Science.gov

Sample records for cell cervical cancer

  1. Cervical Cancer

    MedlinePlus

    ... dysplasia of the cervix, vagina, or vulva • A family history of cervical cancer •Smoking •Certain sexually transmitted infections , such as chlamydia • ... to treat your cancer, you still need cervical cancer screening. Cells are taken from the upper vagina ... smallest units of a structure in the body; the building blocks for all ...

  2. Veliparib, Topotecan Hydrochloride, and Filgrastim or Pegfilgrastim in Treating Patients With Persistent or Recurrent Cervical Cancer

    ClinicalTrials.gov

    2016-03-25

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Small Cell Carcinoma; Cervical Squamous Cell Carcinoma; Recurrent Cervical Carcinoma; Stage III Cervical Cancer; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer

  3. Bevacizumab, Radiation Therapy, and Cisplatin in Treating Patients With Previously Untreated Locally Advanced Cervical Cancer

    ClinicalTrials.gov

    2014-09-22

    Cervical Adenocarcinoma; Cervical Adenosquamous Cell Carcinoma; Cervical Squamous Cell Carcinoma; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer

  4. FDG and FMISO PET Hypoxia Evaluation in Cervical Cancer

    ClinicalTrials.gov

    2015-06-03

    Cervical Adenocarcinoma; Cervical Squamous Cell Carcinoma; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer

  5. ADXS11-001 High Dose HPV+ Cervical Cancer

    ClinicalTrials.gov

    2016-06-17

    Effects of Immunotherapy; Metastatic/Recurrent Cervical Cancer; Cervical Adenocarcinoma; Cervical Adenosquamous Cell Carcinoma; Cervical Squamous Cell Carcinoma; Cervical Small Cell Carcinoma; Stage III Cervical Cancer; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer

  6. Decreased cervical cancer cell adhesion on nanotubular titanium for the treatment of cervical cancer

    PubMed Central

    Crear, Jara; Kummer, Kim M; Webster, Thomas J

    2013-01-01

    Cervical cancer can be treated by surgical resection, chemotherapy, and/or radiation. Titanium biomaterials have been suggested as a tool to help in the local delivery of chemotherapeutic agents and/or radiation to cervical cancer sites. However, current titanium medical devices used for treating cervical cancer do not by themselves possess any anticancer properties; such devices act as carriers for pharmaceutical agents or radiation sources and may even allow for the growth of cancer cells. Based on studies, which have demonstrated decreased lung, breast, and bone cancer cell functions on nanostructured compared to nanosmooth polymers, the objective of the present in vitro study was to modify titanium to possess nanotubular surface features and determine cervical cancer cell adhesion after 4 hours. Here, titanium was anodized to possess nanotubular surface features. Results demonstrated the ability to decrease cervical cancer cell adhesion by about a half on nanotubular compared to currently used nanosmooth titanium (without the use of chemotherapeutics or radiation), opening up numerous possibilities for the use of nanotubular titanium in local drug delivery or radiation treatment of cervical cancer. PMID:23493522

  7. Nanomechanical clues from morphologically normal cervical squamous cells could improve cervical cancer screening

    NASA Astrophysics Data System (ADS)

    Geng, Li; Feng, Jiantao; Sun, Quanmei; Liu, Jing; Hua, Wenda; Li, Jing; Ao, Zhuo; You, Ke; Guo, Yanli; Liao, Fulong; Zhang, Youyi; Guo, Hongyan; Han, Jinsong; Xiong, Guangwu; Zhang, Lufang; Han, Dong

    2015-09-01

    Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis.Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03662c

  8. MRI and PET Imaging in Predicting Treatment Response in Patients With Stage IB-IVA Cervical Cancer

    ClinicalTrials.gov

    2016-06-24

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma; Cervical Undifferentiated Carcinoma; Recurrent Cervical Carcinoma; Stage IB2 Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage IIIA Cervical Cancer; Stage IIIB Cervical Cancer; Stage IVA Cervical Cancer

  9. Radiation Therapy Plus Cisplatin and Gemcitabine in Treating Patients With Cervical Cancer

    ClinicalTrials.gov

    2014-12-23

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Small Cell Carcinoma; Cervical Squamous Cell Carcinoma; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer

  10. Cervical Cancer

    MedlinePlus

    ... the place where a baby grows during pregnancy. Cervical cancer is caused by a virus called HPV. The ... for a long time, or have HIV infection. Cervical cancer may not cause any symptoms at first. Later, ...

  11. Cervical cancer

    MedlinePlus

    ... and cervical cancer cannot be seen with the naked eye. Special tests and tools are needed to ... Pap smears and cervical cancer References Committee on Adolescent Health Care of the American College of Obstetricians ...

  12. Cisplatin and Radiation Therapy With or Without Tirapazamine in Treating Patients With Cervical Cancer

    ClinicalTrials.gov

    2014-06-18

    Cervical Adenocarcinoma; Cervical Adenosquamous Cell Carcinoma; Cervical Squamous Cell Carcinoma; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer

  13. Cetuximab, Cisplatin, and Radiation Therapy in Treating Patients With Stage IB, Stage II, Stage III, or Stage IVA Cervical Cancer

    ClinicalTrials.gov

    2014-12-29

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Small Cell Carcinoma; Cervical Squamous Cell Carcinoma; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer

  14. Nuclear expression of Rac1 in cervical premalignant lesions and cervical cancer cells

    PubMed Central

    2012-01-01

    Background Abnormal expression of Rho-GTPases has been reported in several human cancers. However, the expression of these proteins in cervical cancer has been poorly investigated. In this study we analyzed the expression of the GTPases Rac1, RhoA, Cdc42, and the Rho-GEFs, Tiam1 and beta-Pix, in cervical pre-malignant lesions and cervical cancer cell lines. Methods Protein expression was analyzed by immunochemistry on 102 cervical paraffin-embedded biopsies: 20 without Squamous Intraepithelial Lesions (SIL), 51 Low- grade SIL, and 31 High-grade SIL; and in cervical cancer cell lines C33A and SiHa, and non-tumorigenic HaCat cells. Nuclear localization of Rac1 in HaCat, C33A and SiHa cells was assessed by cellular fractionation and Western blotting, in the presence or not of a chemical Rac1 inhibitor (NSC23766). Results Immunoreacivity for Rac1, RhoA, Tiam1 and beta-Pix was stronger in L-SIL and H-SIL, compared to samples without SIL, and it was significantly associated with the histological diagnosis. Nuclear expression of Rac1 was observed in 52.9% L-SIL and 48.4% H-SIL, but not in samples without SIL. Rac1 was found in the nucleus of C33A and SiHa cells but not in HaCat cells. Chemical inhibition of Rac1 resulted in reduced cell proliferation in HaCat, C33A and SiHa cells. Conclusion Rac1 is expressed in the nucleus of epithelial cells in SILs and cervical cancer cell lines, and chemical inhibition of Rac1 reduces cellular proliferation. Further studies are needed to better understand the role of Rho-GTPases in cervical cancer progression. PMID:22443139

  15. Cisplatin and Radiation Therapy Followed by Paclitaxel and Carboplatin in Treating Patients With Stage IB-IVA Cervical Cancer

    ClinicalTrials.gov

    2016-03-16

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage IIIA Cervical Cancer; Stage IIIB Cervical Cancer; Stage IVA Cervical Cancer

  16. Chemoradiation Therapy and Ipilimumab in Treating Patients With Locally Advanced Cervical Cancer

    ClinicalTrials.gov

    2016-08-24

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma, Not Otherwise Specified; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage IIIB Cervical Cancer; Stage IVA Cervical Cancer

  17. Nivolumab in Treating Patients With Persistent, Recurrent, or Metastatic Cervical Cancer

    ClinicalTrials.gov

    2016-09-12

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma, Not Otherwise Specified; Recurrent Cervical Carcinoma; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer

  18. Cell membrane softening in human breast and cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  19. Risk of invasive cervical cancer after atypical glandular cells in cervical screening: nationwide cohort study

    PubMed Central

    Andrae, Bengt; Sundström, Karin; Ström, Peter; Ploner, Alexander; Elfström, K Miriam; Arnheim-Dahlström, Lisen; Dillner, Joakim; Sparén, Pär

    2016-01-01

    Objectives To investigate the risks of invasive cervical cancer after detection of atypical glandular cells (AGC) during cervical screening. Design Nationwide population based cohort study. Setting Cancer and population registries in Sweden. Participants 3 054 328 women living in Sweden at any time between 1 January 1980 and 1 July 2011 who had any record of cervical cytological testing at ages 23-59. Of these, 2 899 968 women had normal cytology results at the first screening record. The first recorded abnormal result was atypical glandular cells (AGC) in 14 625, high grade squamous intraepithelial lesion (HSIL) in 65 633, and low grade squamous intraepithelial lesions (LSIL) in 244 168. Main outcome measures Cumulative incidence of invasive cervical cancer over 15.5 years; proportion of invasive cervical cancer within six months of abnormality (prevalence); crude incidence rates for invasive cervical cancer over 0.5-15.5 years of follow-up; incidence rate ratios compared with women with normal cytology, estimated with Poisson regression adjusted for age and stratified by histopathology of cancer; distribution of clinical assessment within six months after the abnormality. Results The prevalence of cervical cancer was 1.4% for women with AGC, which was lower than for women with HSIL (2.5%) but higher than for women with LSIL (0.2%); adenocarcinoma accounted for 73.2% of the prevalent cases associated with AGC. The incidence rate of invasive cervical cancer after AGC was significantly higher than for women with normal results on cytology for up to 15.5 years and higher than HSIL and LSIL for up to 6.5 years. The incidence rate of adenocarcinoma was 61 times higher than for women with normal results on cytology in the first screening round after AGC, and remained nine times higher for up to 15.5 years. Incidence and prevalence of invasive cervical cancer was highest when AGC was found at ages 30-39. Only 54% of women with AGC underwent histology assessment

  20. Radiation Therapy and Cisplatin With or Without Epoetin Alfa in Treating Patients With Cervical Cancer and Anemia

    ClinicalTrials.gov

    2014-12-29

    Anemia; Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma; Drug Toxicity; Radiation Toxicity; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer

  1. Glycoprotein and Glycan in Tissue and Blood Samples of Patients With Stage IB-IVA Cervical Cancer Undergoing Surgery to Remove Pelvic and Abdominal Lymph Nodes

    ClinicalTrials.gov

    2016-02-19

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Small Cell Carcinoma; Cervical Squamous Cell Carcinoma; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer

  2. Cervical cancer.

    PubMed

    Koh, Wui-Jin; Greer, Benjamin E; Abu-Rustum, Nadeem R; Apte, Sachin M; Campos, Susana M; Chan, John; Cho, Kathleen R; Cohn, David; Crispens, Marta Ann; DuPont, Nefertiti; Eifel, Patricia J; Gaffney, David K; Giuntoli, Robert L; Han, Ernest; Huh, Warner K; Lurain, John R; Martin, Lainie; Morgan, Mark A; Mutch, David; Remmenga, Steven W; Reynolds, R Kevin; Small, William; Teng, Nelson; Tillmanns, Todd; Valea, Fidel A; McMillian, Nicole R; Hughes, Miranda

    2013-03-01

    These NCCN Clinical Practice Guidelines in Oncology for Cervical Cancer focus on early-stage disease, because it occurs more frequently in the United States. After careful clinical evaluation and staging, the primary treatment of early-stage cervical cancer is either surgery or radiotherapy. These guidelines include fertility-sparing and non-fertility-sparing treatment for those with early-stage disease, which is disease confined to the uterus. A new fertility-sparing algorithm was added for select patients with stage IA and IB1 disease.. PMID:23486458

  3. Carbon nanowall scaffold to control culturing of cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Watanabe, Hitoshi; Kondo, Hiroki; Okamoto, Yukihiro; Hiramatsu, Mineo; Sekine, Makoto; Baba, Yoshinobu; Hori, Masaru

    2014-12-01

    The effect of carbon nanowalls (CNWs) on the culturing rate and morphological control of cervical cancer cells (HeLa cells) was investigated. CNWs with different densities were grown using plasma-enhanced chemical vapor deposition and subjected to post-growth plasma treatment for modification of the surface terminations. Although the surface wettability of the CNWs was not significantly dependent on the CNW densities, the cell culturing rates were significantly dependent. Morphological changes of the cells were not significantly dependent on the density of CNWs. These results indicate that plasma-induced surface morphology and chemical terminations enable nanobio applications using carbon nanomaterials.

  4. Clinical implication of voltage-dependent anion channel 1 in uterine cervical cancer and its action on cervical cancer cells

    PubMed Central

    Wu, Chih-Hsien; Lin, Yu-Wen; Wu, Tzu-Fan; Ko, Jiunn-Liang; Wang, Po-Hui

    2016-01-01

    Two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry were performed to investigate the influence of human nonmetastatic clone 23 type 1 (nm23-H1), a metastasis-associated gene on proteomic alterations in cancer cells of the uterine cervix. It was validated by RT-PCR and Western blot analysis. The expression of voltage-dependent anion channel 1 (VDAC1) was increased in nm23-H1 gene silenced SiHa or CaSki cervical cancer cells. The clinical implication was shown that cervical cancer tissues with positive VDAC1 immunoreactivity exhibited deep stromal invasion (>10 mm in depth) and large tumor size (> 4 cm in diameter). Cervical cancer patients with positive VDAC1 immunoreactivity displayed higher recurrence and poorer overall survival than those with negative VDAC1. Silencing of VDAC1 reduced cell proliferation and migratory ability. Mitochondrial membrane potential was decreased and reactive oxygen species generation was increased in the VDAC1 gene-silenced cervical cancer cells. Cell cycle progression and autophagy were not changed in VDAC1 silencing cells. The cytotoxicity of cisplatin was significantly enhanced by knockdown of cellular VDAC1 and the compounds that interfere with hexokinase binding to VDAC. Therapeutic strategies may be offered using VDAC1 as a target to reduce cell growth and migration, enhance the synergistic therapeutic efficacy of cisplatin and reduce cisplatin dose-limiting toxicity. PMID:26716410

  5. Hiwi facilitates chemoresistance as a cancer stem cell marker in cervical cancer.

    PubMed

    Liu, Wei; Gao, Qing; Chen, Kunlun; Xue, Xiang; Li, Mu; Chen, Qian; Zhu, Gaixia; Gao, Ya

    2014-11-01

    Hiwi, also named PiwiL1, is a human homologue of the Piwi family which is associated with stem cells and is overexpressed in several types of cancers. In the present study, we aimed to investigate the role of Hiwi in cervical carcinogenesis. Immunochemical analysis showed a significantly higher frequency of Hiwi staining in high-grade squamous intraepithelial lesions (HSILs) and cervical cancer tissues when comparing with the frequency in normal cervices. Particularly, Hiwi staining was restricted to basal cells of the normal cervix and was associated with the progression of cervical cancer and chemotherapy resistance. We further found that ectopic Hiwi increased the chemical resistance in SiHa cells, and silencing of Hiwi in HeLa cells decreased the cell viability. In addition, as a cancer stem cell marker, Hiwi promoted the tumorsphere formation in vitro and tumorigenicity in vivo and elevated the expression of several stem cell self-renewal-associated transcription factors, in spite of inhibited the proliferation. These results suggest that Hiwi may participate in the carcinogenesis of cervical cancer and may be a potential therapeutic target molecule for cervical cancers. PMID:25119492

  6. Cervical Cancer Screening

    MedlinePlus

    ... cervical cancer in women aged 30–65 years. Human Immunodeficiency Virus (HIV): A virus that attacks certain cells of the body’s immune system and causes acquired immunodeficiency syndrome (AIDS). Human Papillomavirus ( ...

  7. Immunotherapy for Cervical Cancer

    Cancer.gov

    In an early phase NCI clinical trial, two patients with metastatic cervical cancer had a complete disappearance of their tumors after receiving treatment with a form of immunotherapy called adoptive cell transfer.

  8. High expression of prolactin receptor is associated with cell survival in cervical cancer cells

    PubMed Central

    2013-01-01

    Background The altered expression of prolactin (PRL) and its receptor (PRLR) has been implicated in breast and other types of cancer. There are few studies that have focused on the analysis of PRL/PRLR in cervical cancer where the development of neoplastic lesions is influenced by the variation of the hormonal status. The aim of this study was to evaluate the expression of PRL/PRLR and the effect of PRL treatment on cell proliferation and apoptosis in cervical cancer cell lines. Results High expression of multiple PRLR forms and PRLvariants of 60–80 kDa were observed in cervical cancer cell lines compared with non-tumorigenic keratinocytes evaluated by Western blot, immunofluorecence and real time PCR. Treatment with PRL (200 ng/ml) increased cell proliferation in HeLa cells determined by the MTT assay at day 3 and after 1 day a protective effect against etoposide induced apoptosis in HeLa, SiHa and C-33A cervical cancer cell lines analyzed by the TUNEL assay. Conclusions Our data suggests that PRL/PRLR signaling could act as an important survival factor for cervical cancer. The use of an effective PRL antagonist may provide a better therapeutic intervention in cervical cancer. PMID:24148306

  9. Cisplatin and Radiation Therapy With or Without Triapine in Treating Patients With Previously Untreated Stage IB-IVA Cervical Cancer or Stage II-IVA Vaginal Cancer

    ClinicalTrials.gov

    2016-03-25

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma; Stage IB2 Cervical Cancer; Stage II Vaginal Cancer; Stage IIA1 Cervical Cancer; Stage IIA2 Cervical Cancer; Stage IIB Cervical Cancer; Stage III Vaginal Cancer; Stage IIIA Cervical Cancer; Stage IIIB Cervical Cancer; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Vaginal Adenocarcinoma; Vaginal Adenosquamous Carcinoma; Vaginal Squamous Cell Carcinoma

  10. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    SciTech Connect

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  11. General Information about Cervical Cancer

    MedlinePlus

    ... Research Cervical Cancer Treatment (PDQ®)–Patient Version General Information About Cervical Cancer Go to Health Professional Version ... the NCI website . Cervical Cancer During Pregnancy General Information About Cervical Cancer During Pregnancy Treatment of cervical ...

  12. Lysophosphatidic Acid Inhibits Apoptosis Induced by Cisplatin in Cervical Cancer Cells

    PubMed Central

    Sui, Yanxia; Yang, Ya; Wang, Ji; Li, Yi; Ma, Hongbing; Cai, Hui; Liu, Xiaoping; Zhang, Yong; Wang, Shufeng; Li, Zongfang; Zhang, Xiaozhi; Wang, Jiansheng; Liu, Rui; Yan, Yanli; Xue, Chaofan; Shi, Xiaowei; Tan, Li; Ren, Juan

    2015-01-01

    Cervical cancer is the second most common cause of cancer death in women worldwide. Lysophosphatidic acid (LPA) level has been found significantly increased in the serum of patients with ovarian, cervical, and colon cancers. LPA level in cervical cancer patients is significantly higher than in healthy controls. LPA receptors were found highly expressed in cervical cancer cells, suggesting LPA may play a role in the development of cervical cancer. The aim of this study is to investigate the effect of LPA on the apoptosis induced by cisplatin (DDP) in cervical cancer cell line and the underlying changes in signaling pathways. Our study found that cisplatin induced apoptosis of Hela cell through inhibiting expression of Bcl-2, upregulating the expression of Bax, Fas-L, and the enzyme activity of caspase-3 (p < 0.05); LPA significantly provided protection against the apoptosis induced by cisplatin by inhibiting the above alterations in apoptotic factor caused by cisplatin (p < 0.05). Moreover, PI3K/AKT pathway was found to be important for the LPA antiapoptosis effect, and administration of PI3K/AKT partially reversed the LPA-mediated protection against cisplatin-induced apoptosis (p < 0.05). These findings have shed new lights on the LPA bioactivity in cervical cancer cells and pointed to a possible sensitization scheme through combined administration of PI3K inhibitor and cisplatin for better treatment of cervical cancer patients, especially those with elevated LPA levels. PMID:26366416

  13. Cervical cancer.

    PubMed

    Shepherd, John H

    2012-06-01

    Standard treatment for invasive cervical cancer involves either radical surgery or radiotherapy. Childbearing is therefore impossible after either of these treatments. A fertility-sparing option, however, by radical trachelectomy has been shown to be effective, provided that strict criteria for selection are followed. Fertility rates are high, whereas recurrence is low, indicating that a more conservative approach to dealing with early small cervical tumours is feasible. Careful preoperative assessment by magnetic resonance imaging scans allows accurate measurement of the tumour with precise definition to plan surgery. This will ensure an adequate clear margin by wide excision of the tumour excising the cervix by radical vaginal trachelectomy with surrounding para-cervical and upper vaginal tissues. An isthmic cerclage is inserted to provide competence at the level of the internal orifice. A primary vagino-isthmic anastomosis is conducted to restore continuity of the lower genital tract. Subsequent pregnancies require careful monitoring in view of the high risk of spontaneous premature rupture of the membranes. Delivery by classical caesarean section is necessary at the onset of labour or electively before term. Over 1100 such procedures have been carried out vaginally or abdominally, resulting in 240 live births. Radical vaginal trachelectomy with a laparoscopic pelvic-node dissection offers the least morbid and invasive route for surgery, provided that adequate surgical skills have been obtained. PMID:22353492

  14. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    SciTech Connect

    Samarzija, Ivana; Beard, Peter

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  15. Cervical Cancer Stage IVB

    MedlinePlus

    ... of the body, such as the lymph nodes, lung, liver, intestine, or bone. Stage IVB cervical cancer. Topics/Categories: Anatomy -- Gynecologic Cancer Types -- Cervical Cancer Staging Type: Color, Medical Illustration Source: National Cancer Institute ...

  16. STAT3/IRF1 Pathway Activation Sensitizes Cervical Cancer Cells to Chemotherapeutic Drugs.

    PubMed

    Walch-Rückheim, Barbara; Pahne-Zeppenfeld, Jennifer; Fischbach, Jil; Wickenhauser, Claudia; Horn, Lars Christian; Tharun, Lars; Büttner, Reinhard; Mallmann, Peter; Stern, Peter; Kim, Yoo-Jin; Bohle, Rainer Maria; Rübe, Christian; Ströder, Russalina; Juhasz-Böss, Ingolf; Solomayer, Erich-Franz; Smola, Sigrun

    2016-07-01

    Neoadjuvant radio/chemotherapy regimens can markedly improve cervical cancer outcome in a subset of patients, while other patients show poor responses, but may encounter severe adverse effects. Thus, there is a strong need for predictive biomarkers to improve clinical management of cervical cancer patients. STAT3 is considered as a critical antiapoptotic factor in various malignancies. We therefore investigated STAT3 activation during cervical carcinogenesis and its impact on the response of cervical cancer cells to chemotherapeutic drugs. Tyr705-phosphorylated STAT3 increased from low-grade cervical intraepithelial neoplasia (CIN1) to precancerous CIN3 lesions. Notably, pTyr705-STAT3 activation significantly declined from CIN3 to invasive cancer, also when compared in the same clinical biopsy. pTyr705-STAT3 was also low or absent in cultured human cervical cancer cell lines, consistent with the in vivo expression data. Unexpectedly, IL6-type cytokine signaling inducing STAT3 activation rendered cervical cancer cells significantly more susceptible to chemotherapeutic drugs, that is, cisplatin or etoposide. This chemosensitization was STAT3-dependent and we identified IFN regulatory factor-1 (IRF1) as the STAT3-inducible mediator required for cell death enhancement. In line with these data, pTyr705-STAT3 significantly correlated with nuclear IRF1 expression in cervical cancer in vivo Importantly, high IRF1 expression in pretreatment cervical cancer biopsy cells was associated with a significantly better response to neoadjuvant radio/chemotherapy of the patients. In summary, our study has identified a key role of the STAT3/IRF1 pathway for chemosensitization in cervical cancer. Our results suggest that pretherapeutic IRF1 expression should be evaluated as a novel predictive biomarker for neoadjuvant radio/chemotherapy responses. Cancer Res; 76(13); 3872-83. ©2016 AACR. PMID:27216197

  17. Clinical significance of Gremlin 1 in cervical cancer and its effects on cancer stem cell maintenance.

    PubMed

    Sato, Masakazu; Kawana, Kei; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Takahashi, Juri; Adachi, Katsuyuki; Nagasaka, Kazunori; Matsumoto, Yoko; Wada-Hiraike, Osamu; Oda, Katsutoshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-01-01

    Gremlin 1 is one of the bone morphogenetic protein (BMP) antagonists and is also related to differentiation in combination with BMPs and is associated with various types of diseases. Gremlin 1 is overexpressed in various types of human cancers and has been reported to play a role in cervical cancer oncogenesis. However, there is no report concerning the relationship between Gremlin 1 and cervical cancer stem cells (CSCs). The objective of the present study was to identify the clinical significance of Gremlin 1 in cervical cancer and its effects on CSC-like properties in vitro. Clinical samples were obtained. Gremlin 1 mRNA expression levels in the cervical cancer tissues were measured by RT-qPCR and assessed for correlation with their clinical prognosis [overall survival (OS), progression-free survival (PFS)] and with other prognostic factors. In vitro, cervical cancer, CaSki cells, exposed to Gremlin 1 (1,000 ng/ml) for 24 h were evaluated for expression of undifferentiated-cell markers (Nanog, Oct3/4, Sox2) by RT-qPCR, the population of ALDH-positive cells by flow cytometry and sphere-forming ability on a ultra-low attachment culture dish. Cervical cancer tissues from 104 patients were collected. A high mRNA expression level of Gremlin 1 was an independent poor prognostic factor of PFS but not of OS. A high mRNA expression level of Gremlin 1 was correlated with bulky (>4 cm) tumors. The Nanog mRNA expression level was significantly increased in the CaSki cells exposed to Gremlin 1 (P=0.0008) but not Oct3/4 and Sox2 mRNA expression levels. The population of ALDH-positive cells in the Gremlin 1-exposed cells was 1.41-fold higher compared with the control (P=0.0184). Sphere-forming ability was increased when 1,000 Gremlin 1-exposed cells were seeded (P=0.0379). In cervical cancer, it is suggested that Gremlin 1 may have a role in clinical recurrence and maintaining CSC-like properties. PMID:26530461

  18. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    PubMed Central

    2012-01-01

    Background Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. Methods In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. Results SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. Conclusion SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis. PMID:23050783

  19. Cervical Cancer Screening

    MedlinePlus

    ... Cancer found early may be easier to treat. Cervical cancer screening is usually part of a woman's health ... may do more tests, such as a biopsy. Cervical cancer screening has risks. The results can sometimes be ...

  20. Photodynamic Effects of Radachlorin® on Cervical Cancer Cells

    PubMed Central

    Bae, Su-Mi; Kim, Yong-Wook; Lee, Joon-Mo; Namkoong, Sung-Eun; Han, Sei-Jun; Kim, Jong-Ki; Lee, Chang-Hee; Chun, Heung-Jae; Jin, Hyun-Sun

    2004-01-01

    Purpose Photodynamic therapy (PDT) is a novel treatment modality, which produces local tissue necrosis with laser light following the prior administration of a photosensitizing agent. Radachlorin® has recently been shown to be a promising PDT sensitizer. In order to elucidate the antitumor effects of PDT using Radachlorin® on cervical cancer, growth inhibition studies on a HPV-associated tumor cell line, TC-1 cells in vitro and animals with an established TC-1 tumor in vivo were determined. Materials and Methods TC-1 tumor cells were exposed to various concentrations of Radachlorin® and PDT, with irradiation of 12.5 or 25 J/cm2 at an irradiance of 20 mW/cm2 using a Won-PDT D662 laser at 662 nm in vitro. C57BL/6 mice with TC-1 tumor were injected with Radachlorin® via different routes and treated with PDT in vivo. A growth suppression study was then used to evaluate the effects at various time points after PDT. Results The results showed that irradiation of TC-1 tumor cells in the presence of Radachlorin® induced significant cell growth inhibition. Animals with established TC-1 tumors exhibited significantly smaller tumor sizes over time when treated with Radachlorin® and irradiation. Conclusion PDT after the application of Radachlorin® appears to be effective against TC-1 tumors both in vitro and in vivo. PMID:20368834

  1. Biomarkers in Cervical Cancer

    PubMed Central

    Yim, Eun-Kyoung; Park, Jong-Sup

    2006-01-01

    Cervical cancer, a potentially preventable disease, remains the second most common malignancy in women worldwide. Human papillomavirus (HPV) is the single most important etiological agent in cervical cancer, contributing to neoplastic progression through the action of viral oncoproteins, mainly E6 and E7. Cervical screening programs using Pap smear testing have dramatically improved cervical cancer incidence and reduced deaths, but cervical cancer still remains a global health burden. The biomarker discovery for accurate detection and diagnosis of cervical carcinoma and its malignant precursors (collectively referred to as high-grade cervical disease) represents one of the current challenges in clinical medicine and cytopathology. PMID:19690652

  2. Oncogene ATAD2 promotes cell proliferation, invasion and migration in cervical cancer.

    PubMed

    Zheng, Le; Li, Tianren; Zhang, Yi; Guo, Yi; Yao, Jihang; Dou, Lei; Guo, Kejun

    2015-05-01

    The ATPase family AAA domain-containing protein 2 (ATAD2) is associated with many cellular processes, such as cell proliferation, invasion and migration. However, the molecular biological function of the ATAD2 gene in cervical cancer is unclear. The purpose of this study was to explore ATAD2 expression in cervical cancer, evaluate the relationship between the development of cervical cancer, metastasis and clinicopathological characteristics, and discuss the implications for its use in clinical treatment. Protein and mRNA expression of ATAD2 was examined in tissues and cell lines. Tumor tissues from 135 cases of cervical cancer were collected for evaluation of ATAD2 expression by immunohistochemistry and western blotting. Prognostic significance was evaluated by the Cox hazards model and Kaplan-Meier survival method. HeLa and SiHa cells were transfected with two siRNAs targeting ATAD2. ATAD2 knockdown was used to analyze cell proliferation, invasion and migration. Cell viability was evaluated with the Cell Counting Κit-8 (CCK-8) assay, cell invasion by a Transwell assay and cell migration by a wound healing/scratch migration assay. ATAD2 was shown to be highly expressed in cervical cancer tissues, both at the transcriptional and protein levels, and was correlated with poor patient survival (P<0.05). Knockdown of ATAD2 in the HeLa and SiHa cells was found to reduce the capacity for invasion and migration (P<0.05), and inhibited the growth and clonogenic potential of the HeLa and SiHa cell lines. Our results suggest that cervical cancer tissues may have highly expressed ATAD2, which is associated with tumor stage and lymph node status (P<0.05). Oncogene ATAD2 may play an important role in cervical cancer proliferation, invasion and migration. It could serve as a prognostic marker and a therapeutic target for cervical cancer. PMID:25813398

  3. Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Xueqin; Zhong, Yunxin; Ye, Ting; Wang, Dajing; Mao, Bingwei

    2015-12-01

    The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease.

  4. Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy.

    PubMed

    Zhao, Xueqin; Zhong, Yunxin; Ye, Ting; Wang, Dajing; Mao, Bingwei

    2015-12-01

    The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease. PMID:26666911

  5. Triapine With Chemotherapy and Radiation Therapy in Treating Patients With IB2-IVA Cervical or Vulvar Cancer

    ClinicalTrials.gov

    2016-07-19

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma, Not Otherwise Specified; Stage IB Vulvar Cancer; Stage IB2 Cervical Cancer; Stage II Vulvar Cancer; Stage IIA1 Cervical Cancer; Stage IIA2 Cervical Cancer; Stage IIB Cervical Cancer; Stage IIIA Cervical Cancer; Stage IIIA Vulvar Cancer; Stage IIIB Cervical Cancer; Stage IIIB Vulvar Cancer; Stage IIIC Vulvar Cancer; Stage IVA Cervical Cancer; Stage IVA Vulvar Cancer; Vulvar Adenocarcinoma; Vulvar Squamous Cell Carcinoma

  6. Cervical Cancer

    MedlinePlus

    ... Role in Cancer Research Intramural Research Extramural Research Bioinformatics and Cancer NCI-Designated Cancer Centers Frederick National ... Role in Cancer Research Intramural Research Extramural Research Bioinformatics and Cancer NCI-Designated Cancer Centers Frederick National ...

  7. HPV16 early gene E5 specifically reduces miRNA-196a in cervical cancer cells

    PubMed Central

    Liu, Chanzhen; Lin, Jianfei; Li, Lianqin; Zhang, Yonggang; Chen, Weiling; Cao, Zeyi; Zuo, Huancong; Chen, Chunling; Kee, Kehkooi

    2015-01-01

    High-risk human papillomavirus (HPV) type 16, which is responsible for greater than 50% of cervical cancer cases, is the most prevalent and lethal HPV type. However, the molecular mechanisms of cervical carcinogenesis remain elusive, particularly the early steps of HPV infection that may transform normal cervical epithelium into a pre-neoplastic state. Here, we report that a group of microRNAs (microRNAs) were aberrantly decreased in HPV16-positive normal cervical tissues, and these groups of microRNAs are further reduced in cervical carcinoma. Among these miRNAs, miR196a expression is the most reduced in HPV16-infected tissues. Interestingly, miR196a expression is low in HPV16-positive cervical cancer cell lines but high in HPV16-negative cervical cancer cell lines. Furthermore, we found that only HPV16 early gene E5 specifically down-regulated miRNA196a in the cervical cancer cell lines. In addition, HoxB8, a known miR196a target gene, is up-regulated in the HPV16 cervical carcinoma cell line but not in HPV18 cervical cancer cell lines. Various doses of miR196a affected cervical cancer cell proliferation and apoptosis. Altogether, these results suggested that HPV16 E5 specifically down-regulates miR196a upon infection of the human cervix and initiates the transformation of normal cervix cells to cervical carcinoma. PMID:25563170

  8. Cervical Cancer Stage IA

    MedlinePlus

    ... historical Searches are case-insensitive Cervical Cancer Stage IA Add to My Pictures View /Download : Small: 720x576 ... Large: 3000x2400 View Download Title: Cervical Cancer Stage IA Description: Stage IA1 and IA2 cervical cancer; drawing ...

  9. Knockdown of Pentraxin 3 suppresses tumorigenicity and metastasis of human cervical cancer cells

    PubMed Central

    Ying, Tsung-Ho; Lee, Chien-Hsing; Chiou, Hui-Ling; Yang, Shun-Fa; Lin, Chu-Liang; Hung, Chia-Hung; Tsai, Jen-Pi; Hsieh, Yi-Hsien

    2016-01-01

    Pentraxin 3 (PTX3) as an inflammatory molecule has been shown to be involved in immune response, inflammation, and cancer. However, the effects of PTX3 on the biological features of cervical cancer cells in vitro and in vivo have not been delineated. Immunohistochemical staining showed that increased PTX3 expression was significantly associated with tumor grade (P < 0.011) and differentiation (P < 0.019). Knocking down PTX3 with lentivirus-mediated small hairpin RNA (shRNA) in cervical cancer cell lines resulted in inhibited cell viability, diminished colony-forming ability, and induced cell cycle arrest at the G2/M phase of the cell cycle, along with downregulated expression of cyclin B1, cdc2, and cdc25c, and upregulated expression of p-cdc2, p-cdc25c, p21, and p27. Furthermore, knockdown of PTX3 significantly decreased the potential of migration and invasion of cervical cancer cells by inhibiting matrix metalloproteidase-2 (MMP-2), MMP-9, and urokinase plasminogen activator (uPA). Moreover, in vivo functional studies showed PTX3-knockdown in mice suppressed tumorigenicity and lung metastatic potential. Conversely, overexpression of PTX3 enhanced proliferation and invasion both in vitro and in vivo. Our results demonstrated that PTX3 contributes to tumorigenesis and metastasis of human cervical cancer cells. Further studies are warranted to demonstrate PTX3 as a novel therapeutic biomarker for human cervical cancer. PMID:27377307

  10. TRIM29 regulates the p63-mediated pathway in cervical cancer cells.

    PubMed

    Masuda, Yasushi; Takahashi, Hidehisa; Hatakeyama, Shigetsugu

    2015-10-01

    Cell invasion and adhesion play an important role in cancer metastasis and are orchestrated by a complicated network of transcription factors including p63. Here, we show that a member of the tripartite motif protein family, TRIM29, is required for regulation of the p63-mediated pathway in cervical cancer cells. TRIM29 knockdown alters the adhesion and invasion activities of cervical cancer cells. TRIM29 knockdown and overexpression cause a significant decrease and increase of TAp63α expression, respectively. TRIM29 knockdown alters the expression pattern of integrins and increases ZEB1 expression. TRIM29 is required for suppression of an increase in the adhesion activity of cells by TAp63α. These findings suggest that TRIM29 regulates the p63-mediated pathway and the behavior of cervical cancer cells. PMID:26071105

  11. Spheres from cervical cancer cells display stemness and cancer drug resistance

    PubMed Central

    Liu, Huan; Wang, Haijuan; Li, Chunxiao; Zhang, Tingting; Meng, Xiting; Zhang, Ying; Qian, Haili

    2016-01-01

    Cervical cancer is one of the most common gynecological malignant tumors and is the cause of a serious health problem worldwide. An increasing amount of evidence has shown that cancer stem cells (CSCs) are present in tumors, and that these CSCs may be responsible for tumor metastasis and relapse. The present study aimed to identify and characterize a CSC population from the CaSki cell line. First, a stem cell culture medium was used to selectively expand the cancer stem-like cell spheres, and the putative stemness markers, Oct4 and Sox2, were identified. These markers were all highly expressed in the CaSki sphere-forming cells. Next, target region amplified polymorphism-polymerase chain reaction was performed and the CaSki sphere-forming cells were found to exhibit higher telomerase activity than the CaSki control cells cultured in non-stem cell medium. Using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, it was found that the CaSki sphere-forming cells were more resistant to chemotherapeutic drugs than the control CaSki cells. Using the tumor invasive assay, it was shown that the CaSki sphere-forming cells were more invasive than the control CaSki cells. These characteristics all suggested that the tumor sphere-forming cells mirrored the acknowledged CSC phenotypes. Overall, the use of a suspended sphere culture of CaSki cells may be an easy and feasible approach for enriching cancer stem-like cells in cervical cancer research. PMID:27602161

  12. Trichostatin A Enhances the Apoptotic Potential of Palladium Nanoparticles in Human Cervical Cancer Cells.

    PubMed

    Zhang, Xi-Feng; Yan, Qi; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Cervical cancer ranks seventh overall among all types of cancer in women. Although several treatments, including radiation, surgery and chemotherapy, are available to eradicate or reduce the size of cancer, many cancers eventually relapse. Thus, it is essential to identify possible alternative therapeutic approaches for cancer. We sought to identify alternative and effective therapeutic approaches, by first synthesizing palladium nanoparticles (PdNPs), using a novel biomolecule called saponin. The synthesized PdNPs were characterized by several analytical techniques. They were significantly spherical in shape, with an average size of 5 nm. Recently, PdNPs gained much interest in various therapies of cancer cells. Similarly, histone deacetylase inhibitors are known to play a vital role in anti-proliferative activity, gene expression, cell cycle arrest, differentiation and apoptosis in various cancer cells. Therefore, we selected trichostatin A (TSA) and PdNPs and studied their combined effect on apoptosis in cervical cancer cells. Cells treated with either TSA or PdNPs showed a dose-dependent effect on cell viability. The combinatorial effect, tested with 50 nM TSA and 50 nMPdNPs, had a more dramatic inhibitory effect on cell viability, than either TSA or PdNPs alone. The combination of TSA and PdNPs had a more pronounced effect on cytotoxicity, oxidative stress, mitochondrial membrane potential (MMP), caspase-3/9 activity and expression of pro- and anti-apoptotic genes. Our data show a strong synergistic interaction between TSA and PdNPs in cervical cancer cells. The combinatorial treatment increased the therapeutic potential and demonstrated relevant targeted therapy for cervical cancer. Furthermore, we provide the first evidence for the combinatory effect and cytotoxicity mechanism of TSA and PdNPs in cervical cancer cells. PMID:27548148

  13. Trichostatin A Enhances the Apoptotic Potential of Palladium Nanoparticles in Human Cervical Cancer Cells

    PubMed Central

    Zhang, Xi-Feng; Yan, Qi; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Cervical cancer ranks seventh overall among all types of cancer in women. Although several treatments, including radiation, surgery and chemotherapy, are available to eradicate or reduce the size of cancer, many cancers eventually relapse. Thus, it is essential to identify possible alternative therapeutic approaches for cancer. We sought to identify alternative and effective therapeutic approaches, by first synthesizing palladium nanoparticles (PdNPs), using a novel biomolecule called saponin. The synthesized PdNPs were characterized by several analytical techniques. They were significantly spherical in shape, with an average size of 5 nm. Recently, PdNPs gained much interest in various therapies of cancer cells. Similarly, histone deacetylase inhibitors are known to play a vital role in anti-proliferative activity, gene expression, cell cycle arrest, differentiation and apoptosis in various cancer cells. Therefore, we selected trichostatin A (TSA) and PdNPs and studied their combined effect on apoptosis in cervical cancer cells. Cells treated with either TSA or PdNPs showed a dose-dependent effect on cell viability. The combinatorial effect, tested with 50 nM TSA and 50 nMPdNPs, had a more dramatic inhibitory effect on cell viability, than either TSA or PdNPs alone. The combination of TSA and PdNPs had a more pronounced effect on cytotoxicity, oxidative stress, mitochondrial membrane potential (MMP), caspase-3/9 activity and expression of pro- and anti-apoptotic genes. Our data show a strong synergistic interaction between TSA and PdNPs in cervical cancer cells. The combinatorial treatment increased the therapeutic potential and demonstrated relevant targeted therapy for cervical cancer. Furthermore, we provide the first evidence for the combinatory effect and cytotoxicity mechanism of TSA and PdNPs in cervical cancer cells. PMID:27548148

  14. Drugs Approved for Cervical Cancer

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Cervical Cancer This page lists cancer ... in cervical cancer that are not listed here. Drugs Approved to Prevent Cervical Cancer Cervarix (Recombinant HPV ...

  15. Cervical cancer - screening and prevention

    MedlinePlus

    Cancer cervix - screening; HPV - cervical cancer screening; Dysplasia - cervical cancer screening ... Almost all cervical cancers are caused by HPV (human papilloma virus). HPV is a common virus that spreads through sexual contact. Certain types ...

  16. Studying the Physical Function and Quality of Life Before and After Surgery in Patients With Stage I Cervical Cancer

    ClinicalTrials.gov

    2016-02-09

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma; Lymphedema; Sexual Dysfunction and Infertility; Stage IA1 Cervical Cancer; Stage IA2 Cervical Cancer; Stage IB1 Cervical Cancer

  17. miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells

    SciTech Connect

    Zhang, Jie; Zheng, Fangxia; Yu, Gang; Yin, Yanhua; Lu, Qingyang

    2013-11-01

    Highlights: •miR-196a was overexpressed in cervical cancer tissue compared to normal tissue. •miR-196a expression elevated proliferation and migration of cervical cancer cells. •miR-196a inhibited NTN4 expression by binding 3′-UTR region of NTN4 mRNA. •NTN4 inversely correlated with miR-196a expression in cervical tissue and cell line. •NTN4 expression was low in cervical cancer tissue compared to normal tissue. -- Abstract: Recent research has uncovered tumor-suppressive and oncogenic potential of miR-196a in various tumors. However, the expression and mechanism of its function in cervical cancer remains unclear. In this study, we assess relative expression of miR-196a in cervical premalignant lesions, cervical cancer tissues, and four cancer cell lines using quantitative real-time PCR. CaSki and HeLa cells were treated with miR-196a inhibitors, mimics, or pCDNA/miR-196a to investigate the role of miR-196a in cancer cell proliferation and migration. We demonstrated that miR-196a was overexpressed in cervical intraepithelial neoplasia 2–3 and cervical cancer tissue. Moreover, its expression contributes to the proliferation and migration of cervical cancer cells, whereas inhibiting its expression led to a reduction in proliferation and migration. Five candidate targets of miR-196a chosen by computational prediction and Cervical Cancer Gene Database search were measured for their mRNA in both miR-196a-overexpressing and -depleted cancer cells. Only netrin 4 (NTN4) expression displayed an inverse association with miR-196a. Fluorescent reporter assays revealed that miR-196a inhibited NTN4 expression by targeting one binding site in the 3′-untranslated region (3′-UTR) of NTN4 mRNA. Furthermore, qPCR and Western blot assays verified NTN4 expression was downregulated in cervical cancer tissues compared to normal controls, and in vivo mRNA level of NTN4 inversely correlated with miR-196a expression. In summary, our findings provide new insights about the

  18. IL-10 expression is regulated by HPV E2 protein in cervical cancer cells.

    PubMed

    Bermúdez-Morales, V H; Peralta-Zaragoza, O; Alcocer-González, J M; Moreno, J; Madrid-Marina, V

    2011-01-01

    It has been found that certain cytokines (IL-4, IL-10 and TGF-β1) are highly expressed locally in biopsies from patients with premalignant lesions and cervical cancer, and may induce a local immune-suppression state. In particular, IL-10 is highly expressed in tumor cells and its expression is directly proportional to the development of HPV-positive cervical cancer, suggesting an important role of HPV proteins in the expression of IL-10. In fact, we demonstrated that E6 and E7 HPV proteins regulate TGF-β1 gene expression in cervical cancer cells. Here, we found by band shifting analysis that the HPV E2 protein binds to the regulatory region of the human IL-10 gene (-2054 nt) and induces high promoter activity in epithelial cells. Additionally, cervical cancer cells transfected to express the HPV E2 protein induce elevated levels of IL-10 mRNA in human papillomavirus-infected cells. The elevated expression of IL-10 may allow for virus persistency, the transformation of cervical epithelial cells, and consequently cancer development. PMID:21468579

  19. Chemokine CCL17 induced by hypoxia promotes the proliferation of cervical cancer cell

    PubMed Central

    Liu, Li-Bing; Xie, Feng; Chang, Kai-Kai; Shang, Wen-Qing; Meng, Yu-Han; Yu, Jia-Jun; Li, Hui; Sun, Qian; Yuan, Min-Min; Jin, Li-Ping; Li, Da-Jin; Li, Ming-Qing

    2015-01-01

    Cervical cancer is often associated with hypoxia and many kinds of chemokines. But the relationship and role of hypoxia and Chemokine (C-C motif) ligand 17 (CCL17) in cervical cancer are still unknown. Here, we found that CCL17 was high expressed in cervical cancer. HeLa and SiHa cells could secrete CCL17 in a time-dependent manner. Hypoxia increased expression of CCL17 receptor (CCR4) on HeLa and SiHa cells. Treatment with recombination human CCL17 (rhCCL17) led to an elevation of cell proliferation in HeLa and SiHa cells in a dose-dependent manner. In contrast, blocking CCL17 with anti-human CCL17 neutralizing antibody (α-CCL17) played an oppose effect. However, rhCCL17 had no effect on apoptosis in cervical cancer cells. Further analysis showed that hypoxia promoted the proliferation of HeLa and SiHa cells, and these effects could be reversed by α-CCL17. Stimulation with the inhibitor for c-Jun N-terminal kinase (JNK) or signal transducers and activator of transcription 5 (STAT5) signal pathway not only directly decreased the proliferation of HeLa and SiHa cells, but also abrogated the stimulatory effect of rhCCL17 on the proliferation of HeLa and SiHa cells. These results suggest that a high level of CCL17 in cervical cancer lesions is an important regulator in the proliferation of cervical cancer cells through JNK and STAT5 signaling pathways. In this process, hypoxia magnifies this effect by up-regulating CCR4 expression and strengthening the interaction of CCL17/CCR4. PMID:26693060

  20. Cervical Cancer

    MedlinePlus

    ... Centers for Disease Control and Prevention’s (CDC) Inside Knowledge: Get the Facts About Gynecologic Cancer campaign. The ... the facts about gynecologic cancer, providing important “inside knowledge” about their bodies and health. Get the Facts ...

  1. Cisplatin and Radiation Therapy With or Without Carboplatin and Paclitaxel in Patients With Locally Advanced Cervical Cancer

    ClinicalTrials.gov

    2016-03-17

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma; Chemotherapeutic Agent Toxicity; Cognitive Side Effects of Cancer Therapy; Psychological Impact of Cancer; Radiation Toxicity; Sexual Dysfunction and Infertility; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer

  2. Cervical Cancer Stage IIIB

    MedlinePlus

    ... Cancer Stage IIIB Description: Stage IIIB cervical cancer; drawing shows cancer in the cervix, the vagina, and ... that connect the kidneys to the bladder). The drawing shows the ureter on the right blocked by ...

  3. Vascular endothelial growth factor C enhances cervical cancer cell invasiveness via upregulation of galectin-3 protein.

    PubMed

    Liu, Junxiu; Cheng, Yang; He, Mian; Yao, Shuzhong

    2014-06-01

    Vascular endothelial growth factor C (VEGF-C) promotes cervical cancer metastasis, while the detailed mechanism remains obscure. Recent evidence shows that galectin-3 (Gal-3), a glycan binding protein, interacts with the VEGF receptors and reinforces their signal transduction. In this study, we investigated the role of Gal-3 in VEGF-C-induced cervical cancer cell invasion. On cervical carcinoma cell line SiHa cells, silencing of Gal-3 expression with specific siRNA largely impaired VEGF-C-enhanced cell invasion. Treatment with VEGF-C for 12-48 h enhanced Gal-3 protein expression, which was inhibited by the addition of NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). Moreover, the silencing of NF-κB subunit p65 expression with specific siRNA attenuated VEGF-C-enhanced Gal-3 expression, suggesting that NF-κB is the key intermediate. Under VEGF-C stimulation, an enhanced interaction between VEGF receptor-3 (VEGF-R3) and Gal-3 was found, which may possibly lead to VEGF-R3 activation since exogenous Gal-3 induced VEGF-R3 phosphorylation in a dose- and time-dependent manner. In conclusion, our findings implied that VEGF-C enhanced cervical cancer invasiveness via upregulation of Gal-3 protein through NF-κB pathway, which may shed light on potential therapeutic strategies for cervical cancer therapy. PMID:24650367

  4. RBBP6: a potential biomarker of apoptosis induction in human cervical cancer cell lines

    PubMed Central

    Moela, Pontsho; Motadi, Lesetja Raymond

    2016-01-01

    Overexpression of RBBP6 in cancers of the colon, lung, and esophagus makes it a potential target in anticancer therapy. This is especially important because RBBP6 associates with the tumor suppressor gene p53, the inactivation of which has been linked to over 50% of all cancer types. However, the expression of RBBP6 in cancer and its interaction with p53 are yet to be understood in order to determine whether or not RBBP6 is cancer promoting and therefore a potential biomarker. In this study, we manipulated RBBP6 expression levels followed by treatment with either camptothecin or γ-aminobutyric acid in cervical cancer cells to induce apoptosis or cell cycle arrest. We began by staining human cervical cancer tissue sections with anti-RBBP6 monoclonal antibody to evaluate the extent of expression of RBBP6 in patients’ specimens. We followed on with silencing the overexpression of RBBP6 and treatment with anticancer agents to evaluate how the specimens respond to combinational therapy. Apoptosis induction was evaluated through confocal microscope, and flow cytometry using annexin V staining, and also by checking the mitochondrial and caspase-3/7 activity. Cell cycle arrest was evaluated using flow cytometry through staining with propidium iodide. RBBP6 was highly expressed in cervical cancer tissue sections that were in stage II or III of development. Silencing RBBP6 followed by treatment with γ-aminobutyric acid and camptothecin seems to sensitize cells to apoptosis induction rather than cell cycle arrest. Overexpression of RBBP6 seems to promote S-phase in cell cycle and cell proliferation. These results predict a proliferative role of RBBP6 in cancer progression rather than as a cancer-causing gene. Furthermore, sensitization of cells to camptothecin-induced apoptosis by RBBP6 targeting suggests a promising tool for halting cervical cancer progression. PMID:27536134

  5. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells.

    PubMed

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, M L B; Mishra, Durga Prasad

    2015-12-22

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer. PMID:26621832

  6. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells

    PubMed Central

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, Madan L.B.; Mishra, Durga Prasad

    2015-01-01

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer. PMID:26621832

  7. Cervical cancer

    MedlinePlus

    ... eye. Special tests and tools are needed to spot such conditions: A Pap smear screens for precancers and cancer, but does not make a final diagnosis. The human papillomavirus (HPV) DNA test may be ...

  8. Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer

    NASA Astrophysics Data System (ADS)

    Dokukin, M. E.; Guz, N. V.; Woodworth, C. D.; Sokolov, I.

    2015-03-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation.

  9. Emerging of fractal geometry on surface of human cervical epithelial cells during progression towards cancer

    PubMed Central

    Dokukin, M. E.; Guz, N. V.; Woodworth, C.D.; Sokolov, I.

    2015-01-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation. PMID:25844044

  10. Doxycycline inhibits proliferation and induces apoptosis of both human papillomavirus positive and negative cervical cancer cell lines.

    PubMed

    Zhao, Yan; Wang, Xinyu; Li, Lei; Li, Changzhong

    2016-05-01

    The clinical management of cervical cancer remains a challenge and the development of new treatment strategies merits attention. However, the discovery and development of novel compounds can be a long and labourious process. Drug repositioning may circumvent this process and facilitate the rapid translation of hypothesis-driven science into the clinics. In this work, we show that a FDA-approved antibiotic, doxycycline, effectively targets human papillomavirus (HPV) positive and negative cervical cancer cells in vitro and in vivo. Doxycycline significantly inhibits proliferation of a panel of cervical cancer cell lines. It also induces apoptosis of cervical cancer cells in a time- and dose-dependent manner. In addition, the apoptosis induced by doxycycline is through caspase-dependent pathway. Mechanism studies demonstrate that doxycycline affects oxygen consumption rate, glycolysis, and reduces ATP levels in cervical cancer cells. In HeLa xenograft mouse model, doxycycline significantly inhibits growth of tumour. Our in vitro and in vivo data clearly demonstrate the inhibitory effects of doxycycline on the growth and survival of cervical cancer cells. Our work provides the evidence that doxycycline can be repurposed for the treatment of cervical cancer and targeting energy metabolism may represent a potential therapeutic strategy for cervical cancer. PMID:26913972

  11. Statins Inhibit the Proliferation and Induce Cell Death of Human Papilloma Virus Positive and Negative Cervical Cancer Cells

    PubMed Central

    Crescencio, María Elena; Rodríguez, Emma; Páez, Araceli; Masso, Felipe A.; Montaño, Luis F.; López-Marure, Rebeca

    2009-01-01

    Statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, have anti-tumoral effects on multiple cancer types; however, little is known about their effect on cervical cancer. We evaluated the effect on proliferation, cell cycle, oxidative stress and cell death of three statins on CaSki, HeLa (HPV+) and ViBo (HPV−) cervical cancer cell lines. Cell proliferation was assayed by crystal violet staining, cell cycle by flow cytometry and cell death by annexin-V staining. Reactive oxygen species (ROS) production was evaluated by the oxidation of 2,7-dichlorofluorescein diacetate and nitrite concentration (an indirect measure of nitric oxide (NO) production), by the Griess reaction. Inhibition of cell proliferation by atorvastatin, fluvastatin and simvastatin was dose-dependent. ViBo cells were the most responsive. Statins did not affect the cell cycle, instead they induced cell death. The antiproliferative effect in ViBo cells was completely inhibited with mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) treatments. In contrast, cell proliferation of CaSki and HeLa cells was partially (33%) rescued with these intermediates. The three statins increased ROS and nitrite production, mainly in the ViBo cell line. These results suggest that statins exert anti-tumoral effects on cervical cancer through inhibition of cell proliferation and induction of cell death and oxidative stress. Statins could be an aid in the treatment of cervical cancer, especially in HPV− tumors. PMID:23675166

  12. Curcumin and Emodin Down-Regulate TGF-β Signaling Pathway in Human Cervical Cancer Cells

    PubMed Central

    Thacker, Pooja Chandrakant; Karunagaran, Devarajan

    2015-01-01

    Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling) and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug) upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer. PMID:25786122

  13. Down-regulation of phospho-non-receptor Src tyrosine kinases contributes to growth inhibition of cervical cancer cells.

    PubMed

    Kong, Lu; Deng, Zhihong; Zhao, Yanzhong; Wang, Yamei; Sarkar, Fazlul H; Zhang, Yuxiang

    2011-12-01

    Non-receptor Src tyrosine kinases (nrTKs) are overexpressed in a variety of human tumors, including cancer of the colon, breast, and pancreas, and their inhibitors are under intensive investigations as novel anti-tumor agents. However, these studies are not clear in the case of cervical cancer. Therefore, we studied the role of nrTKs and their inhibitors in the cervical cancer. The expression level of phospho-SrcY416 (pSrcY416) in several cervical cancer cell lines, normal cervical tissues, and cervical cancer tissues have been examined, and it has also been done whether PP2, an inhibitor of Src kinase, can inhibit the growth of cervical cells in vitro and in vivo. Immunohistochemical and confocal microscope studies suggested that pSrcY416 is overexpressed in HeLa and SiHa cells, as well as in the clinical cervical cancer tissues, compared to the normal cervical tissues. Down-regulation of pSrcY416 inhibited the cell proliferation by increasing the HeLa or SiHa cell population in the G0-G1 phase or S phase, respectively. Down-regulation of pSrcY416 led to up-regulation of p21Cip1 and p27Kip1 in both HeLa and SiHa cells and decreased the expression of cyclin A1, cyclin E, and cyclin-dependent kinase-2,-6 (CDK-2,-6) in HeLa cells and of cyclin B and CDK-2 in SiHa cells. Nude mice xenograft data showed that PP2 inhibited subcutaneous tumor growth significantly (P<0.05, compared with the control). Down-regulation of pSrcY416 contributes to cell growth inhibition in cervical cancer cells. nrTKs could therefore be a novel therapeutic targets for the treatment of cervical cancer. PMID:20532678

  14. Cervical Cancer

    MedlinePlus

    ... part of your uterus (womb). What is a Pap smear? A Pap smear is a test your doctor does to check ... a series of changes. The results of your Pap smear can show whether your cells are going through ...

  15. PDGF beta targeting in cervical cancer cells suggest a fine-tuning of compensatory signalling pathways to sustain tumourigenic stimulation

    PubMed Central

    Tudoran, Oana Mihaela; Soritau, Olga; Balacescu, Loredana; Pop, Laura; Meurice, Guillaume; Visan, Simona; Lindberg, Staffan; Eniu, Alexandru; Langel, Ulo; Balacescu, Ovidiu; Berindan-Neagoe, Ioana

    2015-01-01

    The platelet-derived growth factor (PDGF) signalling pathway has been reported to play an important role in human cancers by modulating autocrine and paracrine processes such as tumour growth, metastasis and angiogenesis. Several clinical trials document the benefits of targeting this pathway; however, in cervical cancer the role of PDGF signalling in still unclear. In this study, we used siRNA against PDGF beta (PDGFBB) to investigate the cellular and molecular mechanisms of PDGFBB signalling in Ca Ski and HeLa cervical cancer cells. Our results show that PDGFBB inhibition in Ca Ski cells led to rapid alterations of the transcriptional pattern of 579 genes, genes that are known to have antagonistic roles in regulating tumour progression. Concomitantly, with the lack of significant effects on cervical cancer cells proliferation, apoptosis, migration or invasion, these findings suggests that cervical cancer cells shift between compensatory signalling pathways to maintain their behaviour. The observed autocrine effects were limited to cervical cancer cells ability to adhere to an endothelial cell (EC) monolayer. However, by inhibiting PDGFBB on cervical cells, we achieved reduced proliferation of ECs in co-culture settings and cellular aggregation in conditioned media. Because of lack of PDGF receptor expression on ECs, we believe that these effects are a result of indirect PDGFBB paracrine signalling mechanisms. Our results shed some light into the understanding of PDGFBB signalling mechanism in cervical cancer cells, which could be further exploited for the development of synergistic anti-tumour and anti-angiogenic therapeutic strategies. PMID:25311137

  16. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7

    SciTech Connect

    Zhou, Chuanyi; Shen, Liangfang; Mao, Lei; Wang, Bing; Li, Yang; Yu, Huizhi

    2015-02-27

    MicroRNAs (miRNAs) are involved in the cervical carcinogenesis and progression. In this study, we investigated the role of miR-92a in progression and invasion of cervical cancer. MiR-92a was significantly upregulated in cervical cancer tissues and cell lines. Overexpression of miR-92a led to remarkably enhanced proliferation by promoting cell cycle transition from G1 to S phase and significantly enhanced invasion of cervical cancer cells, while its knockdown significantly reversed these cellular events. Bioinformatics analysis suggested F-box and WD repeat domain-containing 7 (FBXW7) as a novel target of miR-92a, and miR-92a suppressed the expression level of FBXW7 mRNA by direct binding to its 3′-untranslated region (3′UTR). Expression of miR-92a was negatively correlated with FBXW7 in cervical cancer tissues. Furthermore, Silencing of FBXW7 counteracted the effects of miR-92a suppression, while its overexpression reversed oncogenic effects of miR-92a. Together, these findings indicate that miR-92a acts as an onco-miRNA and may contribute to the progression and invasion of cervical cancer, suggesting miR-92a as a potential novel diagnostic and therapeutic target of cervical cancer. - Highlights: • miR-92a is elevated in cervical cancer tissues and cell lines. • miR-92a promotes cervical cancer cell proliferation, cell cycle transition from G1 to S phase and invasion. • FBXW7 is a direct target of miR-92a. • FBXW7 counteracts the oncogenic effects of miR-92a on cervical cancer cells.

  17. Xanthohumol Induces Growth Inhibition and Apoptosis in Ca Ski Human Cervical Cancer Cells

    PubMed Central

    2015-01-01

    We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50 values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer. PMID:25949267

  18. Fludeoxyglucose F 18 PET Scan, CT Scan, and Ferumoxtran-10 MRI Scan Before Chemotherapy and Radiation Therapy in Finding Lymph Node Metastasis in Patients With Locally Advanced Cervical Cancer or High-Risk Endometrial Cancer

    ClinicalTrials.gov

    2015-11-09

    Cervical Adenocarcinoma; Cervical Adenosquamous Cell Carcinoma; Cervical Small Cell Carcinoma; Cervical Squamous Cell Carcinoma; Endometrial Clear Cell Carcinoma; Endometrial Papillary Serous Carcinoma; Stage I Endometrial Carcinoma; Stage IB Cervical Cancer; Stage II Endometrial Carcinoma; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage III Endometrial Carcinoma; Stage IVA Cervical Cancer

  19. GRIM-19 Restores Cervical Cancer Cell Senescence by Repressing hTERT Transcription.

    PubMed

    Zhou, Ying; Xu, Fei; Tao, Feng; Feng, Dingqing; Ling, Bin; Qian, Lili; Yang, Xia; Wang, Qingyuan; Wang, Huiyan; Zhao, Weidong; Cheng, Yong; Shan, Ge; Kalvakolanu, Dhan V; Xiao, Weihua

    2016-08-01

    High telomerase activity promotes tumor growth by stabilizing damaged chromosomes and their mitotic replication. Overactivation of telomerase activity has been reported in cervical cancer, a malignancy caused by high-risk human papillomaviruses (HR-HPVs). The HR-HPV E6 can activate hTERT promoter by interacting with E6AP or other binding proteins and by stabilizing the interaction between hTERT and E6AP. GRIM-19 is a novel tumor suppressor that affects multiple targets in a cell to regulate growth. We have previously reported the interaction of GRIM-19 with 18E6 and E6AP to disrupt the E6/E6AP complex and increase the autoubiquitination of E6AP. In this study, we characterized the interaction of GRIM-19 with 16E6 (an oncoprotein produced by HPV16) and identified the binding sites that mediate this interaction. We also found that GRIM-19 expression in cervical cancer cells could inhibit telomerase activity by inhibiting the transactivation of the hTERT promoter by E6, thereby promoting cervical cancer cell senescence. Moreover, we identified a negative correlation between GRIM-19 and hTERT expression in cervical cancer tissues. Suppression of GRIM-19 and induction of hTERT levels were associated with lymph node metastasis, advanced clinical stage, and poor prognosis. This study identified another important novel antitumor molecular link associated with GRIM-19 in the tumorigenesis. PMID:27142689

  20. In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells.

    PubMed

    Alcocer-González, Juan Manuel; Berumen, Jaime; Taméz-Guerra, Reyes; Bermúdez-Morales, Víctor; Peralta-Zaragoza, Oscar; Hernández-Pando, Rogelio; Moreno, José; Gariglio, Patricio; Madrid-Marina, Vicente

    2006-01-01

    Genital human Papillomavirus infection is common and only a minor fraction of infected subjects develop progressing cervical epithelial lesions or cancer. Bypassing local immune responses is important for the development of cervical cancer. In this work we determined the cytokine pattern in samples from patients with cervical cancer. Thus, we examined the local mRNA expression profile of helper T cell type 1 (Th1), Th2, and Th3 cytokines in HPV-positive cervical cancer biopsies by reverse transcription-polymerase chain reaction. Our data indicate that 80% of the tumors expressed low levels of CD4 mRNA, with all of them expressing higher CD8 mRNA levels. Most tumors expressed interleukin (IL)-4 and IL-10 mRNAs and, most importantly, all of them expressed transforming growth factor (TGF)-beta1 and interferon gamma mRNA. None of the tumors studied expressed IL-12, IL-6, or tumor necrosis factor (TNF) mRNA. Immunohistochemical analysis identified IL-10 only in tumor cells and koilocytic cells, but not in tumor-infiltrating lymphocytes, suggesting that IL-10-producing cells are those transformed by HPV. We found a correlation between immunostaining for IL-10 protein and the level of IL-10 mRNA expression. Moreover, supernatants from HPV-transformed cell cultures contained IL-10 and TGF- beta1. Our findings indicate a predominant expression of immunosuppressive cytokines, which might help downregulate tumor-specific immune responses in the microenvironment of the tumor. This information may be useful for cervical cancer immunotherapies or for therapeutic vaccine design against Human Papillomavirus. PMID:16987066

  1. FOXL2 suppresses proliferation, invasion and promotes apoptosis of cervical cancer cells.

    PubMed

    Liu, Xing-Long; Meng, Yu-Han; Wang, Jian-Li; Yang, Biao-Bing; Zhang, Fan; Tang, Sheng-Jian

    2014-01-01

    FOXL2 is a transcription factor that is essential for ovarian function and maintenance, the germline mutations of which give rise to the blepharophimosis ptosis epicanthus inversus syndrome (BPES), often associated with premature ovarian failure. Recently, its mutations have been found in ovarian granulosa cell tumors (OGCTs). In this study, we measured the expression of FOXL2 in cervical cancer by immunohistochemistry and its mRNA level in cervical cancer cell lines Hela and Siha by RT-PCR. Then we overexpressed FOXL2 in Hela cells and silenced it in Siha cells by plasmid transfection and verified using western blotting. When FOXL2 was overexpressed or silenced, cells proliferation and apoptosis were determined by Brdu assay and Annexin V/PI detection kit, respectively. In addition, we investigated the effects of FOXL2 on the adhesion and invasion of Hela and Siha cells. Finally, we analyzed the influences of FOXL2 on Ki67, PCNA and FasL by flow cytometry. The results showed that FOXL2 was highly expressed in cervical squamous cancer. Overexpressing FOXL2 suppressed Hela proliferation and facilitated its apoptosis. Silencing FOXL2 enhanced Siha proliferation and inhibited its apoptosis. Meanwhile, silencing FOXL2 promoted Siha invasion, but it had no effect on cells adhesion. In addition, overexpressing FOXL2 decreased the expression of Ki67 in Hela and Siha cells. Therefore, our results suggested that FOXL2 restrained cells proliferation and enhanced cells apoptosis mainly through decreasing Ki67 expression. PMID:24817949

  2. Neocarzinostatin induces an effective p53-dependent response in human papillomavirus-positive cervical cancer cells.

    PubMed

    Bañuelos, Adriana; Reyes, Elba; Ocadiz, Rodolfo; Alvarez, Elizabeth; Moreno, Martha; Monroy, Alberto; Gariglio, Patricio

    2003-08-01

    Human papillomavirus (HPV) E6 viral oncoprotein plays an important role during cervical carcinogenesis. This oncoprotein binds the tumor suppressor protein p53, leading to its degradation via the ubiquitin-proteasome pathway. Therefore, it is generally assumed that in HPV-positive cancer cells p53 function is completely abolished. Nevertheless, recent findings suggest that p53 activity can be recovered in cells expressing endogenous E6 protein. To investigate whether p53-dependent functions controlling genome integrity, cell proliferation, and apoptosis can be reactivated in cervical cancer cells, we examined the capacity of HeLa, INBL, CaSki, C33A, and ViBo cell lines to respond to neocarzinostatin (NCS), a natural product which induces single- and double-strand breaks in DNA. We found that NCS treatment inhibits cellular proliferation through G2 cell cycle arrest and apoptosis induction. This effect was preceded by nuclear accumulation of p53 protein and by an increase of p21 transcripts. Although apoptosis was blocked in ViBo cells (HPV-negative), nuclear accumulation of transcriptionally active p53 and inhibition of cell proliferation are observed after NCS treatment. These results suggest that HPV-positive cervical cancer cells are capable of responding efficiently to DNA damage provoked by NCS treatment through a p53-dependent pathway in spite of the presence of E6 protein. PMID:12750435

  3. Sonoporation of Cervical Carcinoma Cells Affected with E6-Oncoprotein for the Treatment of Uterine Cancer

    NASA Astrophysics Data System (ADS)

    Curiel, Laura; Lee, Kyle; Pichardo, Samuel; Zehbe, Ingeborg

    2010-03-01

    Cervical cancer has been identified as the third leading cause of average years of life lost per person dying of cancer. Since essentially all cervical cancers contain copies of human papillomavirus (HPV) DNA, we propose a treatment that targets HPV-infected cells using strategies that re-introduce normal functions into the infected cells while sparing healthy cells. We propose the use of focused ultrasound in combination with microbubbles as means to deliver antibodies against the E6 protein present only in HPV positive cells. We conducted in vitro studies with cell cultures of SiHa cervical carcinoma cells seeded into Opticell™ chambers. An in-house ultrasound excitation apparatus was used to control and explore the optimal acoustic parameters in order to maximize delivery. We first validated the possibility of delivering the EX-EGFP-M02 vector (Genecopoeia) into the cells; 1.2 μL of activated microbubbles (Definity®) and 50 μg of the vector were mixed in media and then injected into the Opticell™ chamber. We used 32 μs pulses at a central frequency of 930 KHz with a repetition frequency of 1.5 kHz and total exposure duration of 30 s; six pressure values were tested (0 to 1 MPa). Fluorescence imaging was used to determine the levels of intracellular proteins and assess delivery. The delivery of an anti-α-Tubulin antibody was next tested and confirmed that the delivery into HPV16 positive cells was successful.

  4. Down-regulation of microRNA-135b inhibited growth of cervical cancer cells by targeting FOXO1

    PubMed Central

    Xu, Yue; Zhao, Shuhua; Cui, Manhua; Wang, Qiang

    2015-01-01

    More and more evidence has confirmed that dysregulation of microRNAs (miRNAs) can conduce to the progression of human cancers. Previous studied have shown that dysregulation of miR-135b is in varieties of tumors. However, the roles of miR-135b in cervical cancer remain unknown. Therefore, our aim of this study was to explore the biological function and molecular mechanism of miR-135b in cervical cancer cell lines, discussing whether it could be a therapeutic biomarker of cervical cancer in the future. The MTT assay and ELISA-Brdu assay were used to assess cell proliferation. Cell cycle was detected by flow cytometry. Real-time quantitative polymerase chain reaction (PCR) and Western blot analyses were used to detect expressions of cyclin D1, p21, p27 and FOXO1. In our study, we found that miR-135b is up-regulated in cervical cancer cell lines. Down-regulation of miR-135b evidently inhibited proliferation and arrested cell cycle in cervical cancer cells. Bioinformatics analysis predicted that the FOXO1 was a potential target gene of miR-135b. Besides, miR-135b inhibition significantly increased expressions of the cyclin-dependent kinase inhibitors, p21/CIP1 and p27/KIP1, and decreased expression of cyclin D1. However, the high level of miR-135b was associated with increased expression of FOXO1 in cervical cancer cells. Further study by luciferase reporter assay demonstrated that miR-135b could directly target FOXO1. Down-regulation of FOXO1 in cervical cancer cells transfected with miR-135b inhibitor partially reversed its inhibitory effects. In conclusion, down-regulation of miR-135b inhibited cell growth in cervical cancer cells by up-regulation of FOXO1. PMID:26617737

  5. Radiation Therapy and Cisplatin With or Without Triapine in Treating Patients With Newly Diagnosed Stage IB2, II, or IIIB-IVA Cervical Cancer or Stage II-IVA Vaginal Cancer

    ClinicalTrials.gov

    2016-09-09

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma, Not Otherwise Specified; Stage IB2 Cervical Cancer; Stage II Vaginal Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Vaginal Cancer; Stage IIIB Cervical Cancer; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Vaginal Cancer

  6. microRNA-328 inhibits cervical cancer cell proliferation and tumorigenesis by targeting TCF7L2.

    PubMed

    Wang, Xuan; Xia, Ying

    2016-06-24

    microRNAs (miRNAs) play a vital role in tumor development and progression. In this study, we aimed to determine the expression and biological roles of miR-328 in cervical cancer and identify its direct target gene. Our data showed that miR-328 was significantly downregulated in human cervical cancer tissues and cells. Re-expression of miR-328 inhibited cervical cancer cell proliferation and colony formation in vitro and suppressed the growth of xenograft tumors in vivo. Bioinformatic analysis predicted TCF7L2 (an essential effector of canonical Wnt signaling) as a target gene of miR-328, which was confirmed by luciferase reporter assays. Enforced expression of miR-328 led to a decline in the expression of endogenous TCF7L2 in cervical cancer cells. In cervical cancer tissues, TCF7L2 protein levels were negatively correlated with miR-328 expression levels (r = -0.462, P = 0.017). Small interfering RNA-mediated knockdown of TCF7L2 significantly impaired the proliferation and colony formation of cervical cancer cells. Ectopic expression of a miRNA-resistant form of TCF7L2 significantly reversed the growth suppressive effects of miR-328 on cervical cancer cells, which was accompanied by induction of cyclin D1 expression. Taken together, our results provide first evidence for the growth suppressive activity of miR-328 in cervical cancer, which is largely ascribed to downregulation of TCF7L2. Restoration of miR-328 may have therapeutic potential in cervical cancer. PMID:27181358

  7. Prevent Cervical Cancer

    MedlinePlus

    ... Fighting Cervical Cancer Worldwide Stay Informed Printable Versions Standard quality PDF [PDF-877KB] High-quality PDF for professional ... uterus, vagina, and vulva. Stay Informed Printable Versions Standard quality PDF [PDF-877KB] High-quality PDF for professional ...

  8. Antibacterial and Antimetastatic Potential of Diospyros lycioides Extract on Cervical Cancer Cells and Associated Pathogens

    PubMed Central

    Bagla, V. P.; Lubisi, V. Z.; Ndiitwani, T.; Mokgotho, M. P.; Mampuru, L.; Mbazima, V.

    2016-01-01

    Cervical cancer is among the most prevalent forms of cancer in women worldwide. Diospyros lycioides was extracted using hexane, ethyl acetate, acetone, and methanol and finger print profiles were determined. The leaf material was tested for the presence of flavonoids, tannins, saponins, terpenoids, and cardiac glycosides using standard chemical methods and the presence of flavonoids and phenolics using thin layer chromatography. The total phenolic content was determined using Folin-Ciocalteu procedure. The four extracts were tested for antibacterial activity using bioautography against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. The acetone extract with the highest number of antibacterial and antioxidant compounds was assessed for its cytotoxicity on BUD-8 cells using the real-time xCELLigence system and its potential effects on metastatic cervical cancer (HeLa) cell migration and invasion were assessed using wound healing migration and invasion assays. The leaf extract tested positive for flavonoids, tannins, and terpenoids while the four different extracts tested in the antimicrobial assay contained constituents active against one or more of the organisms tested, except E. coli. The cytotoxicity of the acetone extract in real-time was concentration-dependent with potent ability to suppress the migration and invasion of HeLa cells. The finding demonstrates the acetone extract to contain constituents with antibacterial and antimetastatic effects on cervical cancer cells. PMID:27239210

  9. Antibacterial and Antimetastatic Potential of Diospyros lycioides Extract on Cervical Cancer Cells and Associated Pathogens.

    PubMed

    Bagla, V P; Lubisi, V Z; Ndiitwani, T; Mokgotho, M P; Mampuru, L; Mbazima, V

    2016-01-01

    Cervical cancer is among the most prevalent forms of cancer in women worldwide. Diospyros lycioides was extracted using hexane, ethyl acetate, acetone, and methanol and finger print profiles were determined. The leaf material was tested for the presence of flavonoids, tannins, saponins, terpenoids, and cardiac glycosides using standard chemical methods and the presence of flavonoids and phenolics using thin layer chromatography. The total phenolic content was determined using Folin-Ciocalteu procedure. The four extracts were tested for antibacterial activity using bioautography against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. The acetone extract with the highest number of antibacterial and antioxidant compounds was assessed for its cytotoxicity on BUD-8 cells using the real-time xCELLigence system and its potential effects on metastatic cervical cancer (HeLa) cell migration and invasion were assessed using wound healing migration and invasion assays. The leaf extract tested positive for flavonoids, tannins, and terpenoids while the four different extracts tested in the antimicrobial assay contained constituents active against one or more of the organisms tested, except E. coli. The cytotoxicity of the acetone extract in real-time was concentration-dependent with potent ability to suppress the migration and invasion of HeLa cells. The finding demonstrates the acetone extract to contain constituents with antibacterial and antimetastatic effects on cervical cancer cells. PMID:27239210

  10. Detection of cancerous cervical cells using physical adhesion of fluorescent silica particles and centripetal force.

    PubMed

    Gaikwad, Ravi M; Dokukin, Maxim E; Iyer, K Swaminathan; Woodworth, Craig D; Volkov, Dmytro O; Sokolov, Igor

    2011-04-01

    Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical adhesion between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. PMID:21305062

  11. Detection of cancerous cervical cells using physical adhesion of fluorescent silica particles and centripetal force

    PubMed Central

    Gaikwad, Ravi M.; Dokukin, Maxim E.; Iyer, K. Swaminathan; Woodworth, Craig D.; Volkov, Dmytro O.; Sokolov, Igor

    2012-01-01

    Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical interaction between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. PMID:21305062

  12. Mullerian Inhibiting Substance inhibits cervical cancer cell growth via a pathway involving p130 and p107.

    PubMed

    Barbie, Thanh U; Barbie, David A; MacLaughlin, David T; Maheswaran, Shyamala; Donahoe, Patricia K

    2003-12-23

    In addition to causing regression of the Mullerian duct in the male embryo, Mullerian Inhibiting Substance (MIS) inhibits the growth of epithelial ovarian cancer cells, which are known to be of Mullerian origin. Because the uterine cervix is derived from the same Mullerian duct precursor as the epithelium of the ovary, we tested the hypothesis that cervical cancer cells might also respond to MIS. A number of cervical cancer cell lines express the MIS type II receptor, and MIS inhibits the growth of both human papilloma virus-transformed and non-human papilloma virus-transformed cervical cell lines, with a more dramatic effect seen in the latter. As in the ovarian cancer cell line OVCAR8, suppression of growth of the C33A cervical cancer cell line by MIS is associated with induction of the p16 tumor suppressor protein. However, in contrast to OVCAR8 cells, induction of p130 and p107 appears to play an important role in the inhibition of growth of C33A cells by MIS. Finally, normal cervical tissue expresses the MIS type II receptor in vivo, supporting the idea that MIS could be a targeted therapy for cervical cancer. PMID:14671316

  13. Selective permeabilization of cervical cancer cells to an ionic DNA-binding cytotoxin by activation of P2Y receptors

    PubMed Central

    Bukhari, Maurish; Deng, Han; Jones, Noelle; Towne, Zachary; Woodworth, Craig D.; Samways, Damien S.K.

    2015-01-01

    Extracellular ATP is known to permeabilize certain cell types to polyatomic cations like YO-PRO1. Here, we report that extracellularly applied ATP stimulated rapid uptake and accumulation of an otherwise weakly membrane permeable fluorescent DNA-binding cytotoxin, Hoechst 33258, into cervical cancer cells. While ATP stimulated Hoechst 332uptake in 20–70% of cells from seven cervical cancer cell lines, it consistently stimulated uptake in less than 8% of cervical epithelial cells obtained from the normal transformation zone and ectocervix tissue of 10 patients. ATP-evoked Hoechst 33258 uptake was independent of ionotropic P2X receptors, but dependent on activation of P2Y receptors. Thus, we show here that cervical cancer cells can be selectively induced to take up and accumulate an ionic cytotoxin by exposure to extracellular ATP. PMID:25937122

  14. Glaucocalyxin B induces apoptosis and autophagy in human cervical cancer cells.

    PubMed

    Pan, Ying; Bai, Jieyu; Shen, Fangfang; Sun, Li; He, Quanzhong; Su, Bing

    2016-08-01

    Glaucocalyxin (Gln), an ent‑kaurane diterpenoid isolated from the Chinese traditional medicine, Rabdosia japonica, represents a novel class of anticancer drugs. GlnA is one of the three major forms of Gln and has demonstrated potent anticancer effects in a variety of cancer types. GlnB has only one structural difference from GlnA, an acetylated hydroxyl group at C14. This acetyl group results in high liposolubility and may enhance the antitumor activity of ent‑kaurane diterpenoid GlnB. However, few studies have reported the role of GlnB in cancer. The present study investigated the effect of GlnB in cervical cancer proliferation and cell death. Treatment with GlnB inhibits the proliferation of HeLa and SiHa cervical cancer cell lines in a dose‑dependent manner, as assessed by 3‑(4,5‑dimethylthiazol-2‑yl)-2,5 diphenyl tetrazolium bromide assays. In addition, GlnB increases the apoptotic cell population of HeLa and SiHa cells, as determined by fluorescence‑activated cell sorting analysis and enhanced poly (ADP‑ribose) polymerase 1 cleavage by western blotting. GlnB also induces increased light chain 3 II/I protein cleavage in both cells, indicating the induction of autophagy. Furthermore, GlnB treatment increased the expression of phosphatase and tensin homolog and decreased the expression of phosphorylated‑protein kinase B (Akt) in HeLa and SiHa cells, as assessed by western blotting. Taken together, the present results demonstrated that GlnB inhibited the proliferation of human cervical cancer cells in vitro through the induction of apoptosis and autophagy, which may be mediated by the phosphatidylinositol‑4,5‑bisphosphate 3‑kinase/Akt signaling pathway. PMID:27356884

  15. Anti-proliferative and apoptotic effects of Ziziphus Jujube on cervical and breast cancer cells

    PubMed Central

    Abedini, Mohammad Reza; Erfanian, Nafiseh; Nazem, Habibollah; Jamali, Sara; Hoshyar, Reyhane

    2016-01-01

    Objective: Ziziphus Jujube (Jujube) plant has exhibited numerous medicinal and pharmacological properties including antioxidant and anti-inflammatory effects. This study was carried out to investigate its anti-cancer and pro-apoptotic abilities in human cervical and breast cancer cells in vitro. Materials and Methods: The cervical OV2008 and breast MCF-7 cancer cells were incubated with different concentrations of Jujube aqueous extraction (0-3 mg/ml) for various times (0-72 h). Cell viability was assessed by Trypan Blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of two apoptosis-related genes in treated cells evaluated by quantitative Real Time -PCR analysis. Results: Jujube significantly inhibited cancer cell viability in a dose- and time- dependent manner. Herb-induced apoptosis was associated with enhanced expression of Bax and decreased Bcl2 gene leading eventually to a time-dependent six fold increase in the Bax/Bcl-2 ratio. Conclusion: These results indicated that Jujube may be a natural potential and promising agent to prevent or treat human cancers. PMID:27222827

  16. Apoptotic and autophagic cell death induced by glucolaxogenin in cervical cancer cells.

    PubMed

    Sánchez-Sánchez, L; Escobar, M L; Sandoval-Ramírez, J; López-Muñoz, H; Fernández-Herrera, M A; Hernández-Vázquez, J M V; Hilario-Martínez, C; Zenteno, E

    2015-12-01

    The antiproliferative and cytotoxic activity of glucolaxogenin and its ability to induce apoptosis and autophagy in cervical cancer cells are reported. We ascertained that glucolaxogenin exerts an inhibitory effect on the proliferation of HeLa, CaSki and ViBo cells in a dose-dependent manner. Analysis of DNA distribution in the cell-cycle phase of tumor cells treated with glucolaxogenin suggests that the anti-proliferative activity of this steroid is not always dependent on the cell cycle. Cytotoxic activity was evaluated by detection of the lactate dehydrogenase enzyme in supernatants from tumor cell cultures treated with the steroid. Glucolaxogenin exhibited null cytotoxic activity. With respect to the apoptotic activity, the generation of apoptotic bodies, the presence of active caspase-3 and annexin-V, as well as the DNA fragmentation observed in all tumor lines after treatment with glucolaxogenin suggests that this compound does indeed induce cell death by apoptosis. Also, a significantly increased presence of the LC3-II, LC3 and Lamp-1 proteins was evidenced with the ultrastructural existence of autophagic vacuoles in cells treated with this steroidal glycoside, indicating that glucolaxogenin also induces autophagic cell death. It is important to note that this compound showed no cytotoxic effect and did not affect the proliferative capacity of mononuclear cells obtained from normal human peripheral blood activated by phytohaemagglutinin. Thus, glucolaxogenin is a compound with anti-proliferative properties that induces programmed cell death in cancer cell lines, though it is selective with respect to normal lymphocytic cells. These findings indicate that this glycoside could have a selective action on tumor cells and, therefore, be worthy of consideration as a therapeutic candidate with anti-tumor potential. PMID:26437916

  17. The LKB1 tumor suppressor differentially affects anchorage independent growth of HPV positive cervical cancer cell lines

    SciTech Connect

    Mack, Hildegard I.D.; Munger, Karl

    2013-11-15

    Infection with high-risk human papillomaviruses is causally linked to cervical carcinogenesis. However, most lesions caused by high-risk HPV infections do not progress to cancer. Host cell mutations contribute to malignant progression but the molecular nature of such mutations is unknown. Based on a previous study that reported an association between liver kinase B1 (LKB1) tumor suppressor loss and poor outcome in cervical cancer, we sought to determine the molecular basis for this observation. LKB1-negative cervical and lung cancer cells were reconstituted with wild type or kinase defective LKB1 mutants and we examined the importance of LKB1 catalytic activity in known LKB1-regulated processes including inhibition of cell proliferation and elevated resistance to energy stress. Our studies revealed marked differences in the biological activities of two kinase defective LKB1 mutants in the various cell lines. Thus, our results suggest that LKB1 may be a cell-type specific tumor suppressor. - Highlights: • LKB1 is a tumor suppressor that is linked to Peutz-Jeghers syndrome. • Peutz-Jeghers syndrome patients have a high incidence of cervical cancer. • Cervical cancer is caused by HPV infections. • This study investigates LKB1 tumor suppressor activity in cervical cancer.

  18. Automatic Detection of Cervical Cancer Cells by a Two-Level Cascade Classification System

    PubMed Central

    Su, Jie; Xu, Xuan; He, Yongjun; Song, Jinming

    2016-01-01

    We proposed a method for automatic detection of cervical cancer cells in images captured from thin liquid based cytology slides. We selected 20,000 cells in images derived from 120 different thin liquid based cytology slides, which include 5000 epithelial cells (normal 2500, abnormal 2500), lymphoid cells, neutrophils, and junk cells. We first proposed 28 features, including 20 morphologic features and 8 texture features, based on the characteristics of each cell type. We then used a two-level cascade integration system of two classifiers to classify the cervical cells into normal and abnormal epithelial cells. The results showed that the recognition rates for abnormal cervical epithelial cells were 92.7% and 93.2%, respectively, when C4.5 classifier or LR (LR: logical regression) classifier was used individually; while the recognition rate was significantly higher (95.642%) when our two-level cascade integrated classifier system was used. The false negative rate and false positive rate (both 1.44%) of the proposed automatic two-level cascade classification system are also much lower than those of traditional Pap smear review. PMID:27298758

  19. Automatic Detection of Cervical Cancer Cells by a Two-Level Cascade Classification System.

    PubMed

    Su, Jie; Xu, Xuan; He, Yongjun; Song, Jinming

    2016-01-01

    We proposed a method for automatic detection of cervical cancer cells in images captured from thin liquid based cytology slides. We selected 20,000 cells in images derived from 120 different thin liquid based cytology slides, which include 5000 epithelial cells (normal 2500, abnormal 2500), lymphoid cells, neutrophils, and junk cells. We first proposed 28 features, including 20 morphologic features and 8 texture features, based on the characteristics of each cell type. We then used a two-level cascade integration system of two classifiers to classify the cervical cells into normal and abnormal epithelial cells. The results showed that the recognition rates for abnormal cervical epithelial cells were 92.7% and 93.2%, respectively, when C4.5 classifier or LR (LR: logical regression) classifier was used individually; while the recognition rate was significantly higher (95.642%) when our two-level cascade integrated classifier system was used. The false negative rate and false positive rate (both 1.44%) of the proposed automatic two-level cascade classification system are also much lower than those of traditional Pap smear review. PMID:27298758

  20. Ginsenoside-Rg5 induces apoptosis and DNA damage in human cervical cancer cells

    PubMed Central

    LIANG, LI-DAN; HE, TAO; DU, TING-WEI; FAN, YONG-GANG; CHEN, DIAN-SEN; WANG, YAN

    2015-01-01

    Panax ginseng is traditionally used as a remedy for cancer, inflammation, stress and aging, and ginsenoside-Rg5 is a major bioactive constituent of steamed ginseng. The present study aimed to evaluate whether ginsenoside-Rg5 had any marked cytotoxic, apoptotic or DNA-damaging effects in human cervical cancer cells. Five human cervical cancer cell lines (HeLa, MS751, C33A, Me180 and HT-3) were used to investigate the cytotoxicity of ginsenoside-Rg5 using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Additionally, the effects of ginsenoside-Rg5 on the apoptosis of HeLa and MS751 cells were detected using DNA ladder assays and flow cytometry. DNA damage was assessed in the HeLa and MS751 cells using alkaline comet assays and by detection of γH2AX focus formation. The HeLa and MS751 cells were significantly more sensitive to ginsenoside-Rg5 treatment compared with the C-33A, HT-3 and Me180 cells. As expected, ginsenoside-Rg5 induced significant concentration- and time-dependent increases in apoptosis. In addition, ginsenoside-Rg5 induced significant concentration-dependent increases in the level of DNA damage compared with the negative control. Consistent with the comet assay data, the percentage of γH2AX-positive HeLa and MS751 cells also revealed that ginsenoside-Rg5 caused DNA double-strands to break in a concentration-dependent manner. In conclusion, ginsenoside-Rg5 had marked genotoxic effects in the HeLa and MS751 cells and, thus, demonstrates potential as a genotoxic or cytotoxic drug for the treatment of cervical cancer. PMID:25355274

  1. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer.

    PubMed Central

    Boshart, M; Gissmann, L; Ikenberg, H; Kleinheinz, A; Scheurlen, W; zur Hausen, H

    1984-01-01

    DNA of a new papillomavirus type was cloned from a cervical carcinoma biopsy. Two EcoRI clones of 7.8 and 6.9 kb in length were obtained, the latter contained a 900-bp deletion. The BamHI fragments of both clones were used to characterize the DNA. It represents a distinct type of papillomavirus as determined by its size, its cross-hybridization with DNA of other papillomavirus types under conditions of low stringency only, the co-linear alignment of its genome with HPV 6 and HPV 16 prototypes and its occasional occurrence as oligomeric episomes. We tentatively propose to designate it as HPV 18. DNA hybridizing with HPV 18 under stringent conditions was detected in 9/36 cervical carcinomas from Africa and Brazil, in 2/13 cervical tumors from Germany and 1/10 penile carcinomas. Benign tumors (17 cervical dysplasias, 29 genital warts), eight carcinomata in situ and 15 biopsies of normal cervical tissue were devoid of detectable HPV 18 DNA. HPV 18-related DNA was found, however, in cells of the HeLa, KB and C4-1 lines all derived from cervical cancer. The state of the viral DNA was investigated in four cervical cancer biopsies. The data reveal that the DNA might be integrated into the host cell genome. One tumor provided evidence for head to tail tandem repeats some of which persisted as circular episomes. Images Fig. 1. Fig. 2. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:6329740

  2. miR-21 modulates resistance of HR-HPV positive cervical cancer cells to radiation through targeting LATS1

    SciTech Connect

    Liu, Shikai; Song, Lili Zhang, Liang; Zeng, Saitian; Gao, Fangyuan

    2015-04-17

    Although multiple miRNAs are found involved in radioresistance development in HR-HPV positive (+) cervical cancer, only limited studies explored the regulative mechanism of the miRNAs. miR-21 is one of the miRNAs significantly upregulated in HR-HPV (+) cervical cancer is also significantly associated with radioresistance. However, the detailed regulative network of miR-21 in radioresistance is still not clear. In this study, we confirmed that miR-21 overexpression was associated with higher level of radioresistance in HR-HPV (+) cervical cancer patients and thus decided to further explore its role. Findings of this study found miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells and decrease radiation induced G2/M block and increase S phase accumulation. By using dual luciferase assay, we verified a binding site between miR-21 and 3′-UTR of large tumor suppressor kinase 1 (LATS1). Through direct binding, miR-21 can regulate LATS1 expression in cervical cancer cells. LATS1 overexpression can reverse miR-21 induced higher colony formation rate and also reduced miR-21 induced S phase accumulation and G2/M phase block reduction under radiation treatment. These results suggested that miR-21-LATS1 axis plays an important role in regulating radiosensitivity. - Highlights: • miR-21 is highly expressed in HR-HPV (+) radioresistant cervical cancer patients. • miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells. • miR-21 can decrease radiation induced G2/M block and increase S phase accumulation. • miR-21 modulates radiosensitivity cervical cancer cell by directly targeting LATS1.

  3. Enhanced Antiproliferative Effect of Carboplatin in Cervical Cancer Cells Utilizing Folate-Grafted Polymeric Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ji, Jing; Zuo, Ping; Wang, Yue-Ling

    2015-11-01

    Carboplatin (CRB) possesses superior anticancer effect in cervical cancer cells with lower incidence of side effects compared to that of cisplatin. However, CRB suffers from severe side effects due to undesirable tissue distributions which contribute to the low therapeutic efficacy. Here, we report a unique folic acid-conjugated chitosan-coated poly( d- l-lactideco-glycolide) (PLGA) nanoparticles (FPCC) prepared for the selective delivery of carboplatin to the cervical cancer cells. The particles were nanosized and spherical shaped with size less than <200 nm. The presence of protective chitosan layer controlled the overall release rate of CRB from chitosan-coated PLGA nanoparticles (PCC) and FPCC. FPCC displayed a higher cellular uptake capacity in HeLa cells than compared to non-targeted nanoparticles. Selective uptake of FPCC was due to an interaction of folic acid (FA) with the folate receptors alpha (FRs-α) which is overexpressed on the HeLa and promoted active targeting. These results indicated that FPCC had a specific affinity for the cancerous, HeLa cells owing to ligand-receptor (FA-FR-α) recognition. Consistently, FPCC showed superior cytotoxic effect than any other formulations. The IC50 (concentration of the drug required to kill 50 % of the cells) value of FPCC was 0.65 μg/ml while it was 1.08, 1.56, and 2.35 μg/ml for PCC, PLGA NP, and free CRB, respectively. Consistent with the cytotoxicity assay, FPCC induced higher fraction of early as well as late apoptosis cells. Especially, FPCC induced nearly 45 % of early apoptosis cells and more than 35 % in late apoptosis. Therefore, we propose that folate-conjugated nanoparticles might have potential applications in cervical cancer therapy.

  4. Overexpression of SPARC correlates with poor prognosis in patients with cervical carcinoma and regulates cancer cell epithelial-mesenchymal transition

    PubMed Central

    SHI, DEHUAN; JIANG, KAN; FU, YING; FANG, RUI; LIU, XI; CHEN, JIE

    2016-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is associated with the progression of numerous types of cancer. However, the role of SPARC in the progression of cervical cancer has not yet been adequately elucidated. In the current study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were employed to evaluate the mRNA and protein expression of SPARC in normal cervical tissue, cervical intraepithelial neoplasia (CIN) and cervical cancer. In addition, three epithelial-mesenchymal transition (EMT) markers (E-cadherin, N-cadherin and vimentin) were detected by immunohistochemistry in the same specimens, and an enzyme-linked immunosorbent assay was conducted to detect the serum levels of SPARC in patients with cervical neoplasia. In highly invasive subclones of human cervical carcinoma cells, HeLa-1 and SiHa-1, lentiviral transfections were performed and RT-qPCR and western blot were used to investigate the effects of downregulated EGF-containing fibulin-like extracellular matrix protein 1 on the expression of E-cadherin, N-cadherin and vimentin. The results revealed that, in cervical carcinoma tissue, SPARC expression was significantly upregulated in a manner that positively correlated with N-cadherin and vimentin expression, and negatively correlated with E-cadherin expression. SPARC overexpression and high serum levels were significantly associated with the progression of cervical cancer and adverse prognosis of cervical cancer patients. Downregulation of SPARC can markedly reduce the expression of N-cadherin and vimentin and increase the expression of E-cadherin. Thus, overexpression of SPARC is significantly associated with poor prognostic clinicopathological characteristics in cervical carcinoma, and may be important in EMT. The results of the current study suggest that SPARC may be a potential therapeutic option for individuals diagnosed with cervical carcinoma. PMID:27123099

  5. Human Papillomavirus and Cervical Cancer

    PubMed Central

    Burd, Eileen M.

    2003-01-01

    Of the many types of human papillomavirus (HPV), more than 30 infect the genital tract. The association between certain oncogenic (high-risk) strains of HPV and cervical cancer is well established. Although HPV is essential to the transformation of cervical epithelial cells, it is not sufficient, and a variety of cofactors and molecular events influence whether cervical cancer will develop. Early detection and treatment of precancerous lesions can prevent progression to cervical cancer. Identification of precancerous lesions has been primarily by cytologic screening of cervical cells. Cellular abnormalities, however, may be missed or may not be sufficiently distinct, and a portion of patients with borderline or mildly dyskaryotic cytomorphology will have higher-grade disease identified by subsequent colposcopy and biopsy. Sensitive and specific molecular techniques that detect HPV DNA and distinguish high-risk HPV types from low-risk HPV types have been introduced as an adjunct to cytology. Earlier detection of high-risk HPV types may improve triage, treatment, and follow-up in infected patients. Currently, the clearest role for HPV DNA testing is to improve diagnostic accuracy and limit unnecessary colposcopy in patients with borderline or mildly abnormal cytologic test results. PMID:12525422

  6. Induction of mitochondrial-mediated apoptosis by Morinda citrifolia (Noni) in human cervical cancer cells.

    PubMed

    Gupta, Rakesh Kumar; Banerjee, Ayan; Pathak, Suajta; Sharma, Chandresh; Singh, Neeta

    2013-01-01

    Cervical cancer is the second most common cause of cancer in women and has a high mortality rate. Cisplatin, an antitumor agent, is generally used for its treatment. However, the administration of cisplatin is associated with side effects and intrinsic resistance. Morinda citrifolia (Noni), a natural plant product, has been shown to have anti-cancer properties. In this study, we used Noni, cisplatin, and the two in combination to study their cytotoxic and apoptosis-inducing effects in cervical cancer HeLa and SiHa cell lines. We demonstrate here, that Noni/Cisplatin by themselves and their combination were able to induce apoptosis in both these cell lines. Cisplatin showed slightly higher cell killing as compared to Noni and their combination showed additive effects. The observed apoptosis appeared to be mediated particularly through the up-regulation of p53 and pro-apoptotic Bax proteins, as well as down- regulation of the anti-apoptotic Bcl-2, Bcl-XL proteins and survivin. Augmentation in the activity of caspase-9 and -3 was also observed, suggesting the involvement of the intrinsic mitochondrial pathway of apoptosis for both Noni and Cisplatin in HeLa and SiHa cell lines. PMID:23534730

  7. Apoptotic potential role of Agave palmeri and Tulbaghia violacea extracts in cervical cancer cells.

    PubMed

    Mthembu, Nonkululeko N; Motadi, Lesetja Raymond

    2014-09-01

    Cervical cancer, a gynaecological malignant disorder, is a common cause of death in females in Sub-Saharan Africa, striking nearly half a million of lives each year worldwide. Currently, more than 50 % of all modern drugs in clinical use are of natural products, many of which have an ability to control cancer cells (Madhuri and Pandey, Curr Sci 96:779-783, 2009; Richter, Traditional medicines and traditional healers in South Africa, 2003). In South Africa, plants used to treat cancer are rare even though majority of our population continue to put their trust in traditional medicine. In this study we aimed to screen Agave palmeri (AG) and Tulbaghia violacea (TV) for potential role in inducing cell death in cervical cancer cell lines HeLa and ME-180, and in normal human fibroblast cell line KMST-6 cell lines. To achieve this, AG and TV crude extracts were utilized to screen for apoptosis induction, inhibition of cell proliferation followed by elucidation of the role of Bax, Bcl-2, p53, Rb, RBBP and Mdm2 genes in cervical cancer. In brief, plant leaves and roots were collected, crushed and methanolic extracts obtained. Different concentrations of the stock extracts were used to treat cancer cells and measure cell death using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay and flow cytometry. Western blot was applied to measure gene expression at protein level using RBBP6, p53, Mdm2, Rb, Bax, Bcl-2 and β-actin mouse monoclonal primary antibodies (IgG) and goat anti mouse coupled with horseradish peroxidase secondary antibody from Santa Cruz Biotechnology and real time-PCR was used for mRNA expression level. Plant extracts of AG and TV were time (24 h) and dose (50, 100, 150 μg/ml) dependent in their induction of cell death with an IC50 ~ 150 μg/ml. A further mixed respond by several genes was observed following treatment with the two plant extracts where RBBP6 was seen to be spliced in cancer cells while Bax was induced and Bcl-2 was

  8. Promising Nanocarriers for PEDF Gene Targeting Delivery to Cervical Cancer Cells Mediated by the Over-expressing FRα

    PubMed Central

    Yang, Yuhan; He, Lili; Liu, Yongmei; Xia, Shan; Fang, Aiping; Xie, Yafei; Gan, Li; He, Zhiyao; Tan, Xiaoyue; Jiang, Chunling; Tong, Aiping; Song, Xiangrong

    2016-01-01

    Cervical cancer presents extremely low PEDF expression which is associated with tumor progression and poor prognosis. In this study, folate receptor α (FRα)-targeted nano-liposomes (FLP) were designed to enhance the anti-tumor effect by targeting delivery of exogenous PEDF gene to cervical cancer cells. The targeting molecule F-PEG-Chol was firstly synthesized by a novel simpler method. FLP encapsulating PEDF gene (FLP/PEDF) with a typical lipid-membrane structure were prepared by a film dispersion method. The transfection experiment found FLP could effectively transfect human cervical cancer cells (HeLa cells). FLP/PEDF significantly inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC cells) and suppressed adhension, invasion and migration of HeLa cells in vitro. In the abdominal metastatic tumor model of cervical cancer, FLP/PEDF administered by intraperitoneal injection exhibited a superior anti-tumor effect probably due to the up-regulated PEDF. FLP/PEDF could not only sharply reduce the microvessel density but also dramatically inhibit proliferation and markedly induce apoptosis of tumor cells in vivo. Moreover, the preliminary safety investigation revealed that FLP/PEDF had no obvious toxicity. These results clearly showed that FLP were desired carriers for PEDF gene and FLP/PEDF might represent a potential novel strategy for gene therapy of cervical cancer. PMID:27576898

  9. Promising Nanocarriers for PEDF Gene Targeting Delivery to Cervical Cancer Cells Mediated by the Over-expressing FRα.

    PubMed

    Yang, Yuhan; He, Lili; Liu, Yongmei; Xia, Shan; Fang, Aiping; Xie, Yafei; Gan, Li; He, Zhiyao; Tan, Xiaoyue; Jiang, Chunling; Tong, Aiping; Song, Xiangrong

    2016-01-01

    Cervical cancer presents extremely low PEDF expression which is associated with tumor progression and poor prognosis. In this study, folate receptor α (FRα)-targeted nano-liposomes (FLP) were designed to enhance the anti-tumor effect by targeting delivery of exogenous PEDF gene to cervical cancer cells. The targeting molecule F-PEG-Chol was firstly synthesized by a novel simpler method. FLP encapsulating PEDF gene (FLP/PEDF) with a typical lipid-membrane structure were prepared by a film dispersion method. The transfection experiment found FLP could effectively transfect human cervical cancer cells (HeLa cells). FLP/PEDF significantly inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC cells) and suppressed adhension, invasion and migration of HeLa cells in vitro. In the abdominal metastatic tumor model of cervical cancer, FLP/PEDF administered by intraperitoneal injection exhibited a superior anti-tumor effect probably due to the up-regulated PEDF. FLP/PEDF could not only sharply reduce the microvessel density but also dramatically inhibit proliferation and markedly induce apoptosis of tumor cells in vivo. Moreover, the preliminary safety investigation revealed that FLP/PEDF had no obvious toxicity. These results clearly showed that FLP were desired carriers for PEDF gene and FLP/PEDF might represent a potential novel strategy for gene therapy of cervical cancer. PMID:27576898

  10. Calcitriol Inhibits Cervical Cancer Cell Proliferation Through Downregulation of HCCR1 Expression.

    PubMed

    Wang, Guoqing; Lei, Lei; Zhao, Xixia; Zhang, Jun; Zhou, Min; Nan, Kejun

    2014-01-01

    Calcitriol (1α,25-dihydroxyvitamin D3) has demonstrated anticancer activity against several tumors. However, the underlying mechanism for this activity is not yet fully understood. Our experiment was designed and performed to address one aspect of this issue in cervical cancer. HeLa S3 cells were cultured in media with various concentrations of calcitriol. Cell proliferation and cell cycle were assessed by spectrophotometry and flow cytometry, respectively. The mRNA and protein expression levels of human cervical cancer oncogene (HCCR-1) and p21 were determined by RT-PCR and Western blot, respectively. Results indicated that calcitriol inhibited HeLa S3 cell proliferation and induced cell cycle arrest at the G1 phase. Calcitriol decreased HCCR-1 protein expression in a dose- and time-dependent manner. Furthermore, promoter activity analyses revealed that transcriptional regulation was involved in the inhibition of HCCR-1 expression. Overexpression of HCCR-1 in HeLa S3 cells reversed the inhibition of cell proliferation and G1 phase arrest that resulted from calcitriol treatment. In addition, calcitriol increased p21 expression and promoter activity. HCCR-1 overexpression decreased p21 expression and promoter activity. Thus, our results suggested that calcitriol inhibited HeLa S3 cell proliferation by decreasing HCCR-1 expression and increasing p21 expression. PMID:26629942

  11. Estrogenic Activity of Coumestrol, DDT, and TCDD in Human Cervical Cancer Cells

    PubMed Central

    Ndebele, Kenneth; Graham, Barbara; Tchounwou, Paul B.

    2010-01-01

    Endogenous estrogens have dramatic and differential effects on classical endocrine organ and proliferation. Xenoestrogens are environmental estrogens that have endocrine impact, acting as both estrogen agonists and antagonists, but whose effects are not well characterized. In this investigation we sought to delineate effects of xenoestrogens. Using human cervical cancer cells (HeLa cells) as a model, the effects of representative xenoestrogens (Coumestrol-a phytoestrogen, tetrachlorodioxin (TCDD)-a herbicide and DDT-a pesticide) on proliferation, cell cycle, and apoptosis were examined. These xenoestrogens and estrogen inhibited the proliferation of Hela cells in a dose dependent manner from 20 to 120 nM suggesting, that 17-β-estrtadiol and xenoestrogens induced cytotoxic effects. Coumestrol produced accumulation of HeLa cells in G2/M phase, and subsequently induced apoptosis. Similar effects were observed in estrogen treated cells. These changes were associated with suppressed bcl-2 protein and augmented Cyclins A and D proteins. DDT and TCDD exposure did not induce apoptosis. These preliminary data taken together, suggest that xenoestrogens have direct, compound-specific effects on HeLa cells. This study further enhances our understanding of environmental modulation of cervical cancer. PMID:20623010

  12. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways

    SciTech Connect

    Talora, Claudio; Cialfi, Samantha; Segatto, Oreste; Morrone, Stefania; Kim Choi, John; Frati, Luigi; Paolo Dotto, Gian; Gulino, Alberto; Screpanti, Isabella . E-mail: isabella.screpanti@uniroma1.it

    2005-05-01

    Notch signaling plays a key role in cell-fate determination and differentiation in different organisms and cell types. Several reports suggest that Notch signaling may be involved in neoplastic transformation. However, in primary keratinocytes, Notch1 can function as a tumor suppressor. Similarly, in HPV-positive cervical cancer cells, constitutively active Notch1 signaling was found to cause growth suppression. Activated Notch1 in these cells represses viral E6/E7 expression through AP-1 down-modulation, resulting in increased p53 expression and a block of pRb hyperphosphorylation. Here we show that in cervical cancer cell lines in which Notch1 ability to repress AP-1 activity is impaired, Notch1-enforced expression elicits an alternative pathway leading to growth arrest. Indeed, activated Notch1 signaling suppresses activity of the helix-loop-helix transcription factor E47, via ERK1/2 activation, resulting in inhibition of cell cycle progression. Moreover, we found that RBP-J{kappa}-dependent Notch signaling is specifically repressed in cervical cancer cells and this repression could provide one such mechanism that needs to be activated for cervical carcinogenesis. Finally, we show that inhibition of endogenous Notch1 signaling, although results in a proliferative advantage, sensitizes cervical cancer cell lines to drug-induced apoptosis. Together, our results provide novel molecular insights into Notch1-dependent growth inhibitory effects, counteracting the transforming potential of HPV.

  13. Inhibition of papillomavirus protein function in cervical cancer cells by intrabody targeting.

    PubMed

    Griffin, Heather; Elston, Robert; Jackson, Deborah; Ansell, Keith; Coleman, Michael; Winter, Greg; Doorbar, John

    2006-01-20

    Papillomaviruses (HPVs) are a major cause of human disease, and are responsible for approximately half a million cases of cervical cancer each year. HPVs also cause genital warts, and are the most common sexually transmitted disease in many countries. Despite their importance, there are currently no specific antivirals that are active against HPVs. Papillomavirus protein function is mediated largely by protein-protein interactions, which are difficult to inhibit using conventional approaches. To circumvent these problems, we have prepared an scFv library, and have used this to isolate high-affinity binding molecules that may stearically hinder the association of E6 with p53 and prevent E6-mediated p53 degradation in cervical cancer cells. One of the molecules isolated from the library (GTE6-1), had an affinity for 16E6 of 60nM, and bound within the first zinc finger of the protein. GTE6-1 was able to associate with non-denatured E6 following expression in mammalian cells and could inhibit E6-mediated p53 degradation in in vitro assays. E6-mediated p53 degradation is essential for the continuous growth of cervical cancer cells caused by HPV16. To examine the potential of GTE6-1 as an inhibitor of E6 function in such cells, the molecule was expressed in scFv, diabody and triabody formats in a number of cell lines that are driven to proliferate by the HPV16 oncogenes E6 and E7, including the cervical cancer cell line SiHa. In contrast to small E6-binding peptides containing the ELLG E6-binding motif, GTE6-1 expression lead to changes in nuclear structure, the appearance of apoptosis markers, and an elevation in the levels of p53. No effects were seen with a control scFv molecule, or when GTE6-1 was expressed in cells that are driven to proliferate by simian virus 40 (SV40) T-antigen. Given the accessibility of HPV-associated lesions to topical therapy, our results suggest that large interfering molecules such as intrabodies may be useful inhibitors of viral protein

  14. How Are Cervical Cancers and Pre-Cancers Diagnosed?

    MedlinePlus

    ... How is cervical cancer staged? How is cervical cancer diagnosed? The first step in finding cervical cancer ... systems. Tests for women with symptoms of cervical cancer or abnormal Pap results Medical history and physical ...

  15. Cudrania tricuspidata Stem Extract Induces Apoptosis via the Extrinsic Pathway in SiHa Cervical Cancer Cells

    PubMed Central

    Kwon, Sae-Bom; Kim, Min-Je; Yang, Jin Mo; Lee, Hee-Pom; Hong, Jin Tae; Jeong, Heon-Sang; Kim, Eun Suk; Yoon, Do-Young

    2016-01-01

    The focus of this study is the anti-cancer effects of Cudrania tricuspidata stem (CTS) extract on cervical cancer cells. The effect of CTS on cell viability was investigated in HPV-positive cervical cancer cells and HaCaT human normal keratinocytes. CTS showed significant dose-dependent cytotoxic effects in cervical cancer cells. However, there was no cytotoxic effect of CTS on HaCaT keratinocytes at concentrations of 0.125–0.5 mg/mL. Based on this cytotoxic effect, we demonstrated that CTS induced apoptosis by down-regulating the E6 and E7 viral oncogenes. Apoptosis was detected by DAPI staining, annexin V-FITC/PI staining, cell cycle analysis, western blotting, RT-PCR, and JC-1 staining in SiHa cervical cancer cells. The mRNA expression levels of extrinsic pathway molecules such as Fas, death receptor 5 (DR5), and TNF-related apoptosis-inducing ligand (TRAIL) were increased by CTS. Furthermore, CTS treatment activated caspase-3/caspase-8 and cleavage of poly (ADP-ribose) polymerase (PARP). However, the mitochondrial membrane potential and expression levels of intrinsic pathway molecules such as Bcl-2, Bcl-xL, Bax, and cytochrome C were not modulated by CTS. Taken together, these results indicate that CTS induced apoptosis by activating the extrinsic pathway, but not the intrinsic pathway, in SiHa cervical cancer cells. These results suggest that CTS can be used as a modulating agent in cervical cancer. PMID:26960190

  16. Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells

    SciTech Connect

    Zhao, Gang; Chen, Jiawei; Deng, Yanqiu; Gao, Feng; Zhu, Jiwei; Feng, Zhenzhong; Lv, Xiuhong; Zhao, Zheng

    2011-04-29

    Highlights: {yields} NDRG1 was knockdown in cervical and ovarian cancer cell lines by shRNA technology. {yields} NDRG1 knockdown resulted in increased cell invasion activities. {yields} Ninety-six common deregulated genes in both cell lines were identified by cDNA microarray. {yields} Eleven common NDRG1-regulated genes might enhance cell invasive activity. {yields} Regulation of invasion by NDRG1 is an indirect and complicated process. -- Abstract: N-myc downstream regulated gene 1 (NDRG1) is an important gene regulating tumor invasion. In this study, shRNA technology was used to suppress NDRG1 expression in CaSki (a cervical cancer cell line) and HO-8910PM (an ovarian cancer cell line). In vitro assays showed that NDRG1 knockdown enhanced tumor cell adhesion, migration and invasion activities without affecting cell proliferation. cDNA microarray analysis revealed 96 deregulated genes with more than 2-fold changes in both cell lines after NDRG1 knockdown. Ten common upregulated genes (LPXN, DDR2, COL6A1, IL6, IL8, FYN, PTP4A3, PAPPA, ETV5 and CYGB) and one common downregulated gene (CLCA2) were considered to enhance tumor cell invasive activity. BisoGenet network analysis indicated that NDRG1 regulated these invasion effector genes/proteins in an indirect manner. Moreover, NDRG1 knockdown also reduced pro-invasion genes expression such as MMP7, TMPRSS4 and CTSK. These results suggest that regulation of invasion and metastasis by NDRG1 is a highly complicated process.

  17. Get Tested for Cervical Cancer

    MedlinePlus

    ... section Cervical Cancer 3 of 5 sections Take Action! Take Action: Get Tested Take these steps to help prevent ... section Pap Test 4 of 5 sections Take Action: Lower Your Risk Lower your risk of cervical ...

  18. Nelfinavir is effective against human cervical cancer cells in vivo: a potential treatment modality in resource-limited settings

    PubMed Central

    Davis, Mitzie-Ann; Delaney, Joe R; Patel, Chandni B; Storgard, Ryan; Stupack, Dwayne G

    2016-01-01

    Objective The standard treatment for cervical cancer in developed countries includes surgery and chemoradiation, with standard of care lagging in developing countries. Even in the former case, treatment frequently yields recalcitrant tumors and women succumb to disease. Here we examine the impact of nelfinavir, an off-patent viral protease inhibitor, which has shown promise as an antineoplastic agent. Methods We evaluated the morphological and proliferative effects of the autophagy-stressing drug nelfinavir in normal and cisplatin-resistant cervical cancer cells. Immunofluorescent validation of autophagy markers was performed and the impact of nelfinavir in an in vivo model of tumor growth was determined. Results Nelfinavir exhibits cytotoxicity against both cisplatin-sensitive and -resistant ME-180 human cervical cancer cells in vitro and in vivo. Immunoblotting and immunofluorescence showed an expression of the autophagy marker LC3-II in response to nelfinavir treatment. Conclusion Nelfinavir, now available as an inexpensive generic orally dosed agent (Nelvir), is cytotoxic against cervical cancer cells. It acts by burdening the autophagy pathway to impair tumor cell survival and a modest induction of apoptosis. While further studies are needed to elucidate the optimal method of application of nelfinavir, it may represent an appealing global option for the treatment of cervical cancer. PMID:27330277

  19. Effect of beclin 1 expression on the biological behavior and chemotherapy sensitivity of cervical cancer cells

    PubMed Central

    ZHANG, YONGXIN; LIN, SHUANG; ZHANG, YUE; CHANG, SUWEN

    2016-01-01

    The present study aimed to evaluate the effect of the expression of the autophagic gene beclin 1 on the biological behavior and chemotherapy sensitivity towards Taxol® of cervical cancer HeLa cells. A beclin 1 expression vector was constructed and tranfected into HeLa cells. Reverse transcription-polymerase chain reaction and western blotting were used to detect the expression of beclin 1. Cell proliferation was detected based on the growth curve of the cells. The effect of beclin 1 expression on cell apoptosis was analyzed using Hoechst 33258 staining, which enabled to observe the morphology of apoptotic cells. Apoptosis-associated proteins were measured by western blot assay. The sensitivity of HeLa cells to Taxol® was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Beclin 1 expression at the messenger RNA and protein levels was elevated following transfection of the beclin 1 expression plasmid (P<0.05). Hoechst 33258 staining revealed that the apoptosis rate of the transfected HeLa cells was significantly higher than that of normal HeLa cells. The expression of caspase-3 was increased in the transfected cells, and beclin 1 transfection increased B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax):Bcl-2 ratio, resulting in Bax activation and Bcl-2 suppression (P<0.05). Chemotherapy sensitivity analysis demonstrated that the half maximal inhibitory concentration values of Taxol® of the transfection, non-transfection and mock-vehicle groups were 30.4, 118.0 and 125.5 µg/ml, respectively. Beclin 1 inhibited proliferation and increased apoptosis of HeLa cells, and also increased the chemosensitivity of these cells to Taxol®. The present results confirmed that beclin 1 is a favorable prognostic biomarker for cervical cancer treatment, and may serve to identify particular patients for individual therapy. PMID:27313746

  20. Tissue Inhibitor of Metalloproteinase-4 Triggers Apoptosis in Cervical Cancer Cells

    PubMed Central

    Lizarraga, Floria; Ceballos-Cancino, Gisela; Espinosa, Magali; Vazquez-Santillan, Karla; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2015-01-01

    Tissue inhibitor of metalloproteinase-4 (TIMP-4) is a member of extracellular matrix (ECM) metalloproteinases inhibitors that has pleiotropic functions. However, TIMP-4 roles in carcinogenesis are not well understood. Cell viability and flow cytometer assays were employed to evaluate cell death differences between H-Vector and H-TIMP-4 cell lines. Immunobloting and semi-quantitative RT-PCR were used to evaluate the expression of apoptosis regulators. We showed that TIMP-4 has apoptosis-sensitizing effects towards several death stimuli. Consistent with these findings, regulators of apoptosis from Inhibitors of Apoptosis Proteins (IAP), FLICE-like inhibitor proteins (FLIP) and Bcl-2 family members were modulated by TIMP-4. In addition, TIMP-4 knockdown resulted in cell survival increase after serum deprivation, as assessed by clonogenic cell analyses. This report shows that TIMP-4 regulates carcinogenesis through apoptosis activation in cervical cancer cells. Understanding TIMP-4 effects in tumorigenesis may provide clues for future therapies. PMID:26291714

  1. On physical changes on surface of human cervical epithelial cells during cancer transformations

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia; Woodworth, Craig

    2013-03-01

    Physical changes of the cell surface of cells during transformation from normal to cancerous state are rather poorly studied. Here we describe our recent studies of such changes done on human cervical epithelial cells during their transformation from normal through infected with human papillomavirus type-16 (HPV-16), immortalized (precancerous), to cancerous cells. The changes were studied with the help of atomic force microscopy (AFM) and through the measurement of physical adhesion of fluorescent silica beads to the cell surface. Based on the adhesion experiments, we clearly see the difference in nonspecific adhesion which occurs at the stage of immortalization of cells, precancerous cells. The analysis done with the help of AFM shows that the difference observed comes presumably from the alteration of the cellular ``brush,'' a layer that surrounds cells and which consists of mostly microvilli, microridges, and glycocalyx. Further AFM analysis reveals the emergence of fractal scaling behavior on the surface of cells when normal cells turn into cancerous. The possible causes and potential significance of these observations will be discussed.

  2. [Primary cervical cancer screening].

    PubMed

    Vargas-Hernández, Víctor Manuel; Vargas-Aguilar, Víctor Manuel; Tovar-Rodríguez, José María

    2015-01-01

    Cervico-uterine cancer screening with cytology decrease incidence by more than 50%. The cause of this cancer is the human papilloma virus high risk, and requires a sensitive test to provide sufficient sensitivity and specificity for early detection and greater interval period when the results are negative. The test of the human papilloma virus high risk, is effective and safe because of its excellent sensitivity, negative predictive value and optimal reproducibility, especially when combined with liquid-based cytology or biomarkers with viral load, with higher sensitivity and specificity, by reducing false positives for the detection of cervical intraepithelial neoplasia grade 2 or greater injury, with excellent clinical benefits to cervical cancer screening and related infection of human papilloma virus diseases, is currently the best test for early detection infection of human papillomavirus and the risk of carcinogenesis. PMID:26162490

  3. Cytotoxicity of Selected Medicinal and Nonmedicinal Plant Extracts to Microbial and Cervical Cancer Cells

    PubMed Central

    Booth, Gary M.; Malmstrom, Robert D.; Kipp, Erica; Paul, Alexandra

    2012-01-01

    This study investigated the cytotoxicity of 55 species of plants. Each plant was rated as medicinal, or nonmedicinal based on the existing literature. About 79% of the medicinal plants showed some cytotoxicity, while 75% of the nonmedicinal plants showed bioactivity. It appears that Asteraceae, Labiatae, Pinaceae, and Chenopodiaceae were particularly active against human cervical cancer cells. Based on the literature, only three of the 55 plants have been significantly investigated for cytotoxicity. It is clear that there is much toxicological work yet to be done with both medicinal and nonmedicinal plants. PMID:22500074

  4. Families of microRNAs Expressed in Clusters Regulate Cell Signaling in Cervical Cancer

    PubMed Central

    Servín-González, Luis Steven; Granados-López, Angelica Judith; López, Jesús Adrián

    2015-01-01

    Tumor cells have developed advantages to acquire hallmarks of cancer like apoptosis resistance, increased proliferation, migration, and invasion through cell signaling pathway misregulation. The sequential activation of genes in a pathway is regulated by miRNAs. Loss or gain of miRNA expression could activate or repress a particular cell axis. It is well known that aberrant miRNA expression is well recognized as an important step in the development of cancer. Individual miRNA expression is reported without considering that miRNAs are grouped in clusters and may have similar functions, such as the case of clusters with anti-oncomiRs (23b~27b~24-1, miR-29a~29b-1, miR-29b-2~29c, miR-99a~125b-2, miR-99b~125a, miR-100~125b-1, miR-199a-2~214, and miR-302s) or oncomiRs activity (miR-1-1~133a-2, miR-1-2~133a-1, miR-133b~206, miR-17~92, miR-106a~363, miR183~96~182, miR-181a-1~181b-1, and miR-181a-2~181b-2), which regulated mitogen-activated protein kinases (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), NOTCH, proteasome-culling rings, and apoptosis cell signaling. In this work we point out the pathways regulated by families of miRNAs grouped in 20 clusters involved in cervical cancer. Reviewing how miRNA families expressed in cluster-regulated cell path signaling will increase the knowledge of cervical cancer progression, providing important information for therapeutic, diagnostic, and prognostic methodology design. PMID:26057746

  5. Families of microRNAs Expressed in Clusters Regulate Cell Signaling in Cervical Cancer.

    PubMed

    Servín-González, Luis Steven; Granados-López, Angelica Judith; López, Jesús Adrián

    2015-01-01

    Tumor cells have developed advantages to acquire hallmarks of cancer like apoptosis resistance, increased proliferation, migration, and invasion through cell signaling pathway misregulation. The sequential activation of genes in a pathway is regulated by miRNAs. Loss or gain of miRNA expression could activate or repress a particular cell axis. It is well known that aberrant miRNA expression is well recognized as an important step in the development of cancer. Individual miRNA expression is reported without considering that miRNAs are grouped in clusters and may have similar functions, such as the case of clusters with anti-oncomiRs (23b~27b~24-1, miR-29a~29b-1, miR-29b-2~29c, miR-99a~125b-2, miR-99b~125a, miR-100~125b-1, miR-199a-2~214, and miR-302s) or oncomiRs activity (miR-1-1~133a-2, miR-1-2~133a-1, miR-133b~206, miR-17~92, miR-106a~363, miR183~96~182, miR-181a-1~181b-1, and miR-181a-2~181b-2), which regulated mitogen-activated protein kinases (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), NOTCH, proteasome-culling rings, and apoptosis cell signaling. In this work we point out the pathways regulated by families of miRNAs grouped in 20 clusters involved in cervical cancer. Reviewing how miRNA families expressed in cluster-regulated cell path signaling will increase the knowledge of cervical cancer progression, providing important information for therapeutic, diagnostic, and prognostic methodology design. PMID:26057746

  6. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9

    SciTech Connect

    Zhen, Shuai; Hua, Ling; Takahashi, Y.; Narita, S.; Liu, Yun-Hui; Li, Yan

    2014-08-08

    Highlights: • Established CRISPR/Cas9 targeting promoter of HPV 16 and targeting E6, E7 transcript. • CRISPR/Cas9 resulted in accumulation of p53 and p21, reduced the proliferation of cervical cancer cells. • Finding inhibited tumorigenesis and growth of mice incubated by cells with CRISPR/Cas9. • CRISPR/Cas9 will be a new treatment strategy, in cervical and other HPV-associated cancer therapy. - Abstract: Deregulated expression of high-risk human papillomavirus oncogenes (E6 and E7) is a pivotal event for pathogenesis and progression in cervical cancer. Both viral oncogenes are therefore regarded as ideal therapeutic targets. In the hope of developing a gene-specific therapy for HPV-related cancer, we established CRISPR/Cas9 targeting promoter of HPV 16 E6/E7 and targeting E6, E7 transcript, transduced the CRISPR/Cas9 into cervical HPV-16-positive cell line SiHa. The results showed that CRISPR/Cas9 targeting promoter, as well as targeting E6 and E7 resulted in accumulation of p53 and p21 protein, and consequently remarkably reduced the abilities of proliferation of cervical cancer cells in vitro. Then we inoculated subcutaneously cells into nude mice to establish the transplanted tumor animal models, and found dramatically inhibited tumorigenesis and growth of mice incubated by cells with CRISPR/Cas9 targeting (promoter+E6+E7)-transcript. Our results may provide evidence for application of CRISPR/Cas9 targeting HR-HPV key oncogenes, as a new treatment strategy, in cervical and other HPV-associated cancer therapy.

  7. Aloe vera inhibits proliferation of human breast and cervical cancer cells and acts synergistically with cisplatin.

    PubMed

    Hussain, Arif; Sharma, Chhavi; Khan, Saniyah; Shah, Kruti; Haque, Shafiul

    2015-01-01

    Many of the anti-cancer agents currently used have an origin in natural sources including plants. Aloe vera is one such plant being studied extensively for its diverse health benefits, including cancer prevention. In this study, the cytotoxic potential of Aloe vera crude extract (ACE) alone or in combination with cisplatin in human breast (MCF-7) and cervical (HeLa) cancer cells was studied by cell viability assay, nuclear morphological examination and cell cycle analysis. Effects were correlated with modulation of expression of genes involved in cell cycle regulation, apoptosis and drug metabolism by RT-PCR. Exposure of cells to ACE resulted in considerable loss of cell viability in a dose- and time-dependent fashion, which was found to be mediated by through the apoptotic pathway as evidenced by changes in the nuclear morphology and the distribution of cells in the different phases of the cell cycle. Interestingly, ACE did not have any significant cytotoxicity towards normal cells, thus placing it in the category of safe chemopreventive agent. Further, the effects were correlated with the downregulation of cyclin D1, CYP 1A1, CYP 1A2 and increased expression of bax and p21 in MCF-7 and HeLa cells. In addition, low dose combination of ACE and cisplatin showed a combination index less than 1, indicating synergistic growth inhibition compared to the agents applied individually. In conclusion, these results signify that Aloe vera may be an effective anti-neoplastic agent to inhibit cancer cell growth and increase the therapeutic efficacy of conventional drugs like cispolatin. Thus promoting the development of plant-derived therapeutic agents appears warranted for novel cancer treatment strategies. PMID:25854386

  8. Regulation of p53 expression and apoptosis by vault RNA2-1-5p in cervical cancer cells

    PubMed Central

    Kong, Lu; Hao, Qi; Wang, Ying; Zhou, Ping; Zou, Binbin; Zhang, Yu-xiang

    2015-01-01

    nc886 or VRNA2-1 has recently been identified as a noncoding RNA instead of a vault RNA or a pre-microRNA. Several studies have reported that pre-miR-886 plays a tumor-suppressive role in a wide range of cancer cells through its activity as a cellular protein kinase RNA-activated (PKR) ligand and repressor. However, by sequencing stem-PCR products, we found that a microRNA originating from this precursor, vault RNA2-1-5p (VTRNA2-1-5p), occurs in cervical cancer cells. The expression levels of the predicted targets of VTRNA2-1-5p are negatively correlated with VTRNA2-1-5p levels by quantitative reversion transcription PCR (qRT-PCR). Previous results have shown that VTRNA2-1-5p is overexpressed in human cervical squamous cell carcinomas (CSCCs) compared with adjacent healthy tissues. Inhibition of VTRNA2-1-5p increases Bax protein expression and apoptotic cell death in cervical cancer cells. Our findings suggest that VTRNA2-1-5p has oncogenic activity related to the progression of cervical cancer. Here, we report that VTRNA2-1-5p directly targeted p53 expression and functioned as an oncomir in cervical cancer. VTRNA2-1-5p inhibition decreased cervical cancer cell invasion, proliferation, and tumorigenicity while increasing apoptosis and p53 expression. Interestingly, VTRNA2-1-5p inhibition also increased cisplatin-induced apoptosis of HeLa and SiHa cells. In human clinical cervical cancer specimens, low p53 expression and high VTRNA2-1-5p expression were positively associated. In addition, VTRNA2-1-5p was found to directly target the 5′ and 3′ untranslated regions (UTRs) of p53. We propose that VTRNA2-1-5p is a direct regulator of p53 and suggest that it plays an essential role in the apoptosis and proliferation of cervical cancer cells. PMID:26318295

  9. Phospholipid-chitosan hybrid nanoliposomes promoting cell entry for drug delivery against cervical cancer.

    PubMed

    Saesoo, Somsak; Bunthot, Suphawadee; Sajomsang, Warayuth; Gonil, Pattarapond; Phunpee, Sarunya; Songkhum, Patsaya; Laohhasurayotin, Kritapas; Wutikhun, Tuksadon; Yata, Teerapong; Ruktanonchai, Uracha Rungsardthong; Saengkrit, Nattika

    2016-10-15

    This study emphasizes the development of a novel surface modified liposome as an anticancer drug nanocarrier. Quaternized N,O-oleoyl chitosan (QCS) was synthesized and incorporated into liposome vesicles, generating QCS-liposomes (Lip-QCS). The Lip-QCS liposomes were spherical in shape (average size diameter 171.5±0.8nm), with a narrow size distribution (PDI 0.1±0.0) and zeta potential of 11.7±0.7mV. In vitro mucoadhesive tests indicated that Lip-QCS possesses a mucoadhesive property. Moreover, the presence of QCS was able to induce the cationic charge on the surface of liposome. Cellular internalization of Lip-QCS was monitored over time, with the results revealing that the cell entry level of Lip-QCS was elevated at 24h. Following this, Lip-QCS were then employed to load cisplatin, a common platinum-containing anti-cancer drug, with a loading efficiency of 27.45±0.78% being obtained. The therapeutic potency of the loaded Lip-QCS was investigated using a 3D spheroid cervical cancer model (SiHa) which highlighted their cytotoxicity and apoptosis effect, and suitability as a controllable system for sustained drug release. This approach has the potential to assist in development of an effective drug delivery system against cervical cancer. PMID:27442151

  10. Cyclin D1b overexpression inhibits cell proliferation and induces cell apoptosis in cervical cancer cells in vitro and in vivo

    PubMed Central

    Wang, Ning; Wei, Heng; Yin, Duo; Lu, Yanming; Zhang, Yao; Jiang, Di; Jiang, Yan; Zhang, Shulan

    2014-01-01

    Cyclin D1b is one of two proteins translated from cyclin D1 transcripts (isoforms a and b) that are generated due to gene polymorphism. Our previous study has reported low cyclin D1b expression in cervical cancer tissue, with an expression level in moderately or poorly differentiated tissues that was significantly lower than that in well-differentiated tissues. However, the functional role of cyclin D1b in cervical cancer remains to be elucidated. In this study, using a cervical cancer cell line with stable expression of cyclin D1b, we found that upregulation of cyclin D1b initiated cell cycle arrest at the G0/G1 phase and induced apoptosis, thereby inhibiting cell proliferation and colony formation. Furthermore, xenograft transplantation experiments in nude mice demonstrated that cyclin D1b upregulation inhibited cancer growth and induce apoptosis in vivo. In conclusion, the present study indicates anti-tumor effects of cyclin D1b in cervical cancer, suggesting that cyclin D1b may represent a potential therapeutic target for cervical cancer. PMID:25120779

  11. AKT Inhibitors Promote Cell Death in Cervical Cancer through Disruption of mTOR Signaling and Glucose Uptake

    PubMed Central

    Rashmi, Ramachandran; DeSelm, Carl; Helms, Cynthia; Bowcock, Anne; Rogers, Buck E.; Rader, Janet; Grigsby, Perry W.; Schwarz, Julie K.

    2014-01-01

    Background PI3K/AKT pathway alterations are associated with incomplete response to chemoradiation in human cervical cancer. This study was performed to test for mutations in the PI3K pathway and to evaluate the effects of AKT inhibitors on glucose uptake and cell viability. Experimental Design Mutational analysis of DNA from 140 pretreatment tumor biopsies and 8 human cervical cancer cell lines was performed. C33A cells (PIK3CAR88Q and PTENR233*) were treated with increasing concentrations of two allosteric AKT inhibitors (SC-66 and MK-2206) with or without the glucose analogue 2-deoxyglucose (2-DG). Cell viability and activation status of the AKT/mTOR pathway were determined in response to the treatment. Glucose uptake was evaluated by incubation with 18F-fluorodeoxyglucose (FDG). Cell migration was assessed by scratch assay. Results Activating PIK3CA (E545K, E542K) and inactivating PTEN (R233*) mutations were identified in human cervical cancer. SC-66 effectively inhibited AKT, mTOR and mTOR substrates in C33A cells. SC-66 inhibited glucose uptake via reduced delivery of Glut1 and Glut4 to the cell membrane. SC-66 (1 µg/ml-56%) and MK-2206 (30 µM-49%) treatment decreased cell viability through a non-apoptotic mechanism. Decreases in cell viability were enhanced when AKT inhibitors were combined with 2-DG. The scratch assay showed a substantial reduction in cell migration upon SC-66 treatment. Conclusions The mutational spectrum of the PI3K/AKT pathway in cervical cancer is complex. AKT inhibitors effectively block mTORC1/2, decrease glucose uptake, glycolysis, and decrease cell viability in vitro. These results suggest that AKT inhibitors may improve response to chemoradiation in cervical cancer. PMID:24705275

  12. Deficiency of Erbin induces resistance of cervical cancer cells to anoikis in a STAT3-dependent manner

    PubMed Central

    Hu, Y; Chen, H; Duan, C; Liu, D; Qian, L; Yang, Z; Guo, L; Song, L; Yu, M; Hu, M; Shi, M; Guo, N

    2013-01-01

    Epithelial cell polarization and integration are essential to their function and loss of epithelial polarity and tissue architecture correlates with the development of aggressive tumors. Erbin is a basolateral membrane-associated protein. The roles of Erbin in establishing cell polarization and regulating cell adhesion have been suggested. Erbin is also a negative regulator in Ras-Raf-ERK (extracellular signal-regulated kinase) signaling pathway. However, the potential functions of Erbin in human cancer are basically unknown. In the present study, we show, for the first time, that loss of Erbin endows cervical cancer cells with resistance to anoikis both in vitro and in vivo and promotes the growth and metastasis of human cervical cancer xenografts in nude mice. We found that knockdown of Erbin induced the phosphorylation, nuclear translocation and transcriptional activities of signal transducer and activator of transcription factor 3 (STAT3) in cervical cancer cells. Overexpression of STAT3C or induction of endogenous STAT3 activation by interleukin (IL)-6 evidently inhibited anoikis of cervical cancer cells, whereas WP1066, a potent inhibitor of Janus-activated kinase 2 (Jak2)/STAT3, effectively blocked the effect of Erbin knockdown on cell survival under anchorage-independent conditions, indicating that loss of Erbin confers resistance of cervical cancer cells to anoikis in a STAT3-dependent manner. Interestingly, IL-6 induced STAT3 activation and Erbin expression simultaneously. Overexpression of STAT3C also significantly upregulated the level of Erbin, whereas the Jak2 inhibitor AG490 remarkably blocked not only STAT3 phosphorylation but also IL-6-induced Erbin expression. Knockdown of Erbin augmented the effects of IL-6 on STAT3 activation and anoikis resistance. In addition, by immunohistochemical analysis of Erbin expression, we demonstrate that the expression of Erbin is significantly decreased or even lost in cervical cancer tissues. These data reveal

  13. miR-224-3p inhibits autophagy in cervical cancer cells by targeting FIP200.

    PubMed

    Fang, Wang; Shu, Shan; Yongmei, Li; Endong, Zhu; Lirong, Yin; Bei, Sun

    2016-01-01

    Cervical cancer (CC) is a malignant solid tumor, which is one of the main causes of morbidity and mortality in women. Persistent High-risk human papillomavirus (hrHPV) infection is closely related to cervical cancer and autophagy has been suggested to inhibit viral infections. miRNAs have been reported to regulate autophagy in many solid tumors with many studies implicating miR-224-3p in the regulation of autophagy. In this study, we performed a miRNA microarray analysis on CC tissues and found that a large number of miRNAs with differential expressions in hrHPV-infected tissues. We identified miR-224-3p as a candidate miRNA selectively up regulated in HPV-infected tissues and cell lines. Further analysis revealed that miR-224-3p regulates autophagy in cervical cancer tissues and cell lines. While the overexpression of miR-224-3p inhibits autophagy in HPV-infected cells, knocking down endogenous miR-224-3p increases autophagy activity in the same cells. In addition, we found that miR-224-3p directly inhibits the expression of autophagy related gene, FAK family-interacting protein of 200 kDa (FIP200). In summary, we found that miR-224-3p regulates autophagy in hrHPV-induced cervical cancer cells through targeting FIP200 expression. PMID:27615604

  14. Prognostic Cell Biological Markers in Cervical Cancer Patients Primarily Treated With (Chemo)radiation: A Systematic Review

    SciTech Connect

    Noordhuis, Maartje G.; Eijsink, Jasper J.H.; Roossink, Frank; Graeff, Pauline de; Pras, Elisabeth; Schuuring, Ed; Wisman, G. Bea A.; Bock, Geertruida H. de; Zee, Ate G.J. van der

    2011-02-01

    The aim of this study was to systematically review the prognostic and predictive significance of cell biological markers in cervical cancer patients primarily treated with (chemo)radiation. A PubMed, Embase, and Cochrane literature search was performed. Studies describing a relation between a cell biological marker and survival in {>=}50 cervical cancer patients primarily treated with (chemo)radiation were selected. Study quality was assessed, and studies with a quality score of 4 or lower were excluded. Cell biological markers were clustered on biological function, and the prognostic and predictive significance of these markers was described. In total, 42 studies concerning 82 cell biological markers were included in this systematic review. In addition to cyclooxygenase-2 (COX-2) and serum squamous cell carcinoma antigen (SCC-ag) levels, markers associated with poor prognosis were involved in epidermal growth factor receptor (EGFR) signaling (EGFR and C-erbB-2) and in angiogenesis and hypoxia (carbonic anhydrase 9 and hypoxia-inducible factor-1{alpha}). Epidermal growth factor receptor and C-erbB-2 were also associated with poor response to (chemo)radiation. In conclusion, EGFR signaling is associated with poor prognosis and response to therapy in cervical cancer patients primarily treated with (chemo)radiation, whereas markers involved in angiogenesis and hypoxia, COX-2, and serum SCC-ag levels are associated with a poor prognosis. Therefore, targeting these pathways in combination with chemoradiation may improve survival in advanced-stage cervical cancer patients.

  15. Taxol produced from endophytic fungi induces apoptosis in human breast, cervical and ovarian cancer cells.

    PubMed

    Wang, Xin; Wang, Chao; Sun, Yu-Ting; Sun, Chuan-Zhen; Zhang, Yue; Wang, Xiao-Hua; Zhao, Kai

    2015-01-01

    Currently, taxol is mainly extracted from the bark of yews; however, this method can not meet its increasing demand on the market because yews grow very slowly and are a rare and endangered species belonging to first- level conservation plants. Recently, increasing efforts have been made to develop alternative means of taxol production; microbe fermentation would be a very promising method to increase the production scale of taxol. To determine the activities of the taxol extracted from endophytic fungus N. sylviforme HDFS4-26 in inhibiting the growth and causing the apoptosis of cancer cells, on comparison with the taxol extracted from the bark of yew, we used cellular morphology, cell counting kit (CCK-8) assay, staining (HO33258/PI and Giemsa), DNA agarose gel electrophoresis and flow cytometry (FCM) analyses to determine the apoptosis status of breast cancer MCF-7 cells, cervical cancer HeLa cells and ovarian cancer HO8910 cells. Our results showed that the fungal taxol inhibited the growth of MCF-7, HeLa and HO8910 cells in a dose-and time-dependent manner. IC50 values of fungal taxol for HeLa, MCF-7 and HO8910 cells were 0.1-1.0 μg/ml, 0.001-0.01 μg/ml and 0.01- 0.1 μg/ml, respectively. The fungal taxol induced these tumor cells to undergo apoptosis with typical apoptotic characteristics, including morphological changes for chromatin condensation, chromatin crescent formation, nucleus fragmentation, apoptotic body formation and G2/M cell cycle arrest. The fungal taxol at the 0.01-1.0 μg/ ml had significant effects of inducing apoptosis between 24-48 h, which was the same as that of taxol extracted from yews. This study offers important information and a new resource for the production of an important anticancer drug by endofungus fermentation. PMID:25640339

  16. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway.

    PubMed

    Su, Ke; Wang, Chun-Fang; Zhang, Ying; Cai, Yu-Jie; Zhang, Yan-Yan; Zhao, Qian

    2016-08-01

    Cervical cancer has been the fourth most common cancer killing many women across the world. Carnosic acid (CA), as a phenolic diterpene, has been suggested to against cancer, exerting protective effects associated with inflammatory cytokines. It is aimed to demonstrate the therapeutic role of carnosic acid against cervical cancer and indicate its underlying molecular mechanisms. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) was performed to assess the possible anti-proliferative effects of carnosic acid. And also, colony formation was used to further estimate carnosic acid's ability in suppressing cervical cancer cells proliferation. Flow cytometry assays were performed here to indicate the alterations of cervical cancer cells cycle and the development of apoptosis. Western blot assays and RT-PCR were also applied to clarify the apoptosis-associated signaling pathways affected by reactive oxygen species (ROS) generation. And immunofluorescence was used to detect ROS-positive cells. In vivo experiments, CaSki xenograft model samples of nude mice were involved to further elucidate the effects of carnosic acid. In our results, we found that carnosic acid exerted anti-tumor ability in vitro supported by up-regulation of apoptosis and ROS production in cervical cancer cells. Also, acceleration of ROS led to the phospharylation of (c-Jun N-terminal kinase (JNK) and its-related signals, as well as activation of Endoplasmic Reticulum (ER) stress, promoting the progression of apoptosis via stimulating Caspase3 expression. The development and growth of xenograft tumors in nude mice were found to be inhibited by the administration of carnosic acid for five weeks. And the suppressed role of carnosic acid in proliferation of cervical cancer cells and apoptosis of nude mice with tumor tissues were observed in our study. Taken together, our data indicated that carnosic acid resulted in apoptosis both in vitro and vivo experiments via promoting ROS and

  17. Anticancer property of Bryophyllum pinnata (Lam.) Oken. leaf on human cervical cancer cells

    PubMed Central

    2012-01-01

    Background Bryophyllum pinnata (B. pinnata) is a common medicinal plant used in traditional medicine of India and of other countries for curing various infections, bowel diseases, healing wounds and other ailments. However, its anticancer properties are poorly defined. In view of broad spectrum therapeutic potential of B. pinnata we designed a study to examine anti-cancer and anti-Human Papillomavirus (HPV) activities in its leaf extracts and tried to isolate its active principle. Methods A chloroform extract derived from a bulk of botanically well-characterized pulverized B. pinnata leaves was separated using column chromatography with step- gradient of petroleum ether and ethyl acetate. Fractions were characterized for phyto-chemical compounds by TLC, HPTLC and NMR and Biological activity of the fractions were examined by MTT-based cell viability assay, Electrophoretic Mobility Shift Assay, Northern blotting and assay of apoptosis related proteins by immunoblotting in human cervical cancer cells. Results Results showed presence of growth inhibitory activity in the crude leaf extracts with IC50 at 552 μg/ml which resolved to fraction F4 (Petroleum Ether: Ethyl Acetate:: 50:50) and showed IC50 at 91 μg/ml. Investigations of anti-viral activity of the extract and its fraction revealed a specific anti-HPV activity on cervical cancer cells as evidenced by downregulation of constitutively active AP1 specific DNA binding activity and suppression of oncogenic c-Fos and c-Jun expression which was accompanied by inhibition of HPV18 transcription. In addition to inhibiting growth, fraction F4 strongly induced apoptosis as evidenced by an increased expression of the pro-apoptotic protein Bax, suppression of the anti-apoptotic molecules Bcl-2, and activation of caspase-3 and cleavage of PARP-1. Phytochemical analysis of fraction F4 by HPTLC and NMR indicated presence of activity that resembled Bryophyllin A. Conclusions Our study therefore demonstrates presence of

  18. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2.

    PubMed

    Sun, Lichun; Liu, Mingqiu; Sun, Guang-Chun; Yang, Xu; Qian, Qingqing; Feng, Shuyu; Mackey, L Vienna; Coy, David H

    2016-01-01

    Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed. PMID:27471554

  19. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2

    PubMed Central

    Sun, Lichun; Liu, Mingqiu; Sun, Guang-Chun; Yang, Xu; Qian, Qingqing; Feng, Shuyu; Mackey, L. Vienna; Coy, David H.

    2016-01-01

    Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed. PMID:27471554

  20. Blocking eIF5A Modification in Cervical Cancer Cells Alters the Expression of Cancer-Related Genes and Suppresses Cell Proliferation

    PubMed Central

    Mémin, Elisabeth; Hoque, Mainul; Jain, Mohit R.; Heller, Debra S.; Li, Hong; Cracchiolo, Bernadette; Hanauske-Abel, Hartmut M.; Pe’ery, Tsafi; Mathews, Michael B.

    2016-01-01

    Cancer etiology is influenced by alterations in protein synthesis that are not fully understood. In this study, we took a novel approach to investigate the role of the eukaryotic translation initiation factor eIF5A in human cervical cancers, where it is widely overexpressed. eIF5A contains the distinctive amino acid hypusine, which is formed by a posttranslational modification event requiring deoxyhypusine hydroxylase (DOHH), an enzyme that can be inhibited by the drugs ciclopirox and deferiprone. We found that proliferation of cervical cancer cells can be blocked by DOHH inhibition with either of these pharmacologic agents, as well as by RNA interference–mediated silencing of eIF5A, DOHH, or another enzyme in the hypusine pathway. Proteomic and RNA analyses in HeLa cervical cancer cells identified two groups of proteins in addition to eIF5A that were coordinately affected by ciclopirox and deferiprone. Group 1 proteins (Hsp27, NM23, and DJ-1) were downregulated at the translational level, whereas group 2 proteins (TrpRS and PRDX2) were upregulated at the mRNA level. Further investigations confirmed that eIF5A and DOHH are required for Hsp27 expression in cervical cancer cells and for regulation of its key target IκB and hence NF-κB. Our results argue that mature eIF5A controls a translational network of cancer-driving genes, termed the eIF5A regulon, at the levels of mRNA abundance and translation. In coordinating cell proliferation, the eIF5A regulon can be modulated by drugs such as ciclopirox or deferiprone, which might be repositioned to control cancer cell growth. PMID:24220243

  1. Blocking eIF5A modification in cervical cancer cells alters the expression of cancer-related genes and suppresses cell proliferation.

    PubMed

    Mémin, Elisabeth; Hoque, Mainul; Jain, Mohit R; Heller, Debra S; Li, Hong; Cracchiolo, Bernadette; Hanauske-Abel, Hartmut M; Pe'ery, Tsafi; Mathews, Michael B

    2014-01-15

    Cancer etiology is influenced by alterations in protein synthesis that are not fully understood. In this study, we took a novel approach to investigate the role of the eukaryotic translation initiation factor eIF5A in human cervical cancers, where it is widely overexpressed. eIF5A contains the distinctive amino acid hypusine, which is formed by a posttranslational modification event requiring deoxyhypusine hydroxylase (DOHH), an enzyme that can be inhibited by the drugs ciclopirox and deferiprone. We found that proliferation of cervical cancer cells can be blocked by DOHH inhibition with either of these pharmacologic agents, as well as by RNA interference-mediated silencing of eIF5A, DOHH, or another enzyme in the hypusine pathway. Proteomic and RNA analyses in HeLa cervical cancer cells identified two groups of proteins in addition to eIF5A that were coordinately affected by ciclopirox and deferiprone. Group 1 proteins (Hsp27, NM23, and DJ-1) were downregulated at the translational level, whereas group 2 proteins (TrpRS and PRDX2) were upregulated at the mRNA level. Further investigations confirmed that eIF5A and DOHH are required for Hsp27 expression in cervical cancer cells and for regulation of its key target IκB and hence NF-κB. Our results argue that mature eIF5A controls a translational network of cancer-driving genes, termed the eIF5A regulon, at the levels of mRNA abundance and translation. In coordinating cell proliferation, the eIF5A regulon can be modulated by drugs such as ciclopirox or deferiprone, which might be repositioned to control cancer cell growth. PMID:24220243

  2. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9.

    PubMed

    Zhen, Shuai; Hua, Ling; Takahashi, Y; Narita, S; Liu, Yun-Hui; Li, Yan

    2014-08-01

    Deregulated expression of high-risk human papillomavirus oncogenes (E6 and E7) is a pivotal event for pathogenesis and progression in cervical cancer. Both viral oncogenes are therefore regarded as ideal therapeutic targets. In the hope of developing a gene-specific therapy for HPV-related cancer, we established CRISPR/Cas9 targeting promoter of HPV 16 E6/E7 and targeting E6, E7 transcript, transduced the CRISPR/Cas9 into cervical HPV-16-positive cell line SiHa. The results showed that CRISPR/Cas9 targeting promoter, as well as targeting E6 and E7 resulted in accumulation of p53 and p21 protein, and consequently remarkably reduced the abilities of proliferation of cervical cancer cells in vitro. Then we inoculated subcutaneously cells into nude mice to establish the transplanted tumor animal models, and found dramatically inhibited tumorigenesis and growth of mice incubated by cells with CRISPR/Cas9 targeting (promoter+E6+E7)-transcript. Our results may provide evidence for application of CRISPR/Cas9 targeting HR-HPV key oncogenes, as a new treatment strategy, in cervical and other HPV-associated cancer therapy. PMID:25044113

  3. HPV-type-specific response of cervical cancer cells to cisplatin after silencing replication licensing factor MCM4.

    PubMed

    Das, Mitali; Prasad, Shyam Babu; Yadav, Suresh Singh; Modi, Arusha; Singh, Sunita; Pradhan, Satyajit; Narayan, Gopeshwar

    2015-12-01

    Minichoromosome maintenance (MCM) proteins play key role in cell cycle progression by licensing DNA replication only once per cell cycle. These proteins are found to be overexpressed in cervical cancer cells. In this study, we depleted MCM4, one of the MCM 2-7 complex components by RNA interference (RNAi) in four cervical cancer cell lines. The four cell lines were selected on the basis of their human papillomavirus (HPV) infection: HPV16-positive SiHa, HPV18-positive ME-180, HPV16- and HPV18-positive CaSki, and HPV-negative C-33A. The MCM4-deficient cells irrespective of their HPV status grow for several generations and maintain regular cell cycle. We did not find any evidence of augmented response to a short-term (48 h) cisplatin treatment in these MCM4-deficient cells. However, MCM4-/HPV16+ SiHa cells cannot withstand a prolonged treatment (up to 5 days) of even a sublethal dosage of cisplatin. They show increased chromosomal instability compared to their control counterparts. On the other hand, MCM4-deficient CaSki cells (both HPV16+ and 18+) remain resistant to a prolonged exposure to cisplatin. Our study indicates that cervical cancer cells may be using excess MCMs as a backup for replicative stress; however, its regulatory mechanism is dependent on the HPV status of the cells. PMID:26188903

  4. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    SciTech Connect

    Ramos-Solano, Moisés; Meza-Canales, Ivan D.; Torres-Reyes, Luis A.; Alvarez-Zavala, Monserrat; and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  5. Combination of aloe-emodin with radiation enhances radiation effects and improves differentiation in human cervical cancer cells.

    PubMed

    Luo, Jinghua; Yuan, Yong; Chang, Pengyu; Li, Dawei; Liu, Zhiqiang; Qu, Yaqin

    2014-08-01

    The aim of the present study was to investigate the effects of aloe-emodin (AE) on the radiosensitivity and differentiation of HeLa human cervical cancer cells. Cell proliferation was assessed in the HeLa cervical cancer cell line by a methylthiazolyldiphenyl-tetrazolium bromide assay. Radiosensitivity was determined by a colony‑forming assay. Flow cytometry was used for analysis of cell cycle distribution and apoptosis. The expression of γ-H2AX and cyclin B was assessed by western blotting. Alkaline phosphatase (ALP) activity was measured by an ALP activity kit. It was demonstrated that AE inhibited the proliferation of HeLa cells in a concentration- and time-dependent manner, induced G2/M and S phase cell cycle arrest and enhanced the radiosensitivity of HeLa cells. The combination of AE and radiation induced apoptosis, upregulated cyclin B and γ-H2AX expression and further improved ALP activity compared with treatment with AE or radiation alone. AE enhanced the radiosensitivity of HeLa human cervical cancer cells in vitro, inhibited the proliferation of HeLa cells, induced G2/M phase cell cycle arrest and, in combination with radiation, induced the apoptosis and improved the differentiation of HeLa cells. PMID:24920336

  6. Anti-inflammatory drugs and uterine cervical cancer cells: Antineoplastic effect of meclofenamic acid

    PubMed Central

    SORIANO-HERNANDEZ, ALEJANDRO D.; MADRIGAL-PÉREZ, DANIELA; GALVAN-SALAZAR, HECTOR R.; MARTINEZ-FIERRO, MARGARITA L.; VALDEZ-VELAZQUEZ, LAURA L.; ESPINOZA-GÓMEZ, FRANCISCO; VAZQUEZ-VUELVAS, OSCAR F.; OLMEDO-BUENROSTRO, BERTHA A.; GUZMAN-ESQUIVEL, JOSE; RODRIGUEZ-SANCHEZ, IRAM P.; LARA-ESQUEDA, AGUSTIN; MONTES-GALINDO, DANIEL A.; DELGADO-ENCISO, IVAN

    2015-01-01

    Uterine cervical cancer (UCC) is one of the main causes of cancer-associated mortality in women. Inflammation has been identified as an important component of this neoplasia; in this context, anti-inflammatory drugs represent possible prophylactic and/or therapeutic alternatives that require further investigation. Anti-inflammatory drugs are common and each one may exhibit a different antineoplastic effect. As a result, the present study investigated different anti-inflammatory models of UCC in vitro and in vivo. Celecoxib, sulindac, nimesulide, dexamethasone, meclofenamic acid, flufenamic acid and mefenamic acid were tested in UCC HeLa, VIPA, INBL and SiHa cell lines. The cytotoxicity of the drugs was evaluated in vitro. Celecoxib, sulindac, nimesulide, mefenamic acid and flufenamic acid presented with slight to moderate toxicity (10–40% of cell death corresponding to 100 µM) in certain cell lines, while meclofenamic acid exhibited significant cytotoxicity in all essayed cell lines (50–90% of cell death corresponding to 100 µM). The meclofenamic acid was tested in murine models (immunodeficient and immunocompetent) of UCC, which manifested a significant reduction in tumor growth and increased mouse survival. It was demonstrated that of the evaluated anti-inflammatory drugs, meclofenamic acid was the most cytotoxic, with a significant antitumor effect in murine models. Subsequent studies are necessary to evaluate the clinical utility of this drug. PMID:26622892

  7. Radiotherapy of Cervical Cancer.

    PubMed

    Vordermark, Dirk

    2016-01-01

    Curative-intent radical radiotherapy of cervical cancer consists of external-beam radiotherapy, brachytherapy, and concomitant chemotherapy with cisplatin. For each element, new developments aim to improve tumor control rates or treatment tolerance. Intensity-modulated radiotherapy (IMRT) has been shown to reduce gastrointestinal toxicity and can be used to selectively increase the radiotherapy dose. Individualized, image-guided brachytherapy enables better adaptation of high-dose volumes to the tumor extension. Intensification of concomitant or sequential systemic therapy is under evaluation. PMID:27614991

  8. Expression/localization patterns of sirtuins (SIRT1, SIRT2, and SIRT7) during progression of cervical cancer and effects of sirtuin inhibitors on growth of cervical cancer cells.

    PubMed

    Singh, Sapna; Kumar, P Uday; Thakur, Suresh; Kiran, Shashi; Sen, Bijoya; Sharma, Shreya; Rao, Vishnu Vardhan; Poongothai, A R; Ramakrishna, Gayatri

    2015-08-01

    Sirtuins belong to the family of class III histone deacetylases; its role in neoplasia is controversial as both tumor-suppressive and promoting functions have been reported. There are very few reports available, where expressions of sirtuin isoforms are comprehensively analyzed during neoplasia. Therefore, in the present study, the expression of SIRT1, SIRT2, and SIRT7 during different stages of cervical cancer progression was analyzed. The normal cervical epithelium showed feeble expression of sirtuin isoforms, SIRT1, SIRT2, and SIRT7. A significant increase in SIRT1 expression was noted in the cytoplasm as well as in the nucleus of proliferative layers of cervical epithelium in squamous intraepithelial lesions (SIL); however, in the squamous cell carcinomas (SCC), a heterogeneous pattern of SIRT1 expression varying from low to high was noted. A progressive increase in the expression of both SIRT2 and SIRT7 was noted during cancer progression in the following order: normal < preneoplasia < cancer. Cervical cancer cell lines, HeLa and SiHa, showed higher levels of SIRT1 and SIRT2 in comparison to the immortalized cell counterpart, HaCaT. Specific inhibitors of SIRT1 (Ex527) and SIRT2 (AGK2) impaired the growth of the cervical cancer cells, SiHa, but not of the HaCaT cells. SIRT1 inhibition caused cell death, while SIRT2 inhibition resulted in cell cycle arrest. In conclusion, we report the overexpression of SIRT2 and SIRT7 proteins in cervical cancer and suggest probable application of sirtuin inhibitors as therapeutic targets. Further, a specific increase in the levels of SIRT1 in intraepithelial lesion makes it a promising candidate for identification of preneoplastic changes. PMID:25794641

  9. MAML1 regulates cell viability via the NF-{kappa}B pathway in cervical cancer cell lines

    SciTech Connect

    Kuncharin, Yanin; Sangphech, Naunpun; Kueanjinda, Patipark; Bhattarakosol, Parvapan; Palaga, Tanapat

    2011-08-01

    The Notch signaling pathway plays important roles in tumorigenesis in a context-dependent manner. In human cervical cancer, alterations in Notch signaling have been reported, and both tumor-suppressing and tumor-promoting roles of Notch signaling have been proposed; however, the precise molecular mechanisms governing these roles in cervical cancer remain controversial. MAML is a transcriptional co-activator originally identified by its role in Notch signaling. Recent evidence suggests that it also plays a role in other signaling pathways, such as the p53 and {beta}-catenin pathways. MAML is required for stable formation of Notch transcriptional complexes at the promoters of Notch target genes. Chromosomal translocations affecting MAML have been shown to promote tumorigenesis. In this study, we used a truncated dominant-negative MAML1 (DN-MAML) to investigate the role of MAML in HPV-positive cervical cancer cell lines. Three human cervical cancer cell lines (HeLa, SiHa and CaSki) expressed all Notch receptors and the Notch target genes Hes1 and MAML1. Among these 3 cell lines, constitutive appearance of cleaved Notch1 was found only in CaSki cells, which suggests that Notch1 is constitutively activated in this cell line. Gamma secretase inhibitor (GSI) treatment, which suppresses Notch receptor activation, completely abrogated this form of Notch1 but had no effect on cell viability. Overexpression of DN-MAML by retroviral transduction in CaSki cells resulted in significant decreases in the mRNA levels of Hes1 and Notch1 but had no effects on the levels of MAML1, p53 or HPV E6/E7. DN-MAML expression induced increased viability of CaSki cells without any effect on cell cycle progression or cell proliferation. In addition, clonogenic assay experiments revealed that overexpression of DN-MAML resulted in increased colony formation compared to the overexpression of the control vector. When the status of the NF-{kappa}B pathway was investigated, CaSki cells overexpressing

  10. Production of interleukin-4 in CD133+ cervical cancer stem cells promotes resistance to apoptosis and initiates tumor growth

    PubMed Central

    LIU, CHUN-TAO; XIN, YING; TONG, CHUN-YAN; LI, BING; BAO, HONG-LI; ZHANG, CAI-YUN; WANG, XUE-HUI

    2016-01-01

    The cancer stem cell (CSC) theory suggests that cancer growth and invasion is dictated by the small population of CSCs within the heterogenous tumor. The aim of the present study was to elucidate the cause for chemotherapy failure and the resistance of CSCs to apoptosis. A total of ~2.3% cluster of differentiation (CD)133+ cancer stem-like side population (SP) cells were identified in cases of uterine cervical cancer. These CD133+ SP cells were found to potently initiate tumor growth and invasion, as they exhibit transcriptional upregulation of stemness genes, including octamer-binding transcription factor-4, B-cell-specific Moloney murine leukemia virus insertion site-1, epithelial cell adhesion molecule, (sex determining region Y)-box 2, Nestin and anti-apoptotic B cell lymphoma-2. In addition, the CD133+ SP cells showed resistance to multi-drug treatment and apoptosis. The present study further showed that the secretion of interleukin-4 (IL-4) in CD133+ cervical cancer SP cells promoted cell proliferation and prevented the SP cells from apoptosis. Following the neutralization of IL-4 with anti-IL-4 antibody, the CD133+ SP cells were more sensitive to drug treatment and apoptosis. Therefore, the data obtained in the present study suggested that the autocrine secretion of IL-4 promotes increased survival and resistance to cell death in CSCs. PMID:27121303

  11. [Primary peripheral T-cell lymphoma of the vagina incidentally found at cervical cancer screening].

    PubMed

    Isobe, Rei; Mituishi, Toshimi; Omote, Mayuko; Mori, Yuichi; Ida, Koichi; Oguchi, Osamu; Nakai, Ikuko; Oguchi, Masahiko

    2016-01-01

    A 50-year-old woman was referred to our hospital because a mass lesion had been palpable through the vaginal wall during a cervical cancer screening examination. A contrast-enhanced computed tomography (CT) scan and magnetic resonance imaging (MRI) revealed marked thickening of the vaginal wall, constituting a mass 96 mm in diameter. Abnormal FDG uptake was observed in the vaginal mass, but no other lesions were detected by positron emission tomography (PET/CT). A transvaginal biopsy from the tumor revealed peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS). Although endoscopic examinations revealed no signs of infiltration in either the bladder or the rectum, the MRI findings suggested invasion into the adjacent rectal wall. She achieved complete remission after six courses of biweekly THP-COP therapy, to which field radiation (39.6 Gy) was added. PTCL of the vagina is rare and this case therefore merits description in the literature. PMID:26861099

  12. Cervical cancer screening.

    PubMed Central

    Katz, A.

    1998-01-01

    OBJECTIVE: To review the role of family physicians in screening for cancer of the cervix, to review the evidence for screening, in particular, frequency and technique for screening, and to review the reasons cervical cancer has not been prevented and the role of family physicians in addressing these failures. QUALITY OF EVIDENCE: The value of screening has been established with level II evidence. Many of the unresolved issues are not supported either way by good evidence; level II and III evidence predominates. MAIN FINDINGS: In Canada, 1350 women were predicted to be diagnosed with cancer of the cervix in 1996. Most of these women had not been screened. Minority, rural, low-income, and older women face important barriers to screening. Family physicians have a role in reaching out to these women to provide effective health care, including cancer screening. When cancer screening is performed, it should conform to recommended techniques with appropriate follow up of abnormal test results. CONCLUSIONS: Family physicians have an important role in preventing cancer of the cervix. Efforts should be concentrated on encouraging a greater proportion of eligible women to be screened. Criteria are suggested for effective screening. PMID:9721422

  13. Curcumin Nanoformulation for Cervical Cancer Treatment

    PubMed Central

    Zaman, Mohd S.; Chauhan, Neeraj; Yallapu, Murali M.; Gara, Rishi K.; Maher, Diane M.; Kumari, Sonam; Sikander, Mohammed; Khan, Sheema; Zafar, Nadeem; Jaggi, Meena; Chauhan, Subhash C.

    2016-01-01

    Cervical cancer is one of the most common cancers among women worldwide. Current standards of care for cervical cancer includes surgery, radiation, and chemotherapy. Conventional chemotherapy fails to elicit therapeutic responses and causes severe systemic toxicity. Thus, developing a natural product based, safe treatment modality would be a highly viable option. Curcumin (CUR) is a well-known natural compound, which exhibits excellent anti-cancer potential by regulating many proliferative, oncogenic, and chemo-resistance associated genes/proteins. However, due to rapid degradation and poor bioavailability, its translational and clinical use has been limited. To improve these clinically relevant parameters, we report a poly(lactic-co-glycolic acid) based curcumin nanoparticle formulation (Nano-CUR). This study demonstrates that in comparison to free CUR, Nano-CUR effectively inhibits cell growth, induces apoptosis, and arrests the cell cycle in cervical cancer cell lines. Nano-CUR treatment modulated entities such as miRNAs, transcription factors, and proteins associated with carcinogenesis. Moreover, Nano-CUR effectively reduced the tumor burden in a pre-clinical orthotopic mouse model of cervical cancer by decreasing oncogenic miRNA-21, suppressing nuclear β-catenin, and abrogating expression of E6/E7 HPV oncoproteins including smoking compound benzo[a]pyrene (BaP) induced E6/E7 and IL-6 expression. These superior pre-clinical data suggest that Nano-CUR may be an effective therapeutic modality for cervical cancer. PMID:26837852

  14. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    PubMed Central

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity. PMID:26703569

  15. Production of interleukin‑4 in CD133+ cervical cancer stem cells promotes resistance to apoptosis and initiates tumor growth.

    PubMed

    Liu, Chun-Tao; Xin, Ying; Tong, Chun-Yan; Li, Bing; Bao, Hong-Li; Zhang, Cai-Yun; Wang, Xue-Hui

    2016-06-01

    The cancer stem cell (CSC) theory suggests that cancer growth and invasion is dictated by the small population of CSCs within the heterogenous tumor. The aim of the present study was to elucidate the cause for chemotherapy failure and the resistance of CSCs to apoptosis. A total of ~2.3% cluster of differentiation (CD)133+ cancer stem‑like side population (SP) cells were identified in cases of uterine cervical cancer. These CD133+ SP cells were found to potently initiate tumor growth and invasion, as they exhibit transcriptional upregulation of stemness genes, including octamer‑binding transcription factor‑4, B‑cell‑specific Moloney murine leukemia virus insertion site‑1, epithelial cell adhesion molecule, (sex determining region Y)‑box 2, Nestin and anti‑apoptotic B cell lymphoma‑2. In addition, the CD133+ SP cells showed resistance to multi‑drug treatment and apoptosis. The present study further showed that the secretion of interleukin‑4 (IL‑4) in CD133+ cervical cancer SP cells promoted cell proliferation and prevented the SP cells from apoptosis. Following the neutralization of IL‑4 with anti‑IL‑4 antibody, the CD133+ SP cells were more sensitive to drug treatment and apoptosis. Therefore, the data obtained in the present study suggested that the autocrine secretion of IL‑4 promotes increased survival and resistance to cell death in CSCs. PMID:27121303

  16. First ayurvedic approach towards green drugs: anti cervical cancer-cell properties of Clerodendrum viscosum root extract.

    PubMed

    Sun, Chong; Nirmalananda, Swami; Jenkins, Charles E; Debnath, Shawon; Balambika, Rema; Fata, Jimmie E; Raja, Krishnaswami S

    2013-12-01

    The concept of Ayurvedic expert guided drug discovery and development is defined and put to test systematically for the first time in literature. Western Science has explored only ~5% of the approximately 25,000 species of higher plants for drug leads. The ancient medical science of Ayurveda has however employed a much larger spectrum of plants for clinical treatment. Clerodendrum viscosum (CV), a commonly growing weed in the Indian subcontinent has been employed by S. Nirmalananda (Ayurvedic expert) for the treatment of cervical cancer. Here we isolate and characterize a water extract fraction (Cv-AP) from the root of CV and evaluate its anticervical cancer cell bioactivity. Our results indicate that Cv-AP possesses pro-apoptotic, anti-proliferative, and anti-migratory activity in a dose-dependent fashion against cervical cancer cell lines. In contrast, primary fibroblasts (control healthy cells), when exposed to similar concentrations of this extract, fail to undergo apoptosis and remain relatively unaffected. These findings suggest that Clerodendrum viscosum (CV) is a readily available source of components with potent anti-cancer activity and selective bioactivity against cervical cancer cells. The major component in CV-AP was identified as a glycoprotein via SDS Page and Concanavalin-A binding studies. This study serves to illustrate that systematic collaboration with Ayurveda is a practical and powerful strategy in drug discovery and development. PMID:23387970

  17. Cigarette smoking and invasive cervical cancer

    SciTech Connect

    Brinton, L.A.; Schairer, C.; Haenszel, W.; Stolley, P.; Lehman, H.F.; Levine, R.; Savitz, D.A.

    1986-06-20

    A case-control study of 480 patients with invasive cervical cancer and 797 population controls, conducted in five geographic areas in the United States, included an evaluation of the relationship of several cigarette smoking variables to cervical cancer risk. Although smoking was correlated with both age at first intercourse and number of sexual partners, a significant smoking-related risk persisted for squamous cell carcinoma after adjustment for these factors (relative risk, 1.5). Twofold excess risks were seen for those smoking 40 or more cigarettes per day and those smoking for 40 or more years. Increased risks, however, were observed only among recent and continuous smokers. In contrast to squamous cell cancer, no relationship was observed between smoking and risk of adenocarcinoma or adenosquamous carcinoma. These results suggest a causal relationship between cigarette smoking and invasive squamous cell cervical cancer, perhaps through a late-stage or promotional event, although the mechanisms of action require further elucidation.

  18. Calcium efflux from the endoplasmic reticulum regulates cisplatin-induced apoptosis in human cervical cancer HeLa cells

    PubMed Central

    SHEN, LUYAN; WEN, NAIYAN; XIA, MEIHUI; ZHANG, YU; LIU, WEIMIN; XU, YE; SUN, LIANKUN

    2016-01-01

    The function of calcium efflux from the endoplasmic reticulum (ER) in cisplatin-induced apoptosis is not fully understood in cancer cells. The present study used western blot analysis, flow cytometry, immunofluorescence and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay to investigate calcium signaling in human cervical cancer cells exposed to cisplatin. In the present study, treatment with cisplatin increased free Ca2+ levels in the cytoplasm and mitochondria of human cervical cancer HeLa cells, which further triggers the mitochondria-mediated and ER stress-associated apoptosis pathways. Notably, blocking calcium signaling using the calcium chelating agent bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid acetoxymethyl ester inhibited cisplatin-induced apoptosis via downregulation of the calcium-dependent proteases, the calpains, and innate apoptosis proteins, such as caspsae-3, caspase-4 and C/EBP homologous protein (CHOP). In addition, use of the inositol triphosphate receptor inhibitor, 2-aminoethyl diphenylborinate, to inhibit calcium efflux from the ER resulted in similar effects. This data indicated that calcium efflux from the ER plays a significant role in cisplatin-induced apoptosis in human cervical cancer HeLa cells, which provides further mechanistic insights into the tumor cell-killing effect of cisplatin and potential therapeutic strategies to improve cisplatin chemotherapy. PMID:27073489

  19. Triapine, Cisplatin, and Radiation Therapy in Treating Patients With Cervical Cancer or Vaginal Cancer

    ClinicalTrials.gov

    2014-04-21

    Recurrent Cervical Cancer; Recurrent Vaginal Cancer; Stage IB Cervical Cancer; Stage II Vaginal Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage III Vaginal Cancer; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer; Therapy-related Toxicity

  20. Effects of irreversible electroporation on cervical cancer cell lines in vitro.

    PubMed

    Qin, Qin; Xiong, Zheng-Ai; Liu, Ying; Yao, Chen-Guo; Zhou, Wei; Hua, Yuan-Yuan; Wang, Zhi-Liang

    2016-09-01

    The effects of irreversible electroporation (IRE) on the proliferation, migration, invasion and adhesion of human cervical cancer cell lines HeLa and SiHa were investigated in the present study. HeLa and SiHa cells were divided into a treatment group and control group. The treatment group cells were exposed to electric pulses at 16 pulses, 1 Hz frequency for 100 µsec with 1,000 V/cm strength. Cellular proliferation was determined 24 h after treatment using a Cell Counting Kit‑8 (CCK‑8) assay and carboxyfluorescein diacetate‑succinimidyl ester (CFDA‑SE) labeling assay. The different phases of the cell cycle were detected using flow cytometry. Wound healing, Transwell invasion and Matrigel adhesion assays were performed to evaluate the migration, invasion and adhesion abilities of HeLa and SiHa cells. The expression levels of metastasis‑associated proteins were determined by western blot analysis. CCK‑8 and CFSE labeling assays indicated that the inhibition of cellular proliferation occurs in cells treated with IRE. Additionally, cell cycle progression was arrested at the G1/S phase. A western blot analysis indicated that the expression levels of p53 and p21 proteins were increased, whilst those of cyclin‑dependent kinase 2 (CDK2) and proliferating cell nuclear antigen (PCNA) proteins were decreased. However, wound healing, invasion and adhesion assays indicated that cellular migration, invasion and adhesion abilities were not significantly altered following exposure to IRE. IRE was not observed to promote the migration, invasion or adhesion capacity of HeLa and SiHa cells. However, IRE may inhibit the capacity of cells to proliferate and their progression through the cell cycle in vitro. Preliminary evidence suggests that the underlying mechanism involves increased expression levels of p53 and p21 and decreased expression levels of CDK2 and PCNA. PMID:27431825

  1. HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells

    SciTech Connect

    Liu, Junye; Zhang, Jing; Wang, Xiaowu; Li, Yan; Chen, Yongbin; Li, Kangchu; Zhang, Jian; Yao, Libo; Guo, Guozhen

    2010-07-15

    Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.

  2. Proteomic Investigation into Betulinic Acid-Induced Apoptosis of Human Cervical Cancer HeLa Cells

    PubMed Central

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway. PMID:25148076

  3. Berry extracts exert different antiproliferative effects against cervical and colon cancer cells grown in vitro.

    PubMed

    McDougall, Gordon J; Ross, Heather A; Ikeji, Magnus; Stewart, Derek

    2008-05-14

    Polyphenol-rich berry extracts were screened for their antiproliferative effectiveness using human cervical cancer (HeLa) cells grown in microtiter plates. Rowan berry, raspberry, lingonberry, cloudberry, arctic bramble, and strawberry extracts were effective but blueberry, sea buckthorn, and pomegranate extracts were considerably less effective. The most effective extracts (strawberry > arctic bramble > cloudberry > lingonberry) gave EC 50 values in the range of 25-40 microg/(mL of phenols). These extracts were also effective against human colon cancer (CaCo-2) cells, which were generally more sensitive at low concentrations but conversely less sensitive at higher concentrations. The strawberry, cloudberry, arctic bramble, and the raspberry extracts share common polyphenol constituents, especially the ellagitannins, which have been shown to be effective antiproliferative agents. However, the components underlying the effectiveness of the lingonberry extracts are not known. The lingonberry extracts were fractionated into anthocyanin-rich and tannin-rich fractions by chromatography on Sephadex LH-20. The anthocyanin-rich fraction was considerably less effective than the original extract, whereas the antiproliferative activity was retained in the tannin-rich fraction. The polyphenolic composition of the lingonberry extract was assessed by liquid chromatography-mass spectrometry and was similar to previous reports. The tannin-rich fraction was almost entirely composed of procyanidins of linkage type A and B. Therefore, the antiproliferative activity of lingonberry was caused predominantly by procyanidins. PMID:18412361

  4. Cervical cancer: Biomarkers for diagnosis and treatment.

    PubMed

    Dasari, Subramanyam; Wudayagiri, Rajendra; Valluru, Lokanatha

    2015-05-20

    Cervical cancer is a major gynecological cancer which involves uncontrolled cell division and tissue invasiveness of the female uterine cervix. With the availability of new technologies researchers have increased their efforts to develop novel biomarkers for early diagnosis, and evaluation and monitoring of therapeutic treatments. This approach will help in the development of early diagnosis and in increasing treatment efficacy with decreased recurrence. The present review explains the currently available biomarkers for cervical cancer diagnosis and prognosis. Apart from the currently available biomarkers the review also explains strategies for the development of biomarkers based on cellular and molecular approaches such as DNA, protein and other metabolic markers with suitable clinical examples. The investigations of specific proteins, enzymes and metabolites will establish more useful biomarkers for accurate detection and management of gynecological cancers especially cervical cancer. PMID:25773118

  5. Complete Regression of Metastatic Cervical Cancer After Treatment With Human Papillomavirus–Targeted Tumor-Infiltrating T Cells

    PubMed Central

    Stevanović, Sanja; Draper, Lindsey M.; Langhan, Michelle M.; Campbell, Tracy E.; Kwong, Mei Li; Wunderlich, John R.; Dudley, Mark E.; Yang, James C.; Sherry, Richard M.; Kammula, Udai S.; Restifo, Nicholas P.; Rosenberg, Steven A.; Hinrichs, Christian S.

    2015-01-01

    Purpose Metastatic cervical cancer is a prototypical chemotherapy-refractory epithelial malignancy for which better treatments are needed. Adoptive T-cell therapy (ACT) is emerging as a promising cancer treatment, but its study in epithelial malignancies has been limited. This study was conducted to determine if ACT could mediate regression of metastatic cervical cancer. Patients and Methods Patients enrolled onto this protocol were diagnosed with metastatic cervical cancer and had previously received platinum-based chemotherapy or chemoradiotherapy. Patients were treated with a single infusion of tumor-infiltrating T cells selected when possible for human papillomavirus (HPV) E6 and E7 reactivity (HPV-TILs). Cell infusion was preceded by lymphocyte-depleting chemotherapy and was followed by administration of aldesleukin. Results Three of nine patients experienced objective tumor responses (two complete responses and one partial response). The two complete responses were ongoing 22 and 15 months after treatment, respectively. One partial response was 3 months in duration. The HPV reactivity of T cells in the infusion product (as measured by interferon gamma production, enzyme-linked immunospot, and CD137 upregulation assays) correlated positively with clinical response (P = .0238 for all three assays). In addition, the frequency of HPV-reactive T cells in peripheral blood 1 month after treatment was positively associated with clinical response (P = .0238). Conclusion Durable, complete regression of metastatic cervical cancer can occur after a single infusion of HPV-TILs. Exploratory studies suggest a correlation between HPV reactivity of the infusion product and clinical response. Continued investigation of this therapy is warranted. PMID:25823737

  6. Lethality of PAK3 and SGK2 shRNAs to Human Papillomavirus Positive Cervical Cancer Cells Is Independent of PAK3 and SGK2 Knockdown

    PubMed Central

    Zhou, Nannan; Ding, Bo; Agler, Michele; Cockett, Mark; McPhee, Fiona

    2015-01-01

    The p21-activated kinase 3 (PAK3) and the serum and glucocorticoid-induced kinase 2 (SGK2) have been previously proposed as essential kinases for human papillomavirus positive (HPV+) cervical cancer cell survival. This was established using a shRNA knockdown approach. To validate PAK3 and SGK2 as potential targets for HPV+ cervical cancer therapy, the relationship between shRNA-induced phenotypes in HPV+ cervical cancer cells and PAK3 or SGK2 knockdown was carefully examined. We observed that the phenotypes of HPV+ cervical cancer cells induced by various PAK3 and SGK2 shRNAs could not be rescued by complement expression of respective cDNA constructs. A knockdown-deficient PAK3 shRNA with a single mismatch was sufficient to inhibit HeLa cell growth to a similar extent as wild-type PAK3 shRNA. The HPV+ cervical cancer cells were also susceptible to several non-human target shRNAs. The discrepancy between PAK3 and SGK2 shRNA-induced apoptosis and gene expression knockdown, as well as cell death stimulation, suggested that these shRNAs killed HeLa cells through different pathways that may not be target-specific. These data demonstrated that HPV+ cervical cancer cell death was not associated with RNAi-induced PAK3 and SGK2 knockdown but likely through off-target effects. PMID:25615606

  7. Effects of Decabrominated Diphenyl Ether (PBDE-209) in Regulation of Growth and Apoptosis of Breast, Ovarian, and Cervical Cancer Cells

    PubMed Central

    Li, Zhi-Hua; Liu, Xiao-Yan; Wang, Na; Huang, Jin-Tao; Su, Chun-Hong; Xie, Fukang; Yu, Bin

    2012-01-01

    Background: Polybrominated diphenyl ethers (PBDEs), commonly used in building materials, electronics, plastics, polyurethane foams, and textiles, are health hazards found in the environment. Objective: In this study we investigated the effects of PBDE-209, a deca-PBDE, on the regulation of growth and apoptosis of breast, ovarian, and cervical cancer cells as well as the underlying protein alterations. Methods: We used MCF-7 and MCF-7/ADR (multidrug-resistant MCF-7) breast cancer cell lines, the HeLa cervical cancer cell line, the OVCAR-3 ovarian cancer cell line, and the normal CHO (Chinese hamster ovary) cell line to assess the effects of PBDE-209 using cell viability, immunofluorescence, and flow cytometric assays. Western blot assays were used to detect changes in protein expression. To assess the effects of PBDE-209 on apoptosis, we used the protein kinase Cα (PKCα) inhibitor Gö 6976, the extracellular signal-regulated kinase (ERK) inhibitor PD98059, and tamoxifen. Results: Our data indicate that PBDE-209 increased viability and proliferation of the tumor cell lines and in CHO cells in a dose- and time-dependent manner. PBDE-209 also altered cell cycle distribution by inducing the S phase or G2/M phase. Furthermore, PBDE-209 partially suppressed tamoxifen-induced cell apoptosis in the breast cancer cell lines (MCF-7 and MCF-7/ADR) but suppressed Gö 6976- and PD98059-induced apoptosis in all cell lines. At the molecular level, PBDE-209 enhanced PKCα and ERK1/2 phosphorylation in the cell lines. Conclusions: Our data demonstrate that PBDE-209 is able to promote proliferation of various cancer cells from the female reproductive system and normal ovarian CHO cells. Furthermore, it reduced tamoxifen, PKCα, and ERK inhibition-induced apoptosis. Finally, PBDE-209 up-regulated phosphorylation of PKCα and ERK1/2 proteins in tumor cells and in CHO cells. PMID:22472210

  8. Effects of tatariside G isolated from Fagopyrum tataricum roots on apoptosis in human cervical cancer HeLa cells.

    PubMed

    Li, Yuan; Wang, Su-Juan; Xia, Wei; Rahman, Khalid; Zhang, Yan; Peng, Hao; Zhang, Hong; Qin, Lu-Ping

    2014-01-01

    Cervical cancer is the second most common female carcinoma. Current therapies are often unsatisfactory, especially for advanced stage patients. The aim of this study was to explore the effects of tatariside G (TG) on apoptosis in human cervical cancer HeLa cells and the possible mechanism of action involved. An MTT assay was employed to evaluate cell viability. Hoechst 33258 staining and flow cytometry (FCM) assays were used to detect cell apoptosis. The protein expression of phosphorylated JNK, P38, ERK and Akt and cleaved caspase-3 and caspase-9 was evaluated by western blot analysis. Additionally, the mRNA expression of caspase-3 and caspase-9 was measured by fluorescent quantitative reverse transcription-PCR (FQ-RT-PCR). TG notably inhibited cell viability, enhanced the percentage of apoptotic cells, facilitated the phosphorylation of p38 MAPK and JNK proteins and caspase-3 and caspase-9 cracking, downregulated the phosphorylation level of Akt, and increased the loss of MMP and the mRNA expression of caspase-3 and caspase-9. TG-induced apoptosis is associated with activation of the mitochondrial death pathway. TG may be an effective candidate for chemotherapy against cervical cancer. PMID:25076146

  9. Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1

    PubMed Central

    YANG, LIANG; LIU, REN; MA, HONG-BIN; YING, MING-ZHEN; WANG, YA-JIE

    2015-01-01

    The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 (GSTP1) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G2/M phase arrest in the GSTP1-expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1-expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G2/M phase arrest. PMID:26622693

  10. Get Tested for Cervical Cancer

    MedlinePlus

    ... help understanding your Pap test result . What about cost? Testing for cervical cancer is covered under the ... may be able to get tested at no cost to you. If you have private insurance, check ...

  11. Network Topologies Decoding Cervical Cancer

    PubMed Central

    Jalan, Sarika; Kanhaiya, Krishna; Rai, Aparna; Bandapalli, Obul Reddy; Yadav, Alok

    2015-01-01

    According to the GLOBOCAN statistics, cervical cancer is one of the leading causes of death among women worldwide. It is found to be gradually increasing in the younger population, specifically in the developing countries. We analyzed the protein-protein interaction networks of the uterine cervix cells for the normal and disease states. It was found that the disease network was less random than the normal one, providing an insight into the change in complexity of the underlying network in disease state. The study also portrayed that, the disease state has faster signal processing as the diameter of the underlying network was very close to its corresponding random control. This may be a reason for the normal cells to change into malignant state. Further, the analysis revealed VEGFA and IL-6 proteins as the distinctly high degree nodes in the disease network, which are known to manifest a major contribution in promoting cervical cancer. Our analysis, being time proficient and cost effective, provides a direction for developing novel drugs, therapeutic targets and biomarkers by identifying specific interaction patterns, that have structural importance. PMID:26308848

  12. Network Topologies Decoding Cervical Cancer.

    PubMed

    Jalan, Sarika; Kanhaiya, Krishna; Rai, Aparna; Bandapalli, Obul Reddy; Yadav, Alok

    2015-01-01

    According to the GLOBOCAN statistics, cervical cancer is one of the leading causes of death among women worldwide. It is found to be gradually increasing in the younger population, specifically in the developing countries. We analyzed the protein-protein interaction networks of the uterine cervix cells for the normal and disease states. It was found that the disease network was less random than the normal one, providing an insight into the change in complexity of the underlying network in disease state. The study also portrayed that, the disease state has faster signal processing as the diameter of the underlying network was very close to its corresponding random control. This may be a reason for the normal cells to change into malignant state. Further, the analysis revealed VEGFA and IL-6 proteins as the distinctly high degree nodes in the disease network, which are known to manifest a major contribution in promoting cervical cancer. Our analysis, being time proficient and cost effective, provides a direction for developing novel drugs, therapeutic targets and biomarkers by identifying specific interaction patterns, that have structural importance. PMID:26308848

  13. Cervical squamous cell carcinoma metastatic to placenta.

    PubMed

    Can, Nhu Thuy T; Robertson, Patricia; Zaloudek, Charles J; Gill, Ryan M

    2013-09-01

    A pregnant 29-year-old gravida 4, para 3 woman with Stage IIB cervical cancer was admitted at 33 weeks and 4 days of gestation and delivered a healthy neonate. Her placenta was small but otherwise grossly unremarkable. Microscopic examination revealed metastatic squamous cell carcinoma. An immunohistochemical stain for p16 was positive in the carcinoma cells, supporting metastasis from the cervical tumor. Cervical squamous cell carcinoma metastatic to placenta is very rare. We report a case and discuss metastatic cancer during pregnancy with recommendations for infant follow-up. PMID:23896714

  14. Drugs Approved for Cervical Cancer

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for cervical cancer. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters. The drug names link to NCI's Cancer Drug Information summaries.

  15. What Should You Ask Your Doctor about Cervical Cancer?

    MedlinePlus

    ... for cervical cancer? What should you ask your doctor about cervical cancer? It is important for you ... and Staging Treating Cervical Cancer Talking With Your Doctor After Treatment What`s New in Cervical Cancer Research? ...

  16. DNA methylation in human papillomavirus-infected cervical cells is elevated in high-grade squamous intraepithelial lesions and cancer

    PubMed Central

    Lee, Ki-Heon; So, Kyeong A; Hong, Sung Ran; Hwang, Chang-Sun; Kee, Mee-Kyung; Rhee, Jee Eun; Kang, Chun; Hur, Soo Young; Park, Jong Sup

    2016-01-01

    Objective DNA methylation has been shown to be a potential biomarker for early cancer detection. The aim of this study was to evaluate DNA methylation profiles according to liquid-based Pap (LBP) test results and to assess their diagnostic value in a Korean population. Methods A total of 205 patients with various Papanicolaou test results were enrolled to this study (negative, 26; atypical squamous cells of undetermined significance, 39; low grade squamous intraepithelial lesion, 44; high grade squamous intraepithelial lesion (HSIL), 48; and cancer, 48). DNA methylation analysis of four genes, ADCYAP1, PAX1, MAL, and CADM1, was performed on residual cervical cells from LBP samples using a quantitative bisulfite pyrosequencing method. To evaluate the diagnostic performance of the four methylated genes for cancer detection, receiver operating characteristic (ROC) curves were drawn. Sensitivities and specificities were also tested at cutoffs determined from the ROC curves. Results Cervical cancer cells showed dramatically increased methylation levels for the four genes analyzed. ADCYAP1 and PAX1 also trended toward elevated methylation levels in HSIL samples, although the levels were much lower than those in cancer cells. The sensitivities of methylated ADCYAP1, PAX1, MAL, and CADM1 for the detection of cancer were 79.2%, 75.0%, 70.8%, and 52.1%, and the specificities were 92.0%, 94.0%, 94.7%, and 94.0%, respectively. Methylated ADCYAP1 and PAX1 demonstrated relatively better discriminatory ability than did methylated MAL and CADM1 (area under the curves 0.911 and 0.916 vs. 0.854 and 0.756, respectively). Conclusion DNA methylation status, especially in the ADCYAP1 and PAX1 genes, showed relatively good specificity, ranging from 90% to 94%. The possible additive and complementary roles of DNA methylation testing with respect to conventional cervical cancer screening programs will need to be validated in prospective population-based studies. PMID:26768780

  17. Dual-modality fiber-optic imager (DFOI) for intracellular gene delivery in human cervical cancer cell

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Zhang, Jing; Gurbani, Saumya; Li, Min; Kang, Jin U.

    2013-03-01

    The most common optical method to validate intracellular gene delivery in cancer is to detect tagged fluorescence signals from the cells. However, fluorescent detection is usually performed in vitro due to the limitation of standard microscopes. Herein, we propose a highly sensitive dual-modality fiber-optic imager (DFOI), which enables in vivo fluorescence imaging. Our system uses a coherent fiber bundle based imager capable of simultaneously performing both confocal reflectance and fluorescent microscopy. Non-viral vectors targeting human cervical cancer cells (HeLa) were used to evaluate the performance. Preliminary results demonstrated the DFOI is promising for in vivo evaluation of intracellular gene delivery.

  18. Stromal Fibroblasts Induce CCL20 through IL6/C/EBPβ to Support the Recruitment of Th17 Cells during Cervical Cancer Progression.

    PubMed

    Walch-Rückheim, Barbara; Mavrova, Russalina; Henning, Melanie; Vicinus, Benjamin; Kim, Yoo-Jin; Bohle, Rainer Maria; Juhasz-Böss, Ingolf; Solomayer, Erich-Franz; Smola, Sigrun

    2015-12-15

    Cervical cancer is a consequence of persistent infection with human papillomaviruses (HPV). Progression to malignancy is linked to an inflammatory microenvironment comprising T-helper-17 (Th17) cells, a T-cell subset with protumorigenic properties. Neoplastic cells express only low endogenous levels of the Th17 chemoattractant CCL20, and therefore, it is unclear how Th17 cells are recruited to the cervical cancer tissue. In this study, we demonstrate that CCL20 was predominantly expressed in the stroma of cervical squamous cell carcinomas in situ. This correlated with stromal infiltration of CD4(+)/IL17(+) cells and with advancing International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, we show that cervical cancer cells instructed primary cervical fibroblasts to produce high levels of CCL20 and to attract CD4/IL17/CCR6-positive cells, generated in vitro, in a CCL20/CCR6-dependent manner. Further mechanistic investigations identified cervical cancer cell-derived IL6 as an important mediator of paracrine CCL20 induction at the promoter, mRNA, and protein level in fibroblasts. CCL20 was upregulated through the recently described CCAAT/enhancer-binding protein β (C/EBPβ) pathway as shown with a dominant-negative version of C/EBPβ and through siRNA-mediated knockdown. In summary, our study defines a novel molecular mechanism by which cervical neoplastic cells shape their local microenvironment by instructing fibroblasts to support Th17 cell infiltration in a paracrine IL6/C/EBPβ-dependent manner. Th17 cells may in turn maintain chronic inflammation within high-grade cervical lesions to further promote cancer progression. PMID:26631268

  19. Effects of G6PD activity inhibition on the viability, ROS generation and mechanical properties of cervical cancer cells.

    PubMed

    Fang, Zishui; Jiang, Chengrui; Feng, Yi; Chen, Rixin; Lin, Xiaoying; Zhang, Zhiqiang; Han, Luhao; Chen, Xiaodan; Li, Hongyi; Guo, Yibin; Jiang, Weiying

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency has been revealed to be involved in the efficacy to anti-cancer therapy but the mechanism remains unclear. We aimed to investigate the anti-cancer mechanism of G6PD deficiency. In our study, dehydroepiandrosterone (DHEA) and shRNA technology were used for inhibiting the activity of G6PD of cervical cancer cells. Peak Force QNM Atomic Force Microscopy was used to assess the changes of topography and biomechanical properties of cells and detect the effects on living cells in a natural aqueous environment. Flow cytometry was used to detect the apoptosis and reactive oxygen species (ROS) generation. Scanning electron microscopy was used to observe cell morphology. Moreover, a laser scanning confocal microscope was used to observe the alterations in cytoskeleton to explore the involved mechanism. When G6PD was inhibited by DHEA or RNA interference, the abnormal Young's modulus and increased roughness of cell membrane were observed in HeLa cells, as well as the idioblasts. Simultaneously, G6PD deficiency resulted in decreased HeLa cells migration and proliferation ability but increased ROS generation inducing apoptosis. What's more, the inhibition of G6PD activity caused the disorganization of microfilaments and microtubules of cytoskeletons and cell shrinkage. Our results indicated the anti-cervix cancer mechanism of G6PD deficiency may be involved with the decreased cancer cells migration and proliferation ability as a result of abnormal reorganization of cell cytoskeleton and abnormal biomechanical properties caused by the increased ROS. Suppression of G6PD may be a promising strategy in developing novel therapeutic methods for cervical cancer. PMID:27217331

  20. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions

    PubMed Central

    2009-01-01

    Background Persistent high risk HPV infection can lead to cervical cancer, the second most common malignant tumor in women worldwide. NK cells play a crucial role against tumors and virus-infected cells through a fine balance between activating and inhibitory receptors. Expression of triggering receptors NKp30, NKp44, NKp46 and NKG2D on NK cells correlates with cytolytic activity against tumor cells, but these receptors have not been studied in cervical cancer and precursor lesions. The aim of the present work was to study NKp30, NKp46, NKG2D, NKp80 and 2B4 expression in NK cells from patients with cervical cancer and precursor lesions, in the context of HPV infection. Methods NKp30, NKp46, NKG2D, NKp80 and 2B4 expression was analyzed by flow cytometry on NK cells from 59 patients with cervical cancer and squamous intraepithelial lesions. NK cell cytotoxicity was evaluated in a 4 hour CFSE/7-AAD flow cytometry assay. HPV types were identified by PCR assays. Results We report here for the first time that NK cell-activating receptors NKp30 and NKp46 are significantly down-regulated in cervical cancer and high grade squamous intraepithelial lesion (HGSIL) patients. NCRs down-regulation correlated with low cytolytic activity, HPV-16 infection and clinical stage. NKG2D was also down-regulated in cervical cancer patients. Conclusion Our results suggest that NKp30, NKp46 and NKG2D down-regulation represent an evasion mechanism associated to low NK cell activity, HPV-16 infection and cervical cancer progression. PMID:19531227

  1. The potassium–chloride cotransporter 2 promotes cervical cancer cell migration and invasion by an ion transport-independent mechanism

    PubMed Central

    Wei, Wei-Chun; Akerman, Colin J; Newey, Sarah E; Pan, Jiliu; Clinch, Nicholas W V; Jacob, Yves; Shen, Meng-Ru; Wilkins, Robert J; Ellory, J Clive

    2011-01-01

    Abstract K+–Cl− cotransporters (KCCs) play a fundamental role in epithelial cell function, both in the context of ionic homeostasis and also in cell morphology, cell division and locomotion. Unlike other ubiquitously expressed KCC isoforms, expression of KCC2 is widely considered to be restricted to neurons, where it is responsible for maintaining a low intracellular chloride concentration to drive hyperpolarising postsynaptic responses to the inhibitory neurotransmitters GABA and glycine. Here we report a novel finding that KCC2 is widely expressed in several human cancer cell lines including the cervical cancer cell line (SiHa). Membrane biotinylation assays and immunostaining showed that endogenous KCC2 is located on the cell membrane of SiHa cells. To elucidate the role of KCC2 in cervical tumuorigenesis, SiHa cells with stable overexpression or knockdown of KCC2 were employed. Overexpression of KCC2 had no significant effect on cell proliferation but dramatically suppressed cell spreading and stress fibre organization, while knockdown of KCC2 showed opposite effects. In addition, insulin-like growth factor 1 (IGF-1)-induced cell migration and invasiveness were significantly increased by overexpression of KCC2. KCC2-induced cell migration and invasion were not dependent on KCC2 transport function since overexpression of an activity-deficient mutant KCC2 still increased IGF-1-induced cell migration and invasion. Moreover, overexpression of KCC2 significantly diminished the number of focal adhesions, while knockdown of KCC2 increased their number. Taken together, our data establish that KCC2 expression and function are not restricted to neurons and that KCC2 serves to increase cervical tumourigenesis via an ion transport-independent mechanism. PMID:21911617

  2. Cervical Cancer Screening

    MedlinePlus

    ... Laboratory for Cancer Research Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Cancer Genomics Causes of Cancer ... Centers Frederick National Lab Partners & Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer ...

  3. Radiosensitization of Human Cervical Cancer Cells by Inhibiting Ribonucleotide Reductase: Enhanced Radiation Response at Low-Dose Rates

    SciTech Connect

    Kunos, Charles A.; Colussi, Valdir C.; Pink, John; Radivoyevitch, Tomas; Oleinick, Nancy L.

    2011-07-15

    Purpose: To test whether pharmacologic inhibition of ribonucleotide reductase (RNR) by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC no. 663249) enhances radiation sensitivity during low-dose-rate ionizing radiation provided by a novel purpose-built iridium-192 cell irradiator. Methods and Materials: The cells were exposed to low-dose-rate radiation (11, 23, 37, 67 cGy/h) using a custom-fabricated cell irradiator or to high-dose-rate radiation (330 cGy/min) using a conventional cell irradiator. The radiation sensitivity of human cervical (CaSki, C33-a) cancer cells with or without RNR inhibition by 3-AP was evaluated using a clonogenic survival and an RNR activity assay. Alteration in the cell cycle distribution was monitored using flow cytometry. Results: Increasing radiation sensitivity of both CaSki and C33-a cells was observed with the incremental increase in radiation dose rates. 3-AP treatment led to enhanced radiation sensitivity in both cell lines, eliminating differences in cell cytotoxicity from the radiation dose rate. RNR blockade by 3-AP during low-dose-rate irradiation was associated with low RNR activity and extended G{sub 1}-phase cell cycle arrest. Conclusions: We conclude that RNR inhibition by 3-AP impedes DNA damage repair mechanisms that rely on deoxyribonucleotide production and thereby increases radiation sensitivity of human cervical cancers to low-dose-rate radiation.

  4. Preventing Cervical Cancer with HPV Vaccines

    Cancer.gov

    Cervical cancer can be prevented with HPV vaccines. NCI-supported researchers helped establish HPV as a cause of cervical cancer. They also helped create the first HPV vaccines, were involved in the vaccine trials, and contribute to ongoing studies.

  5. NIH Research Leads to Cervical Cancer Vaccine

    MedlinePlus

    ... Issues Sexually Transmitted Diseases NIH Research Leads to Cervical Cancer Vaccine Past Issues / Fall 2008 Table of Contents ... in women, the cause of the majority of cervical cancers. Photo courtesy of Judy Folkenberg, NLM Writer By ...

  6. Cervical Cancer Risk Prediction Models

    Cancer.gov

    Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  7. DNA probes for papillomavirus strains readied for cervical cancer screening

    SciTech Connect

    Merz, B.

    1988-11-18

    New Papillomavirus tests are ready to come to the aid of the standard Papanicolauo test in screening for cervical cancer. The new tests, which detect the strains of human papillomavirus (HPV) most commonly associated with human cervical cancer, are designed to be used as an adjunct to rather than as a replacement for the Papanicolaou smears. Their developers say that they can be used to indicated a risk of developing cancer in women whose Papanicolaou smears indicate mild cervical dysplasia, and, eventually, to detect papillomavirus infection in normal Papanicolaou smears. The rationale for HPV testing is derived from a growing body of evidence that HPV is a major factor in the etiology of cervical cancer. Three HPV tests were described recently in Chicago at the Third International Conference on Human Papillomavirus and Squamous Cervical Cancer. Each relies on DNA probes to detect the presence of papillomavirus in cervical cells and/or to distinguish the strain of papillomavirus present.

  8. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers.

    PubMed

    Mezache, Louisa; Paniccia, Bernard; Nyinawabera, Angelique; Nuovo, Gerard J

    2015-12-01

    Programmed death ligand 1 (PD L1) expression can reduce the immune response in both infectious diseases and cancers. We thus examined PD L1 expression in cervical intraepithelial neoplasias (CINs) and cancers since they each reflect infection by human papillomavirus (HPV). PD L1 protein was not evident by immunohistochemistry in histologically normal cervical epithelia (0/55) even when adjacent to CIN or cancer. PD L1 expression was much increased in CINs (20/21=95%) and cervical squamous cell cancer (56/70=80%) and localized to the dysplastic/neoplastic squamous cells and mononuclear cells, respectively. There was also a significant increase (each P<0.001) in PD L1 detection in mononuclear cells when comparing cervical squamous cell cancers to endometrial (22/115=19%) and ovarian adenocarcinomas (5/40=13%). Co-expression analyses showed that the primary inflammatory cell that contained PD L1 was the CD8+ lymphocyte that strongly concentrated around the dysplastic CIN cells and nests of invasive squamous cancer cells. These data show that PD L1 is a solid biomarker of productive HPV infection of the cervix and that it is significantly upregulated in both the carcinoma and surrounding inflammatory cells in cervical cancer when compared with other gynecologic malignancies. This suggests that anti-PD L1 therapy may have a role in the treatment of cervical cancer. PMID:26403783

  9. Epidemiology and biology of cervical cancer.

    PubMed

    Schoell, W M; Janicek, M F; Mirhashemi, R

    1999-01-01

    Worldwide, cancer of the cervix is the second leading cause of cancer death in women: each year, an estimated 500,000 cases are newly diagnosed. Among populations, there are large differences in incidence rates of invasive cervical cancer: these reflect the influence of environmental factors, screening Papanicolaou (Pap) tests, and treatment of pre-invasive lesions. The high-risk human papillomavirus (HPV) subtypes 16, 18, 31, 33, and 51 have been recovered from more than 95% of cervical cancers. We have made great strides in understanding the molecular mechanism of oncogenesis of this virus, focusing on the action of the E6 and E7 viral oncoproteins. These oncoproteins function by inactivating cell cycle regulators p53 and retinoblastoma (Rb), thus providing the initial event in progression to malignancy. Cervical cancers develop from precursor lesions, which are termed squamous intraepithelial lesions (SIL) and are graded as high or low, depending on the degree of disruption of epithelial differentiation. Viral production occurs in low-grade lesions and is restricted to basal cells. In carcinomas, viral DNA is found integrated into the host genome, but no viral production is seen. The well-defined pre-invasive stages, as well as the viral factors involved at the molecular level, make cervical carcinoma a good model for investigating immune therapeutic alternatives or adjuvants to standard treatments. PMID:10225296

  10. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Tian, Jiguang; Chen, Zhaolong; Liang, Ying; Liu, Jiao; Liu, Si; Li, Huihui; Zhan, Jinhua; Yang, Xingsheng

    2014-08-01

    Photothermal ablation (PTA) is a promising avenue in the area of cancer therapeutics that destroys tumor cells through conversion of near-infrared (NIR) laser light to heat. Hollow gold nanospheres (HGNs) are one of the few materials that are capable of converting light to heat and have been previously used for photothermal ablation studies. Selective delivery of functional nanoparticles to the tumor site is considered as an effective therapeutic approach. In this paper, we demonstrated the anti-cancer potential of HGNs. HGNs were conjugated with monoclonal antibody (anti-TROP2) in order to target cervical cancer cells (HeLa) that contain abundant trophoblast cell surface antigen 2 (TROP2) on the cell surface. The efficient uptake and intracellular location of these functionalized HGNs were studied through application of inductively coupled plasma atomic emission spectroscopy (ICP-AES) and transmission electron microscopy (TEM). Cytotoxicity induced by PTA was measured using CCK-8 assay. HeLa cells incubated with naked HGNs (0.3-3 nmol L-1) within 48 h did not show obvious cytotoxicity. Under laser irradiation at suitable power, anti-TROP2 conjugated HGNs achieved significant tumor cell growth inhibition in comparison to the effects of non-specific PEGylated HGNs (P < 0.05). γH2AX assay results revealed higher occurrences of DNA-DSBs with anti-TROP2 conjugated HGNs plus laser radiation as compared to treatment with laser alone. Flow cytometry analysis showed that the amount of cell apoptosis was increased after laser irradiation with anti-TROP2 conjugated HGNs (P < 0.05). Anti-TROP2 conjugated HGNs resulted in down-regulation of Bcl-2 expression and up-regulation of Bax expression. Our study results confirmed that anti-TROP2 conjugated HGNs can selectively destroy cervical cancer cells through inducing its apoptosis and DNA damages. We propose that HGNs have the potentials to mediate targeted cancer treatment.

  11. What's New in Cervical Cancer Research and Treatment?

    MedlinePlus

    ... resources for cervical cancer What`s new in cervical cancer research and treatment? New ways to prevent and treat ... Your Doctor After Treatment What`s New in Cervical Cancer Research? Other Resources and References Cancer Information Cancer Basics ...

  12. Lynch syndrome and cervical cancer.

    PubMed

    Antill, Yoland C; Dowty, James G; Win, Aung Ko; Thompson, Tina; Walsh, Michael D; Cummings, Margaret C; Gallinger, Steven; Lindor, Noralane M; Le Marchand, Loïc; Hopper, John L; Newcomb, Polly A; Haile, Robert W; Church, James; Tucker, Katherine M; Buchanan, Daniel D; Young, Joanne P; Winship, Ingrid M; Jenkins, Mark A

    2015-12-01

    Carriers of germline mutations in DNA mismatch repair (MMR) genes are at increased risk of several cancers including colorectal and gynecologic cancers (Lynch syndrome). There is no substantial evidence that these mutations are associated with an increased risk of cervical cancer. A total of 369 families with at least one carrier of a mutation in a MMR gene (133 MLH1, 174 MSH2, 35 MSH6 and 27 PMS2) were ascertained via population cancer registries or via family cancer clinics in Australia, New Zealand, Canada, and USA. Personal and family histories of cancer were obtained from participant interviews. Modified segregation analysis was used to estimate the hazard ratio (incidence rates for carriers relative to those for the general population), and age-specific cumulative risks of cervical cancer for carriers. A total of 65 cases of cervical cancer were reported (including 10 verified by pathology reports). The estimated incidence was 5.6 fold (95% CI: 2.3-13.8; p = 0.001) higher for carriers than for the general population with a corresponding cumulative risk to 80 years of 4.5% (95% CI: 1.9-10.7%) compared with 0.8% for the general population. The mean age at diagnosis was 43.1 years (95% CI: 40.0-46.2), 3.9 years younger than the reported USA population mean of 47.0 years (p = 0.02). Women with MMR gene mutations were found to have an increased risk of cervical cancer. Due to limited pathology verification we cannot be certain that a proportion of these cases were not lower uterine segment endometrial cancers involving the endocervix, a recognized cancer of Lynch syndrome. PMID:26077226

  13. Genital Cancers in Women: Cervical Cancer.

    PubMed

    Morris, Elise; Roett, Michelle A

    2015-11-01

    In 2015 in the United States, it is estimated there will be approximately 12,900 new patients with cervical cancer and 4,100 will die of the disease. If diagnosed at a localized stage, the 5-year survival rate exceeds 90%. Human papillomavirus (HPV) infection is the main risk factor for cervical cancer. Current recommendations for cervical cancer screening include Papanicolaou (Pap) testing every 3 years for women ages 21 to 29 years. For women ages 30 to 65 years, an alternative is screening with Pap and HPV testing every 5 years. If screening results are abnormal, further evaluation can be guided by an algorithm. For a diagnosis of carcinoma in situ or grade 3 cervical intraepithelial neoplasia (CIN), treatment typically involves ablation or excision. Women with CIN 1 or CIN 2 that persists typically are treated with the same methods. For women diagnosed with early-stage invasive cancer, standard treatment is radical hysterectomy. More advanced cancers also are treated with surgery, but chemotherapy and/or radiation also may be used depending on cancer stage. Because most cervical cancer is caused by HPV, it is potentially preventable with HPV vaccination, which is recommended for females and males, ideally beginning at age 11 or 12 years. PMID:26569047

  14. Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-Pin; Lin, I.-Jou; Chen, Chih-Chen; Hsu, Yi-Chiang; Chang, Chi-Chang; Lee, Mon-Juan

    2013-06-01

    Carbon nanotubes are capable of penetrating the cell membrane and are widely considered as potential carriers for gene or drug delivery. Because the C-C and C=C bonds in carbon nanotubes are nonpolar, functionalization is required for carbon nanotubes to interact with genes or drugs as well as to improve their biocompatibility. In this study, polyethylenimine (PEI)-functionalized single-wall (PEI-NH-SWNTs) and multiwall carbon nanotubes (PEI-NH-MWNTs) were produced by direct amination method. PEI functionalization increased the positive charge on the surface of SWNTs and MWNTs, allowing carbon nanotubes to interact electrostatically with the negatively charged small interfering RNAs (siRNAs) and to serve as nonviral gene delivery reagents. PEI-NH-MWNTs and PEI-NH-SWNTs had a better solubility in water than pristine carbon nanotubes, and further removal of large aggregates by centrifugation produced a stable suspension of reduced particle size and improved homogeneity and dispersity. The amount of grafted PEI estimated by thermogravimetric analysis was 5.08% ( w/ w) and 5.28% ( w/ w) for PEI-NH-SWNTs and PEI-NH-MWNTs, respectively. For the assessment of cytotoxicity, various concentrations of PEI-NH-SWNTs and PEI-NH-MWNTs were incubated with human cervical cancer cells, HeLa-S3, for 48 h. PEI-NH-SWNTs and PEI-NH-MWNTs induced cell deaths in a dose-dependent manner but were less cytotoxic compared to pure PEI. As determined by electrophoretic mobility shift assay, siRNAs directed against glyceraldehyde-3-phosphate dehydrogenase (siGAPDH) were completely associated with PEI-NH-SWNTs or PEI-NH-MWNTs at a PEI-NH-SWNT/siGAPDH or PEI-NH-MWNT/siGAPDH mass ratio of 80:1 or 160:1, respectively. Furthermore, PEI-NH-SWNTs and PEI-NH-MWNTs successfully delivered siGAPDH into HeLa-S3 cells at PEI-NH-SWNT/siGAPDH and PEI-NH-MWNT/siGAPDH mass ratios of 1:1 to 20:1, resulting in suppression of the mRNA level of GAPDH to an extent similar to that of DharmaFECT, a common transfection

  15. Downregulation of CCR5 inhibits the proliferation and invasion of cervical cancer cells and is regulated by microRNA-107

    PubMed Central

    CHE, LI-FAN; SHAO, SU-FANG; WANG, LI-XIN

    2016-01-01

    Cervical cancer is among the most prevalent forms of cancer worldwide. C-C chemokine receptor type 5 (CCR5) is hypothesized to be a key functional protein involved in tumorigenesis. However, the role of CCR5 in cervical cancer remains unclear. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to evaluate the mRNA and protein expression levels of CCR5 in human cervical carcinoma tissues. Furthermore, a small interfering RNA was employed to knockdown CCR5 in HeLa and C33A cells. MTT, colony formation and Transwell assays were performed to determine the effects of this knockdown on cell viability, proliferation and invasion. In addition, micro RNA (miR)-107 was identified as a potential candidate regulator of CCR5 using miR prediction algorithms, and the effects of miR-107 and its antisense miR on CCR5 mRNA expression were determined. The results of the present study indicated that CCR5 is overexpressed in human cervical cancer tissues compared with adjacent normal tissues, and its downregulation inhibits cervical cancer cell growth and proliferation. Furthermore, the downregulation of CCR5 appears to suppress cervical cancer cell invasion. Finally, the tumor suppressor miR-107 was able to directly target CCR5 and inhibit its expression. These results suggest that the upregulation of CCR5, which is inhibited by miR-107, may play a carcinogenic role in cervical cancer and could provide a novel therapeutic target in the future. PMID:26893637

  16. FASL –844C polymorphism is associated with increased activation-induced T cell death and risk of cervical cancer

    PubMed Central

    Sun, Tong; Zhou, Yifeng; Li, Hua; Han, Xiaohong; Shi, Yuankai; Wang, Li; Miao, Xiaoping; Tan, Wen; Zhao, Dan; Zhang, Xuemei; Guo, Yongli; Lin, Dongxin

    2005-01-01

    The FAS receptor–ligand system plays a key role in regulating apoptotic cell death, and corruption of this signaling pathway has been shown to participate in tumor-immune escape and carcinogenesis. We have recently demonstrated (Sun, T., X. Miao, X. Zhang, W. Tan, P. Xiong, and D. Lin. 2004. J. Natl. Cancer Inst. 96:1030–1036; Zhang, X., X. Miao, T. Sun, W. Tan, S. Qu, P. Xiong, Y. Zhou, and D. Lin. 2005. J. Med. Genet. 42:479–484) that functional polymorphisms in FAS and FAS ligand (FASL) are associated with susceptibility to lung cancer and esophageal cancer; however, the mechanisms underlying this association have not been elucidated. We show that the FAS –1377G, FAS –670A, and FASL –844T variants are expressed more highly on ex vivo–stimulated T cells than the FAS –1377A, FAS –670G, and FASL –844C variants. Moreover, activation-induced cell death (AICD) of T cells carrying the FASL –844C allele was increased. We also found a threefold increased risk of cervical cancer among subjects with the FASL –844CC genotype compared with those with the –844TT genotype in a case-control study in Chinese women. Together, these observations suggest that genetic polymorphisms in the FAS–FASL pathway confer host susceptibility to cervical cancers, which might be caused by immune escape of tumor cells because of enhanced AICD of tumor-specific T cells. PMID:16186185

  17. 6 Common Cancers - Gynecologic Cancers Cervical, Endometrial, and Ovarian

    MedlinePlus

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Gynecologic Cancers Cervical, Endometrial, and Ovarian Past Issues / Spring 2007 ... of this page please turn Javascript on. Gynecologic Cancers Cervical, Endometrial, and Ovarian NCI estimates that endometrial, ...

  18. Cationic Antimicrobial Peptides Derived from Crocodylus siamensis Leukocyte Extract, Revealing Anticancer Activity and Apoptotic Induction on Human Cervical Cancer Cells.

    PubMed

    Theansungnoen, Tinnakorn; Maijaroen, Surachai; Jangpromma, Nisachon; Yaraksa, Nualyai; Daduang, Sakda; Temsiripong, Theeranan; Daduang, Jureerut; Klaynongsruang, Sompong

    2016-06-01

    Known antimicrobial peptides KT2 and RT2 as well as the novel RP9 derived from the leukocyte extract of the freshwater crocodile (Crocodylus siamensis) were used to evaluate the ability in killing human cervical cancer cells. RP9 in the extract was purified by a combination of anion exchange column and reversed-phase HPLC, and its sequence was analyzed by mass spectrometry. The novel peptide could inhibit Gram-negative Vibrio cholerae (clinical isolation) and Gram-positive Bacillus pumilus TISTR 905, and its MIC values were 61.2 µM. From scanning electron microscopy, the peptide was seen to affect bacterial surfaces directly. KT2 and RT2, which are designed antimicrobial peptides using the C. siamensis Leucrocin I template, as well as RP9 were chemically synthesized for investigation of anticancer activity. By Sulforhodamine B colorimetric assay, these antimicrobial peptides could inhibit both HeLa and CaSki cancer cell lines. The IC50 values of KT2 and RT2 for HeLa and CaSki cells showed 28.7-53.4 and 17.3-30.8 µM, while those of RP9 were 126.2 and 168.3 µM, respectively. Additionally, the best candidate peptides KT2 and RT2 were used to determine the apoptotic induction on cancer cells by human apoptosis array assay. As a result, KT2 and RT2 were observed to induce apoptotic cell death in HeLa cells. Therefore, these results indicate that KT2 and RT2 with antimicrobial activity have a highly potent ability to kill human cervical cancer cells. PMID:27129462

  19. Disruption of repressive p130-DREAM complexes by human papillomavirus 16 E6/E7 oncoproteins is required for cell-cycle progression in cervical cancer cells.

    PubMed

    Nor Rashid, Nurshamimi; Yusof, Rohana; Watson, Roger J

    2011-11-01

    Human papillomaviruses (HPVs) with tropism for mucosal epithelia are the major aetiological factors in cervical cancer. Most cancers are associated with so-called high-risk HPV types, in particular HPV16, and constitutive expression of the HPV16 E6 and E7 oncoproteins is critical for malignant transformation in infected keratinocytes. E6 and E7 bind to and inactivate the cellular tumour suppressors p53 and Rb, respectively, thus delaying differentiation and inducing proliferation in suprabasal keratinocytes to enable HPV replication. One member of the Rb family, p130, appears to be a particularly important target for E7 in promoting S-phase entry. Recent evidence indicates that p130 regulates cell-cycle progression as part of a large protein complex termed DREAM. The composition of DREAM is cell cycle-regulated, associating with E2F4 and p130 in G0/G1 and with the B-myb transcription factor in S/G2. In this study, we addressed whether p130-DREAM is disrupted in HPV16-transformed cervical cancer cells and whether this is a critical function for E6/E7. We found that p130-DREAM was greatly diminished in HPV16-transformed cervical carcinoma cells (CaSki and SiHa) compared with control cell lines; however, when E6/E7 expression was targeted by specific small hairpin RNAs, p130-DREAM was reformed and the cell cycle was arrested. We further demonstrated that the profound G1 arrest in E7-depleted CaSki cells was dependent on p130-DREAM reformation by also targeting the expression of the DREAM component Lin-54 and p130. The results show that continued HPV16 E6/E7 expression is necessary in cervical cancer cells to prevent cell-cycle arrest by a repressive p130-DREAM complex. PMID:21813705

  20. Molecular imaging in cervical cancer.

    PubMed

    Khan, Sairah R; Rockall, Andrea G; Barwick, Tara D

    2016-06-01

    Despite the development of screening and of a vaccine, cervix cancer is a major cause of cancer death in young women worldwide. A third of women treated for the disease will recur, almost inevitably leading to death. Functional imaging has the potential to stratify patients at higher risk of poor response or relapse by improved delineation of disease extent and tumor characteristics. A number of molecular imaging biomarkers have been shown to predict outcome at baseline and/or early during therapy in cervical cancer. In future this could help tailor the treatment plan which could include selection of patients for close follow up, adjuvant therapy or trial entry for novel agents or adaptive clinical trials. The use of molecular imaging techniques, FDG PET/CT and functional MRI, in staging and response assessment of cervical cancer is reviewed. PMID:26859085

  1. Roles of Foxp3 in the occurrence and development of cervical cancer

    PubMed Central

    Luo, Qingshuang; Zhang, Shulan; Wei, Heng; Pang, Xiaoao; Zhang, Huijie

    2015-01-01

    Objective: This study aimed to evaluate the relationship between forkhead box P3 (Foxp3) expression and clinicopathological characteristics of cervical cancer and to explore the influence of Foxp3 on the biological behaviors of cervical cancer cells. Methods: In this study, immunohistochemistry, lentivirus mediated transfection, Transwell assay; CCK-8 assay, real-time PCR and flow cytometry were employed to confirm the roles of Foxp3 in the occurrence and development of cervical cancer. Results: Foxp3 and p16INK4a were highly expressed in the cervical cancer and their expressions were related to the FIGO stage, tumor size, lymph node metastasis and serum SCC. Foxp3 had a high expression in the cervical cancer cells, tumor interstitium and metastatic lymph nodes. Foxp3 expression was positively related to p16INK4a expression in the cervical cancer. Foxp3 expression in the cervical cancer was negatively related to the prognosis: high Foxp3 expression predicted a poor prognosis. Silencing of Foxp3 was able to inhibit the proliferation and invasiveness of cervical cancer cells, promote their apoptosis, and induce the change in cell cycle. Silencing of Foxp3 also reduced the mRNA and protein expressions of p16INK4a in cervical cancer cells. Conclusion: Foxp3 is highly expressed in the cervical cancer, and able to facilitate the proliferation and invasiveness of cervical cancer, change cell cycle and inhibit their apoptosis, resulting in the occurrence, development and metastasis of cervical cancer. PMID:26464616

  2. Human papillomavirus testing in cervical cancer screening.

    PubMed

    Castle, Philip E; Cremer, Miriam

    2013-06-01

    Human papillomavirus (HPV) testing is more reliable and sensitive but less specific than Papanicolaou (Pap) testing/cervical cytology for the detection of cervical precancer and cancer. HPV-negative women are at lower risk of cervical cancer than Pap-negative women. In high-resource settings, HPV testing can be used to make cervical cancer prevention programs more efficient by focusing clinical attention on women who have HPV. In lower-resource settings, where Pap testing has not been sustained or widespread, new, lower-cost HPV tests may make cervical cancer screening feasible. PMID:23732037

  3. Evaluation of the Anti-proliferative Effects of Ophiocoma erinaceus Methanol Extract Against Human Cervical Cancer Cells

    PubMed Central

    Baharara, Javad; Amini, Elaheh; Namvar, Farideh

    2016-01-01

    Background: Marine organisms provide appreciable source of novel bioactive compounds with pharmacological potential. There is little information in correlation with anti-cancer activities of brittle star. In the present study, anti-neoplastic efficacy of Ophiocoma erinaceus methanol extract against human cervical cancer cells was investigated. Methods: The HeLa cells were cultured and exposed to brittle star methanol extract for 24 and 48 hr. The anti-proliferative properties were examined by MTT assay and the type of cell death induced was evaluated through morphological changes, flow cytometry, Annexin kit and caspase assay. To assess the anti-metastatic activity, wound healing assay was conducted and photographs were taken from the scratched areas. Further, to understand molecular mechanism of cell apoptosis, the expression of Bax was evaluated. Results: The morphological analysis and MTT assay exhibited that the brittle star methanol extract can exert dose dependent inhibitory effect on cells viability (IC50, 50 μg/ml). Flow cytometry and fluorescence microscopy demonstrated increment of sub-G1 peak, early and late apoptosis in HeLa treated cells. Wound healing migration assay showed that brittle star extract has anti-neoplastic efficacy by inhibiting cell migration. Caspase assay and RT-PCR analysis revealed that brittle star methanol extract induced caspase dependent apoptosis in HeLa cells through up-regulation of caspase-3 followed by up-regulation of Bax gene which is a hallmark of intrinsic pathway recruitment. Conclusion: These results represented further insights into the chemopreventive potential of brittle star as a valuable source of unknown therapeutic agents against human cervical cancer. PMID:26855733

  4. Lymphedema After Surgery in Patients With Endometrial Cancer, Cervical Cancer, or Vulvar Cancer

    ClinicalTrials.gov

    2014-12-23

    Lymphedema; Stage IA Cervical Cancer; Stage IA Uterine Corpus Cancer; Stage IA Vulvar Cancer; Stage IB Cervical Cancer; Stage IB Uterine Corpus Cancer; Stage IB Vulvar Cancer; Stage II Uterine Corpus Cancer; Stage II Vulvar Cancer; Stage IIA Cervical Cancer; Stage IIIA Vulvar Cancer; Stage IIIB Vulvar Cancer; Stage IIIC Vulvar Cancer; Stage IVB Vulvar Cancer

  5. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells.

    PubMed

    Eiró, Noemí; Sendon-Lago, Juan; Seoane, Samuel; Bermúdez, María A; Lamelas, Maria Luz; Garcia-Caballero, Tomás; Schneider, José; Perez-Fernandez, Roman; Vizoso, Francisco J

    2014-11-15

    Evidences indicate that tumor development and progression towards a malignant phenotype depend not only on cancer cells themselves, but are also deeply influenced by tumor stroma reactivity. The present study uses mesenchymal stem cells from normal human uterine cervix (hUCESCs), isolated by the minimally invasive method of routine Pap cervical smear, to study their effect on the three main cell types in a tumor: cancer cells, fibroblasts and macrophages. Administration of hUCESCs-conditioned medium (CM) to a highly invasive breast cancer MDA-MB-231 cell line and to human breast tumors with high cell proliferation rates had the effect of reducing cell proliferation, modifying the cell cycle, inducing apoptosis, and decreasing invasion. In a xenograft mouse tumor model, hUCESCs-CM reduced tumor growth and increased overall survival. In cancer-associated fibroblasts, administration of hUCESCs-CM resulted in reduced cell proliferation, greater apoptosis and decreased invasion. In addition, hUCESCs-CM inhibited and reverted macrophage differentiation. The analysis of hUCESCs-CM (fresh and lyophilized) suggests that a complex paracrine signaling network could be implicated in the anti-tumor potential of hUCESCs. In light of their anti-tumor potential, the easy cell isolation method, and the fact that lyophilization of their CM conserves original properties make hUCESCs good candidates for experimental or clinical applications in anticancer therapy. PMID:25296979

  6. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells

    PubMed Central

    Seoane, Samuel; Bermúdez, María A.; Lamelas, Maria Luz; Garcia-Caballero, Tomás; Schneider, José; Perez-Fernandez, Roman; Vizoso, Francisco J.

    2014-01-01

    Evidences indicate that tumor development and progression towards a malignant phenotype depend not only on cancer cells themselves, but are also deeply influenced by tumor stroma reactivity. The present study uses mesenchymal stem cells from normal human uterine cervix (hUCESCs), isolated by the minimally invasive method of routine Pap cervical smear, to study their effect on the three main cell types in a tumor: cancer cells, fibroblasts and macrophages. Administration of hUCESCs-conditioned medium (CM) to a highly invasive breast cancer MDA-MB-231 cell line and to human breast tumors with high cell proliferation rates had the effect of reducing cell proliferation, modifying the cell cycle, inducing apoptosis, and decreasing invasion. In a xenograft mouse tumor model, hUCESCs-CM reduced tumor growth and increased overall survival. In cancer-associated fibroblasts, administration of hUCESCs-CM resulted in reduced cell proliferation, greater apoptosis and decreased invasion. In addition, hUCESCs-CM inhibited and reverted macrophage differentiation. The analysis of hUCESCs-CM (fresh and lyophilized) suggests that a complex paracrine signaling network could be implicated in the anti-tumor potential of hUCESCs. In light of their anti-tumor potential, the easy cell isolation method, and the fact that lyophilization of their CM conserves original properties make hUCESCs good candidates for experimental or clinical applications in anticancer therapy. PMID:25296979

  7. Keratin expression in cervical cancer.

    PubMed Central

    Smedts, F.; Ramaekers, F.; Troyanovsky, S.; Pruszczynski, M.; Link, M.; Lane, B.; Leigh, I.; Schijf, C.; Vooijs, P.

    1992-01-01

    Using a panel of 21 monoclonal and 2 polyclonal keratin antibodies, capable of detecting separately 11 subtypes of their epithelial intermediate filament proteins at the single cell level, we investigated keratin expression in 16 squamous cell carcinomas, 9 adenocarcinomas, and 3 adenosquamous carcinomas of the human uterine cervix. The keratin phenotype of the keratinizing squamous cell carcinoma was found to be most complex comprising keratins 4, 5, 6, 8, 13, 14, 16, 17, 18, 19, and usually keratin 10. The nonkeratinizing variety of the squamous cell carcinoma expressed keratins 6, 14, 17, and 19 in all cases, usually 4, 5, 7, 8, and 18, and sometimes keratins 10, 13, and 16. Adenocarcinomas displayed a less complex keratin expression pattern comprising keratins 7, 8, 17, 18, and 19, while keratin 14 was often present and keratins 4, 5, 10 and 13 were sporadically found in individual cells in a few cases. These keratin phenotypes may be useful in differential diagnostic considerations when distinguishing between keratinizing and nonkeratinizing carcinomas (using keratin 10, 13, and 16 antibodies), and also in the distinction between nonkeratinizing carcinomas and poorly differentiated adenocarcinomas, which do not express keratins 5 and 6. Keratin 17 may also be useful in distinguishing carcinomas of the cervix from those of the colon and also from mesotheliomas. Furthermore the presence of keratin 17 in a CIN I, II, or III lesion may indicate progressive potential while its absence could be indicative of a regressive behavior. Because most carcinomas express keratins 8, 14, 17, 18, and 19, we propose that this expression pattern reflects the origin of cervical cancer from a common progenitor cell, i.e., the endocervical reserve cell that has been shown to express keratins 5, 8, 14, 17, 18, and 19. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1379783

  8. Inhibition of proliferation of cervical and leukemic cancer cells by penicillin G.

    PubMed

    Banerjee, Aditya; Dahiya, Meetu; Anand, M T; Kumar, Sudhir

    2013-01-01

    Cancer, despite all the efforts, still causes one in five deaths worldwide. Surgery, chemotherapy and radiotherapy provide inadequate protection and instead affect normal cells along with cancer cells. The search for cancer cures from natural products (plants and animals) has been practice for over a decade and the use of purified chemical to treat cancer still continues. Several studies have been undertaken during last three decades to find the anti-cancerous property of various plant extract and toxins secreted by animals and micro-organism. These lead to the discovery of several promising molecule having anticancer activity, some of which are in clinical trial and may emerged to be a potential future drug in cancer therapy. In this study we have used penicillin to evaluate its anti-cancer activity. It shown significant effects at cellular and molecular levels against growth of HeLa and K562 cell lines. PMID:23679330

  9. microRNA-34a-Upregulated Retinoic Acid-Inducible Gene-I Promotes Apoptosis and Delays Cell Cycle Transition in Cervical Cancer Cells.

    PubMed

    Wang, Jing-Hua; Zhang, Le; Ma, Yu-Wei; Xiao, Jing; Zhang, Yi; Liu, Min; Tang, Hua

    2016-06-01

    The function of retinoic acid-inducible gene-I (RIG-I) in viral replication is well documented, but its function in carcinogenesis and malignancies as well as relationship with microRNAs (miRNAs) remain poorly understood. miR-34a is an antioncogene in multiple tumors. In our study, RIG-I and miR-34a suppressed cell growth, proliferation, migration, and invasion in cervical cancer cells in vitro. miR-34a was validated as a new regulator of RIG-I by binding to its 3' untranslated region and upregulating its expression level. Furthermore, we revealed that RIG-I and miR-34a enhanced apoptosis, delayed the G1/S/G2 transition of the cell cycle, and inhibited the epithelial-mesenchymal transition process to modulate malignancies in cervical cancer cells. Phenotypic rescue experiments indicated that RIG-I mediates the effects of miR-34a in HeLa and C33A cells. These findings provide new insights into the mechanisms that underlie carcinogenesis and may provide new biomarkers for the diagnosis and therapy of cervical cancer. PMID:26910120

  10. Inhibitory effect of 13 taxane diterpenoids from Chinese yew (Taxus chinensis var. mairei) on the proliferation of HeLa cervical cancer cells.

    PubMed

    Liu, Hai-Sheng; Gao, Yu-Huan; Liu, Li-Hong; Liu, Wei; Shi, Qing-Wen; Dong, Mei; Suzuki, Toshikazu; Kiyota, Hiromasa

    2016-10-01

    The inhibitory effect of 13 taxanes isolated from the Chinese yew (Taxus chinensis var. mairei) on the proliferation of human cervical cancer HeLa cells were examined using an MTT assay. Four compounds having a hydrophobic cinnamate side chain showed antiproliferative activity, which may be due to increased cell permeability. PMID:27296359

  11. Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway

    PubMed Central

    Jeong, Ae-Jin; Chung, Chung-Nam; Kim, Hye-Jin; Bae, Kil Soo; Choi, Song; Jun, Woo Jin; Shim, Sang In; Kang, Tae-Hong; Leem, Sun-Hee

    2012-01-01

    Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway. PMID:23118562

  12. Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway.

    PubMed

    Jeong, Ae-Jin; Chung, Chung-Nam; Kim, Hye-Jin; Bae, Kil Soo; Choi, Song; Jun, Woo Jin; Shim, Sang In; Kang, Tae-Hong; Leem, Sun-Hee; Chung, Jin Woong

    2012-10-01

    Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway. PMID:23118562

  13. Cervical cancer: screening, diagnosis and staging.

    PubMed

    Tsikouras, Panagiotis; Zervoudis, Stefanos; Manav, Bachar; Tomara, Eirini; Iatrakis, George; Romanidis, Constantinos; Bothou, Anastasia; Galazios, George

    2016-01-01

    Purpose: Despite the widespread screening programs, cervical cancer remains the third most common cancer in developing countries. Based on the implementation of cervical screening programs with the referred adoption of improved screening methods in cervical cytology with the knowledge of the important role of the human papilloma virus (HPV) it's incidence is decreased in the developed world. Even if cervical HPV infection is incredibly common, cervical cancer is relatively rare. Depending on the rarity of invasive disease and the improvement of detection of pre-cancerous lesions due to the participation in screening programs, the goal of screening is to detect the cervical lesions early in order to be treated before cancer is developed. In populations with many preventive screening programs, a decrease in cervical cancer mortality of 50-75% is mentioned over the past 50 years. The preventive examination of vagina and cervix smear, Pap test, and the HPV DNA test are remarkable diagnostic tools according to the American Cancer Association guidelines, in the investigation of asymptomatic women and in the follow up of women after the treatment of pre-invasive cervical cancer. The treatment of cervical cancer is based on the FIGO 2009 cervical cancer staging. PMID:27273940

  14. Cisplatin suppresses the growth and proliferation of breast and cervical cancer cell lines by inhibiting integrin β5-mediated glycolysis

    PubMed Central

    Wang, Shaojia; Xie, Jie; Li, Jiajia; Liu, Fei; Wu, Xiaohua; Wang, Ziliang

    2016-01-01

    Cancer cells harbor lower energy consumption after rounds of anticancer drugs, but the underlying mechanism remains unclear. In this study, we investigated metabolic alterations in cancer cells exposed to cisplatin. The present study exhibited cisplatin, known as a chemotherapeutic agent interacting with DNA, also acted as an anti-metabolic agent. We found that glycolysis levels of breast and cervical cancer cells were reduced after cisplatin treatment, resulting in cells growth and proliferation inhibition. We demonstrated that cisplatin suppressed glycolysis-related proteins expression, including glucose transporter 1 (GLUT1), glucose transporter 4 (GLUT4) and lactate dehydrogenase B (LDHB), through down-regulating integrin β5 (ITGB5)/focal adhesion kinase (FAK) signaling pathway. ITGB5 overexpression rescued cisplatin-induced inhibition of cancer cell glycolysis, growth and proliferation. Conclusively, we reveal a novel insight into cisplatin-induced anticancer mechanism, suggesting alternative strategies to the current therapeutic approaches of targeting ITGB5, as well as of a combination of cisplatin with glucose up-regulation chemotherapeutic agents to enhance anticancer effect. PMID:27294003

  15. Insulin-like growth factor 1 stimulates KCl cotransport, which is necessary for invasion and proliferation of cervical cancer and ovarian cancer cells.

    PubMed

    Shen, Meng-Ru; Lin, Ai-Chien; Hsu, Yueh-Mei; Chang, Tsui-Jung; Tang, Ming-Jer; Alper, Seth L; Ellory, J Clive; Chou, Cheng-Yang

    2004-09-17

    The mechanisms by which insulin-like growth factor 1 (IGF-1) cooperates with membrane ion transport system to modulate epithelial cell motility and proliferation remain poorly understood. Here, we investigated the role of electroneutral KCl cotransport (KCC), in IGF-1-dependent invasiveness and proliferation of cervical and ovarian cancer cells. IGF-1 increased KCC activity and mRNA expression in a dose- and time-dependent manner in parallel with the enhancement of regulatory volume decrease. IGF-1 treatment triggers phosphatidylinositol 3-kinase and mitogen-activated protein kinase cascades leading to the activation of Akt and extracellular signal-regulated kinase1/2 (Erk1/2), respectively. The activated Erk1/2 mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways are differentially required for IGF-1-stimulated biosyn-thesis of KCC polypeptides. Specific reduction of Erk1/2 protein levels with small interference RNA abolishes IGF-1-stimulated KCC activity. Pharmacological inhibition and genetic modification of KCC activity demonstrate that KCC is necessary for IGF-1-induced cancer cell invasiveness and proliferation. IGF-1 and KCC colocalize in the surgical specimens of cervical cancer (n = 28) and ovarian cancer (n = 35), suggesting autocrine or paracrine IGF-1 stimulation of KCC production. Taken together, our results indicate that KCC activation by IGF-1 plays an important role in IGF-1 signaling to promote growth and spread of gynecological cancers. PMID:15262997

  16. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines

    PubMed Central

    Yi, Jin-Ling; Shi, Song; Shen, Yan-Li; Wang, Ling; Chen, Hai-Yan; Zhu, Jun; Ding, Yan

    2015-01-01

    Drug combination therapies are common practice in the treatment of cancer. In this study, we evaluated the anticancer effects of myricetin (MYR), methyl eugenol (MEG) and cisplatin (CP) both separately as well as in combination against cervical cancer (HeLa) cells. To demonstrate whether MYR and MEG enhance the anticancer activity of CP against cervical cancer cells, we treated HeLa cells with MYR and MEG alone or in combination with cisplatin and evaluated cell growth and apoptosis using MTT (3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazolium bromide) assay, LDH release assay, flow cytometry and fluorescence microscopy. The results revealed that, as compared to single drug treatment, the combination of MYR or MEG with CP resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Cell apoptosis induction, Caspase-3 activity, cell cycle arrest and mitochondrial membrane potential loss were systematically studied to reveal the mechanisms of synergy between MYR, MEG and CP. Combination of MYR or MEG with CP resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33258 and AO-ETBR staining. The combination treatment also increased the number of cells in G0/G1 phase dramatically as compared to single drug treatment. Mitochondrial membrane potential loss (ΛΨm) as well as Caspase-3 activity was much higher in combination treatment as compared to single drug treatment. Findings of this investigation suggest that MYR and MEG combined with cisplatin is a potential clinical chemotherapeutic approach in human cervical cancer. PMID:25972998

  17. Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines

    NASA Astrophysics Data System (ADS)

    Panwar, Richa; Sharma, Asvene K.; Kaloti, Mandeep; Dutt, Dharm; Pruthi, Vikas

    2016-08-01

    Ferulic acid (FA) is a widely distributed hydroxycinnamic acid found in various cereals and fruits exhibiting potent antioxidant and anticancer activities. However, due to low solubility and permeability, its availability to biological systems is limited. Non-toxic chitosan-tripolyphosphate pentasodium (CS-TPP) nanoparticles (NPs) are used to load sparingly soluble molecules and drugs, increasing their bioavailability. In the present work, we have encapsulated FA into the CS-TPP NPs to increase its potential as a therapeutic agent. Different concentrations of FA were tested to obtain optimum sized FA-loaded CS-TPP nanoparticles (FA/CS-TPP NPs) by ionic gelation method. Nanoparticles were characterized by scanning electron microscopy, Fourier transformation infrared spectroscopy (FTIR), thermogravimetric analyses and evaluated for their anticancer activity against ME-180 human cervical cancer cell lines. The FTIR spectra confirmed the encapsulation of FA and thermal analysis depicted its degradation profile. A concentration-dependent relationship between FA encapsulation efficiency and FA/CS-TPP NPs diameter was observed. Smooth and spherical FA-loaded cytocompatible nanoparticles with an average diameter of 125 nm were obtained at 40 µM FA conc. The cytotoxicity of 40 µM FA/CS-TPP NPs against ME-180 cervical cancer cell lines was found to be higher as compared to 40 µM native FA. Apoptotic morphological changes as cytoplasmic remnants and damaged wrinkled cells in ME-180 cells were visualized using scanning electron microscopic and fluorescent microscopic techniques. Data concluded that chitosan enveloped FA nanoparticles could be exploited as an excellent therapeutic drug against cancer cells proliferation.

  18. Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines

    NASA Astrophysics Data System (ADS)

    Panwar, Richa; Sharma, Asvene K.; Kaloti, Mandeep; Dutt, Dharm; Pruthi, Vikas

    2015-10-01

    Ferulic acid (FA) is a widely distributed hydroxycinnamic acid found in various cereals and fruits exhibiting potent antioxidant and anticancer activities. However, due to low solubility and permeability, its availability to biological systems is limited. Non-toxic chitosan-tripolyphosphate pentasodium (CS-TPP) nanoparticles (NPs) are used to load sparingly soluble molecules and drugs, increasing their bioavailability. In the present work, we have encapsulated FA into the CS-TPP NPs to increase its potential as a therapeutic agent. Different concentrations of FA were tested to obtain optimum sized FA-loaded CS-TPP nanoparticles (FA/CS-TPP NPs) by ionic gelation method. Nanoparticles were characterized by scanning electron microscopy, Fourier transformation infrared spectroscopy (FTIR), thermogravimetric analyses and evaluated for their anticancer activity against ME-180 human cervical cancer cell lines. The FTIR spectra confirmed the encapsulation of FA and thermal analysis depicted its degradation profile. A concentration-dependent relationship between FA encapsulation efficiency and FA/CS-TPP NPs diameter was observed. Smooth and spherical FA-loaded cytocompatible nanoparticles with an average diameter of 125 nm were obtained at 40 µM FA conc. The cytotoxicity of 40 µM FA/CS-TPP NPs against ME-180 cervical cancer cell lines was found to be higher as compared to 40 µM native FA. Apoptotic morphological changes as cytoplasmic remnants and damaged wrinkled cells in ME-180 cells were visualized using scanning electron microscopic and fluorescent microscopic techniques. Data concluded that chitosan enveloped FA nanoparticles could be exploited as an excellent therapeutic drug against cancer cells proliferation.

  19. B4GALT3 up-regulation by miR-27a contributes to the oncogenic activity in human cervical cancer cells.

    PubMed

    Sun, Yanrui; Yang, Xi; Liu, Min; Tang, Hua

    2016-06-01

    β-1,4-Galactosyltransferase III (B4GALT3) is an enzyme responsible for the generation of poly-N-acetyllactosamine and is involved in tumorigenesis. However, B4GALT3-dysregulation and its role in cervical cancer cells are unknown. Herein, we found that B4GALT3 was upregulated in cervical cancer tissues compared to adjacent non-tumor tissues. B4GALT3-overexpression promoted, whereas B4GALT3-knockdown suppressed the cellular migration, invasion and EMT of HeLa and C33A cervical cancer cells. To explore the mechanism of dysregulation, B4GALT3 was predicted to be a target of miR-27a. EGFP and pGL3-promoter reporter assay showed miR-27a binds to B4GALT3 3'UTR region but enhanced its expression. RT-qPCR showed miR-27a was also upregulated and presented positive correlation with B4GALT3-expression in cervical cancer tissues. miR-27a-overexpression promoted, but blocking-miR-27a repressed these malignancies in HeLa and C33A cells. Furthermore, shR-B4GALT3 counteracted the promotion of malignancies induced by miR-27a, suggesting miR-27a upregulates B4GALT3 to enhance tumorigenic activities. In addition, we found that B4GALT3 significantly enhances β1-integrin stability, thus mediating promotion of B4GALT3 on malignancy in cervical cancer cells. Altogether, our findings evidenced that B4GALT3 upregulated by miR-27a contributes to the tumorigenic activities by β1-integrin pathway and might provide potential biomarkers for cervical cancer. PMID:26987623

  20. Expression and role of nestin in human cervical intraepithelial neoplasia and cervical cancer.

    PubMed

    Sato, Atsuki; Ishiwata, Toshiyuki; Matsuda, Yoko; Yamamoto, Tetsushi; Asakura, Hirobumi; Takeshita, Toshiyuki; Naito, Zenya

    2012-08-01

    Nestin expression reportedly correlates with aggressive growth, metastasis, poor prognosis and presence of cancer stem cells (CSCs) in various tumors. In this study, we determined the expression and role of nestin in cervical intraepithelial neoplasia (CIN) and cervical cancer. We performed immunohistochemical and in situ hybridization analyses of nestin in 26 cases for each stage of CIN and 55 cervical cancer tissue samples. To examine the role of nestin in cervical cancer cells, we stably transfected expression vectors containing nestin cDNA into ME-180 cells. We studied the effects of increased nestin expression on cell proliferation, cell motility, invasion as well as sphere and soft agar formation. Nestin was not localized in the squamous epithelium in normal cervical tissues, but it was weakly expressed in the basal squamous epithelium of CIN 1. In CIN 2, nestin was localized to the basal to lower 2/3 of the squamous epithelium, whereas in CIN 3, it was localized to the majority of the squamous epithelium. Nestin was detected in all cases of invasive cervical cancer. Nestin mRNA was expressed in both ME-180 and CaSki cells. Growth rate, cell motility and invasion ability of stably nestin-transfected ME-180 cells were not different from empty vector-transfected ME-180 (mock cells). However, the nestin-transfected ME-180 cells formed more colonies and spheres compared to the mock cells. These findings suggest that nestin plays important roles in carcinogenesis and tumor formation of cervical cancer cells. Nestin may closely correlate with regulation of CSCs. PMID:22580387

  1. Cervical Cancer, Version 2.2015.

    PubMed

    Koh, Wui-Jin; Greer, Benjamin E; Abu-Rustum, Nadeem R; Apte, Sachin M; Campos, Susana M; Cho, Kathleen R; Chu, Christina; Cohn, David; Crispens, Marta Ann; Dorigo, Oliver; Eifel, Patricia J; Fisher, Christine M; Frederick, Peter; Gaffney, David K; Han, Ernest; Huh, Warner K; Lurain, John R; Mutch, David; Fader, Amanda Nickles; Remmenga, Steven W; Reynolds, R Kevin; Teng, Nelson; Tillmanns, Todd; Valea, Fidel A; Yashar, Catheryn M; McMillian, Nicole R; Scavone, Jillian L

    2015-04-01

    The NCCN Guidelines for Cervical Cancer provide interdisciplinary recommendations for treating cervical cancer. These NCCN Guidelines Insights summarize the NCCN Cervical Cancer Panel's discussion and major guideline updates from 2014 and 2015. The recommended systemic therapy options for recurrent and metastatic cervical cancer were amended upon panel review of new survival data and the FDA's approval of bevacizumab for treating late-stage cervical cancer. This article outlines relevant data and provides insight into panel decisions regarding various combination regimens. Additionally, a new section was added to provide additional guidance on key principles of evaluation and surgical staging in cervical cancer. This article highlights 2 areas of active investigation and debate from this new section: sentinel lymph node mapping and fertility-sparing treatment approaches. PMID:25870376

  2. Requirement of T-lymphokine-activated killer cell-originated protein kinase for TRAIL resistance of human HeLa cervical cancer cells

    SciTech Connect

    Kwon, Hyeok-Ran; Lee, Ki Won; Dong, Zigang; Lee, Kyung Bok; Oh, Sang-Muk

    2010-01-01

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) appears to be highly expressed in various cancer cells and to play an important role in maintaining proliferation of cancer cells. However, the underlying mechanism by which TOPK regulates growth of cancer cells remains elusive. Here we report that upregulated endogenous TOPK augments resistance of cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Stable knocking down of TOPK markedly increased TRAIL-mediated apoptosis of human HeLa cervical cancer cells, as compared with control cells. Caspase 8 or caspase 3 activities in response to TRAIL were greatly incremented in TOPK-depleted cells. Ablation of TOPK negatively regulated TRAIL-mediated NF-{kappa}B activity. Furthermore, expression of NF-{kappa}B-dependent genes, FLICE-inhibitory protein (FLIP), inhibitor of apoptosis protein 1 (c-IAP1), or X-linked inhibitor of apoptosis protein (XIAP) was reduced in TOPK-depleted cells. Collectively, these findings demonstrated that TOPK contributed to TRAIL resistance of cancer cells via NF-{kappa}B activity, suggesting that TOPK might be a potential molecular target for successful cancer therapy using TRAIL.

  3. Suppressor of Cytokine Signaling (SOCS) Genes Are Silenced by DNA Hypermethylation and Histone Deacetylation and Regulate Response to Radiotherapy in Cervical Cancer Cells

    PubMed Central

    Kim, Moon-Hong; Kim, Moon-Sun; Kim, Wonwoo; Kang, Mi Ae; Cacalano, Nicholas A.; Kang, Soon-Beom; Shin, Young-Joo; Jeong, Jae-Hoon

    2015-01-01

    Suppressor of cytokine signaling (SOCS) family is an important negative regulator of cytokine signaling and deregulation of SOCS has been involved in many types of cancer. All cervical cancer cell lines tested showed lower expression of SOCS1, SOCS3, and SOCS5 than normal tissue or cell lines. The immunohistochemistry result for SOCS proteins in human cervical tissue also confirmed that normal tissue expressed higher level of SOCS proteins than neighboring tumor. Similar to the regulation of SOCS in other types of cancer, DNA methylation contributed to SOCS1 downregulation in CaSki, ME-180, and HeLa cells. However, the expression of SOCS3 or SOCS5 was not recovered by the inhibition of DNA methylation. Histone deacetylation may be another regulatory mechanism involved in SOCS1 and SOCS3 expression, however, SOCS5 expression was neither affected by DNA methylation nor histone deacetylation. Ectopic expression of SOCS1 or SOCS3 conferred radioresistance to HeLa cells, which implied SOCS signaling regulates the response to radiation in cervical cancer. In this study, we have shown that SOCS expression repressed by, in part, epigenetically and altered SOCS1 and SOCS3 expression could contribute to the radiosensitive phenotype in cervical cancer. PMID:25849377

  4. Synergistic anticancer activity of dietary tea polyphenols and bleomycin hydrochloride in human cervical cancer cell: Caspase-dependent and independent apoptotic pathways.

    PubMed

    Alshatwi, Ali A; Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Elango, Ramesh

    2016-03-01

    Bleomycin is a chemotherapeutic agent that is frequently used in the treatment of various cancers. Bleomycin causes serious adverse effects via antioxidant defense abnormalities against reactive oxygen species (ROS). However, the current cervical cancer monodrug therapy strategy has failed to produce the expected outcomes; hence, combinational therapies are gaining great interest. Tea polyphenols are also effective antioxidative and chemo-preventive agents. However, the combined effect of tea polyphenol (TPP) and bleomycin (BLM) against cervical cancer remains unknown. In this study, we focused on the potential of TPP on BLM anticancer activity against cervical cancer cells. Cervical cancer cells (SiHa) were treated with various concentrations of TPP, BLM and TPP combined with BLM (TPP-BLM), and their effects on cell growth, intracellular reactive oxygen species, poly-caspase activity, early apoptosis and the expression of caspase-3, caspase-8 and caspase-9, Bcl-2 and p53 were assessed. The MTT assay revealed that the SiHa cells were less sensitive to growth inhibition by TPP treatment compared with both BLM and the combination therapy. Nuclear staining indicated that exposure to TPP-BLM increased the percentage of apoptotic nuclei compared with a mono-agent treatment. Caspase activation assay demonstrated that proportion of early and late apoptotic/secondary necrotic cells was higher in the cells treated with the combination therapy than in those treated with either TPP or BLM alone. The TPP-BLM treatment synergistically induced apoptosis through caspase-3, caspase-8 and caspase-9 activation, Bcl-2 upregulation and p53 overexpression. This study suggests that TPP-BLM may be used as an efficient antioxidant-based combination therapy for cervical cancer. PMID:26800624

  5. Nanotechnology in the management of cervical cancer.

    PubMed

    Chen, Jiezhong; Gu, Wenyi; Yang, Lei; Chen, Chen; Shao, Renfu; Xu, Kewei; Xu, Zhi Ping

    2015-03-01

    Cervical cancer is a major disease with high mortality. All cervical cancers are caused by infection with human papillomaviruses (HPV). Although preventive vaccines for cervical cancer are successful, treatment of cervical cancer is far less satisfactory because of multidrug resistance and side effects. In this review, we summarize the recent application of nanotechnology to the diagnosis and treatment of cervical cancer as well as the development of HPV vaccines. Early detection of cervical cancer enables tumours to be efficiently removed by surgical procedures, leading to increased survival rate. The current method of detecting cervical cancer by Pap smear can only achieve 50% sensitivity, whereas nanotechnology has been used to detect HPVs with greatly improved sensitivity. In cervical cancer treatment, nanotechnology has been used for the delivery of anticancer drugs to increase treatment efficacy and decrease side effects. Nanodelivery of HPV preventive and therapeutic vaccines has also been investigated to increase vaccine efficacy. Overall, these developments suggest that nanoparticle-based vaccine may become the most effective way to prevent and treat cervical cancer, assisted or combined with some other nanotechnology-based therapy. PMID:25752817

  6. Heterogeneity of microRNAs expression in cervical cancer cells: over-expression of miR-196a

    PubMed Central

    Villegas-Ruiz, Vanessa; Juárez-Méndez, Sergio; Pérez-González, Oscar A; Arreola, Hugo; Paniagua-García, Lucero; Parra-Melquiadez, Miriam; Peralta-Rodríguez, Raúl; López-Romero, Ricardo; Monroy-García, Alberto; Mantilla-Morales, Alejandra; Gómez-Gutiérrez, Guillermo; Román-Bassaure, Edgar; Salcedo, Mauricio

    2014-01-01

    In recent years, the study of microRNAs associated with neoplastic processes has increased. Patterns of microRNA expression in different cell lines and different kinds of tumors have been identified; however, little is known about the alterations in regulatory pathways and genes involved in aberrant set of microRNAs. The identification of these altered microRNAs in several cervical cancer cells and potentially deregulated pathways involved constitute the principal goals of the present study. In the present work, the expression profiles of cellular microRNAs in Cervical Cancer tissues and cell lines were explored using microRNA microarray, Affymetrix. The most over-expressed was miR-196a, which was evaluated by real time PCR, and HOXC8 protein as potential target by immunohistochemistry assay. One hundred and twenty three human microRNAs differentially expressed in the cell tumor, 64 (52%) over-expressed and 59 (48%) under-expressed were observed. Among the microRNAs over-expressed, we focused on miR-196a; at present this microRNA is poorly studied in CC. The expression of this microRNA was evaluated by qRT-PCR, and HOXC8 by immunohistochemistry assay. There is not a specific microRNA expression profile in the CC cells, neither a microRNA related to HPV presence. Furthermore, the miR-196a was over-expressed, while an absence of HOXC8 expression was observed. We suggest that miR-196a could be played as oncomiR in CC. PMID:24817935

  7. Fundamental Differences in Cell Cycle Deregulation in Human Papillomavirus–Positive and Human Papillomavirus–Negative Head/Neck and Cervical Cancers

    PubMed Central

    Pyeon, Dohun; Newton, Michael A.; Lambert, Paul F.; den Boon, Johan A.; Sengupta, Srikumar; Marsit, Carmen J.; Woodworth, Craig D.; Connor, Joseph P.; Haugen, Thomas H.; Smith, Elaine M.; Kelsey, Karl T.; Turek, Lubomir P.; Ahlquist, Paul

    2010-01-01

    Human papillomaviruses (HPV) are associated with nearly all cervical cancers, 20% to 30% of head and neck cancers (HNC), and other cancers. Because HNCs also arise in HPV-negative patients, this type of cancer provides unique opportunities to define similarities and differences of HPV-positive versus HPV-negative cancers arising in the same tissue. Here, we describe genome-wide expression profiling of 84 HNCs, cervical cancers, and site-matched normal epithelial samples in which we used laser capture microdissection to enrich samples for tumor-derived versus normal epithelial cells. This analysis revealed that HPV+ HNCs and cervical cancers differed in their patterns of gene expression yet shared many changes compared with HPV− HNCs. Some of these shared changes were predicted, but many others were not. Notably, HPV+ HNCs and cervical cancers were found to be up-regulated in their expression of a distinct and larger subset of cell cycle genes than that observed in HPV− HNC. Moreover, HPV+ cancers overexpressed testis-specific genes that are normally expressed only in meiotic cells. Many, although not all, of the hallmark differences between HPV+ HNC and HPV− HNC were a direct consequence of HPV and in particular the viral E6 and E7 oncogenes. This included a novel association of HPV oncogenes with testis-specific gene expression. These findings in primary human tumors provide novel biomarkers for early detection of HPV+ and HPV− cancers, and emphasize the potential value of targeting E6 and E7 function, alone or combined with radiation and/or traditional chemotherapy, in the treatment of HPV+ cancers. PMID:17510386

  8. Endometrial cancer following radiation therapy for cervical cancer

    SciTech Connect

    Gallion, H.H.; van Nagell, J.R. Jr.; Donaldson, E.S.; Powell, D.E.

    1987-05-01

    The clinical and histologic features of eight cases of carcinoma of the endometrium which developed following radiation therapy for squamous cell carcinoma of the cervix are described. No patient had a well-differentiated tumor and significant myometrial invasion was present in all cases. Three of the eight tumors were papillary serous adenocarcinoma. Five of the eight patients developed recurrent tumor and died of their disease. The risk of endometrial cancer in patients previously radiated for cervical cancer is evaluated.

  9. Stages of Cervical Cancer

    MedlinePlus

    ... checked under a microscope for signs of cancer. Laparoscopy : A surgical procedure to look at the organs ... a laparoscope , the operation is called a total laparoscopic hysterectomy. Enlarge Hysterectomy. The uterus is surgically removed ...

  10. 1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione Induces G1 Cell Cycle Arrest and Autophagy in HeLa Cervical Cancer Cells

    PubMed Central

    Tsai, Jie-Heng; Hsu, Li-Sung; Huang, Hsiu-Chen; Lin, Chih-Li; Pan, Min-Hsiung; Hong, Hui-Mei; Chen, Wei-Jen

    2016-01-01

    The natural agent, 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB), has been reported to have growth inhibitory effects on several human cancer cells. However, the role of HMDB in cervical cancer remains unclear. Herein, we found that HMDB dose- and time-dependently inhibited growth of HeLa cervical cancer cells, accompanied with G1 cell cycle arrest. HMDB decreased protein expression of cyclins D1/D3/E and cyclin-dependent kinases (CDKs) 2/4/6 and reciprocally increased mRNA and protein levels of CDK inhibitors (p15, p16, p21, and p27), thereby leading to the accumulation of hypophosphorylated retinoblastoma (Rb) protein. HMDB also triggered the accumulation of acidic vesicles and formation of microtubule-associated protein-light chain 3 (LC3), followed by increased expression of LC3 and Beclin-1 and decreased expression of p62, suggesting that HMDB triggered autophagy in HeLa cells. Meanwhile, suppression of the expression of survivin and Bcl-2 implied that HMDB-induced autophagy is tightly linked to apoptosis. Exploring the action mechanism, HMDB induced autophagy via the modulation of AMP-activated protein kinase (AMPK) and mTOR signaling pathway rather than the class III phosphatidylinositol 3-kinase pathway. These results suggest that HMDB inhibits HeLa cell growth by eliciting a G1 arrest through modulation of G1 cell cycle regulators and by concomitantly inducing autophagy through the mediation of AMPK-mTOR and Akt-mTOR pathways, and may be a promising antitumor agent against cervical cancer. PMID:27527160

  11. 1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione Induces G1 Cell Cycle Arrest and Autophagy in HeLa Cervical Cancer Cells.

    PubMed

    Tsai, Jie-Heng; Hsu, Li-Sung; Huang, Hsiu-Chen; Lin, Chih-Li; Pan, Min-Hsiung; Hong, Hui-Mei; Chen, Wei-Jen

    2016-01-01

    The natural agent, 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB), has been reported to have growth inhibitory effects on several human cancer cells. However, the role of HMDB in cervical cancer remains unclear. Herein, we found that HMDB dose- and time-dependently inhibited growth of HeLa cervical cancer cells, accompanied with G1 cell cycle arrest. HMDB decreased protein expression of cyclins D1/D3/E and cyclin-dependent kinases (CDKs) 2/4/6 and reciprocally increased mRNA and protein levels of CDK inhibitors (p15, p16, p21, and p27), thereby leading to the accumulation of hypophosphorylated retinoblastoma (Rb) protein. HMDB also triggered the accumulation of acidic vesicles and formation of microtubule-associated protein-light chain 3 (LC3), followed by increased expression of LC3 and Beclin-1 and decreased expression of p62, suggesting that HMDB triggered autophagy in HeLa cells. Meanwhile, suppression of the expression of survivin and Bcl-2 implied that HMDB-induced autophagy is tightly linked to apoptosis. Exploring the action mechanism, HMDB induced autophagy via the modulation of AMP-activated protein kinase (AMPK) and mTOR signaling pathway rather than the class III phosphatidylinositol 3-kinase pathway. These results suggest that HMDB inhibits HeLa cell growth by eliciting a G1 arrest through modulation of G1 cell cycle regulators and by concomitantly inducing autophagy through the mediation of AMPK-mTOR and Akt-mTOR pathways, and may be a promising antitumor agent against cervical cancer. PMID:27527160

  12. Cervical cytology in serous and endometrioid endometrial cancer.

    PubMed

    Roelofsen, Thijs; Geels, Yvette P; Pijnenborg, Johanna M A; van Ham, Maaike A P C; Zomer, Saskia F; van Tilburg, Johanna M Wiersma; Snijders, Marc P M L; Siebers, Albert G; Bulten, Johan; Massuger, Leon F A G

    2013-07-01

    The aim of this study was to determine the frequency of abnormal cervical cytology in preoperative cervical cytology of patients diagnosed with uterine papillary serous carcinoma (UPSC) and endometrioid endometrial carcinoma (EEC). In addition, associations between abnormal cervical cytology and clinicopathologic factors were evaluated. In this multicentre study, EEC patients diagnosed at two hospitals from 1999 to 2009 and UPSC patients diagnosed at five hospitals from 1992 to 2009, were included. Revision of the histologic slides was performed systematically and independently by 3 gynecopathologists. Cervical cytology within six months before histopathologic diagnosis of endometrial carcinoma was available for 267 EEC and 80 UPSC patients. Cervical cytology with atypical, malignant, or normal endometrial cells in postmenopausal women was considered as abnormal cytology, specific for endometrial pathology. Abnormal cervical cytology was found in 87.5% of UPSC patients, compared with 37.8% in EEC patients. In UPSC, abnormal cytology was associated with extrauterine spread of disease (P=0.043). In EEC, abnormal cytology was associated with cervical involvement (P=0.034). In both EEC and UPSC patients, abnormal cervical cytology was not associated with survival. In conclusion, abnormal cervical cytology was more frequently found in UPSC patients. It was associated with extrauterine disease in UPSC patients, and with cervical involvement in EEC patients. More prospective research should be performed to assess the true clinical value of preoperative cervical cytology in endometrial cancer patients. PMID:23722512

  13. What Are the Key Statistics about Cervical Cancer?

    MedlinePlus

    ... factors for cervical cancer? What are the key statistics about cervical cancer? The American Cancer Society's estimates ... this country. Visit the American Cancer Society’s Cancer Statistics Center for more key statistics. Last Medical Review: ...

  14. Necrotic Effect versus Apoptotic Nature of Camptothecin in Human Cervical Cancer Cells

    PubMed Central

    Zare-Mirakabadi, Abbas; Sarzaeem, Ali; Moradhaseli, Saeed; Sayad, Aida; Negahdary, Masoud

    2012-01-01

    Background Functional defects in mitochondria are involved in the induction of cell death in cancer cells. The process of programmed cell death may occur through the mechanisms of apoptosis. Several potential lead molecules such as Camptothecin (CPT) and its analogues have been isolated from plants with anticancer effect. The aim of the present study was to understand the necrotic effect versus apoptotic nature of CPT in HeLa cancer cells. Methods The anti-proliferative activity of CPT was estimated through 3-(4, 5- Dimethyl Thiazol-2-yl)-2, 5-diphenyl Tetrazolium bromide (MTT) assay and DNA fragmentation analysis using gel electrophoresis. Lactate Dehydrogenase (LDH) activity and cell morphology were assessed under control and CPT exposed conditions to evaluate the necrotic effect of CPT. Results The results showed that CPT inhibited the proliferation of HeLa cells in a dose-dependent manner with an Inhibitory Concentration 50% (IC50) of 0.08±0.012 µg/ml. However the significant (p<0.05) increase happens in LDH activity at concentrations 1×10-1µg/ml and above. Morphological changes showed that CPT in low concentrations induced an apoptotic mechanism of cell death, such as cell shrinkage and characteristic rounding of dying cells, while at high concentrations showed necrosis changes. The characteristic DNA ladder formation of CPT-treated cells in agarose gel electrophoresis confirmed the results obtained by light microscopy and LDH assay. Conclusion Camptothecin as an anticancer drug may have anti-proliferative effect on HeLa cancer cells in low concentrations, through its nature of induction of apoptosis. The border line between necrotic effect and apoptotic nature of CPT in HeLa cancer cells has been found to be at concentration of 1×10-1 µg/ml. PMID:25628829

  15. Induction of apoptotic effects of antiproliferative protein from the seeds of Borreria hispida on lung cancer (A549) and cervical cancer (HeLa) cell lines.

    PubMed

    Rupachandra, S; Sarada, D V L

    2014-01-01

    A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3) on an analytical C-18 column produced a single peak, detected at 220 nm. F3 showed an apparent molecular weight of 35 KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3) exhibited significant cytotoxic activity against lung (A549) and cervical (HeLa) cancer cells in a dose-dependent manner at concentrations ranging from 10 µg to 1000 µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000 µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549) and cervical (HeLa) cancer cells. PMID:24605320

  16. Induction of Apoptotic Effects of Antiproliferative Protein from the Seeds of Borreria hispida on Lung Cancer (A549) and Cervical Cancer (HeLa) Cell Lines

    PubMed Central

    Rupachandra, S.; Sarada, D. V. L.

    2014-01-01

    A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3) on an analytical C-18 column produced a single peak, detected at 220 nm. F3 showed an apparent molecular weight of 35 KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3) exhibited significant cytotoxic activity against lung (A549) and cervical (HeLa) cancer cells in a dose-dependent manner at concentrations ranging from 10 µg to 1000 µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000 µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549) and cervical (HeLa) cancer cells. PMID:24605320

  17. Alterations in gene promoter methylation and transcript expression induced by cisplatin in comparison to 5-Azacytidine in HeLa and SiHa cervical cancer cell lines.

    PubMed

    Sood, Swati; Srinivasan, Radhika

    2015-06-01

    Despite recent advances in treatment, cervical cancer still remains one of the leading causes of cancer related mortality among women worldwide including India. Chemoradiation treatment is the standard-of-care which involves administration of cisplatin, a radiosensitizer along with radiation. The epigenetic changes induced by cisplatin are not known and so we designed this in vitro experimental study. We evaluated the changes induced by cisplatin administration in gene promoter methylation and the transcript levels of set of 7 genes and compared it to the changes induced by 5-Azacytidine, a known demethylating agent in two cervical cancer cell lines: HeLa (adenocarcinoma derived) and SiHa (squamous cell carcinoma derived) cell lines. Overall, there was a pronounced cytotoxic and growth inhibitory effect of both the drugs alone and in combination for both the cell lines which was dose and time dependent. Cisplatin as well as 5-Azacytidine treatment affected gene promoter methylation status resulting in demethylation and re-expression of the genes under investigation which was more pronounced in case of SiHa cells as compared to HeLa cells. Further, both the drugs acted in synergism as evident from their combination treatment. Therefore, at the cellular level, cisplatin and 5-Azacytidine can induce epigenetic changes in gene promoter methylation with altered expression which can have implications for treatment of cervical cancer. PMID:25772483

  18. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    SciTech Connect

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-18

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  19. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  20. Alantolactone induces apoptosis of human cervical cancer cells via reactive oxygen species generation, glutathione depletion and inhibition of the Bcl-2/Bax signaling pathway

    PubMed Central

    JIANG, YAN; XU, HANJIE; WANG, JIAFEI

    2016-01-01

    Alantolactone is the active ingredient in frankincense, and is extracted from the dry root of elecampane. It has a wide variety of uses, including as an insect repellent, antibacterial, antidiuretic, analgesic and anticancer agent. In addition, alantolactone induces apoptosis of human cervical cancer cells, however, its mechanism of action remains to be elucidated. Therefore, the present study investigated whether alantolactone was able to induce apoptosis of human cervical cancer cells, and its potential mechanisms of action were analyzed. Treatment of HeLa cells with alantolactone (0, 10, 20, 30, 40, 50 and 60 µM) for 12 h significantly inhibited growth in a dose-dependent manner. Cells treated with 30 µM of alantolactone for 0, 3, 6 and 12 h demonstrated marked induction of apoptosis in a time-dependent manner. Treatment of HeLa cells with 30 µM of alantolactone for 0, 3, 6 and 12 h significantly induced the generation of reactive oxygen species (ROS) and inhibited glutathione (GSH) production in HeLa cells in a dose-dependent manner. Alantolactone additionally markedly inhibited the Bcl-2/Bax signaling pathway in HeLa cells. Therefore, administration of alantolactone induced apoptosis of human cervical cancer cells via ROS generation, GSH depletion and inhibition of the Bcl-2/Bax signaling pathway. PMID:27313767

  1. Sulforaphane, a Dietary Isothiocyanate, Induces G₂/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association.

    PubMed

    Cheng, Ya-Min; Tsai, Ching-Chou; Hsu, Yi-Chiang

    2016-01-01

    Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN) is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G₂/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa). We found that cytotoxicity is associated with an accumulation of cells in the G₂/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G₂/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins. PMID:27626412

  2. Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells.

    PubMed

    Jamsheena, Vellekkatt; Shilpa, Ganesan; Saranya, Jayaram; Harry, Nissy Ann; Lankalapalli, Ravi Shankar; Priya, Sulochana

    2016-03-01

    Bis(indolyl)methane appended biaryls were designed, synthesized and evaluated in human cervical cancer cell lines (HeLa) for their anticancer activities and compared against normal rat cardiac myoblasts (H9C2) cells. Compounds 1-12 were synthesized, with variations in one of the phenyl unit, in a single step by condensation of biaryl-2-carbaldehydes with indole in the presence of para-toluenesulfonic acid. Compound 1 exhibited a GI50 value of 11.00 ± 0.707 μM and the derivatives, compounds 4 and 11 showed a GI50 value of 8.33 ± 0.416 μM and 9.13 ± 0.177 μM respectively in HeLa cells and was found to be non-toxic to H9C2 cells up to 20 μM. Furthermore, compounds 1, 4 and 11 induced caspase dependent cellular apoptosis in a concentration-dependent manner, reduced mitochondrial membrane potential, inhibited the cell migration and downregulated the production of MMP-2 and MMP-9 in HeLa cells. PMID:26807764

  3. 8-p-Hdroxybenzoyl Tovarol Induces Paraptosis Like Cell Death and Protective Autophagy in Human Cervical Cancer HeLa Cells.

    PubMed

    Zhang, Cui; Jiang, Yingnan; Zhang, Jin; Huang, Jian; Wang, Jinhui

    2015-01-01

    8-p-Hdroxybenzoyl tovarol (TAW) is a germacrane-type sesquiterpenoid that can be isolated from the roots of Ferula dissecta (Ledeb.) Ledeb. In this study, the growth inhibitory effects induced by TAW were screened on some types of tumor cells, and the mechanism was investigated on TAW-induced growth inhibition, including paraptosis and autophagy in human cervical cancer HeLa cells. TAW-induced paraptosis involved extensive cytoplasmic vacuolization in the absence of caspase activation. Additionally, TAW evoked cell paraptotic death mediated by endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Autophagy induced by TAW was found to antagonize paraptosis in HeLa cells. This effect was enhanced by rapamycin and suppressed by the autophagy inhibitor, 3-methyladenine (3MA). Loss of beclin 1 (an autophagic regulator) function led to promote ER stress. Taken together, these results suggest that TAW induces paraptosis like cell death and protective autophagy in HeLa cells, which would provide a new clue for exploiting TAW as a promising agent for the treatment of cervical cancer. PMID:26147427

  4. 8-p-Hdroxybenzoyl Tovarol Induces Paraptosis Like Cell Death and Protective Autophagy in Human Cervical Cancer HeLa Cells

    PubMed Central

    Zhang, Cui; Jiang, Yingnan; Zhang, Jin; Huang, Jian; Wang, Jinhui

    2015-01-01

    8-p-Hdroxybenzoyl tovarol (TAW) is a germacrane-type sesquiterpenoid that can be isolated from the roots of Ferula dissecta (Ledeb.) Ledeb. In this study, the growth inhibitory effects induced by TAW were screened on some types of tumor cells, and the mechanism was investigated on TAW-induced growth inhibition, including paraptosis and autophagy in human cervical cancer HeLa cells. TAW-induced paraptosis involved extensive cytoplasmic vacuolization in the absence of caspase activation. Additionally, TAW evoked cell paraptotic death mediated by endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Autophagy induced by TAW was found to antagonize paraptosis in HeLa cells. This effect was enhanced by rapamycin and suppressed by the autophagy inhibitor, 3-methyladenine (3MA). Loss of beclin 1 (an autophagic regulator) function led to promote ER stress. Taken together, these results suggest that TAW induces paraptosis like cell death and protective autophagy in HeLa cells, which would provide a new clue for exploiting TAW as a promising agent for the treatment of cervical cancer. PMID:26147427

  5. B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer.

    PubMed

    Tang, Alexandre; Dadaglio, Gilles; Oberkampf, Marine; Di Carlo, Selene; Peduto, Lucie; Laubreton, Daphné; Desrues, Belinda; Sun, Cheng-Ming; Montagutelli, Xavier; Leclerc, Claude

    2016-09-15

    Enhancing anti-tumor immunity and preventing tumor escape are efficient strategies to increase the efficacy of therapeutic cancer vaccines. However, the treatment of advanced tumors remains difficult, mainly due to the immunosuppressive tumor microenvironment. Regulatory T cells and myeloid-derived suppressor cells have been extensively studied, and their role in suppressing tumor immunity is now well established. In contrast, the role of B lymphocytes in tumor immunity remains unclear because B cells can promote tumor immunity or display regulatory functions to control excessive inflammation, mainly through IL-10 secretion. Here, in a mouse model of HPV-related cancer, we demonstrate that B cells accumulated in the draining lymph node of tumor-bearing mice, due to a prolonged survival, and showed a decreased expression of MHC class II and CD86 molecules and an increased expression of Ly6A/E, PD-L1 and CD39, suggesting potential immunoregulatory properties. However, B cells from tumor-bearing mice did not show an increased ability to secrete IL-10 and a deficiency in IL-10 production did not impair tumor growth. In contrast, in B cell-deficient μMT mice, tumor rejection occurred due to a strong T cell-dependent anti-tumor response. Genetic analysis based on single nucleotide polymorphisms identified genetic variants associated with tumor rejection in μMT mice, which could potentially affect reactive oxygen species production and NK cell activity. Our results demonstrate that B cells play a detrimental role in anti-tumor immunity and suggest that targeting B cells could enhance the anti-tumor response and improve the efficacy of therapeutic cancer vaccines. PMID:27130719

  6. Cervical cancer screening in Luxembourg.

    PubMed

    Scheiden, R; Knolle, U; Wagener, C; Wehenkel, A M; Capesius, C

    2000-11-01

    In 1962, a programme for early detection of cervical cancer was established at the national level. The programme is based on the collaboration of different groups of doctors and not on a system of sending out invitations to every woman. This programme was re-adapted twice according to the needs for assuring quality in a system of mainly liberal medicine. At present the programme is 'institutionalised' and is carried out according to the criteria defined in 1990. This includes a centralisation of the smear readings and handing out the material needed to take the smears. The contribution of the doctors is regulated by a system of bonuses given by the government and a reimbursement by the Health Fund. The annual cervical smear is free of charge for every woman. The participation of the women targeted by the programme (>15 years old) has increased by approximately 50% every decade from the early 1970s increasing from 10950 in 1972 to 70441 in 1999. Between 1980 and 1999, the number of women at risk taking part in the programme increased from 10.80 to 38.92%. The number of all the doctors taking smear samples increased from 68 to 105 and the number of gynaecologists increased from 19 (ratio Gyn/GP (gynaecologists/General Practitioners) of 28%) to 52 (ratio Gyn/GP of 50%). The mortality rate has decreased continuously from 6. 1/100000 in 1990 to 0.9/100000 in 1997. In conclusion, to be successful, a cervical cancer screening programme should be flexible enough to allow short-term adaptations to unexpected local situations and needs a highly motivated team of the different participants involved in the regional and national health policy. PMID:11072212

  7. Ezrin contributes to cervical cancer progression through induction of epithelial-mesenchymal transition

    PubMed Central

    Piao, Junjie; Sun, Jie; Han, Longzhe; Chen, Liyan; Yan, Guanghai; Lin, Zhenhua

    2016-01-01

    Cervical cancer is the third most common cancer in females worldwide. The treatment options for advanced cervical cancer are limited, leading to high mortality. Ezrin is a membrane-cytoskeleton-binding protein recently reported to act as a tumor promoter, and we previously indicated that the aberrant localization and overexpression of Ezrin could be an independent effective biomarker for prognostic evaluation of cervical cancers. In this study, we identified Ezrin as a regulator of epithelial-mesenchymal transition (EMT) and metastasis in cervical cancer. Ezrin knock-down inhibited anchorage-independent growth, cell migration, and invasion of cervical cancer cell lines in vitro and in vivo. EMT was inhibited in Ezrin-depleted cells, with up-regulation of E-cadherin and Cytokeratin-18 (CK-18) and down-regulation of mesenchymal markers. Ezrin knock-down also induced Akt phosphorylation. These results implicate Ezrin as an EMT regulator and tumor promoter in cervical cancer, and down-regulation of Ezrin suppressed cervical cancer progression, possibly via the phosphoinositide 3-kinase/Akt pathway. Furthermore, the expression pattern of Ezrin protein was closely related with the lymphovascular invasion status of cervical cancer by immunohistochemistry, and the survival analysis revealed that the cervical cancer patients with the perinuclear Ezrin expression pattern had longer survival time than those with the cytoplasmic Ezrin expression pattern. Ezrin thus represents a promising target for the development of novel and effective strategies aimed at preventing the progression of cervical cancer. PMID:26933912

  8. [Knockdown of angiopoietin-like protein 4 inhibits proliferation and promotes apoptosis in cervical cancer SiHa cells].

    PubMed

    Nie, Dan; Liu, Ling; Xia, Jiyi; Wang, Chunyan; Zhan, Ping; Mao, Xiguang

    2016-04-01

    Objective To investigate the effect of lentivirus-mediated shRNA silencing of angiopoietin-like protein 4 (ANGPTL4) on the proliferation and apoptosis of cervical cancer SiHa cells. Methods The ANGPTL4 lentiviral vectors were used to transfect SiHa cells. Real-time quantitative PCR (qRT-PCR) and Western blotting were respectively used to detect ANGPTL4 expression at mRNA and protein levels. The proliferation ability of SiHa cells after transfection was assessed by MTT assay and colony formation assay. The cell cycle was examined by flow cytometry. The annexin V-phycoerythrin/7-aminoactinomycin D (annexin V-PE/7-AAD) staining combined with flow cytometry was used to examine the effect of ANGPTL4 silence on the apoptosis of SiHa cells. Results After the ANGPTL4 lentiviral vectors were transfected into SiHa cells, qRT-PCR and Western blotting showed that the expression of ANGPTL4 mRNA and protein were significantly inhibited in LV3-ANGPTL4 group. The MTT assay showed that the proliferation ability of SiHa cells in LV3-ANGPTL4 group was also inhibited. Colony formation assay revealed that the colony number in LV3-ANGPTL4 group was reduced. The cells in G0/G1 phase and the apoptosis rate increased in LV3-ANGPTL4 group. Conclusion The lentivirus-mediated ANGPTL4 shRNA can inhibit the proliferation, induce the cell cycle arrest in G0/G1 phase, and promote the apoptosis in SiHa cells. PMID:27053616

  9. EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells

    PubMed Central

    Chen, Wen-Bo; Wang, Guo-Cai; Ma, Dong-Lei; Wong, Nai Sum; Xiao, Hao; Liu, Qiu-Ying; Zhou, Guang-Xiong; Li, Yao-Lan; Li, Man-Mei; Wang, Yi-Fei; Liu, Zhong

    2016-01-01

    Sesquiterpene lactones (SLs) are the active constituents of a variety of medicinal plants and found to have potential anticancer activities. However, the intracellular molecular targets of SLs and the underlying molecular mechanisms have not been well elucidated. In this study, we observed that EM23, a natural SL, exhibited anti-cancer activity in human cervical cancer cell lines by inducing apoptosis as indicated by caspase 3 activation, XIAP downregulation and mitochondrial dysfunction. Mechanistic studies indicated that EM23-induced apoptosis was mediated by reactive oxygen species (ROS) and the knockdown of thioredoxin (Trx) or thioredoxin reductase (TrxR) resulted in a reduction in apoptosis. EM23 attenuated TrxR activity by alkylation of C-terminal redox-active site Sec498 of TrxR and inhibited the expression levels of Trx/TrxR to facilitate ROS accumulation. Furthermore, inhibition of Trx/TrxR system resulted in the dissociation of ASK1 from Trx and the downstream activation of JNK. Pretreatment with ASK1/JNK inhibitors partially rescued cells from EM23-induced apoptosis. Additionally, EM23 inhibited Akt/mTOR pathway and induced autophagy, which was observed to be proapoptotic and mediated by ROS. Together, these results reveal a potential molecular mechanism for the apoptotic induction observed with SL compound EM23, and emphasize its putative role as a therapeutic agent for human cervical cancer. PMID:26758418

  10. EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells.

    PubMed

    Shao, Fang-Yuan; Wang, Sheng; Li, Hong-Yu; Chen, Wen-Bo; Wang, Guo-Cai; Ma, Dong-Lei; Wong, Nai Sum; Xiao, Hao; Liu, Qiu-Ying; Zhou, Guang-Xiong; Li, Yao-Lan; Li, Man-Mei; Wang, Yi-Fei; Liu, Zhong

    2016-02-01

    Sesquiterpene lactones (SLs) are the active constituents of a variety of medicinal plants and found to have potential anticancer activities. However, the intracellular molecular targets of SLs and the underlying molecular mechanisms have not been well elucidated. In this study, we observed that EM23, a natural SL, exhibited anti-cancer activity in human cervical cancer cell lines by inducing apoptosis as indicated by caspase 3 activation, XIAP downregulation and mitochondrial dysfunction. Mechanistic studies indicated that EM23-induced apoptosis was mediated by reactive oxygen species (ROS) and the knockdown of thioredoxin (Trx) or thioredoxin reductase (TrxR) resulted in a reduction in apoptosis. EM23 attenuated TrxR activity by alkylation of C-terminal redox-active site Sec498 of TrxR and inhibited the expression levels of Trx/TrxR to facilitate ROS accumulation. Furthermore, inhibition of Trx/TrxR system resulted in the dissociation of ASK1 from Trx and the downstream activation of JNK. Pretreatment with ASK1/JNK inhibitors partially rescued cells from EM23-induced apoptosis. Additionally, EM23 inhibited Akt/mTOR pathway and induced autophagy, which was observed to be proapoptotic and mediated by ROS. Together, these results reveal a potential molecular mechanism for the apoptotic induction observed with SL compound EM23, and emphasize its putative role as a therapeutic agent for human cervical cancer. PMID:26758418

  11. Targeted treatments for cervical cancer: a review

    PubMed Central

    Peralta-Zaragoza, Oscar; Bermúdez-Morales, Víctor Hugo; Pérez-Plasencia, Carlos; Salazar-León, Jonathan; Gómez-Cerón, Claudia; Madrid-Marina, Vicente

    2012-01-01

    Cervical cancer is the second most common cause of cancer death in women worldwide and the development of new diagnosis, prognostic, and treatment strategies merits special attention. Although surgery and chemoradiotherapy can cure 80%–95% of women with early stage cancer, the recurrent and metastatic disease remains a major cause of cancer death. Many efforts have been made to design new drugs and develop gene therapies to treat cervical cancer. In recent decades, research on treatment strategies has proposed several options, including the role of HPV E6 and E7 oncogenes, which are retained and expressed in most cervical cancers and whose respective oncoproteins are critical to the induction and maintenance of the malignant phenotype. Other efforts have been focused on antitumor immunotherapy strategies. It is known that during the development of cervical cancer, a cascade of abnormal events is induced, including disruption of cellular cycle control, perturbation of antitumor immune response, alteration of gene expression, and deregulation of microRNA expression. Thus, in this review article we discuss potential targets for the treatment of cervical cancer associated with HPV infection, with special attention to immunotherapy approaches, clinical trials, siRNA molecules, and their implications as gene therapy strategies against cervical cancer development. PMID:23144564

  12. Targeted treatments for cervical cancer: a review.

    PubMed

    Peralta-Zaragoza, Oscar; Bermúdez-Morales, Víctor Hugo; Pérez-Plasencia, Carlos; Salazar-León, Jonathan; Gómez-Cerón, Claudia; Madrid-Marina, Vicente

    2012-01-01

    Cervical cancer is the second most common cause of cancer death in women worldwide and the development of new diagnosis, prognostic, and treatment strategies merits special attention. Although surgery and chemoradiotherapy can cure 80%-95% of women with early stage cancer, the recurrent and metastatic disease remains a major cause of cancer death. Many efforts have been made to design new drugs and develop gene therapies to treat cervical cancer. In recent decades, research on treatment strategies has proposed several options, including the role of HPV E6 and E7 oncogenes, which are retained and expressed in most cervical cancers and whose respective oncoproteins are critical to the induction and maintenance of the malignant phenotype. Other efforts have been focused on antitumor immunotherapy strategies. It is known that during the development of cervical cancer, a cascade of abnormal events is induced, including disruption of cellular cycle control, perturbation of antitumor immune response, alteration of gene expression, and deregulation of microRNA expression. Thus, in this review article we discuss potential targets for the treatment of cervical cancer associated with HPV infection, with special attention to immunotherapy approaches, clinical trials, siRNA molecules, and their implications as gene therapy strategies against cervical cancer development. PMID:23144564

  13. Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells

    PubMed Central

    Ying, Tsung-Ho; Lin, Chu-Liang; Lin, Chia-Liang; Hsueh, Jung-Tsung; Hsieh, Yi-Hsien

    2015-01-01

    The use of dietary bioactive compounds in chemoprevention can potentially reverse, suppress, or even prevent cancer progression. However, the effects of licochalcone A (LicA) on apoptosis and autophagy in cervical cancer cells have not yet been clearly elucidated. In this study, LicA treatment was found to significantly induce the apoptotic and autophagic capacities of cervical cancer cells in vitro and in vivo. MTT assay results showed dose- and time-dependent cytotoxicity in four cervical cancer cell lines treated with LicA. We found that LicA induced mitochondria-dependent apoptosis in SiHa cells, with decreasing Bcl-2 expression. LicA also induced autophagy effects were examined by identifying accumulation of Atg5, Atg7, Atg12 and microtubule-associated protein 1 light chain 3 (LC3)-II. Treatment with autophagy-specific inhibitors (3-methyladenine and bafilomycin A1) enhanced LicA-induced apoptosis. In addition, we suggested the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of mTOR pathway by LicA. Furthermore, the inhibition of PI3K/Akt by LY294002/si-Akt or of mTOR by rapamycin augmented LicA-induced apoptosis and autophagy. Finally, the in vivo mice bearing a SiHa xenograft, LicA dosed at 10 or 20 mg/kg significantly inhibited tumor growth. Our findings demonstrate the chemotherapeutic potential of LicA for treatment of human cervical cancer. PMID:26311737

  14. Prognosis of Cervical Cancer in the Era of Concurrent Chemoradiation from National Database in Korea: A Comparison between Squamous Cell Carcinoma and Adenocarcinoma

    PubMed Central

    Lee, Jung-Yun; Kim, Young Tae; Kim, Sunghoon; Lee, Boram; Lim, Myong Cheol; Kim, Jae-Weon; Won, Young-Joo

    2015-01-01

    In 1999, the National Cancer Institute issued a clinical advisory strongly touting the advantage of cisplatin-based chemoradiation (CCRT) for cervical cancer patients requiring radiation for their treatment. This study aimed to compare survival outcomes of cervical squamous cell carcinoma and adenocarcinoma before and after the advent of CCRT. Data were obtained from the Korea National Cancer Incidence Database for patients who were diagnosed with cervical cancers between 1993 and 2012. We compared survival according to histologic subtypes in cervical cancer patients diagnosed before (1993–1997), during (1998–2002), and after (2003–2012) the introduction of CCRT. A total of 80,766 patients were identified, including 64,531 (79.9%) women with squamous cell carcinomas and 7,265 (9.0%) with adenocarcinoma. With the introduction of CCRT, survival trends gradually increased in patients of both histologic subtypes with regional tumors. However, survival was significantly higher in squamous cell carcinoma than in adenocarcinoma patients regardless of treatment modalities (surgery alone, P < 0.001; surgery followed by CCRT, P < 0.001; or primary CCRT, P = 0.003). Multivariate analysis showed that adenocarcinoma was an independent negative prognostic factor for survival regardless of the time period (before CCRT, hazard ratio (HR) = 1.49; 95% confidence interval (CI), 1.37–1.62; after introduction of CCRT, HR = 1.40; 95% CI, 1.30–1.50). Although the survival of adenocarcinoma has improved after the introduction of CCRT, adenocarcinoma is still associated with worse overall survival compared to squamous cell carcinoma in the era of CCRT. PMID:26660311

  15. [Induction chemotherapy for locally advanced cervical cancer].

    PubMed

    Morkhov, K Yu; Nechushkina, V M; Kuznetsov, V V

    2015-01-01

    The main methods of treatment for cervical cancer are surgery, radiotherapy or their combination. During past two decades chemotherapy are increasingly being used not only in patients with disseminated forms of this disease but also in patients undergoing chemoradiotherapy or as induction therapy. Possibilities of adjuvant chemotherapy for cervical cancer are being studied. According to A.D.Kaprin and V.V. Starinskiy in 2013 in Russia, 32% of patients with newly diagnosed cervical cancer underwent only radiation therapy, 32%--combined or complex treatment, 27.3%--only surgery, and just 8.7%--chemoradiotherapy. PMID:26087600

  16. How will HPV vaccines affect cervical cancer?

    PubMed Central

    Roden, Richard; Wu, T.-C.

    2011-01-01

    Cancer of the uterine cervix is the second largest cause of cancer deaths in women, and its toll is greatest in populations that lack screening programmes to detect precursor lesions. Persistent infection with ‘high risk’ genotypes of human papillomavirus (HPV) is necessary, although not sufficient, to cause cervical carcinoma. Therefore, HPV vaccination provides an opportunity to profoundly affect cervical cancer incidence worldwide. A recently licensed HPV subunit vaccine protects women from a high proportion of precursor lesions of cervical carcinoma and most genital warts. Here we examine the ramifications and remaining questions that surround preventive HPV vaccines. PMID:16990853

  17. The Korean guideline for cervical cancer screening.

    PubMed

    Min, Kyung Jin; Lee, Yoon Jae; Suh, Mina; Yoo, Chong Woo; Lim, Myong Cheol; Choi, Jaekyung; Ki, Moran; Kim, Yong Man; Kim, Jae Weon; Kim, Jea Hoon; Park, Eal Whan; Lee, Hoo Yeon; Lim, Sung Chul; Cho, Chi Heum; Hong, Sung Ran; Dang, Ji Yeon; Kim, Soo Young; Kim, Yeol; Lee, Won Chul; Lee, Jae Kwan

    2015-07-01

    The incidence rate of cervical cancer in Korea is still higher than in other developed countries, notwithstanding the national mass-screening program. Furthermore, a new method has been introduced in cervical cancer screening. Therefore, the committee for cervical cancer screening in Korea updated the recommendation statement established in 2002. The new version of the guideline was developed by the committee using evidence-based methods. The committee reviewed the evidence for the benefits and harms of the Papanicolaou test, liquid-based cytology, and human papillomavirus (HPV) testing, and reached conclusions after deliberation. The committee recommends screening for cervical cancer with cytology (Papanicolaou test or liquid-based cytology) every three years in women older than 20 years of age (recommendation A). The cervical cytology combined with HPV test is optionally recommended after taking into consideration individual risk or preference (recommendation C). The current evidence for primary HPV screening is insufficient to assess the benefits and harms of cervical cancer screening (recommendation I). Cervical cancer screening can be terminated at the age of 74 years if more than three consecutive negative cytology reports have been confirmed within 10 years (recommendation D). PMID:26197860

  18. Somatic LKB1 Mutations Promote Cervical Cancer Progression

    PubMed Central

    Wingo, Shana N.; Gallardo, Teresa D.; Akbay, Esra A.; Liang, Mei-Chi; Contreras, Cristina M.; Boren, Todd; Shimamura, Takeshi; Miller, David S.; Sharpless, Norman E.; Bardeesy, Nabeel; Kwiatkowski, David J.; Schorge, John O.; Wong, Kwok-Kin; Castrillon, Diego H.

    2009-01-01

    Human Papilloma Virus (HPV) is the etiologic agent for cervical cancer. Yet, infection with HPV is not sufficient to cause cervical cancer, because most infected women develop transient epithelial dysplasias that spontaneously regress. Progression to invasive cancer has been attributed to diverse host factors such as immune or hormonal status, as no recurrent genetic alterations have been identified in cervical cancers. Thus, the pressing question as to the biological basis of cervical cancer progression has remained unresolved, hampering the development of novel therapies and prognostic tests. Here we show that at least 20% of cervical cancers harbor somatically-acquired mutations in the LKB1 tumor suppressor. Approximately one-half of tumors with mutations harbored single nucleotide substitutions or microdeletions identifiable by exon sequencing, while the other half harbored larger monoallelic or biallelic deletions detectable by multiplex ligation probe amplification (MLPA). Biallelic mutations were identified in most cervical cancer cell lines; HeLa, the first human cell line, harbors a homozygous 25 kb deletion that occurred in vivo. LKB1 inactivation in primary tumors was associated with accelerated disease progression. Median survival was only 13 months for patients with LKB1-deficient tumors, but >100 months for patients with LKB1-wild type tumors (P = 0.015, log rank test; hazard ratio = 0.25, 95% CI = 0.083 to 0.77). LKB1 is thus a major cervical tumor suppressor, demonstrating that acquired genetic alterations drive progression of HPV-induced dysplasias to invasive, lethal cancers. Furthermore, LKB1 status can be exploited clinically to predict disease recurrence. PMID:19340305

  19. Biventricular metastatic invasion from cervical squamous cell carcinoma.

    PubMed

    Kapoor, Karan; Evans, Matthew C; Shkullaku, Melsjan; Schillinger, Rachel; White, Charles S; Roque, Dana M

    2016-01-01

    Metastasis to the heart has been previously described with primary lung and breast carcinoma, lymphoma, leukaemia, mesothelioma and melanoma. However, left-ventricular cardiac metastasis from primary cervical squamous cell carcinoma is poorly described. This report describes the clinical presentation of a patient with cardiac metastatic invasion from cervical cancer. PMID:27371746

  20. Colposcopy and High Resolution Anoscopy in Screening For Anal Dysplasia in Patients With Cervical, Vaginal, or Vulvar Dysplasia or Cancer

    ClinicalTrials.gov

    2012-06-08

    Cervical Intraepithelial Neoplasia Grade 1; Cervical Intraepithelial Neoplasia Grade 2; Cervical Intraepithelial Neoplasia Grade 3; Recurrent Cervical Cancer; Recurrent Vaginal Cancer; Recurrent Vulvar Cancer; Stage 0 Cervical Cancer; Stage 0 Vaginal Cancer; Stage 0 Vulvar Cancer; Stage I Vaginal Cancer; Stage I Vulvar Cancer; Stage IA Cervical Cancer; Stage IB Cervical Cancer; Stage II Vaginal Cancer; Stage II Vulvar Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IV Vulvar Cancer; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer

  1. The aqueous extract of Ficus religiosa induces cell cycle arrest in human cervical cancer cell lines SiHa (HPV-16 Positive) and apoptosis in HeLa (HPV-18 positive).

    PubMed

    Choudhari, Amit S; Suryavanshi, Snehal A; Kaul-Ghanekar, Ruchika

    2013-01-01

    Natural products are being extensively explored for their potential to prevent as well as treat cancer due to their ability to target multiple molecular pathways. Ficus religiosa has been shown to exert diverse biological activities including apoptosis in breast cancer cell lines. In the present study, we report the anti-neoplastic potential of aqueous extract of F. religiosa (FRaq) bark in human cervical cancer cell lines, SiHa and HeLa. FRaq altered the growth kinetics of SiHa (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner. It blocked the cell cycle progression at G1/S phase in SiHa that was characterized by an increase in the expression of p53, p21 and pRb proteins with a simultaneous decrease in the expression of phospho Rb (ppRb) protein. On the other hand, in HeLa, FRaq induced apoptosis through an increase in intracellular Ca(2+) leading to loss of mitochondrial membrane potential, release of cytochrome-c and increase in the expression of caspase-3. Moreover, FRaq reduced the migration as well as invasion capability of both the cervical cancer cell lines accompanied with downregulation of MMP-2 and Her-2 expression. Interestingly, FRaq reduced the expression of viral oncoproteins E6 and E7 in both the cervical cancer cell lines. All these data suggest that F. religiosa could be explored for its chemopreventive potential in cervical cancer. PMID:23922932

  2. The Aqueous Extract of Ficus religiosa Induces Cell Cycle Arrest in Human Cervical Cancer Cell Lines SiHa (HPV-16 Positive) and Apoptosis in HeLa (HPV-18 Positive)

    PubMed Central

    Choudhari, Amit S.; Suryavanshi, Snehal A.; Kaul-Ghanekar, Ruchika

    2013-01-01

    Natural products are being extensively explored for their potential to prevent as well as treat cancer due to their ability to target multiple molecular pathways. Ficus religiosa has been shown to exert diverse biological activities including apoptosis in breast cancer cell lines. In the present study, we report the anti-neoplastic potential of aqueous extract of F. religiosa (FRaq) bark in human cervical cancer cell lines, SiHa and HeLa. FRaq altered the growth kinetics of SiHa (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner. It blocked the cell cycle progression at G1/S phase in SiHa that was characterized by an increase in the expression of p53, p21 and pRb proteins with a simultaneous decrease in the expression of phospho Rb (ppRb) protein. On the other hand, in HeLa, FRaq induced apoptosis through an increase in intracellular Ca2+ leading to loss of mitochondrial membrane potential, release of cytochrome-c and increase in the expression of caspase-3. Moreover, FRaq reduced the migration as well as invasion capability of both the cervical cancer cell lines accompanied with downregulation of MMP-2 and Her-2 expression. Interestingly, FRaq reduced the expression of viral oncoproteins E6 and E7 in both the cervical cancer cell lines. All these data suggest that F. religiosa could be explored for its chemopreventive potential in cervical cancer. PMID:23922932

  3. Laparoscopic fertility sparing management of cervical cancer.

    PubMed

    Facchini, Chiara; Rapacchia, Giuseppina; Montanari, Giulia; Casadio, Paolo; Pilu, Gianluigi; Seracchioli, Renato

    2014-04-01

    Fertility can be preserved after conservative cervical surgery. We report on a 29-year-old woman who was obese, para 0, and diagnosed with cervical insufficiency at the first trimester of current pregnancy due to a previous trachelectomy. She underwent laparoscopic transabdominal cervical cerclage (LTCC) for cervical cancer. The surgery was successful and she was discharged two days later. The patient underwent a caesarean section at 38 weeks of gestation. Laparoscopic surgery is a minimally invasive approach associated with less pain and faster recovery, feasible even in obese women. PMID:24696772

  4. Laparoscopic Fertility Sparing Management of Cervical Cancer

    PubMed Central

    Facchini, Chiara; Rapacchia, Giuseppina; Montanari, Giulia; Casadio, Paolo; Pilu, Gianluigi; Seracchioli, Renato

    2014-01-01

    Fertility can be preserved after conservative cervical surgery. We report on a 29-year-old woman who was obese, para 0, and diagnosed with cervical insufficiency at the first trimester of current pregnancy due to a previous trachelectomy. She underwent laparoscopic transabdominal cervical cerclage (LTCC) for cervical cancer. The surgery was successful and she was discharged two days later. The patient underwent a caesarean section at 38 weeks of gestation. Laparoscopic surgery is a minimally invasive approach associated with less pain and faster recovery, feasible even in obese women. PMID:24696772

  5. Raman spectroscopy for cytopathology of exfoliated cervical cells.

    PubMed

    Ramos, I R; Meade, A D; Ibrahim, O; Byrne, H J; McMenamin, M; McKenna, M; Malkin, A; Lyng, F M

    2016-06-23

    Cervical cancer is the fourth most common cancer affecting women worldwide but mortality can be decreased by early detection of pre-malignant lesions. The Pap smear test is the most commonly used method in cervical cancer screening programmes. Although specificity is high for this test, it is widely acknowledged that sensitivity can be poor mainly due to the subjective nature of the test. There is a need for new objective tests for the early detection of pre-malignant cervical lesions. Over the past two decades, Raman spectroscopy has emerged as a promising new technology for cancer screening and diagnosis. The aim of this study was to evaluate the potential of Raman spectroscopy for cervical cancer screening using both Cervical Intraepithelial Neoplasia (CIN) and Squamous Intraepithelial Lesion (SIL) classification terminology. ThinPrep® Pap samples were recruited from a cervical screening population. Raman spectra were recorded from single cell nuclei and subjected to multivariate statistical analysis. Normal and abnormal ThinPrep® samples were discriminated based on the biochemical fingerprint of the cells using Principal Component Analysis (PCA). Principal Component Analysis - Linear Discriminant Analysis (PCA-LDA) was employed to build classification models based on either CIN or SIL terminology. This study has shown that Raman spectroscopy can be successfully applied to the study of routine cervical cytology samples from a cervical screening programme and that the use of CIN terminology resulted in improved sensitivity for high grade cases. PMID:27032537

  6. Mechanical trapping of the nucleus on micropillared surfaces inhibits the proliferation of vascular smooth muscle cells but not cervical cancer HeLa cells.

    PubMed

    Nagayama, Kazuaki; Hamaji, Yumi; Sato, Yuji; Matsumoto, Takeo

    2015-07-16

    The interaction between cells and the extracellular matrix on a topographically patterned surface can result in changes in cell shape and many cellular functions. In the present study, we demonstrated the mechanical deformation and trapping of the intracellular nucleus using polydimethylsiloxane (PDMS)-based microfabricated substrates with an array of micropillars. We investigated the differential effects of nuclear deformation on the proliferation of healthy vascular smooth muscle cells (SMCs) and cervical cancer HeLa cells. Both types of cell spread normally in the space between micropillars and completely invaded the extracellular microstructures, including parts of their cytoplasm and their nuclei. We found that the proliferation of SMCs but not HeLa cells was dramatically inhibited by cultivation on the micropillar substrates, even though remarkable deformation of nuclei was observed in both types of cells. Mechanical testing with an atomic force microscope and a detailed image analysis with confocal microscopy revealed that SMC nuclei had a thicker nuclear lamina and greater expression of lamin A/C than those of HeLa cells, which consequently increased the elastic modulus of the SMC nuclei and their nuclear mechanical resistance against extracellular microstructures. These results indicate that the inhibition of cell proliferation resulted from deformation of the mature lamin structures, which might be exposed to higher internal stress during nuclear deformation. This nuclear stress-induced inhibition of cell proliferation occurred rarely in cancer cells with deformable nuclei. PMID:26054426

  7. Epidemiology and Early Detection of Cervical Cancer.

    PubMed

    Hillemanns, Peter; Soergel, Phillip; Hertel, Hermann; Jentschke, Matthias

    2016-01-01

    The new German S3 guideline 'Prevention of Cervical Cancer' published in 2016 is based on the latest available evidence about cervical cancer screening and treatment of cervical precancer. Large randomized controlled trials indicate that human papillomavirus (HPV)-based screening may provide better protection against cervical cancer than cytology alone through improved detection of premalignant disease in the first screening round prior to progression. Therefore, women aged 30 years and older should preferably be screened with HPV testing every 3-5 years (cytology alone every 2 years is an acceptable alternative). Co-testing is not recommended. Screening should start at 25 years using cytology alone every 2 years. The preferred triage test after a positive HPV screening test is cytology. Women positive for HPV 16 and HPV 18 should receive immediate colposcopy. Another alternative triage method is p16/Ki-67 dual stain cytology. The mean yearly participation rate in Germany is between 45 and 50%. Offering devices for HPV self-sampling has the potential to increase participation rates in those women who are at higher risk of developing cervical cancer. Regarding primary prevention, the 9-valent vaccine may provide protection against up to 85% of cervical intraepithelial neoplasia (CIN) 3 and 90% of cervical cancer, and is available in Europe as a 2-dose schedule from May 2016. PMID:27614953

  8. MicroRNA-373 functions as an oncogene and targets YOD1 gene in cervical cancer

    SciTech Connect

    Wang, Luo-Qiao; Zhang, Yue; Yan, Huan; Liu, Kai-Jiang Zhang, Shu

    2015-04-10

    miR-373 was reported to be elevated in several tumors; however, the role of miR-373 in cervical cancer has not been investigated. In this study we aimed to investigate the role of miR-373 in tumorigenicity of cervical cancer cells in vivo and in vitro. The expression of miR-373 was investigated using real-time reverse transcription-polymerase chain reaction assay in 45 cervical specimens and cervical cancer cell lines. The role of miR-373 in tumorigenicity of cervical cancer cells was assessed by cell proliferation, colony formation in vitro as well as tumor growth assays in vivo with the overexpression of miR-373 or gene silencing. The functional target gene of miR-373 in cervical cancer cells was identified using integrated bioinformatics analysis, gene expression arrays, and luciferase assay. We founded that the expression of miR-373 is upregulated in human cervical cancer tissues and cervical carcinoma cell lines when compared to the corresponding noncancerous tissues. Ectopic overexpression of miR-373 in human cervical cancer cells promoted cell growth in vitro and tumorigenicity in vivo, whereas silencing the expression of miR-373 decreased the rate of cell growth. YOD1 was identified as a direct and functional target of miR-373 in cervical cancer cells. Expression levels of miR-373 were inversely correlated with YOD1 levels in human cervical cancer tissues. RNAi-mediated knockdown of YOD1 phenocopied the proliferation-promoting effect of miR-373. Moreover, overexpression of YOD1 abrogated miR-373-induced proliferation of cervical cancer cells. These results demonstrate that miR-373 increases proliferation by directly targeting YOD1, a new potential therapeutic target in cervical cancer. - Highlights: • The expression of miR-373 is upregulated in human cervical cancer tissues. • miR-373 effects as oncogenic miRNA in cervical cancer in vitro and in vivo. • miR-373 increases proliferation of cervical cancer cells by directly targeting YOD1.

  9. Squamous Cell Carcinoma Antigen in Follow-Up of Cervical Cancer Treated With Radiotherapy: Evaluation of Cost-Effectiveness

    SciTech Connect

    Forni, Franca; Ferrandina, Gabriella; Deodato, Francesco; Macchia, Gabriella Morganti, Alessio G.; Smaniotto, Daniela; Luzi, Stefano; D'Agostino, Giuseppe; Valentini, Vincenzo; Cellini, Numa; Giardina, Bruno; Scambia, Giovanni

    2007-11-15

    Purpose: The squamous cell carcinoma (SCC) antigen is still considered the most accurate serologic tumor marker in cervical carcinoma. We assessed the contribution of the SCC assay to the detection of recurrences in patients treated with radiotherapy. Methods and Materials: The pattern of recurrence and follow-up data were prospectively recorded for 135 patients. Of the 135 patients, 103 (76.3%) had primary cervical carcinoma and 32 (23.7%) had already experienced disease recurrence that had been successfully treated with surgery (n = 2), surgery plus radiotherapy (n = 2), radiotherapy (n = 5), or concomitant chemoradiotherapy (n = 23). The follow-up evaluations (chest X-ray, abdominopelvic magnetic resonance imaging, gynecologic examination with colposcopy, Papanicolaou smear, and SCC assay) were performed at 6-month intervals; the evaluation was done earlier if recurrent disease was suspected. The median follow-up time was 29 months (range, 6-131). The SCC serum levels were assayed, and a cost analysis was done. Results: A total of 481 SCC determinations were performed. Of the 135 patients, 43 (31.8%) experienced disease recurrence. The SCC levels were higher in those with recurrent disease than in the disease-free patients. Elevation of SCC was documented in 34 (79.1% sensitivity) of 43 recurrences before symptoms appeared. Of the 38 patients with serum SCC elevation, 34 developed a recurrence (positive predictive value, 89.5%). Of the 97 patients with negative SCC serum levels, 88 had negative findings at the clinicoradiologic evaluation (negative predictive value, 90.7%). A simplified approach (SCC plus gynecologic examination) was evaluated. Compared with the complete follow-up program, the rate of missed recurrence was 2.2%. The total projected cost per patient for 5 years of follow-up for the simplified procedure was approximately 12.2-fold lower than the standard approach. Conclusions: Our results have shown that a simplified diagnostic approach, including

  10. [Screening for cervical and breast cancer].

    PubMed

    Wilm, J; Schüler-Toprak, S; Ortmann, O

    2016-09-01

    Screening programs for cervical cancer and breast cancer lead to a clear reduction of mortality. Starting in 2018 screening for cervical cancer will be structured as an organized program as already exists for breast cancer. In future screening for cervical cancer will be primarily performed by human papillomavirus (HPV) testing at intervals of 5 years while cytological examination (Pap smear) will also be available as an additional or alternative procedure. For breast cancer screening in Germany an annual clinical examination with palpation and mammography screening at 2‑year intervals is provided for women aged between 50 and 69 years. In Germany only approximately 50 % of invited women have used the opportunity to participate in screening in recent years. Weighing the benefits against the harms of cancer screening programs is always important in the process of evaluation of different strategies. PMID:27577734

  11. Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: Role of GLI-1

    PubMed Central

    Nayak, Anmada; Satapathy, Shakti Ranjan; Das, Dipon; Siddharth, Sumit; Tripathi, Neha; Bharatam, Prasad V.; Kundu, ChanakyaNath

    2016-01-01

    To improve the pharmacokinetics and to study the anti-cervical cancer and anti-stem cells (CSCs) mechanism of Quinacrine (QC), a spherical nano particle of QC (i.e. NQC) was prepared and characterized. QC and NQC showed higher cytotoxicity in multiple cancer cells than the normal epithelial cells. NQC exhibited more toxicity in cervical cancer cells and its CSCs than QC. A dose-dependent decreased expression of Hedgehog-GLI (HH-GLI) components were noted in NQC treated HeLa cells and its CSCs. NQC increased the expressions of negatively regulated HH-GLI components (GSK3β, PTEN) and caused apoptosis in CSCs. Reduction of GLI1 at mRNA and promoter level were noted after NQC exposure. The expressions of HH-GLI components, GLI1 promoter activity and apoptosis were unaltered in NQC treated GLI1-knockdown cells. In silico, cell based and in vitro reconstitution assay revealed that NQC inhibit HH-GLI cascade by binding to the consensus sequence (5′GACCACCCA3′) of GLI1 in GLI-DNA complex through destabilizing DNA-GLI1 complex. NQC reduced the tumors size and proliferation marker Ki-67 in an in vivo xenograft mice model. Thus, NQC induced apoptosis in cancers through inhibition of HH-GLI cascade by GLI1. Detail interaction of QC-DNA-GLI complex can pave path for anticancer drug design. PMID:26846872

  12. Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: Role of GLI-1.

    PubMed

    Nayak, Anmada; Satapathy, Shakti Ranjan; Das, Dipon; Siddharth, Sumit; Tripathi, Neha; Bharatam, Prasad V; Kundu, ChanakyaNath

    2016-01-01

    To improve the pharmacokinetics and to study the anti-cervical cancer and anti-stem cells (CSCs) mechanism of Quinacrine (QC), a spherical nano particle of QC (i.e. NQC) was prepared and characterized. QC and NQC showed higher cytotoxicity in multiple cancer cells than the normal epithelial cells. NQC exhibited more toxicity in cervical cancer cells and its CSCs than QC. A dose-dependent decreased expression of Hedgehog-GLI (HH-GLI) components were noted in NQC treated HeLa cells and its CSCs. NQC increased the expressions of negatively regulated HH-GLI components (GSK3β, PTEN) and caused apoptosis in CSCs. Reduction of GLI1 at mRNA and promoter level were noted after NQC exposure. The expressions of HH-GLI components, GLI1 promoter activity and apoptosis were unaltered in NQC treated GLI1-knockdown cells. In silico, cell based and in vitro reconstitution assay revealed that NQC inhibit HH-GLI cascade by binding to the consensus sequence (5'GACCACCCA3') of GLI1 in GLI-DNA complex through destabilizing DNA-GLI1 complex. NQC reduced the tumors size and proliferation marker Ki-67 in an in vivo xenograft mice model. Thus, NQC induced apoptosis in cancers through inhibition of HH-GLI cascade by GLI1. Detail interaction of QC-DNA-GLI complex can pave path for anticancer drug design. PMID:26846872

  13. NIH Research Leads to Cervical Cancer Vaccine

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Sexually Transmitted Diseases NIH Research Leads to Cervical Cancer Vaccine Past ... gov . What's New Community-wide treatment of ... of Allergy and Infectious Diseases (NIAID). The study was conducted in a rural ...

  14. Cervical Cancer - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Cervical Cancer URL of this page: https://medlineplus.gov/languages/cervicalcancer.html Other topics A-Z A B ...

  15. Selective silencing of gene target expression by siRNA expression plasmids in human cervical cancer cells.

    PubMed

    Peralta-Zaragoza, Oscar; De-la-O-Gómez, Faustino; Deas, Jessica; Fernández-Tilapa, Gloria; Fierros-Zárate, Geny Del Socorro; Gómez-Cerón, Claudia; Burguete-García, Ana; Torres-Poveda, Kirvis; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Madrid-Marina, Vicente

    2015-01-01

    RNA interference is a natural mechanism to silence post-transcriptional gene expression in eukaryotic cells in which microRNAs act to cleave or halt the translation of target mRNAs at specific target sequences. Mature microRNAs, 19-25 nucleotides in length, mediate their effect at the mRNA level by inhibiting translation, or inducing cleavage of the mRNA target. This process is directed by the degree of complementary nucleotides between the microRNAs and the target mRNA; perfect complementary base pairing induces cleavage of mRNA, whereas several mismatches lead to translational arrest. Biological effects of microRNAs can be manipulated through the use of small interference RNAs (siRNAs) generated by chemical synthesis, or by cloning in molecular vectors. The cloning of a DNA insert in a molecular vector that will be transcribed into the corresponding siRNAs is an approach that has been developed using siRNA expression plasmids. These vectors contain DNA inserts designed with software to generate highly efficient siRNAs which will assemble into RNA-induced silencing complexes (RISC), and silence the target mRNA. In addition, the DNA inserts may be contained in cloning cassettes, and introduced in other molecular vectors. In this chapter we describe an attractive technology platform to silence cellular gene expression using specific siRNA expression plasmids, and evaluate its biological effect on target gene expression in human cervical cancer cells. PMID:25348304

  16. Therapeutic Potential of Delivering Arsenic Trioxide into HPV-Infected Cervical Cancer Cells Using Liposomal Nanotechnology.

    PubMed

    Wang, Xiaoyan; Li, Dong; Ghali, Lucy; Xia, Ruidong; Munoz, Leonardo P; Garelick, Hemda; Bell, Celia; Wen, Xuesong

    2016-12-01

    Arsenic trioxide (ATO) has been used successfully to treat acute promyelocytic leukaemia, and since this discovery, it has also been researched as a possible treatment for other haematological and solid cancers. Even though many positive results have been found in the laboratory, wider clinical use of ATO has been compromised by its toxicity at higher concentrations. The aim of this study was to explore an improved method for delivering ATO using liposomal nanotechnology to evaluate whether this could reduce drug toxicity and improve the efficacy of ATO in treating human papillomavirus (HPV)-associated cancers. HeLa, C33a, and human keratinocytes were exposed to 5 μm of ATO in both free and liposomal forms for 48 h. The stability of the prepared samples was tested using inductively coupled plasma optical emission spectrometer (ICP-OES) to measure the intracellular arsenic concentrations after treatment. Fluorescent double-immunocytochemical staining was carried out to evaluate the protein expression levels of HPV-E6 oncogene and caspase-3. Cell apoptosis was analysed by flow cytometry. Results showed that liposomal ATO was more effective than free ATO in reducing protein levels of HPV-E6 and inducing cell apoptosis in HeLa cells. Moreover, lower toxicity was observed when liposomal-delivered ATO was used. This could be explained by lower intracellular concentrations of arsenic. The slowly accumulated intracellular ATO through liposomal delivery might act as a reservoir which releases ATO gradually to maintain its anti-HPV effects. To conclude, liposome-delivered ATO could protect cells from the direct toxic effects induced by higher concentrations of intracellular ATO. Different pathways may be involved in this process, depending on local architecture of the tissues and HPV status. PMID:26887578

  17. Therapeutic Potential of Delivering Arsenic Trioxide into HPV-Infected Cervical Cancer Cells Using Liposomal Nanotechnology

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Li, Dong; Ghali, Lucy; Xia, Ruidong; Munoz, Leonardo P.; Garelick, Hemda; Bell, Celia; Wen, Xuesong

    2016-02-01

    Arsenic trioxide (ATO) has been used successfully to treat acute promyelocytic leukaemia, and since this discovery, it has also been researched as a possible treatment for other haematological and solid cancers. Even though many positive results have been found in the laboratory, wider clinical use of ATO has been compromised by its toxicity at higher concentrations. The aim of this study was to explore an improved method for delivering ATO using liposomal nanotechnology to evaluate whether this could reduce drug toxicity and improve the efficacy of ATO in treating human papillomavirus (HPV)-associated cancers. HeLa, C33a, and human keratinocytes were exposed to 5 μm of ATO in both free and liposomal forms for 48 h. The stability of the prepared samples was tested using inductively coupled plasma optical emission spectrometer (ICP-OES) to measure the intracellular arsenic concentrations after treatment. Fluorescent double-immunocytochemical staining was carried out to evaluate the protein expression levels of HPV-E6 oncogene and caspase-3. Cell apoptosis was analysed by flow cytometry. Results showed that liposomal ATO was more effective than free ATO in reducing protein levels of HPV-E6 and inducing cell apoptosis in HeLa cells. Moreover, lower toxicity was observed when liposomal-delivered ATO was used. This could be explained by lower intracellular concentrations of arsenic. The slowly accumulated intracellular ATO through liposomal delivery might act as a reservoir which releases ATO gradually to maintain its anti-HPV effects. To conclude, liposome-delivered ATO could protect cells from the direct toxic effects induced by higher concentrations of intracellular ATO. Different pathways may be involved in this process, depending on local architecture of the tissues and HPV status.

  18. Latex of Euphorbia antiquorum-induced S-phase arrest via active ATM kinase and MAPK pathways in human cervical cancer HeLa cells.

    PubMed

    Hsieh, Wen-Tsong; Lin, Hui-Yi; Chen, Jou-Hsuan; Lin, Wen-Chung; Kuo, Yueh-Hsiung; Wood, W Gibson; Lu, Hsu-Feng; Chung, Jing-Gung

    2015-09-01

    Latex of Euphorbia antiquorum (EA) has demonstrated great chemotherapeutic potential for cancer. However, the mechanisms of anti-proliferation of EA on cancer cell remain to be further investigated. The purpose of this study was to explore the influence of EA in human cervical cancer cells. Here, the cell cycle distribution by flow cytometry was examined and the protein expression by the western blotting methods was analyzed. From the cytometric results it was shown that EA-induced S-phase arrest in a concentration manner both in human cervical cancer HeLa and CaSki cells. According the western blot results it was illustrated that EA could downregulate early cyclin E1-Cdk2; and cyclin A-Cdc2 provides a significant additional quantity of S-phase promotion, that in turn promoted the expression of p21(waf1/cip1) and p27(kip1) which were the inhibitors in the complex of cyclin A and Cdc2 that led to cell cycle arrest. Moreover, EA promoted the activation of ataxia telangiectasia mutated (ATM) and check-point kinase-2 (Chk2); however, it negatively regulated the expression of Topoisomerases I and II, Cdc25A, and Cdc25C signaling. Caffeine, an ATM/ATR inhibitor significantly reversed EA downregulation in the levels of Cdc25A. Furthermore, JNK inhibitor SP600125 and p38 MAPK inhibitor SB203580 both could reverse the EA upregulation of the protein of Chk2 level, significantly. This study, therefore, revealed that EA could downregulate topoisomerase, and activate ATM kinase, which then induce parallel Chk 1/2 and MAPK signaling pathways to promote the degradation of Cdc25A to induced S-phase arrest in human cervical cancer HeLa cells. PMID:24706497

  19. Simple trachelectomy during pregnancy for cervical cancer

    PubMed Central

    Moreno-Luna, Estefania; Alonso, Patricia; Santiago, Javier De; Zapardiel, Ignacio

    2016-01-01

    Invasive cervical cancer is rare during a pregnancy, even though it is one of the most frequently diagnosed neoplasias during that time. It is noted that around 30% of women diagnosed with cervical cancer are of reproductive age. This means that up to 3% of cases of cervical cancer are found in pregnant women or those who are in the post-birth period. A cervicovaginal Pap smear is performed as part of the regular checkup for a pregnant woman during the first visit so that cervical cancer can easily be diagnosed early in these women, detecting it early in up to 70–80% of cases. We present here the case of a patient with initial diagnosis of cervical cancer made around 20th week of pregnancy. It was then treated by a simple trachelectomy and cerclage during week 24. The pregnant woman gave birth to a healthy baby at the end of her pregnancy. Definitive treatment was completed three months after giving birth with a total hysterectomy and laparoscopic bilateral salpingectomy while preserving both ovaries. After 17 months of monitoring the patient showed no signs of reoccurrence. In conclusion, during the early stage of cervical cancer conservative management may be a reasonable option to preserve the current pregnancy. PMID:27610199

  20. Simple trachelectomy during pregnancy for cervical cancer.

    PubMed

    Moreno-Luna, Estefania; Alonso, Patricia; Santiago, Javier De; Zapardiel, Ignacio

    2016-01-01

    Invasive cervical cancer is rare during a pregnancy, even though it is one of the most frequently diagnosed neoplasias during that time. It is noted that around 30% of women diagnosed with cervical cancer are of reproductive age. This means that up to 3% of cases of cervical cancer are found in pregnant women or those who are in the post-birth period. A cervicovaginal Pap smear is performed as part of the regular checkup for a pregnant woman during the first visit so that cervical cancer can easily be diagnosed early in these women, detecting it early in up to 70-80% of cases. We present here the case of a patient with initial diagnosis of cervical cancer made around 20th week of pregnancy. It was then treated by a simple trachelectomy and cerclage during week 24. The pregnant woman gave birth to a healthy baby at the end of her pregnancy. Definitive treatment was completed three months after giving birth with a total hysterectomy and laparoscopic bilateral salpingectomy while preserving both ovaries. After 17 months of monitoring the patient showed no signs of reoccurrence. In conclusion, during the early stage of cervical cancer conservative management may be a reasonable option to preserve the current pregnancy. PMID:27610199

  1. Roles of plant extracts and constituents in cervical cancer therapy.

    PubMed

    Kma, Lakhan

    2013-01-01

    Cervical cancer is a major health problem worldwide and is the most frequent cause of cancer in women in India. Early detection and affordable drugs with clinical efficacy have to go hand-in-hand in order to comprehensibly address this serious health challenge. Plant-based drugs with potent anticancer effects should add to the efforts to find a cheap drug with limited clinical side effects. Keeping this very purpose in mind, an attempt has been made in this review to explore the potential of plant extracts or constituents known to exhibit antitumorigenic activity or exert cytotoxic effect in human cervical carcinoma cells. Alkaloids such as those isolated from C. vincetoxicum and T. Tanakae, naucleaorals A and B, isolated from the roots of N. orientalis, (6aR)-normecambroline, isolated from the bark of N. dealbata appear promising in different human cervical carcinoma cells with the IC50 of 4.0-8 μg/mL. However, other compounds such as rhinacanthone and neolignans isolated from different plants are not far behind and kill cervical cancer cells at a very low concentrations. Among plant extracts or its constituents that enhance the effect of known anticancer drugs, noni, derived from the plant M. citrifolia perhaps is the best candidate. The cytotoxic potency and apoptotic index of cisplatin was found to significantly enhanced in combination with noni in different human cervical carcinoma cells and it therefore holds significance as promising herbal-based anticancer agent. However, efficacy needs to be further investigated in various cervical cell lines and more importantly, in in vivo cervical cancer models for possible use as an alternative and safe anticancer drug. PMID:23886123

  2. Distribution and location of Daxx in cervical epithelial cells with high risk human papillomavirus positive

    PubMed Central

    2014-01-01

    Aims To provide the basis for further exploring the effect and its mechanism of Death domain associated protein (Daxx) on the progress of cervical carcinoma induced by human papillomavirus (HPV), the distribution and location of Daxx in cervical carcinoma with high risk HPV(HR-HPV) positive was analyzed. Methods The samples of normal cervical epithelial cells, cervical intraepithelial neoplasia grade I (CINI), CINII CINIII and cervical cancers were collected. Immunohistochemistry assay was used to analyze the distributions and locations of Daxx in the cervical tissue. Indirect immunoinfluorescence test was utilized to observe the locations of Daxx in Caski cells with HPV16 positive. Results Under the light microscopy, the brown signals of Daxx distributed in the nuclei of normal cervical epithelial cells; Daxx mainly distributed in nuclear membrane and there were a small amount of Daxx in the nuclei in CINI. Daxx intensively distributed in the cytoplasm and cell membrane in CINII, CINIII and cervical cancer. Under fluorescent microscopy, the distribution and location of Daxx in Caski cells was similarly to that in cervical cells of CINII, CINIII and cervical cancer. Conclusion In the progress of the cervical cancer, Daxx gradually translocates from nucleus into nuclear membrane, cytoplasm and cell membrane. Daxx locates in the cytoplasm and cell membrane in CINII, CINIII and cervical cancer. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4671548951113870. PMID:24398161

  3. Cervical cancer in India and HPV vaccination.

    PubMed

    Kaarthigeyan, K

    2012-01-01

    Cervical cancer, mainly caused by Human Papillomavirus infection, is the leading cancer in Indian women and the second most common cancer in women worldwide. Though there are several methods of prevention of cervical cancer, prevention by vaccination is emerging as the most effective option, with the availability of two vaccines. Several studies have been published examining the vaccine's efficacy, immunogenicity and safety. Questions and controversy remain regarding mandatory vaccination, need for booster doses and cost-effectiveness, particularly in the Indian context. PMID:22754202

  4. Targeting Pro-Apoptotic TRAIL Receptors Sensitizes HeLa Cervical Cancer Cells to Irradiation-Induced Apoptosis

    SciTech Connect

    Maduro, John H.; Vries, Elisabeth de; Meersma, Gert-Jan; Hougardy, Brigitte; Zee, Ate G.J. van der; Jong, Steven de

    2008-10-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL (rhTRAIL) and the agonistic antibodies against DR4 and DR5 were added to irradiated HeLa cells. The effect was evaluated with apoptosis and cytotoxicity assays and at the protein level. Membrane receptor expression was measured with flow cytometry. Small-interfering RNA against p53, DR4, and DR5 was used to investigate their function on the combined effect. Results: rhTRAIL and the agonistic DR4 and DR5 antibodies strongly enhanced 10-Gy-induced apoptosis. This extra effect was 22%, 23%, and 29% for rhTRAIL, DR4, and DR5, respectively. Irradiation increased p53 expression and increased the membrane expression of DR5 and DR4. p53 suppression, as well as small-interfering RNA against DR5, resulted in a significant downregulation of DR5 membrane expression but did not affect apoptosis induced by irradiation and rhTRAIL. After small-interfering RNA against DR4, rhTRAIL-induced apoptosis and the additive effect of irradiation on rhTRAIL-induced apoptosis were abrogated, implicating an important role for DR4 in apoptosis induced through irradiation in combination with rhTRAIL. Conclusion: Irradiation-induced apoptosis is strongly enhanced by targeting the pro-apoptotic TRAIL receptors DR4 or DR5. Irradiation results in a p53-dependent increase in DR5 membrane expression. The sensitizing effect of rhTRAIL on irradiation in the HeLa cell line is, however especially mediated through the DR4 receptor.

  5. The neem limonoids azadirachtin and nimbolide induce cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells.

    PubMed

    Priyadarsini, R Vidya; Murugan, R Senthil; Sripriya, P; Karunagaran, D; Nagini, S

    2010-06-01

    Limonoids from the neem tree (Azadirachta indica) have attracted considerable research attention in recent years owing to their potent antioxidant and anti-proliferative effects. The present study was designed to investigate the cellular and molecular mechanisms by which azadirachtin and nimbolide exert cytotoxic effects in the human cervical cancer (HeLa) cell line. Both azadirachtin and nimbolide significantly suppressed the viability of HeLa cells in a dose-dependent manner by inducing cell cycle arrest at G0/G1 phase accompanied by p53-dependent p21 accumulation and down-regulation of the cell cycle regulatory proteins cyclin B, cyclin D1 and PCNA. Characteristic changes in nuclear morphology, presence of a subdiploid peak and annexin-V staining pointed to apoptosis as the mode of cell death. Increased generation of reactive oxygen species with decline in the mitochondrial transmembrane potential and release of cytochrome c confirmed that the neem limonoids transduced the apoptotic signal via the mitochondrial pathway. Altered expression of the Bcl-2 family of proteins, inhibition of NF-kappaB activation and over-expression of caspases and survivin provide compelling evidence that azadirachtin and nimbolide induce a shift of balance toward a pro-apoptotic phenotype. Antioxidants such as azadirachtin and nimbolide that can simultaneously arrest the cell cycle and target multiple molecules involved in mitochondrial apoptosis offer immense potential as anti-cancer therapeutic drugs. PMID:20429769

  6. Risks of Cervical Cancer Screening

    MedlinePlus

    ... Laboratory for Cancer Research Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Cancer Genomics Causes of Cancer ... Centers Frederick National Lab Partners & Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer ...

  7. Interference with endogenous EZH2 reverses the chemotherapy drug resistance in cervical cancer cells partly by up-regulating Dicer expression.

    PubMed

    Cai, Liqiong; Wang, Zehua; Liu, Denghua

    2016-05-01

    Cervical cancer is one of the most common female malignancies in the world, and chemotherapeutic drug resistance is a major obstacle to cancer therapy. Enhancer of zeste homolog 2 (EZH2) is an enzymatic subunit of polycomb repressive complex 2 (PRC2) and catalyzes the repressive histone H3 lysine 27 trimethylation (H3K27me3). However, the role of EZH2 on the chemotherapy drug resistance in cervical cancers remains unclear. In the present study, the cervical carcinoma specimens and paired normal tissue specimens were obtained and the expression of EZH2 was detected by western blotting. The results showed that high levels of EZH2 were detected in cervical carcinoma tissues, compared with paired control tissues (**p < 0.01). Next, three pairs of shRNA specific to EZH2 were designed and used to interfere with endogenous EZH2 expression. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays following treatment with various concentrations of cisplatin in HeLa and HeLa/DDP cells. The MTT assay results showed that knockdown of EZH2 in HeLa/DDP cells caused a 2.29- or 1.83-fold decrease in the cisplatin IC50 values (for shRNA1-EZH2, 34.88 vs. 15.21 μg/mL; p < 0.01; for shRNA3-EZH2, 34.88 vs. 19.09 μg/mL; p < 0.01). The EZH2 activity was also suppressed by 3-deazaneplanocin A (DZNep), EZH2 inhibitor, and the results demonstrated that, meanwhile, DZNep potently inhibited cell viability of HeLa/DDP cells, partly by suppression the levels of EZH2 and H3K27me3, but not H3K27me2, which was detected by western blotting analysis. Moreover, cell migration assay results showed that knockdown of EZH2 decreased cell metastasis of cervical cancer cells. Furthermore, cell cycle was detected by fluorescence-activated cell sorting (FACS) assay and the results demonstrated that interference with EZH2 expression increased the percentage of cells at G0/G1 phase and the HeLa/DDP cells were blocked at G0/G1 phase. Interestingly

  8. Pharmacologic inhibition of ATR and ATM offers clinically important distinctions to enhancing platinum or radiation response in ovarian, endometrial, and cervical cancer cells

    PubMed Central

    Teng, Pang-ning; Bateman, Nicholas W.; Darcy, Kathleen M.; Hamilton, Chad A.; Maxwell, George Larry; Bakkenist, Christopher J.; Conrads, Thomas P.

    2015-01-01

    Objective Significant reductions in gynecologic (GYN) cancer mortality and morbidity require treatments that prevent and reverse resistance to chemotherapy and radiation. The objective of this study was to determine if pharmacologic inhibition of key DNA damage response kinases in GYN cancers would enhance cell killing by platinum-based chemotherapy and radiation. Methods A panel of human ovarian, endometrial and cervical cancer cell lines were treated with platinum drugs or ionizing radiation (IR) along with small molecule pharmacological kinase inhibitors of Ataxia telangiectasia mutated (ATM) and ATM and Rad-3-related (ATR). Results Pharmacologic inhibition of ATR significantly enhanced platinum drug response in all GYN cancer cell lines tested, whereas inhibition of ATM did not enhance the response to platinum drugs. Co-inhibition of ATM and ATR did not enhance platinum kill beyond that observed by inhibition of ATR alone. By contrast, inhibiting either ATR or ATM enhanced the response to IR in all GYN cancer cells, with further enhancement achieved with co-inhibition. Conclusions These studies highlight actionable mechanisms operative in GYN cancer cells with potential to maximize response of platinum agents and radiation in newly diagnosed as well as recurrent gynecologic cancers. PMID:25560806

  9. Inactive Women May Face Higher Risk for Cervical Cancer

    MedlinePlus

    ... html Inactive Women May Face Higher Risk for Cervical Cancer But study found just 30 minutes of exercise ... who are sedentary appear more likely to develop cervical cancer, but just 30 minutes of exercise each week ...

  10. Stromal cell-derived factor-1 G801A polymorphism and the risk factors for cervical cancer.

    PubMed

    Roszak, Andrzej; Misztal, Matthew; Sowińska, Anna; Jagodziński, Paweł P

    2015-06-01

    Although certain studies have demonstrated no association between the stromal cell‑derived factor‑1 (SDF1‑3') G801A single nucleotide polymorphism (SNP) and cervical carcinoma, the interactions between the SDF1‑3' G801A SNP and contraceptive use, menopausal status, parity and tobacco smoking remain to be fully elucidated. Using polymerase chain reaction‑restriction fragment length polymorphism, the distribution of SDF1‑3' G801A genotypes in patients with cervical cancer (n=462) against control groups (n=497) was investigated. Logistic regression analysis, adjusting for age, pregnancy, oral contraceptive use, tobacco smoking and menopausal status, did not identify the SDF1‑3' G801A polymorphism as a genetic risk factor for cervical cancer. The adjusted odds ratio (OR) for patients with the A/G, vs. G/G genotype was 1.203, with a 95% confidence interval (CI) of 0.909‑1.591 (P=0.196). The adjusted OR for the A/A, vs. G/G genotype was 1.296 (95% CI=0.930‑1.807; P=0.125) and for the A/A or A/G, vs. G/G genotype was 1.262 (95% CI=0.964‑1.653; P=0.090)]. The P‑value of the χ2 test of the trend observed for the SDF1‑3' G801A polymorphism was at the borderline of being statistically significant (ptrend=0.0484). Stratified analyses between the distribution of the SDF1‑3' G801A genotypes and cervical cancer risks demonstrated that this polymorphism may be a risk factor for patients with a positive history of tobacco smoking (1.778; 95% CI=1.078‑2.934; P=0.0235). These findings suggested that the SDF1‑3' G801A polymorphism may be a genetic risk factor for cervical cancer in patients with a positive history of tobacco smoking. PMID:25672413

  11. How protective is cervical cancer screening against cervical cancer mortality in developing countries? The Colombian case

    PubMed Central

    2010-01-01

    Background Cervical cancer is one of the top causes of cancer morbidity and mortality in Colombia despite the existence of a national preventive program. Screening coverage with cervical cytology does not explain the lack of success of the program in reducing incidence and mortality rates by cervical cancer. To address this problem an ecological analysis, at department level, was carried out in Colombia to assess the relationship between cervical screening characteristics and cervical cancer mortality rates. Methods Mortality rates by cervical cancer were estimated at the department level for the period 2000-2005. Levels of mortality rates were compared to cervical screening coverage and other characteristics of the program. A Poisson regression was used to estimate the effect of different dimensions of program performance on mortality by cervical cancer. Results Screening coverage ranged from 28.7% to 65.6% by department but increases on this variable were not related to decreases in mortality rates. A significant reduction in mortality was found in departments where a higher proportion of women looked for medical advice when abnormal findings were reported in Pap smears. Geographic areas where a higher proportion of women lack health insurance had higher rates of mortality by cervical cancer. Conclusions These results suggest that coverage is not adequate to prevent mortality due to cervical cancer if women with abnormal results are not provided with adequate follow up and treatment. The role of different dimensions of health care such as insurance coverage, quality of care, and barriers for accessing health care needs to be evaluated and addressed in future studies. PMID:20846446

  12. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    PubMed

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  13. Quantitative DNA Methylation Analysis of Candidate Genes in Cervical Cancer

    PubMed Central

    Siegel, Erin M.; Riggs, Bridget M.; Delmas, Amber L.; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D.

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97–1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  14. The roles and clinical significance of microRNAs in cervical cancer.

    PubMed

    Wang, Fenfen; Li, Baohua; Xie, Xing

    2016-02-01

    Cervical carcinogenesis induced by persistent human papillomavirus (HPV) infection represents a stepwise progression from precursors to invasive cervical cancer. Accumulated evidence has shown aberrant expression of microRNAs (miRNAs) in cervical cancer tissues and cells. Further studies reveal that miRNAs play key roles in the initiation and progression of cervical cancer, via specific signaling pathways, including E6-p53, E7-pRb, phosphoinositide-3 kinase (PI3K)-Akt, Notch, Wnt/β-catenin, and Hedgehog pathways. Some studies demonstrate that miRNAs might serve as biomarkers or therapeutic targets, presenting a potential prospect in clinical practice. All results provide new insights into the function of miRNAs and the pathogenesis of cervical cancer induced by viral oncoproteins. New approaches for miRNA-based prevention and management for cervical cancer will be developed in the future. PMID:26356641

  15. Tumor-Targeting Salmonella typhimurium A1-R in Combination with Trastuzumab Eradicates HER-2-Positive Cervical Cancer Cells in Patient-Derived Mouse Models

    PubMed Central

    Hiroshima, Yukihiko; Zhang, Yong; Zhao, Ming; Zhang, Nan; Murakami, Takashi; Maawy, Ali; Mii, Sumiyuki; Uehara, Fuminari; Yamamoto, Mako; Miwa, Shinji; Yano, Shuya; Momiyama, Masashi; Mori, Ryutaro; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M.

    2015-01-01

    We have previously developed mouse models of HER-2-positive cervical cancer. Tumors in nude mice had histological structures similar to the original tumor and were stained by anti-HER-2 antibody in the same pattern as the patient’s cancer. We have also previously developed tumor-targeting Salmonella typhimurium A1-R and have demonstrated its efficacy against patient-derived tumor mouse models, both alone and in combination. In the current study, we determined the efficacy of S. typhimurium A1-R in combination with trastuzumab on a patient-cancer nude-mouse model of HER-2 positive cervical cancer. Mice were randomized to 5 groups and treated as follows: (1) no treatment; (2) carboplatinum (30 mg/kg, ip, weekly, 5 weeks); (3) trastuzumab (20 mg/kg, ip, weekly, 5 weeks); (4) S. typhimurium A1-R (5 × 107 CFU/body, ip, weekly, 5 weeks); (5) S. typhimurium A1-R (5 × 107 CFU/body, ip, weekly, 5 weeks) + trastuzumab (20 mg/kg, ip, weekly, 5 weeks). All regimens had significant efficacy compared to the untreated mice. The relative tumor volume of S. typhimurium A1-R + trastuzumab-treated mice was smaller compared to trastuzumab alone (p = 0.007) and S. typhimurium A1-R alone (p = 0.039). No significant body weight loss was found compared to the no treatment group except for carboplatinum-treated mice (p = 0.021). Upon histological examination, viable tumor cells were not detected, and replaced by stromal cells in the tumors treated with S. typhimurium A1-R + trastuzumab. The results of the present study suggest that S. typhimurium A1-R and trastuzumab in combination are highly effective against HER-2-expressing cervical cancer. PMID:26047477

  16. MicroRNA-331-3p Suppresses Cervical Cancer Cell Proliferation and E6/E7 Expression by Targeting NRP2

    PubMed Central

    Fujii, Tomomi; Shimada, Keiji; Asano, Aya; Tatsumi, Yoshihiro; Yamaguchi, Naoko; Yamazaki, Masaharu; Konishi, Noboru

    2016-01-01

    Aberrant expression of microRNAs (miRNAs) is involved in the development and progression of various types of cancers. In this study, we investigated the role of miR-331-3p in cell proliferation and the expression of keratinocyte differentiation markers of uterine cervical cancer cells. Moreover, we evaluated whether neuropilin 2 (NRP2) are putative target molecules that regulate the human papillomavirus (HPV) related oncoproteins E6 and E7. Cell proliferation in the human cervical cancer cell lines SKG-II, HCS-2, and HeLa was assessed using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Cellular apoptosis was measured using the TdT-mediated dUTP nick end labeling (TUNEL) and Annexin V assays. Quantitative RT-PCR was used to measure the messenger RNA (mRNA) expression of the NRP2, E6, E7, p63, and involucrin (IVL) genes. A functional assay for cell growth was performed using cell cycle analyses. Overexpression of miR-331-3p inhibited cell proliferation, and induced G2/M phase arrest and apoptosis in SKG-II, HCS-2 and HeLa cells. The luciferase reporter assay of the NRP2 3′-untranslated region revealed the direct regulation of NRP2 by miR-331-3p. Gene expression analyses using quantitative RT-PCR in SKG-II, HCS-2, and HeLa cells overexpressing miR-331-3p or suppressing NRP2 revealed down-regulation of E6, E7, and p63 mRNA and up-regulation of IVL mRNA. Moreover, miR-331-3p overexpression was suppressed NRP2 expression in protein level. We showed that miR-331-3p and NRP2 were key effectors of cell proliferation by regulating the cell cycle, apoptosis. NRP-2 also regulates the expression of E6/E7 and keratinocyte differentiation markers. Our findings suggest that miR-331-3p has an important role in regulating cervical cancer cell proliferation, and that miR-331-3p may contribute to keratinocyte differentiation through NRP2 suppression. miR-331-3p and NRP2 may contribute to anti-cancer effects

  17. MicroRNA-331-3p Suppresses Cervical Cancer Cell Proliferation and E6/E7 Expression by Targeting NRP2.

    PubMed

    Fujii, Tomomi; Shimada, Keiji; Asano, Aya; Tatsumi, Yoshihiro; Yamaguchi, Naoko; Yamazaki, Masaharu; Konishi, Noboru

    2016-01-01

    Aberrant expression of microRNAs (miRNAs) is involved in the development and progression of various types of cancers. In this study, we investigated the role of miR-331-3p in cell proliferation and the expression of keratinocyte differentiation markers of uterine cervical cancer cells. Moreover, we evaluated whether neuropilin 2 (NRP2) are putative target molecules that regulate the human papillomavirus (HPV) related oncoproteins E6 and E7. Cell proliferation in the human cervical cancer cell lines SKG-II, HCS-2, and HeLa was assessed using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Cellular apoptosis was measured using the TdT-mediated dUTP nick end labeling (TUNEL) and Annexin V assays. Quantitative RT-PCR was used to measure the messenger RNA (mRNA) expression of the NRP2, E6, E7, p63, and involucrin (IVL) genes. A functional assay for cell growth was performed using cell cycle analyses. Overexpression of miR-331-3p inhibited cell proliferation, and induced G2/M phase arrest and apoptosis in SKG-II, HCS-2 and HeLa cells. The luciferase reporter assay of the NRP2 3'-untranslated region revealed the direct regulation of NRP2 by miR-331-3p. Gene expression analyses using quantitative RT-PCR in SKG-II, HCS-2, and HeLa cells overexpressing miR-331-3p or suppressing NRP2 revealed down-regulation of E6, E7, and p63 mRNA and up-regulation of IVL mRNA. Moreover, miR-331-3p overexpression was suppressed NRP2 expression in protein level. We showed that miR-331-3p and NRP2 were key effectors of cell proliferation by regulating the cell cycle, apoptosis. NRP-2 also regulates the expression of E6/E7 and keratinocyte differentiation markers. Our findings suggest that miR-331-3p has an important role in regulating cervical cancer cell proliferation, and that miR-331-3p may contribute to keratinocyte differentiation through NRP2 suppression. miR-331-3p and NRP2 may contribute to anti-cancer effects. PMID

  18. The Cytotoxicity Mechanism of 6-Shogaol-Treated HeLa Human Cervical Cancer Cells Revealed by Label-Free Shotgun Proteomics and Bioinformatics Analysis

    PubMed Central

    Liu, Qun; Peng, Yong-Bo; Qi, Lian-Wen; Cheng, Xiao-Lan; Xu, Xiao-Jun; Liu, Le-Le; Liu, E-Hu; Li, Ping

    2012-01-01

    Cervical cancer is one of the most common cancers among women in the world. 6-Shogaol is a natural compound isolated from the rhizome of ginger (Zingiber officinale). In this paper, we demonstrated that 6-shogaol induced apoptosis and G2/M phase arrest in human cervical cancer HeLa cells. Endoplasmic reticulum stress and mitochondrial pathway were involved in 6-shogaol-mediated apoptosis. Proteomic analysis based on label-free strategy by liquid chromatography chip quadrupole time-of-flight mass spectrometry was subsequently proposed to identify, in a non-target-biased manner, the molecular changes in cellular proteins in response to 6-shogaol treatment. A total of 287 proteins were differentially expressed in response to 24 h treatment with 15 μM 6-shogaol in HeLa cells. Significantly changed proteins were subjected to functional pathway analysis by multiple analyzing software. Ingenuity pathway analysis (IPA) suggested that 14-3-3 signaling is a predominant canonical pathway involved in networks which may be significantly associated with the process of apoptosis and G2/M cell cycle arrest induced by 6-shogaol. In conclusion, this work developed an unbiased protein analysis strategy by shotgun proteomics and bioinformatics analysis. Data observed provide a comprehensive analysis of the 6-shogaol-treated HeLa cell proteome and reveal protein alterations that are associated with its anticancer mechanism. PMID:23243437

  19. Inotodiol inhabits proliferation and induces apoptosis through modulating expression of cyclinE, p27, bcl-2, and bax in human cervical cancer HeLa cells.

    PubMed

    Zhao, Li-Wei; Zhong, Xiu-Hong; Yang, Shu-Yan; Zhang, Yi-Zhong; Yang, Ning-Jiang

    2014-01-01

    Inonotus obliquus is a medicinal mushroom that has been used as an effective agent to treat various diseases such as diabetes, tuberculosis and cancer. Inotodiol, an included triterpenoid shows significant anti-tumor effect. However, the mechanisms have not been well documented. In this study, we aimed to explore the effect of inotodiol on proliferation and apoptosis in human cervical cancer HeLa cells and investigated the underlying molecular mechanisms. HeLa cells were treated with different concentrations of inotodiol. The MTT assay was used to evaluate cell proliferating ability, flow cytometry (FCM) was employed for cell cycle analysis and cell apoptosis, while expression of cyclinE, p27, bcl-2 and bax was detected by immunocytochemistry. Proliferation of HeLa cells was inhibited by inotodiolin a dose-dependent manner at 24h (r=0.9999, p<0.01). A sub-G1 peak (apoptotic cells) of HeLa cells was detected after treatment and the apoptosis rate with the concentration and longer incubation time (r=1.0, p<0.01), while the percentage of cells in S phase and G2/M phase decreased significantly. Immunocytochemistry assay showed that the expression of cyclin E and bcl-2 in the treated cells significantly decreased, while the expression of p27 and bax obviously increased, compared with the control group (p<0.05). The results of our research indicate that inotodiol isolated from Inonotus obliquus inhibited the proliferation of HeLa cells and induced apoptosis in vitro. The mechanisms may be related to promoting apoptosis through increasing the expression of bax and cutting bcl-2 and affecting the cell cycle by down-regulation the expression of cyclin E and up-regulation of p27. The results further indicate the potential value of inotodiol for treatment of human cervical cancer. PMID:24815470

  20. Influence of continuous intervention on growth and metastasis of human cervical cancer cells and expression of RNAmiR-574-5p.

    PubMed

    Ma, D L; Li, J Y; Liu, Y E; Liu, C M; Li, J; Lin, G Z; Yan, J

    2016-01-01

    This study was carried out to acquire solid evidence that some common treatments could affect micro ribonucleic acids (miRNAs) by revealing the regulatory effect of genes, so as to provide a reference for further exploration of the prevention and treatment of cervical cancer. Nude mouse tumorigenicity assay was used to study the effect of inhibiting miR-574-5p on development and tumorigenic ability of Henrietta Lacks (HeLa) tumor. Cell wound scratch assay, flow cytometry and real-time quantitative polymerase chain reaction (RT-qPCR) were adopted to study the effects of anoxia and temperature, etc., on expression of miR-574-5p and QKI in HeLa as well as on the clone and migration ability of cells, to provide prevention and treatment of cervical cancer with new ideas and evidence. The results demonstrated that cervical cancer tissues had a significantly increased miR-574-5p expression compared with para-carcinoma tissues; conversely, Gomafu, overall QKI (pan-QKI) and QKI-5 messenger ribonucleic acid (mRNA) and protein expression all decreased. Part of the common nursing methods had a certain influence on miR-574-5p expression, HeLa reproduction and metastasis, and even cell cycle. For example, ultraviolet (UV) irradiation was effective in decreasing miR-574-5p expression of HeLa and inhibiting cell migration; severe hypoxia significantly decreased the survival rate of HeLa, leading to the increase of programmed death percentage and cell ratio in G2/M phase as well as the decrease of cell ratio in G1 phase. Incubation at different temperatures also affected miR-574-5p expression and cell proliferation. Thus, it can be known that miR-574-5p, Gomafu and QKI expression in cervical cancer tissues and para-carcinoma tissues are significantly up-regulated or down-regulated. Some treatments, such as UV irradiation, hypoxia, incubation temperatures, etc., can affect miR-574-5p expression and HeLa proliferation as well as metastases in different degrees. These findings provide

  1. Antigen-specific immunotherapy of cervical and ovarian cancer

    PubMed Central

    Hung, Chien-fu; Wu, TC; Monie, Archana; Roden, Richard

    2009-01-01

    Summary We contrast the efforts to treat ovarian cancer and cervical cancer through vaccination because of their different pathobiology. A plethora of approaches have been developed for therapeutic vaccination against cancer, many of which target defined tumor-associated antigens (TAAs). Persistent infection with oncogenic human papillomavirus (HPV) types is necessary cause of cervical cancer. Furthermore, cervical cancer patients frequently mount both humoral and T cell immune responses to the HPV E6 and E7 oncoproteins, whose expression is required for the transformed phenotype. Numerous vaccine studies target these viral TAAs, including recent trials that may enhance clearance of pre-malignant disease. By contrast little is known about the etiology of epithelial ovarian cancer. Although it is clear that p53 mutation or loss is a critical early event in the development of epithelial ovarian cancer, no precursor lesion has been described for the most common serous histotype, and even the location of its origin is debated. These issues have complicated the selection of appropriate ovarian TAAs and the design of vaccines. Here we focus on mesothelin as a promising ovarian TAA because it is overexpressed and immunogenic at high frequency in patients, is displayed on the cell surface and potentially contributes to ovarian cancer biology. PMID:18363994

  2. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells.

    PubMed

    Zhang, Hongling; Liu, Gan; Zeng, Xiaowei; Wu, Yanping; Yang, Chengming; Mei, Lin; Wang, Zhongyuan; Huang, Laiqiang

    2015-01-01

    Genistein is one of the most studied isoflavonoids with potential antitumor efficacy, but its poor water solubility limits its clinical application. Nanoparticles (NPs), especially biodegradable NPs, entrapping hydrophobic drugs have promising applications to improve the water solubility of hydrophobic drugs. In this work, TPGS-b-PCL copolymer was synthesized from ε-caprolactone initiated by d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) through ring-opening polymerization and characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The genistein-loaded NPs were prepared by a modified nanoprecipitation method and characterized in the aspects of particle size, surface charge, morphology, drug loading and encapsulation efficiency, in vitro drug release, and physical state of the entrapped drug. The TPGS-b-PCL NPs were found to have higher cellular uptake efficiency than PCL NPs. MTT and colony formation experiments indicated that genistein-loaded TPGS-b-PCL NPs achieved the highest level of cytotoxicity and tumor cell growth inhibition compared with pristine genistein and genistein-loaded PCL NPs. Furthermore, compared with pristine genistein and genistein-loaded PCL NPs, the genistein-loaded TPGS-b-PCL NPs at the same dose were more effective in inhibiting tumor growth in the subcutaneous HeLa xenograft tumor model in BALB/c nude mice. In conclusion, the results suggested that genistein-loaded biodegradable TPGS-b-PCL nanoparticles could enhance the anticancer effect of genistein both in vitro and in vivo, and may serve as a potential candidate in treating cervical cancer. PMID:25848264

  3. Screening of cervical cancer in Catalonia 2006-2012.

    PubMed

    de Sanjosé, Silvia; Ibáñez, Raquel; Rodríguez-Salés, Vanesa; Peris, Mercè; Roura, Esther; Diaz, Mireia; Torné, Aureli; Costa, Dolors; Canet, Yolanda; Falguera, Gemma; Alejo, Maria; Espinàs, Josep Alfons; Bosch, F Xavier

    2015-01-01

    The early detection of intraepithelial lesions of the cervix, through the periodic examination of cervical cells, has been fundamental for the prevention of invasive cervical cancer and its related mortality. In this report, we summarise the cervical cancer screening activities carried out in Catalonia, Spain, within the National Health System during 2008-2011. The study population covers over two million women resident in the area. The evaluation includes 758,690 cervical cytologies performed on a total of 595,868 women. The three-year coverage of cervical cytology among women aged between 25 and 65 years was 40.8%. About 50% of first screened women with negative results had not returned to the second screening round. The introduction of high-risk human papillomavirus DNA (HPV) detection, as a primary screening cotest with cytology among women over age 40 with a poor screening history, significantly improved the detection of cervical intraepithelial neoplasia grade 2 or worse (CIN2+), being far superior to cytology alone. Cotesting did not improve the detection of CIN2+. The use of the HPV test for the triage of atypical squamous cell undetermined significance (ASC-US) improved the selection of women at high risk of CIN2+. Sampling (both cytology and HPV test) was largely performed by midwives (66.7%), followed by obstetricians (23.8%) and nurses (7%). Over half of the centres (54.8%) had full use of online medical records. During the study period, educational activities for professionals and for women were carried out periodically. The organisation of screening as a population activity in which women are actively called to the screening visit and the introduction of HPV testing as a primary screening tool are strongly recommended to ensure the maximum population impact in the reduction of the cervical cancer burden. PMID:25987901

  4. Screening of cervical cancer in Catalonia 2006–2012

    PubMed Central

    de Sanjosé, Silvia; Ibáñez, Raquel; Rodríguez-Salés, Vanesa; Peris, Mercè; Roura, Esther; Diaz, Mireia; Torné, Aureli; Costa, Dolors; Canet, Yolanda; Falguera, Gemma; Alejo, Maria; Espinàs, Josep Alfons; Bosch, F. Xavier

    2015-01-01

    The early detection of intraepithelial lesions of the cervix, through the periodic examination of cervical cells, has been fundamental for the prevention of invasive cervical cancer and its related mortality. In this report, we summarise the cervical cancer screening activities carried out in Catalonia, Spain, within the National Health System during 2008–2011. The study population covers over two million women resident in the area. The evaluation includes 758,690 cervical cytologies performed on a total of 595,868 women. The three-year coverage of cervical cytology among women aged between 25 and 65 years was 40.8%. About 50% of first screened women with negative results had not returned to the second screening round. The introduction of high-risk human papillomavirus DNA (HPV) detection, as a primary screening cotest with cytology among women over age 40 with a poor screening history, significantly improved the detection of cervical intraepithelial neoplasia grade 2 or worse (CIN2+), being far superior to cytology alone. Cotesting did not improve the detection of CIN2+. The use of the HPV test for the triage of atypical squamous cell undetermined significance (ASC-US) improved the selection of women at high risk of CIN2+. Sampling (both cytology and HPV test) was largely performed by midwives (66.7%), followed by obstetricians (23.8%) and nurses (7%). Over half of the centres (54.8%) had full use of online medical records. During the study period, educational activities for professionals and for women were carried out periodically. The organisation of screening as a population activity in which women are actively called to the screening visit and the introduction of HPV testing as a primary screening tool are strongly recommended to ensure the maximum population impact in the reduction of the cervical cancer burden. PMID:25987901

  5. Cervical cancer in north-eastern Libya: 2000-2008.

    PubMed

    Ben Khaial, F; Bodalal, Z; Elramli, A; Elkhwsky, F; Eltaguri, A; Bendardaf, R

    2014-08-01

    Libya is a country with a low population, listed under the EMRO. Using registers and patient records from a major primary oncology clinic, data was gathered from Libyan cervical cancer patients and various parameters were studied across 9 years. Out of 4,090 female cancer cases during the study period, 1.8% were cervical cancer (n = 74). The average age of presentation was 53 years, with most of the cases (60%, n = 44) being premenopausal. Approximately 65% (n = 48) of cervical cancer patients are diagnosed at later stages (i.e. stages III and IV). The majority of these cases are squamous cell carcinoma (83.8%, n = 62), while 16.2% (n = 12) were found to be adenocarcinoma. Patients with squamous cell carcinoma presented at later stages more often than those with adenocarcinoma. Human papilloma virus was strongly implicated in cervical cancer, with 94% (n = 63) of those who were tested being positive for HPV-16 (82.5%, n = 52) and HPV-18 (12.7%, n = 8). Diagnosis was most frequently made through biopsy (97.3%, n = 72) as opposed to Pap smears (2.7%, n = 2). Most Libyan patients were put through chemotherapy (75%, n = 55) and triple therapy (surgery with combined chemotherapy and radiotherapy) was the most common (38%, n = 28) modality of treatment. Comparisons were made between Libya and other nations, either in the developed world or neighbouring countries. The major problem of cervical cancer in Libya is delayed presentation and hence, all the recommendations focus on increased awareness for the populace, implementation of a national cancer control plan and a national screening programme. PMID:24800833

  6. Radiobiological Response of Cervical Cancer Cell Line in Low Dose Region: Evidence of Low Dose Hypersensitivity (HRS) and Induced Radioresistance (IRR)

    PubMed Central

    Singh, Rabiraja; George, Daicy; Vijaykumar, T.S.; John, Subhashini

    2015-01-01

    Background Purpose of the present study was to examine the response of cervical cancer cell line (HeLa cell line) to low dose radiation using clonogenic assay and mathematical modeling of the low dose response by Joiner’s induced repair model. Materials and Methods Survival of HeLa cells following exposure to single and fractionated low doses of γ (gamma)-ray, 6 MV, and 15 MV photon was measured by clonogenic assay. Results HeLa cell line demonstrated marked low dose response consisting of an area of HRS and IRR in the dose region of <1 Gy. The two gradients of the low dose region (αs and αr) were distinctly different with a transition dose (Dc) of 0.28-0.40 cGy. Conclusion HeLa cell line demonstrates marked HRS and IRR with distinct transition dose. This may form the biological basis of the clinical study to investigate the chemo potentiating effect of low dose radiation in cervical cancer. PMID:26266200

  7. Review of the Cervical Cancer Burden and Population-Based Cervical Cancer Screening in China.

    PubMed

    Di, Jiangli; Rutherford, Shannon; Chu, Cordia

    2015-01-01

    Cervical cancer continues to be a serious public health problem in the developing world, including China. Because of its large population with geographical and socioeconomic inequities, China has a high burden of cervical cancer and important disparities among different regions. In this review, we first present an overview of the cervical cancer incidence and mortality over time, and focus on diversity and disparity in access to care for various subpopulations across geographical regions and socioeconomic strata in China. Then, we describe population-based cervical cancer screening in China, and in particular implementation of the National Cervical Cancer Screening Program in Rural Areas (NACCSPRA) and the challenges that this program faces. These include low screening coverage, shortage of qualified health care personnel and limited funds. To improve prevention of cervical cancer and obtain better cancer outcomes, the Chinese government needs to urgently consider the following key factors: reducing disparities in health care access, collecting accurate and broadly representative data in cancer registries, expanding target population size and increasing allocation of government funding for training of personnel, improving health education for women, enhancing quality control of screening services and improving a system to increase follow up for women with positive results. PMID:26625735

  8. Effects of irradiation for cervical cancer on subsequent breast cancer

    SciTech Connect

    Harlan, L.C.M.

    1985-01-01

    Previous research suggests that cervical cancer patients have a lower risk of breast cancer than women in the general population. Possible explanations include opposing risk factors for cervical cancer and breast cancer, the effect of irradiation used to treat cervical cancer, or both. The purpose of this study was to explore the relationship between irradiation for cervical cancer and the subsequent development of breast cancer. There was no statistically significant relationship between radiation to the ovarian area and the risk of breast cancer in this study. However, the results were consistent with a 19% reduction in risk for women irradiated for cervical cancer when compared to nonirradiated women. In a dose-response analysis, there was a nonsignificant trend of decreased risk of breast cancer with increased radiation up to 1800 rad. There was no consistent pattern for higher doses. The trend, although nonsignificant, differed by age. Women <60 years of age at irradiation were generally at a lower risk of breast cancer than nonirradiated women. Women over 59 years were at an increased risk. There are some potentially important findings from this study which might influence medical care. These should be examined in the larger International Radiation Study.

  9. Angiogenesis and antiangiogenic agents in cervical cancer

    PubMed Central

    Tomao, Federica; Papa, Anselmo; Rossi, Luigi; Zaccarelli, Eleonora; Caruso, Davide; Zoratto, Federica; Benedetti Panici, Pierluigi; Tomao, Silverio

    2014-01-01

    Standard treatment of cervical cancer (CC) consists of surgery in the early stages and of chemoradiation in locally advanced disease. Metastatic CC has a poor prognosis and is usually treated with palliative platinum-based chemotherapy. Current chemotherapeutic regimens are associated with significant adverse effects and only limited activity, making identification of active and tolerable novel targeted agents a high priority. Angiogenesis is a complex process that plays a crucial role in the development of many types of cancer. The dominant role of angiogenesis in CC seems to be directly related to human papillomavirus-related inhibition of p53 and stabilization of hypoxia-inducible factor-1α. Both of these mechanisms are able to increase expression of vascular endothelial growth factor (VEGF). Activation of VEGF promotes endothelial cell proliferation and migration, favoring formation of new blood vessels and increasing permeability of existing blood vessels. Since bevacizumab, a recombinant humanized monoclonal antibody binding to all isoforms of VEGF, has been demonstrated to significantly improve survival in gynecologic cancer, some recent clinical research has explored the possibility of using novel therapies directed toward inhibition of angiogenesis in CC too. Here we review the main results from studies concerning the use of antiangiogenic drugs that are being investigated for the treatment of CC. PMID:25506227

  10. [Molecular markers of carcinogenesis in the diagnostics of cervical cancer].

    PubMed

    Bedkowska, Grazyna Ewa; Ławicki, Sławomir; Szmitkowski, Maciej

    2009-01-01

    Cervical carcinoma is the most frequent disease of the reproductive organ and is the second most common cancer in women after breast cancer. As it is characterized by high mortality, new diagnostic methods are needed, for example tumor markers, enabling earlier diagnosis and rapid detection of recurrence after therapy. Different tumor markers may be useful in the diagnostics of cervical cancer, for example squamous cell carcinoma antigen (SCC-Ag), tissue polypeptide antigen (TPA), and CYFRA 21-1, as well as some cytokines such as vascular endothelial growth factor (VEGF), granulocyte colony-stimulating factor, and macrophage colony-stimulating factor (M-CSF). About 150 genes connected with the carcinogenesis of cervical carcinoma have been identified. This paper is devoted to evaluating the diagnostic usefulness of molecular markers of carcinogenesis, especially P53, Bcl-2, Brn-3a, and MCM, and comparing the results with those of typical tumor markers or cytokines useful in diagnosing this type of cancer. It was shown that telomerase and Brn-3a proteins demonstrate usefulness in screening examination, P53 in monitoring the effectiveness of therapy, and Bcl-2 as a survival prognostic factor. In summary, it is evident that molecular makers of carcinogenesis are helpful in the diagnostics of cervical cancer, but further investigation and confirmation by a prospective study is necessary. PMID:19252468

  11. 20(s)-ginsenoside Rg3-loaded magnetic human serum albumin nanospheres applied to HeLa cervical cancer cells in vitro.

    PubMed

    Yang, Rui; Chen, Daozhen; Li, Mengfei; Miao, Fengqin; Liu, Peidang; Tang, Qiusha

    2014-01-01

    20(s)-ginsenoside Rg3 is extracted from traditional Chinese medicine, red ginseng. However, due to its poor aqueous solubility and low oral bioavailability, the use of 20(s)-Rg3 is limited. This study aimed to explore a method of preparing nano-sized 20(s)-ginsenoside Rg3 particle named 20(s)-ginsenoside Rg3-loaded magnetic human serum albumin nanospheres (20(s)-Rg3/HSAMNP) to change dosage form to improve its aqueous solubility and bioavailability. 20(s)-Rg3/HSAMNP were prepared by the desolvation-crosslinking method. The character of 20(s)-Rg3/HSAMNP was detected. An antiproliferative effect and cell apoptosis rates of 20(s)-Rg3/HSAMNP on human cervical cancer cells were determined by the MTT assay and flow cytometry, respectively. TEM analysis showed that 20(s)-Rg3/HSAMNP were approximately spherical and uniform in size. Thermodynamic testing showed that the corresponding magnetic fluid of a specific concentration rosed to a steady temperature of 42-65○C. Iron content was approximately 3 mg/mL. Drug encapsulation efficiency was approximately 70%. The potential of 20(s)-Rg3/HSAMNP combined with magnetic hyperthermia therapy to inhibit cell growth and induce apoptosis was much more prominent than that of the other groups. A new dosage form of 20(s)-Rg3 was prepared, which effectively induced apoptosis in HeLa cervical cancer cells in vitro when combined with hyperthermia. PMID:25226895

  12. Optoelectronic method for detection of cervical intraepithelial neoplasia and cervical cancer

    NASA Astrophysics Data System (ADS)

    Pruski, D.; Przybylski, M.; Kędzia, W.; Kędzia, H.; Jagielska-Pruska, J.; Spaczyński, M.

    2011-12-01

    The optoelectronic method is one of the most promising concepts of biophysical program of the diagnostics of CIN and cervical cancer. Objectives of the work are evaluation of sensitivity and specificity of the optoelectronic method in the detection of CIN and cervical cancer. The paper shows correlation between the pNOR number and sensitivity/specificity of the optoelectronic method. The study included 293 patients with abnormal cervical cytology result and the following examinations: examination with the use of the optoelectronic method — Truscreen, colposcopic examination, and histopathologic biopsy. Specificity of the optoelectronic method for LGSIL was estimated at 65.70%, for HGSIL and squamous cell carcinoma of cervix amounted to 90.38%. Specificity of the optoelectronic method used to confirm lack of cervical pathology was estimated at 78.89%. The field under the ROC curve for the optoelectronic method was estimated at 0.88 (95% CI, 0.84-0.92) which shows high diagnostic value of the test in the detection of HGSIL and squamous cell carcinoma. The optoelectronic method is characterised by high usefulness in the detection of CIN, present in the squamous epithelium and squamous cell carcinoma of cervix.

  13. CXCL12 is a key regulator in tumor microenvironment of cervical cancer: an in vitro study.

    PubMed

    Yadav, Suresh Singh; Prasad, Shyam Babu; Prasad, Chandra Bhushan; Pandey, Lakshmi Kant; Pradhan, Satyajit; Singh, Sunita; Narayan, Gopeshwar

    2016-06-01

    CXCL12 is a small pro-inflammatory chemo-attractant cytokine which signals through chemokine receptor CXCR4. The importance of CXCL12/CXCR4 axis is coming to the fore in several divergent signaling pathway-initiating signals related to cell survival and/or proliferation and cancer metastasis. In the present study we have investigated whether deregulation in CXCR4 signaling (as a consequence of deregulated expression of CXCL12) modulate the metastatic potential of cervical carcinoma cells. We demonstrate that CXCL12 is frequently down regulated and its promoter is hypermethylated in cervical cancer cell lines and primary tumor biopsies. Exogenous treatment of cervical cancer cell lines (HeLa, SiHa and C-33A) with recombinant CXCL12 inhibited the metastasis promoting cell migration, cell invasion and anchorage independent cell growth events. Although this study will need further in vivo validation, our observations suggest that (a) silencing of CXCL12 in cervical cancer cells may be critical in migration and invasion, the key events in cancer cell metastases; (b) cervical cancer cells having down regulated CXCL12 are more prone to being attracted to CXCL12 expressed at secondary sites of metastases; and (c) CXCL12 inhibits anchorage independent cell growth via anoikis. These findings suggest the tumor suppressor functions of CXCL12 in cervical cancer. PMID:26970955

  14. Chlamydia Trachomatis Infection-Associated Risk of Cervical Cancer

    PubMed Central

    Zhu, Haiyan; Shen, Zhaojun; Luo, Hui; Zhang, Wenwen; Zhu, Xueqiong

    2016-01-01

    Abstract As whether Chlamydia trachomatis infection increases the risk of cervical cancer is controversial in the literature, we performed a meta-analysis. Based on a comprehensive search of publications in the Medline, Cochrane, and EMBASE databases, we identified and extracted data from all relevant articles examining C. trachomatis infection and the risk of cervical cancer. The quality of each included study was assessed according to the 9-star Newcastle–Ottawa scale. The strength of association between the C. trachomatis and risk of cervical cancer was estimated by odds ratio (OR) and 95% confidence intervals (CIs). This review was registered at PROSPERO with registration No. CRD42014015672. A total of 22 studies with 4291 cervical cancer cases and 7628 controls were identified. Overall, C. trachomatis was significantly linked to increased cervical cancer risk in prospective studies (OR = 2.21, 95% CI: 1.88–2.61, P < 0.001), as well as in retrospective studies (OR = 2.19, 95% CI: 1.74–2.74, P < 0.001). Additionally, with a multivariate logistic regression analysis adjusted for HPV and age, C. trachomatis infection was identified as an independent predictor of cervical cancer in 11 studies (OR = 1.76, 95% CI: 1.03–3.01, P = 0.04). Coinfection of human papilloma virus and C. trachomatis has a higher risk of cervical cancer (OR = 4.03, 95% CI: 3.15–5.16, P < 0.001). A subgroup analysis based on histological type indicated an elevated risk for both squamous cell carcinoma (OR = 2.21, 95% CI: 2.00–2.45, P < 0.001), and adenocarcinoma (OR = 1.61, 95% CI: 1.21–2.15, P = 0.001), in associated with C. trachomatis. Subgroup analysis by where C. trachomatis infection was detected showed a significantly higher risk of cervical cancer associated with C. trachomatis infection detected in serum (OR = 2.20, 95% CI: 2.01–2.42, P < 0.001), cervical tissue blocks (OR = 2.88, 95% CI: 1.21–6.83, P = 0

  15. Environmentally relevant concentration of arsenic trioxide and humic acid promoted tumor progression of human cervical cancer cells: In vivo and in vitro studies.

    PubMed

    Tsai, Min-Ling; Yen, Cheng-Chieh; Lu, Fung-Jou; Ting, Hung-Chih; Chang, Horng-Rong

    2016-09-01

    In a previous study, treatment at higher concentrations of arsenic trioxide or co-exposure to arsenic trioxide and humic acid was found to be inhibited cell growth of cervical cancer cells (SiHa cells) by reactive oxygen species generation. However, treatment at lower concentrations slightly increased cell viability. Here, we investigate the enhancement of progression effects of environmentally relevant concentration of humic acid and arsenic trioxide in SiHa cell lines in vitro and in vivo by measuring cell proliferation, migration, invasion, and the carcinogenesis-related protein (MMP-2, MMP-9, and VEGF-A) expressions. SiHa cells treated with low concentrations of humic acid and arsenic trioxide alone or in co-exposure significantly increased reactive oxygen species, glutathione levels, cell proliferation, scratch wound-healing activities, migration abilities, and MMP-2 expression as compared to the untreated control. In vivo the tumor volume of either single drug (humic acid or arsenic trioxide) or combined drug-treated group was significantly larger than that of the control for an additional 45 days after tumor cell injection on the back of NOD/SCID mice. Levels of MMP-2, MMP-9, and VEGF-A, also significantly increased compared to the control. Histopathologic effects of all tumor cells appeared round in cell shape with high mitosis, focal hyperkeratosis and epidermal hyperplasia in the skin, and some tumor growth in the muscle were observed. Our results may indicate that exposure to low concentrations of arsenic trioxide and humic acid is associated with the progression of cervical cancer. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1121-1132, 2016. PMID:25728215

  16. An overview of prevention and early detection of cervical cancers

    PubMed Central

    Mishra, Gauravi A.; Pimple, Sharmila A.; Shastri, Surendra S.

    2011-01-01

    Cervical cancer still remains the most common cancer affecting the Indian women. India alone contributes 25.41% and 26.48% of the global burden of cervical cancer cases and mortality, respectively. Ironically, unlike most other cancers, cervical cancer can be prevented through screening by identifying and treating the precancerous lesions, any time during the course of its long natural history, thus preventing the potential progression to cervical carcinoma. Several screening methods, both traditional and newer technologies, are available to screen women for cervical precancers and cancers. No screening test is perfect and hence the choice of screening test will depend on the setting where it is to be used. Similarly, various methods are available for treatment of cervical precancers and the selection will depend on the cost, morbidity, requirement of reliable biopsy specimens, resources available, etc. The recommendations of screening for cervical cancer in the Indian scenario are discussed. PMID:22557777

  17. Cervical Tissue Engineering Using Silk Scaffolds and Human Cervical Cells

    PubMed Central

    Sanchez, Cristina C.; Rice, William L.; Socrate, Simona; Kaplan, David L.

    2010-01-01

    Spontaneous preterm birth is a frequent complication of pregnancy and a common cause of morbidity in childhood. Obstetricians suspect abnormalities of the cervix are implicated in a significant number of preterm births. The cervix is composed of fibrous connective tissue and undergoes significant remodeling in preparation for birth. We hypothesized that a tissue engineering strategy could be used to develop three-dimensional cervical-like tissue constructs that would be suitable for investigating cervical remodeling. Cervical cells were isolated from two premenopausal women undergoing hysterectomy for a benign gynecological condition, and the cells were seeded on porous silk scaffolds in the presence or absence of dynamic culture and with 10% or 20% serum. Morphological, biochemical, and mechanical properties were measured during the 8-week culture period. Cervical cells proliferated in three-dimensions and synthesized an extracellular matrix with biochemical constituents and morphology similar to native tissue. Compared to static culture, dynamic culture was associated with significantly increased collagen deposition (p < 0.05), sulfated glycosaminoglycan synthesis (p < 0.05), and mechanical stiffness (p < 0.05). Serum concentration did not affect measured variables. Relevant human tissue-engineered cervical-like constructs constitute a novel model system for a range of fundamental and applied studies related to cervical remodeling. PMID:20121593

  18. Cervical tissue engineering using silk scaffolds and human cervical cells.

    PubMed

    House, Michael; Sanchez, Cristina C; Rice, William L; Socrate, Simona; Kaplan, David L

    2010-06-01

    Spontaneous preterm birth is a frequent complication of pregnancy and a common cause of morbidity in childhood. Obstetricians suspect abnormalities of the cervix are implicated in a significant number of preterm births. The cervix is composed of fibrous connective tissue and undergoes significant remodeling in preparation for birth. We hypothesized that a tissue engineering strategy could be used to develop three-dimensional cervical-like tissue constructs that would be suitable for investigating cervical remodeling. Cervical cells were isolated from two premenopausal women undergoing hysterectomy for a benign gynecological condition, and the cells were seeded on porous silk scaffolds in the presence or absence of dynamic culture and with 10% or 20% serum. Morphological, biochemical, and mechanical properties were measured during the 8-week culture period. Cervical cells proliferated in three-dimensions and synthesized an extracellular matrix with biochemical constituents and morphology similar to native tissue. Compared to static culture, dynamic culture was associated with significantly increased collagen deposition (p < 0.05), sulfated glycosaminoglycan synthesis (p < 0.05), and mechanical stiffness (p < 0.05). Serum concentration did not affect measured variables. Relevant human tissue-engineered cervical-like constructs constitute a novel model system for a range of fundamental and applied studies related to cervical remodeling. PMID:20121593

  19. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells.

    PubMed

    Ujhelyi, Zoltán; Kalantari, Azin; Vecsernyés, Miklós; Róka, Eszter; Fenyvesi, Ferenc; Póka, Róbert; Kozma, Bence; Bácskay, Ildikó

    2015-01-01

    The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations. PMID:26197311

  20. The Subcellular Localisation of the Human Papillomavirus (HPV) 16 E7 Protein in Cervical Cancer Cells and Its Perturbation by RNA Aptamers

    PubMed Central

    Cesur, Özlem; Nicol, Clare; Groves, Helen; Mankouri, Jamel; Blair, George Eric; Stonehouse, Nicola J.

    2015-01-01

    Human papillomavirus (HPV) is the most common viral infection of the reproductive tract, affecting both men and women. High-risk oncogenic types are responsible for almost 90% of anogenital and oropharyngeal cancers including cervical cancer. Some of the HPV “early” genes, particularly E6 and E7, are known to act as oncogenes that promote tumour growth and malignant transformation. Most notably, HPV-16 E7 interacts with the tumour suppressor protein pRb, promoting its degradation, leading to cell cycle dysregulation in infected cells. We have previously shown that an RNA aptamer (termed A2) selectively binds to HPV16 E7 and is able to induce apoptosis in HPV16-transformed cervical carcinoma cell lines (SiHa) through reduction of E7 levels. In this study, we investigated the effects of the A2 aptamer on E7 localisation in order to define its effects on E7 activity. We demonstrate for the first time that E7 localised to the plasma membrane. In addition, we show that A2 enhanced E7 localisation in the ER and that the A2-mediated reduction of E7 was not associated with proteasomal degradation. These data suggest that A2 perturbs normal E7 trafficking through promoting E7 ER retention. PMID:26131956

  1. Cervical Cancer Screening and Perceived Information Needs

    ERIC Educational Resources Information Center

    Whynes, David K.; Clarke, Katherine; Philips, Zoe; Avis, Mark

    2005-01-01

    Purpose: To identify women's sources of information about cervical cancer screening, information which women report receiving during Pap consultations, information they would like to receive, and the relationships between perceived information needs, personal characteristics and information sources. Design/methodology/approach: Logistic regression…

  2. Cervical Cancer: paradigms at home and abroad

    Cancer.gov

    NCI funded a clinical trial that will have an impact on the treatment of late-stage cervical cancer, and also supported a screening trial in India using a network of community outreach workers offering low tech-screening by direct visualization of the cer

  3. The relevance of molecular biomarkers in cervical cancer patients treated with radiotherapy

    PubMed Central

    Kilic, Sarah; Cracchiolo, Bernadette; Gabel, Molly; Haffty, Bruce

    2015-01-01

    Background Radiotherapy (RT) plays an integral role in the combined-modality management of cervical cancer. Various molecular mechanisms have been implicated in the adaptive cellular response to RT. Identification of these molecular processes may permit the prediction of treatment outcome and enhanced radiation-induced cancer cell killing through tailoring of the management approach, and/or the employment of selective inhibitors of these pathways. Methods PubMed was searched for studies presenting biomarkers of cervical cancer radioresistance validated in patient studies or in laboratory experimentation. Results Several biomarkers of cervical cancer radioresistance are validated by patient survival or recurrence data. These biomarkers fall into categories of biological function including hypoxia, cell proliferation, cell-cell adhesion, and evasion of apoptosis. Additional radioresistance biomarkers have been identified in exploratory experiments. Conclusions Biomarkers of radioresistance in cervical cancer may allow molecular profiling of individual tumors, leading to tailored therapies and better prognostication and prediction of outcomes. PMID:26605307

  4. Requirement for Estrogen Receptor Alpha in a Mouse Model for Human Papillomavirus-Associated Cervical Cancer

    PubMed Central

    Chung, Sang-Hyuk; Wiedmeyer, Kerri; Shai, Anny; Korach, Kenneth S.; Lambert, Paul F.

    2008-01-01

    The majority of human cervical cancers are associated with the high-risk human papillomaviruses (HPVs), which encode the potent E6 and E7 oncogenes. Upon prolonged treatment with physiological levels of exogenous estrogen, K14E7 transgenic mice expressing HPV-16 E7 oncoprotein in their squamous epithelia succumb to uterine cervical cancer. Furthermore, prolonged withdrawal of exogenous estrogen results in complete or partial regression of tumors in this mouse model. In the current study we investigated whether estrogen receptor alpha (ERα) is required for the development of cervical cancer in K14E7 transgenic mice. We demonstrate that exogenous estrogen fails to promote either dysplasia or cervical cancer in K14E7/ERα−/− mice despite the continued presence of the presumed cervical cancer precursor cell type, reserve cells, and evidence for E7 expression therein. We also observed that cervical cancers in our mouse models are strictly associated with atypical squamous metaplasia (ASM), which is believed to be the precursor for cervical cancer in women. Consistently, E7 and exogenous estrogen failed to promote ASM in the absence of ERα. We conclude that ERα plays a crucial role at an early stage of cervical carcinogenesis in this mouse model. PMID:19047174

  5. Flexitouch® Home Maintenance Therapy or Standard Home Maintenance Therapy in Treating Patients With Lower-Extremity Lymphedema Caused by Treatment for Cervical Cancer, Vulvar Cancer, or Endometrial Cancer

    ClinicalTrials.gov

    2014-12-29

    Lymphedema; Stage 0 Cervical Cancer; Stage 0 Uterine Corpus Cancer; Stage 0 Vulvar Cancer; Stage I Uterine Corpus Cancer; Stage I Vulvar Cancer; Stage IA Cervical Cancer; Stage IB Cervical Cancer; Stage II Uterine Corpus Cancer; Stage II Vulvar Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage III Uterine Corpus Cancer; Stage III Vulvar Cancer; Stage IV Uterine Corpus Cancer; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer; Stage IVB Vulvar Cancer

  6. Effects of tetrahydrocurcumin on hypoxia-inducible factor-1α and vascular endothelial growth factor expression in cervical cancer cell-induced angiogenesis in nude mice.

    PubMed

    Yoysungnoen, Bhornprom; Bhattarakosol, Parvapan; Patumraj, Suthiluk; Changtam, Chatchawan

    2015-01-01

    Tetrahydrocurcumin (THC), one of the important in vivo metabolites of curcumin, inhibits tumor angiogenesis. Its effects on angiogenesis in cervical cancer- (CaSki-) implanted nude mice and its mechanisms on hypoxia-inducible factor-1α and vascular endothelial growth factor expression were investigated. Female BALB/c nude mice were divided into control (CON) and CaSki-implanted groups (CaSki group). One month after the injection with cervical cancer cells, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. The microvascular density (MVD) was evaluated using the CD31 expression. VEGF, VEGFR-2, and HIF-1α expression were also detected by immunohistochemistry. The MVD in CaSki + vehicle group was significantly increased compared to the CON + vehicle group. Interestingly, when treated with THC at all doses, the CaSki group showed a significant smaller number of the MVD. The CaSki + vehicle group also showed significantly increased VEGF, VEGFR-2, and HIF-1α expressions, but they were downregulated when mice were treated with THC at all doses. THC demonstrated an inhibitory effect against tumor angiogenesis in CaSki-implanted nude mice model. This effect is likely to be mediated by the downregulation of HIF-1-α, VEGF expression, and its receptor. THC could be developed into a promising agent for cancer therapy in the future. PMID:25789317

  7. [HPV vaccine for cervical cancer prevention].

    PubMed

    Kawana, Kei

    2010-06-01

    High-risk HPV is the causative virus(requirement) for genital cancers with cervical cancer being most prevalent. Thus, theoretically, if HPV infection could be completely eradicated, most of genital cancers could be prevented. Viewed this way, HPV vaccines began to be studied about 10 years ago. Merck in the U.S. and Glaxo Smith Kline (GSK) in Europe launched full-scale development of prophylactic vaccines against HPV, and their vaccines were approved and commercially available in the worldwide. In this paper, efficacy and issues for the HPV vaccine and cancer screening in Japan are discussed. PMID:20535972

  8. Study to Understand Cervical Cancer Early Endpoints and Determinants (SUCCEED)

    Cancer.gov

    A study to comprehensively assess biomarkers of risk for progressive cervical neoplasia, and thus develop a new set of biomarkers that can distinguish those at highest risk of cervical cancer from those with benign infection

  9. HOXA9 is Underexpressed in Cervical Cancer Cells and its Restoration Decreases Proliferation, Migration and Expression of Epithelial-to-Mesenchymal Transition Genes.

    PubMed

    Alvarado-Ruiz, Liliana; Martinez-Silva, Maria Guadalupe; Torres-Reyes, Luis Alberto; Pina-Sanchez, Patricia; Ortiz-Lazareno, Pablo; Bravo-Cuellar, Alejandro; Aguilar-Lemarroy, Adriana; Jave-Suarez, Luis Felipe

    2016-01-01

    HOX transcription factors are evolutionarily conserved in many different species and are involved in important cellular processes such as morphogenesis, differentiation, and proliferation. They have also recently been implicated in carcinogenesis, but their precise role in cancer, especially in cervical cancer (CC), remains unclear. In this work, using microarray assays followed by the quantitative polymerase chain reaction (qPCR), we found that the expression of 25 HOX genes was downregulated in CC derived cell lines compared with nontumorigenic keratinocytes. In particular, the expression of HOXA9 was observed as down-modulated in CCderived cell lines. The expression of HOXA9 has not been previously reported in CC, or in normal keratinocytes of the cervix. We found that normal CC from women without cervical lesions express HOXA9; in contrast, CC cell lines and samples of biopsies from women with CC showed significantly diminished HOXA9 expression. Furthermore, we found that methylation at the first exon of HOXA9 could play an important role in modulating the expression of this gene. Exogenous restoration of HOXA9 expression in CC cell lines decreased cell proliferation and migration, and induced an epithelial-like phenotype. Interestingly, the silencing of human papilloma virus (HPV) E6 and E7 oncogenes induced expression of HOXA9. In conclusion, controlling HOXA9 expression appears to be a necessary step during CC development. Further studies are needed to delineate the role of HOXA9 during malignant progression and to afford more insights into the relationship between downmodulation of HOXA9 and viral HPV oncoprotein expression during cercical cancer development. PMID:27039722

  10. A cis-acting element in the promoter of human ether à go-go 1 potassium channel gene mediates repression by calcitriol in human cervical cancer cells.

    PubMed

    Cázares-Ordoñez, V; González-Duarte, R J; Díaz, L; Ishizawa, M; Uno, S; Ortíz, V; Ordoñez-Sánchez, M L; Makishima, M; Larrea, F; Avila, E

    2015-02-01

    The human ether à go-go 1 potassium channel (hEAG1) is required for cell cycle progression and proliferation of cancer cells. Inhibitors of hEAG1 activity and expression represent potential therapeutic drugs in cancer. Previously, we have shown that hEAG1 expression is downregulated by calcitriol in a variety of cancer cells. Herein, we provided evidence on the regulatory mechanism involved in such repressive effect in cells derived from human cervical cancer. Our results indicate that repression by calcitriol occurs at the transcriptional level and involves a functional negative vitamin D response element (nVDRE) E-box type in the hEAG1 promoter. The described mechanism in this work implies that a protein complex formed by the vitamin D receptor-interacting repressor, the vitamin D receptor, the retinoid X receptor, and the Williams syndrome transcription factor interact with the nVDRE in the hEAG1 promoter in the absence of ligand. Interestingly, all of these transcription factors except the vitamin D receptor-interacting repressor are displaced from hEAG1 promoter in the presence of calcitriol. Our results provide novel mechanistic insights into calcitriol mode of action in repressing hEAG1 gene expression. PMID:25495694

  11. MicroRNA-148b Acts as a Tumor Suppressor in Cervical Cancer by Inducing G1/S-Phase Cell Cycle Arrest and Apoptosis in a Caspase-3-Dependent Manner

    PubMed Central

    Mou, Zongmei; Xu, Xiangting; Dong, Mei; Xu, Jin

    2016-01-01

    Background The purpose of our study was to investigate the role of microRNA (miR)-148b in cervical cancer. Material/Methods The expression of miR-148b was determined in HPV-16-immortalized cervical epithelial cell line CRL-2614 cells and in cervical cancer cell line HeLa cells. The miR-148b mimics or scrambled RNA were then transfected into Hela cells. Forty-eight hours after transfection, the mRNA expression of miR-148b and DNA methyltransferase 1 (DNMT1) were confirmed. Cell proliferation ability (cell viability and colony formation ability), invasion ability, and apoptosis were assessed after transfection with miR-148b mimics or scrambled RNA, as well as the protein expression of cyclin D1 and caspase-3. Results The expression of miR-148b was significantly downregulated in HeLa cells compared with CRL2614 cells (P<0.05), but was statistically upregulated by transfection with miR-148b mimics compared with the cells transfected with scrambled RNA (P<0.05). Also, we found that the expression of DNMT1 was significantly decreased by transfection with miR-148b mimics (P<0.05). Additionally, miR-148b mimics significantly decreased the cell proliferation ability and invasion ability, and statistically induced apoptosis. Furthermore, the expression of cyclin D1 protein was significantly decreased and the expression of caspase-3 protein was significantly increased by miR-148b mimics compared with that in the cells transfected with scrambled RNA (P<0.05). Conclusions Our results suggest that overexpression of miR-148b protects against cervical cancer by inducing G1/S-phase cell cycle arrest and apoptosis through caspase-3-dependent manner, and overexpression of miR-148b might develop a therapeutic intervention for cervical cancer. PMID:27505047

  12. A systematic study on dysregulated microRNAs in cervical cancer development.

    PubMed

    He, Yuqing; Lin, Juanjuan; Ding, Yuanlin; Liu, Guodong; Luo, Yanhong; Huang, Mingyuan; Xu, Chengkai; Kim, Taek-Kyun; Etheridge, Alton; Lin, Mi; Kong, Danli; Wang, Kai

    2016-03-15

    MicroRNAs (miRNAs) are short regulatory RNAs that modulate the transcriptome and proteome at the post-transcriptional level. To obtain a better understanding on the role of miRNAs in the progression of cervical cancer, meta-analysis and gene set enrichment analysis were used to analyze published cervical cancer miRNA studies. From 85 published reports, which include 3,922 cases and 2,099 noncancerous control tissue samples, 63 differentially expressed miRNAs (DEmiRNAs) were identified in different stages of cervical cancer development (CIN 1-3 and CC). It was found that some of the dysregulated miRNAs were associated with specific stages of cervical cancer development. To illustrate the impact of miRNAs on the pathogenesis of cervical cancer, a miRNA-mRNA interaction network on selected pathways was built by integrating viral oncoproteins, dysregulated miRNAs and their predicted/validated targets. The results indicated that the deregulated miRNAs at the different stages of cervical cancer were functionally involved in several key cancer related pathways, such as cell cycle, p53 and Wnt signaling pathways. These dysregulated miRNAs could play an important role in cervical cancer development. Some of the stage-specific miRNAs can also be used as biomarkers for cancer classification and monitoring the progression of cancer development. PMID:26032913

  13. [Cervical cancer is a clinical challenge].

    PubMed

    Bjurberg, Maria; Beskow, Catharina; Kannisto, Päivi; Lindahl, Gabriel

    2015-01-01

    Cervical cancer is the third most common female cancer world wide. In Sweden, some 450 cases are diagnosed annually. One out of three affected Swedish women is under the age of 40. Survival for all stages is 73 % in Sweden. Human papilloma virus (HPV) can be detected in the majority of all cervical cancers. Treatment consists of surgery for early stages, and a combination of chemoradiation and brachytherapy for locally advanced disease. For metastatic disease, the treatment is palliative. Late side effects after treatment may have serious impact on the quality of life. There is a strong need for more efficient treatment of metastatic disease. Current lines of research include surgical strategies, optimised radiotherapy, neoadjuvant therapy, targeted therapy, and immunotherapy including therapeutic vaccines. PMID:26646957

  14. Optical coherence tomography in diagnosing cervical cancer

    NASA Astrophysics Data System (ADS)

    Kuznetzova, Irina A.; Shakhova, Natalia M.; Kachalina, Tatiana S.; Gladkova, Natalia D.; Myakov, Alexey V.; Iksanov, Rashid R.; Feldchtein, Felix I.

    2000-05-01

    Cervical cancer remains one of the most significant problem in oncogynecology. It tends towards treatment approaches that provide termination of pathological processes along with preservation of the patient's life quality. There is a need in earlier and more accurate diagnosis of pathological states, objective assessment of physiological processes, and adequate monitoring of the course of treatment. In our previous publications we have reported unique capabilities of the Optical Coherence Tomography (OCT) to image in vivo the mucosa structure of the cervix and to monitor various physiological and pathological alterations. In this report, we present results of OCT application to diagnose different stages of cervical cancer and to control its treatment at early stages. We have performed OCT-colposcopy in 11 female patients with cervical cancer to derive OCT criteria of this disease, to provide exact demarcation of a pathological area, and to determine a real size of a tumor. We have found that, in general, borders of a tumor, defined visually and detected with OCT by violation of the basement membrane in exocervix, do not coincide. The mismatch depends on a stage of cancer and can be as much as several millimeters. This information is especially important for evaluation of linear dimension of tumors with 3 - 5 mm invasion and also for differential diagnosis between the T1 and T2 stages with cancer extension onto vagina.

  15. Long noncoding RNA PVT1 promotes cervical cancer progression through epigenetically silencing miR-200b.

    PubMed

    Zhang, Shaorong; Zhang, Guanli; Liu, Jingying

    2016-08-01

    Long noncoding RNA PVT1 has been reported to be dysregulated and play vital roles in a variety of cancers. However, the functions and molecular mechanisms of PVT1 in cervical cancer remain unclear. The objective of this study was to investigate the expression, clinical significance, biological roles, and underlying functional mechanisms of PVT1 in cervical cancer. Our results revealed that PVT1 is upregulated in cervical cancer tissues. Enhanced expression of PVT1 is associated with larger tumor size, advanced International Federation of Gynecology and Obstetrics stage, and poor prognosis of cervical cancer patients. Using gain-of-function and loss-of-function approaches, we demonstrated that overexpression of PVT1 promotes cervical cancer cells proliferation, cell cycle progression and migration, and depletion of PVT1 inhibits cervical cancer cell proliferation, cell cycle progression, and migration. Mechanistically, we verified that PVT1 binds to EZH2, recruits EZH2 to the miR-200b promoter, increases histone H3K27 trimethylation level on the miR-200b promoter, and inhibits miR-200b expression. Furthermore, the effects of PVT1 on cervical cell proliferation and migration depend upon silencing of miR-200b. Taken together, our findings confirmed that PVT1 functions as an oncogene in cervical cancer and indicated that PVT1 is not only an important prognostic marker, but also a potential therapy target for cervical cancer. PMID:27272214

  16. Reduced BCL2 and CCND1 mRNA expression in human cervical cancer HeLa cells treated with a combination of everolimus and paclitaxel

    PubMed Central

    Alp, Ebru; Onen, H. Ilke; Menevse, Sevda

    2016-01-01

    Aim of the study Cervical cancer is the second most common malignancy in women worldwide. Everolimus displays direct effects on growth and proliferation of cancer cells via inhibition of mammalian target of rapamycin (mTOR) protein, which is known to be associated with drug resistance. In this study, we aimed to investigate the effects of everolimus, gemcitabine, and paclitaxel in terms of cell viability and mRNA expression levels of GRP78, CCND1, CASP2, and BCL2 genes. Material and methods HeLa cells were treated with different doses of everolimus, gemcitabine, and paclitaxel. Cell viability was assessed using MTT assay, and obtained dose response curves were used for the calculations of inhibitory concentration (IC) values. At the end of the treatment times with selected doses, RNA isolation and cDNA synthesis were performed. Finally, GRP78, CCND1, CASP2, and BCL2 genes mRNA expression levels were analysed using quantitative PCR. Results The IC50 value of everolimus was 0.9 µM for 24-hour treatment. Moreover, the IC50 value of gemcitabine and paclitaxel was found to be around 18.1 µM and 7.08 µM, respectively. Everolimus, gemcitabine, and paclitaxel treatments alone did not change the GRP78, CCND1, BCL2 and CASP2 mRNA expression levels significantly. However, combined treatment of everolimus and paclitaxel significantly reduced BCL2 and CCND1 mRNA expression (p < 0.05). In contrast, this combination did not change GRP78 and CASP2 mRNA expression levels (p > 0.05). Conclusions Down-regulation of CCND1 and BCL2 expression may be an important mechanism by which everolimus increases the therapeutic window of paclitaxel in cervical cancers. PMID:27095936

  17. Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells.

    PubMed

    Wu, H; Zhang, J; Shi, H

    2016-01-01

    Effect of the tumor suppression gene p16 on the biological characteristics of HeLa cervical carcinoma cells was explored. The expression of p16 protein was increased in HeLa tumor sphere cells, and no significant difference in tumor spheres from the first to the fourth passages. Compared with those of parental HeLa cells, the proportion of CD44+/CD24- and ABCG2+ cells increased significantly in tumor spheres. However after the cells were silenced by the p16-sh289 vector, expression of P16 protein and the cell number of CD44+/CD24- and ABCG2+ decreased. Moreover, HeLa cells with p16 gene silencing showed decreased abilities of sphere formation and matrigel invasion. More HeLa cells with p16 gene silence were needed for tumor formation in nude mice. Tumor size and weight in mouse model established with p16 gene silenced HeLa cells were less than those with HeLa parental cell model. The present results indicate that silencing of the p16 gene inhibits expression of cancer stem cell markers and tumorigenic ability of HeLa cells. PMID:27172749

  18. The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression

    PubMed Central

    He, Chunbo; Mao, Dagan; Hua, Guohua; Lv, Xiangmin; Chen, Xingcheng; Angeletti, Peter C; Dong, Jixin; Remmenga, Steven W; Rodabaugh, Kerry J; Zhou, Jin; Lambert, Paul F; Yang, Peixin; Davis, John S; Wang, Cheng

    2015-01-01

    The Hippo signaling pathway controls organ size and tumorigenesis through a kinase cascade that inactivates Yes-associated protein (YAP). Here, we show that YAP plays a central role in controlling the progression of cervical cancer. Our results suggest that YAP expression is associated with a poor prognosis for cervical cancer. TGF-α and amphiregulin (AREG), via EGFR, inhibit the Hippo signaling pathway and activate YAP to induce cervical cancer cell proliferation and migration. Activated YAP allows for up-regulation of TGF-α, AREG, and EGFR, forming a positive signaling loop to drive cervical cancer cell proliferation. HPV E6 protein, a major etiological molecule of cervical cancer, maintains high YAP protein levels in cervical cancer cells by preventing proteasome-dependent YAP degradation to drive cervical cancer cell proliferation. Results from human cervical cancer genomic databases and an accepted transgenic mouse model strongly support the clinical relevance of the discovered feed-forward signaling loop. Our study indicates that combined targeting of the Hippo and the ERBB signaling pathways represents a novel therapeutic strategy for prevention and treatment of cervical cancer. PMID:26417066

  19. Development of an Expert System as a Diagnostic Support of Cervical Cancer in Atypical Glandular Cells, Based on Fuzzy Logics and Image Interpretation

    PubMed Central

    Domínguez Hernández, Karem R.; Aguilar Lasserre, Alberto A.; Posada Gómez, Rubén; Palet Guzmán, José A.; González Sánchez, Blanca E.

    2013-01-01

    Cervical cancer is the second largest cause of death among women worldwide. Nowadays, this disease is preventable and curable at low cost and low risk when an accurate diagnosis is done in due time, since it is the neoplasm with the highest prevention potential. This work describes the development of an expert system able to provide a diagnosis to cervical neoplasia (CN) precursor injuries through the integration of fuzzy logics and image interpretation techniques. The key contribution of this research focuses on atypical cases, specifically on atypical glandular cells (AGC). The expert system consists of 3 phases: (1) risk diagnosis which consists of the interpretation of a patient's clinical background and the risks for contracting CN according to specialists; (2) cytology images detection which consists of image interpretation (IM) and the Bethesda system for cytology interpretation, and (3) determination of cancer precursor injuries which consists of in retrieving the information from the prior phases and integrating the expert system by means of a fuzzy logics (FL) model. During the validation stage of the system, 21 already diagnosed cases were tested with a positive correlation in which 100% effectiveness was obtained. The main contribution of this work relies on the reduction of false positives and false negatives by providing a more accurate diagnosis for CN. PMID:23690881

  20. Computer aided decision support system for cervical cancer classification

    NASA Astrophysics Data System (ADS)

    Rahmadwati, Rahmadwati; Naghdy, Golshah; Ros, Montserrat; Todd, Catherine

    2012-10-01

    Conventional analysis of a cervical histology image, such a pap smear or a biopsy sample, is performed by an expert pathologist manually. This involves inspecting the sample for cellular level abnormalities and determining the spread of the abnormalities. Cancer is graded based on the spread of the abnormal cells. This is a tedious, subjective and time-consuming process with considerable variations in diagnosis between the experts. This paper presents a computer aided decision support system (CADSS) tool to help the pathologists in their examination of the cervical cancer biopsies. The main aim of the proposed CADSS system is to identify abnormalities and quantify cancer grading in a systematic and repeatable manner. The paper proposes three different methods which presents and compares the results using 475 images of cervical biopsies which include normal, three stages of pre cancer, and malignant cases. This paper will explore various components of an effective CADSS; image acquisition, pre-processing, segmentation, feature extraction, classification, grading and disease identification. Cervical histological images are captured using a digital microscope. The images are captured in sufficient resolution to retain enough information for effective classification. Histology images of cervical biopsies consist of three major sections; background, stroma and squamous epithelium. Most diagnostic information are contained within the epithelium region. This paper will present two levels of segmentations; global (macro) and local (micro). At the global level the squamous epithelium is separated from the background and stroma. At the local or cellular level, the nuclei and cytoplasm are segmented for further analysis. Image features that influence the pathologists' decision during the analysis and classification of a cervical biopsy are the nuclei's shape and spread; the ratio of the areas of nuclei and cytoplasm as well as the texture and spread of the abnormalities

  1. Anticancer effects of brominated indole alkaloid Eudistomin H from marine ascidian Eudistoma viride against cervical cancer cells (HeLa).

    PubMed

    Rajesh, Rajaian Pushpabai; Annappan, Murugan

    2015-01-01

    Marine invertebrates called ascidians are prolific producers of bioactive substances. The ascidian Eudistoma viride, distributed along the Southeast coast of India, was investigated for its in vitro cytotoxic activity against human cervical carcinoma (HeLa) cells by the MTT assay. The crude methanolic extract of E. viride, with an IC50 of 53 μg/ml, was dose-dependently cytotoxic. It was more potent at 100 μg/ml than cyclohexamide (1 μg/ml), reducing cell viability to 9.2%. Among nine fractions separated by chromatography, ECF-8 exhibited prominent cytoxic activity at 10 μg/ml. The HPLC fraction EHF-21 of ECF-8 was remarkably dose- and time-dependently cytotoxic, with 39.8% viable cells at 1 μg/ml compared to 51% in cyclohexamide-treated cells at the same concentration; the IC50 was 0.49 μg/ml. Hoechst staining of HeLa cells treated with EHF-21 at 0.5 μg/ml revealed apoptotic events such an cell shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies. Cell size and granularity study showed changes in light scatter, indicating the characteristic feature of cells dying by apoptosis. The cell-cycle analysis of HeLa cells treated with fraction EHF-21 at 1 μg/ml showed the marked arrest of cells in G0/G1, S and G2/M phases and an increase in the sub G0/G1 population indicated an increase in the apoptotic cell population. The statistical analysis of the sub-G1 region showed a dose-dependent induction of apoptosis. DNA fragmentation was also observed in HeLa cells treated with EHF-21. The active EHF-21 fraction, a brominated indole alkaloid Eudistomin H, led to apoptotic death of HeLa cells. PMID:25550562

  2. Suppression of HPV E6 and E7 expression by BAF53 depletion in cervical cancer cells

    SciTech Connect

    Lee, Kiwon; Lee, Ah-Young; Kwon, Yunhee Kim; Kwon, Hyockman

    2011-08-26

    Highlights: {yields} Integration of HPV into host genome critical for activation of E6 and E7 oncogenes. {yields} BAF53 is essential for higher-order chromatin structure. {yields} BAF53 knockdown suppresses E6 and E7 from HPV integrants, but not from episomal HPVs. {yields} BAF53 knockdown decreases H3K9Ac and H4K12Ac on P105 promoter of integrated HPV 18. {yields} BAF53 knockdown restores the p53-dependent signaling pathway in HeLa and SiHa cells. -- Abstract: Deregulation of the expression of human papillomavirus (HPV) oncogenes E6 and E7 plays a pivotal role in cervical carcinogenesis because the E6 and E7 proteins neutralize p53 and Rb tumor suppressor pathways, respectively. In approximately 90% of all cervical carcinomas, HPVs are found to be integrated into the host genome. Following integration, the core-enhancer element and P105 promoter that control expression of E6 and E7 adopt a chromatin structure that is different from that of episomal HPV, and this has been proposed to contribute to activation of E6 and E7 expression. However, the molecular basis underlying this chromatin structural change remains unknown. Previously, BAF53 has been shown to be essential for the integrity of higher-order chromatin structure and interchromosomal interactions. Here, we examined whether BAF53 is required for activated expression of E6 and E7 genes. We found that BAF53 knockdown led to suppression of expression of E6 and E7 genes from HPV integrants in cervical carcinoma cell lines HeLa and SiHa. Conversely, expression of transiently transfected HPV18-LCR-Luciferase was not suppressed by BAF53 knockdown. The level of the active histone marks H3K9Ac and H4K12Ac on the P105 promoter of integrated HPV 18 was decreased in BAF53 knockdown cells. BAF53 knockdown restored the p53-dependent signaling pathway in HeLa and SiHa cells. These results suggest that activated expression of the E6 and E7 genes of integrated HPV is dependent on BAF53-dependent higher-order chromatin

  3. Inactive Women May Face Higher Risk for Cervical Cancer

    MedlinePlus

    ... the department of cancer prevention and control at Roswell Park Cancer Institute in Buffalo, N.Y. "Our ... reduce cervical cancer risk," Moysich said in a Roswell release. According to study author Dr. J. Brian ...

  4. 75 FR 7282 - Breast and Cervical Cancer Early Detection and Control Advisory Committee (BCCEDCAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-18

    ... HUMAN SERVICES Centers for Disease Control and Prevention Breast and Cervical Cancer Early Detection and... cervical cancer. The committee makes recommendations regarding national program goals and objectives... Force guidelines for breast and cervical cancer screening; Impact of the revised clinical...

  5. Epidemiology of cervical cancer in Latin America

    PubMed Central

    Capote Negrin, Luis G

    2015-01-01

    The basic aspects of the descriptive epidemiology of cervical cancer in Latin America are presented. A decrease in the incidence and mortality rates has been observed in the period from 2000 to 2012 in all countries across the region, this has not occurred at the same proportions, and in many countries, observed figures of incidence and mortality are among the highest levels in the world. In Latin America, calculating a mean measure of the numbers from the GLOBOCAN data from 2000 to 2012, we can observe a difference of up to fivefold of the incidence (Puerto Rico 9,73 Vs Bolivia 50,73) and almost seven times for mortality (Puerto Rico 3,3 Vs Nicaragua 21,67). A report of the epidemiology, risk factors, and evaluation of screening procedures regarding the possible impact of the human papillomavirus (HPV) vaccine I in the prevention of cervical cancer is presented. PMID:26557875

  6. Review on risk factors of cervical cancer.

    PubMed

    Chou, P

    1991-08-01

    This article reviews risk factors of cervical cancer which have been studied in the following aspects: (1) sociodemographic factors including educational level, urbanizational level, socioeconomic status, race and marriage; (2) sexual activity including age at first marriage, age at first coitus, multiple marriage, multiple sexual partners, broken marriage, unstable sex relationship, syphilis/gonorrhea history, coital frequency, multiple pregnancies and age at menarche; (3) factors related to husband including circumcision, sperm, smegma, previous wife with cervical cancer and occupations entailed mobility of husband and periods away from home; (4) psychosocial factors including stressful emotional status, deprived economic background and discontent home situation; (5) virus including herpes simplex type 2 and papilloma virus; (6) other factors including smoking, barrier and oral contraceptives. PMID:1654190

  7. Chemoradiotherapy for cervical cancer in 2010.

    PubMed

    Klopp, Ann H; Eifel, Patricia J

    2011-02-01

    The introduction of concurrent chemotherapy and radiotherapy for the definitive treatment of cervical cancer constituted a major advance in the management of cervical cancer, resulting in a significant improvement in local control, progression-free survival, and overall survival. Since the publication of the results of seminal trials demonstrating the benefits of platinum-based chemotherapy, investigations of new cytotoxic and targeting agents have continued. The success of these studies has been limited in part because the side effects of standard platinum-based chemoradiation regimens already approach the limits of tolerability. Future progress will depend on identifying new agents without overlapping toxic effects, improving supportive care, and minimizing the toxic effects of radiation. PMID:21042887

  8. Candidate biomarkers for cervical cancer treatment: Potential for clinical practice (Review)

    PubMed Central

    IIDA, MIHO; BANNO, KOUJI; YANOKURA, MEGUMI; NAKAMURA, KANAKO; ADACHI, MASATAKA; NOGAMI, YUYA; UMENE, KIYOKO; MASUDA, KENTA; KISU, IORI; IWATA, TAKASHI; TANAKA, KYOKO; AOKI, DAISUKE

    2014-01-01

    Cervical cancer ranks high among the causes of female cancer mortalities and is an important disease in developing and developed countries. Current diagnosis of cervical cancer depends on colposcopy, pathological diagnosis and preoperative diagnosis using methods, including magnetic resonance imaging and computed tomography. Advanced cervical cancer has a poor prognosis. The tumor marker squamous cell carcinoma is conventionally used for screening, but recent studies have revealed the mechanisms of carcinogenesis and the factors associated with a poor prognosis in cervical cancer. These include epigenetic biomarkers, with the methylation level of the checkpoint with forkhead and ring finger gene being potentially useful for predicting the malignancy of cervical cancer and sensitivity to treatment with paclitaxel. The extent of methylation of the Werner DNA helicase gene is also useful for determining sensitivity to an anticancer agent, CPT-11. In addition to epigenetic changes, the expression levels of hypoxia-inducible factor 1α subunit, epidermal growth factor receptor and cyclooxygenase-2 have been reported as possible biomarkers in cervical cancer. Novel prognostic factors, including angiogenic factors, fragile histidine triad, thymidylate synthase, glucose-related protein 58 and mucin antigens, have also been described, and hemoglobin and platelets may also be significant prognostic biomarkers. Utilization of these biomarkers may facilitate personalized treatment and improved outcomes in cervical cancer. PMID:25054026

  9. High plasma concentration of beta-D-glucan after administration of sizofiran for cervical cancer.

    PubMed

    Tokuyasu, Hirokazu; Takeda, Kenichi; Kawasaki, Yuji; Sakaguchi, Yasuto; Isowa, Noritaka; Shimizu, Eiji; Ueda, Yasuto

    2010-01-01

    A 69-year-old woman with a history of cervical cancer was admitted to our hospital for further investigation of abnormal shadows on her chest roentgenogram. Histologic examination of transbronchial lung biopsy specimens revealed epithelioid cell granuloma, and Mycobacterium intracellulare was detected in the bronchial lavage fluid. The plasma level of (1→3)-beta-d-glucan was very high, and this elevated level was attributed to administration of sizofiran for treatment of cervical cancer 18 years previously. Therefore, in patients with cervical cancer, it is important to confirm whether or not sizofiran has been administered before measuring (1→3)-beta-d-glucan levels. PMID:21042427

  10. Molecular mechanisms of cisplatin resistance in cervical cancer

    PubMed Central

    Zhu, Haiyan; Luo, Hui; Zhang, Wenwen; Shen, Zhaojun; Hu, Xiaoli; Zhu, Xueqiong

    2016-01-01

    Patients with advanced or recurrent cervical cancer have poor prognosis, and their 1-year survival is only 10%–20%. Chemotherapy is considered as the standard treatment for patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease effectively. However, resistance to cisplatin may develop, thus substantially compromising the efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systematically review the recent literature and summarize the recent advances in our understanding of the molecular mechanisms underlying cisplatin resistance in cervical cancer. PMID:27354763

  11. Human Papillomavirus Induced Transformation in Cervical and Head and Neck Cancers

    PubMed Central

    Adams, Allie K.; Wise-Draper, Trisha M.; Wells, Susanne I.

    2014-01-01

    Human papillomavirus (HPV) is one of the most widely publicized and researched pathogenic DNA viruses. For decades, HPV research has focused on transforming viral activities in cervical cancer. During the past 15 years, however, HPV has also emerged as a major etiological agent in cancers of the head and neck, in particular squamous cell carcinoma. Even with significant strides achieved towards the screening and treatment of cervical cancer, and preventive vaccines, cervical cancer remains the leading cause of cancer-associated deaths for women in developing countries. Furthermore, routine screens are not available for those at risk of head and neck cancer. The current expectation is that HPV vaccination will prevent not only cervical, but also head and neck cancers. In order to determine if previous cervical cancer models for HPV infection and transformation are directly applicable to head and neck cancer, clinical and molecular disease aspects must be carefully compared. In this review, we briefly discuss the cervical and head and neck cancer literature to highlight clinical and genomic commonalities. Differences in prognosis, staging and treatment, as well as comparisons of mutational profiles, viral integration patterns, and alterations in gene expression will be addressed. PMID:25226287

  12. E3 ubiquitin ligase isolated by differential display regulates cervical cancer growth in vitro and in vivo via microRNA-143

    PubMed Central

    Li, Jibin; Wang, Xinling; Zhang, Yanshang; Zhang, Yan

    2016-01-01

    Cervical cancer is one of the most common gynecological cancers worldwide. Aberrant expression of E3 ubiquitin ligase isolated by differential display (EDD) has been detected in various types of tumor and has been demonstrated to have an important role in carcinogenesis, tumor growth and drug resistance. However, the role of EDD in cervical cancer and its underlying molecular mechanisms remains unknown. The present study aimed to investigate the role of EDD in the tumorigenicity of cervical cancer. EDD expression levels were measured using reverse transcription-quantitative polymerase chain reaction and western blotting in SiHa, HeLa, CaSki, c-41 and c-33A cervical cancer cell lines and cervical cancer tissue specimens. A functional study was performed using cell proliferation, colony formation, cell apoptosis assays in vitro and tumor growth assays in vivo with EDD either overexpressed or silenced. In the present study, EDD expression levels were significantly upregulated in cervical cancer cell lines and tissue samples. EDD knockdown significantly inhibited colony formation, cell proliferation and tumor growth and accelerated cell apoptosis in the cervical cancer cell lines and tissue samples. Furthermore, microRNA (miR)-143 expression levels were low in cervical cancer tissue samples and were negatively correlated with EDD expression. miR-143 silencing eliminated the effect of EDD on cell proliferation, colony formation and cell apoptosis in the cervical cancer cells, which suggested that miR-143 is critical for EDD-mediated regulation of cervical cancer cell growth. The results of the present study indicated that EDD may promote cervical cancer growth in vivo and in vitro by targeting miR-143. In conclusion, EDD may have an oncogenic role in cervical cancer and may serve as a potential therapeutic target for the treatment of patients with cervical cancer. PMID:27446260

  13. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier

    NASA Astrophysics Data System (ADS)

    Aytac Korkmaz, Sevcan

    2016-05-01

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3 × 180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller. She has been a Faculty Member at Fırat University in the Electrical- Electronic Engineering Department since 2007. Her research interests include image processing, computer vision systems, pattern recognition, data fusion, wavelet theory, artificial neural

  14. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier.

    PubMed

    Aytac Korkmaz, Sevcan

    2016-05-01

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3×180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller. PMID:26921605

  15. Significance of microvascular density (MVD) in cervical cancer recurrence.

    PubMed

    Cantu De León, D; Lopez-Graniel, C; Frias Mendivil, M; Chanona Vilchis, G; Gomez, C; De La Garza Salazar, J

    2003-01-01

    The purpose of this retrospective study of 118 patients with squamous cell cervical cancer from January 1990 to December 1993 was to evaluate angiogenesis as predictive factor of recurrence in cervical cancer stages II-III treated with standard radiotherapy. Microvessel density (MVD) was evaluated and correlated with other prognostic factors. MVD was greater than 20 in 67.8% of patients with recurrence (P = 0.002) in comparison to 39% of patients without. Disease-free survival was shorter in stage IIA and MVD >20 (P = 0.0193) as well as for stage IIB (P < 0.05 ), but not for IIIB (P = 0.1613 ). Global survival was significantly shorter when MVD was >20 (P = 0.0316). For stage IIA and MVD >20 survival was shorter (P = 0.0008) for stage IIB (P < 0.05) but not for IIIB (P = 0.14). Patients younger than 40 years and MVD >20 had poorer disease-free interval and survival (P = 0.0029). MVD in patients with squamous cell cervical cancer stage II and age younger than 40 may play a role in predicting recurrence and survival. PMID:14675324

  16. Treatment Option Overview (Cervical Cancer)

    MedlinePlus

    ... checked under a microscope for signs of cancer. Laparoscopy : A surgical procedure to look at the organs ... a laparoscope , the operation is called a total laparoscopic hysterectomy. Enlarge Hysterectomy. The uterus is surgically removed ...

  17. MicroRNA-218 Enhances the Radiosensitivity of Human Cervical Cancer via Promoting Radiation Induced Apoptosis

    PubMed Central

    Yuan, Wang; Xiaoyun, Han; Haifeng, Qiu; Jing, Li; Weixu, Hu; Ruofan, Dong; Jinjin, Yu; Zongji, Shen

    2014-01-01

    We previously reported frequent loss of microRNA-218 (miR-218) in cervical cancer, which was associated with tumor progression and poor prognosis. As microRNAs were found invovled in the regulation of radiosensitivity in various human cancers, we therefore aim to investigate the effects of miR-218 on radiosensitivity of cervical cancer in the present study. The clonogenic survival assay demonstrated that loss of miR-218 could predict radioresistance in the primary cervical cancer cells (R2=0.6516, P<0.001). In vitro, abundant miR-218 increased the radiosensitivity in cervical cancer cells (P<0.001 for HeLa, P=0.009 for SiHa, P=0.016 for C33A and P=0.01 for CaSki). Upregulation of miR-218 significantly enhanced the radiation-induced apoptosis, which was further enhanced by the combination of miR-218 overexpression and radiation In xenograft growth assay, combination of miR-218 overexpression and radiation notably induced cellular apoptosis and suppressed tumor growth. In conclusion, we demonstrated that miR-218 resensitized cervical cancer cells to radiation via promoting cellular apoptosis. Moreover, we proved that miR-218 as a potent predictor of radiosensitivity in cervical cancer, especially for those patients with loss of miR-218. PMID:24843318

  18. Rapid induction of senescence in human cervical carcinoma cells

    NASA Astrophysics Data System (ADS)

    Goodwin, Edward C.; Yang, Eva; Lee, Chan-Jae; Lee, Han-Woong; Dimaio, Daniel; Hwang, Eun-Seong

    2000-09-01

    Expression of the bovine papillomavirus E2 regulatory protein in human cervical carcinoma cell lines repressed expression of the resident human papillomavirus E6 and E7 oncogenes and within a few days caused essentially all of the cells to synchronously display numerous phenotypic markers characteristic of cells undergoing replicative senescence. This process was accompanied by marked but in some cases transient alterations in the expression of cell cycle regulatory proteins and by decreased telomerase activity. We propose that the human papillomavirus E6 and E7 proteins actively prevent senescence from occurring in cervical carcinoma cells, and that once viral oncogene expression is extinguished, the senescence program is rapidly executed. Activation of endogenous senescence pathways in cancer cells may represent an alternative approach to treat human cancers.

  19. A recombinant trans-membrane protein hMnSOD-R9 inhibits the proliferation of cervical cancer cells in vitro.

    PubMed

    Zhang, Zide; Huang, Luyuan; Wu, Qiuhong; Yang, Enze; Zhang, Guang; Sun, Hanxiao; Wang, Feng

    2014-01-01

    Human manganese superoxide dismutase (hMnSOD) is a new type of cancer suppressor. Nonamer of arginine (R9) is an efficient protein transduction domain (PTD). The aim of the study was to improve the transduction efficiency of hMnSOD and investigate its activity in vitro. In this study, we designed, constructed, expressed, and purified a novel fusion protein containing the hMnSOD domain and R9 PTD (hMnSOD–R9). The DNA damaged by Fenton’s reagent was found to be significantly reduced when treated with hMnSOD–R9. hMnSOD–R9 fusion protein was successfully delivered into HeLa cells. The MTT assay showed that proliferation of various cancer cell lines were inhibited by hMnSOD–R9 in a dose-dependent manner. In addition, the cell cycle of HeLa cells was arrested at the sub-G0 phase by hMnSOD–R9. hMnSOD–R9 induced apoptosis of HeLa cells in a dose-dependent manner. With hMnSOD–R9 treatment, Bax, JNK, TBK1 gene expression was increased and STAT3 gene expression was gradually down-regulated in HeLa cells. We also found that apoptosis was induced by hMnSOD–R9 in HeLa cells via up-regulation of cleaved caspase-3 and down-regulation phospho-STAT3 pathway. These results indicated that hMnSOD–R9 may provide benefits to cervical cancer treatment. PMID:24078003

  20. Profiling analysis of circulating microRNA expression in cervical cancer

    PubMed Central

    NAGAMITSU, YUZO; NISHI, HIROTAKA; SASAKI, TORU; TAKAESU, YOTARO; TERAUCHI, FUMITOSHI; ISAKA, KEIICHI

    2016-01-01

    MicroRNA (miRNA) expression is altered in cancer cells and is associated with the development and progression of various types of cancer. Accordingly, miRNAs may serve as diagnostic or prognostic biomarkers in cancer patients. In this study, we attempted to analyze circulating exosomal miRNA in patients with cervical cancer. Total RNA was extracted from the serum of healthy subjects, subjects with cervical intraepithelial neoplasia (CIN) and patients with cervical cancer. We first investigated miRNA expression profiles in 6 serum samples from healthy subjects and patients with cervical cancer using the miRCURY LNA microRNA array. miRNAs with significant differences in expression were validated in a larger sample set by quantitative reverse transcription-polymerase chain reaction, using TaqMan gene expression assays. The results of the miRCURY LNA microRNA array indicated that 6 of 1,223 miRNAs found in serum samples from cervical cancer patients and normal controls exhibited a >3.0-fold change in expression level in subjects with cervical cancer, with a P-value of <0.01. In a validation set (n=131) that investigated the expression of 4 of the 6 miRNAs (miR-483-5p, miR-1246, miR-1275 and miR-1290), miR-1290 was found to have significantly higher expression levels in cervical cancer samples (n=45) compared with control samples (n=31). We also found that the median levels of these miRNAs were significantly higher in subjects with cervical cancer (n=45) compared with those in subjects with CIN (n=55). Circulating miRNAs were not correlated with clinicopathological parameters. However, receiver operating characteristic curve analysis suggested that these serum miRNAs may be useful diagnostic markers in cervical cancer. The expression of circulating miR-1290 was significantly higher in the blood of cervical cancer patients compared with that in controls and may thus serve as a useful biomarker in cervical cancer diagnosis. However, larger studies are required to fully

  1. Near-infrared micro-Raman spectroscopy for in vitro detection of cervical cancer.

    PubMed

    Kamemoto, Lori E; Misra, Anupam K; Sharma, Shiv K; Goodman, Marc T; Luk, Hugh; Dykes, Ava C; Acosta, Tayro

    2010-03-01

    Near-infrared Raman spectroscopy is a powerful analytical tool for detecting critical differences in biological samples with minimum interference in the Raman spectra from the native fluorescence of the samples. The technique is often suggested as a potential screening tool for cancer. In this article we report in vitro Raman spectra of squamous cells in normal and cancerous cervical human tissue from seven patients, which have good signal-to-noise ratio and which were found to be reproducible. These preliminary results show that several Raman features in these spectra could be used to distinguish cancerous cervical squamous cells from normal cervical squamous cells. In general, the Raman spectra of cervical cancer cells show intensity differences compared to those of normal squamous cell spectra. For example, several well-defined Raman peaks of collagen in the 775 to 975 cm(-1) region are observed in the case of normal squamous cells, but these are below the detection limit of normal Raman spectroscopy in the spectra of invasive cervical cancer cells. In the high frequency 2800 to 3100 cm(-1) region, it is found that the peak area under the CH stretching band is lower by a factor of approximately six in the spectra of cervical cancer cells as compared with that of the normal cells. The Raman chemical maps of regions of cancer and normal cells in the cervical epithelium made from the spectral features in the 775 to 975 cm(-1) and 2800 to 3100 cm(-1) regions are also found to show good correlation with each other. PMID:20223058

  2. Uterine cervical cancer with brain metastasis as the initial site of presentation.

    PubMed

    Sato, Yumi; Tanaka, Kei; Kobayashi, Yoichi; Shibuya, Hiromi; Nishigaya, Yoshiko; Momomura, Mai; Matsumoto, Hironori; Iwashita, Mitsutoshi

    2015-07-01

    Brain metastasis from uterine cervical cancer is rare, with an incidence of 0.5%, and usually occurs late in the course of the disease. We report a case of uterine cervical cancer with brain metastasis as the initial site of presentation. A 50-year-old woman with headache, vertigo, amnesia and loss of appetite was admitted for persistent vomiting. Contrast enhanced computed tomography showed a solitary right frontal cerebral lesion with ring enhancement and uterine cervical tumor. She was diagnosed with uterine cervical squamous cell carcinoma with parametrium invasion and no other distant affected organs were detected. The cerebral lesion was surgically removed and pathologically proved to be metastasis of uterine cervical squamous cell carcinoma. The patient underwent concurrent chemoradiotherapy, followed by cerebral radiation therapy, but multiple metastases to the liver and lung developed and the patient died 7 months after diagnosis of brain metastasis. PMID:25656985

  3. [Cervical cancer screening: past--present--future].

    PubMed

    Breitenecker, G

    2009-12-01

    Despite the undisputed and impressive success which has been achieved since the 1960s by cervical cytology in the fight against cervical cancer and its precursor stages, during which the mortality rate in industrialized countries over the last 40 years has been reduced by two-thirds to three-quarters, a perfect and error-free screening procedure is still a long way off and will probably never be reached. There are two main reasons for this, the lack of adequate coverage and suboptimal quality and assessment of smears. Two screening procedures are in use Europe, an opportunistic and an organized system. Both systems have many advantages but also disadvantages. In organized programs the coverage is higher (up to 80%), although similar numbers are also achieved by non-organized programs over a 3-year cycle, even if they cannot be so exactly documented. The decision on which system is used depends on the health system of the country, public or non-public, and many other national circumstances. However, in both systems prerequisites for a satisfactory result is a high quality in the sampling technique, the processing and the assessment. Therefore, several guidelines have been introduced by state and medical societies for internal and external quality assurance. New technologies, such as thin-layer cytology or automation for replacement or support of conventional cytology liquid-based cytology proved not to be superior enough to justify the high costs of these systems. The recognition of the strong causal relationship between persistent infection with high-risk human papillomavirus (HPV) types and cervical cancer and its precursors has resulted in the development of comparably simple tests. Primary screening using HPV typing alone is not recommended in opportunistic screening due to the low specificity but high sensitivity because it leads to many clinically irrelevant results which place women under stress. In organized screening HPV testing is always and only possible

  4. Gynecologic examination and cervical biopsies after (chemo) radiation for cervical cancer to identify patients eligible for salvage surgery

    SciTech Connect

    Nijhuis, Esther R.; Zee, Ate G.J. van der; Hout, Bertha A. in 't; Boomgaard, Jantine J.; Hullu, Joanne A. de; Pras, Elisabeth; Hollema, Harry; Aalders, Jan G.; Nijman, Hans W.; Willemse, Pax H.B.; Mourits, Marian J.E. . E-mail: m.j.e.mourits@og.umcg.nl

    2006-11-01

    Purpose: The aim of this study was to evaluate efficacy of gynecologic examination under general anesthesia with cervical biopsies after (chemo) radiation for cervical cancer to identify patients with residual disease who may benefit from salvage surgery. Methods and Materials: In a retrospective cohort study data of all cervical cancer patients with the International Federation of Gynecology and Obstetrics (FIGO) Stage IB1 to IVA treated with (chemo) radiation between 1994 and 2001 were analyzed. Patients underwent gynecologic examination under anesthesia 8 to 10 weeks after completion of treatment. Cervical biopsy samples were taken from patients judged to be operable. In case of residual cancer, salvage surgery was performed. Results: Between 1994 and 2001, 169 consecutive cervical cancer patients received primary (chemo) radiation, of whom 4 were lost to follow-up. Median age was 56 years (interquartile range [IQR], 44-71) and median follow-up was 3.5 years (IQR, 1.5-5.9). In each of 111 patients a biopsy sample was taken, of which 90 (81%) showed no residual tumor. Vital tumor cells were found in 21 of 111 patients (19%). Salvage surgery was performed in 13 of 21 (62%) patients; of these patients, 5 (38%) achieved long-term, complete remission after salvage surgery (median follow-up, 5.2 years; range, 3.9-8.8 years). All patients with residual disease who did not undergo operation (8/21) died of progressive disease. Locoregional control was more often obtained in patients who underwent operation (7 of 13) than in patients who were not selected for salvage surgery (0 of 8 patients) (p < 0.05). Conclusions: Gynecologic examination under anesthesia 8 to 10 weeks after (chemo) radiation with cervical biopsies allows identification of those cervical cancer patients who have residual local disease, of whom a small but significant proportion may be salvaged by surgery.

  5. Image-based brachytherapy for cervical cancer

    PubMed Central

    Vargo, John A; Beriwal, Sushil

    2014-01-01

    Cervical cancer is the third most common cancer in women worldwide; definitive radiation therapy and concurrent chemotherapy is the accepted standard of care for patients with node positive or locally advanced tumors > 4 cm. Brachytherapy is an important part of definitive radiotherapy shown to improve overall survival. While results for two-dimensional X-ray based brachytherapy have been good in terms of local control especially for early stage disease, unexplained toxicities and treatment failures remain. Improvements in brachytherapy planning have more recently paved the way for three-dimensional image-based brachytherapy with volumetric optimization which increases tumor control, reduces toxicity, and helps predict outcomes. Advantages of image-based brachytherapy include: improved tumor coverage (especially for large volume disease), decreased dose to critical organs (especially for small cervix), confirmation of applicator placement, and accounting for sigmoid colon dose. A number of modalities for image-based brachytherapy have emerged including: magnetic resonance imaging (MRI), computed tomography (CT), CT-MRI hybrid, and ultrasound with respective benefits and outcomes data. For practical application of image-based brachytherapy the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology Working Group and American Brachytherapy Society working group guideline serve as invaluable tools, additionally here-in we outline our institutional clinical integration of these guidelines. While the body of literature supporting image-based brachytherapy continues to evolve a number of uncertainties and challenges remain including: applicator reconstruction, increasing resource/cost demands, mobile four-dimensional targets and organs-at-risk, and accurate contouring of “grey zones” to avoid marginal miss. Ongoing studies, including the prospective EMBRACE (an international study of MRI-guided brachytherapy in locally advanced

  6. Therapeutic vaccines against human papillomavirus and cervical cancer.

    PubMed

    Cid-Arregui, Angel

    2009-01-01

    Cervical cancer and its precursor intra-epithelial lesions are linked to infection by a subset of so-called "highrisk" human papillomavirus types, which are estimated to infect nearly four hundred million women worldwide. Two prophylactic vaccines have been commercialized recently targeting HPV16 and 18, the most prevalent viral types found in cervical cancer, which operate through induction of capsid-specific neutralizing antibodies. However, in patients with persistent infection these vaccines have not been found to protect against progression to neoplasia. Attempts are being made to develop therapeutic vaccines targeting nonstructural early viral proteins. Among these, E6 and E7 are the preferred targets, since they are essential for induction and maintenance of the malignant phenotype and are constitutively expressed by the transformed epithelial cells. Here are reviewed the most relevant potential vaccines based on HPV early antigens that have shown efficacy in preclinical models and that are being tested in clinical studies, which should determine their therapeutic capacity for eradicating HPV-induced premalignant and malignant lesions and cure cervical cancer. PMID:19915722

  7. Elevated expression of flotillin-1 is associated with lymph node metastasis and poor prognosis in early-stage cervical cancer

    PubMed Central

    Li, Zheng; Yang, Yang; Gao, Yang; Wu, Xiaoliu; Yang, Xielan; Zhu, Yingjie; Yang, Hongying; Wu, Lin; Yang, Chengang; Song, Libing

    2016-01-01

    Accumulating evidence has revealed that the expression of the lipid raft protein flotillin-1 is elevated in various human cancers, but the role flotillin-1 plays in the carcinogenesis of cervical cancer remains unclear. The expression profile of flotillin-1 was assayed using real-time PCR, western blotting, and immunohistochemical (IHC) staining in cervical cancer cell lines and cancer tissues with paired adjacent noncancerous cervical tissues. The expression of flotillin-1 protein was detected by IHC staining in a large cohort of 308 paraffin-embedded cervical cancer tissues. Ectopic expression and the short hairpin RNA interference approach were employed to determine the role of flotillin-1 in cervical cancer cell metastasis and the possible mechanism involved. Flotillin-1 expression protein and mRNA were significantly upregulated in cervical cancer cell lines and cancer tissues; elevated expression of flotillin-1 protein in early-stage cervical cancer was significantly associated with pelvic lymph node metastasis (P < 0.001), and was an independent predictive factor of poor overall survival. Moreover, flotillin-1 up- and downregulation remarkably affected cervical cancer cell motility and invasion, respectively, through epithelial-mesenchymal transition (EMT) regulated by the Wnt/β-catenin and nuclear factor-κB (NF-κB) pathways. Our results suggest that flotillin-1 facilitates cervical cancer cell metastasis through Wnt/β-catenin and NF-κB pathway-regulated EMT and that the flotillin-1 expression profile serves not only as novel predictor of pelvic lymph node metastasis, but also as neoteric risk factor for patients with early-stage cervical cancer. PMID:27073721

  8. The Association of High Risk Human Papillomaviruses in Patients With Cervical Cancer: An Evidence Based Study on Patients With Squamous Cell Dysplasia or Carcinoma for Evaluation of 23 Human Papilloma Virus Genotypes

    PubMed Central

    Piroozmand, Ahmad; Mostafavi Zadeh, Seyed Mostafa; Madani, Azita; Soleimani, Reza; Nedaeinia, Reza; Niakan, Mohammad; Avan, Amir; Manian, Mostafa; Moradi, Mohammad; Eftekhar, Zahra

    2016-01-01

    Background Cervical cancer is one of the leading causes of cancer-related death in females. Human papilloma virus (HPV) is the major risk factor of cervical cancer. Objectives The aim of the current study was to explore the frequency and role of 23 different HPVs in patients with cervical cancer. Materials and Methods Overall, 117 formalin-fix and paraffin-embedded (FFPE) tissues from cervical cancer patients with squamous cell carcinoma (SCC) or dysplasia were collected from Mirza-Kochakkhan-Jangali hospital, Tehran, Iran during year 2013, to investigate the presence of HPV- HPV- 67, 68, 6, 11, 13, 16, 17, 30, 69, 39, 40, 42, 64, 66 and 51 to 59 genotypes. Results The Pap smear report illustrated the presence of malignancy in 71 cases, while 11 cases had no evidence of malignancy. Among the patients, 26 cases had sexually transmitted disease with relative frequency of 0.58. Infection with papilloma virus was observed in 83.6% of SCC patients and 45% of the dysplasia group. The most prevalent HPV genotypes were 18 with 31.62% and 16 with 27.35% of cases. Moreover the relative frequencies of HPV-33, -6, -58, -52, -35 and -51, genotypes were 15.38, 7.69, 5.98, 5.12 and 3.41%, respectively. Among the different genotypes of HPV, 31 had the lowest and 16 had the highest relative frequency. Conclusions Our findings demonstrate that HPV-16 and -18 have a higher prevalence in our population than 31 and 51. Further investigations are required to evaluate the role of these genotypes in a larger multicenter setting for establishing their values for early detection of patients, which is useful for screening and vaccination programs of cancerous and precancerous lesions of cervical cancer. PMID:27279992

  9. Psychosocial concerns of Nigerian women with breast and cervical cancer.

    PubMed

    Ohaeri, J U; Campbell, O B; Ilesanmil, A O; Ohaeri, B M

    1998-01-01

    Cancer has the potential to provoke worries which should be assessed in order to adequately respond to patients' problems. We highlight in this paper the problems that concerned 30 women with cervical cancer (mean age 51.2) and 76 with breast cancer (mean age 44.9), how these concerns affected their emotional lives, and the factors associated with these worries. They were interviewed with the 33-item modified version of a German questionnaire rating psychosocial concerns (FBS) by Sullwold, and Goldberg's General Health Questionnaire (GHQ-12) for psychopathological symptoms. Cervical cancer patients had significantly higher FBS and GHQ-12 scores than breast cancer. Breast cancer cases had FBS scores similar to those of women with sickle cell disease and insulin-dependent diabetes mellitus. The commonest recurrent worries in both groups were depression about their condition (45%), thoughts of death (37%), insomnia (33.3%), bodily odour (30%), impairment of work efficiency (30%) terrifying dreams (27%) and fear of illness being life-long (25%). Over 90% denied experience of worries indicating social stigma. FBS scores were significantly correlated with GHQ scores and both were negatively associated with adequacy of social contacts. These data suggest the need for psychosocial intervention in such cases in Nigeria. PMID:9885090

  10. Viola plant cyclotide vigno 5 induces mitochondria-mediated apoptosis via cytochrome C release and caspases activation in cervical cancer cells.

    PubMed

    Esmaeili, Mohammad Ali; Abagheri-Mahabadi, Nazanin; Hashempour, Hossein; Farhadpour, Mohsen; Gruber, Christian W; Ghassempour, Alireza

    2016-03-01

    Cyclotides describe a unique cyclic peptide family that displays a broad range of biological activities including uterotonic, anti-bacteria, anti-cancer and anti-HIV. The vigno cyclotides consist of vigno 1-10 were reported recently from Viola ignobilis. In the present study, we examined the effects of vigno 5, a natural cyclopeptide from V. ignobilis, on cervical cancer cells and the underlying mechanisms. We found that vigno 5-treated Hela cells were killed off by apoptosis in a dose-dependent manner within 24h, and were characterized by the appearance of nuclear shrinkage, cleavage of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation. The mitochondrial pathway of apoptosis revealed that cytochrome C is released from mitochondria to cytosol, associated with the activation of caspase-9 and -3, and the cleavage of poly (ADP-ribose) polymerase (PARP). Overall, the results indicate that vigno 5 induces apoptosis in part via the mitochondrial pathway, which is associated with a release of cytochrome C and elevated activity of caspase-9 and -3 in Hela cells. PMID:26751970

  11. Activation of miR-9 by human papillomavirus in cervical cancer

    PubMed Central

    Wang, Yuhui; Schwarz, Julie K.; Chen, Jason J.; Grigsby, Perry W.; Wang, Xiaowei

    2014-01-01

    Cervical cancer is the third most common cancer in women worldwide, leading to about 300,000 deaths each year. Most cervical cancers are caused by human papillomavirus (HPV) infection. However, persistent transcriptional activity of HPV oncogenes, which indicates active roles of HPV in cervical cancer maintenance and progression, has not been well characterized. Using our recently developed assays for comprehensive profiling of HPV E6/E7 transcripts, we have detected transcriptional activities of 10 high-risk HPV strains from 87 of the 101 cervical tumors included in the analysis. These HPV-positive patients had significantly better survival outcome compared with HPV-negative patients, indicating HPV transcriptional activity as a favorable prognostic marker for cervical cancer. Furthermore, we have determined microRNA (miRNA) expression changes that were correlated with tumor HPV status. Our profiling and functional analyses identified miR-9 as the most activated miRNA by HPV E6 in a p53-independent manner. Further target validation and functional studies showed that HPV-induced miR-9 activation led to significantly increased cell motility by downregulating multiple gene targets involved in cell migration. Thus, our work helps to understand the molecular mechanisms as well as identify potential therapeutic targets for cervical cancer and other HPV-induced cancers. PMID:25344913

  12. Physico-chemical characteristics of ZnO nanoparticles-based discs and toxic effect on human cervical cancer HeLa cells

    NASA Astrophysics Data System (ADS)

    Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor Haida Mohd.; Sendi, Rabab

    2014-10-01

    In this study, we investigated physico-chemical properties of zinc oxide nanoparticles (ZnO NPs)-based discs and their toxicity on human cervical cancer HeLa cell lines. ZnO NPs (80 nm) were produced by the conventional ceramic processing method. FESEM analysis indicated dominant structure of nanorods with dimensions 100-500 nm in length, and 20-100 nm in diameter. The high content of ZnO nanorods in the discs probably played significant role in toxicity towards HeLa cells. Structural defects (oxygen vacancies and zinc/oxygen interstitials) were revealed by PL spectra peaks at 370-376 nm and 519-533 nm for the ZnO discs. The structural, optical and electrical properties of prepared sample have influenced the toxicological effects of ZnO discs towards HeLa cell lines via the generation of reactive oxygen species (ROS), internalization, membrane damage, and eventually cell death. The larger surface to volume area of the ZnO nanorods, combined with defects, stimulated enhanced toxicity via ROS generation hydrogen peroxide, hydroxyl radicals, and superoxide anion. The preliminary results confirmed the ZnO-disc toxicity on HeLa cells was significantly associated with the unique physicochemical properties of ZnO NPs and to our knowledge, this is the first cellular study for treatment of HeLa cells with ZnO discs made from 80 nm ZnO particles.

  13. SIX1 coordinates with TGFβ signals to induce epithelial-mesenchymal transition in cervical cancer

    PubMed Central

    Sun, Shu-Hua; Liu, Dan; Deng, Yun-Te; Zhang, Xiao-Xue; Wan, Dong-Yi; Xi, Bi-Xin; Huang, Wei; Chen, Qian; Li, Meng-Chen; Wang, Ming-Wei; Yang, Fei; Shu, Ping; Wu, Ke-Zhi; Gao, Qing-Lei

    2016-01-01

    Epithelial-mesenchymal transition (EMT) plays a critical role in promoting tumor invasion and metastasis. However, the key cofactors that modulate the signal transduction to induce EMT have note been fully explored to date. The present study reports that sine oculis homeobox homolog 1 (SIX1) is able to promote EMT of cervical cancer by coordinating with transforming growth factor (TGF)β-SMAD signals. The expression of SIX1 was negatively correlated with the expression of the epithelial marker E-cadherin in two independent groups of cervical cancer specimens. SIX1 could promote the transition of mesenchymal phenotype in the presence of active TGFβ signals in vitro and in vivo. TGFβ-SMAD signals were required for the SIX1-mediated promotion of EMT and metastatic capacity of cervical cancer cells. Together, SIX1 and TGFβ cooperated to induce more remarkable changes in the transition of phenotype than each of them alone, and coordinated to promote cell motility and tumor metastasis in cervical cancer. These results suggest that the coordination of SIX1 and TGFβ signals may be crucial in the EMT program, and that SIX1/TGFβ may be considered a valuable marker for evaluating the metastatic potential of cervical cancer cells, or a therapeutic target in the treatment of cervical cancer. PMID:27446426

  14. DNA vaccines for cervical cancer: from bench to bedside.

    PubMed

    Hung, Chien-Fu; Monie, Archana; Alvarez, Ronald D; Wu, T-C

    2007-12-31

    More than 99% of cervical cancers have been associated with human papillomaviruses (HPVs), particularly HPV type 16. The clear association between HPV infection and cervical cancer indicates that HPV serves as an ideal target for development of preventive and therapeutic vaccines. Although the recently licensed preventive HPV vaccine, Gardasil, has been shown to be safe and capable of generating significant protection against specific HPV types, it does not have therapeutic effect against established HPV infections and HPV-associated lesions. Two HPV oncogenic proteins, E6 and E7, are consistently co-expressed in HPV-expressing cervical cancers and are important in the induction and maintenance of cellular transformation. Therefore, immunotherapy targeting E6 and/or E7 proteins may provide an opportunity to prevent and treat HPV-associated cervical malignancies. It has been established that T cell-mediated immunity is one of the most crucial components to defend against HPV infections and HPV-associated lesions. Therefore, effective therapeutic HPV vaccines should generate strong E6/E7-specific T cell-mediated immune responses. DNA vaccines have emerged as an attractive approach for antigen-specific T cell-mediated immunotherapy to combat cancers. Intradermal administration of DNA vaccines via a gene gun represents an efficient way to deliver DNA vaccines into professional antigen-presenting cells in vivo. Professional antigen-presenting cells, such as dendritic cells, are the most effective cells for priming antigen-specific T cells. Using the gene gun delivery system, we tested several DNA vaccines that employ intracellular targeting strategies for enhancing MHC class I and class II presentation of encoded model antigen HPV-16 E7. Furthermore, we have developed a strategy to prolong the life of DCs to enhance DNA vaccine potency. More recently, we have developed a strategy to generate antigen-specific CD4(+) T cell immune responses to further enhance DNA vaccine

  15. Social Construction of Cervical Cancer Screening among Panamanian Women

    ERIC Educational Resources Information Center

    Calvo, Arlene; Brown, Kelli McCormack; McDermott, Robert J.; Bryant, Carol A.; Coreil, Jeanine; Loseke, Donileen

    2012-01-01

    Background: Understanding how "health issues" are socially constructed may be useful for creating culturally relevant programs for Hispanic/Latino populations. Purpose: We explored the constructed meanings of cervical cancer and cervical cancer screening among Panamanian women, as well as socio-cultural factors that deter or encourage screening…

  16. The causal relation between human papillomavirus and cervical cancer

    PubMed Central

    Bosch, F X; Lorincz, A; Muñoz, N; Meijer, C J L M; Shah, K V

    2002-01-01

    The causal role of human papillomavirus infections in cervical cancer has been documented beyond reasonable doubt. The association is present in virtually all cervical cancer cases worldwide. It is the right time for medical societies and public health regulators to consider this evidence and to define its preventive and clinical implications. A comprehensive review of key studies and results is presented. PMID:11919208

  17. PSCA rs2294008 polymorphism contributes to the decreased risk for cervical cancer in a Chinese population

    PubMed Central

    Wang, Shizhi; Wu, Shenshen; Zhu, Haixia; Ding, Bo; Cai, Yunlang; Ni, Jing; Wu, Qiang; Meng, Qingtao; Zhang, Xin; Zhang, Chengcheng; Li, Xiaobo; Wang, Meilin; Chen, Rui; Jin, Hua; Zhang, Zhengdong

    2016-01-01

    Recently, three genome-wide association studies have identified the PSCA (prostate stem cell antigen) rs2294008 polymorphism (C > T) associated with susceptibility to gastric cancer, bladder cancer, and duodenal ulcers, highlighting its critical role in disease pathogenesis. Given PSCA is reported to be overexpressed in cervical cancer and the rs2294008 can influence PSCA transcription, we aimed to determine the role of rs2294008 in susceptibility to cervical cancer. The genotyping was performed in the 1126 cases and 1237 controls. Our results showed the rs2294008 TT genotype significantly associated with a reduced risk of cervical cancer (adjusted OR = 0.55, 95% CI = 0.38–0.79; recessive model). Stratified analyses revealed that the association was restricted to the subgroups of age > 49 years, parity ≤ 1, abortion and early-stage cervical cancer. Immunohistochemistry assay showed the individuals carrying the TT genotype having lower PSCA expression than those with CC/CT genotypes. In summary, the PSCA rs2294008 polymorphism may serve as a biomarker of cervical cancer, particularly of early-stage cervical cancer. PMID:27001215

  18. Phthalocyanine-mediated photodynamic therapy induces cell death and a G /G{sub 1} cell cycle arrest in cervical cancer cells

    SciTech Connect

    Haywood-Small, S.L. . E-mail: s.l.hankin@sheffield.ac.uk; Vernon, D.I.; Griffiths, J.; Schofield, J.; Brown, S.B.

    2006-01-13

    We have developed a series of novel photosensitizers which have potential for anticancer photodynamic therapy (PDT). Photosensitizers include zinc phthalocyanine tetra-sulphonic acid and a family of derivatives with amino acid substituents of varying alkyl chain length and degree of branching. Subcellular localization of these photosensitizers at the phototoxic IC{sub 5} concentration in human cervical carcinoma cells (SiHa Cells) was similar to that of the lysosomal dye Lucifer Yellow. Subsequent nuclear relocalization was observed following irradiation with 665 nm laser light. The PDT response was characterized using the Sulforhodamine B cytotoxicity assay. Flow cytometry was used for both DNA cell cycle and dual Annexin V-FITC/propidium iodide analysis. Phototoxicity of the derivatives was of the same order of magnitude as for tetrasulphonated phthalocyanine but with an overall trend of increased phototoxicity with increasing amino acid chain length. Our results demonstrate cell death, inhibition of cell growth, and G /G{sub 1} cell cycle arrest during the phthalocyanine PDT-mediated response.

  19. Thymoquinone-Loaded Nanostructured Lipid Carrier Exhibited Cytotoxicity towards Breast Cancer Cell Lines (MDA-MB-231 and MCF-7) and Cervical Cancer Cell Lines (HeLa and SiHa)

    PubMed Central

    Ng, Wei Keat; Saiful Yazan, Latifah; Yap, Li Hua; Wan Nor Hafiza, Wan Abd Ghani; How, Chee Wun; Abdullah, Rasedee

    2015-01-01

    Thymoquinone (TQ) has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI) lower than 0.25. The zeta potential of TQ-NLC was greater than −30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P < 0.05). TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells. PMID:25632388

  20. [Gene therapy with cytokines against cervical cancer].

    PubMed

    Bermúdez-Morales, Victor Hugo; Peralta-Zaragoza, Oscar; Madrid-Marina, Vicente

    2005-01-01

    Gene therapy is an excellent alternative for treatment of many diseases. Capacity to manipulate the DNA has allowed direct the gene therapy to correct the function of an altered gene, to increase the expression of a gene and to favour the activation of the immune response. This way, it can intend the use of the DNA like medication able to control, to correct or to cure many diseases. Gene therapy against cancer has an enormous potential, and actually the use of the DNA has increased to control diverse cancer in animal models, with very encouraging results that have allowed its applications in experimental protocols in human. This work concentrates a review of the foundations of the gene therapy and its application on cervical cancer, from the point of view of the alterations of the immune system focused on the tumour micro-environment, and the use of the cytokines as immunomodulators. PMID:16983992

  1. The role of human cervical cancer oncogene in cancer progression.

    PubMed

    Li, Xin-Yu; Wang, Xin

    2015-01-01

    Human cervical cancer oncogene (HCCR) was identified by differential display RT-PCR by screened abnormally expressed genes in cervical human cancers. The overexpressed gene is not only identified in cervical tissues, but also in various human cancers as leukemia/lymphoma, breast, stomach, colon, liver, kidney and ovarian cancer. For its special sensitivities and specificities in human breast cancer and hepatocellular carcinoma, it is expected to be a new biomarker to replace or combine with the existing biomarkers in the diagnose. The HCCR manifests as a negative regulator of the p53 tumor suppressor gene, and its expression is regulated by the PI3K/Akt signaling pathway, modulated by TCF/β-catenin, it also participates in induction of the c-kit proto-oncogene, in activation of PKC and telomerase activities, but the accurate biochemical mechanisms of how HCCR contributes to the malignancies is still unknown. The aim of this review is to summarize the roles of HCCR in cancer progression and the molecular mechanisms involved. PMID:26309489

  2. Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells.

    PubMed

    Francis, D A; Schmid, S I; Howley, P M

    2000-03-01

    The human papillomavirus (HPV) E2 protein is an important regulator of viral E6 and E7 gene expression. E2 can repress the viral promoter for E6 and E7 expression as well as block progression of the cell cycle in cancer cells harboring the DNA of "high-risk" HPV types. Although the phenomenon of E2-mediated growth arrest of HeLa cells and other HPV-positive cancer cells has been well documented, the specific mechanism by which E2 affects cellular proliferation has not yet been elucidated. Here, we show that bovine papillomavirus (BPV) E2-induced growth arrest of HeLa cells requires the repression of the E6 and E7 promoter. This repression is specific for E2TA and not E2TR, a BPV E2 variant that lacks the N-terminal transactivation domain. We demonstrate that expression of HPV16 E6 and E7 from a heterologous promoter that is not regulated by E2 rescues HeLa cells from E2-mediated growth arrest. Our data indicate that the pathway of E2-mediated growth arrest of HeLa cells requires repression of E6 and E7 expression through an activity specified by the transactivation domain of E2TA. PMID:10684283

  3. Targeting angiogenesis in advanced cervical cancer.

    PubMed

    Eskander, Ramez N; Tewari, Krishnansu S

    2014-11-01

    Patients with advanced stage or recurrent cervical cancer represent a population with limited chemotherapeutic options. More specifically, patients with recurrent disease have a poor salvage rate, with a 5-year survival rate of less than 10%. This year, the first prospective phase III clinical trial exploring the anti-angiogenic agent, bevacizumab, was published, meeting its primary endpoint, with a significant improvement in overall survival. As such, a review of anti-angiogenic therapy in the treatment of this disease is warranted. PMID:25364393

  4. Cervical cancer - screening and prevention

    MedlinePlus

    ... be detected by a medical test called a Pap smear . Dysplasia is fully treatable. That is why it is important for women to get regular Pap smears, so that precancerous cells can be removed before ...

  5. Practice Bulletin No. 157: Cervical Cancer Screening and Prevention.

    PubMed

    2016-01-01

    The incidence of cervical cancer in the United States has decreased more than 50% in the past 30 years because of widespread screening. In 1975, the rate was 14.8 per 100,000 women. By 2011, it decreased to 6.7 per 100,000 women. Mortality from the disease has undergone a similar decrease from 5.55 per 100,000 women in 1975 to 2.3 per 100,000 women in 2011 (). The American Cancer Society (ACS) estimated that there would be 12,900 new cases of cervical cancer in the United States in 2015, with 4,100 deaths from the disease (). Cervical cancer is much more common worldwide, particularly in countries without screening programs, with an estimated 527,624 new cases of the disease and 265,672 resultant deaths each year (). When cervical cancer screening programs have been introduced into communities, marked reductions in cervical cancer incidence have followed ().New technologies for cervical cancer screening continue to evolve, as do recommendations for managing the results. In addition, there are different risk-benefit considerations for women at different ages, as reflected in age-specific screening recommendations. In 2011, the ACS, the American Society for Colposcopy and Cervical Pathology (ASCCP), and the American Society for Clinical Pathology (ASCP) updated their joint guidelines for cervical cancer screening (), as did the U.S. Preventive Services Task Force (USPSTF) (). Subsequently, in 2015, ASCCP and the Society of Gynecologic Oncology (SGO) issued interim guidance for the use of a human papillomavirus (HPV) test for primary screening for cervical cancer that was approved in 2014 by the U.S. Food and Drug Administration (FDA) (). The purpose of this document is to provide a review of the best available evidence regarding the prevention and early detection of cervical cancer. PMID:26695583

  6. Practice Bulletin No. 157 Summary: Cervical Cancer Screening and Prevention.

    PubMed

    2016-01-01

    The incidence of cervical cancer in the United States has decreased more than 50% in the past 30 years because of widespread screening. In 1975, the rate was 14.8 per 100,000 women. By 2011, it decreased to 6.7 per 100,000 women. Mortality from the disease has undergone a similar decrease from 5.55 per 100,000 women in 1975 to 2.3 per 100,000 women in 2011 (1). The American Cancer Society (ACS) estimated that there would be 12,900 new cases of cervical cancer in the United States in 2015, with 4,100 deaths from the disease (2). Cervical cancer is much more common worldwide, particularly in countries without screening programs, with an estimated 527,624 new cases of the disease and 265,672 resultant deaths each year (3). When cervical cancer screening programs have been introduced into communities, marked reductions in cervical cancer incidence have followed (4, 5).New technologies for cervical cancer screening continue to evolve, as do recommendations for managing the results. In addition, there are different risk-benefit considerations for women at different ages, as reflected in age-specific screening recommendations. In 2011, the ACS, the American Society for Colposcopy and Cervical Pathology (ASCCP), and the American Society for Clinical Pathology (ASCP) updated their joint guidelines for cervical cancer screening (6), as did the U.S. Preventive Services Task Force (USPSTF) (7). Subsequently, in 2015, ASCCP and the Society of Gynecologic Oncology (SGO) issued interim guidance for the use of a human papillomavirus (HPV) test for primary screening for cervical cancer that was approved in 2014 by the U.S. Food and Drug Administration (FDA) (8). The purpose of this document is to provide a review of the best available evidence regarding the prevention and early detection of cervical cancer. PMID:26695578

  7. MicroRNA miR-16-1 regulates CCNE1 (cyclin E1) gene expression in human cervical cancer cells

    PubMed Central

    Zubillaga-Guerrero, Ma Isabel; Alarcón-Romero, Luz del Carmen; Illades-Aguiar, Berenice; Flores-Alfaro, Eugenia; Bermúdez-Morales, Víctor Hugo; Deas, Jessica; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs are involved in diverse biological processes through regulation of gene expression. The microRNA profile has been shown to be altered in cervical cancer (CC). MiR-16-1 belongs to the miR-16 cluster and has been implicated in various aspects of carcinogenesis including cell proliferation and regulation of apoptosis; however, its function and molecular mechanism in CC is not clear. Cyclin E1 (CCNE1) is a positive regulator of the cell cycle that controls the transition of cells from G1 to S phase. In CC, CCNE1 expression is frequently upregulated, and is an indicator for poor outcome in squamous cell carcinomas (SCCs). Thus, in the present brief communication, we determine whether the CCNE1 gene is regulated by miR-16-1 in CC cells. To identify the downstream cellular target genes for upstream miR-16-1, we silenced endogenous miR-16-1 expression in cell lines derived from CC (C-33 A HPV-, CaSki HPV16+, SiHa HPV16+, and HeLa HPV18+ cells), using siRNAs expressed in plasmids. Using a combined bioinformatic analysis and RT-qPCR, we determined that the CCNE1 gene is targeted by miR-16-1 in CC cells. SiHa, CaSki, and HeLa cells demonstrated an inverse correlation between miR-16-1 expression and CCNE1 mRNA level. Thus, miR-16-1 post-transcriptionally down-regulates CCNE1 gene expression. These results, suggest that miR-16-1 plays a vital role in modulating cell cycle processes in CC. PMID:26629104

  8. MicroRNA miR-16-1 regulates CCNE1 (cyclin E1) gene expression in human cervical cancer cells.

    PubMed

    Zubillaga-Guerrero, Ma Isabel; Alarcón-Romero, Luz Del Carmen; Illades-Aguiar, Berenice; Flores-Alfaro, Eugenia; Bermúdez-Morales, Víctor Hugo; Deas, Jessica; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs are involved in diverse biological processes through regulation of gene expression. The microRNA profile has been shown to be altered in cervical cancer (CC). MiR-16-1 belongs to the miR-16 cluster and has been implicated in various aspects of carcinogenesis including cell proliferation and regulation of apoptosis; however, its function and molecular mechanism in CC is not clear. Cyclin E1 (CCNE1) is a positive regulator of the cell cycle that controls the transition of cells from G1 to S phase. In CC, CCNE1 expression is frequently upregulated, and is an indicator for poor outcome in squamous cell carcinomas (SCCs). Thus, in the present brief communication, we determine whether the CCNE1 gene is regulated by miR-16-1 in CC cells. To identify the downstream cellular target genes for upstream miR-16-1, we silenced endogenous miR-16-1 expression in cell lines derived from CC (C-33 A HPV-, CaSki HPV16+, SiHa HPV16+, and HeLa HPV18+ cells), using siRNAs expressed in plasmids. Using a combined bioinformatic analysis and RT-qPCR, we determined that the CCNE1 gene is targeted by miR-16-1 in CC cells. SiHa, CaSki, and HeLa cells demonstrated an inverse correlation between miR-16-1 expression and CCNE1 mRNA level. Thus, miR-16-1 post-transcriptionally down-regulates CCNE1 gene expression. These results, suggest that miR-16-1 plays a vital role in modulating cell cycle processes in CC. PMID:26629104

  9. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    PubMed Central

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis. PMID:26818472

  10. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.

  11. Human papillomavirus type 16 E7 oncoprotein upregulates the retinoic acid receptor-beta expression in cervical cancer cell lines and K14E7 transgenic mice.

    PubMed

    Gutiérrez, Jorge; García-Villa, Enrique; Ocadiz-Delgado, Rodolfo; Cortés-Malagón, Enoc M; Vázquez, Juan; Roman-Rosales, Alejandra; Alvarez-Rios, Elizabeth; Celik, Haydar; Romano, Marta C; Üren, Aykut; Lambert, Paul F; Gariglio, Patricio

    2015-10-01

    Persistent infection with high-risk human papillomaviruses is the main etiological factor in cervical cancer (CC). The human papillomavirus type 16 (HPV16) E7 oncoprotein alters several cellular processes, regulating the expression of many genes in order to avoid cell cycle control. Retinoic acid receptor beta (RARB) blocks cell growth, inducing differentiation and apoptosis. This tumor suppressor gene is gradually silenced in late passages of foreskin keratinocytes immortalized with HPV16 and in various tumors, including CC, mainly by epigenetic modifications. We investigated the effect of E7 oncoprotein on RARB gene expression. We found that HPV16 E7 increases RARB mRNA and RAR-beta protein expression both in vitro and in the cervix of young K14E7 transgenic mice. In E7-expressing cells, RARB overexpression is further increased in the presence of the tumor suppressor p53 (TP53) R273C mutant. This effect does not change when either C33-A or E7-expressing C33-A cell line is treated with Trichostatin A, suggesting that E7 enhances RARB expression independently of histone deacetylases inhibition. These findings indicate that RARB overexpression is part of the early molecular events induced by the E7 oncoprotein. PMID:26173416

  12. The lncRNA PVT1 Contributes to the Cervical Cancer Phenotype and Associates with Poor Patient Prognosis.

    PubMed

    Iden, Marissa; Fye, Samantha; Li, Keguo; Chowdhury, Tamjid; Ramchandran, Ramani; Rader, Janet S

    2016-01-01

    The plasmacytoma variant translocation 1 gene (PVT1) is an lncRNA that has been designated as an oncogene due to its contribution to the phenotype of multiple cancers. Although the mechanism by which PVT1 influences disease processes has been studied in multiple cancer types, its role in cervical tumorigenesis remains unknown. Thus, the present study was designed to investigate the role of PVT1 in cervical cancer in vitro and in vivo. PVT1 expression was measured by quantitative PCR (qPCR) in 121 invasive cervical carcinoma (ICC) samples, 30 normal cervix samples, and cervical cell lines. Functional assays were carried out using both siRNA and LNA-mediated knockdown to examine PVT1's effects on cervical cancer cell proliferation, migration and invasion, apoptosis, and cisplatin resistance. Our results demonstrate that PVT1 expression is significantly increased in ICC tissue versus normal cervix and that higher expression of PVT1 correlates with poorer overall survival. In cervical cancer cell lines, PVT1 knockdown resulted in significantly decreased cell proliferation, migration and invasion, while apoptosis and cisplatin cytotoxicity were significantly increased in these cells. Finally, we show that PVT1 expression is augmented in response to hypoxia and immune response stimulation and that this lncRNA associates with the multifunctional and stress-responsive protein, Nucleolin. Collectively, our results provide strong evidence for an oncogenic role of PVT1 in cervical cancer and lend insight into potential mechanisms by which PVT1 overexpression helps drive cervical carcinogenesis. PMID:27232880

  13. Venereal factors in human cervical cancer: evidence from marital clusters.

    PubMed

    Kessler, I I

    1977-04-01

    All Caucasian women in a large Eastern city who developed pathologically confirmed cervical cancer between 1950 and 1969 are being prospectively followed in an epidemiological test of the venereal hypothesis of cervical carcinogenesis. We are attempting to identify all men who were married to these probands at any time prior to the date of their cancer diagnosis. The ultimate objective is the identification of all the other wives of the proband husbands in order that their risk of cervical cancer be assessed. A random sample of control wives similar to the other wives in age, race, date and place of marriage as well as prior marital status is also being followed. To date, a total of 1,087 other wives and 659 control wives has been fully traced. Cervical cancer or carcinoma in situ was detected in 29 (2.7%) of the other wives and in seven (1.1%) of the control wives. A total of 14.0% of the other wives had either cervical cancer or a cervical cytological specimen which was other than normal. The corresponding statistic for the control wives was 8.0%. These differences in the prevalence of cervical cancer and of non-normal cervical cytology are statistically significant. In the course of this investigation so far, we have identified 29 "marital clusters" of cervical cancer in which two women married to the same man have all developed cervical neoplasms. The observed number of 29 clusters may be compared with an expected number of 11.6. This investigation, as yet incomplete, offers confirmatory evidence of the possible role of venereal factors in the pathogenesis of human cervical neoplasia. While the genital herpesvirus is the likeliest candidate, other venereal elements might also be involved. PMID:192439

  14. Neoadjuvant chemotherapy in cervical cancer in pregnancy.

    PubMed

    Ilancheran, Arunachalam

    2016-05-01

    Cervical cancer is the most common gynecological cancer encountered in pregnancy. The standard treatment of early cervical cancer is usually surgical removal of the cervix (in selected cases) or, more commonly, the uterus. However, when cervical cancer develops during pregnancy, definitive surgical treatment often needs to be postponed until the fetus reaches maturity. Neoadjuvant chemotherapy (NACT) is an innovative approach in the management of these patients. It helps in controlling the disease and delaying delivery. The paper presents a literature review of the history of NACT, as well as practice points and agenda for further research. PMID:26536815

  15. Second cancers following radiotherapy for cervical cancer

    SciTech Connect

    Kleinerman, R.A.; Curtis, R.E.; Boice, J.D. Jr.; Flannery, J.T.; Fraumeni, J.F. Jr.

    1982-11-01

    Incidence of second primary cancers was evaluated in 7,127 women with invasive cancer of the cervix uteri, diagnosed between 1935 and 1978, and followed up to 38 years (average, 8.9 yr) in Connecticut. Among 5,997 women treated with radiation, 449 developed second primary cancers compared with 313 expected (relative risk . 1.4) on the basis of rates from the Connecticut Tumor Registry. Excess incidence was noticeable 15 years or more after radiotherapy and attributed mostly to cancers of sites in or near the radiation field, especially the bladder, kidneys, rectum, corpus uteri, and ovaries. No excess was found for these sites among the 1,130 nonirradiated women. The ratio of observed to expected cancers for these sites did not vary appreciably by age at irradiation. The data suggested that high-dose pelvic irradiation was associated with increase in cancers of the bladder, kidneys, rectum, ovaries, corpus uteri, and non-Hodgkin's lymphoma but, apparently, not leukemia, Hodgkin's disease, breast cancer, or colon cancer.

  16. Inhibitory effects of Arhgap6 on cervical carcinoma cells.

    PubMed

    Li, Junping; Liu, Yang; Yin, Yihua

    2016-02-01

    Ras homology GTPase activation protein 6 (Arhgap6), as a member of the rhoGAP family of proteins, performs vital functions on the regulation of actin polymerization at the plasma membrane during several cellular processes. The role of Arhgap6 in the progression and development of cancer remains nearly unknown. This study aimed at exploring the effects of Arhgap6 on cervical carcinoma. Human cervical cancer cells HeLa and SiHa were transduced with a lentivirus targeting Arhgap6 (Arhgap6+), while CaSki and C4-1 cells were transfected with miRNA. Cell proliferation was identified by Cell Counting Kit-8 (CCK-8). Cell cycle distribution and cell apoptosis were identified by flow cytometry. The capacity of cell migration, invasion, and adhesion were detected by Transwell assay. Further, quantitative real-time PCR (qRT-PCR) and western blot were used to analyze the expression levels of Arhgap6 and several tumor-related genes. Co-immunoprecipitation assay was performed to validate the interaction between Arhgap6 and Rac3 (Ras-related C3 botulinum toxin substrate 3). Results showed that Arhgap6 inhibited cell proliferation, migration, invasion, and adhesion of cervical carcinoma, induced cell apoptosis, and caused cell cycle arrest in the G0/G1 phase (n = 3, p < 0.05). Expression of the tumor suppressor genes and oncogenes were up- and down-regulated respectively by Arhgap6, and Rac3 was proved to be the target of Arhgap6. Besides, in in vivo assays, tumor size and weight were destructed in Arhgap6+ athymic nude mouse. This study indicated that Arhgap6 may play a role in the treatment of cervical cancer as a tumor supressor. PMID:26628301

  17. Immunotherapy for human papillomavirus-associated disease and cervical cancer: review of clinical and translational research

    PubMed Central

    2016-01-01

    Cervical cancer is the fourth most lethal women's cancer worldwide. Current treatments against cervical cancer include surgery, radiotherapy, chemotherapy, and anti-angiogenic agents. However, despite the various treatments utilized for the treatment of cervical cancer, its disease burden remains a global issue. Persistent infection of human papillomavirus (HPV) has been identified as an essential step of pathogenesis of cervical cancer and many other cancers, and nation-wide HPV screening as well as preventative HPV vaccination program have been introduced globally. However, even though the commercially available prophylactic HPV vaccines, Gardasil (Merck) and Cervarix (GlaxoSmithKline), are effective in blocking the entry of HPV into the epithelium of cervix through generation of HPV-specific neutralizing antibodies, they cannot eliminate the pre-existing HPV infection. For these reason, other immunotherapeutic options against HPV-associated diseases, including therapeutic vaccines, have been continuously explored. Therapeutic HPV vaccines enhance cell-mediated immunity targeting HPV E6 and E7 antigens by modulating primarily dendritic cells and cytotoxic T lymphocyte. Our review will cover various therapeutic vaccines in development for the treatment of HPV-associated lesions and cancers. Furthermore, we will discuss the potential of immune checkpoint inhibitors that have recently been adopted and tested for their treatment efficacy against HPV-induced cervical cancer. PMID:27329199

  18. Immunotherapy for human papillomavirus-associated disease and cervical cancer: review of clinical and translational research.

    PubMed

    Lee, Sung Jong; Yang, Andrew; Wu, T C; Hung, Chien Fu

    2016-09-01

    Cervical cancer is the fourth most lethal women's cancer worldwide. Current treatments against cervical cancer include surgery, radiotherapy, chemotherapy, and anti-angiogenic agents. However, despite the various treatments utilized for the treatment of cervical cancer, its disease burden remains a global issue. Persistent infection of human papillomavirus (HPV) has been identified as an essential step of pathogenesis of cervical cancer and many other cancers, and nation-wide HPV screening as well as preventative HPV vaccination program have been introduced globally. However, even though the commercially available prophylactic HPV vaccines, Gardasil (Merck) and Cervarix (GlaxoSmithKline), are effective in blocking the entry of HPV into the epithelium of cervix through generation of HPV-specific neutralizing antibodies, they cannot eliminate the pre-existing HPV infection. For these reason, other immunotherapeutic options against HPV-associated diseases, including therapeutic vaccines, have been continuously explored. Therapeutic HPV vaccines enhance cell-mediated immunity targeting HPV E6 and E7 antigens by modulating primarily dendritic cells and cytotoxic T lymphocyte. Our review will cover various therapeutic vaccines in development for the treatment of HPV-associated lesions and cancers. Furthermore, we will discuss the potential of immune checkpoint inhibitors that have recently been adopted and tested for their treatment efficacy against HPV-induced cervical cancer. PMID:27329199

  19. Volasertib suppresses tumor growth and potentiates the activity of cisplatin in cervical cancer

    PubMed Central

    Xie, Feng-Feng; Pan, Shi-Shi; Ou, Rong-Ying; Zheng, Zhen-Zhen; Huang, Xiao-Xiu; Jian, Meng-Ting; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Yang, Yang; Li, Wen-Feng; Shi, Zhi; Yan, Xiao-Jian

    2015-01-01

    Volasertib (BI 6727), a highly selective and potent inhibitor of PLK1, has shown broad antitumor activities in the preclinical and clinical studies for the treatment of several types of cancers. However, the anticancer effect of volasertib on cervical cancer cells is still unknown. In the present study, we show that volasertib can markedly induce cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the decreased protein expressions of PLK1 substrates survivin and wee1 in human cervical cancer cells. Furthermore, volasertib also enhances the intracellular reactive oxidative species (ROS) levels, and pretreated with ROS scavenger N-acety-L-cysteine totally blocks ROS generation but partly reverses volasertib-induced apoptosis. In addition, volasertib significantly potentiates the activity of cisplatin to inhibit the growth of cervical cancer in vitro and in vivo. In brief, volasertib suppresses tumor growth and potentiates the activity of cisplatin in cervical cancer, suggesting the combination of volasertib and cisplatin may be a promising strategy for the treatment of patients with cervical cancer. PMID:26885445

  20. PKM2 enhances chemosensitivity to cisplatin through interaction with the mTOR pathway in cervical cancer.

    PubMed

    Zhu, Haiyan; Wu, Jun; Zhang, Wenwen; Luo, Hui; Shen, Zhaojun; Cheng, Huihui; Zhu, Xueqiong

    2016-01-01

    Pyruvate kinase M2 (PKM2) is a key driver of aerobic glycolysis in cancer cells and has been shown to be up-regulated by mTOR in vitro. Our previous proteomic profiling studies showed that PKM2 was significantly upregulated in cervical cancer tissues after treatment with neoadjuvant chemotherapy (NACT). Whether PKM2 expression predicts cisplatin-based NACT sensitivity and is mTOR dependent in cervical cancer patients remains unclear. Using paired tumor samples (pre- and post-chemotherapy) from 36 cervical cancer patients, we examined mTOR, HIF-1α, c-Myc, and PKM2 expression in cervical cancer samples and investigated the response to cisplatin-based NACT. In addition, we established PKM2 suppressed cervical cancer cell lines and evaluated their sensitivity to cisplatin in vitro. We found that the mTOR/HIF-1α/c-Myc/PKM2 signaling pathway was significantly downregulated in post-chemotherapy cervical cancer tissues. High levels of mTOR, HIF-1α, c-Myc, and PKM2 were associated with a positive chemotherapy response in cervical cancer patients treated with cisplatin-based NACT. In vitro, PKM2 knockdown desensitized cervical cancer cells to cisplatin. Moreover, PKM2 had complex interactions with mTOR pathways. mTOR, HIF1α, c-Myc, and PKM2 expression in cervical cancer may serve as predictive biomarkers to cisplatin-based chemotherapy. PKM2 enhances chemosensitivity to cisplatin through interaction with the mTOR pathway in cervical cancer. PMID:27492148

  1. PKM2 enhances chemosensitivity to cisplatin through interaction with the mTOR pathway in cervical cancer

    PubMed Central

    Zhu, Haiyan; Wu, Jun; Zhang, Wenwen; Luo, Hui; Shen, Zhaojun; Cheng, Huihui; Zhu, Xueqiong

    2016-01-01

    Pyruvate kinase M2 (PKM2) is a key driver of aerobic glycolysis in cancer cells and has been shown to be up-regulated by mTOR in vitro. Our previous proteomic profiling studies showed that PKM2 was significantly upregulated in cervical cancer tissues after treatment with neoadjuvant chemotherapy (NACT). Whether PKM2 expression predicts cisplatin-based NACT sensitivity and is mTOR dependent in cervical cancer patients remains unclear. Using paired tumor samples (pre- and post-chemotherapy) from 36 cervical cancer patients, we examined mTOR, HIF-1α, c-Myc, and PKM2 expression in cervical cancer samples and investigated the response to cisplatin-based NACT. In addition, we established PKM2 suppressed cervical cancer cell lines and evaluated their sensitivity to cisplatin in vitro. We found that the mTOR/HIF-1α/c-Myc/PKM2 signaling pathway was significantly downregulated in post-chemotherapy cervical cancer tissues. High levels of mTOR, HIF-1α, c-Myc, and PKM2 were associated with a positive chemotherapy response in cervical cancer patients treated with cisplatin-based NACT. In vitro, PKM2 knockdown desensitized cervical cancer cells to cisplatin. Moreover, PKM2 had complex interactions with mTOR pathways. mTOR, HIF1α, c-Myc, and PKM2 expression in cervical cancer may serve as predictive biomarkers to cisplatin-based chemotherapy. PKM2 enhances chemosensitivity to cisplatin through interaction with the mTOR pathway in cervical cancer. PMID:27492148

  2. Dual Regulation of Cell Death and Cell Survival upon Induction of Cellular Stress by Isopimara-7,15-Dien-19-Oic Acid in Cervical Cancer, HeLa Cells In vitro

    PubMed Central

    Abu, Nadiah; Yeap, Swee K.; Pauzi, Ahmad Z. Mat; Akhtar, M. Nadeem; Zamberi, Nur R.; Ismail, Jamil; Zareen, Seema; Alitheen, Noorjahan B.

    2016-01-01

    The Fritillaria imperialis is an ornamental flower that can be found in various parts of the world including Iraq, Afghanistan, Pakistan, and the Himalayas. The use of this plant as traditional remedy is widely known. This study aims to unveil the anti-cancer potentials of Isopimara-7,15-Dien-19-Oic Acid, extracted from the bulbs of F. imperialis in cervical cancer cell line, HeLa cells. Flow cytometry analysis of cell death, gene expression analysis via cDNA microarray and protein array were performed. Based on the results, Isopimara-7,15-Dien-19-Oic acid simultaneously induced cell death and promoted cell survival. The execution of apoptosis was apparent based on the flow cytometry results and regulation of both pro and anti-apoptotic genes. Additionally, the regulation of anti-oxidant genes were up-regulated especially thioredoxin, glutathione and superoxide dismutase- related genes. Moreover, the treatment also induced the activation of pro-survival heat shock proteins. Collectively, Isopimara-7,15-Dien-19-Oic Acid managed to induce cellular stress in HeLa cells and activate several anti- and pro survival pathways. PMID:27065873

  3. Anti-proliferative effect of RCE-4 from Reineckia carnea on human cervical cancer HeLa cells by inhibiting the PI3K/Akt/mTOR signaling pathway and NF-κB activation.

    PubMed

    Bai, Caihong; Yang, Xiaojiao; Zou, Kun; He, Haibo; Wang, Junzhi; Qin, Huilin; Yu, Xiaoqin; Liu, Chengxiong; Zheng, Juyan; Cheng, Fan; Chen, Jianfeng

    2016-06-01

    Cervical cancer is the second leading cause of cancer deaths in women worldwide. In recent years, the studies find that inflammation is a critical component of tumor progression, and the ideal therapeutic methods should be aimed at the inflammation reaction triggers. (1β,3β,5β,25S)-spirostan-1,3-diol1-[α-L-rhamnopyranosyl-(1 → 2)-β-D-xylopyranoside] (RCE-4) was the main active composition of Reineckia carnea (Andr.) Kunth. It significantly induced apoptosis in cervical cancer Caski cells through the mitochondrial pathway in our previous studies; however, its underlying mechanism remains poorly understood. This study aimed to further evaluate the effect of RCE-4 on human cervical cancer HeLa cells. Based on this observation, we investigated the anti-cervical cancer effect of RCE-4 by modulating phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway, nuclear factor-kappa B (NF-κB) activation, and inflammation-related key factors in HeLa cells. The results indicated that the HeLa cell was the most sensitive with an IC50 of 7.01 μM; RCE-4 significantly promoted the release of cellular lactate dehydrogenase (LDH); increased DNA fragmentation and apoptosis; reduced PI3K, Akt, mTOR, and NF-κBp65 phosphorylation levels; increased the Bax and cleaved poly (ADP-ribose) polymerase (PARP) protein levels; suppressed Bcl-2 protein expression; elevated the Bax/Bcl-2 expression ratio; and decreased the interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) mRNA expressions in HeLa cells in a concentration-dependent manner. These findings suggest that RCE-4 exerted beneficially anti-cervical cancer effect on HeLa cells, mainly inhibiting PI3K/Akt/mTOR signaling pathway phosphorylation and NF-κB activation, promoting HeLa cell apoptosis. Graphical abstract Anti-tumor effect of RCE-4 on HeLa cells. PMID:26935715

  4. Patient, Physician, and Nurse Factors Associated With Entry Onto Clinical Trials and Finishing Treatment in Patients With Primary or Recurrent Uterine, Endometrial, or Cervical Cancer

    ClinicalTrials.gov

    2016-02-09

    Recurrent Cervical Carcinoma; Recurrent Uterine Corpus Carcinoma; Recurrent Uterine Corpus Sarcoma; Stage I Uterine Corpus Cancer; Stage I Uterine Sarcoma; Stage IA Cervical Cancer; Stage IB Cervical Cancer; Stage II Uterine Corpus Cancer; Stage II Uterine Sarcoma; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage III Uterine Corpus Cancer; Stage III Uterine Sarcoma; Stage IV Uterine Corpus Cancer; Stage IV Uterine Sarcoma; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer

  5. Update on prevention and screening of cervical cancer

    PubMed Central

    McGraw, Shaniqua L; Ferrante, Jeanne M

    2014-01-01

    Cervical cancer is the third most common cause of cancer in women in the world. During the past few decades tremendous strides have been made toward decreasing the incidence and mortality of cervical cancer with the implementation of various prevention and screening strategies. The causative agent linked to cervical cancer development and its precursors is the human papillomavirus (HPV). Prevention and screening measures for cervical cancer are paramount because the ability to identify and treat the illness at its premature stage often disrupts the process of neoplasia. Cervical carcinogenesis can be the result of infections from multiple high-risk HPV types that act synergistically. This imposes a level of complexity to identifying and vaccinating against the actual causative agent. Additionally, most HPV infections spontaneously clear. Therefore, screening strategies should optimally weigh the benefits and risks of screening to avoid the discovery and needless treatment of transient HPV infections. This article provides an update of the preventative and screening methods for cervical cancer, mainly HPV vaccination, screening with Pap smear cytology, and HPV testing. It also provides a discussion of the newest United States 2012 guidelines for cervical cancer screening, which changed the age to begin and end screening and lengthened the screening intervals. PMID:25302174

  6. Limoniastrum guyonianum aqueous gall extract induces apoptosis in human cervical cancer cells involving p16INK4A re-expression related to UHRF1 and DNMT1 down-regulation

    PubMed Central

    2013-01-01

    Several reports have described the potential effects of natural compounds as anti-cancer agents in vitro as well as in vivo. The aim of this study was to evaluate the anti-cancer effect of Limoniastrum guyonianum aqueous gall extract (G extract) and luteolin in the human cervical cancer HeLa cell line, and, if so, to clarify the underlying mechanism. Our results show that G extract and luteolin inhibited cell proliferation and induced G2/M cell cycle arrest in a concentration and time-dependent manner. Both natural products induced programmed cell death as confirmed by the presence of hypodiploid G0/G1 cells. These effects are associated with an up-regulation of the expression of the tumor suppressor gene p16INK4A and a down-regulation of the expression of the anti-apoptotic actor UHRF1 and its main partner DNMT1. Moreover, G extract- and luteolin-induced UHRF1 and DNMT1 down-regulation is accompanied with a global DNA hypomethylation in HeLa cell line. Altogether our results show that G extract mediates its growth inhibitory effects on human cervical cancer HeLa cell line likely via the activation of a p16INK4A -dependent cell cycle checkpoint signalling pathway orchestrated by UHRF1 and DNMT1 down-regulation. PMID:23688286

  7. B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy

    PubMed Central

    Ma, Dong-Lei; Chen, Wen-Bo; Fu, Wu-Yu; Ruan, Bi-Bo; Rui, Wen; Zhang, Jia-Xuan; Wang, Sheng; Wong, Nai Sum; Xiao, Hao; Li, Man-Mei; Liu, Xiao; Liu, Qiu-Ying; Zhou, Xiao-dong; Yan, Hai-Zhao; Wang, Yi-Fei; Chen, Chang-Yan; Liu, Zhong; Chen, Hong-Yuan

    2015-01-01

    The synthetic curcumin analog B5 is a potent inhibitor of thioredoxin reductase (TrxR) that has potential anticancer effects. The molecular mechanism underlying B5 as an anticancer agent is not yet fully understood. In this study, we report that B5 induces apoptosis in two human cervical cancer cell lines, CaSki and SiHa, as evidenced by the downregulation of XIAP, activation of caspases and cleavage of PARP. The involvement of the mitochondrial pathway in B5-induced apoptosis was suggested by the dissipation of mitochondrial membrane potential and increased expression of pro-apoptotic Bcl-2 family proteins. In B5-treated cells, TrxR activity was markedly inhibited with concomitant accumulation of oxidized thioredoxin, increased formation of reactive oxygen species (ROS), and activation of ASK1 and its downstream regulatory target p38/JNK. B5-induced apoptosis was significantly inhibited in the presence of N-acetyl-l-cysteine. Microscopic examination of B5-treated cells revealed increased presence of cytoplasmic vacuoles. The ability of B5 to activate autophagy in cells was subsequently confirmed by cell staining with acridine orange, accumulation of LC3-II, and measurement of autophagic flux. Unlike B5-induced apoptosis, autophagy induced by B5 is not ROS-mediated but a role for the AKT and AMPK signaling pathways is implied. In SiHa cells but not CaSki cells, B5-induced apoptosis was promoted by autophagy. These data suggest that the anticarcinogenic effects of B5 is mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis and autophagy. PMID:26439985

  8. B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy.

    PubMed

    Shao, Fang-Yuan; Du, Zhi-Yun; Ma, Dong-Lei; Chen, Wen-Bo; Fu, Wu-Yu; Ruan, Bi-Bo; Rui, Wen; Zhang, Jia-Xuan; Wang, Sheng; Wong, Nai Sum; Xiao, Hao; Li, Man-Mei; Liu, Xiao; Liu, Qiu-Ying; Zhou, Xiao-Dong; Yan, Hai-Zhao; Wang, Yi-Fei; Chen, Chang-Yan; Liu, Zhong; Chen, Hong-Yuan

    2015-10-13

    The synthetic curcumin analog B5 is a potent inhibitor of thioredoxin reductase (TrxR) that has potential anticancer effects. The molecular mechanism underlying B5 as an anticancer agent is not yet fully understood. In this study, we report that B5 induces apoptosis in two human cervical cancer cell lines, CaSki and SiHa, as evidenced by the downregulation of XIAP, activation of caspases and cleavage of PARP. The involvement of the mitochondrial pathway in B5-induced apoptosis was suggested by the dissipation of mitochondrial membrane potential and increased expression of pro-apoptotic Bcl-2 family proteins. In B5-treated cells, TrxR activity was markedly inhibited with concomitant accumulation of oxidized thioredoxin, increased formation of reactive oxygen species (ROS), and activation of ASK1 and its downstream regulatory target p38/JNK. B5-induced apoptosis was significantly inhibited in the presence of N-acetyl-l-cysteine. Microscopic examination of B5-treated cells revealed increased presence of cytoplasmic vacuoles. The ability of B5 to activate autophagy in cells was subsequently confirmed by cell staining with acridine orange, accumulation of LC3-II, and measurement of autophagic flux. Unlike B5-induced apoptosis, autophagy induced by B5 is not ROS-mediated but a role for the AKT and AMPK signaling pathways is implied. In SiHa cells but not CaSki cells, B5-induced apoptosis was promoted by autophagy. These data suggest that the anticarcinogenic effects of B5 is mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis and autophagy. PMID:26439985

  9. Overexpression of lipocalin 2 in human cervical cancer enhances tumor invasion

    PubMed Central

    Liao, Chia-Jung; Hu, Jin-Yo; Lin, Yang-Hsiang; Tai, Pei-ju; Lai, Chyong-Huey; Lin, Kwang-Huei

    2016-01-01

    Cervical carcinoma is the third-most common cause of cancer-related deaths in women worldwide. However, the molecular mechanisms underlying the metastasis of cervical cancer are still unclear. Oligonucleotide microarrays coupled with bioinformatics analysis show that cytoskeletal remodeling and epithelial-to- mesenchymal transition (EMT) are significant pathways in clinical specimens of cervical cancer. In accord with clinical observations demonstrating ectopic expression of lipocalin 2 (LCN2), an oncogenic protein associated with EMT, in malignant tumors, was significantly upregulated in cervical cancer and correlated with lymph node metastasis. Overexpression of LCN2 enhanced tumor cell migration and invasion both in vitro and in vivo. Conversely, knockdown or neutralization of LCN2 reduced tumor cell migration and invasion. LCN2-induced migration was stimulated by activation of the EMT-associated proteins, Snail, Twist, N-cadherin, fibronectin, and MMP-9. Our findings collectively support a potential role of LCN2 in cancer cell invasion through the EMT pathway and suggest that LCN2 could be effectively utilized as a lymph node metastasis marker in cervical cancer. PMID:26840566

  10. Human Papillomavirus Genotype Distribution in Invasive Cervical Cancer in Pakistan

    PubMed Central

    Loya, Asif; Serrano, Beatriz; Rasheed, Farah; Tous, Sara; Hassan, Mariam; Clavero, Omar; Raza, Muhammad; De Sanjosé, Silvia; Bosch, F. Xavier; Alemany, Laia

    2016-01-01

    Few studies have assessed the burden of human papillomavirus (HPV) infection in Pakistan. We aim to provide specific information on HPV-type distribution in invasive cervical cancer (ICC) in the country. A total of 280 formalin-fixed paraffin-embedded tissue blocks were consecutively selected from Shaukat Khanum Memorial Cancer Hospital and Research Centre (Lahore, Pakistan). HPV-DNA was detected by SPF10 broad-spectrum PCR followed by DNA enzyme immunoassay and genotyping by LiPA25. HPV-DNA prevalence was 87.5% (95%CI: 83.0–91.1), with 96.1% of cases histologically classified as squamous cell carcinoma. Most of the HPV-DNA positive cases presented single infections (95.9%). HPV16 was the most common type followed by HPV18 and 45. Among HPV-DNA positive, a significantly higher contribution of HPV16/18 was detected in Pakistan (78.4%; 72.7–83.3), compared to Asia (71.6%; 69.9–73.4) and worldwide (70.8%; 69.9–71.8) and a lower contribution of HPVs31/33/45/52/58 (11.1%; 7.9–15.7 vs. 19.8%; 18.3–21.3 and 18.5%; 17.7–19.3). HPV18 or HPV45 positive ICC cases were significantly younger than cases infected by HPV16 (mean age: 43.3, 44.4, 50.5 years, respectively). A routine cervical cancer screening and HPV vaccination program does not yet exist in Pakistan; however, the country could benefit from national integrated efforts for cervical cancer prevention and control. Calculated estimations based on our results show that current HPV vaccine could potentially prevent new ICC cases. PMID:27483322

  11. Human Papillomavirus Genotype Distribution in Invasive Cervical Cancer in Pakistan.

    PubMed

    Loya, Asif; Serrano, Beatriz; Rasheed, Farah; Tous, Sara; Hassan, Mariam; Clavero, Omar; Raza, Muhammad; De Sanjosé, Silvia; Bosch, F Xavier; Alemany, Laia

    2016-01-01

    Few studies have assessed the burden of human papillomavirus (HPV) infection in Pakistan. We aim to provide specific information on HPV-type distribution in invasive cervical cancer (ICC) in the country. A total of 280 formalin-fixed paraffin-embedded tissue blocks were consecutively selected from Shaukat Khanum Memorial Cancer Hospital and Research Centre (Lahore, Pakistan). HPV-DNA was detected by SPF10 broad-spectrum PCR followed by DNA enzyme immunoassay and genotyping by LiPA25. HPV-DNA prevalence was 87.5% (95%CI: 83.0-91.1), with 96.1% of cases histologically classified as squamous cell carcinoma. Most of the HPV-DNA positive cases presented single infections (95.9%). HPV16 was the most common type followed by HPV18 and 45. Among HPV-DNA positive, a significantly higher contribution of HPV16/18 was detected in Pakistan (78.4%; 72.7-83.3), compared to Asia (71.6%; 69.9-73.4) and worldwide (70.8%; 69.9-71.8) and a lower contribution of HPVs31/33/45/52/58 (11.1%; 7.9-15.7 vs. 19.8%; 18.3-21.3 and 18.5%; 17.7-19.3). HPV18 or HPV45 positive ICC cases were significantly younger than cases infected by HPV16 (mean age: 43.3, 44.4, 50.5 years, respectively). A routine cervical cancer screening and HPV vaccination program does not yet exist in Pakistan; however, the country could benefit from national integrated efforts for cervical cancer prevention and control. Calculated estimations based on our results show that current HPV vaccine could potentially prevent new ICC cases. PMID:27483322

  12. CT of the normal and abnormal parametria in cervical cancer

    SciTech Connect

    Vick, C.W.; Walsh, J.W.; Wheelock, J.B.; Brewer, W.H.

    1984-09-01

    To evaluate CT criteria for differentiating a cervical cancer confined to the cervix from a lesion that invades the parametria, 16 patients with newly diagnosed, untreated cervical cancer were studied with CT. Twenty-five parameria were confined by radical hysterectomy, transvaginal parametrial fine-needle aspiration cytology, or excretory urography. In 17 tumor-positive parametria, CT findings associated with parametrial tumor invasion were: 1) irregularity or poor definition of the lateral cervical margins; 2) prominent parametrial soft-tissue strands; 3) obliteration of the periureteral fat plane; and 4) an eccentric parametrial soft-tissue mass. Irregularity of the cervical margins and prominent parametrial strands were seen most commonly with parametrial tumor invasion, but were also occasionally seen with parametrial inflammation. On the basis of the criteria developed in this report, CT may be used as an adjunct to the physical examination in differentiating stage I cervical cancer from more advanced disease in selected patients.

  13. Fatalistic Beliefs and Cervical Cancer Screening Among Mexican Women.

    PubMed

    Marván, Ma Luisa; Ehrenzweig, Yamilet; Catillo-López, Rosa Lilia

    2016-01-01

    Fatalistic beliefs about cervical cancer were studied in 464 Mexican women, and how such beliefs relate to participation in cervical cancer screening was evaluated. Rural women were less likely than urban women to have had a Pap test and more likely to believe that the illness is due to bad luck or fate. These were also the beliefs most associated with nonscreening among rural women, whereas for urban women the belief most associated with nonscreening was "there is not much I can do to prevent cervical cancer." PMID:25256106

  14. Mapping HPV Vaccination and Cervical Cancer Screening Practice in the Pacific Region-Strengthening National and Regional Cervical Cancer Prevention

    PubMed Central

    Obel, J; McKenzie, J; Buenconsejo-Lum, LE; Durand, AM; Ekeroma, A; Souares, Y; Hoy, D; Baravilala, W; Garland, SM; Kjaer, SK; Roth, A

    2015-01-01

    Objective To provide background information for strengthening cervical cancer prevention in the Pacific by mapping current human papillomavirus (HPV) vaccination and cervical cancer screening practices, as well as intent and barriers to the introduction and maintenance of national HPV vaccination programmes in the region. Materials and Methods A cross-sectional questionnaire-based survey among ministry of health officials from 21 Pacific Island countries and territories (n=21). Results Cervical cancer prevention was rated as highly important, but implementation of prevention programs were insufficient, with only two of 21 countries and territories having achieved coverage of cervical cancer screening above 40%. Ten of 21 countries and territories had included HPV vaccination in their immunization schedule, but only two countries reported coverage of HPV vaccination above 60% among the targeted population. Key barriers to the introduction and continuation of HPV vaccination were reported to be: (i) Lack of sustainable financing for HPV vaccine programs; (ii) Lack of visible government endorsement; (iii) Critical public perception of the value and safety of the HPV vaccine; and (iv) Lack of clear guidelines and policies for HPV vaccination. Conclusion Current practices to prevent cervical cancer in the Pacific Region do not match the high burden of disease from cervical cancer. A regional approach, including reducing vaccine prices by bulk purchase of vaccine, technical support for implementation of prevention programs, operational research and advocacy could strengthen political momentum for cervical cancer prevention and avoid risking the lives of many women in the Pacific. PMID:25921158

  15. Cervical Cancer: Development of Targeted Therapies Beyond Molecular Pathogenesis

    PubMed Central

    Knoff, Jayne; Yang, Benjamin; Hung, Chien-Fu; Wu, T.-C.

    2014-01-01

    It is well known that human papillomavirus (HPV) is the causative agent of cervical cancer. The integration of HPV genes into the host genome causes the upregulation of E6 and E7 oncogenes. E6 and E7 proteins inactivate and degrade tumor suppressors p53 and retinoblastoma, respectively, leading to malignant progression. HPV E6 and E7 antigens are ideal targets for the development of therapies for cervical cancer and precursor lesions because they are constitutively expressed in infected cells and malignant tumors but not in normal cells and they are essential for cell immortalization and transformation. Immunotherapies are being developed to target E6/E7 by eliciting antigen-specific immune responses. siRNA technologies target E6/E7 by modulating the expression of the oncoproteins. Proteasome inhibitors and histone deacetylase inhibitors are being developed to indirectly target E6/E7 by interfering with their oncogenic activities. The ultimate goal for HPV-targeted therapies is the progression through clinical trials to commercialization. PMID:24533233

  16. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition.

    PubMed

    Vidya Priyadarsini, R; Senthil Murugan, R; Maitreyi, S; Ramalingam, K; Karunagaran, D; Nagini, S

    2010-12-15

    With increasing use of plant-derived cancer chemotherapeutic agents, exploring the antiproliferative effects of phytochemicals has gained increasing momentum for anticancer drug design. The dietary phytochemical quercetin, modulates several signal transduction pathways associated with cell proliferation and apoptosis. The present study was undertaken to examine the effect of quercetin on cell viability, and to determine the molecular mechanism of quercetin-induced cell death by investigating the expression of Bcl-2 family proteins (Bcl-2, Bcl-xL, Mcl1, Bax, Bad, p-Bad), cytochrome C, Apaf-1, caspases, and survivin as well as the cell cycle regulatory proteins (p53, p21, cyclin D1), and NF-κB family members (p50, p65, IκB, p-IκB-α, IKKβ and ubiquitin ligase) in human cervical cancer (HeLa) cells. The results demonstrate that quercetin suppressed the viability of HeLa cells in a dose-dependent manner by inducing G2/M phase cell cycle arrest and mitochondrial apoptosis through a p53-dependent mechanism. This involved characteristic changes in nuclear morphology, phosphatidylserine externalization, mitochondrial membrane depolarization, modulation of cell cycle regulatory proteins and NF-κB family members, upregulation of proapoptotic Bcl-2 family proteins, cytochrome C, Apaf-1 and caspases, and downregulation of antiapoptotic Bcl-2 proteins and survivin. Quercetin that exerts opposing effects on different signaling networks to inhibit cancer progression is a classic candidate for anticancer drug design. PMID:20858478

  17. Induction of Apoptosis by Green Synthesized Gold Nanoparticles Through Activation of Caspase-3 and 9 in Human Cervical Cancer Cells

    PubMed Central

    Baharara, Javad; Ramezani, Tayebe; Divsalar, Adeleh; Mousavi, Marzieh; Seyedarabi, Arefeh

    2016-01-01

    Background: Gold Nanoparticles (GNPs) are used in imaging and molecular diagnostic applications. As the development of a novel approach in the green synthesis of metal nanoparticles is of great importance and a necessity, a simple and safe method for the synthesis of GNPs using plant extracts of Zataria multiflora leaves was applied in this study and the results on GNPs’ anticancer activity against HeLa cells were reported. Methods: The GNPs were characterized by UV-visible spectroscopy, FTIR, TEM, DLS and Zeta-potential measurements. In addition, the cellular up-take of nanoparticles was investigated using Dark Field Microscopy (DFM). Induction of apoptosis by high dose of GNPs in HeLa cells was assessed by MTT assay, Acridin orange, DAPI staining, Annexin V/PI double-labeling flow cytometry and caspase activity assay. Results: UV-visible spectroscopy results showed a surface plasmon resonance band for GNPs at 530 nm. FTIR results demonstrated an interaction between plant extract and nanoparticles. TEM images revealed different shapes for GNPs and DLS results indicated that the GNPs range in size from 10 to 42 nm. The Zeta potential values of the synthesized GNPs were between 30 to 50 Mev, indicating the formation of stable particles. As evidenced by MTT assay, GNPs inhibit proliferation of HeLa cells in dose-dependent GNPs and cytotoxicity of GNPs in Bone Marrow Mesenchymal Stem Cell (BMSCs) was lower than cancerous cells. At nontoxic concentrations, the cellular up-take of the nanoparticles took place. Acridin orange and DAPI staining showed morphological changes in the cell’s nucleus due to apoptosis. Finally, caspase activity assay demonstrated HeLa cell’s apoptosis through caspase activation. Conclusion: The results showed that GNPs have the ability to induce apoptosis in HeLa cells. PMID:27141266

  18. Structurally related ganoderic acids induce apoptosis in human cervical cancer HeLa cells: Involvement of oxidative stress and antioxidant protective system.

    PubMed

    Liu, Ru-Ming; Li, Ying-Bo; Liang, Xiang-Feng; Liu, Hui-Zhou; Xiao, Jian-Hui; Zhong, Jian-Jiang

    2015-10-01

    Ganoderic acids (GAs) produced by Ganoderma lucidum possess anticancer activities with the generation of reactive oxygen species (ROS). However, the role of oxidative stress in apoptotic process induced by GAs is still undefined. In this study, the effects of four structurally related GAs, i.e. GA-T, GA-Mk, and two deacetylated derivatives of GA-T (GA-T1 and GA-T2) on the antioxidant defense system and induced apoptosis in cervical cancer cells HeLa were investigated in vitro. Our results indicated that the tested GAs (5-40 μM) induced apoptotic cell death through mitochondrial membrane potential decrease and activation of caspase-9 and caspase-3. Furthermore, GAs increased the generation of intracellular ROS and attenuated antioxidant defense system by decreasing glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The above effects were remarkably blocked by the exogenous antioxidants, i.e. N-acetylcysteine, catalase and diphenyleneiodonium chloride. The potency of the four GAs toward induced apoptosis, generation of ROS and suppression of antioxidant defense system was in the order of: GA-T > GA-Mk ≈ GA-T1 > GA-T2 in HeLa cells. These findings suggest that GAs induced mitochondria-dependent cell apoptosis in HeLa cells are mediated via enhancing oxidative stress and depressing antioxidant defense. Additionally, the acetylation of hydroxyl groups in GAs may contribute to their pro-oxidant activities and cytotoxicity, which is helpful to the development of novel chemotherapy agents. PMID:26282491

  19. HPV vaccination: The most pragmatic cervical cancer primary prevention strategy.

    PubMed

    Sankaranarayanan, Rengaswamy

    2015-10-01

    The evidence that high-risk HPV infections cause cervical cancers has led to two new approaches for cervical cancer control: vaccination to prevent HPV infections, and HPV screening to detect and treat cervical precancerous lesions. Two vaccines are currently available: quadrivalent vaccine targeting oncogenic HPV types 16, 18, 6, and 11, and bivalent vaccine targeting HPV 16 and 18. Both vaccines have demonstrated remarkable immunogenicity and substantial protection against persistent infection and high-grade cervical cancer precursors caused by HPV 16 and 18 in HPV-naïve women, and have the potential to prevent 70% of cervical cancers in adequately vaccinated populations. HPV vaccination is now implemented in national programs in 62 countries, including some low- and middle-income countries. The early findings from routine national programs in high-income countries are instructive to encourage low- and middle-income countries with a high risk of cervical cancer to roll out HPV vaccination programs and to introduce resource-appropriate cervical screening programs. PMID:26433502

  20. Aspirin and Acetaminophen Use and the Risk of Cervical Cancer

    PubMed Central

    Friel, Grace; Liu, Cici S.; Kolomeyevskaya, Nonna V.; Hampras, Shalaka S.; Kruszka, Bridget; Schmitt, Kristina; Cannioto, Rikki A.; Lele, Shashikant B.; Odunsi, Kunle O.; Moysich, Kirsten B.

    2016-01-01

    Objective In this study, we investigated whether regular use of aspirin or acetaminophen was associated with risk of cervical cancer in women treated at an American cancer hospital. Methods This case-control study included 328 patients with cervical cancer and 1,312 controls matched on age and decade enrolled. Controls were women suspected of having but not ultimately diagnosed with a neoplasm. Analgesic use was defined as regular (at least once per week for ≥6 months), frequent (≥7 tablets/week), very long term (≥11 years), or frequent, long term (≥7 tablets per week for ≥5 years). Results Compared to nonusers, frequent aspirin use was associated with decreased odds of cervical cancer (odds ratio, 0.53; 95%confidence interval, 0.29–0.97). A slightly larger association was observed with frequent, long-term use of aspirin (odds ratio, 0.46; 95% confidence interval, 0.22–0.95). Acetaminophen use was not associated with the risk of cervical cancer. Conclusions Our findings suggest that frequent and frequent, long-term use of aspirin is associated with decreased odds of cervical cancer. To our knowledge, this is the first US-based study examining these associations. Given the widespread use of nonsteroidal anti-inflammatory drugs and acetaminophen worldwide, further investigations of the possible role of analgesics in cervical cancer, using a larger sample size with better-defined dosing regimens, are warranted. PMID:25856123

  1. Survival analysis of cervical cancer using stratified Cox regression

    NASA Astrophysics Data System (ADS)

    Purnami, S. W.; Inayati, K. D.; Sari, N. W. Wulan; Chosuvivatwong, V.; Sriplung, H.

    2016-04-01

    Cervical cancer is one of the mostly widely cancer cause of the women death in the world including Indonesia. Most cervical cancer patients come to the hospital already in an advanced stadium. As a result, the treatment of cervical cancer becomes more difficult and even can increase the death's risk. One of parameter that can be used to assess successfully of treatment is the probability of survival. This study raises the issue of cervical cancer survival patients at Dr. Soetomo Hospital using stratified Cox regression based on six factors such as age, stadium, treatment initiation, companion disease, complication, and anemia. Stratified Cox model is used because there is one independent variable that does not satisfy the proportional hazards assumption that is stadium. The results of the stratified Cox model show that the complication variable is significant factor which influent survival probability of cervical cancer patient. The obtained hazard ratio is 7.35. It means that cervical cancer patient who has complication is at risk of dying 7.35 times greater than patient who did not has complication. While the adjusted survival curves showed that stadium IV had the lowest probability of survival.

  2. Image-Guided Radiotherapy and -Brachytherapy for Cervical Cancer

    PubMed Central

    Dutta, Suresh; Nguyen, Nam Phong; Vock, Jacqueline; Kerr, Christine; Godinez, Juan; Bose, Satya; Jang, Siyoung; Chi, Alexander; Almeida, Fabio; Woods, William; Desai, Anand; David, Rick; Karlsson, Ulf Lennart; Altdorfer, Gabor

    2015-01-01

    Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT), and 2-dimensional intracavitary brachytherapy. Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron-emission tomography and magnetic resonance imaging has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT) may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT), allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer. PMID:25853092

  3. Bevacizumab improves survival for patients with advanced cervical cancer

    Cancer.gov

    Patients with advanced, recurrent, or persistent cervical cancer that was not curable with standard treatment who received the drug bevacizumab (Avastin) lived 3.7 months longer than patients who did not receive the drug, according to an interim analysis

  4. Grantee Spotlight: Dr. Kolawole Okuyemi - Improving Cervical Cancer Screening Attitudes

    Cancer.gov

    Dr. Kolawole Okuyumi is studying cervical cancer screening attitudes and behaviors of African immigrants and refugees in Minnesota, and introducing “cancer” and “cervix” to their everyday vocabulary.

  5. Image-guided radiotherapy and -brachytherapy for cervical cancer.

    PubMed

    Dutta, Suresh; Nguyen, Nam Phong; Vock, Jacqueline; Kerr, Christine; Godinez, Juan; Bose, Satya; Jang, Siyoung; Chi, Alexander; Almeida, Fabio; Woods, William; Desai, Anand; David, Rick; Karlsson, Ulf Lennart; Altdorfer, Gabor

    2015-01-01

    Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT), and 2-dimensional intracavitary brachytherapy. Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron-emission tomography and magnetic resonance imaging has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT) may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT), allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer. PMID:25853092

  6. Identification of DNA methylation of SOX9 in cervical cancer using methylated-CpG island recovery assay.

    PubMed

    Wu, Jian-Hong; Liang, Xue-Ai; Wu, Yu-Mei; Li, Feng-Shuang; Dai, Yin-Mei

    2013-01-01

    The aim of the present study was to identify novel methylation markers for cervical cancer screening and to test the clinical application of the most promising biomarker in cervical scrapings. Methylated-CpG island recovery assay-based microarray analysis was carried out on a discovery set consisting of cervical cancer tissue and normal cervical tissue to identify significantly hypermethylated genes. Five hundred and four CpG islands, corresponding to 378 genes, were differentially methylated between cervical cancer tissue and normal cervical tissue. Among them, 30 genes were significantly hypermethylated. Of the 30 genes, SOX9, PKLR and DLX4 were selected for further validation by direct bisulfite sequencing. The SOX9 gene revealed complete methylation in the cervical cancer tissue and complete non-methylation in the normal control tissue. A TaqMan-based real-time PCR assay was performed to detect the methylation levels of the SOX9 gene in 156 cervical scrapings, including 48 normal cervical scrapings, 30 scrapings with cervical intraepithelial neoplasia 1 (CIN1), 30 scrapings with CIN2-3 and 48 scrapings with squamous cell carcinoma (SCC). The methylation levels (methylation score) of the SOX9 gene increased significantly with the severity of cervical squamous lesions. The area under the receiver operating characteristic (ROC) curve (AUC) revealed that the methylation score of the SOX9 gene could be used to segregate SCC/CIN2-3 from CIN1/normal (AUC, 0.961; p=0.000). At the optimal cut-off value, a sensitivity of 92.3% and a specificity of 89.7% were obtained. In conclusion, SOX9 methylation is frequently involved in cervical carcinogenesis, and may provide a valuable molecular biomarker for early detection of cervical cancer. PMID:23064448

  7. Epidemiology and costs of cervical cancer screening and cervical dysplasia in Italy

    PubMed Central

    Rossi, Paolo Giorgi; Ricciardi, Alessandro; Cohet, Catherine; Palazzo, Fabio; Furnari, Giacomo; Valle, Sabrina; Largeron, Nathalie; Federici, Antonio

    2009-01-01

    Background We estimated the number of women undergoing cervical cancer screening annually in Italy, the rates of cervical abnormalities detected, and the costs of screening and management of abnormalities. Methods The annual number of screened women was estimated from National Health Interview data. Data from the Italian Group for Cervical Cancer Screening were used to estimate the number of positive, negative and unsatisfactory Pap smears. The incidence of CIN (cervical intra-epithelial neoplasia) was estimated from the Emilia Romagna Cancer Registry. Patterns of follow-up and treatment costs were estimated using a typical disease management approach based on national guidelines and data from the Italian Group for Cervical Cancer Screening. Treatment unit costs were obtained from Italian National Health Service and Hospital Information System of the Lazio Region. Results An estimated 6.4 million women aged 25–69 years undergo screening annually in Italy (1.2 million and 5.2 million through organized and opportunistic screening programs, respectively). Approximately 2.4% of tests have positive findings. There are approximately 21,000 cases of CIN1 and 7,000–17,000 cases of CIN2/3. Estimated costs to the healthcare service amount to €158.5 million for screening and €22.9 million for the management of cervical abnormalities. Conclusion Although some cervical abnormalities might have been underestimated, the total annual cost of cervical cancer prevention in Italy is approximately €181.5 million, of which 87% is attributable to screening. PMID:19243586

  8. Cervical cancer detection based on serum sample Raman spectroscopy.

    PubMed

    González-Solís, José Luis; Martínez-Espinosa, Juan Carlos; Torres-González, Luis Adolfo; Aguilar-Lemarroy, Adriana; Jave-Suárez, Luis Felipe; Palomares-Anda, Pascual

    2014-05-01

    The use of Raman spectroscopy to analyze the biochemical composition of serum samples and hence distinguish between normal and cervical cancer serum samples was investigated. The serum samples were obtained from 19 patients who were clinically diagnosed with cervical cancer, 3 precancer, and 20 healthy volunteer controls. The imprint was put under an Olympus microscope, and around points were chosen for Raman measurement.All spectra were collected at a Horiba Jobin-Yvon LabRAM HR800 Raman Spectrometer with a laser of 830-nm wavelength and 17-mW power irradiation. Raw spectra were processed by carrying out baseline correction, smoothing, and normalization to remove noise, florescence, and shot noise and then analyzed using principal component analysis (PCA). The control serum spectrum showed the presence of higher amounts of carotenoids indicated by peaks at 1,002, 1,160, and 1,523 cm(-1)and intense peaks associated with protein components at 754, 853, 938, 1,002, 1,300-1,345, 1,447, 1,523, 1,550, 1,620, and 1,654 cm(-1). The Raman bands assigned to glutathione (446, 828, and 1,404 cm(-1)) and tryptophan (509, 1,208, 1,556, 1,603, and 1,620 cm(-1)) in cervical cancer were higher than those of control samples, suggesting that their presence may also play a role in cervical cancer. Furthermore, weak bands in the control samples attributed to tryptophan (545, 760, and 1,174 cm(-1)) and amide III (1,234-1,290 cm(-1)) seem to disappear and decrease in the cervical cancer samples, respectively. It is shown that the serum samples from patients with cervical cancer and from the control group can be discriminated with high sensitivity and specificity when the multivariate statistical methods of PCA is applied to Raman spectra. PCA allowed us to define the wavelength differences between the spectral bands of the control and cervical cancer groups by confirming that the main molecular differences among the control and cervical cancer samples were glutathione, tryptophan,

  9. Outcome of treatment of human HeLa cervical cancer cells with roscovitine strongly depends on the dosage and cell cycle status prior to the treatment.

    PubMed

    Wesierska-Gadek, Józefa; Borza, Andreea; Walzi, Eva; Krystof, Vladimir; Maurer, Margarita; Komina, Oxana; Wandl, Stefanie

    2009-04-01

    Exposure of asynchronously growing human HeLa cervical carcinoma cells to roscovitine (ROSC), a selective cyclin-dependent kinases (CDKs) inhibitor, arrests their progression at the transition between G(2)/M and/or induces apoptosis. The outcome depends on the ROSC concentration. At higher dose ROSC represses HPV-encoded E7 oncoprotein and initiates caspase-dependent apoptosis. Inhibition of the site-specific phosphorylation of survivin and Bad, occurring at high-dose ROSC treatment, precedes the onset of apoptosis and seems to be a prerequisite for cell death. Considering the fact that in HeLa cells the G(1)/S restriction checkpoint is abolished by E7, we addressed the question whether the inhibition of CDKs by pharmacological inhibitors in synchronized cells would be able to block the cell-cycle in G(1) phase. For this purpose, we attempted to synchronize cells by serum withdrawal or by blocking of the mitotic apparatus using nocodazole. Unlike human MCF-7 cells, HeLa cells do not undergo G(1) block after serum starvation, but respond with a slight increase of the ratio of G(1) population. Exposure of G(1)-enriched HeLa cells to ROSC after re-feeding does not block their cell-cycle progression at G(1)-phase, but increases the ratio of S- and G(2)-phase, thereby mimicking the effect on asynchronously growing cells. A quite different impact is observed after treatment of HeLa cells released from mitotic block. ROSC prevents their cell cycle progression and cells transiently accumulate in G(1)-phase. These results show that inhibition of CDKs by ROSC in cells lacking the G(1)/S restriction checkpoint has different outcomes depending on the cell-cycle status prior to the onset of treatment. PMID:19180585

  10. [Current Status and Perspective of Chemoradiotherapy for Uterine Cervical Cancer].

    PubMed

    Toita, Takafumi; Ariga, Takuro; Kasuya, Goro; Hashimoto, Seiji; Maemoto, Hitoshi; Heianna, Joichi; Kakinohana, Yasumasa; Murayama, Sadayuki

    2015-10-01

    Fifteen years has passed since the NCI announced the clinical importance of concurrent chemoradiotherapy (CCRT) in radiotherapy for patients with locoregionally advanced uterine cervical cancer. Numerous clinical trials have been performed to further improve the outcomes of CCRT. In addition to investigations of chemotherapeutic regimens and schedules, adaptation of novel radiotherapy methods such as image-guided brachytherapy (IGBT) and intensity-modulated radiotherapy (IMRT) is encouraged in CCRT for cervical cancer. PMID:26489545

  11. Sphingosine kinase 1 is a reliable prognostic factor and a novel therapeutic target for uterine cervical cancer.

    PubMed

    Kim, Hyun-Soo; Yoon, Gun; Ryu, Ji-Yoon; Cho, Young-Jae; Choi, Jung-Joo; Lee, Yoo-Young; Kim, Tae-Joong; Choi, Chel-Hun; Song, Sang Yong; Kim, Byoung-Gie; Bae, Duk-Soo; Lee, Jeong-Won

    2015-09-29

    Sphingosine kinase 1 (SPHK1), an oncogenic kinase, has previously been found to be upregulated in various types of human malignancy and to play a crucial role in tumor development and progression. Although SPHK1 has gained increasing prominence as an important enzyme in cancer biology, its potential as a predictive biomarker and a therapeutic target in cervical cancer remains unknown. SPHK1 expression was examined in 287 formalin-fixed, paraffin-embedded cervical cancer tissues using immunohistochemistry, and its clinical implications and prognostic significance were analyzed. Cervical cancer cell lines including HeLa and SiHa were treated with the SPHK inhibitors SKI-II or FTY720, and effects on cell survival, apoptosis, angiogenesis, and invasion were examined. Moreover, the effects of FTY720 on tumor growth were evaluated using a patient-derived xenograft (PDX) model of cervical cancer. Immunohistochemical analysis revealed that expression of SPHK1 was significantly increased in cervical cancer compared with normal tissues. SPHK1 expression was significantly associated with tumor size, invasion depth, FIGO stage, lymph node metastasis, and lymphovascular invasion. Patients with high SPHK1 expression had lower overall survival and recurrence-free survival rates than those with low expression. Treatment with SPHK inhibitors significantly reduced viability and increased apoptosis in cervical cancer cells. Furthermore, FTY720 significantly decreased in vivo tumor weight in the PDX model of cervical cancer. We provide the first convincing evidence that SPHK1 is involved in tumor development and progression of cervical cancer. Our data suggest that SPHK1 might be a potential prognostic marker and therapeutic target for the treatment of cervical cancer. PMID:26311741

  12. Cervical cancer worry and screening among appalachian women.

    PubMed

    Kelly, Kimberly M; Schoenberg, Nancy; Wilson, Tomorrow D; Atkins, Elvonna; Dickinson, Stephanie; Paskett, Electra

    2015-04-01

    Although many have sought to understand cervical cancer screening (CCS) behavior, little research has examined worry about cervical cancer and its relationship to CCS, particularly in the underserved, predominantly rural Appalachian region. Our mixed method investigation aimed to obtain a more complete and theoretically-informed understanding of the role of cancer worry in CCS among Appalachian women, using the Self-Regulation Model (SRM). Our quantitative analysis indicated that the perception of being at higher risk of cervical cancer and having greater distress about cancer were both associated with greater worry about cancer. In our qualitative analysis, we found that, consistent with the SRM, negative affect had a largely concrete-experiential component, with many women having first-hand experience of the physical consequences of cervical cancer. Based on the results of this manuscript, we describe a number of approaches to lessen the fear associated with CCS. Intervention in this elevated risk community is merited and may focus on decreasing feelings of worry about cervical cancer and increasing communication of objective risk and need for screening. From a policy perspective, increasing the quantity and quality of care may also improve CCS rates and decrease the burden of cancer in Appalachia. PMID:25416153

  13. Cervical Cancer Worry and Screening Among Appalachian Women

    PubMed Central

    Schoenberg, Nancy; Wilson, Tomorrow D.; Atkins, Elvonna; Dickinson, Stephanie; Paskett, Electra

    2015-01-01

    Although many have sought to understand cervical cancer screening (CCS) behavior, little research has examined worry about cervical cancer and its relationship to CCS, particularly in the underserved, predominantly rural Appalachian region. Our mixed method investigation aimed to obtain a more complete and theoretically-informed understanding of the role of cancer worry in CCS among Appalachian women, using the Self-Regulation Model (SRM). Our quantitative analysis indicated that the perception of being at higher risk of cervical cancer and having greater distress about cancer were both associated with greater worry about cancer. In our qualitative analysis, we found that, consistent with the SRM, negative affect had a largely concrete-experiential component, with many women having first-hand experience of the physical consequences of cervical cancer. Based on the results of this manuscript, we describe a number of approaches to lessen the fear associated with CCS. Intervention in this elevated risk community is merited and may focus on decreasing feelings of worry about cervical cancer and increasing communication of objective risk and need for screening. From a policy perspective, increasing the quantity and quality of care may also improve CCS rates and decrease the burden of cancer in Appalachia. PMID:25416153

  14. Objective Diagnosis of Cervical Cancer by Tissue Protein Profile Analysis

    NASA Astrophysics Data System (ADS)

    Patil, Ajeetkumar; Bhat, Sujatha; Rai, Lavanya; Kartha, V. B.; Chidangil, Santhosh

    2011-07-01

    Protein profiles of homogenized normal cervical tissue samples from hysterectomy subjects and cancerous cervical tissues from biopsy samples collected from patients with different stages of cervical cancer were recorded using High Performance Liquid Chromatography coupled with Laser Induced Fluorescence (HPLC-LIF). The Protein profiles were subjected to Principle Component Analysis to derive statistically significant parameters. Diagnosis of sample types were carried out by matching three parameters—scores of factors, squared residuals, and Mahalanobis Distance. ROC and Youden's Index curves for calibration standards were used for objective estimation of the optimum threshold for decision making and performance.

  15. Survival rates of cervical cancer patients in Malaysia.

    PubMed

    Muhamad, Nor Asiah; Kamaluddin, Muhammad Amir; Adon, Mohd Yusoff; Noh, Mohamed Asyraf; Bakhtiar, Mohammed Faizal; Ibrahim Tamim, Nor Saleha; Mahmud, Siti Haniza; Aris, Tahir

    2015-01-01

    Cervical cancer is the most common malignant cancer of the female reproductive organs worldwide. Currently, cervical cancer can be prevented by vaccination and detected at an early stage via various screening methods. Malaysia, as a developing country faces a heavy disease burden of cervical cancer as it is the second most common cancer among Malaysian women. This population based study was carried out to fulfil the primary aim of determining the survival rates of Malaysian women with cervical cancer and associated factors. Data were obtained from two different sources namely, the Malaysian National Cancer Registry (MNCR) and National Health Informatics Centre (NHIC) from 1st January 2000 to 31st December 2005. Kaplan Meier analyses were conducted to identify the overall survival rates and median survival time. Differences in survival among different ethnic and age group were compared using the log-rank test. A total of 5,859 patients were included. The median survival time for cervical cancer in this study was 65.8 months and the 5-year survival rate was 71.1%. The overall observed survival rates at 1, 3 and 5 years were 94.1%, 79.3% and 71.1% respectively. The log-rank test finding also showed that there were significant differences in the 5-year survival rate among different ethnic groups. Malays had the lowest survival rate of 59.2% followed by Indians (69.5%) and Chinese (73.8%). The overall 5-year survival rate among patients with cervical cancer in Malaysia is relatively good. Age and ethnic groups remain as significant determining factors for cervical cancer survival rate. PMID:25854407

  16. New strategies in advanced cervical cancer: from angiogenesis blockade to immunotherapy.

    PubMed

    Tewari, Krishnansu S; Monk, Bradley J

    2014-11-01

    Cervical cancer remains unique among solid tumor malignancies. Persistent infection with oncogenic subtypes of the human papillomavirus (HPV) results in carcinogenesis, predominantly occurring at the cervical transformation zone where endocervical columnar cells undergo metaplasia to a stratified squamous epithelium. The molecular cascade involving viral oncoproteins, E6 and E7 and their degradative interactions with cellular tumor suppressor gene products, p53 and pRb, respectively, has been precisely delineated. The precursor state of cervical neoplasia may last for years allowing for ready detection through successful screening programs in developed countries using cervical cytology and/or high-risk HPV DNA testing. Prophylactic HPV L1 capsid protein vaccines using virus-like-particle technology have been developed to prevent primary infection by the most common high-risk HPVs (16 and 18). Women who lack access to health care and those who undergo sporadic screening remain at risk. Although radical surgery (including fertility-sparing surgery) is available for patients with early-stage cancers, and chemoradiation plus high-dose-rate brachytherapy can cure the majority of those with locally advanced disease, patients with metastatic and nonoperable recurrent cervical cancer constitute a high-risk population with an unmet clinical need. On August 14, 2014, the FDA approved the antiangiogenesis drug bevacizumab for women with advanced cervical cancer. This review will highlight advances in translational science, antiangiogenesis therapy and immunotherapy for advanced disease. PMID:25104084

  17. BRIP1 inhibits the tumorigenic properties of cervical cancer by regulating RhoA GTPase activity

    PubMed Central

    ZOU, WEI; MA, XIANGDONG; HUA, WEI; CHEN, BILIANG; HUANG, YANHONG; WANG, DETANG; CAI, GUOQING

    2016-01-01

    Breast cancer 1, early onset (BRCA1)-interacting protein 1 (BRIP1), a DNA-dependent adenosine triphosphatase and DNA helicase, is required for BRCA-associated DNA damage repair functions, and may be associated with the tumorigenesis and aggressiveness of various cancers. The present study investigated the expression of BRIP1 in normal cervix tissues and cervical carcinoma via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry assays. BRIP1 expression was observed to be reduced in squamous cancer tissue and adenocarcinoma compared with normal cervix tissue, and there were significant correlations between the reduction in BRIP1 expression and unfavorable variables, including the International Federation of Gynecologists and Obstetricians stage and presence of lymph node metastases. In order to elucidate the role of BRIP1 in cervical cancer, a BRIP1 recombinant plasmid was constructed and overexpressed in a cervical cancer cell line (HeLa). The ectopic expression of BRIP1 markedly inhibited the tumorigenic properties of HeLa cells in vitro, as demonstrated by decreased cell growth, invasion and adhesion, and increased cell apoptosis. In addition, it was identified that the inhibitory tumorigenic properties of BRIP1 may be partly attributed to the attenuation of RhoA GTPase activity. The present study provides a novel insight into the essential role of BRIP1 in cervical cancer, and suggests that BRIP1 may be a useful therapeutic target for the treatment of this common malignancy. PMID:26870246

  18. Screening for characteristic microRNAs between pre-invasive and invasive stages of cervical cancer

    PubMed Central

    ZHU, XIAO-LU; WEN, SHANG-YUN; AI, ZHI-HONG; WANG, JUAN; XU, YAN-LI; TENG, YIN-CHENG

    2015-01-01

    The aim of the present study was to investigate the characteristic microRNAs (miRNAs) expressed during the pre-invasive and invasive stages of cervical cancer. A gene expression profile (GSE7803) containing 21 invasive squamous cell cervical carcinoma samples, 10 normal squamous cervical epithelium samples and seven high-grade squamous intraepithelial cervical lesion samples, was obtained from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified using significance analysis of microarray software, and a Gene Ontology (GO) enrichment analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery. The miRNAs that interacted with the identified DEGs were selected, based on the TarBase v5.0 database. Regulatory networks were constructed from these selected miRNAs along with their corresponding target genes among the DEGs. The regulatory networks were visualized using Cytoscape. A total of 1,160 and 756 DEGs were identified in the pre-invasive and invasive stages of cervical cancer, respectively. The results of the GO enrichment demonstrated that the DEGs were predominantly involved in the immune response and the cell cycle, in the pre-invasive and invasive stages, respectively. Furthermore, a total of 18 and 26 characteristic miRNAs were screened in the pre-invasive and invasive stages, respectively. These miRNAs may be potential biomarkers and targets for the diagnosis and treatment of the different stages of cervical cancer. PMID:25695263

  19. Cervical conization and sentinel lymph node mapping in the treatment of stage I cervical cancer: is less enough?

    PubMed Central

    Andikyan, Vaagn; Khoury-Collado, Fady; Denesopolis, John; Park, Kay J.; Hussein, Yaser R.; Brown, Carol L.; Sonoda, Yukio; Chi, Dennis S.; Barakat, Richard R.; Abu-Rustum, Nadeem R.

    2016-01-01

    Objective To determine the feasibility of cervical conization and sentinel lymph node (SLN) mapping as a fertility-sparing strategy to treat stage I cervical cancer and estimate the tumor margin status needed to achieve no residual carcinoma in the cervix. Methods We identified all patients who desired fertility-preservation and underwent SLN mapping with cervical conization for stage I cervical cancer from 9/2005–8/2012. Relevant demographic, clinical, and pathological information was collected. Results Ten patients were identified. Median age was 28 years (range,18–36). None of the patients had a grossly visible tumor. The initial diagnosis of invasive carcinoma was made either on a loop electrosurgical excision procedure (LEEP) or cone biopsy. All patients underwent preoperative radiologic evaluation (MRI and PET-CT). None of the patients had evidence of gross tumor or suspicion of lymph node metastasis on imaging. Stage distribution included: IA1 with lymphovascular invasion, 7(70%); and microscopic IB1, 3(30%). Histology included: squamous cell carcinoma, 8(80%); adenocarcinoma, 1(10%); and clear cell carcinoma, 1(10%). Nine patients underwent repeat cervical conization with SLN mapping, and 1 patient underwent post-conization cervical biopsies and SLN mapping. None of the patients had residual tumor identified on the final specimen. The median distance from the invasive carcinoma to the endocervical margin was 2.25mm, and the distance from the invasive carcinoma to the ectocervical margin was 1.9mm. All collected lymph nodes were negative for metastasis. After a median follow-up of 17 months (range,1–83), none of the patients were diagnosed with recurrent disease and 3 patients (30%) achieved pregnancy. Conclusion Cervical conization and SLN mapping appears to be an acceptable treatment strategy for selected patients with small-volume stage I cervical cancer. Tumor clearance of ≥2mm appears to correlate well with no residual on repeat conization. A

  20. Socioecological perspectives on cervical cancer and cervical cancer screening among Asian American women.

    PubMed

    Lee, Jongwon; Carvallo, Mauricio

    2014-10-01

    Although cervical cancer is one of the most commonly diagnosed cancers among Vietnamese American women (VAW) and Korean American women (KAW), both groups consistently report much lower rates of cervical cancer screening compared with other Asian ethnic subgroups and non-Hispanic Whites. This study aimed to explore multilevel factors that may underlie low screening rates among VAW and KAW living in a city where their ethnic communities are relatively small. The socioecological model was used as a conceptual framework. Thirty participants were conveniently recruited from ethnic beauty salons run by VA and KA cosmetologists in Albuquerque, New Mexico. The participants' average age was 44.6 years (SD = .50; range = 21-60). Most participants were married (80 %) and employed (73.3 %), and had health insurance (83.3 %). A qualitative interview was conducted in Vietnamese or Korean and transcribed verbatim. A thematic content analysis was used to identify major codes, categories, and patterns across the transcripts. The study identified several factors at the individual (e.g., pregnancy, poverty, personality), interpersonal (e.g., family responsibility, mother as influential referent), and community (e.g., lack of availability, community size) levels. The study sheds light on four major areas that must be taken into consideration in the development of culturally appropriate, community-based interventions aimed to reduce disparities in cervical cancer screening among ethnic minority women in the United States: (1) ethnic community size and geographic location; (2) cross-cultural similarities and dissimilarities; (3) targeting of not only unmarried young women, but also close referents; and (4) utilization of trusted resources within social networks. PMID:24863746

  1. MicroRNA-744 inhibited cervical cancer growth and progression through apoptosis induction by regulating Bcl-2.

    PubMed

    Chen, Xiao-Fang; Liu, Yun

    2016-07-01

    Growing evidence suggests that microRNA plays an essential role in the development and metastasis of many tumor progressions, including cervical cancer. Aberrant miR-744 expression has been indicated in many growth of tumor, the mechanism of miR-744 inhibits both the proliferation and metastatic ability for cervical cancer remains unclear. Accumulating evidences reported that Bcl-2 signal pathway plays an important role in the cellular process, such as apoptosis, cell growth and proliferation. The goal of this study was to identify miR-744 that could inhibit the growth, migration, invasion, proliferation and metastasis of gastric cancer through targeting Bcl-2 expression. Real-time PCR (RT-qPCR) was used to quantify miR-744 expression in vitro and vivo experiments. The biological functions of miR-744 were determined via cell proliferation. Our study indicated that miR-744 targeted on Bcl-2, which leads to the inactivation of apoptosis signaling and the cell proliferation of cervical cancer cells, ameliorating cervical cancer growth and progression. In addition, both up-regulation of miR-744 and down-regulation of Bcl-2 could stimulate Caspase-3 expression, promoting apoptosis of cervical cancer cells. Therefore, our research revealed the mechanistic links between miR-744 and Bcl-2 in the pathogenesis of cervical cancer through modulation of Caspase-3, leading to the inhibition of cervical cancer cell growth. And targeting miR-744 could be served as a novel strategy for future cervical cancer therapy clinically. PMID:27261616

  2. Msi1 promotes tumor growth and cell proliferation by targeting cell cycle checkpoint proteins p21, p27 and p53 in cervical carcinomas

    PubMed Central

    Liu, Xian; Yang, Wen-Ting; Zheng, Peng-Sheng

    2014-01-01

    Musashi RNA-binding protein1 (Msi1), a member of the RNA-binding protein family, has been reported to be a diagnostic marker and potential therapeutic target in some cancers, its function in cervical cancer remains unknown. In this study, we found Msi1 was highly expressed in cervical cancer tissues, and over-expressing Msi1 in cervical cancer cells enhanced tumor formation and cell proliferation and accelerated cells into the S phase. Whereas, down-regulating Msi1 by shRNA in cervical cancer cells inhibited tumor formation and cell proliferation and slowed cell into the S phase, suggesting that Msi1 might act as cell cycle regulator. Immunohistochemistry assay showed the negative correlation between Msi1 and p21, p27 and p53, suggesting that Msi1 might regulate these cycle regulators in cervical cancer. Moreover, the expression of the p21, p27 and p53 proteins were down-regulated in Msi1 overexpressing cervical cancer cells and up-regulated in shMsi1 cervical cancer cells. Luciferase assays and RNA-protein binding assays confirmed that Msi1 could bind to the mRNA 3′UTRs of p21, p27 and p53 and suppress the translation of these proteins. Our findings provide new evidence that Msi1 might promote cell proliferation by accelerating the cell cycle by directly targeting p21, p27 and p53. PMID:25362645

  3. Health systems challenges in cervical cancer prevention program in Malawi

    PubMed Central

    Maseko, Fresier C.; Chirwa, Maureen L.; Muula, Adamson S.

    2015-01-01

    Background Cervical cancer remains the leading cause of cancer death among women in sub-Saharan Africa. In Malawi, very few women have undergone screening and the incidence of cervical cancer is on the increase as is the case in most developing countries. We aimed at exploring and documenting health system gaps responsible for the poor performance of the cervical cancer prevention program in Malawi. Design The study was carried out in 14 randomly selected districts of the 29 districts of Malawi. All cervical cancer service providers in these districts were invited to participate. Two semi-structured questionnaires were used, one for the district cervical cancer coordinators and the other for the service providers. The themes of both questionnaires were based on World Health Organization (WHO) health system frameworks. A checklist was also developed to audit medical supplies and equipment in the cervical cancer screening facilities. The two questionnaires together with the medical supplies and equipment checklist were piloted in Chikwawa district before being used as data collection tools in the study. Quantitative data were analyzed using STATA and qualitative in NVIVO. Results Forty-one service providers from 21 health facilities and 9 district coordinators participated in the study. Our findings show numerous health system challenges mainly in areas of health workforce and essential medical products and technologies. Seven out of the 21 health facilities provided both screening and treatment. Results showed challenges in the management of the cervical cancer program at district level; inadequate service providers who are poorly supervised; lack of basic equipment and stock-outs of basic medical supplies in some health facilities; and inadequate funding of the program. In most of the health facilities, services providers were not aware of the policy which govern their work and that they did not have standards and guidelines for cervical cancer screening and

  4. Chemotherapy and molecular targeting therapy for recurrent cervical cancer.

    PubMed

    Tsuda, Naotake; Watari, Hidemichi; Ushijima, Kimio

    2016-04-01

    For patients with primary stage ⅣB, persistent, or recurrent cervical cancer, chemotherapy remains the standard treatment, although it is neither curative nor associated with long-term disease control. In this review, we summarized the history of treatment of recurrent cervical cancer, and the current recommendation for chemotherapy and molecular targeted therapy. Eligible articles were identified by a search of the MEDLINE bibliographical database for the period up to November 30, 2014. The search strategy included the following any or all of the keywords: "uterine cervical cancer", "chemotherapy", and "targeted therapies". Since cisplatin every 21 days was considered as the historical standard treatment for recurrent cervical cancer, subsequent trials have evaluated and demonstrated activity for other agents including paclitaxel, gemcitabine, topotecan and vinorelbine among others. Accordingly, promising agents were incorporated into phase Ⅲ trials. To examine the best agent to combine with cisplatin, several landmark phase Ⅲ clinical trials were conducted by Gynecologic Oncology Group (GOG) and Japan Clinical Oncology Group (JCOG). Through, GOG204 and JCOG0505, paclitaxel/cisplatin (TP) and paclitaxel/carboplatin (TC) are now considered to be the recommended therapies for recurrent cervical cancer patients. However, the prognosis of patients who are already resistant to chemotherapy, are very poor. Therefore new therapeutic strategies are urgently required. Molecular targeted therapy will be the most hopeful candidate of these strategies. From the results of GOG240, bevacizumab combined with TP reached its primary endpoint of improving overall survival (OS). Although, the prognosis for recurrent cervical cancer patients is still poor, the results of GOG240 shed light on the usefulness of molecular target agents to chemotherapy in cancer patients. Recurrent cervical cancer is generally considered incurable and current chemotherapy regiments offer only

  5. Multihelix rotating shield brachytherapy for cervical cancer

    SciTech Connect

    Dadkhah, Hossein; Kim, Yusung; Flynn, Ryan T.; Wu, Xiaodong

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 4