pulsed with low avidity mutant antigens frequently escaped while CTLs killed targets bearing high avidity antigen with near-perfect efficiency. CTLs engaged, arrested, and killed an initial target bearing high avidity antigen within minutes, but serial killing was surprisingly rare. CD8 cells remained committed to their initial dead target for hours, accumulating TCR signals that sustained secretion of soluble antiviral factors. These data indicate that high-avidity CD8+ T-cells execute an antiviral program in the precise location where antigen has been sensed: CTL effector functions are spatiotemporally coordinated with an early lytic phase followed by a sustained

  19. Synapses: Sites of Cell Recognition, Adhesion, and Functional Specification

    PubMed Central

    Yamada, Soichiro; Nelson, W. James

    2012-01-01

    Synapses are specialized adhesive contacts characteristic of many types of cell-cell interactions involving neurons, immune cells, epithelial cells, and even pathogens and host cells. Cell-cell adhesion is mediated by structurally diverse classes of cell-surface glycoproteins, which form homophilic or heterophilic interactions across the intercellular space. Adhesion proteins bind to a cytoplasmic network of scaffolding proteins, regulators of the actin cytoskeleton, and signal transduction pathways that control the structural and functional organization of synapses. The themes of this review are to compare the organization of synapses in different cell types and to understand how different classes of cell adhesion proteins and cytoplasmic protein networks specify the assembly of functionally distinct synapses in different cell contexts. PMID:17506641

  20. Homotypic RANK signaling differentially regulates proliferation, motility and cell survival in osteosarcoma and mammary epithelial cells.

    PubMed

    Beristain, Alexander G; Narala, Swami R; Di Grappa, Marco A; Khokha, Rama

    2012-02-15

    RANKL (receptor activator of NF-κB ligand) is a crucial cytokine for regulating diverse biological systems such as innate immunity, bone homeostasis and mammary gland differentiation, operating through activation of its cognate receptor RANK. In these normal physiological processes, RANKL signals through paracrine and/or heterotypic mechanisms where its expression and function is tightly controlled. Numerous pathologies involve RANKL deregulation, such as bone loss, inflammatory diseases and cancer, and aberrant RANK expression has been reported in bone cancer. Here, we investigated the significance of RANK in tumor cells with a particular emphasis on homotypic signaling. We selected RANK-positive mouse osteosarcoma and RANK-negative preosteoblastic MC3T3-E1 cells and subjected them to loss- and gain-of-RANK function analyses. By examining a spectrum of tumorigenic properties, we demonstrate that RANK homotypic signaling has a negligible effect on cell proliferation, but promotes cell motility and anchorage-independent growth of osteosarcoma cells and preosteoblasts. By contrast, establishment of RANK signaling in non-tumorigenic mammary epithelial NMuMG cells promotes their proliferation and anchorage-independent growth, but not motility. Furthermore, RANK activation initiates multiple signaling pathways beyond its canonical target, NF-κB. Among these, biochemical inhibition reveals that Erk1/2 is dominant and crucial for the promotion of anchorage-independent survival and invasion of osteoblastic cells, as well as the proliferation of mammary epithelial cells. Thus, RANK signaling functionally contributes to key tumorigenic properties through a cell-autonomous homotypic mechanism. These data also identify the likely inherent differences between epithelial and mesenchymal cell responsiveness to RANK activation. PMID:22421365

  1. Cell morphology and focal adhesion location alters internal cell stress.

    PubMed

    Mullen, C A; Vaughan, T J; Voisin, M C; Brennan, M A; Layrolle, P; McNamara, L M

    2014-12-01

    Extracellular mechanical cues have been shown to have a profound effect on osteogenic cell behaviour. However, it is not known precisely how these cues alter intracellular mechanics to initiate changes in cell behaviour. In this study, a combination of in vitro culture of MC3T3-E1 cells and finite-element modelling was used to investigate the effects of passive differences in substrate stiffness on intracellular mechanics. Cells on collagen-based substrates were classified based on the presence of cell processes and the dimensions of various cellular features were quantified. Focal adhesion (FA) density was quantified from immunohistochemical staining, while cell and substrate stiffnesses were measured using a live-cell atomic force microscope. Computational models of cell morphologies were developed using an applied contraction of the cell body to simulate active cell contraction. The results showed that FA density is directly related to cell morphology, while the effect of substrate stiffness on internal cell tension was modulated by both cell morphology and FA density, as investigated by varying the number of adhesion sites present in each morphological model. We propose that the cells desire to achieve a homeostatic stress state may play a role in osteogenic cell differentiation in response to extracellular mechanical cues. PMID:25297316

  2. Cell morphology and focal adhesion location alters internal cell stress

    PubMed Central

    Mullen, C. A.; Vaughan, T. J.; Voisin, M. C.; Brennan, M. A.; Layrolle, P.; McNamara, L. M.

    2014-01-01

    Extracellular mechanical cues have been shown to have a profound effect on osteogenic cell behaviour. However, it is not known precisely how these cues alter intracellular mechanics to initiate changes in cell behaviour. In this study, a combination of in vitro culture of MC3T3-E1 cells and finite-element modelling was used to investigate the effects of passive differences in substrate stiffness on intracellular mechanics. Cells on collagen-based substrates were classified based on the presence of cell processes and the dimensions of various cellular features were quantified. Focal adhesion (FA) density was quantified from immunohistochemical staining, while cell and substrate stiffnesses were measured using a live-cell atomic force microscope. Computational models of cell morphologies were developed using an applied contraction of the cell body to simulate active cell contraction. The results showed that FA density is directly related to cell morphology, while the effect of substrate stiffness on internal cell tension was modulated by both cell morphology and FA density, as investigated by varying the number of adhesion sites present in each morphological model. We propose that the cells desire to achieve a homeostatic stress state may play a role in osteogenic cell differentiation in response to extracellular mechanical cues. PMID:25297316

  3. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells

    PubMed Central

    Shiraishi, Takumi; Verdone, James E.; Huang, Jessie; Kahlert, Ulf D.; Hernandez, James R.; Torga, Gonzalo; Zarif, Jelani C.; Epstein, Tamir; Gatenby, Robert; McCartney, Annemarie; Elisseeff, Jennifer H.; Mooney, Steven M.; An, Steven S.; Pienta, Kenneth J.

    2015-01-01

    The ability of a cancer cell to detach from the primary tumor and move to distant sites is fundamental to a lethal cancer phenotype. Metabolic transformations are associated with highly motile aggressive cellular phenotypes in tumor progression. Here, we report that cancer cell motility requires increased utilization of the glycolytic pathway. Mesenchymal cancer cells exhibited higher aerobic glycolysis compared to epithelial cancer cells while no significant change was observed in mitochondrial ATP production rate. Higher glycolysis was associated with increased rates of cytoskeletal remodeling, greater cell traction forces and faster cell migration, all of which were blocked by inhibition of glycolysis, but not by inhibition of mitochondrial ATP synthesis. Thus, our results demonstrate that cancer cell motility and cytoskeleton rearrangement is energetically dependent on aerobic glycolysis and not oxidative phosphorylation. Mitochondrial derived ATP is insufficient to compensate for inhibition of the glycolytic pathway with regard to cellular motility and CSK rearrangement, implying that localization of ATP derived from glycolytic enzymes near sites of active CSK rearrangement is more important for cell motility than total cellular ATP production rate. These results extend our understanding of cancer cell metabolism, potentially providing a target metabolic pathway associated with aggressive disease. PMID:25426557

  4. S100A4 is frequently overexpressed in lung cancer cells and promotes cell growth and cell motility

    SciTech Connect

    Chen, Na; Sato, Daisuke; Saiki, Yuriko; Sunamura, Makoto; Fukushige, Shinichi; Horii, Akira

    2014-05-09

    Highlights: • We observed frequent overexpression of S100A4 in lung cancer cell lines. • Knockdown of S100A4 suppressed proliferation in lung cancer cells. • Forced expression of S100A4 accelerated cell motility in lung cancer cells. • PRDM2 was found to be one of the downstream suppressed genes of S100A4. - Abstract: S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In this study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.

  5. Cell Adhesion on Amyloid Fibrils Lacking Integrin Recognition Motif.

    PubMed

    Jacob, Reeba S; George, Edna; Singh, Pradeep K; Salot, Shimul; Anoop, Arunagiri; Jha, Narendra Nath; Sen, Shamik; Maji, Samir K

    2016-03-01

    Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids. PMID:26742841

  6. Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions

    SciTech Connect

    Sakwe, Amos M.; Koumangoye, Rainelli; Guillory, Bobby; Ochieng, Josiah

    2011-04-01

    The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell-cell cohesion, cell adhesion/spreading onto collagen type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell-cell and/or cell-ECM contacts and anchorage-independent cell proliferation.

  7. Directing cell migration using micropatterned and dynamically adhesive polymer brushes.

    PubMed

    Costa, Patricia; Gautrot, Julien E; Connelly, John T

    2014-06-01

    Micropatterning techniques, such as photolithography and microcontact printing, provide robust tools for controlling the adhesive interactions between cells and their extracellular environment. However, the ability to modify these interactions in real time and examine dynamic cellular responses remains a significant challenge. Here we describe a novel strategy to create dynamically adhesive, micropatterned substrates, which afford precise control of cell adhesion and migration over both space and time. Specific functionalization of micropatterned poly(ethylene glycol methacrylate) (POEGMA) brushes with synthetic peptides, containing the integrin-binding arginine-glycine-aspartic acid (RGD) motif, was achieved using thiol-yne coupling reactions. RGD activation of POEGMA brushes promoted fibroblast adhesion, spreading and migration into previously non-adhesive areas, and migration speed could be tuned by adjusting the surface ligand density. We propose that this technique is a robust strategy for creating dynamically adhesive biomaterial surfaces and a useful assay for studying cell migration. PMID:24508539

  8. Disturbed Homeostasis of Lung Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 During Sepsis

    PubMed Central

    Laudes, Ines J.; Guo, Ren-Feng; Riedemann, Niels C.; Speyer, Cecilia; Craig, Ron; Sarma, J. Vidya; Ward, Peter A.

    2004-01-01

    Cecal ligation and puncture (CLP)-induced sepsis in mice was associated with perturbations in vascular adhesion molecules. In CLP mice, lung vascular binding of 125I-monoclonal antibodies to intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 revealed sharp increases in binding of anti-ICAM-1 and significantly reduced binding of anti-VCAM-1. In whole lung homogenates, intense ICAM-1 up-regulation was found (both in mRNA and in protein levels) during sepsis, whereas very little increase in VCAM-1 could be measured although some increased mRNA was found. During CLP soluble VCAM-1 (sVCAM-1) and soluble ICAM-1 (sICAM-1) appeared in the serum. When mouse dermal microvascular endothelial cells (MDMECs) were incubated with serum from CLP mice, constitutive endothelial VCAM-1 fell in association with the appearance of sVCAM-1 in the supernatant fluids. Under the same conditions, ICAM-1 cell content increased in MDMECs. When MDMECs were evaluated for leukocyte adhesion, exposure to CLP serum caused increased adhesion of neutrophils and decreased adhesion of macrophages and T cells. The progressive build-up in lung myeloperoxidase after CLP was ICAM-1-dependent and independent of VLA-4 and VCAM-1. These data suggest that sepsis disturbs endothelial homeostasis, greatly favoring neutrophil adhesion in the lung microvasculature, thereby putting the lung at increased risk of injury. PMID:15039231

  9. Impact of altered actin gene expression on vinculin, talin, cell spreading, and motility.

    PubMed

    Schevzov, G; Lloyd, C; Gunning, P

    1995-08-01

    Previous studies have demonstrated a strong correlation between the expression of vinculin and the shape and motility of a cell (Rodriguez Fernandez et al., 1992a, b, 1993). This hypothesis was tested by comparing the expression of vinculin and talin with the motility of morphologically altered myoblasts. These mouse C2 myoblasts were previously generated by directly perturbing the cell cytoskeleton via the stable transfection of a mutant-form of the beta-actin gene (beta sm) and three different forms of the gamma-actin gene; gamma, gamma minus 3'UTR (gamma delta'UTR), and gamma minus intron III (gamma delta IVSIII) (Schevzov et al., 1992; Lloyd and Gunning, 1993). In the case of the beta sm and gamma-actin transfectants, a two-fold decrease in the cell surface area was coupled, as predicted, with a decrease in vinculin and talin expression. In contrast, the gamma delta IVSIII transfectants with a seven-fold decrease in the cell surface area showed an unpredicted slight increase in vinculin and talin expression and the gamma delta 3'-UTR transfectants with a slight increase in the cell surface area showed no changes in talin expression and a decrease in vinculin expression. We conclude that changes in actin gene expression alone can impact on the expression of vinculin and talin. Furthermore, we observed that these actin transfectants failed to show a consistent relationship between cell shape, motility, and the expression of vinculin. However, a relationship between talin and cell motility was found to exist, suggesting a role for talin in the establishment of focal contacts necessary for motility. PMID:7646816

  10. Urokinase receptor-dependent and -independent p56/59(hck) activation state is a molecular switch between myelomonocytic cell motility and adherence.

    PubMed Central

    Chiaradonna, F; Fontana, L; Iavarone, C; Carriero, M V; Scholz, G; Barone, M V; Stoppelli, M P

    1999-01-01

    Anchorage-independent myelomonocytic cells acquire adherence within minutes of differentiation stimuli, such as the proteolytically inactive N-terminal fragment of urokinase binding to its cognate glycosylphosphatidylinositol (GPI)-anchored receptor. Here, we report that urokinase-treated differentiating U937 monocyte-like cells exhibit a rapid and transient inhibition of p56/59(hck) and p55(fgr) whereas no changes in the activity of other Src family kinases, such as p53/56(lyn) and p59(fyn) were observed. U937 transfectants expressing a kinase-defective (Lys267 to Met) p56/59(hck) variant exhibit enhanced adhesiveness and a marked F-actin redistribution in thin protruding structures. Conversely, urokinase as well as expression of wild-type or constitutively active (Tyr499 to Phe) p56/59(hck) stimulates the directional migration of uninduced U937 cells. Accordingly, expression of constitutively active or kinase inactive p56/59(hck) selectively prevents urokinase receptor-dependent induction of either adhesion or motility, indicating that a specific activation state of p56/59(hck) is required for each cell response. In conclusion, modulation of the intracellular p56/59(hck) tyrosine kinase activity switches cell motility towards adherence, providing a mutually exclusive mechanism to regulate these properties during monocyte/macrophage differentiation in vivo. PMID:10357814

  11. Motility and chemotaxis in tissue penetration of oral epithelial cell layers by Treponema denticola.

    PubMed

    Lux, R; Miller, J N; Park, N H; Shi, W

    2001-10-01

    The ability to penetrate tissue is an important virulence factor for pathogenic spirochetes. Previous studies have recognized the role of motility in allowing pathogenic spirochetes to invade tissues and migrate to sites favorable for bacterial proliferation. However, the nature of the movements, whether they are random or controlled by chemotaxis systems, has yet to be established. In this study, we addressed the role of motility and chemotaxis in tissue penetration by the periodontal disease-associated oral spirochete Treponema denticola using an oral epithelial cell line-based experimental approach. Wild-type T. denticola ATCC 35405 was found to penetrate the tissue layers effectively, whereas a nonmotile mutant was unable to overcome the tissue barrier. Interestingly, the chemotaxis mutants also showed impaired tissue penetration. A cheA mutant that is motile but lacks the central kinase of the chemotaxis pathway showed only about 2 to 3% of the wild-type penetration rate. The two known chemoreceptors of T. denticola, DmcA and DmcB, also appear to be involved in the invasion process. The dmc mutants were actively motile but exhibited reduced tissue penetration of about 30 and 10% of the wild-type behavior, respectively. These data suggest that not only motility but also chemotaxis is involved in the tissue penetration by T. denticola. PMID:11553571

  12. Motility and Chemotaxis in Tissue Penetration of Oral Epithelial Cell Layers by Treponema denticola

    PubMed Central

    Lux, Renate; Miller, James N.; Park, No-Hee; Shi, Wenyuan

    2001-01-01

    The ability to penetrate tissue is an important virulence factor for pathogenic spirochetes. Previous studies have recognized the role of motility in allowing pathogenic spirochetes to invade tissues and migrate to sites favorable for bacterial proliferation. However, the nature of the movements, whether they are random or controlled by chemotaxis systems, has yet to be established. In this study, we addressed the role of motility and chemotaxis in tissue penetration by the periodontal disease-associated oral spirochete Treponema denticola using an oral epithelial cell line-based experimental approach. Wild-type T. denticola ATCC 35405 was found to penetrate the tissue layers effectively, whereas a nonmotile mutant was unable to overcome the tissue barrier. Interestingly, the chemotaxis mutants also showed impaired tissue penetration. A cheA mutant that is motile but lacks the central kinase of the chemotaxis pathway showed only about 2 to 3% of the wild-type penetration rate. The two known chemoreceptors of T. denticola, DmcA and DmcB, also appear to be involved in the invasion process. The dmc mutants were actively motile but exhibited reduced tissue penetration of about 30 and 10% of the wild-type behavior, respectively. These data suggest that not only motility but also chemotaxis is involved in the tissue penetration by T. denticola. PMID:11553571

  13. Macroscopic limits of individual-based models for motile cell populations with volume exclusion.

    PubMed

    Dyson, Louise; Maini, Philip K; Baker, Ruth E

    2012-09-01

    Partial differential equation models are ubiquitous in studies of motile cell populations, giving a phenomenological description of events which can be analyzed and simulated using a wide range of existing tools. However, these models are seldom derived from individual cell behaviors and so it is difficult to accurately include biological hypotheses on this spatial scale. Moreover, studies which do attempt to link individual- and population-level behavior generally employ lattice-based frameworks in which the artifacts of lattice choice at the population level are unclear. In this work we derive limiting population-level descriptions of a motile cell population from an off-lattice, individual-based model (IBM) and investigate the effects of volume exclusion on the population-level dynamics. While motility with excluded volume in on-lattice IBMs can be accurately described by Fickian diffusion, we demonstrate that this is not the case off lattice. We show that the balance between two key parameters in the IBM (the distance moved in one step and the radius of an individual) determines whether volume exclusion results in enhanced or slowed diffusion. The magnitude of this effect is shown to increase with the number of cells and the rate of their movement. The method we describe is extendable to higher-dimensional and more complex systems and thereby provides a framework for deriving biologically realistic, continuum descriptions of motile populations. PMID:23030940

  14. ANXA2 enhances the progression of hepatocellular carcinoma via remodeling the cell motility associated structures.

    PubMed

    Shi, Hongyan; Xiao, Li; Duan, Wei; He, Huimin; Ma, Lele; Da, Miaomiao; Duan, Yan; Wang, Qian; Wu, Huayi; Song, Xigui; Hou, Yingchun

    2016-06-01

    Hepatocellular carcinoma (HCC) ranks as the fifth most common malignancy worldwide. The detailed mechanism of signal regulation for HCC progression is still not known, and the high motility of cancer cells is known as a core property for cancer progression maintenance. Annexin A2 (ANXA2), a calcium-dependent phospholipids binding protein is highly expressed in HCC. To study the roles the excessively expressed ANXA2 during the progression of HCC, we inhibited the ANXA2 expression in SMMC-7721 cells using RNAi, followed by the analysis of cell growth, apoptosis and cell motility. To explore the relationship between the cell behaviors and its structures, the microstructure changes were observed under fluorescence microscopy, laser scanning confocal microscopy and electron microscopy. Our findings demonstrated that down-regulation of ANXA2 results in decreased the cell proliferation and motility, enhanced apoptosis, suppressed cell pseudopodia/filopodia, inhibited expression of F-actin and β-tubulin, and inhibited or depolymerized Lamin B. The cell contact inhibition was also analyzed in the paper. Take together, our results indicate that ANXA2 plays an important role to enhance the malignant behaviors of HCC cells, and the enhancement is closely based on its remodeling to cell structures. PMID:27060670

  15. The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells.

    PubMed

    Saviola, Anthony J; Burns, Patrick D; Mukherjee, Ashis K; Mackessy, Stephen P

    2016-07-01

    Integrins play an essential role in cancer survival and invasion, and they have been major targets in drug development and design. Disintegrins are small (4-16kDa) viperid snake venom proteins that exhibit a canonical integrin-binding site (often RGD). These non-enzymatic proteins inhibit integrin-mediated cell-cell and cell-extracellular matrix interactions, making them potential candidates as therapeutics in cancer and numerous other human disorders. The present study examined the cytotoxic, anti-adhesion, and anti-migration effects of a recently characterized disintegrin, tzabcanin, towards melanoma (A-375) and lung (A-549) cancer cell lines. Tzabcanin inhibits adhesion of both cells lines to vitronectin and exhibited very weak cytotoxicity towards A-375 cells; however, it had no effect on cell viability of A-549 cells. Further, tzabcanin significantly inhibited migration of both cell lines in cell scratch/wound healing assays. Flow cytometric analysis indicates that both A-375 and A-549 cell lines express integrin αvβ3, a critical integrin in tumor motility and invasion, and a major receptor of the extracellular matrix protein vitronectin. Flow cytometric analysis also identified αvβ3 as a binding site of tzabcanin. These results suggest that tzabcanin may have utility in the development of anticancer therapies, or may be used as a biomarker to detect neoplasms that over-express integrin αvβ3. PMID:27060015

  16. Retinoic acid induces nuclear FAK translocation and reduces breast cancer cell adhesion through Moesin, FAK, and Paxillin.

    PubMed

    Sanchez, Angel Matías; Shortrede, Jorge Eduardo; Vargas-Roig, Laura María; Flamini, Marina Inés

    2016-07-15

    Breast cancer is the most common malignancy in women, with metastases being the cause of death in 98%. In previous works we have demonstrated that retinoic acid (RA), the main retinoic acid receptor (RAR) ligand, is involved in the metastatic process by inhibiting migration through a reduced expression of the specific migration-related proteins Moesin, c-Src, and FAK. At present, our hypothesis is that RA also acts for short periods in a non-genomic action to cooperate with motility reduction and morphology of breast cancer cells. Here we identify that the administration of 10(-6) M RA (10-20 min) induces the activation of the migration-related proteins Moesin, FAK, and Paxillin in T-47D breast cancer cells. The phosphorylation exerted by the selective agonists for RARα and RARβ, on Moesin, FAK, and Paxillin was comparable to the activation exerted by RA. The RARγ agonist only led to a weak activation, suggesting the involvement of RARα and RARβ in this pathway. We then treated the cells with different inhibitors that are involved in cell signaling to regulate the mechanisms of cell motility. RA failed to activate Moesin, FAK, and Paxillin in cells treated with Src inhibitor (PP2) and PI3K inhibitor (WM), suggesting the participation of Src-PI3K in this pathway. Treatment with 10(-6) M RA for 20 min significantly decreased cell adhesion. However, when cells were treated with 10(-6) M RA and FAK inhibitor, the RA did not significantly inhibit adhesion, suggesting a role of FAK in the adhesion inhibited by RA. By immunofluorescence and immunoblotting analysis we demonstrated that RA induced nuclear FAK translocation leading to a reduced cellular adhesion. These findings provide new information on the actions of RA for short periods. RA participates in cell adhesion and subsequent migration, modulating the relocation and activation of proteins involved in cell migration. PMID:27130522

  17. Cell Adhesion to Plasma-Coated PVC

    PubMed Central

    Rangel, Elidiane C.; de Souza, Eduardo S.; de Moraes, Francine S.; Duek, Eliana A. R.; Lucchesi, Carolina; Schreiner, Wido H.; Durrant, Steven F.; Cruz, Nilson C.

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices. PMID:25247202

  18. PHLPP negatively regulates cell motility through inhibition of Akt activity and integrin expression in pancreatic cancer cells

    PubMed Central

    Smith, Alena J.; Wen, Yang-An; Stevens, Payton D.; Liu, Jingpeng; Wang, Chi; Gao, Tianyan

    2016-01-01

    Pancreatic adenocarcinoma is currently the fourth leading cause for cancer-related mortality. Malignant progression of pancreatic cancer depends not only on rapid proliferation of tumor cells but also on increased cell motility. In this study, we showed that increased PHLPP expression significantly reduced the rate of migration in pancreatic ductal adenocarcinoma (PDAC) cells whereas knockdown of PHLPP had the opposite effect. In addition, cell motility at the individual cell level was negatively regulated by PHLPP as determined using time-lapse imaging. Interestingly, the expression of β1 and β4 integrin proteins were decreased in PHLPP overexpressing cells and increased in PHLPP knockdown cells whereas the mRNA levels of integrin were not altered by changes in PHLPP expression. In determining the molecular mechanism underlying PHLPP-mediated regulation of integrin expression, we found that inhibition of lysosome activity rescued integrin expression in PHLPP overexpressing cells, thus suggesting that PHLPP negatively controls cell motility by inhibiting Akt activity to promote lysosome-dependent degradation of integrins. Functionally, the increased cell migration observed in PHLPP knockdown cells was effectively blocked by the neutralizing antibodies against β1 or β4 integrin. Taken together, our study identified a tumor suppressor role of PHLPP in suppressing cell motility by negatively regulating integrin expression in pancreatic cancer cells. PMID:26760962

  19. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  20. Huaier Aqueous Extract Inhibits Ovarian Cancer Cell Motility via the AKT/GSK3β/β-Catenin Pathway

    PubMed Central

    Jia, Nan; Yu, Yinhua; Hua, Keqin; Feng, Weiwei

    2013-01-01

    Traditional Chinese medicine has gained popularity due to its ability to kill tumor cells. Recently, the apoptotic and anti-angiogenic effects of Trametes robiniophila murr (Huaier) have been investigated. The aim of this study was to investigate its effect on cell mobility and tumor growth in ovarian cancer. Cell viability and motility were measured using SRB, scratch and migration assays. Cell apoptosis was analysed by annexin V/PI staining. Using a reverse-phase protein array (RPPA) assay, we analyzed the levels of 153 proteins and/or phosphorylations in Huaier-treated and untreated cells. Huaier inhibited cell viability and induced both early and late apoptosis in SKOV3, SKOV3.ip1 and Hey cells in a time- and dose-dependent manner. Cell invasiveness and migration were also suppressed significantly. The RPPA results showed significant differences (of at least 30%; P <0.05) in the levels of 7 molecules in SKOV3 cells and 10 in SKOV3.ip1 cells between the untreated and treated cells. Most of the molecules identified play roles in cell proliferation, apoptosis or cell adhesion/invasion. Western blot analysis further validated that Huaier treatment resulted in decreased AKT phosphorylation, enhanced expression of total GSK3β, inhibition of the phosphorylation of GSK3β on S9, reduction of both cytoplasmic β-catenin expression and nuclear β-catenin translocation, and transcriptional repression of several Wnt/β-catenin target genes (DIXDC1, LRP6, WNT5A, and cyclin D1). After knocking down GSK3β, β-catenin expression could not be inhibited by Huaier. Finally, Huaier inhibited the growth of ovarian tumor xenografts in vivo. These studies indicate that Huaier inhibits tumor cell mobility in ovarian cancer via the AKT/GSK3β/β-catenin signaling pathway. PMID:23667667

  1. Huaier aqueous extract inhibits ovarian cancer cell motility via the AKT/GSK3β/β-catenin pathway.

    PubMed

    Yan, Xiaohui; Lyu, Tianjiao; Jia, Nan; Yu, Yinhua; Hua, Keqin; Feng, Weiwei

    2013-01-01

    Traditional Chinese medicine has gained popularity due to its ability to kill tumor cells. Recently, the apoptotic and anti-angiogenic effects of Trametes robiniophila murr (Huaier) have been investigated. The aim of this study was to investigate its effect on cell mobility and tumor growth in ovarian cancer. Cell viability and motility were measured using SRB, scratch and migration assays. Cell apoptosis was analysed by annexin V/PI staining. Using a reverse-phase protein array (RPPA) assay, we analyzed the levels of 153 proteins and/or phosphorylations in Huaier-treated and untreated cells. Huaier inhibited cell viability and induced both early and late apoptosis in SKOV3, SKOV3.ip1 and Hey cells in a time- and dose-dependent manner. Cell invasiveness and migration were also suppressed significantly. The RPPA results showed significant differences (of at least 30%; P <0.05) in the levels of 7 molecules in SKOV3 cells and 10 in SKOV3.ip1 cells between the untreated and treated cells. Most of the molecules identified play roles in cell proliferation, apoptosis or cell adhesion/invasion. Western blot analysis further validated that Huaier treatment resulted in decreased AKT phosphorylation, enhanced expression of total GSK3β, inhibition of the phosphorylation of GSK3β on S9, reduction of both cytoplasmic β-catenin expression and nuclear β-catenin translocation, and transcriptional repression of several Wnt/β-catenin target genes (DIXDC1, LRP6, WNT5A, and cyclin D1). After knocking down GSK3β, β-catenin expression could not be inhibited by Huaier. Finally, Huaier inhibited the growth of ovarian tumor xenografts in vivo. These studies indicate that Huaier inhibits tumor cell mobility in ovarian cancer via the AKT/GSK3β/β-catenin signaling pathway. PMID:23667667

  2. Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging

    PubMed Central

    Roy, Jeremy; Kim, Bongki; Hill, Eric; Visconti, Pablo; Krapf, Dario; Vinegoni, Claudio; Weissleder, Ralph; Brown, Dennis; Breton, Sylvie

    2016-01-01

    Epithelial cells are generally considered to be static relative to their neighbours. Basal cells in pseudostratified epithelia display a single long cytoplasmic process that can cross the tight junction barrier to reach the lumen. Using in vivo microscopy to visualize the epididymis, a model system for the study of pseudostratified epithelia, we report here the surprising discovery that these basal cell projections—which we call axiopodia—periodically extend and retract over time. We found that axiopodia extensions and retractions follow an oscillatory pattern. This movement, which we refer to as periodic axial motility (PAM), is controlled by c-Src and MEK1/2–ERK1/2. Therapeutic inhibition of tyrosine kinase activity induces a retraction of these projections. Such unexpected cell motility may reflect a novel mechanism by which specialized epithelial cells sample the luminal environment. PMID:26868824

  3. Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging.

    PubMed

    Roy, Jeremy; Kim, Bongki; Hill, Eric; Visconti, Pablo; Krapf, Dario; Vinegoni, Claudio; Weissleder, Ralph; Brown, Dennis; Breton, Sylvie

    2016-01-01

    Epithelial cells are generally considered to be static relative to their neighbours. Basal cells in pseudostratified epithelia display a single long cytoplasmic process that can cross the tight junction barrier to reach the lumen. Using in vivo microscopy to visualize the epididymis, a model system for the study of pseudostratified epithelia, we report here the surprising discovery that these basal cell projections--which we call axiopodia--periodically extend and retract over time. We found that axiopodia extensions and retractions follow an oscillatory pattern. This movement, which we refer to as periodic axial motility (PAM), is controlled by c-Src and MEK1/2-ERK1/2. Therapeutic inhibition of tyrosine kinase activity induces a retraction of these projections. Such unexpected cell motility may reflect a novel mechanism by which specialized epithelial cells sample the luminal environment. PMID:26868824

  4. Cell adhesion strength from cortical tension - an integration of concepts.

    PubMed

    Winklbauer, Rudolf

    2015-10-15

    Morphogenetic mechanisms such as cell movement or tissue separation depend on cell attachment and detachment processes, which involve adhesion receptors as well as the cortical cytoskeleton. The interplay between the two components is of stunning complexity. Most strikingly, the binding energy of adhesion molecules is usually too small for substantial cell-cell attachment, pointing to a main deficit in our present understanding of adhesion. In this Opinion article, I integrate recent findings and conceptual advances in the field into a coherent framework for cell adhesion. I argue that active cortical tension is best viewed as an integral part of adhesion, and propose on this basis a non-arbitrary measure of adhesion strength - the tissue surface tension of cell aggregates. This concept of adhesion integrates heterogeneous molecular inputs into a single mechanical property and simplifies the analysis of attachment-detachment processes. It draws attention to the enormous variation of adhesion strengths among tissues, whose origin and function is little understood. PMID:26471994

  5. Extracellular Vesicles from Vascular Endothelial Cells Promote Survival, Proliferation and Motility of Oligodendrocyte Precursor Cells

    PubMed Central

    Kurachi, Masashi; Mikuni, Masahiko; Ishizaki, Yasuki

    2016-01-01

    We previously examined the effect of brain microvascular endothelial cell (MVEC) transplantation on rat white matter infarction, and found that MVEC transplantation promoted remyelination of demyelinated axons in the infarct region and reduced apoptotic death of oligodendrocyte precursor cells (OPCs). We also found that the conditioned medium (CM) from cultured MVECs inhibited apoptosis of cultured OPCs. In this study, we examined contribution of extracellular vesicles (EVs) contained in the CM to its inhibitory effect on OPC apoptosis. Removal of EVs from the CM by ultracentrifugation reduced its inhibitory effect on OPC apoptosis. To confirm whether EVs derived from MVECs are taken up by cultured OPCs, we labeled EVs with PKH67, a fluorescent dye, and added them to OPC cultures. Many vesicular structures labeled with PKH67 were found within OPCs immediately after their addition. Next we examined the effect of MVEC-derived EVs on OPC behaviors. After 2 days in culture with EVs, there was significantly less pyknotic and more BrdU-positive OPCs when compared to control. We also examined the effect of EVs on motility of OPCs. OPCs migrated longer in the presence of EVs when compared to control. To examine whether these effects on cultured OPCs are shared by EVs from endothelial cells, we prepared EVs from conditioned media of several types of endothelial cells, and tested their effects on cultured OPCs. EVs from all types of endothelial cells we examined reduced apoptosis of OPCs and promoted their motility. Identification of the molecules contained in EVs from endothelial cells may prove helpful for establishment of effective therapies for demyelinating diseases. PMID:27403742

  6. Laminin-332 Cleavage by Matriptase Alters Motility Parameters of Prostate Cancer Cells

    PubMed Central

    Tripathi, Manisha; Potdar, Alka A.; Yamashita, Hironobu; Weidow, Brandy; Cummings, Peter T.; Kirchhofer, Daniel; Quaranta, Vito

    2013-01-01

    BACKGROUND Matriptase, a type II transmembrane serine protease, has been linked to initiation and promotion of epidermal carcinogenesis in a murine model, suggesting that deregulation of its role in epithelia contributes to transformation. In human prostate cancer, matriptase expression correlates with progression. It is therefore of interest to determine how matriptase may contribute to epithelial neoplastic progression. One approach for studying this is to identify potential matriptase substrates involved in epithelial integrity and/or transformation like the extracellular matrix macromolecule, laminin-332 (Ln-332), which is found in the basement membrane of many epithelia, including prostate. Proteolytic processing of Ln-332 regulates cell motility of both normal and transformed cells, which has implications in cancer progression. METHODS In vitro cleavage experiments were performed with purified Ln-332 protein and matriptase. Western blotting, enzyme inhibition assays, and mass spectrometry were used to confirm cleavage events. Matriptase overexpressing LNCaP prostate cancer cells were generated and included in Transwell migration assays and single cell motility assays, along with other prostate cells. RESULTS We report that matriptase proteolytically cleaves Ln-332 in the β3 chain. Substrate specificity was confirmed by blocking cleavage with the matriptase inhibitor, Kunitz domain-1. Transwell migration assays showed that DU145 cell motility was significantly enhanced when plated on matriptase-cleaved Ln-332. Similarly, Transwell migration of matriptase-overexpressing LNCaP cells was significantly increased on Ln-332 and, as determined by live single-cell microscopy, two motility parameters of this cell line, speed and directional persistence, were also higher. CONCLUSIONS Proteolytic processing of Ln-332 by matriptase enhances speed and directional persistence of prostate cancer cells. PMID:20672321

  7. A Cronobacter turicensis O1 Antigen-Specific Monoclonal Antibody Inhibits Bacterial Motility and Entry into Epithelial Cells

    PubMed Central

    Lehner, Angelika; Dietrich, Richard; Kleinsteuber, Ina; Canals, Rocío; Zurfluh, Katrin; Weiner, Kerstin; Märtlbauer, Erwin

    2014-01-01

    Cronobacter turicensis is an opportunistic foodborne pathogen that can cause a rare but sometimes lethal infection in neonates. Little is known about the virulence mechanisms and intracellular lifestyle of this pathogen. In this study, we developed an IgG monoclonal antibody (MAb; MAb 2G4) that specifically recognizes the O1 antigen of C. turicensis cells. The antilipopolysaccharide antibody bound predominantly monovalently to the O antigen and reduced bacterial growth without causing cell agglutination. Furthermore, binding of the antibody to the O1 antigen of C. turicensis cells caused a significant reduction of the membrane potential which is required to energize flagellar rotation, accompanied by a decreased flagellum-based motility. These results indicate that binding of IgG to the O antigen of C. turicensis causes a direct antimicrobial effect. In addition, this feature of the antibody enabled new insight into the pathogenicity of C. turicensis. In a tissue culture infection model, pretreatment of C. turicensis with MAb 2G4 showed no difference in adhesion to human epithelial cells, whereas invasion of bacteria into Caco-2 cells was significantly inhibited. PMID:25534937

  8. Collective cell migration induced by mechanical stress and substrate adhesiveness

    NASA Astrophysics Data System (ADS)

    Köpf, Michael H.

    2015-01-01

    Mechanical stress normal to the boundary of a tissue sheet can arise in both constrained as well as unconstrained epithelial layers through pushing and pulling of surrounding tissue and substrate adhesiveness, respectively. A continuum model is used to investigate how such stress influences the epithelial dynamics. Four types of spreading and motility can be identified: a uniformly stretched stationary state, uniform sheet migration, active stress compensation by polarization close to the boundary, and a wormlike progression by deformation waves. Analytical and numerical solutions are presented along with bifurcation diagrams using normal stress and active force as control parameters.

  9. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium.

    PubMed

    Hallahan, D; Kuchibhotla, J; Wyble, C

    1996-11-15

    The predominant early histological changes in irradiated tissues are edema and leukocyte infiltration. Cell adhesion molecules (CAMs) are required for the extravasation of leukocytes from the circulation. To study the role of CAMs in the pathogenesis of radiation-mediated inflammation, we quantified the expression of P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 glycoproteins on the surface of irradiated human endothelial cells. We found that E-selectin and ICAM-1 expression increased after irradiation, whereas there was no increased expression of other cytokine-inducible adhesion molecules (P-selectin or vascular cell adhesion molecule-1). We found a dose- and time-dependent increase in radiation-induced expression of both E-selectin and ICAM-1. Furthermore, the threshold dose for E-selectin expression was 1 Gy, whereas the threshold dose for ICAM-1 synthesis was 5 Gy of X-rays. Northern blot analysis of RNA from irradiated endothelial cells demonstrated that ICAM-1 is expressed at 3-6 h following irradiation. No de novo protein synthesis was required for increased ICAM-1 mRNA expression. The 1.1-kb segment of the 5' untranslated region of the ICAM-1 gene was sufficient for X-ray induction of chloramphenicol acetyltransferase reporter gene expression. We measured whether ICAM-1 mediates adhesion of leukocyte to the irradiated endothelium and found that leukocyte adhesion occurred concurrently with ICAM-1 induction. Radiation-mediated leukocyte adhesion was prevented by anti-ICAM-1 blocking antibodies. These data indicate that ICAM-1 participates in the inflammatory response to ionizing radiation. Moreover, radiation induction of these CAMs occurs in the absence of tumor necrosis factor and interleukin 1 production. PMID:8912850

  10. Single Cell Adhesion Assay Using Computer Controlled Micropipette

    PubMed Central

    Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub