Science.gov

Sample records for cell culture studies

  1. Cell culture systems to study glial transformation

    SciTech Connect

    Bressler, J.P.; Cole, R.; de Vellis, J.

    1980-01-01

    The transformation of two different types of glial cells has been studied using an in vivo-/in vitro model and a complete in vitro model. The purpose of the study and to define in vitro model systems is to study the the neoplastic transformation of pure populations of glial cells. Data are presented to demonstrate that the transformed cells are glial and tumorigenic. (ACR)

  2. Qualitative study of three cell culture methods.

    PubMed

    Wang, Aiguo; Xia, Tao; Ran, Peng; Chen, Xuemin; Nuessler, Andreas K

    2002-01-01

    Primary rat hepatocytes were cultured using different in vitro models and the enzyme leakage, albumin secretion, and cytochrome P450 1A (CYP 1A) activity were observed. The results showed that the level of LDH was decreased over time in culture. However, on day 5, LDH showed a significant increase in monolayer culture (MC) while after day 8 no LDH was detectable in sandwich culture (SC). The levels of AST and ALT did not change significantly over the investigated time. The CYP 1A activity was gradually decreased in a time-dependent manner in MC and SC. The decline of CYP 1A was faster in MC than in SC. This effect was partially reversed by using cytochrome P450 (CYP450) inducer such as Omeprazol and 3-methylcholanthrene (3-MC) and the CYP 1A induction was always higher in MC than in SC. In bioreactor basic CYP 1A activity was preserved over 2 weeks and the highest albumin production was observed in bioreactor followed by SC and MC. Taken together, it was indicated each investigated model had its advantages and disadvantages. It was also underlined that various in vitro models may address different questions. PMID:12674760

  3. Studying melanin and lipofuscin in RPE cell culture models

    PubMed Central

    Boulton, Michael E

    2014-01-01

    The retinal pigment epithelium contains three major types of pigment granules; melanosomes, lipofuscin and melanolipofuscin. Melanosomes in the retinal pigment epithelium (RPE) are formed during embryogenesis and mature during early postnatal life while lipofuscin and melanolipofuscin granules accumulate as a function of age. The difficulty in studying the formation and consequences of melanosomes and lipofuscin granules in RPE cell culture is compounded by the fact that these pigment granules do not normally occur in established RPE cell lines and pigment granules are rapidly lost in adult human primary culture. This review will consider options available for overcoming these limitations and permitting the study of melanosomes and lipofuscin in cell culture and will briefly evaluate the advantages and disadvantages of the different protocols. PMID:25152361

  4. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    NASA Astrophysics Data System (ADS)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters

  5. Sex stratified neuronal cultures to study ischemic cell death pathways.

    PubMed

    Fairbanks, Stacy L; Vest, Rebekah; Verma, Saurabh; Traystman, Richard J; Herson, Paco S

    2013-01-01

    Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome. PMID:24378980

  6. Studies of the metabolism of cell cultures by microspectrofluoroscopy

    NASA Astrophysics Data System (ADS)

    Hoehne, Wolfgang; Schramm, Werner; Moritzen, V.; Burgmann, U.; Kronfeldt, Heinz D.

    1996-01-01

    The monitoring of the state of cellular energy metabolism and respiratory activity is a necessary procedure in cell biology and pharmacology. One method is the observation of the redox state by NADH and FAD autofluorescence measurements. Using this technique, investigations on endothelial cell cultures were done to study their behavior under pharmacologic influences. One application was the investigation of cytotoxicity of cyanides, blocking the mitochondrial respiratory chain. Further we studied the activation of energy metabolism as a step of the cellular reaction on extracellular impacts. The measurements have been performed with a fluorescence microscope Zei(beta) Axioplan, extended by a PMT and a CCD camera. During examination, the cell cultures were kept under nearly physiological conditions using a specialized perfusion chamber. The measurements took place on cellular monolayers. Different excitation geometries have been studied to overcome the difficulties, which arose from the very weak absorption of the cell monolayer, resulting in a low quantum yield and SNR. In classical cytotoxicity studies, only the statistical long-time effects (e.g. IC50) of cell damages are recorded. By redox microspectrofluorometry it is possible to observe the process of damage in its progress, shown by the presented results. In the second, more complex model, we studied the reaction of cells on ligands like PIA (Phenylisopropyladenosin). In this case, the intracellular reaction is connected with an increased production of cAMP. Again, this requires an increased production of ATP, which leads to an activation of the cellular energy metabolism. The spectroscopic results are interpreted by a first model.

  7. Soft Micro-Channels for Cell Culturing and Migration Studies

    NASA Astrophysics Data System (ADS)

    Abbasirazgaleh, Sara

    Various techniques and methods have been studied and developed to aid nerve regeneration and repairing nerve injuries. Among all, nerve grafting is the gold standard for bridging the gap between the injured nerve stumps. Despite the advantages of this technique, there are also various drawbacks that have encouraged the exploration of alternative, less invasive methods for promoting nerve regeneration. In this thesis, we have fabricated soft micro-channels for cell culturing and migration studies which could act as an interface capable of long-term, reliable, and high-resolution stimulation device for nerve regeneration. Micro-channels fabrication is performed using a combination of photolithography technique and physical vapor deposition (PVD) methods. Initially, the surfaces of the micro-channels are treated with oxygen plasma to convert the surface of PDMS from hydrophobic to hydrophilic and to further provide an optimal environment for cells to adhere and grow. Next, in vitro studies were performed on the fabricated micro-channels to demonstrate feasibility of the platform to promote adherence and growth of PC12 cells (cell line derived from a pheochromocytomas of the rat adrenal medulla).

  8. Studies on canine bone marrow long-term culture: effect of stem cell factor.

    PubMed

    Neuner, E; Schumm, M; Schneider, E M; Guenther, W; Kremmer, E; Vogl, C; Büttner, M; Thierfelder, S; Kolb, H J

    1998-02-16

    Long-term culture of canine marrow cells allows in vitro studies of the hematopoietic system of the dog and characterization of early progenitor cells. Colonies of fresh marrow cells grew equally good in both agar or methylcellulose supplemented with fetal calf serum, while colonies of long-term cultures required agar-based medium containing human serum. Optimum colony growth was obtained when stem cell factor (SCF) and granulocyte-macrophage-colony-stimulating factor (GM-CSF) were used as growth stimuli of colony forming units (CFU). Similar results were achieved with several cell culture media. Addition of hydrocortisone to long-term cultures improved clonogenic growth of cultured cells. Addition of 2-mercaptoethanol had no effect. Strong differences were observed in long-term culture with different horse serum lots and the addition of fetal calf serum to long-term culture suppressed CFU growth of cultured cells. Recharging of cultures with fresh marrow cells on day 7 of culture improved CFU growth only in the following week but had little effect on the outcome. Adding SCF to long-term cultures led to differentiation of more primitive cells and destruction of the stromal layer. Investigation of purified and cultured cell populations was possible when preestablished long-term cultures as stromal layers were used. Loss of long-term culture-initiating ability could be demonstrated in this system with lineage negative marrow cells expanded ex vivo with SCF and GM-CSF. PMID:9613468

  9. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells

    PubMed Central

    Drummond, Coyne G.

    2015-01-01

    ABSTRACT Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and

  10. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells.

    PubMed

    Drummond, Coyne G; Nickerson, Cheryl A; Coyne, Carolyn B

    2016-01-01

    Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the

  11. Advances in cell culture

    SciTech Connect

    Maramorosch, K. )

    1987-01-01

    This book presents papers on advances in cell culture. Topics covered include: Genetic changes in the influenza viruses during growth in cultured cells; The biochemistry and genetics of mosquito cells in culture; and Tree tissue culture applications.

  12. Proteomic Analysis of Grape Berry Cell Cultures Reveals that Developmentally Regulated Ripening Related Processes Can Be Studied Using Cultured Cells

    PubMed Central

    Sharathchandra, Ramaschandra G.; Stander, Charmaine; Jacobson, Dan; Ndimba, Bongani; Vivier, Melané A.

    2011-01-01

    Background This work describes a proteomics profiling method, optimized and applied to berry cell suspensions to evaluate organ-specific cultures as a platform to study grape berry ripening. Variations in berry ripening within a cluster(s) on a vine and in a vineyard are a major impediment towards complete understanding of the functional processes that control ripening, specifically when a characterized and homogenous sample is required. Berry cell suspensions could overcome some of these problems, but their suitability as a model system for berry development and ripening needs to be established first. Methodology/Principal Findings In this study we report on the proteomic evaluation of the cytosolic proteins obtained from synchronized cell suspension cultures that were established from callus lines originating from green, véraison and ripe Vitis vinifera berry explants. The proteins were separated using liquid phase IEF in a Microrotofor cell and SDS PAGE. This method proved superior to gel-based 2DE. Principal component analysis confirmed that biological and technical repeats grouped tightly and importantly, showed that the proteomes of berry cultures originating from the different growth/ripening stages were distinct. A total of twenty six common bands were selected after band matching between different growth stages and twenty two of these bands were positively identified. Thirty two % of the identified proteins are currently annotated as hypothetical. The differential expression profile of the identified proteins, when compared with published literature on grape berry ripening, suggested common trends in terms of relative abundance in the different developmental stages between real berries and cell suspensions. Conclusions The advantages of having suspension cultures that accurately mimic specific developmental stages are profound and could significantly contribute to the study of the intricate regulatory and signaling networks responsible for berry

  13. Epithelial Cell Culture from Human Adenoids: A Functional Study Model for Ciliated and Secretory Cells

    PubMed Central

    González, Claudia; Espinosa, Marisol; Sánchez, María Trinidad; Droguett, Karla; Ríos, Mariana; Fonseca, Ximena; Villalón, Manuel

    2013-01-01

    Background. Mucociliary transport (MCT) is a defense mechanism of the airway. To study the underlying mechanisms of MCT, we have both developed an experimental model of cultures, from human adenoid tissue of ciliated and secretory cells, and characterized the response to local chemical signals that control ciliary activity and the secretion of respiratory mucins in vitro. Materials and Methods. In ciliated cell cultures, ciliary beat frequency (CBF) and intracellular Ca2+ levels were measured in response to ATP, UTP, and adenosine. In secretory cultures, mucin synthesis and secretion were identified by using immunodetection. Mucin content was taken from conditioned medium and analyzed in the presence or absence of UTP. Results. Enriched ciliated cell monolayers and secretory cells were obtained. Ciliated cells showed a basal CBF of 10.7 Hz that increased significantly after exposure to ATP, UTP, or adenosine. Mature secretory cells showed active secretion of granules containing different glycoproteins, including MUC5AC. Conclusion. Culture of ciliated and secretory cells grown from adenoid epithelium is a reproducible and feasible experimental model, in which it is possible to observe ciliary and secretory activities, with a potential use as a model to understand mucociliary transport control mechanisms. PMID:23484122

  14. Micropatterned superhydrophobic structures for the simultaneous culture of multiple cell types and the study of cell-cell communication.

    PubMed

    Efremov, Alexander N; Stanganello, Eliana; Welle, Alexander; Scholpp, Steffen; Levkin, Pavel A

    2013-02-01

    The ability to control spatial arrangement and geometry of different cell types while keeping them separated and in close proximity for a long time is crucial to mimic and study variety of biological processes in vitro. Although the existing cell patterning technologies allow co-culturing of different cell types, they are usually limited to relatively simple geometry. The methods used for obtaining complex geometries are usually applicable for patterning only one or two cell types. Here we introduce a convenient method for creating patterns of multiple (up to twenty) different cell types on one substrate. The method virtually allows any complexity of cell pattern geometry. Cell positioning on the substrate is realized by a parallel formation of multiple cell-containing microreservoirs confined to the geometry of highly hydrophilic regions surrounded by superhydrophobic borders built-in a fine nanoporous polymer film. As a case study we showed the cross-talk between two cell populations via Wnt signaling molecules propagation during co-culture in a mutual culture medium. PMID:23228425

  15. Nitric oxide delivery system for cell culture studies.

    PubMed

    Wang, Chen; Deen, William M

    2003-01-01

    To investigate the toxicity and mutagenicity of NO, methods are needed to deliver it to cell cultures at known, constant rates. To permit continuous exposures over lengthy periods, we fabricated a simple apparatus utilizing gas-permeable polydimethylsiloxane (Silastic) tubing to supply both NO and O2 to a stirred, cylindrical vessel. Mass transfer in this system was characterized by measuring the delivery rates of NO or O2 alone, and of NO to air-saturated solutions. The concentrations of NO, O2, and NO2- (the end product of NO oxidation) were monitored continuously. The total flux of nitrogen species into the liquid (as determined from the sum of NO and NO2- accumulation) was 50%-90% greater in the presence of O2, depending on the NO partial pressure in the gas. Also, the simultaneously measured mass transfer coefficients for NO and O2 differed greatly from the corresponding unreactive values. An analysis of the data using diffusion-reaction models showed that NO oxidation in the aqueous boundary layer contributed very little to the nitrogen flux increase or to variations in the mass transfer coefficients. However, the unusually strong dependence of the delivery rates on chemical reactions could be explained by postulating that partial oxidation of NO to NO2 occurred within the membrane. The rate constant we estimated for polydimethylsiloxane, 4.4 x 10(5) M-2 s(-1) at 23 degrees C, is only about one-fifth of values reported previously for water and nonpolar solvents, but the high solubilities of NO and O2 in the polymer are sufficient to make NO2 formation significant. Although considerable NO2 is calculated to enter the liquid, its reaction with aqueous NO is rapid enough to keep this undesired compound at trace levels, except within a few microns of the tubing. Thus, cells will have little exposure to NO2 PMID:12572657

  16. Studies on a photoreactivating enzyme from Drosophila melanogaster cultured cells

    SciTech Connect

    Beck, L.A.

    1982-01-01

    A photoreactivating enzyme was purified from Schneider's Line No. 2 Drosophila melanogaster cultured cells. DEAE cellulose chromatography with high potassium phosphate buffer conditions was used to separate nucleic acids from the protein component of the crude cell extract. The protein pass-through fraction from DEAE cellulose was chromatographed on phosphocellulose followed by hydroxylapatite, using linear potassium phosphate gradients to elute the enzyme. Gel filtration chromatography on Sephacryl S-200 resulted in a 4500-fold purification of the enzyme with a final recovery of 4%. The enzyme has an apparent gel filtration molecular weight of 32,900 (+/- 1350 daltons) and an isoelectric pH of 4.9. Optimum ionic strength for activity is 0.17 at pH 6.5 in potassium phosphate buffer. The action spectrum for photoreactivation in Drosophila has an optimum at 365 nm with a response to wavelengths in the range of 313 to 465 nm. Drosophila photoreactivating enzyme contains an essential RNA that is necessary for activity in vitro. The ability of the enzyme to photoreactivate dimers in vitro is abolished by treatment of the enzyme with ribonucleases, or by disruption of the enzyme-RNA complex by electrophoresis or adsorption to DEAE cellulose. The essential RNA is heterogeneous in size but contains a 10-12 base region that may interact with the active site of the enzyme, and thus is protected from degradation by contaminating RNase activities during purification. The RNA is thought to stabilize the photoreactivating enzyme by maintaining the enzyme in the proper configuration for binding to dimer-containing DNA. It is not known whether this RNA is essential for in vivo photoreactivation.

  17. Assessment of cell death studies by monitoring hydrogen peroxide in cell culture.

    PubMed

    Hirsch, Irina; Prell, Erik; Weiwad, Matthias

    2014-07-01

    Hydrogen peroxide (H2O2) has been widely used to study the oxidative stress response. However, H2O2 is unstable and easily decomposes into H2O and O2. Consequently, a wide range of exposure times and treatment concentrations has been described in the literature. In the present study, we established a ferrous oxidation-xylenol orange (FOX) assay, which was originally described for food and body liquids, as a method for the precise quantification of H2O2 concentrations in cell culture media. We observed that the presence of FCS and high cell densities significantly accelerate the decomposition of H2O2, therefore acting as a protection against cell death by accidental necrosis. PMID:24747006

  18. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  19. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds

    PubMed Central

    Röder, Alexander; García-Gareta, Elena; Theodoropoulos, Christina; Ristovski, Nikola; Blackwood, Keith A.; Woodruff, Maria A.

    2015-01-01

    The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface properties to assess whether seeding efficiencies and cell growth on 3D scaffolds were affected. Cell attachment and growth of murine calvarial osteoblast (MC3T3-E1) cells within a melt-electrospun poly-ε-caprolactone scaffold were assessed when cultured in either “low-adhesive” non-treated or corona discharged-treated well-plates. Increased cell adhesion was observed on the scaffold placed in the surface treated culture plates compared to the scaffold in the non-treated plates 24 h after seeding, although it was not significant. However, higher cell metabolic activity was observed on the bases of all well-plates than on the scaffold, except for day 21, well metabolic activity was higher in the scaffold contained in non-treated plate than the base. These results indicate that there is no advantage in using non-treated plates to improve initial cell seeding in 3D polymeric tissue engineering scaffolds, however non-treated plates may provide an improved metabolic environment for long-term studies. PMID:26703748

  20. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds.

    PubMed

    Röder, Alexander; García-Gareta, Elena; Theodoropoulos, Christina; Ristovski, Nikola; Blackwood, Keith A; Woodruff, Maria A

    2015-01-01

    The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface properties to assess whether seeding efficiencies and cell growth on 3D scaffolds were affected. Cell attachment and growth of murine calvarial osteoblast (MC3T3-E1) cells within a melt-electrospun poly-ε-caprolactone scaffold were assessed when cultured in either "low-adhesive" non-treated or corona discharged-treated well-plates. Increased cell adhesion was observed on the scaffold placed in the surface treated culture plates compared to the scaffold in the non-treated plates 24 h after seeding, although it was not significant. However, higher cell metabolic activity was observed on the bases of all well-plates than on the scaffold, except for day 21, well metabolic activity was higher in the scaffold contained in non-treated plate than the base. These results indicate that there is no advantage in using non-treated plates to improve initial cell seeding in 3D polymeric tissue engineering scaffolds, however non-treated plates may provide an improved metabolic environment for long-term studies. PMID:26703748

  1. Biotransformations of Antidiabetic Vanadium Prodrugs in Mammalian Cells and Cell Culture Media: A XANES Spectroscopic Study

    PubMed Central

    2016-01-01

    The antidiabetic activities of vanadium(V) and -(IV) prodrugs are determined by their ability to release active species upon interactions with components of biological media. The first X-ray absorption spectroscopic study of the reactivity of typical vanadium (V) antidiabetics, vanadate ([VVO4]3–, A) and a vanadium(IV) bis(maltolato) complex (B), with mammalian cell cultures has been performed using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1 (mouse adipocytes and preadipocytes) cell lines, as well as the corresponding cell culture media. X-ray absorption near-edge structure data were analyzed using empirical correlations with a library of model vanadium(V), -(IV), and -(III) complexes. Both A and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly five- and six-coordinate VV species (∼75% total V) in a cell culture medium within 24 h at 310 K. Speciation of V in intact HepG2 cells also changed with the incubation time (from ∼20% to ∼70% VIV of total V), but it was largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular fractionation of A549 cells suggested that VV reduction to VIV occurred predominantly in the cytoplasm, while accumulation of VV in the nucleus was likely to have been facilitated by noncovalent bonding to histone proteins. The nuclear VV is likely to modulate the transcription process and to be ultimately related to cell death at high concentrations of V, which may be important in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes) showed a higher propensity to form VIV species, despite the prevalence of VV in the medium. The distinct V biochemistry in these cells is consistent with their crucial role in insulin-dependent glucose and fat metabolism and may also point to an endogenous role of V in adipocytes. PMID:25906315

  2. Biotransformations of Antidiabetic Vanadium Prodrugs in Mammalian Cells and Cell Culture Media: A XANES Spectroscopic Study.

    PubMed

    Levina, Aviva; McLeod, Andrew I; Pulte, Anna; Aitken, Jade B; Lay, Peter A

    2015-07-20

    The antidiabetic activities of vanadium(V) and -(IV) prodrugs are determined by their ability to release active species upon interactions with components of biological media. The first X-ray absorption spectroscopic study of the reactivity of typical vanadium (V) antidiabetics, vanadate ([V(V)O4](3-), A) and a vanadium(IV) bis(maltolato) complex (B), with mammalian cell cultures has been performed using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1 (mouse adipocytes and preadipocytes) cell lines, as well as the corresponding cell culture media. X-ray absorption near-edge structure data were analyzed using empirical correlations with a library of model vanadium(V), -(IV), and -(III) complexes. Both A and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly five- and six-coordinate V(V) species (∼75% total V) in a cell culture medium within 24 h at 310 K. Speciation of V in intact HepG2 cells also changed with the incubation time (from ∼20% to ∼70% V(IV) of total V), but it was largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular fractionation of A549 cells suggested that V(V) reduction to V(IV) occurred predominantly in the cytoplasm, while accumulation of V(V) in the nucleus was likely to have been facilitated by noncovalent bonding to histone proteins. The nuclear V(V) is likely to modulate the transcription process and to be ultimately related to cell death at high concentrations of V, which may be important in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes) showed a higher propensity to form V(IV) species, despite the prevalence of V(V) in the medium. The distinct V biochemistry in these cells is consistent with their crucial role in insulin-dependent glucose and fat metabolism and may also point to an endogenous role of V in adipocytes. PMID:25906315

  3. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    PubMed

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method. PMID:26683462

  4. Liver Cell Culture Devices

    PubMed Central

    Andria, B.; Bracco, A.; Cirino, G.; Chamuleau, R. A. F. M.

    2010-01-01

    In the last 15 years many different liver cell culture devices, consisting of functional liver cells and artificial materials, have been developed. They have been devised for numerous different applications, such as temporary organ replacement (a bridge to liver transplantation or native liver regeneration) and as in vitro screening systems in the early stages of the drug development process, like assessing hepatotoxicity, hepatic drug metabolism, and induction/inhibition studies. Relevant literature is summarized about artificial human liver cell culture systems by scrutinizing PubMed from 2003 to 2009. Existing devices are divided in 2D configurations (e.g., static monolayer, sandwich, perfused cells, and flat plate) and 3D configurations (e.g., liver slices, spheroids, and different types of bioreactors). The essential features of an ideal liver cell culture system are discussed: different types of scaffolds, oxygenation systems, extracellular matrixes (natural and artificial), cocultures with nonparenchymal cells, and the role of shear stress problems. Finally, miniaturization and high-throughput systems are discussed. All these factors contribute in their own way to the viability and functionality of liver cells in culture. Depending on the aim for which they are designed, several good systems are available for predicting hepatotoxicity and hepatic metabolism within the general population. To predict hepatotoxicity in individual cases genomic analysis might be essential as well. PMID:26998397

  5. Culturing Uveal Melanoma Cells.

    PubMed

    Angi, Martina; Versluis, Mieke; Kalirai, Helen

    2015-04-01

    A major challenge in cancer research is the use of appropriate models with which to study a specific biological question. Cell lines have long been used to study cellular processes and the effects of individual molecules because they are easy to use, grow rapidly, produce reproducible results and have a strong track record in research. In uveal melanoma in particular, the absence of animal models that faithfully replicate the behavior of the human disease has propagated the generation and use of numerous cell lines by individual research groups. This in itself, however, can be viewed as a problem due to the lack of standardization when characterizing these entities to determine how closely they reflect the genetic and phenotypic characteristics of this disease. The alternative is to use in vitro primary cultures of cells obtained directly from uveal melanoma patient samples, but this too has its difficulties. Primary cell cultures are difficult to use, hard to obtain and can show considerable heterogeneity. In this article, we review the following: (1) the uveal melanoma cell lines that are currently available, discussing the importance of establishing a bank of those that represent the molecular heterogeneity of uveal melanoma; (2) the methods used to isolate and perform short-term cultures of primary uveal melanoma cells, and (3) the establishment of 3D tissue culture models that bridge the gap between 2D in vitro systems and in vivo models with which to dissect cancer biology and perform therapeutic screens. PMID:27171555

  6. ASBESTOS AND GASTRO-INTESTINAL CANCER: CELL CULTURE STUDIES

    EPA Science Inventory

    Three forms of asbestos: amosite, crocidolite, and chrysotile, were assayed for their cytotoxicity and mutagenicity in cell clture. Using embjryonic human intestine derived and adult rat liver derived epitelial cells, the order of toxicity was chrysotile > amosite = crocidolite. ...

  7. Biology on a Chip: Microfabrication for Studying the Behavior of Cultured Cells

    PubMed Central

    Li, Nianzhen; Tourovskaia, Anna; Folch, Albert

    2013-01-01

    The ability to culture cells in vitro has revolutionized hypothesis testing in basic cell and molecular biology research and has become a standard methodology in drug screening and toxicology assays. However, the traditional cell culture methodology—consisting essentially of the immersion of a large population of cells in a homogeneous fluid medium—has become increasingly limiting, both from a fundamental point of view (cells in vivo are surrounded by complex spatiotemporal microenvironments) and from a practical perspective (scaling up the number of fluid handling steps and cell manipulations for high-throughput studies in vitro is prohibitively expensive). Micro fabrication technologies have enabled researchers to design, with micrometer control, the biochemical composition and topology of the substrate, the medium composition, as well as the type of neighboring cells surrounding the microenvironment of the cell. In addition, microtechnology is conceptually well suited for the development of fast, low-cost in vitro systems that allow for high-throughput culturing and analysis of cells under large numbers of conditions. Here we review a variety of applications of microfabrication in cell culture studies, with an emphasis on the biology of various cell types. PMID:15139302

  8. Preliminary study of spectral features of normal and malignant cell cultures

    NASA Astrophysics Data System (ADS)

    Atif, M.; Farooq, W. A.; Siddiqui, Maqsood A.; Al-Khedhairy, Abdulaziz A.

    2016-04-01

    In this study the fluorescence emission spectra of normal and malignant cell cultures were recorded at an excitation wavelength of 290 nm, corresponding to the higher fluorescence intensity at 350 nm (due to tryptophan) of three malignant cells and normal cells. Similarly, Stokes shift spectra were recorded for normal and malignant cell cultures with a shift, Δλ, of 70 nm. The Stokes shift shows the existence of discriminating features between normal and carcinoma cell lines due to the higher concentration of phenylalanine and tryptophan in carcinoma cell lines which are completely absent in normal cell lines. Hence, both the emission spectra and the Stokes shift spectra showed considerably different spectral features between the normal and malignant cells. The preliminary studies indicate the potential application of fluorescence spectroscopy for cancer detection using the spectral features of biofluorophores.

  9. Three-dimensional Huh7 cell culture system for the study of Hepatitis C virus infection

    PubMed Central

    Sainz, Bruno; TenCate, Veronica; Uprichard, Susan L

    2009-01-01

    Background In order to elucidate how Hepatitis C Virus (HCV) interacts with polarized hepatocytes in vivo and how HCV-induced alterations in cellular function contribute to HCV-associated liver disease, a more physiologically relevant hepatocyte culture model is needed. As such, NASA-engineered three-dimensional (3-D) rotating wall vessel (RWV) bioreactors were used in effort to promote differentiation of HCV-permissive Huh7 hepatoma cells. Results When cultured in the RWV, Huh7 cells became morphologically and transcriptionally distinct from more standard Huh7 two-dimensional (2-D) monolayers. Specifically, RWV-cultured Huh7 cells formed complex, multilayered 3-D aggregates in which Phase I and Phase II xenobiotic drug metabolism genes, as well as hepatocyte-specific transcripts (HNF4α, Albumin, TTR and α1AT), were upregulated compared to 2-D cultured Huh7 cells. Immunofluorescence analysis revealed that these HCV-permissive 3-D cultured Huh7 cells were more polarized than their 2D counterparts with the expression of HCV receptors, cell adhesion and tight junction markers (CD81, scavenger receptor class B member 1, claudin-1, occludin, ZO-1, β-Catenin and E-Cadherin) significantly increased and exhibiting apical, lateral and/or basolateral localization. Conclusion These findings show that when cultured in 3-D, Huh7 cells acquire a more differentiated hepatocyte-like phenotype. Importantly, we show that these 3D cultures are highly permissive for HCV infection, thus providing an opportunity to study HCV entry and the effects of HCV infection on host cell function in a more physiologically relevant cell culture system. PMID:19604376

  10. Study of Pluripotency Markers in Zebrafish Embryos and Transient Embryonic Stem Cell Cultures

    PubMed Central

    Robles, Vanesa; Martí, Mercé

    2011-01-01

    Abstract Targeted genomic manipulation using embryonic stem (ES) cells has not yet been achieved in zebrafish, although methods for zebrafish ES cell culture has been described in literature. The knowledge of pluripotency markers in this species is almost nonexistent and this is a very limiting factor in the definition of the ideal culture conditions for ES cells. Here, we studied the expression of several genes associated with pluripotency in zebrafish embryonic cells versus differentiated cells and the expression of some of these genes is recorded throughout embryonic development. Some of the commonly accepted pluripotency markers are also tested in embryonic cells, transient embryonic cell cultures, and differentiated cells. Our results support the hypothesis that stage-specific embryonic antigen 1 (SSEA1) is a marker that precedes the expression of pluripotency genes in a zebrafish embryonic cell colony, in the same way that SOX2 precedes nestin expression in those colonies that have already started differentiation toward neurons. We consider this study a step forward in the knowledge of zebrafish pluripotency markers and, therefore, an important tool for the monitoring of zebrafish embryonic cell cultures. PMID:21563922

  11. Cell culture as a tool for the study of poultry skeletal muscle development.

    PubMed

    McFarland, D C

    1992-03-01

    Postnatal development of skeletal muscle is the responsibility of the myogenic satellite cells. Satellite cells, isolated from the pectoralis major muscle of young growing tom turkeys, have been cultured in vitro to provide a system for studying cellular and hormonal aspects of poultry skeletal muscle development. Satellite cell clones derived from primary cultures have been developed so that in vitro observations would not be confounded by the presence of nonmyogenic cells. Likewise, a serum-free medium that promotes proliferation of the turkey satellite cell has been developed to provide a hormonally controlled environment for in vitro developmental studies. These two techniques have enabled us to examine the following: 1) factors that influence satellite cell proliferation and differentiation, 2) the interaction of hormones with cellular receptors, 3) secretion of biologically important proteins from cells and 4) the expression of genes important to muscle development. PMID:1371806

  12. Organ Explant Culture of Neonatal Rat Ventricles: A New Model to Study Gene and Cell Therapy

    PubMed Central

    den Haan, A. Dénise; Veldkamp, Marieke W.; Bakker, Diane; Boink, Geert J. J.; Janssen, Rob B.; de Bakker, Jacques M. T.; Tan, Hanno L.

    2013-01-01

    Testing cardiac gene and cell therapies in vitro requires a tissue substrate that survives for several days in culture while maintaining its physiological properties. The purpose of this study was to test whether culture of intact cardiac tissue of neonatal rat ventricles (organ explant culture) may be used as a model to study gene and cell therapy. We compared (immuno) histology and electrophysiology of organ explant cultures to both freshly isolated neonatal rat ventricular tissue and monolayers. (Immuno) histologic studies showed that organ explant cultures retained their fiber orientation, and that expression patterns of α-actinin, connexin-43, and α-smooth muscle actin did not change during culture. Intracellular voltage recordings showed that spontaneous beating was rare in organ explant cultures (20%) and freshly isolated tissue (17%), but common (82%) in monolayers. Accordingly, resting membrane potential was -83.9±4.4 mV in organ explant cultures, −80.5±3.5 mV in freshly isolated tissue, and −60.9±4.3 mV in monolayers. Conduction velocity, measured by optical mapping, was 18.2±1.0 cm/s in organ explant cultures, 18.0±1.2 cm/s in freshly isolated tissue, and 24.3±0.7 cm/s in monolayers. We found no differences in action potential duration (APD) between organ explant cultures and freshly isolated tissue, while APD of monolayers was prolonged (APD at 70% repolarization 88.8±7.8, 79.1±2.9, and 134.0±4.5 ms, respectively). Organ explant cultures and freshly isolated tissue could be paced up to frequencies within the normal range for neonatal rat (CL 150 ms), while monolayers could not. Successful lentiviral (LV) transduction was shown via Egfp gene transfer. Co-culture of organ explant cultures with spontaneously beating cardiomyocytes increased the occurrence of spontaneous beating activity of organ explant cultures to 86%. We conclude that organ explant cultures of neonatal rat ventricle are structurally and electrophysiologically similar to

  13. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures

    PubMed Central

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O’Toole, Peter; Chawla, Sangeeta

    2016-01-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator. PMID:26915695

  14. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures

    NASA Astrophysics Data System (ADS)

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O'Toole, Peter; Chawla, Sangeeta

    2016-02-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.

  15. Type II pneumocytes in mixed cell culture of human lung: a light and electron microscopic study.

    PubMed Central

    Bingle, L; Bull, T B; Fox, B; Guz, A; Richards, R J; Tetley, T D

    1990-01-01

    Alveolar Type II epithelial cells dedifferentiate rapidly in vitro. Studies with animal tissue suggest that cell-cell and extracellular matrix-cell interactions are important in the retention of Type II cell morphology in vitro. Thus, in this study with human tissue, alveolar Type II cells, alveolar macrophages, and spindle cells were prepared from the same sample of lung (obtained following lobectomy for cancer, n = 3), cocultured on glass cover slips or tissue culture plastic, and studied by light microscopy with scanning (SEM) and transmission (TEM) electron microscopy for 8 days. The primary cell isolates contained approximately 45% Type II cells; the remainder were macrophages or unidentifiable cells. Clusters, made up of a single layer of cuboidal Type II cells around a central core of connective tissue (largely collagen and some elastic tissue), formed above a monolayer of spindle cells. The Type II cells were morphologically similar to those seen in vivo. The cells were still cuboidal at 8 days but had lost their lamellar bodies, which were released into the medium via the apical surface. The clusters increased in size with time (area, microns 2: day 1, 29(5-143) x 10(2); day 8, 63(10-311) x 10(2); mean(range); p less than 0.02) without changing in number per culture, suggesting Type II cell proliferation. This may have been due to factors produced by the other cells and adherence to the extracellular matrix (ECM); (free collagen fibers, present in the original preparation, spindle cells, and/or Type II cells could be responsible for presence of ECM). We propose this as a useful model for the study of human Type II epithelial cells in vitro. Images FIGURE 1. a FIGURE 1. b FIGURE 1. c FIGURE 1. d FIGURE 1. e FIGURE 1. f FIGURE 2. a FIGURE 2. b FIGURE 2. c FIGURE 2. d FIGURE 2. e FIGURE 2. f FIGURE 2. g FIGURE 3. PMID:2384069

  16. Optimizing stem cell culture.

    PubMed

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-11-01

    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness, and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindbergh's plane. PMID:20803548

  17. Cell Culture Made Easy.

    ERIC Educational Resources Information Center

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  18. Establishment of feline intestinal epithelial cell cultures for the propagation and study of feline enteric coronaviruses.

    PubMed

    Desmarets, Lowiese M B; Theuns, Sebastiaan; Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Vermeulen, Ben L; Roukaerts, Inge D M; Nauwynck, Hans J

    2013-01-01

    Feline infectious peritonitis (FIP) is the most feared infectious cause of death in cats, induced by feline infectious peritonitis virus (FIPV). This coronavirus is a virulent mutant of the harmless, ubiquitous feline enteric coronavirus (FECV). To date, feline coronavirus (FCoV) research has been hampered by the lack of susceptible cell lines for the propagation of serotype I FCoVs. In this study, long-term feline intestinal epithelial cell cultures were established from primary ileocytes and colonocytes by simian virus 40 (SV40) T-antigen- and human Telomerase Reverse Transcriptase (hTERT)-induced immortalization. Subsequently, these cultures were evaluated for their usability in FCoV research. Firstly, the replication capacity of the serotype II strains WSU 79-1683 and WSU 79-1146 was studied in the continuous cultures as was done for the primary cultures. In accordance with the results obtained in primary cultures, FCoV WSU 79-1683 still replicated significantly more efficient compared to FCoV WSU 79-1146 in both continuous cultures. In addition, the cultures were inoculated with faecal suspensions from healthy cats and with faecal or tissue suspensions from FIP cats. The cultures were susceptible to infection with different serotype I enteric strains and two of these strains were further propagated. No infection was seen in cultures inoculated with FIPV tissue homogenates. In conclusion, a new reliable model for FCoV investigation and growth of enteric field strains was established. In contrast to FIPV strains, FECVs showed a clear tropism for intestinal epithelial cells, giving an explanation for the observation that FECV is the main pathotype circulating among cats. PMID:23964891

  19. Behaviour of human immunoregulatory cells in culture. I. Variables requiring consideration for clinical studies.

    PubMed Central

    Dwyer, J M; Johnson, C; Desaules, M

    1979-01-01

    The suppressor function of lymphocytes stimulated with concanavalin A (Con A) provides a potential method for examining disorders of immunoregulation. Clinical application, however, requires definition of the culture conditions that influence the expression of normal suppressor cell activity. In the present studies culture conditions were modified until a sensitive assay for non-specific suppressor cell function was reproducible utilizing the response to varying doses of phytohaemagglutinin (PHA) as an indicator system. Practical conclusions included (1) that sensitivity was not lost if the suppressor cells and responder cells were allogenic; (2) that fresh responder cells were as sensitive as precultured responder cells; (3) that a wide range of Con A concentrations could induce suppressor activity; and (4) that the sensitivity of the assay was much enhanced by using suboptimal mitogen doses of PHA. Twelve percent of normal subjects gave false negative results but these could be avoided by studying cells at more than one time point after stimulation with Con A. Cells resting in culture for 7 days could be induced to suppress after stimulation with Con A and these suppressor cells were very sensitive to pharmacological doses of dexamethasone. Studies utilizing different times of cell pre-incubation before Con A stimulation and different periods of exposure to Con A revealed fluctuation in the induction of suppression that may represent alternating periods of suppression and amplifying activity among stimulated cells in vitro. Such variations will need to be taken into account in the application of this type of assay to clinical studies seeking disordered immunoregulation. PMID:161214

  20. Histochemical study of brown-fat cells in the golden hamster (Mesocricetus auratus) in cultures

    SciTech Connect

    Sokolov, V.E.; Boyadzhieva-Mikhailova, A.; Koncheva, L.; Angelova, P.; Evgen'eva, T.P.

    1985-11-01

    The authors undertake the task of studying the synthesis of certain hormones by brown-fat cells. The authors used brown-fat cells from the golden hamster. The metabolism of brown-fat cells was studied on precultured cells, which made it possible to detect the synthesis of the studied substances rather than their accumulation in the organ. The authors conducted three experiments. First, fragments of brown fat were cultivated in diffusion chambers in vivo. Pieces of brown fat were cultivated in parallel in vitro on agar (organotypic cultures) and on plasma (histotypic cultures). During cultivation in diffusion chambers, the chambers were implanted in the abdominal cavity of young white rats. For in vitro cultivation, TCM 199 plus 15-20% calf serum was used. A total of 36 cultures with 12 cultures in each series of experiments were performed. The auto-radiographic studies of brown-fat cells were conducted on 24-hour cultures and on brown-fat fragments taken from the intact animal. The cultures were incubated with isotopes for 1 h. Either (/sup 3/H)lysine (87.3 Ci/mM specific activity), (/sup 3/H)arginine (16.7 Ci/mM), (/sup 3/H)glycerol (43 Ci/mM), or (/sup 3/H)cholesterol (43 Ci/mM) were added to the medium. After incubation, the cultures were washed three times in pure medium, fixed in Sierra fluid, and embedded in paraffin. The paraffin sections were covered with Ilford K/sub 2/ emulsion, and the preparations were exposed for 20 days at 4/sup 0/C temperature. Radio-immunological methods were used to study the accumulation of estradiol-17-beta in the culture medium by the Dobson method and that of testerone. The culture medium was taken on cultivation days 2,4,6,8, and 10. The medium was changed during cultivation every third day, which made it possible to judge the rates of accumulation of material with increase in the cultivation times.

  1. Cell Lineage Identification and Stem Cell Culture in a Porcine Model for the Study of Intestinal Epithelial Regeneration

    PubMed Central

    Gonzalez, Liara M.; Williamson, Ian; Piedrahita, Jorge A.; Blikslager, Anthony T.; Magness, Scott T.

    2013-01-01

    Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC) driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM) and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA), Minichromosome Maintenance Complex 2 (MCM2), Bromodeoxyuridine (BrdU) and phosphorylated Histone H3 (pH3) distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/‘reserve’ stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2); enteroendocrine cells by Chromogranin A (CGA), Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII) and sucrase isomaltase (SIM). Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease. PMID:23840480

  2. [Studies on the cell suspension culture of Saussarea medusa in a stirred tank bioreactor].

    PubMed

    Huang, Y; Zhao, D X; Lu, D P; Yan, F; Li, Z H; Chen, H Z; Zhao, Q

    2001-09-01

    The cell suspension culture of Saussarea medusa in a 2L aerated and agitated bioreactor with a four-pitch-blade impeller was investigated. The effects of agitation speed, aeration and inoculum size on cell growth and flavonoids production were studied and it was found that cells had optimum growth and flavonoids production when cultivated at 75 r/min, 700-1000 L/min and an inoculum of 4.0-5.0 g/L. A high cell biomass of 13.8 g/L and flavonoids production of 416 mg/L were achieved after 12 days of cultivation. Time course study revealed that flavonoids biosynthesis was growth-associated. The studies on aggregates size distribution in the bioreactor showed that the aggregates break-up caused by hydrodynamic stress might adversely affect cell growth and lead to significant reduction of cell biomass and flavonoids production. PMID:11797222

  3. Multigenerational Study of Chemically Induced Cytotoxicity and Proliferation in Cultures of Human Proximal Tubular Cells

    PubMed Central

    Lash, Lawrence H.; Putt, David A.; Benipal, Bavneet

    2014-01-01

    Primary cultures of human proximal tubular (hPT) cells are a useful experimental model to study transport, metabolism, cytotoxicity, and effects on gene expression of a diverse array of drugs and environmental chemicals because they are derived directly from the in vivo human kidney. To extend the model to investigate longer-term processes, primary cultures (P0) were passaged for up to four generations (P1–P4). hPT cells retained epithelial morphology and stained positively for cytokeratins through P4, although cell growth and proliferation successively slowed with each passage. Necrotic cell death due to the model oxidants tert-butyl hydroperoxide (tBH) and methyl vinyl ketone (MVK) increased with increasing passage number, whereas that due to the selective nephrotoxicant S-(1,2-dichlorovinyl)-l-cysteine (DCVC) was modest and did not change with passage number. Mitochondrial activity was lower in P2–P4 cells than in either P0 or P1 cells. P1 and P2 cells were most sensitive to DCVC-induced apoptosis. DCVC also increased cell proliferation most prominently in P1 and P2 cells. Modest differences with respect to passage number and response to DCVC exposure were observed in expression of three key proteins (Hsp27, GADD153, p53) involved in stress response. Hence, although there are some modest differences in function with passage, these results support the use of multiple generations of hPT cells as an experimental model. PMID:25411799

  4. An Evaluation of Matrix-Containing and Humanised Matrix-Free 3-Dimensional Cell Culture Systems for Studying Breast Cancer

    PubMed Central

    Roberts, Grace C.; Morris, Paul G.; Moss, Marcus A.; Maltby, Sarah L.; Palmer, Chelsea A.; Nash, Claire E.; Smart, Emily; Holliday, Deborah L.; Speirs, Valerie

    2016-01-01

    Background 3D cell cultures are emerging as more physiologically meaningful alternatives to monolayer cultures for many biological applications. They are attractive because they more closely mimic in vivo morphology, especially when co-cultured with stromal fibroblasts. Methodology/Principal Findings We compared the efficacy of 3 different 3D cell culture systems; collagen I, low attachment culture vessels and a modification of Fibrolife®, a specialised humanised cell culture medium devoid of animal-derived components, using breast cancer cell lines representative of the different molecular subtypes of breast cancer, cultured alone or with human mammary fibroblasts with a view to developing matrix-free humanised systems. 3D collagen I culture supported the growth of a range of breast cancer cell lines. By modifying the composition of Fibrolife® to epiFL, matrix-free cell culture was possible. During sequential transfer to epiFL breast cancer cells gradually detached from the flask, growing progressively as spheroids. Phenotype was stable and reversible with cells remaining actively proliferating and easily accessible throughout culture. They could also be revived from frozen stocks. To achieve co-culture with fibroblasts in epiFL required use of low attachment culture vessels instead of standard plastic as fibroblasts remained adherent in epiFL. Here, cancer cell spheroids were allowed to form before adding fibroblasts. Immunohistochemical examination showed fibroblasts scattered throughout the epithelial spheroid, not dissimilar to the relationship of tumour stroma in human breast cancer. Conclusions Because of its ease of handling, matrix-free 3D cell culture may be a useful model to study the influence of fibroblasts on breast cancer epithelial cells with use of epiFL culture medium taking this a step further towards a fully humanised 3D model. This methodology could be applied to other types of cancer cell lines, making this a versatile technique for cancer

  5. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies.

    PubMed

    Milovac, Dajana; Gamboa-Martínez, Tatiana C; Ivankovic, Marica; Gallego Ferrer, Gloria; Ivankovic, Hrvoje

    2014-09-01

    In the present study, we examined the potential of using highly porous poly(ε-caprolactone) (PCL)-coated hydroxyapatite (HAp) scaffold derived from cuttlefish bone for bone tissue engineering applications. The cell culture studies were performed in vitro with preosteoblastic MC3T3-E1 cells in static culture conditions. Comparisons were made with uncoated HAp scaffold. The attachment and spreading of preosteoblasts on scaffolds were observed by Live/Dead staining Kit. The cells grown on the HAp/PCL composite scaffold exhibited greater spreading than cells grown on the HAp scaffold. DNA quantification and scanning electron microscopy (SEM) confirmed a good proliferation of cells on the scaffolds. DNA content on the HAp/PCL scaffold was significantly higher compared to porous HAp scaffolds. The amount of collagen synthesis was determined using a hydroxyproline assay. The osteoblastic differentiation of the cells was evaluated by determining alkaline phosphatase (ALP) activity and collagen type I secretion. Furthermore, cell spreading and cell proliferation within scaffolds were observed using a fluorescence microscope. PMID:25063118

  6. Haem carrier protein 1 (HCP1): Expression and functional studies in cultured cells.

    PubMed

    Latunde-Dada, Gladys O; Takeuchi, Ken; Simpson, Robert J; McKie, Andrew T

    2006-12-22

    Haem released from digestion and breakdown of meat products provides an important source of dietary iron, which is readily absorbed in the proximal intestine. The recent cloning and characterization of a haem carrier protein 1 (HCP 1) has provided a candidate intestinal haem transporter. The current studies describe the expression and functional analysis of HCP1 in cultured Caco-2 cells, a commonly used model of human intestinal cells. HCP1 mRNA expression in other cell types was also studied. The uptake of (55)Fe labeled haem was determined in cells under different experimental conditions and HCP1 expression was measured by RT-PCR and immunohistochemistry. mRNA and protein expressions increased in Caco-2 cells transduced with HCP1 adenoviral plasmid, and consequently (55)Fe haem uptake was higher in these cells. Haem uptake was also increased in fully differentiated Caco-2 cells compared to undifferentiated cells. Preincubation of cells with desferrioxamine (DFO, to deplete cells of iron) had no effect on HCP1 expression or haem uptake. Treatment with CdCl(2) (to induce haem oxygenase, HO-1) enhanced HCP1 expression and increased haem uptake into the cells. HCP1 expression and function were found to be adaptive to the rate of haem degradation by HO-1. Furthermore, HCP1 expression in different cells implies a functional role in tissues other than the duodenum. PMID:17156779

  7. Mammalian Cell Culture Simplified.

    ERIC Educational Resources Information Center

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  8. Application of X-ray microanalysis to the study of drug uptake in cell culture

    SciTech Connect

    Reasor, M.J.; Lee, P.; Kirk, R.G. )

    1990-08-01

    X-ray microanalysis has been used previously to study the accumulation of iodine in alveolar macrophages of rats treated with the iodinated drug, amiodarone. Due to metabolism of the drug in vivo, primarily to desethylamiodarone, it was not possible to identify the source of the iodine signal. In the present study we have utilized primary cell cultures of alveolar macrophages to study the intracellular accumulation of each of these drug species in vitro. Neither drug is metabolized by these cells in culture, permitting characterization of the accumulation of each independent of the other. Cells were incubated with equimolar concentrations of either amiodarone or desethylamiodarone for 42 hr, and X-ray microanalysis of freeze-dried cryosections of cells was used to quantify accumulation by monitoring the iodine signal associated with each drug. For both drug exposures, the highest iodine content was present in amorphous bodies and dense granules, consistent with the pattern following in vivo exposure. Higher levels of desethylamiodarone, compared to amiodarone, were measured in all compartments of the cells. The results of the in vitro investigation further demonstrate the utility of X-ray microanalysis in the study of the cellular response to amiodarone and desethylamiodarone.

  9. Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities.

    PubMed

    Aman, Jurjan; Weijers, Ester M; van Nieuw Amerongen, Geerten P; Malik, Asrar B; van Hinsbergh, Victor W M

    2016-08-01

    Despite considerable progress in the understanding of endothelial barrier regulation and the identification of approaches that have the potential to improve endothelial barrier function, no drug- or stem cell-based therapy is presently available to reverse the widespread vascular leak that is observed in acute respiratory distress syndrome (ARDS) and sepsis. The translational gap suggests a need to develop experimental approaches and tools that better mimic the complex environment of the microcirculation in which the vascular leak develops. Recent studies have identified several elements of this microenvironment. Among these are composition and stiffness of the extracellular matrix, fluid shear stress, interaction of endothelial cells (ECs) with pericytes, oxygen tension, and the combination of toxic and mechanic injurious stimuli. Development of novel cell culture techniques that integrate these elements would allow in-depth analysis of EC biology that closely approaches the (patho)physiological conditions in situ. In parallel, techniques to isolate organ-specific ECs, to define EC heterogeneity in its full complexity, and to culture patient-derived ECs from inducible pluripotent stem cells or endothelial progenitor cells are likely to advance the understanding of ARDS and lead to development of therapeutics. This review 1) summarizes the advantages and pitfalls of EC cultures to study vascular leak in ARDS, 2) provides an overview of elements of the microvascular environment that can directly affect endothelial barrier function, and 3) discusses alternative methods to bridge the gap between basic research and clinical application with the intent of improving the translational value of present EC culture approaches. PMID:27343194

  10. Digital Microfluidic Cell Culture.

    PubMed

    Ng, Alphonsus H C; Li, Bingyu Betty; Chamberlain, M Dean; Wheeler, Aaron R

    2015-01-01

    Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF. PMID:26643019

  11. [Karyological study of a long-term cell culture of calf kidney].

    PubMed

    Ignatova, M; Karadzhov, I

    1982-01-01

    Studied was the karyologic type of a long-term calf kidney cell culture. The optimal conditions were found for the preparation of good metaphase plaques of such cell culture, with clearly visible chromosomes. The changes in the chromosomes, setting in at the level of the 1st, 10th, 20th, and 27th passage were followed up. While the chromosomes in the first passage did not show any visible changes (with the exception of the 3rd chromosome where the presence of satelites was found), these underwent structural changes that started in the tenth passage, reached their peak in the twentieth passage, and receded later on. The most frequently encountered structural changes were the isochromosome gaps, dicentric configurations, acentric fragments, and polyploidy that appeared at the level of the 27th passage in four out of the twenty metaphase plaques. Discussed is the importance of the structural changes found. PMID:7168141

  12. Use of plant cell cultures to study the metabolism of environmental chemicals

    SciTech Connect

    Sandermann, H. Jr.; Scheel, D.; v.d.Trenck, T.

    1984-04-01

    The metabolism of the following environmental chemicals has been studied in cell suspension cultures of wheat (Triticum aestivum L.) and soybean (Glycine max L.):2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), hexachlorobenzene, pentachlorophenol, diethylhexylphthalate , benzo (alpha) pyrene, and DDT. All chemicals tested, including the persistent ones, were partially metabolized. Polar conjugates predominated in all cases. A covalent incorporation into lignin could be demonstrated for 2,4-D and pentachlorophenol. A specific deposition in the cellular vacuole could be demonstrated for the beta-D-glucopyranoside conjugates derived from 2,4-D. A rapid assay procedure to evaluate the metabolism of a given /sup 14/C-labeled chemical in plant cell suspension cultures is described. This procedure requires about 1 week, and the reproducibility of the results obtained has been assessed.

  13. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices : cell culture and flow studies with glial cells.

    SciTech Connect

    Peterson, Sophie Louise; Sasaki, Darryl Yoshio; Gourley, Paul Lee; McDonald, Anthony Eugene

    2004-06-01

    Oxygen plasma treatment of poly(dimethylsiloxane) (PDMS) thin films produced a hydrophilic surface that was biocompatible and resistant to biofouling in microfluidic studies. Thin film coatings of PDMS were previously developed to provide protection for semiconductor-based microoptical devices from rapid degradation by biofluids. However, the hydrophobic surface of native PDMS induced rapid clogging of microfluidic channels with glial cells. To evaluate the various issues of surface hydrophobicity and chemistry on material biocompatibility, we tested both native and oxidized PDMS (ox-PDMS) coatings as well as bare silicon and hydrophobic alkane and hydrophilic oligoethylene glycol silane monolayer coated under both cell culture and microfluidic studies. For the culture studies, the observed trend was that the hydrophilic surfaces supported cell adhesion and growth, whereas the hydrophobic ones were inhibitive. However, for the fluidic studies, a glass-silicon microfluidic device coated with the hydrophilic ox-PDMS had an unperturbed flow rate over 14 min of operation, whereas the uncoated device suffered a loss in rate of 12%, and the native PDMS coating showed a loss of nearly 40%. Possible protein modification of the surfaces from the culture medium also were examined with adsorbed films of albumin, collagen, and fibrinogen to evaluate their effect on cell adhesion.

  14. Immunological and virological studies of cultured labial biopsy cells from patients with Sjögren's syndrome

    PubMed Central

    Cremer, Natalie E.; Daniels, T. E.; Oshiro, L. S.; Marcus, F.; Claypool, R.; Sylvester, R. A.; Talal, N.

    1974-01-01

    Labial salivary gland tissues from twenty-five patients were cultured in vitro for virus studies and for use as target cells in cellular and antibody-mediated cytotoxicity assays. Fourteen patients had definite Sjögren's Syndrome (SS), four had possible SS and seven did not have SS. No evidence for the presence of a virus in the cultured cells or after chemical treatment of the cultured cells was obtained. Tubuloreticular structures were present in three of the original biopsies but were not seen in the corresponding cultured cells, although in two of these cell lines rare bundles of intranuclear microfibrils occurred. The significance of these structures is unknown. Autologous serum and autologous lymphocytes were not cytotoxic for the cultured cells. ImagesFig. 1Fig. 2 PMID:4468195

  15. Studies on culture and osteogenic induction of human mesenchymal stem cells under CO2-independent conditions.

    PubMed

    Chen, Jian; Zhang, Cui; Feng, Yiding; Zong, Chen; Chen, Jiarong; Tang, Zihua; Jia, Bingbing; Tong, Xiangming; Zheng, Qiang; Wang, Jinfu

    2013-04-01

    Human mesenchymal stem cells (hMSCs) are one of the important factors that regulate bone anabolism. Osteoporosis resulting from microgravity during spaceflight may possibly be due to a decrease in osteogenesis mediated by hMSCs. This speculation should be verified through culture and osteogenic induction of hMSCs in a microgravity environment during spaceflight. Control of CO2 is a key component in current experimental protocols for growth, survival, and proliferation of in vitro cultured cells. However, carrying CO2 tanks on a spaceflight and devoting space/mass allowances for classical CO2 control protocols make experimentation on culture and osteogenesis difficult during most missions. Therefore, an experimental culture and osteogenic medium was developed through modifying the components of buffer salts in conventional culture medium. This experimental medium was used to culture and induce hMSCs under CO2-independent conditions. The results showed that culture and induction of hMSCs with conventional culture medium and conventional osteogenic medium under CO2-independent conditions resulted in an increase of pH in medium. The proliferation of hMSCs was also inhibited. hMSCs cultured with experimental culture medium under CO2-independent conditions showed a proliferation potential that was the same as those cultured with conventional culture medium under CO2-dependent conditions. The experimental osteogenic medium could promote hMSCs to differentiate into osteoblast-like cells under CO2-independent conditions. Cells induced by this induction system showed high alkaline phosphatase activity. The expression levels of osteogenic genes in cells induced with experimental osteogenic medium under CO2-independent conditions were not significantly different from those cells induced with conventional osteogenic medium under CO2-dependent conditions. These results suggest that the experimental culture and induction system could be used to culture hMSCs and induce the

  16. Primary culture of intestinal epithelial cells as a potential model for Toxoplasma gondii enteric cycle studies.

    PubMed

    Moura, Marcos de Assis; Amendoeira, Maria Regina Reis; Barbosa, Helene Santos

    2009-09-01

    The primary culture of intestinal epithelial cells from domestic cats is an efficient cellular model to study the enteric cycle of Toxoplasma gondii in a definitive host. The parasite-host cell ratio can be pointed out as a decisive factor that determines the intracellular fate of bradyzoites forms. The development of the syncytial-like forms of T. gondii was observed using the 1:20 bradyzoite-host cell ratio, resulting in similar forms described in in vivo systems. This alternative study potentially opens up the field for investigation into the molecular aspects of this interaction. This can contribute to the development of new strategies for intervention of a main route by which toxoplasmosis spreads. PMID:19876557

  17. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    NASA Astrophysics Data System (ADS)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  18. Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods.

    PubMed

    Choi, Jonghoon; Lee, Eun Kyu; Choo, Jaebum; Yuh, Junhan; Hong, Jong Wook

    2015-09-01

    Microfabricated systems equipped with 3D cell culture devices and in-situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio-functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near-cell surface detection of excreted cellular compounds, SERS-based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development. PMID:26358782

  19. Nucleoside transport at the blood-testis barrier studied with primary-cultured sertoli cells.

    PubMed

    Kato, Ryo; Maeda, Tomoji; Akaike, Toshihiro; Tamai, Ikumi

    2005-02-01

    Nucleosides are essential for nucleotide synthesis in testicular spermatogenesis. In the present study, the mechanism of the supply of nucleosides to the testicular system across the blood-testis barrier was studied using primary-cultured Sertoli cells from rats and TM4 cells from mice. Uptake of uridine by these cells was time- and concentration-dependent. Uridine uptake was decreased under Na(+)-free conditions, and the system was presumed to be high affinity, indicating an Na(+)-dependent concentrative nucleoside transporter (CNT) is involved. On the other hand, nitrobenzylthioinosine, a potent inhibitor of Na(+)-independent equilibrative nucleoside transporters (ENTs), inhibited uridine uptake by the Sertoli cells in a concentration-dependent manner. Expression of nucleoside transporters ENT1, ENT2, ENT3, CNT1, CNT2, and CNT3 was detected in Sertoli cells by reverse transcriptase-polymerase chain reaction analysis. Inhibition studies of the uptake of uridine by various nucleosides both in the presence and absence of Na(+) indicated that the most of those expressed nucleoside transporters, ENTs and CNTs, are involved functionally. These results demonstrated that Sertoli cells are equipped with multiple nucleoside transport systems, including ENT1, ENT2, and CNTs, to provide nucleosides for spermatogenesis. PMID:15547112

  20. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  1. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  2. Oscillating Cell Culture Bioreactor

    NASA Technical Reports Server (NTRS)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  3. Design Study Conducted of a Stirred and Perfused Specimen Chamber for Culturing Suspended Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Kizito, John P.

    2003-01-01

    A tightly knit numerical/experimental collaboration among the NASA Ames Research Center, NASA Glenn Research Center, and Payload Systems, Inc., was formed to analyze cell culturing systems for the International Space Station. The Cell Culture Unit is a facility scheduled for deployment on the space station by the Cell Culture Unit team at Ames. The facility houses multiple cell specimen chambers (CSCs), all of which have inlets and outlets to allow for replenishment of nutrients and for waste removal. For improved uniformity of nutrient and waste concentrations, each chamber has a pair of counterrotating stir bars as well. Although the CSC can be used to grow a wide variety of organic cells, the current study uses yeast as a model cell. Previous work identified groundbased protocols for perfusion and stirring to achieve yeast growth within the CSC that is comparable to that for yeast cultures grown in a shaken Ehrlenmeyer flask.

  4. Comparison of Artery Organ Culture and Co-Culture Models for Studying Endothelial Cell Migration and Its Effect on Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Lee, Yong-Ung; Luo, Jian; Sprague, Eugene; Han, Hai-Chao

    2010-01-01

    Arterial restenosis associated with intimal hyperplasia is the major cause of long-term failure of vascular interventions. Endothelium injury and the proliferation and migration of smooth muscle cells (SMC) are key events in the development of intimal hyperplasia. The objectives of this study were to develop an ex vivo artery injury model for studying endothelial cell (EC) migration and to compare it with an in vitro co-culture arterial wall injury model in terms of the effect of flow on EC migration and its effect on SMC migration and proliferation. Our results demonstrated that shear flow improves reendothelialization in the injured area by promoting EC migration. The migration distance of ECs is much smaller in the arteries than in an in vitro cell culture model (3.57 ± 1.29 mm vs. 5.2 ± 1.4 cm, p< 0.001). SMC proliferation was significantly less in the EC intact and reendothelialization areas than in the EC denuded areas indicating that reendothelialization suppresses SMC proliferation. Our models provide a new approach to study techniques to enhance endothelium healing. PMID:20033777

  5. Development and characterization of a primary culture of chicken embryonic tracheal epithelial cells and their use in avian studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major route of infection of avian influenza is through cells of the airway epithelium. To study the molecular mechanism of infection and early host responses we created a primary chicken tracheal cell culture. Epithelial cells were isolated from the trachea of 18 day old chicken embryos and cult...

  6. Re-evaluation of the culture condition of polymorphonuclear cells for the study of apoptosis induction.

    PubMed

    Hiroi, M; Tajima, M; Shimojima, T; Kashimata, M; Miyata, T; Sakagami, H

    1998-01-01

    The culture conditions of human peripheral blood polymorphonuclear leukocytes (PMN) in the study of apoptosis induction were re-evaluated. The changes in the relative viable cell number of PMNs after tumor necrosis factor (TNF) treatment were colorimetrically investigated using a cell counting kit. The relative potency of PMNs to produce the superoxide anion (O2-) was measured as the reduction of color intensity by addition of superoxide dismutase (SOD). When the PMNs were cultured in conventional RPMI1640 medium supplemented with 10% fetal bovine serum (FBS), the stimulation effect of TNF on O2- generation by PMNs was observed only for the first 6 hours. When FBS was replaced with human serum, the effect of TNF was maintained for longer incubation periods. Prolonged incubation of PMNs spontaneously produced large DNA fragments, and the extent of DNA fragmentation was relatively smaller in human serum-containing medium. TNF, LPS, hyperthermia or potassium thiocyanate slightly accelerated the production of large DNA fragments, as well as the induction of trace amounts of internucleosomal DNA cleavage in PMNs, which became detectable only after concentration by fractional isopropanol precipitation. The present study suggests the importance of the use of human serum rather than conventional FBS for the study of apoptosis induction in PMNs. PMID:9673409

  7. Challenge for 3D culture technology: Application in carcinogenesis studies with human airway epithelial cells.

    PubMed

    Emura, M; Aufderheide, M

    2016-05-01

    Lung cancer is still one of the major intractable diseases and we urgently need more efficient preventive and curative measures. Recent molecular studies have provided strong evidence that allows us to believe that classically well-known early airway lesions such as hyperplasia, metaplasia, dysplasia and carcinoma in situ are really precancerous lesions progressing toward cancer but not necessarily transient and reversible alteration. This suggests that adequate early control of the precancerous lesions may lead to improved prevention of lung cancer. This knowledge is encouraging in view of the imminent necessity for additional experimental systems to investigate the causal mechanisms of cancers directly in human cells and tissues. There are many questions with regard to various precancerous lesions of the airways. For example, should cells, before reaching a stage of invasive carcinoma, undergo all precancerous stages such as hyperplasia or metaplasia and dysplasia, or is there any shortcut to bypass one or more of the precancerous stages? For the study of such questions, the emerging 3-dimensional (3D) cell culture technology appears to provide an effective and valuable tool. Though a great challenge, it is expected that this in vitro technology will be rapidly and reliably improved to enable the cultures to be maintained in an in vivo-mimicking state of differentiation for much longer than a period of at best a few months, as is currently the case. With the help of a "causes recombination-Lox" (Cre-lox) technology, it has been possible to trace cells giving rise to specific lung tumor types. In this short review we have attempted to assess the future role of 3D technology in the study of lung carcinogenesis. PMID:26951634

  8. Studies on Culture and Osteogenic Induction of Human Mesenchymal Stem Cells under CO2-Independent Conditions

    PubMed Central

    Chen, Jian; Zhang, Cui; Feng, Yiding; Zong, Chen; Chen, Jiarong; Tang, Zihua; Jia, Bingbing; Tong, Xiangming; Zheng, Qiang

    2013-01-01

    Abstract Human mesenchymal stem cells (hMSCs) are one of the important factors that regulate bone anabolism. Osteoporosis resulting from microgravity during spaceflight may possibly be due to a decrease in osteogenesis mediated by hMSCs. This speculation should be verified through culture and osteogenic induction of hMSCs in a microgravity environment during spaceflight. Control of CO2 is a key component in current experimental protocols for growth, survival, and proliferation of in vitro cultured cells. However, carrying CO2 tanks on a spaceflight and devoting space/mass allowances for classical CO2 control protocols make experimentation on culture and osteogenesis difficult during most missions. Therefore, an experimental culture and osteogenic medium was developed through modifying the components of buffer salts in conventional culture medium. This experimental medium was used to culture and induce hMSCs under CO2-independent conditions. The results showed that culture and induction of hMSCs with conventional culture medium and conventional osteogenic medium under CO2-independent conditions resulted in an increase of pH in medium. The proliferation of hMSCs was also inhibited. hMSCs cultured with experimental culture medium under CO2-independent conditions showed a proliferation potential that was the same as those cultured with conventional culture medium under CO2-dependent conditions. The experimental osteogenic medium could promote hMSCs to differentiate into osteoblast-like cells under CO2-independent conditions. Cells induced by this induction system showed high alkaline phosphatase activity. The expression levels of osteogenic genes in cells induced with experimental osteogenic medium under CO2-independent conditions were not significantly different from those cells induced with conventional osteogenic medium under CO2-dependent conditions. These results suggest that the experimental culture and induction system could be used to culture hMSCs and induce

  9. Application of speckle dynamics for studying metabolic activity of cell cultures with herpes virus

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. P.; Bakharev, A. A.; Malygin, A. S.; Mikhaylova, J. A.; Borodin, E. M.; Poryvayeva, A. P.; Glinskikh, N. P.

    2014-05-01

    The report considers the results of the experiments in which digital values of light intensity I and the image area correlation index η values were recorded on a real-time basis for one or two days. Three cell cultures with viruses along with intact cultures were investigated. High correlation of dependence of η values on time t values was demonstrated for three cultures. The η=η(t) and I=I(t) dependences for cells with and without viruses differ considerably. It was shown that the presence of viruses could be determined as early as ten minutes after measurements were started.

  10. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  11. A primary chicken tracheal cell culture system for the study of infection with avian respiratory viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major route of infection of avian influenza virus (AIV) and Newcastle disease virus (NDV) in chickens is through cells of the airway epithelium. Here we describe the development and optimization of conditions for culture of tracheal epithelial cells from chicken embryos as well as their use in st...

  12. Studies on the effects of microgravity on the ultrastructure and functions of cultured mammalian cells (L-6)

    NASA Technical Reports Server (NTRS)

    Sato, Atsushige

    1993-01-01

    The human body consists of 10(exp 13) cells. Understanding the mechanisms by which the cells sense and respond to microgravity is very important as the basis for space biology. The cells were originally isolated aseptically from mammalian bodies and cultured in vitro. A set of cell culture vessels was developed to be applied to three kinds of space flight experiments. Experiment 1 is to practice the cell culture technique in a space laboratory and obtain favorable growth of the cells. Aseptic handling in tryspin treatment and medium renewal will be tested. The cells, following space flight, will be returned to the ground and cultured continuously to investigate the effects of space flight on the cellular characteristics. Experiment 2 is to examine the cytoskeletal structure of the cells under microgravity conditions. The cytoskeletal structure plays essential roles in the morphological construction, movements, axonal transport, and differentiation of the cells. The cells fixed during space flight will be returned and the cytoskeleton and ultrastructure observed using electron microscopy and fluorescence microscopy. Experiment 3 is to study the cellular productivity of valuable substances. The waste medium harvested during space flight are returned and quantitated for the cellular products. The effects of microgravity on mammalian cells will be clarified from the various aspects.

  13. An innovative three-dimensional gelatin foam culture system for improved study of glioblastoma stem cell behavior.

    PubMed

    Yang, Meng-Yin; Chiao, Ming-Tsang; Lee, Hsu-Tung; Chen, Chien-Min; Yang, Yi-Chin; Shen, Chiung-Chyi; Ma, Hsin-I

    2015-04-01

    Three-dimensional (3-D) tissue engineered constructs provide a platform for examining how the local extracellular matrix contributes to the malignancy of various cancers, including human glioblastoma multiforme. Here, we describe a simple and innovative 3-D culture environment and assess its potential for use with glioblastoma stem cells (GSCs) to examine the diversification inside the cell mass in the 3-D culture system. The dissociated human GSCs were cultured using gelatin foam. These cells were subsequently identified by immunohistochemical staining, reverse transcriptase-polymerase chain reaction, and Western blot assay. We demonstrate that the gelatin foam provides a suitable microenvironment, as a 3-D culture system, for GSCs to maintain their stemness. The gelatin foam culture system contributes a simplified assessment of cell blocks for immunohistochemistry assay. We show that the significant transcription activity of hypoxia and the protein expression of inflammatory responses are detected at the inside of the cell mass in vitro, while robust expression of PROM1/CD133 and hypoxia-induced factor-1 alpha are detected at the xenografted tumor in vivo. We also examine the common clinical trials under this culture platform and characterized a significant difference of drug resistance. The 3-D gelatin foam culture system can provide a more realistic microenvironment through which to study the in vivo behavior of GSCs to evaluate the role that biophysical factors play in the hypoxia, inflammatory responses and subsequent drug resistance. PMID:24966152

  14. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures.

    PubMed

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-08-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. PMID:24802970

  15. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures

    PubMed Central

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-01-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49fhi/CD90lo cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49fhi/CD90lo cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. PMID:24802970

  16. Cultured Human Renal Cortical Cells

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the STS-90 shuttle flight in April 1998, cultured renal cortical cells revealed new information about genes. Timothy Hammond, an investigator in NASA's microgravity biotechnology program was interested in culturing kidney tissue to study the expression of proteins useful in the treatment of kidney diseases. Protein expression is linked to the level of differentiation of the kidney cells, and Hammond had difficulty maintaining differentiated cells in vitro. Intrigued by the improvement in cell differentiation that he observed in rat renal cells cultured in NASA's rotating wall vessel (a bioreactor that simulates some aspects of microgravity) and during an experiment performed on the Russian Space Station Mir, Hammond decided to sleuth out which genes were responsible for controlling differentiation of kidney cells. To do this, he compared the gene activity of human renal cells in a variety of gravitational environments, including the microgravity of the space shuttle and the high-gravity environment of a centrifuge. Hammond found that 1,632 genes out of 10,000 analyzed changed their activity level in microgravity, more than in any of the other environments. These results have important implications for kidney research as well as for understanding the basic mechanism for controlling cell differentiation.

  17. A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases

    PubMed Central

    Heller, Janosch P.; Kwok, Jessica C. F.; Vecino, Elena; Martin, Keith R.; Fawcett, James W.

    2015-01-01

    Diseases such as age-related macular degeneration (AMD) affect the retinal pigment epithelium (RPE) and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 min yielded 4 × 104 viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch’s membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch’s membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases. PMID:26635529

  18. [Primary cultures of human umbilical chord vein endothelial cells: a biological model for studying enterococcal infection mechanisms].

    PubMed

    Chiriboga, Carlos Andrés; Fontanilla, Marta Raquel

    2004-12-01

    Although enterococcus bacteria are normal human intestinal flora, they rank as the third most common pathogen involved in hospital acquired infections. Generally, these bacteria are considered extracellular pathogens; however, an increasing number of reports indicate invasiveness to epithelial cell lines and macrophages. Despite their importance as nosocomial infection agents in patients suffering bacteremias and endocarditis, their interaction with endothelial cells has not been fully described. Herein, the nosocomial Enterococcus faecalis isolate Ef2890 from a hospitalized patient was exposed to cultured human venous endothelial cells from the umbilical chord. When the primary cell cultures were inoculated with Ef2890 and treated with bactericidal antibiotics to kill extracellular and adhered bacteria, intracellular bacteria were recovered and plated 4 h post-infection. These observations indicate that cell cultures provide a valuable biological model to study interactions between endothelium and enterococci. PMID:15678808

  19. Principles of cancer cell culture.

    PubMed

    Cree, Ian A

    2011-01-01

    The basics of cell culture are now relatively common, though it was not always so. The pioneers of cell culture would envy our simple access to manufactured plastics, media and equipment for such studies. The prerequisites for cell culture are a well lit and suitably ventilated laboratory with a laminar flow hood (Class II), CO(2) incubator, benchtop centrifuge, microscope, plasticware (flasks and plates) and a supply of media with or without serum supplements. Not only can all of this be ordered easily over the internet, but large numbers of well-characterised cell lines are available from libraries maintained to a very high standard allowing the researcher to commence experiments rapidly and economically. Attention to safety and disposal is important, and maintenance of equipment remains essential. This chapter should enable researchers with little prior knowledge to set up a suitable laboratory to do basic cell culture, but there is still no substitute for experience within an existing well-run laboratory. PMID:21516394

  20. Culturing of HepG2 cells with human serum improve their functionality and suitability in studies of lipid metabolism.

    PubMed

    Pramfalk, Camilla; Larsson, Lilian; Härdfeldt, Jennifer; Eriksson, Mats; Parini, Paolo

    2016-01-01

    Primary human hepatocytes are considered to be the “gold standard” in studies of lipid metabolism despite a number of disadvantages like large inter-donor differences and inability to proliferate. Human hepatoma HepG2 cells retain many hepatocyte-specific functions but do also exhibit disadvantages like secretion of lipoproteins and bile acids that do not emulate human hepatocytes in vivo. The aim of this study was to investigate whether supplementation of the culturing media with human serum could improve the functionality of HepG2 cells and thereby make them more apposite in studies of lipid metabolism. The cells were cultured with human sera (2%) from three healthy individuals or with fetal bovine serum (10%). Lipoprotein, apolipoprotein, bile acid, albumin, and proprotein subtilisin/kexin type 9 (Pcsk9) concentrations in the cell media, as well as gene and protein expressions were then measured. We found apoB-containing LDL-sized but also apoA1-containing HDL-sized particles, increased bile acid and Pcsk9 concentrations in the cell media, as well as increased expression of genes involved in lipid metabolism and differentiation in HepG2 cells cultured with human sera. Thus, supplementation of the culturing media with human serum improves the functionality of HepG2 cells and makes them more apposite in studies of lipid metabolism. PMID:26515253

  1. Study of chondrogenic potential of stem cells in co-culture with chondrons

    PubMed Central

    Nikpou, Parisa; Nejad, Daryoush Mohammad; Shafaei, Hajar; Roshangar, Leila; Samadi, Nasser; Navali, Amir Mohammad; Sadegpour, Ali Reza; Shanehbandi, Dariush; Rad, Jafar Soleimani

    2016-01-01

    Objective(s): Three-dimensional biomimetic scaffolds have widespread applications in biomedical tissue engineering due to similarity of their nanofibrous architecture to native extracellular matrix. Co-culture system has stimulatory effect on chondrogenesis of adult mesenchymal stem cells. This work presents a co-culture strategy using human articular chondrons and adipose-derived stem cells (ASCs) from infrapatellar fat pad (IPFP) for cartilage tissue production. Materials and Methods: Isolated stem cells were characterized by flowcytometry. Electrospun and polycaprolactone (PCL) scaffolds (900 nm fiber diameter) was obtained from Bon Yakhteh (Tehran-Iran) and human infrapatellar fat pad-derived stem cells (IPFP-ASCs) were seeded on them. IPFP-ASCs on scaffolds were co-cultured with articular chondrons using transwell. After 21 day, chondrogenic differentiation of stem cell was evaluated by determining the genes expression of collagen2, aggrecan and Indian hedgehog using real-time RT-PCR. Results: Genes expression of collagen2, aggrecan by IPFP-ASCs did not alter significantly in comparison with control group. Howevers, expression of Indian hedgehog decreased significantly compared to control group (P< 0.05). Conclusion: These findings indicate that chondrons obtained from osteoarthritic articular cartilage did not stimulate chondrogenic differentiation of IPFP-ASCs in co-culture. PMID:27482345

  2. Studies on the Nature of Receptors Involved in Attachment of Tissue Culture Cells to Mycoplasmas

    PubMed Central

    Manchee, R. J.; Taylor-Robinson, D.

    1969-01-01

    Several mycoplasmas, from avian and mammalian sources, growing in the form of colonies on agar and sheets attached to plastic dishes, were tested for their ability to adsorb tissue culture cells in suspension. HeLa cells adsorbed to the majority of mycoplasmas tested; adsorption occurred to the sheets and not to the colonies of some mycoplasmas. Other tissue cells, in primary culture and of diploid origin, adsorbed also. The mechanism of adsorption of HeLa cells to 4 mycoplasmas was examined by treating the cells and mycoplasmas in various ways and then testing for adsorption. N-acetyl neuraminic acid residues on the tissue cells were responsible for adsorption to M. gallisepticum and M. pneumoniae. The receptors for M. hominis and M. salivarium were probably not of this kind since treatment of the cells with purified neuraminidase did not influence adsorption. However, the cell receptors for these mycoplasmas were associated with protein because they were inactivated by proteolytic enzymes and by formalin. The cell receptors for M. hominis were more heat stable than those for the other mycoplasmas. From the aspect of the mycoplasma membrane, in no instance did neuraminidase treatment affect adsorption. On the other hand, various experiments suggested that protein components of the mycoplasma membrane were involved. The significance of these findings is discussed. PMID:5773147

  3. Psyllid cell culture: A system to study Candidatus Liberibacter species replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Primary cell cultures were made from the Potato Psyllid, Bactericera cockerelli (Hemiptera: Psyllidae). The potato psyllid is an important agricultural pest insect due to its ability to transmit the bacterial pathogen Candidatus Liberibacter psyllaurous, CLp. The pathogen is a phloem limited bacteri...

  4. Ultrasonic three-dimensional on-chip cell culture for dynamic studies of tumor immune surveillance by natural killer cells.

    PubMed

    Christakou, Athanasia E; Ohlin, Mathias; Önfelt, Björn; Wiklund, Martin

    2015-08-01

    We demonstrate a simple method for three-dimensional (3D) cell culture controlled by ultrasonic standing waves in a multi-well microplate. The method gently arranges cells in a suspension into a single aggregate in each well of the microplate and, by this, nucleates 3D tissue-like cell growth for culture times between two and seven days. The microplate device is compatible with both high-resolution optical microscopy and maintenance in a standard cell incubator. The result is a scaffold- and coating-free method for 3D cell culture that can be used for controlling the cellular architecture, as well as the cellular and molecular composition of the microenvironment in and around the formed cell structures. We demonstrate the parallel production of one hundred synthetic 3D solid tumors comprising up to thousands of human hepatocellular carcinoma (HCC) HepG2 cells, we characterize the tumor structure by high-resolution optical microscopy, and we monitor the functional behavior of natural killer (NK) cells migrating, docking and interacting with the tumor model during culture. Our results show that the method can be used for determining the collective ability of a given number of NK cells to defeat a solid tumor having a certain size, shape and composition. The ultrasound-based method itself is generic and can meet any demand from applications where it is advantageous to monitor cell culture from production to analysis of 3D tissue or tumor models using microscopy in one single microplate device. PMID:26126574

  5. New 3D-Culture Approaches to Study Interactions of Bone Marrow Adipocytes with Metastatic Prostate Cancer Cells

    PubMed Central

    Herroon, Mackenzie Katheryn; Diedrich, Jonathan Driscoll; Podgorski, Izabela

    2016-01-01

    Adipocytes are a major component of the bone marrow that can critically affect metastatic progression in bone. Understanding how the marrow fat cells influence growth, behavior, and survival of tumor cells requires utilization of in vitro cell systems that can closely mimic the physiological microenvironment. Herein, we present two new three-dimensional (3D) culture approaches to study adipocyte–tumor cell interactions in vitro. The first is a transwell-based system composed of the marrow-derived adipocytes in 3D collagen I gels and reconstituted basement membrane-overlayed prostate tumor cell spheroids. Tumor cells cultured under these 3D conditions are continuously exposed to adipocyte-derived factors, and their response can be evaluated by morphological and immunohistochemical analyses. We show via immunofluorescence analysis of metabolism-associated proteins that under 3D conditions tumor cells have significantly different metabolic response to adipocytes than tumor cells grown in 2D culture. We also demonstrate that this model allows for incorporation of other cell types, such as bone marrow macrophages, and utilization of dye-quenched collagen substrates for examination of proteolysis-driven responses to adipocyte- and macrophage-derived factors. Our second 3D culture system is designed to study tumor cell invasion toward the adipocytes and the consequent interaction between the two cell types. In this model, marrow adipocytes are separated from the fluorescently labeled tumor cells by a layer of collagen I. At designated time points, adipocytes are stained with BODIPY and confocal z-stacks are taken through the depth of the entire culture to determine the distance traveled between the two cell types over time. We demonstrate that this system can be utilized to study effects of candidate factors on tumor invasion toward the adipocytes. We also show that immunohistochemical analyses can be performed to evaluate the impact of direct interaction of prostate

  6. Single-cell growth analysis in a mixed cell culture

    NASA Astrophysics Data System (ADS)

    Ando, Jun; Bato, Mary Grace P.; Daria, Vincent Ricardo

    2008-06-01

    We perform single cell analysis of cell growth in a mixed cell culture. Two species of yeast cells: Saccharomyces cerevisiae and Candida albicans, are optically trapped using focused continuous-wave near infrared laser. Cell growth for both cells is inhibited only when the two species of cells are in contact with each other. This indicates cell-cell interaction mediated cell growth inhibition mechanism. Single cell level analysis of cell growth studied here contributes to the further understanding of yeast growth arrest in a mixed yeast culture.

  7. Study on application of high doses plasmodium berghei in cell culture

    NASA Astrophysics Data System (ADS)

    Spencer, L. M.; De Santis, M.; Davila, J.; Foinquinos, A.; Salcedo, E.; Sajo-Bohus, L.

    2012-02-01

    Malaria, one of the most important infection disease problems in the world, is caused by protozoan parasites of the genus Plasmodium. This disease is responsible for hundreds of the millions of clinical cases and more than one million deaths per year, for this reason, malaria is a priority and the WHO estimates that half of the world population is at risk. In this work we study how the absorbed dose inactivates the parasite (Plasmodium berghei) in rodent model (BALB/c mice), by applying X-ray irradiation. The dose was increased from 10 to 50 Gy in parasitized red blood cells (PRBC) with merozoite stage using in vitro short cultures. Also the reduction of the irradiation effect was determined by intra-peritoneal inoculations of irradiated parasites. Afterwards, the parasitaemia was assessed daily on smears made from tail blood and stained with Giemsa's reagent. Besides, the effect of irradiation was evaluated using an immunological test as indirect immunofluorescence assay (IFA). The results of this study showed that the most effective radiation for inactivation of parasites is about 50 Gy and the immunofluorescence pattern showed a different distribution of the fluorescence on parasites. These results showed direct correlation between the effect of irradiated parasites and parasitaemia in the group of mice infected with RBC after 50 Gy irradiation. Our results indicated that the threshold is between 30 to 50 Gy to inactivate the parasites.

  8. The establishment of regular beating in populations of pacemaker heart cells. A study with tissue-cultured rat heart cells.

    PubMed

    Jongsma, H J; Tsjernina, L; de Bruijne, J

    1983-02-01

    Single isolated neonatal rat heart cells beat slowly (mean beating interval duration in the range of seconds) and irregularly (coefficient of variation greater than 40%). It is shown that slowness and irregularity of beating are intrinsic properties of the cells and are not caused by dissociation damage or lack of conditioning factors in the culture medium. When cell contacts are established either by letting the cultures grow for given amounts of time or by plating cells at increasing densities both interval duration and irregularity decrease. The beating regularity of small groups of interconnected cells (3 to 35 cells) and larger groups (200 to 15000 cells) is comparable. There is no clear cut proportionality between number of interconnected cells and beating regularity. Confluent monolayers beat fast (mean interval duration ranging between 200 and 400 ms and regular (coefficient of variation less than 5%). The hypothesis is discussed that this clock-like behavior of monolayers of heart cells is caused by the interaction of several pacemaker centers which are by themselves less regular and beat more slowly. PMID:6854658

  9. Human Primary Trophoblast Cell Culture Model to Study the Protective Effects of Melatonin Against Hypoxia/reoxygenation-induced Disruption.

    PubMed

    Sagrillo-Fagundes, Lucas; Clabault, Hélène; Laurent, Laetitia; Hudon-Thibeault, Andrée-Anne; Salustiano, Eugênia Maria Assunção; Fortier, Marlène; Bienvenue-Pariseault, Josianne; Wong Yen, Philippe; Sanderson, J Thomas; Vaillancourt, Cathy

    2016-01-01

    This protocol describes how villous cytotrophoblast cells are isolated from placentas at term by successive enzymatic digestions, followed by density centrifugation, media gradient isolation and immunomagnetic purification. As observed in vivo, mononucleated villous cytotrophoblast cells in primary culture differentiate into multinucleated syncytiotrophoblast cells after 72 hr. Compared to normoxia (8% O2), villous cytotrophoblast cells that undergo hypoxia/reoxygenation (0.5% / 8% O2) undergo increased oxidative stress and intrinsic apoptosis, similar to that observed in vivo in pregnancy complications such as preeclampsia, preterm birth, and intrauterine growth restriction. In this context, primary villous trophoblasts cultured under hypoxia/reoxygenation conditions represent a unique experimental system to better understand the mechanisms and signalling pathways that are altered in human placenta and facilitate the search for effective drugs that protect against certain pregnancy disorders. Human villous trophoblasts produce melatonin and express its synthesizing enzymes and receptors. Melatonin has been suggested as a treatment for preeclampsia and intrauterine growth restriction because of its protective antioxidant effects. In the primary villous cytotrophoblast cell model described in this paper, melatonin has no effect on trophoblast cells in normoxic state but restores the redox balance of syncytiotrophoblast cells disrupted by hypoxia/reoxygenation. Thus, human villous trophoblast cells in primary culture are an excellent approach to study the mechanisms behind the protective effects of melatonin on placental function during hypoxia/reoxygenation. PMID:27500522

  10. Genotoxicity studies of methyl isocyanate in Salmonella, Drosophila, and cultured Chinese hamster ovary cells

    SciTech Connect

    Mason, J.M.; Zeiger, E.; Haworth, S.; Ivett, J.; Valencia, R.

    1987-01-01

    The genotoxic effects of methyl isocyanate (MIC) were investigated using four short-term tests: the Salmonella reversion assay (Ames test), the Drosophila sex-linked recessive lethal assay, and the sister chromatic exchange (SCE) and chromosomal aberration assays in cultured Chinese hamster ovary (CHO) cells. No evidence was found for the induction of mutations in either Salmonella or Drosophila. MIC did, however, induce SCEs and chromosomal aberrations in CHO cells both in the presence and absence of Aroclor-induced rat liver S-9.

  11. Toxicity study of water transferred graphene-based nanostructures for cell culture substrate

    NASA Astrophysics Data System (ADS)

    Borghi, Fabricio; van der Laan, Tim; Ishaq, Musarat; Kumar, Shailesh; Ostrikov, Kostya

    2014-10-01

    Graphene has attracted enormous attention due to its unique physical and chemical properties. Early researches had focused on it electrical properties for device applications. Nowadays graphene has attracted increased interest in bio-medical applications, such as cell culture substrates. Substrates are critical for: investigating early stage development of cells, new drugs tests and tissue engineering. Benefits of graphene for this application are: it can be produced with desired structural morphology, its surface properties can be modified via plasma or chemical treatment (decorated with specific functional groups), and it can be transferred to a plethora of substrates (high influence of cells fate). Successful applications of graphene-based materials for bio-med applications are predominantly produced via chemical methods. When produced via Thermal CVD, the transfer to the desired substrate involves chemical treatment, potentially contaminating the graphene. In this work, we use a unique plasma produced graphene, transferred to glass via a chemical-free process, as cell culture substrates. This work aims graphene's bio-toxicity. Our results show that our material is non toxic, and cells morphology and proliferation indicates similar growth among all samples and the control.

  12. Comparative study of the effects of various culture conditions on cell growth and Gagaminine synthesis in suspension culture of Cynanchum wilfordii (MAXIM.) HEMSLEY.

    PubMed

    Shin, Ga-Hee; Chio, Man-Gi; Lee, Dae-Won

    2003-09-01

    Gagaminine, a steroidal alkaloid isolated from the roots of Cynanchum wilfordii, exhibited potent inhibitory effects on aldehyde oxidase activity and lipid peroxidation. To determine whether it would be possible to mass produce this active component, which would be useful for animal tests, we tried to synthesize it using in vitro cell culture methods with various growth conditions. In a previous study it was found that calli were easily induced from the stem of this medicinal plant and cultivated effectively on MS medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) 2 mg/l. In this work we attempted to determine the effects of various culture conditions on cell growth and gagaminine synthesis in suspension culture. Gagaminine production was increased markedly when cell growth proceeded to the death phase. Cell growth was more effective with 5% (v/v) sucrose, in the light (at 38 microE/m(2) x s), on medium containing 2,4-D 2 mg/l, with 2.5 g/10 ml medium as the initial cell concentration. The concentration of gagaminine was optimal with 3% sucrose, in darkness on medium 2,4-D 1 mg/l, with 2.5 g/10 ml medium as an initial cell concentration. However, the highest growth rate was 0.18 d(-1), when the gagaminine concentration was seven- and three-fold (at 140 mu/ml) that of the plant stem and 10 ml of medium respectively, on the 50 ml of medium in suspension culture. PMID:12951479

  13. Cell culture experiments planned for the space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  14. A COMPREHENSIVE STUDY ON APOPTOSIS INDUCTION BY AZADIRACHTIN IN Spodoptera frugiperda CULTURED CELL LINE Sf9.

    PubMed

    Shu, Benshui; Wang, Wenxiang; Hu, Qingbo; Huang, Jingfei; Hu, Meiying; Zhong, Guohua

    2015-07-01

    The induction of apoptosis by azadirachtin, a well-known botanical tetranortriterpenoid isolated from the neem tree (Azadirachta indica A. Juss) and other members of the Meliaceae, was investigated in Spodoptera frugiperda cultured cell line (Sf9). Morphological changes in Sf9 cells treated by various concentrations of azadirachtin were observed at different times under light microscopy. Morphological and biochemical analysis indicated that Sf9 cells treated by 1.5 μg/mL azadirachtin showed typical morphological changes, which were indicative of apoptosis and a clear DNA ladder. The flow cytometry analysis showed the apoptosis rate reached a maximum value of 32.66% at 24 h with 1.5 μg/mL azadirachtin in Sf9 cells. The inhibition of Sf9 cell proliferation suggested that the effect of azadirachtin was dose dependent and the EC50 at 48 and 72 h was 2.727 × 10(-6) and 6.348 × 10(-9) μg/mL, respectively. The treatment of azadirachtin in Sf9 cells could significantly increase the activity of Sf caspase-1, but showed no effect on the activity of Topo I, suggesting that the apoptosis induced by azadirachtinin Sf9 cells is through caspase-dependent pathway. These results provided not only a series of morphological, biochemical, and toxicological comprehensive evidences for induction of apoptosis by azadirachtin, but also a reference model for screening insect cell apoptosis inducers from natural compounds. PMID:25828604

  15. Huanglongbing and psyllid cell cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We successfully established cell cultures of the Asian citrus psyllid, Diaphorina citri (Psyllidae: Hemiptera), DcHH-1. The cell culture also supported growth of Candidatus Liberibacter asiaticus. This bacterial pathogen is associated with Huanglongbing, known as citrus greening disease. Research on...

  16. Methods for Culturing Human Femur Tissue Explants to Study Breast Cancer Cell Colonization of the Metastatic Niche

    PubMed Central

    Templeton, Zachary S.; Bachmann, Michael H.; Alluri, Rajiv V.; Maloney, William J.; Contag, Christopher H.; King, Bonnie L.

    2015-01-01

    Bone is the most common site of breast cancer metastasis. Although it is widely accepted that the microenvironment influences cancer cell behavior, little is known about breast cancer cell properties and behaviors within the native microenvironment of human bone tissue.We have developed approaches to track, quantify and modulate human breast cancer cells within the microenvironment of cultured human bone tissue fragments isolated from discarded femoral heads following total hip replacement surgeries. Using breast cancer cells engineered for luciferase and enhanced green fluorescent protein (EGFP) expression, we are able to reproducibly quantitate migration and proliferation patterns using bioluminescence imaging (BLI), track cell interactions within the bone fragments using fluorescence microscopy, and evaluate breast cells after colonization with flow cytometry. The key advantages of this model include: 1) a native, architecturally intact tissue microenvironment that includes relevant human cell types, and 2) direct access to the microenvironment, which facilitates rapid quantitative and qualitative monitoring and perturbation of breast and bone cell properties, behaviors and interactions. A primary limitation, at present, is the finite viability of the tissue fragments, which confines the window of study to short-term culture. Applications of the model system include studying the basic biology of breast cancer and other bone-seeking malignancies within the metastatic niche, and developing therapeutic strategies to effectively target breast cancer cells in bone tissues. PMID:25867136

  17. Electron cytochemical study of carbohydrate components in different types of cultured glial cells of snail Helix pomatia.

    PubMed

    Koval, L M; Kononenko, N I; Lutsik, M D; Yavorskaya, E N

    1994-01-01

    Using a variety of colloidal gold-labelled lectins with different sugar specificities, the structure and topography of carbohydrate determinants of the surface membrane of in vitro cultured glial and nerve cells of the snail Helix pomatia have been electron cytochemically studied. Heterogeneity of carbohydrate pools among different types of glial cells and between glial and nerve cells was established. It was found that satellite glial cells having the ultrastructural signs of cells with high metabolic level (type II cells) selectively bind GNA which is specific to terminal alpha-D-mannose residues and do not bind other mannose-specific lectins, Con A and LCA. GNA determinants are absent in satellite type I glial cells, fibrous glial cells, microglia and neurons. It has been found that glial cells (satellite type I and II glial cells, filamentous glial cells and microglial cells) do not bind PVA and LABA. LTA did not bind to any glial cells and binds weakly to neurons. Con A and WGA determinants which are abundant on the neurons are completely absent on satellite type II glial cells but present on satellite type I glial cells and filamentous glial cells. Microglial cells contain Con A and LCA determinants and the density of PNA determinants on these cells is the highest compared to other types of glial cells or neurons. It is concluded that some lectin determinants (for RCA-1, PNA, LPA) are present on all types of glial cells, while another determinant (GNA) is specific for a definite type of glial cells and can serve as a marker of these cells. The role of specific carbohydrate determinants in the functioning of a neuron-glial complex is discussed. PMID:7914854

  18. Tissue culture and explant approaches to studying and visualizing Neospora caninum and its interactions with the host cell.

    PubMed

    Hemphill, Andrew; Vonlaufen, Nathalie; Naguleswaran, Arunasalam; Keller, Nadine; Riesen, Michele; Guetg, Nicole; Srinivasan, Sangeetha; Alaeddine, Ferial

    2004-10-01

    Neospora caninum is an apicomplexan parasite first mentioned in 1984 as a causative agent of neuromuscular disease in dogs. It is closely related to Toxoplasma gondii and Hammondia heydorni, and its subsequent description in 1988 has been, and still is, accompanied by discussions on the true phylogenetical status of the genus Neospora. N. caninum exhibits features that clearly distinguish this parasite from other members of the Apicomplexa, including distinct ultrastructural properties, genetic background, antigenic composition, host cell interactions, and the definition of the dog as a final host. Most importantly, N. caninum has a particular significance as a cause of abortion in cattle. In vitro culture has been indispensable for the isolation of this parasite and for investigations on the ultrastructural, cellular, and molecular characteristics of the different stages of N. caninum. Tissue culture systems include maintenance of N. caninum tachyzoites, which represent the rapidly proliferating stage in a large number of mammalian host cells, culture of parasites in organotypic brain slice cultures as a tool to investigate cerebral infection by N. caninum, and the use of techniques to induce the stage conversion from the tachyzoite stage to the slowly proliferating and tissue cyst-forming bradyzoite stage. This review will focus on the use of these tissue culture models as well as light- and electron-microscopical techniques for studies on N. caninum tachyzoites and bradyzoites, and on the physical interactions between parasites and host cells. PMID:15525434

  19. THE COMPARISON OF TWO VITRO PALATAL ORGAN CULTURE MODELS TO STUDY CELL SIGNALING PATHWAYS DURING PALATOGENESIS

    EPA Science Inventory

    This study was performed to determine the best palatal organ culture model to use in evaluating the role of epidermal growth factor (EGF) signaling in the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Previous work has shown that TCDD and EGF can induce teratogenic effe...

  20. Studies of formation and efflux of methotrexate polyglutamates with cultured hepatic cells

    SciTech Connect

    Galivan, J.; Balinska, M.

    1983-01-01

    Methotrexate polyglutamates are extensively synthesized when cultured hepatocytes and H35 hepatoma cells are exposed to micromolar concentrations of methotrexate. The predominant species found within the cell have from two to four additional gamma-linked glutamate residues. When either cell type containing a mixture of methotrexate and its polyglutamate derivatives is exposed to medium lacking methotrexate, there is a rapid release of methotrexate. This release has a T/sub 1/2/ of 2 to 4 min and is apparently complete within 30 to 60 min. Methotrexate polyglutamates leave the cells much more slowly and appear to do so by two mechanisms. Although cleavage to methotrexate and subsequent efflux appears to be quantitatively the more important pathway, there is also a slow, finite loss of intact methotrexate polyglutamates from cells which exclude trypan blue. The T/sub 1/2/ for the loss of methotrexate polyglutamates by both cell types, when placed in medium lacking methotrexate, is approximately 6 to 8 hr. These results suggest that the polyglutamate derivatives are forms of methotrexate which are as cytotoxic as methotrexate but which offer a potentially greater capacity for cellular destruction because they are retained longer in the tissue.

  1. Studies on the use of cultured cells in a bioassay for parathyroid hormone.

    PubMed

    Armston, A E; Wood, P J

    1994-11-01

    Measurement of parathyroid hormone (PTH) is important for diagnosing hyper- and hypoparathyroidism. The move to two-site immunometric assays that detect the whole molecule has improved the discrimination of these conditions but these assays may be too restrictive because some PTH fragments that are biologically active may not be detected. In addition, PTH-like peptide of malignancy, an important cause of malignancy-associated hypercalcaemia, is not detected by the two-site assays. Experiments were performed to set up a simple, robust and inexpensive bioassay for PTH, exploiting a kidney cell line and using cyclic AMP or an eluted stain assay as the end point. Of the 12 cell lines tested, an opossum kidney (WOK) cell line showed the most promise. Despite optimization of the procedure to include pre-treatment with dexamethasone, insulin and PTH, followed by incubation in the presence of 5'-guanylimidodiphosphate, isobutyl-1-methylxanthine and forskolin, the WOK cells showed insufficient sensitivity for use in a cultured cell bioassay for PTH in human serum. In addition, the cells were less sensitive to PTH-like peptide precluding their use for an assay for this molecule. PMID:7829991

  2. Knockdown of Drosha in human alveolar type II cells alters expression of SP-A in culture: a pilot study.

    PubMed

    Silveyra, Patricia; Chroneos, Zissis C; DiAngelo, Susan L; Thomas, Neal J; Noutsios, Georgios T; Tsotakos, Nikolaos; Howrylak, Judie A; Umstead, Todd M; Floros, Joanna

    2014-09-01

    Human surfactant protein A (SP-A) plays an important role in surfactant metabolism and lung innate immunity. SP-A is synthesized and secreted by alveolar type II (ATII) cells, one of the two cell types of the distal lung epithelium (ATII and ATI). We have shown that miRNA interactions with sequence polymorphisms on the SP-A mRNA 3'UTRs mediate differential expression of SP-A1 and SP-A2 gene variants in vitro. In the present study, we describe a physiologically relevant model to study miRNA regulation of SP-A in human ATII. For these studies, we purified and cultured human ATII on an air-liquid interface matrix (A/L) or plastic wells without matrix (P). Gene expression analyses confirmed that cells cultured in A/L maintained the ATII phenotype for over 5 days, whereas P-cultured cells differentiated to ATI. When we transfected ATII with siRNAs to inhibit the expression of Drosha, a critical effector of miRNA maturation, the levels of SP-A mRNA and protein increased in a time dependent manner. We next characterized cultured ATII and ATI by studying expression of 1,066 human miRNAs using miRNA PCR arrays. We detected expression of >300 miRNAs with 24 miRNAs differentially expressed in ATII versus ATI, 12 of which predicted to bind SP-A 3'UTRs, indicating that these may be implicated in SP-A downregulation in ATI. Thus, miRNAs not only affect SP-A expression, but also may contribute to the maintenance of the ATII cell phenotype and/or the trans-differentiation of ATII to ATI cells, and may represent new molecular markers that distinguish ATII and ATI. PMID:25058539

  3. Knockdown of Drosha in human alveolar type II cells alters expression of SP-A in culture: a pilot study

    PubMed Central

    Silveyra, Patricia; Chroneos, Zissis C; DiAngelo, Susan L; Thomas, Neal J; Noutsios, Georgios T; Tsotakos, Nikolaos; Howrlylak, Judie A; Umstead, Todd M; Floros, Joanna

    2014-01-01

    Human surfactant protein A (SP-A) plays an important role in surfactant metabolism and lung innate immunity. SP-A is synthesized and secreted by alveolar type II cells (ATII), one of the two cell types of the distal lung epithelium (ATII and ATI). We have shown that miRNA interactions with sequence polymorphisms on the SP-A mRNA 3′UTRs mediate differential expression of SP-A1 and SP-A2 gene variants in vitro. In the present study, we describe a physiologically relevant model to study miRNA regulation of SP-A in human ATII. For these studies, we purified and cultured human ATII on an air-liquid interface matrix (A/L) or plastic wells without matrix (P). Gene expression analyses confirmed that cells cultured in A/L maintained the ATII phenotype for over 5 days, whereas P-cultured cells differentiated to ATI. When we transfected ATII with siRNAs to inhibit the expression of Drosha, a critical effector of miRNA maturation, the levels of SP-A mRNA and protein increased in a time dependent manner. We next characterized cultured ATII and ATI by studying expression of 1,066 human miRNAs using miRNA PCR arrays. We detected expression of >300 miRNAs with 24 miRNAs differentially expressed in ATII vs. ATI, 12 of which predicted to bind SP-A 3′UTRs, indicating that these may be implicated in SP-A downregulation in ATI. Thus, miRNAs not only affect SPA expression, but also may contribute to the maintenance of the ATII cell phenotype and/or the trans-differentiation of ATII to ATI cells, and may represent new molecular markers that distinguish ATII and ATI. PMID:25058539

  4. High density cell culture system

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1994-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  5. [Effects of colchicine on the content of ribonucleic acids and total proteins of cultured nerve cells. Preliminary study].

    PubMed

    Noel-Courtey, B

    1975-03-01

    Nervous cells from chick embryo lumbo-sacral spinal cord have been cultivated in vitro and treated with colchicine. The effects of this alkaloid on the RNA and the total protein contents of nervous cells have been studied by quantitative cytochemical methods. The RNA content has been measured by cytophotometry after DNase digestion and gallocyanine-chromalun staining; the cellular protein content has been measured after Naphtol Yellow S staining. In colchicine treated cultures, the main part of the nervous cell population consists of spheroidal and piriform neuroblasts; some cells are neurocytes with short processes. During the 48 first hours in vitro, the RNA content is approximatively identical in treated cells as in controls. The cellular total protein content is much lower in the treated cells than in the controls. PMID:1222295

  6. Replication of human endothelial cells in culture.

    PubMed

    Lewis, L J; Hoak, J C; Maca, R D; Fry, G L

    1973-08-01

    Investigative studies dealing with the properties and functions of endothelial cells have been hampered because there has been little or no success in the isolation, growth, and passage of individual cells in large numbers. We have developed a system whereby pure cultures of endothelial cells derived from umbilical veins can be subcultured for at least five serial passages. Many facets of endothelial function and interaction can be evaluated with the use of this new adaptive system of isolation and culture. PMID:4718112

  7. Dynamic culture improves cell reprogramming efficiency.

    PubMed

    Sia, Junren; Sun, Raymond; Chu, Julia; Li, Song

    2016-06-01

    Cell reprogramming to pluripotency is an inefficient process and various approaches have been devised to improve the yield of induced pluripotent stem cells. However, the effect of biophysical factors on cell reprogramming is not well understood. Here we showed that, for the first time, dynamic culture with orbital shaking significantly improved the reprogramming efficiency in adherent cells. Manipulating the viscosity of the culture medium suggested that the improved efficiency is mainly attributed to convective mixing rather than hydrodynamic shear stress. Temporal studies demonstrated that the enhancement of reprogramming efficiency required the dynamic culture in the middle but not early phase. In the early phase, fibroblasts had a high proliferation rate, but as the culture became over-confluent in the middle phase, expression of p57 was upregulated to inhibit cell proliferation and consequently, cell reprogramming. Subjecting the over confluent culture to orbital shaking prevented the upregulation of p57, thus improving reprogramming efficiency. Seeding cells at low densities to avoid over-confluency resulted in a lower efficiency, and optimal reprogramming efficiency was attained at a high seeding density with dynamic culture. Our findings provide insight into the underlying mechanisms of how dynamic culture condition regulate cell reprogramming, and will have broad impact on cell engineering for regenerative medicine and disease modeling. PMID:27031931

  8. Human Pulmonary Endothelial Cells in Culture

    PubMed Central

    Johnson, Alice R.

    1980-01-01

    Endothelial cells were cultured from various different human vessels, including aortas, pulmonary, ovarian, and umbilical arteries, and pulmonary, ovarian, and umbilical veins. The cultured cells were identified as endothelial cells by the presence of Factor VIII antigen and antiotensin I converting enzyme (kininase II). They retained these markers for at least five passages in culture, and some cells had them for seven passages or more. Endothelial cells from the various vessels were compared with respect to their ability to metabolize angiotensins I and II and bradykinin. Cells from arteries had three to five times the angiotensin I converting enzyme activity as cells from veins. The activity of angiotensinase A (aspartyl aminopeptidase) had a similar distribution, and cells from arteries were consistently more active than cells from veins. Cultures of endothelial cells from pulmonary and umbilical vessels formed prostacyclin in response to mechanical stimulation. Media from cell monolayers that were subjected to a change of medium and gentle agitation inhibited aggregation of human platelets. This inhibitory activity was generated within 2-5 min, and it was not formed by cells that were treated with indomethacin or tranylcypromine. Addition of prostaglandin (PG)H2 to indomethacin-treated cells restored the ability to form the inhibitor, but cells treated with tranylcypromine were not responsive to PGH2. In experiments where [14C]arachidonic acid was added to the cells before stimulation, the major metabolite identified by thin-layer chromatography was 6-keto PGF1α. Thus, it appears that pulmonary endothelial cells, as well as umbilical cord cells, can form prostacyclin. In experiments comparing the ability of arterial and venous cells to form prostacyclin, arterial cells were more active than venous cells. These studies of cells from various human vessels suggest that the vascular origin of cultured endothelial cells determines how they metabolize vasoactive

  9. CELL CULTURE STUDIES WITH THE IMC-HZ-1 NONOCCLUDED VIRUS

    EPA Science Inventory

    Studies were conducted on an adventitious agent (Hz-lv) isolated from the IMC-Hz-1 cell line. It appeared identical to the virus first obtained by Granados et al. from a persistent infection of this cell line. Restriction endonuclease digestion of Hz-lv DNA indicated the agent wa...

  10. A study of murine bone marrow cells cultured in bioreactors which create an environment which simulated microgravity

    NASA Technical Reports Server (NTRS)

    Lawless, Brother Desales

    1990-01-01

    Previous research indicated that mouse bone marrow cells could be grown in conditions of simulated microgravity. This environment was created in rotating bioreactor vessels. On three attempts mouse cells were grown successfully in the vessels. The cells reached a stage where the concentrations were doubling daily. Phenotypic analysis using a panel of monoclonal antibodies indicated that the cell were hematopoietic pluripotent stem cells. One unsuccessful attempt was made to reestablish the immune system in immunocompromised mice using these cells. Since last summer, several unsuccessful attempts were made to duplicate these results. It was determined by electron microscopy that the cells successfully grown in 1989 contained virus particles. It was suggested that these virally parasitized cells had been immortalized. The work of this summer is a continuation of efforts to grow mouse bone marrow in these vessels. A number of variations of the protocol were introduced. Certified pathogen free mice were used in the repeat experiments. In some attempts the medium of last summer was used; in others Dexture Culture Medium containing Iscove's Medium supplemented with 20 percent horse serum and 10-6 M hydrocortisone. Efforts this summer were directed solely to repeating the work of last summer. Plans were made for investigations if stem cells were isolated. Immortalization of the undifferentiated stem cell would be attempted by transfection with an oncogenic vector. Selective differentiation would be induced in the stem cell line by growing it with known growth factors and immune response modulators. Interest is in identifying any surface antigens unique to stem cells that would help in their characterization. Another goal was to search for markers on stem cells that would distinguish them from stem cells committed to a particular lineage. If the undifferentiated hematopoietic stem cell was obtained, the pathways that would terminally convert it to myeloid, lyphoid

  11. Cell Culture for Production of Insecticidal Viruses.

    PubMed

    Reid, Steven; Chan, Leslie C L; Matindoost, Leila; Pushparajan, Charlotte; Visnovsky, Gabriel

    2016-01-01

    While large-scale culture of insect cells will need to be conducted using bioreactors up to 10,000 l scale, many of the main challenges for cell culture-based production of insecticidal viruses can be studied using small-scale (20-500 ml) shaker/spinner flasks, either in free suspension or using microcarrier-based systems. These challenges still relate to the development of appropriate cell lines, stability of virus strains in culture, enhancing virus yields per cell, and the development of serum-free media and feeds for the desired production systems. Hence this chapter presents mainly the methods required to work with and analyze effectively insect cell systems using small-scale cultures. Outlined are procedures for quantifying cells and virus and for establishing frozen cells and virus stocks. The approach for maintaining cell cultures and the multiplicity of infection (MOI) and time of infection (TOI) parameters that should be considered for conducting infections are discussed.The methods described relate, in particular, to the suspension culture of Helicoverpa zea and Spodoptera frugiperda cell lines to produce the baculoviruses Helicoverpa armigera nucleopolyhedrovirus, HearNPV, and Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, AgMNPV, respectively, and the production of the nonoccluded Oryctes nudivirus, OrNV, using an adherent coleopteran cell line. PMID:27565495

  12. Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide.

    PubMed

    Rivera-Denizard, Omayra; Diffoot-Carlo, Nannette; Navas, Vivian; Sundaram, Paul A

    2008-01-01

    Ti-48Al-2Cr-2Nb (at. %) (gammaTiAl), a gamma titanium aluminide alloy originally designed for aerospace applications, appears to have excellent potential for bone repair and replacement. The biological response to gammaTiAl implant is expected to be similar to other titanium-based biomaterials. Human fetal osteoblast cells were cultured on the surface of gammaTiAl and Ti-6Al-4V disks with variable surface roughness for both SEM and immunofluorescent analysis to detect the presence of collagen type I and osteonectin, proteins of the bone extracellular matrix. Qualitative results show that cell growth and attachment on gammaTiAl was normal compared to that of Ti-6Al-4V, suggesting that gammaTiAl is not toxic to osteoblasts. The presence of collagen type I and osteonectin was observed on both gammaTiAl and Ti-6Al-4V. The results obtained suggest gammaTiAl is biocompatible with the osteoblast cells. PMID:17597368

  13. Cell culture purity issues and DFAT cells

    SciTech Connect

    Wei, Shengjuan; Bergen, Werner G.; Zan, Linsen; Dodson, Michael V.

    2013-04-12

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  14. Combination of cell culture assays and knockout mouse analyses for the study of opioid partial agonism.

    PubMed

    Ide, Soichiro; Minami, Masabumi; Sora, Ichiro; Ikeda, Kazutaka

    2010-01-01

    Nonselective opioid partial agonists, such as buprenorphine, butorphanol, and pentazocine, have been widely used as analgesics and for anti-addiction therapy. However, the precise molecular mechanisms underlying the therapeutic and rewarding effects of these drugs have not been clearly delineated. Recent success in developing mu-opioid receptor knockout (MOP-KO) mice has elucidated the molecular mechanisms underlying the effects of morphine and other opioids. We have revealed the in vivo roles of MOPs in the effects of opioid partial agonists by using MOP-KO mice for behavioral tests (e.g., several kinds of antinociceptive tests for analgesic effects, conditioned place preference test for dependence). The combination of the cell culture assays using cDNA for mu, delta, and kappa opioid receptors and the behavioral tests using MOP-KO mice has provided novel theories on the molecular mechanisms underlying the effects of opioid ligands, especially opioid partial agonists. PMID:20336435

  15. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  16. Cold response of dedifferentiated barley cells at the gene expression, hormone composition, and freezing tolerance levels: studies on callus cultures.

    PubMed

    Vashegyi, Ildikó; Marozsán-Tóth, Zsuzsa; Galiba, Gábor; Dobrev, Petre I; Vankova, Radomira; Tóth, Balázs

    2013-06-01

    In this study, data is presented how dark-grown, embryogenic barley callus cells respond to cold without any light-dependent, chloroplast-related mechanism, independently of the systemic signals. The expression of HvCBF9, HvCBF14, and HvCOR14b genes, members of one of the most important cold-inducible regulatory system, was measured by real-time PCR. Characteristic of the cold response was similar in the crowns of seedlings and in dark-grown callus cultures, however, gene expression levels were lower in calli. Endogenous concentration of auxins, abscisic acid, and salicylic acid did not change, but phaseic acid and neophaseic acid showed robust accumulation after cold acclimation. Freezing tolerance of the cultures was also higher after 7 days of cold-hardening. The results suggest the presence of a basal, light-independent, cold-responsive activation of the CBF-COR14b pathway in barley cultures. The effects of Dicamba, the exogenous auxin analog used for maintaining tissue cultures were also studied. Dicamba seems to be a general enhancer of the gene expression and physiological responses to cold stress, but has no specific effect on the activation. Our data along with previous findings show that this system might be a suitable model for studying certain basic cellular mechanisms involved in the cold acclimation process in cereals. PMID:22669585

  17. Chemical Synthesis, Characterisation, and Biocompatibility of Nanometre Scale Porous Anodic Aluminium Oxide Membranes for Use as a Cell Culture Substrate for the Vero Cell Line: A Preliminary Study

    PubMed Central

    Poinern, Gérrard Eddy Jai; Le, Xuan Thi; Becker, Thomas; Fawcett, Derek

    2014-01-01

    In this preliminary study we investigate for the first time the biomedical potential of using porous anodic aluminium oxide (AAO) membranes as a cell substrate for culturing the Cercopithecus aethiops (African green monkey) Kidney (Vero) epithelial cell line. One advantage of using the inorganic AAO membrane is the presence of nanometre scale pore channels that allow the exchange of molecules and nutrients across the membrane. The size of the pore channels can be preselected by adjusting the controlling parameters of a temperature controlled two-step anodization process. The cellular interaction and response of the Vero cell line with an in-house synthesised AAO membrane, a commercially available membrane, and a glass control were assessed by investigating cell adhesion, morphology, and proliferation over a 72 h period. The number of viable cells proliferating over the respective membrane surfaces revealed that the locally produced in-house AAO membrane had cells numbers similar to the glass control. The study revealed evidence of focal adhesion sites over the surface of the nanoporous membranes and the penetration of cellular extensions into the pore structure as well. The outcome of the study has revealed that nanometre scale porous AAO membranes have the potential to become practical cell culture scaffold substrates with the capability to enhance adhesion and proliferation of Vero cells. PMID:24579077

  18. Chemical synthesis, characterisation, and biocompatibility of nanometre scale porous anodic aluminium oxide membranes for use as a cell culture substrate for the vero cell line: a preliminary study.

    PubMed

    Poinern, Gérrard Eddy Jai; Le, Xuan Thi; O'Dea, Mark; Becker, Thomas; Fawcett, Derek

    2014-01-01

    In this preliminary study we investigate for the first time the biomedical potential of using porous anodic aluminium oxide (AAO) membranes as a cell substrate for culturing the Cercopithecus aethiops (African green monkey) Kidney (Vero) epithelial cell line. One advantage of using the inorganic AAO membrane is the presence of nanometre scale pore channels that allow the exchange of molecules and nutrients across the membrane. The size of the pore channels can be preselected by adjusting the controlling parameters of a temperature controlled two-step anodization process. The cellular interaction and response of the Vero cell line with an in-house synthesised AAO membrane, a commercially available membrane, and a glass control were assessed by investigating cell adhesion, morphology, and proliferation over a 72 h period. The number of viable cells proliferating over the respective membrane surfaces revealed that the locally produced in-house AAO membrane had cells numbers similar to the glass control. The study revealed evidence of focal adhesion sites over the surface of the nanoporous membranes and the penetration of cellular extensions into the pore structure as well. The outcome of the study has revealed that nanometre scale porous AAO membranes have the potential to become practical cell culture scaffold substrates with the capability to enhance adhesion and proliferation of Vero cells. PMID:24579077

  19. Cell culture processes for monoclonal antibody production

    PubMed Central

    Li, Feng; Vijayasankaran, Natarajan; Shen, Amy (Yijuan); Kiss, Robert

    2010-01-01

    Animal cell culture technology has advanced significantly over the last few decades and is now generally considered a reliable, robust and relatively mature technology. A range of biotherapeutics are currently synthesized using cell culture methods in large scale manufacturing facilities that produce products for both commercial use and clinical studies. The robust implementation of this technology requires optimization of a number of variables, including (1) cell lines capable of synthesizing the required molecules at high productivities that ensure low operating cost; (2) culture media and bioreactor culture conditions that achieve both the requisite productivity and meet product quality specifications; (3) appropriate on-line and off-line sensors capable of providing information that enhances process control; and (4) good understanding of culture performance at different scales to ensure smooth scale-up. Successful implementation also requires appropriate strategies for process development, scale-up and process characterization and validation that enable robust operation and ensure compliance with current regulations. This review provides an overview of the state-of-the art technology in key aspects of cell culture, e.g., generation of highly productive cell lines and optimization of cell culture process conditions. We also summarize the current thinking on appropriate process development strategies and process advances that might affect process development. PMID:20622510

  20. Study of the Effects of Ultrasonic Waves on the Reproductive Integrity of Mammalian Cells Cultured in Vitro

    NASA Technical Reports Server (NTRS)

    Martins, B. I.

    1971-01-01

    The effects of monochromatic ultrasonic waves of 0.1, 0.5, 1.0, 2.0 and, 3.3 MHz frequency on the colony-forming ability of mammalian cells (M3-1,V79, Chang's and T-1) cultured in vitro have been studied to determine the nature of the action of ultrasonic energy on biological systems at the cellular level. The combined effect of ultrasound and X-rays has also been studied. It is concluded: (1) Ultrasonic irradiation causes both lethal and sublethal damage. (2) There is a threshold dose rate for lethal effects. (3) The effectiveness of ultrasonic waves in causing cell death probably depends on the frequency and the amplitude of the waves for a given cell line, indicating a possible resonance phenomenon.

  1. Advances in cell culture: anchorage dependence

    PubMed Central

    Merten, Otto-Wilhelm

    2015-01-01

    Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000–6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems—microcarrier/microcarrier-clump cultures using stirred-tank reactors—for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes. PMID:25533097

  2. Murine trabecular meshwork cells in tissue culture.

    PubMed

    Begley, C G; Yue, B Y; Hendricks, R L

    1991-11-01

    Trabecular meshwork cells from an inbred strain of mice (A/J) were established in tissue culture. Within 1 hour of enucleation, tissue containing the cornea and the chamber angle was excised and placed in tissue culture. Two to five days later, three cell types grew from the explants. Two of these cell types, corneal endothelium and fibroblasts, grew together, with the fibroblasts preferentially spreading on top of the endothelial cells. The trabecular meshwork cells extended from the explant as a distinct morphological type. The corneal endothelium and its associated fibroblasts were then removed from the culture flask with a sterile cotton swab, leaving a monolayer of pure trabecular meshwork cells. These cells required 3-4 weeks to reach confluency and could be passaged five times. They were actively phagocytic in culture and exhibited immunoreactivity to antibodies against two extracellular matrix components, laminin and collagen type IV. Mouse trabecular meshwork cells also expressed receptors for acetylated low-density lipoprotein, a property shared by trabecular meshwork cells derived from other species. The availability of trabecular meshwork cells from an inbred strain of mice will facilitate future in vivo functional studies of these cells in a syngeneic system, as well as investigations of potential immunoregulatory properties of the trabecular meshwork. PMID:1782800

  3. Comparison of Coconut Water and Jordanian Propolis on Survival of Bench-dried Periodontal Ligament Cells: An in vitro Cell Culture Study

    PubMed Central

    Al-Jundi, Suhad; Mhaidat, Nizar

    2013-01-01

    ABSTRACT Aim: The aim of this study is to assess and compare the efficacy of Jordanian propolis and full concentration mature coconut water in their ability to preserve periodontal ligament (PDL) cell viability after exposure of PDL cells to up to 120 minutes dry storage. Materials and methods: PDL cells were obtained from sound permanent first molars which were cultured in Dulbecco's Modified Eagles Medium (DMEM). Cultures were subjected to 0, 30, 45, 60, 90 and 120 minutes dry storage times then incubated with 100% mature coconut water, Jordanian propolis and DMEM for 45 minutes at room temperature (18-26°C). Untreated cells served as controls at each dry storage time tested. PDL cell viability was assessed by MTT assay. Statistical analysis of data was accomplished by using one-way analysis of variance complemented by Tukey test and the level of significance was 5% ( p < 0.05). Results: Up to 60 minutes dry storage, no significant improvement on the percentage of viable cells was found from soaking in all tested media. On the other hand, soaking in mature coconut water only resulted in higher percentages of viable cells at >60 minutes dry storage. However, this improvement was not significant (p > 0.05). Conclusion: Avulsed teeth which have been left dry for <45 minutes should be replanted immediately, whereas avulsed teeth which have been left dry for >45 minutes may benefit from soaking for 45 minutes in mature coconut water. How to cite this article: Al-Haj Ali SN, Al-Jundi S, Mhaidat N. Comparison of Coconut Water and Jordanian Propolis on Survival of Bench-dried Periodontal Ligament Cells: An in vitro Cell Culture Study. Int J Clin Pediatr Dent 2013;6(3):161-165. PMID:25206215

  4. Phagosomal pH and glass fiber dissolution in cultured nasal epithelial cells and alveolar macrophages: a preliminary study.

    PubMed Central

    Johnson, N F

    1994-01-01

    The dissolution rate of glass fibers has been shown to be pH sensitive using in vitro lung fluid simulant models. The current study investigated whether there is a difference in phagosomal pH (ppH) between rat alveolar macrophages (AM) and rat nasal epithelial cells (RNEC) and whether such a difference would influence the dissolution of glass fibers. The ppH was measured in cultured AM and RNEC using flow cytometric, fluorescence-emission rationing techniques with fluorescein-labeled, amorphous silica particles. Glass fiber dissolution was determined in AM and RNEC cultured for 3 weeks with fast dissolving glass fibers (GF-A) or slow dissolving ones (GF-B). The mean diameters of GF-A were 2.7 microns and of GF-B, 2.6 microns, the average length of both fibers was approximately 22 to 25 microns. Dissolution was monitored by measuring the length and diameter of intracellular fibers and estimating the volume, assuming a cylindrical morphology. The ppH of AM was 5.2 to 5.8, and the ppH of RNEC was 7.0 to 7.5. The GF-A dissolved more slowly in RNEC than in AM, and no dissolution was evident in either cell type with GF-B. The volume loss with GF-A after a 3-week culture with AM was 66% compared to 45% for cultured RNEC. These results are different from those obtained using in vitro lung fluid-simulant models where dissolution is faster at higher pH. This difference suggests that dissolution rates of glass fibers in AM should not be applied to the dissolution of fibers in epithelial cells. Images Figure 1. a Figure 1. b Figure 2. a Figure 2. b Figure 3. a Figure 3. b PMID:7882965

  5. Aseptic technique for cell culture.

    PubMed

    Coté, R J

    2001-05-01

    This unit describes some of the ways that a laboratory can deal with the constant threat of microbial contamination in cell cultures. A protocol on aseptic technique is described first. This catch-all term universally appears in any set of instructions pertaining to procedures in which noncontaminating conditions must be maintained. In reality, aseptic technique encompasses all aspects of environmental control, personal hygiene, equipment and media sterilization, and associated quality control procedures needed to ensure that a procedure is, indeed, performed with aseptic, noncontaminating technique. Although cell culture can theoretically be carried out on an open bench in a low-traffic area, most cell culture work is carried out using a horizontal laminar-flow clean bench or a vertical laminar-flow biosafety cabinet. Both are described here. PMID:18228291

  6. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    PubMed

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-01

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  7. Cell culture compositions

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  8. Study of Silymarin and Vitamin E Protective Effects on Silver Nanoparticle Toxicity on Mice Liver Primary Cell Culture.

    PubMed

    Faedmaleki, Firouz; Shirazi, Farshad H; Ejtemaeimehr, Shahram; Anjarani, Soghra; Salarian, Amir-Ahmad; Ahmadi Ashtiani, Hamidreza; Rastegar, Hossein

    2016-02-01

    Nanotechnology is a most promising field for generating new applications in medicine, although, only few nano products are currently in use for medical purposes. A most prominent nanoproduct is nanosilver. Nano-silver has biological properties which are significant for consumer products, food technology, textiles, and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). For their antibacterial activity, silver nanoparticles (Ag NPs) are largely used in various commercially available products. The use of nano-silver is becoming more and more widespread in medicine and related applications, and due to its increasing exposure, toxicological and environmental issues need to be raised. Cytotoxicity induced by silver nanoparticles (AgNPs) and the role that oxidative stress plays in this process were demonstrated in human hepatoma cells AgNPs agglomerated in the cytoplasm and nuclei of treated cells, and they induced intracellular oxidative stress. AgNP reduced ATP content of the cell and caused damage to mitochondria and increased production of reactive oxygen species (ROS) in a dose-dependent manner. Silymarin was known as a hepatoprotective agent that is used in the treatment of hepatic diseases including viral hepatitis, alcoholic liver diseases, Amanita mushroom poisoning, liver cirrhosis, toxic and drug-induced liver diseases. It promotes protein synthesis, helps in regenerating liver tissue, controls inflammation, enhances glucuronidation, and protects against glutathione depletion. Vitamin E is a well-known antioxidant and has hepatoprotective effect in liver diseases. In this study, we investigated the cytotoxic effects of Ag NPs on primary liver cells of mice. Cell viability (cytotoxicity) was examined with MTT assay after primary liver cells of mice exposure to AgNPs at 1, 10, 50, 100, 150, 200, 400 ppm for 24h. AgNPs caused a concentration- dependent decrease of cell viability (IC50 value = 121

  9. [CO-CULTURE OF BOAR SPERMATOGONIAL CELLS WITH SERTOLI CELLS].

    PubMed

    Savchenkova, I P; Vasil'eva, S A

    2016-01-01

    In the present study, we developed in vitro culture conditions using co-culture of boar spermatogonial cells with Sertoli cells. Testes from 60-day-old crossbred boar were used. A spermatogonia-enriched culture was achieved by enzymatic digestion method and purification by density gradient centrifugation using a discontinuous Percoll gradient and differentiated adherence technique. Lipid drops were detected in isolated Sertoli cells by Oil Red O staining. We have found that the cultivation of boar spermatogonia in the presence of Sertoli cells (up to 35 days) leads to their differentiation as well as in vivo in testis. Association of cells in groups, formation of chains and suspension clusters of the spermatogenic cells were observed on the 10th day. Spermatogonial cellular colonies were noted at the same time. These cellular colonies were analyzed for the expression of genes: Nanog and Plzf in RT PCR. The expression of the Nanog gene in the experimental cellular clones obtained by short-term culture of spermatogonial cells in the presence of Sertoli cells was 200 times higher than the expression of this gene in the freshly isolated spermatogonial cells expression was found in freshly isolated germ cells and in cellular clones derived in vitro. We have found that, in the case of longer cultivation of these cells on Sertoli cells, in vitro process of differentiation of germ cells and formation of single mobile boar spermatozoa occurs at 30-33 days. Cellular population is heterogeneous at this stage. Spermatogenic differentiation in vitro without Sertoli cells stays on the 7th day of cultivation. The results show that co-culture of boar spermatogonia-enriched cells with Sertoli cells can induce their differentiation into spermatozoa in vitro and facilitate obtaining of porcine germ cell culture. PMID:27228660

  10. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    NASA Astrophysics Data System (ADS)

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Bernkop Schnürch, Andreas

    2008-01-01

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy.

  11. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.

    PubMed

    Tang, Yee-Chin; Katsuma, Shoji; Fujimoto, Shinji; Hiromoto, Sachiko

    2006-11-01

    The electrochemical corrosion behaviour of Type 304 and 316L stainless steels was studied in Hanks' solution, Eagle's minimum essential medium (MEM), serum containing medium (MEM with 10% of fetal bovine serum) without cells, and serum containing medium with cells over a 1-week period. Polarization resistance measurements indicated that the stainless steels were resistant to Hanks' and MEM solutions. Type 304 was more susceptible to pitting corrosion than Type 316L in Hanks' and MEM solutions. The uniform corrosion resistance of stainless steels, determined by R(p), was lower in culturing medium than in Hanks' and MEM. The low corrosion resistance was due to surface passive film with less protective to reveal high anodic dissolution rate. When cells were present, the initial corrosion resistance was low, but gradually increased after 3 days, consistent with the trend of cell coverage. The presence of cells was found to suppress the cathodic reaction, that is, oxygen reduction, and increase the uniform corrosion resistance as a consequence. On the other hand, both Type 304 and 316L stainless steels became more susceptible to pitting corrosion when they were covered with cells. PMID:16935040

  12. Effects of teicoplanin on cell number of cultured cell lines

    PubMed Central

    Kashkolinejad-Koohi, Tahere; Saadat, Iraj

    2015-01-01

    Teicoplanin is a glycopeptide antibiotic with a wide variation in human serum half-life. It is also a valuable alternative of vancomycin. There is however no study on its effect on cultured cells. The aim of the present study was to test the effect of teicoplanin on cultured cell lines CHO, Jurkat E6.1 and MCF-7. The cultured cells were exposed to teicoplanin at final concentrations of 0–11000 μg/ml for 24 hours. To determine cell viability, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was performed. At low concentrations of teicoplanin the numbers of cultured cells (due to cell proliferation) were increased in the three cell lines examined. The maximum cell proliferation rates were observed at concentrations of 1000, 400, and 200 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. Cell toxicity was observed at final concentrations over 2000, 6000, and 400 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. A dose-dependent manner of cell toxicity was observed. Our present findings indicated that teicoplanin at clinically used concentrations induced cell proliferation. It should therefore be used cautiously, particularly in children, pregnant women and patients with cancer.

  13. Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study

    PubMed Central

    Fox, Derek B.; Stoker, Aaron M.; Beatty, Mark; Cockrell, Mary; Janicek, John C.; Cook, James L.

    2014-01-01

    Introduction. Tissue engineering is a new methodology for addressing meniscal injury or loss. Synovium may be an ideal source of cells for in vitro meniscal fibrocartilage formation, however, favorable in vitro culture conditions for synovium must be established in order to achieve this goal. The objective of this study was to determine cellularity, cell distribution, and extracellular matrix (ECM) formation of equine fibroblast-like synoviocytes (FLS) cultured on synthetic scaffolds, for potential application in synovium-based meniscal tissue engineering. Scaffolds included open-cell poly-L-lactic acid (OPLA) sponges and polyglycolic acid (PGA) scaffolds cultured in static and dynamic culture conditions, and PGA scaffolds coated in poly-L-lactic (PLLA) in dynamic culture conditions. Materials and Methods. Equine FLS were seeded on OPLA and PGA scaffolds, and cultured in a static environment or in a rotating bioreactor for 12 days. Equine FLS were also seeded on PGA scaffolds coated in 2% or 4% PLLA and cultured in a rotating bioreactor for 14 and 21 days. Three scaffolds from each group were fixed, sectioned and stained with Masson’s Trichrome, Safranin-O, and Hematoxylin and Eosin, and cell numbers and distribution were analyzed using computer image analysis. Three PGA and OPLA scaffolds from each culture condition were also analyzed for extracellular matrix (ECM) production via dimethylmethylene blue (sulfated glycosaminoglycan) assay and hydroxyproline (collagen) assay. PLLA coated PGA scaffolds were analyzed using double stranded DNA quantification as areflection of cellularity and confocal laser microscopy in a fluorescent cell viability assay. Results. The highest cellularity occurred in PGA constructs cultured in a rotating bioreactor, which also had a mean sulfated glycosaminoglycan content of 22.3 µg per scaffold. PGA constructs cultured in static conditions had the lowest cellularity. Cells had difficulty adhering to OPLA and the PLLA coating of PGA

  14. A Multilayered Cell Culture Model for Transport Study in Solid Tumors: Evaluation of Tissue Penetration of Polyethyleneimine Based Cationic Micelles

    PubMed Central

    Miura, Seiji; Suzuki, Hidenori; Bae, You Han

    2014-01-01

    Limited drug distribution is partially responsible for the efficacy gap between preclinical and clinical studies of nano-sized drug carriers for cancer therapy. In this study, we examined the transport behavior of cationic micelles formed from a triblock copolymer of poly(D,L-lactide-co-glycolide)-block-branched polyethyleneimine-block-poly(D,L-lactide-co-glycolide) using a unique in vitro tumor model composed of a multilayered cell culture (MCC) and an Ussing chamber system. The Cy3-labeled cationic micelles showed remarkable Cy3 distribution in the MCC whereas charge-shielded micelles with a poly(ethylene glycol) surface accumulated on the surface of the MCC. Penetration occurred against convectional flow caused by a hydraulic pressure gradient. The study using fluorescence resonance energy transfer (FRET) showed that the cationic micelles dissociate at the interface between the culture media and the MCC or possibly inside of the first-layer cells and penetrates into the MCC as unimers. The penetration and distribution were energy-dependent and suppressed by various endocytic inhibitors. These suggest that cationic unimers mainly utilized clathrin-mediated endocytosis and macropinocytosis for cellular entry and a significant fraction were exocytosed by an unknown mechanism. PMID:25866552

  15. Culture Studies: Hawaiian Studies Project.

    ERIC Educational Resources Information Center

    Hazama, Dorothy, Ed.

    Reports and materials from the Hawaiian Studies Project are presented. The document, designed for elementary school teachers contains two major sections. The first section describes the planning phase of the project, the Summer Institute for Hawaiian Culture Studies (1976) and the follow-up workshops and consultant help (1976-77). The appendix to…

  16. Studies on the porphobilinogen deaminase–uroporphyrinogen cosynthetase system of cultured soya-bean cells

    PubMed Central

    Llambías, Elena B. C.; Batlle, Alcira M. Del C.

    1971-01-01

    1. Porphobilinogenase was isolated and purified from soya-bean callus tissue; its components, porphobilinogen deaminase and uroporphyrinogen isomerase, were separated and purified. 2. The purified porphobilinogenase was resolved into two bands on starch-gel electrophoresis. The molecular weights of porphobilinogenase, deaminase and isomerase fractions were determined by the gel-filtration method. Porphobilinogenase activity was affected by the presence of air; uroporphyrinogens were only formed under anaerobic conditions, although substrate consumption was the same in the absence of oxygen as in its presence. 3. pH-dependence of both porphobilinogenase and deaminase was the same and a sharp optimum at pH 7.2 was obtained. Isomerase was heat-labile, but the presence of ammonium ions or porphobilinogen afforded some protection against inactivation. The action of several compounds added to the system was studied. Cysteine, thioglycollate, ammonium ions and hydroxylamine inhibited porphobilinogenase; certain concentrations of sodium and magnesium salts enhanced activity; some dicarboxylic acids and 2-methoxy-5-nitrotropone inhibited the deaminase. 4. δ-Aminolaevulate and ethionine in the culture media stimulated porphyrin synthesis and increased porphobilinogenase activity, whereas iron deficiency resulted in porphyrin accumulation. 5. The development of chlorophyll and porphobilinogenase on illumination of dark-grown callus was followed. 6. A hypothetical scheme is suggested for the enzymic synthesis of uroporphyrinogens from porphobilinogen. PMID:5165654

  17. Culture & differentiation of mesenchymal stem cell into osteoblast on degradable biomedical composite scaffold: In vitro study

    PubMed Central

    Jain, Krishan G.; Mohanty, Sujata; Ray, Alok R.; Malhotra, Rajesh; Airan, Balram

    2015-01-01

    Background & objectives: There is a significant bone tissue loss in patients from diseases and traumatic injury. The current autograft transplantation gold standard treatment has drawbacks, namely donor site morbidity and limited supply. The field of tissue engineering has emerged with a goal to provide alternative sources for transplantations to bridge this gap between the need and lack of bone graft. The aim of this study was to prepare biocomposite scaffolds based on chitosan (CHT), polycaprolactone (PCL) and hydroxyapatite (HAP) by freeze drying method and to assess the role of scaffolds in spatial organization, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro, in order to achieve bone graft substitutes with improved physical-chemical and biological properties. Methods: Pure chitosan (100CHT) and composites (40CHT/HAP, 30CHT/HAP/PCL and 25CHT/HAP/PCL scaffolds containing 40, 30, 25 parts per hundred resin (phr) filler, respectively) in acetic acid were freeze dried and the porous foams were studied for physicochemical and in vitro biological properties. Results: Scanning electron microscope (SEM) images of the scaffolds showed porous microstructure (20-300 μm) with uniform pore distribution in all compositions. Materials were tested under compressive load in wet condition (using phosphate buffered saline at pH 7.4). The in vitro studies showed that all the scaffold compositions supported mesenchymal stem cell attachment, proliferation and differentiation as visible from SEM images, [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay, alkaline phosphatase (ALP) assay and quantitative reverse transcription (qRT)-PCR. Interpretation & conclusions: Scaffold composition 25CHT/HAP/PCL showed better biomechanical and osteoinductive properties as evident by mechanical test and alkaline phosphatase activity and osteoblast specific gene expression studies. This study suggests that this novel

  18. Protein Inhibition by Microinjection and RNA-Mediated Interference in Tissue Culture Cells: Complementary Approaches to Study Protein Function

    NASA Astrophysics Data System (ADS)

    Stout, Jane R.; Rizk, Rania S.; Walczak, Claire E.

    A major goal in cell biology is to understand the molecular mechanisms of the biological process under study, which requires functional information about the roles of individual proteins in the cell. For many non-genetic model organisms researchers have relied on the use of inhibitory reagents, such as antibodies that can be microinjected into cells. More recently, the advent of RNA-mediated interference (RNAi) has allowed scientists to knockdown individual proteins and to examine the consequences of the knockdown. In this chapter we present a comparison between microinjection of inhibitory reagents and RNAi for the analysis of protein function in mammalian tissue culture cells, providing both a description of the techniques as well as a discussion of the benefits and drawbacks of each approach. In addition, we present a strategy to employ RNAi for organisms without a sequenced genome. While the focus of our research is on the organization of the mitotic spindle during cell division and thus the examples utilized are from that system, the approaches described here should be readily applicable to multiple experimental models.

  19. Endothelial cell culture on fibrillar collagen: model to study platelet adhesion and liposome targeting to intercellular collagen matrix.

    PubMed Central

    Chazov, E I; Alexeev, A V; Antonov, A S; Koteliansky, V E; Leytin, V L; Lyubimova, E V; Repin, V S; Sviridov, D D; Torchilin, V P; Smirnov, V N

    1981-01-01

    Human umbilical endothelial cells (ECs) were grown on fibrillar type I collagen in 16.4-mm multiwell tissue culture plates. Human platelets were added to the wells, and platelet adhesion to collagen was examined by scanning electron microscopy and radioisotopic technique in the absence of ECs and in preconfluent and confluent EC cultures. Single adherent platelets of different shapes as well as small aggregates were seen on collagen surface. Human plasma fibronectin added to the system stimulated platelet adhesion and their spreading on collagen. ECs had no effect on the percentage of platelets adherent to collagen-coated gaps in preconfluent culture but decreased the number of spread platelets. It is demonstrated that collagen-coated gaps can bind 14C-labeled liposome--antibody and 14-C-labeled liposome--fibronectin conjugates. ECs grown on fibrillar collagen are suggested as useful models for screening of antiplatelet drugs and for the study of drug targeting to the areas of vascular injury for prevention of thrombosis. Images PMID:6946497

  20. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    PubMed

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-01

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced

  1. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    PubMed

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways. PMID:27590152

  2. Optimization and characterization of an in vitro bovine mammary cell culture system to study regulation of milk protein synthesis and mammary differentiation

    SciTech Connect

    Talhouk, R.S.

    1988-01-01

    A long term bovine mammary cell culture system that maintains normal mammary cell function was established and optimized to study milk protein synthesis and secretion and mammary differentiation. This culture system used bovine mammary acini isolated from developing or lactating mammary gland by enzymatic dissociation, and cryopreserved until thawed and plated for growth in vitro for these studies. Cells in M199 with lactogenic hormones {plus minus} fetal calf serum (FCS) were cultured on plastic, 100ul and 500ul type I collagen, and Matrigel, or embedded within type I collagen. Cell morphology, cell number, and total TCA-precipitable {sup 35}S-labelled proteins were monitored. Milk protein ({alpha}{sub s,1}-casein, lactoferrin (LF), {alpha}-lactalbumin, and {beta}-lactoglobulin) secretion and intracellular levels were determined by an ELISA assay.

  3. Comparative study on biologic and immunologic characteristics of the pancreas islet cell between 24 degrees C and 37 degrees C culture in the rat.

    PubMed

    Kim, S C; Han, D J; Kim, I H; Woo, K O; We, Y M; Kang, S Y; Back, J H; Kim, Y H; Kim, J H; Lim, D G

    2005-10-01

    The aim of this study was to investigate the effect of culture at 24 degrees C on cell viability, cellular function, immunogenicity, and cytokine profiles of rat pancreatic islets. Pancreatic islets were isolated from Lewis rats and cultured at either 24 degrees C or 37 degrees C for 14 days. Islet recovery was counted as islet equivalents; islet viability was examined with fluorescent vital staining. Islet function was measured with a glucose stimulation test. Annexin V, and MHC class I and II expression were measured using flow cytometric assay for apoptosis and immunogenicity, respectively. Lymphocyte cell proliferation was examined with WST-1 proliferation assay. Cytokine profiles were analyzed with quantitative real time RT-PCR. All these parameters were measured on 1, 3, 5, 7 and 14 culture days after islet isolation. Islet recovery was higher in islets cultured at 24 degrees C than 37 degrees C without a change in viability. Insulin secretion after glucose stimulation was more effective in 24 degrees C culture conditions. Decreased apoptotic cell death was demonstrated in 24 degrees C cultured islets. Both MHC class I and II expression on islets and lymphocyte proliferation upon coculture with islets were less prominent in 24 degrees C cultured islets. TNF-alpha expression was lower in islets cultured at 24 degrees C than in islets cultured at 37 degrees C. Both IL-1beta and IL-10 cytokine expressions were similar under both culture conditions. This study demonstrated that cell recovery and function are increased in islets cultured at 24 degrees C than those at 37 degrees C with decreased antigenicity and proinflammatory cytokine expression. PMID:16298632

  4. Microfabricated Platforms for Mechanically Dynamic Cell Culture

    PubMed Central

    Moraes, Christopher; Sun, Yu; Simmons, Craig A.

    2010-01-01

    The ability to systematically probe in vitro cellular response to combinations of mechanobiological stimuli for tissue engineering, drug discovery or fundamental cell biology studies is limited by current bioreactor technologies, which cannot simultaneously apply a variety of mechanical stimuli to cultured cells. In order to address this issue, we have developed a series of microfabricated platforms designed to screen for the effects of mechanical stimuli in a high-throughput format. In this protocol, we demonstrate the fabrication of a microactuator array of vertically displaced posts on which the technology is based, and further demonstrate how this base technology can be modified to conduct high-throughput mechanically dynamic cell culture in both two-dimensional and three-dimensional culture paradigms. PMID:21206477

  5. Cell Culture, Technology: Enhancing the Culture of Diagnosing Human Diseases

    PubMed Central

    Alshrari, Ahmed Subeh; Syahida, Ahmad; Sekawi, Zamberi

    2016-01-01

    Cell culture involves a complex of processes of cell isolation from their natural environment (in vivo) and subsequent growth in a controlled environmental artificial condition (in vitro). Cells from specific tissues or organs are cultured as short term or established cell lines which are widely used for research and diagnosis, most specially in the aspect of viral infection, because pathogenic viral isolation depends on the availability of permissible cell cultures. Cell culture provides the required setting for the detection and identification of numerous pathogens of humans, which is achieved via virus isolation in the cell culture as the “gold standard” for virus discovery. In this review, we summarized the views of researchers on the current role of cell culture technology in the diagnosis of human diseases. The technological advancement of recent years, starting with monoclonal antibody development to molecular techniques, provides an important approach for detecting presence of viral infection. They are also used as a baseline for establishing rapid tests for newly discovered pathogens. A combination of virus isolation in cell culture and molecular methods is still critical in identifying viruses that were previously unrecognized. Therefore, cell culture should be considered as a fundamental procedure in identifying suspected infectious viral agent. PMID:27134874

  6. Cell Culture, Technology: Enhancing the Culture of Diagnosing Human Diseases.

    PubMed

    Hudu, Shuaibu Abdullahi; Alshrari, Ahmed Subeh; Syahida, Ahmad; Sekawi, Zamberi

    2016-03-01

    Cell culture involves a complex of processes of cell isolation from their natural environment (in vivo) and subsequent growth in a controlled environmental artificial condition (in vitro). Cells from specific tissues or organs are cultured as short term or established cell lines which are widely used for research and diagnosis, most specially in the aspect of viral infection, because pathogenic viral isolation depends on the availability of permissible cell cultures. Cell culture provides the required setting for the detection and identification of numerous pathogens of humans, which is achieved via virus isolation in the cell culture as the "gold standard" for virus discovery. In this review, we summarized the views of researchers on the current role of cell culture technology in the diagnosis of human diseases. The technological advancement of recent years, starting with monoclonal antibody development to molecular techniques, provides an important approach for detecting presence of viral infection. They are also used as a baseline for establishing rapid tests for newly discovered pathogens. A combination of virus isolation in cell culture and molecular methods is still critical in identifying viruses that were previously unrecognized. Therefore, cell culture should be considered as a fundamental procedure in identifying suspected infectious viral agent. PMID:27134874

  7. Translational insight into statin-induced muscle toxicity: from cell culture to clinical studies.

    PubMed

    Taha, Dhiaa A; De Moor, Cornelia H; Barrett, David A; Gershkovich, Pavel

    2014-08-01

    Statins are lipid-lowering drugs used widely to prevent and treat cardiovascular and coronary heart diseases. These drugs are among the most commonly prescribed medicines intended for long-term use. In general, statins are well tolerated. However, muscular adverse effects appear to be the most common obstacle that limits their use, resulting in poor patient compliance or even drug discontinuation. In addition, rare but potentially fatal cases of rhabdomyolysis have been reported with the use of these drugs, especially in the presence of certain risk factors. Previous reports have investigated statin-induced myotoxicity in vivo and in vitro using a number of cell lines, muscle tissues, and laboratory animals, in addition to randomized clinical trials, observational studies, and case reports. None of them have compared directly results from laboratory investigations with clinical observations of statin-related muscular adverse effects. To the best of our knowledge this is the first review article that combines laboratory investigation with clinical aspects of statin-induced myotoxicity. By reviewing published literature of in vivo, in vitro, and clinically relevant studies of statin myotoxicity, we aim to translate this important drug-related problem to establish a clear picture of proposed mechanisms that explain the risk factors and describe the diagnostic approaches currently used for evaluating the degree of muscle damage induced by these agents. This review provides baseline novel translational insight that can be used to enhance the safety profile, to minimize the chance of progression of these adverse effects to more severe and potentially fatal rhabdomyolysis, and to improve the overall patient compliance and adherence to long-term statin therapy. PMID:24530275

  8. Carrier-free cultured autologous oral mucosa epithelial cell sheet (CAOMECS) for corneal epithelium reconstruction: a histological study.

    PubMed

    Bardag-Gorce, Fawzia; Oliva, Joan; Wood, Andrew; Hoft, Richard; Pan, Derek; Thropay, Jacquelyn; Makalinao, Andrew; French, Samuel W; Niihara, Yutaka

    2015-04-01

    This study investigates the therapeutic effects of carrier-free cultured autologous oral mucosa epithelial cell sheet (CAOMECS) transplantation for experimentally induced severe rabbit limbal stem cell deficiency (LSCD). Buccal biopsies were performed and CAOMECS were cultured and transplanted onto diseased corneas. Six-month follow-up examinations indicated that three out of four corneas with CAOMECS grafts showed a decrease in superficial vascularization, while almost all the sham corneas did not show a similar decrease. H&E staining of corneas showed that CAOMECS transplantation reduced blood vessel invasion of central cornea, reduced lymphocyte infiltration and fibrotic tissue formation. DeltaNp63 stained markedly in the grafted cornea and to a lesser extent in the sham corneas. PCNA and Ki-67 staining were much greater in the sham corneas than in the grafted and normal corneas. K3 and K13 staining demonstrated that CAOMECS transplanted corneas had much more K3- and less K13- positive cells compared to the sham corneas. Muc5AC was decreased in the central region of grafted corneas. Very little alpha-smooth muscle actin (aSMA) staining was detected in grafted corneas, while there was a greater amount of aSMA staining in sham corneas. Staining for anti-angiogenic factor TIMP -3 was also increased, and pro-angiogenic factor MMP-3 was decreased in grafted corneas compared to sham corneas. Our results indicate that CAOMECS grafts resulted in improved epithelialization of the corneal surface and decreased vascularization and fibrosis of the diseased corneas. PMID:25881998

  9. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-11-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18428384

  10. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-05-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18265370

  11. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-05-01

    This unit opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18770828

  12. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-12-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18429293

  13. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  14. How do culture media influence in vitro perivascular cell behavior?

    PubMed

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra Juliane

    2015-12-01

    Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries. PMID:26179857

  15. A simple method to quickly and simultaneously purify and enrich intact rat brain microcapillaries and endothelial and glial cells for ex vivo studies and cell culture.

    PubMed

    Lenhard, Thorsten; Hülsermann, Uta; Martinez-Torres, Francisco; Fricker, Gert; Meyding-Lamadé, Uta

    2013-06-26

    The blood-brain barrier is morphologically composed of cerebral microcapillary endothelium through its tight junctions. It serves as a mechanical, metabolic and cellular barrier and can also protect the brain from pathogen invasion. Many brain diseases involve a disturbance of blood-brain barrier function either as a consequence of a noxa or as primary failure. In vitro models of the blood-brain barrier are suitable tools to study drug transport, pathogen transmigration and leukocyte diapedesis across the cerebral endothelium. Such models have previously been derived mainly from porcine or bovine brain tissues. We describe here a simple method by which rat cerebral microcapillaries and cells of glial origin can be quickly and simultaneously purified. By using a capillary fragment size restriction method based on glass bead columns different fractions can be separated: vital, long capillary fragments for ex vivo uptake studies and smaller capillary fragments for endothelial culture. Furthermore, fractions can be obtained for astroglial and oligodendroglial cell cultures. With this method both microcapillary enrichment and glial cell purification are quickly achieved, which reduces expenditure, number of required animals and laboratory working time. PMID:23665392

  16. Cocaine-induced kidney toxicity: an in vitro study using primary cultured human proximal tubular epithelial cells.

    PubMed

    Valente, Maria João; Henrique, Rui; Vilas-Boas, Vânia; Silva, Renata; Bastos, Maria de Lourdes; Carvalho, Félix; Guedes de Pinho, Paula; Carvalho, Márcia

    2012-02-01

    Renal failure resulting from cocaine abuse has been well documented, although the underlying mechanisms remain to be investigated. In the present study, primary cultured human proximal tubular epithelial cells (HPTECs) of the kidney were used to investigate its ability to metabolize cocaine, as well as the cytotoxicity induced by cocaine and its metabolites benzoylecgonine (BE), ecgonine methyl ester (EME) and norcocaine (NCOC). Gas chromatography/ion trap-mass spectrometry (GC/IT-MS) analysis of HPTECs exposed to cocaine (1 mM) for 72 h confirmed its metabolism into EME and NCOC, but not BE. EME levels increased along the exposure time to cocaine, while NCOC concentration diminished after reaching a maximum at 6 h, indicating a possible secondary metabolism for this metabolite. Cocaine promoted a concentration-dependent loss of cell viability, whereas BE and EME were found to be non-toxic to HPTECs at the tested conditions. In contrast, NCOC revealed to have higher intrinsic nephrotoxicity than the parent compound. Moreover, cocaine-induced cell death was partially reversed in the presence of ketoconazole (KTZ), a potent CYP3A inhibitor, supporting the hypothesis that NCOC may play a role in cocaine-induced nephrotoxicity. Cocaine-induced cytotoxicity was found to involve intracellular glutathione depletion at low concentrations and to induce mitochondrial damage at higher concentrations. Under the present experimental conditions, HPTECs death pathway followed an apoptotic pattern, which was evident for concentrations as low as 0.1 mM. PMID:21983858

  17. Cell culture models using rat primary alveolar type I cells

    PubMed Central

    Downs, Charles A.; Montgomery, David W.; Merkle, Carrie J.

    2011-01-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ±2.7%) and MVECL (97.9 ±1.1 %) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin coated 24 well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 micron pores. Additionally AT I cells were grown in a thick layer of Matrigel® to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cell cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  18. Effects of tamoxifen and somatostatin analogue on growth of human medullary, follicular, and papillary thyroid carcinoma cell lines: tissue culture and nude mouse xenograft studies.

    PubMed

    Weber, C J; Marvin, M; Krekun, S; Koschitzky, T; Karp, F; Benson, M; Feind, C R

    1990-12-01

    The knowledge that (1) the normal thyroid contains somatostatin, (2) polypeptide growth factors influence thyroid cell function, and (3) thyroid cells contain steroid hormone receptors prompted us to add somatostatin analogue No. 201-995 (SMS) (5 ng/ml) and/or tamoxifen citrate (TAM) (5 mumol/L) to 7-day monolayer cultures (50,000 cells/well) of three separate human thyroid carcinoma cell lines: DR081 (medullary), WR082 (follicular), and NPA'87 (papillary). Results, tabulated as cell numbers/well (X10(5) on day 7, revealed that TAM inhibited growth of medullary and follicular cells and that TAM plus SMS inhibited growth of papillary cells. In vivo studies of subcutaneous tumor cell xenografts in nude mice have documented that TAM (5 mg subcutaneous pellet) significantly inhibits the growth of medullary implants. Flow cytometric DNA studies of medullary cell cultures demonstrated a reduced G2 + M phase with TAM treatment. For papillary cell implants, TAM plus SMS (5 micrograms subcutaneously, twice daily) did not suppress tumor growth. All three cell lines were negative for estrogen receptor; addition of estradiol (5 ng/ml) to medullary cell cultures neither stimulated replication nor reversed the inhibitory effects of TAM in vitro. We conclude that (1) TAM slowed the growth of a cell line of human medullary carcinoma, both in vitro and in vivo; (2) this effect was not reversed by estradiol; (3) TAM plus SMS inhibited replication of a papillary carcinoma cell line in vitro, but not in vivo; and (4) TAM alone and TAM plus SMS inhibited replication of cultures of a human follicular thyroid carcinoma cell line. TAM and SMS may be useful in treatment of some human thyroid carcinomas. PMID:1978945

  19. Biological properties of different type carbon particles in vitro study on primary culture of endothelial cells.

    PubMed

    Czerniak-Reczulska, M; Niedzielski, P; Balcerczyk, A; Bartosz, G; Karowicz-Bilińska, A; Mitura, K

    2010-02-01

    Carbon powders have extended surface of carbon layers, which is of significant biomedical importance since the powders are employed to cover implants material. Carbon Powder Particles are produced by different methods: by a detonation method, by RF PACVD (Radio Frequency Plasma Activated Chemical Vapour Deposition) or MW/RF PCVD (Microwave/Radio Frequency Plasma Activated Chemical Vapour Deposition) and others. Our previous data showed that Carbon Powder Particles may act as antioxidant and/or anti-inflammatory factor. However the mechanism of such behavior has been not fully understood. The aim of the work was tested influence carbon powders manufactured by Radio Frequency Plasma Activated Chemical Vapour Deposition RFPACVD method and detonation method on selected parameters of human endothelial cells, which play a crucial role in the regulation of the circulation and vascular wall homeostasis. Graphite powder was used as a control substance. Endothelial cells are actively involved in a wide variety of processes e.g., inflammatory responses to a different type of stimuli (ILs, TNF-alpha) or regulating vasomotor tone via production of vasorelaxants and vasocontrictors. Biological activation is dependent on the type and quantity of chemical bonds on the surface of the powders. The effect of powders on the proliferation of HUVECs (Human Umbilical Vein Endothelial Cells) was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction assay. We found decreased cell proliferation after 72 h treatment with graphite as well as Carbon Powder Particles. PMID:20352757

  20. Cell culture models using rat primary alveolar type I cells.

    PubMed

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J

    2011-10-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ± 2.7%) and MVECL (97.9 ± 1.1%) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin-coated 24-well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 μm pores. Additionally, AT I cells were grown in a thick layer of Matrigel(®) to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  1. Somaclonal Variation Is Induced De Novo via the Tissue Culture Process: A Study Quantifying Mutated Cells in Saintpaulia

    PubMed Central

    Sato, Mitsuru; Hosokawa, Munetaka; Doi, Motoaki

    2011-01-01

    Background The origin of somaclonal variation has not been questioned previously, i.e., “pre-existing mutations” in explants and “newly induced mutations” arising from the tissue culture process have not been distinguished. This is primarily because there has been no reliable molecular method for estimating or quantifying variation. Methodology/Principal Findings We adopted a petal-variegated cultivar of Saintpaulia ‘Thamires’ (Saintpaulia sp.) as the model plant. Based on the difference between the pre- and post-transposon excision sequence of the promoter region of flavonoid 3′, 5′-hydoroxylase (F3′5′H), we estimated mutated (transposon-excised) cell percentages using a quantitative real-time PCR. Mutated cell percentages in leaf laminae used as explants was 4.6 and 2.4% in highly or low variegation flower plants, respectively, although the occurrences of blue color mutants in their regenerants were more than 40%. Preexisting mutated cell percentages in cultured explants were considerably lower than the mutated plant percentage among total regenerants via tissue culture. Conclusions/Significance The estimation of mutated cell percentages became possible using the quantitative real-time PCR. The origins of mutations were successfully distinguished; it was confirmed that somaclonal variations are mainly caused by newly generated mutations arising from tissue culture process. PMID:21853148

  2. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  3. Toward the identification of liver toxicity markers: a proteome study in human cell culture and rats.

    PubMed

    Thome-Kromer, Birgit; Bonk, Ines; Klatt, Mathias; Nebrich, Grit; Taufmann, Marion; Bryant, Stewart; Wacker, Ulrich; Köpke, Andreas

    2003-10-01

    The effects of toxic and nontoxic compound treatments were investigated by high resolution custom developed 2-11 pH gradient NEPHGE (non equilibrium pH gradient electrophoresis) two-dimensional electrophoresis. Two models were compared: (i) in vivo rat and (ii) the human cell line HepG2, to test their suitability in a proteomics based approach to identify a toxicity marker. 163 and 321 proteins were identified from the rat liver and the HepG2 proteome. These represent various isoforms of 113 and 194 different NCBI annotated gene sequences, respectively. Nine compounds were selected to induce proteome variations associated with liver toxicity and metabolism. The rat liver proteome database consists of 78 gels, the HepG2 database of 52 gels. Variant proteins were assessed regarding their usefulness as a toxicity marker by evaluating their treatment specificity against multiple control treatments. Thirteen potential toxicity marker proteins were found in rat liver and eight in HepG2. Catalase and carbamoylphosphate synthetase-1 isoforms were found to be significantly changed after treatment by 4/4 and 3/4 toxic compounds in rat liver, respectively. Aldo-keto-reductase family 1, member C1 was implicated for 3/4 liver cell toxic compounds in HepG2. Our approach was able to differentiate the quality of potential toxicity markers and provided useful information for an ongoing characterization of more compounds in a wider number of toxicity classes. PMID:14625847

  4. Chromosome-wide aneuploidy study of cultured circulating myeloid progenitor cells from workers occupationally exposed to formaldehyde.

    PubMed

    Lan, Qing; Smith, Martyn T; Tang, Xiaojiang; Guo, Weihong; Vermeulen, Roel; Ji, Zhiying; Hu, Wei; Hubbard, Alan E; Shen, Min; McHale, Cliona M; Qiu, Chuangyi; Liu, Songwang; Reiss, Boris; Beane-Freeman, Laura; Blair, Aaron; Ge, Yichen; Xiong, Jun; Li, Laiyu; Rappaport, Stephen M; Huang, Hanlin; Rothman, Nathaniel; Zhang, Luoping

    2015-01-01

    Formaldehyde (FA) is an economically important industrial chemical to which millions of people worldwide are exposed environmentally and occupationally. Recently, the International Agency for Cancer Research concluded that there is sufficient evidence that FA causes leukemia, particularly myeloid leukemia. To evaluate the biological plausibility of this association, we employed a chromosome-wide aneuploidy study approach, which allows the evaluation of aneuploidy and structural chromosome aberrations (SCAs) of all 24 chromosomes simultaneously, to analyze cultured myeloid progenitor cells from 29 workers exposed to relatively high levels of FA and 23 unexposed controls. We found statistically significant increases in the frequencies of monosomy, trisomy, tetrasomy and SCAs of multiple chromosomes in exposed workers compared with controls, with particularly notable effects for monosomy 1 [P = 6.02E-06, incidence rate ratio (IRR) = 2.31], monosomy 5 (P = 9.01E-06; IRR = 2.24), monosomy 7 (P = 1.57E-05; IRR = 2.17), trisomy 5 (P = 1.98E-05; IRR = 3.40) and SCAs of chromosome 5 (P = 0.024; IRR = 4.15). The detection of increased levels of monosomy 7 and SCAs of chromosome 5 is particularly relevant as they are frequently observed in acute myeloid leukemia. Our findings provide further evidence that leukemia-related cytogenetic changes can occur in the circulating myeloid progenitor cells of healthy workers exposed to FA, which may be a potential mechanism underlying FA-induced leukemogenesis. PMID:25391402

  5. Chromosome-wide aneuploidy study of cultured circulating myeloid progenitor cells from workers occupationally exposed to formaldehyde

    PubMed Central

    Lan, Qing; Smith, Martyn T.; Tang, Xiaojiang; Guo, Weihong; Vermeulen, Roel; Ji, Zhiying; Hu, Wei; Hubbard, Alan E.; Shen, Min; McHale, Cliona M.; Qiu, Chuangyi; Liu, Songwang; Reiss, Boris; Beane-Freeman, Laura; Blair, Aaron; Ge, Yichen; Xiong, Jun; Li, Laiyu; Rappaport, Stephen M.; Huang, Hanlin; Rothman, Nathaniel; Zhang, Luoping

    2015-01-01

    Formaldehyde (FA) is an economically important industrial chemical to which millions of people worldwide are exposed environmentally and occupationally. Recently, the International Agency for Cancer Research concluded that there is sufficient evidence that FA causes leukemia, particularly myeloid leukemia. To evaluate the biological plausibility of this association, we employed a chromosome-wide aneuploidy study approach, which allows the evaluation of aneuploidy and structural chromosome aberrations (SCAs) of all 24 chromosomes simultaneously, to analyze cultured myeloid progenitor cells from 29 workers exposed to relatively high levels of FA and 23 unexposed controls. We found statistically significant increases in the frequencies of monosomy, trisomy, tetrasomy and SCAs of multiple chromosomes in exposed workers compared with controls, with particularly notable effects for monosomy 1 [P = 6.02E-06, incidence rate ratio (IRR) = 2.31], monosomy 5 (P = 9.01E-06; IRR = 2.24), monosomy 7 (P = 1.57E-05; IRR = 2.17), trisomy 5 (P = 1.98E-05; IRR = 3.40) and SCAs of chromosome 5 (P = 0.024; IRR = 4.15). The detection of increased levels of monosomy 7 and SCAs of chromosome 5 is particularly relevant as they are frequently observed in acute myeloid leukemia. Our findings provide further evidence that leukemia-related cytogenetic changes can occur in the circulating myeloid progenitor cells of healthy workers exposed to FA, which may be a potential mechanism underlying FA-induced leukemogenesis. PMID:25391402

  6. CHARACTERIZATION OF ALVEOLAR EPITHELIAL CELLS CULTURED IN SEMIPERMEABLE HOLLOW FIBERS

    PubMed Central

    Grek, Christina L.; Newton, Danforth A.; Qiu, Yonhzhi; Wen, Xuejun; Spyropoulos, Demetri D.; Baatz, John E.

    2012-01-01

    Cell culture methods commonly used to represent alveolar epithelial cells in vivo have lacked airflow, a 3-dimensional air-liquid interface, and dynamic stretching characteristics of native lung tissue—physiological parameters critical for normal phenotypic gene expression and cellular function. Here the authors report the development of a selectively semipermeable hollow fiber culture system that more accurately mimics the in vivo microenvironment experienced by mammalian distal airway cells than in conventional or standard air-liquid interface culture. Murine lung epithelial cells (MLE-15) were cultured within semipermeable polyurethane hollow fibers and introduced to controlled airflow through the microfiber interior. Under these conditions, MLE-15 cells formed confluent monolayers, demonstrated a cuboidal morphology, formed tight junctions, and produced and secreted surfactant proteins. Numerous lamellar bodies and microvilli were present in MLE-15 cells grown in hollow fiber culture. Conversely, these alveolar type II cell characteristics were reduced in MLE-15 cells cultured in conventional 2D static culture systems. These data support the hypothesis that MLE-15 cells grown within our microfiber culture system in the presence of airflow maintain the phenotypic characteristics of type II cells to a higher degree than those grown in standard in vitro cell culture models. Application of our novel model system may prove advantageous for future studies of specific gene and protein expression involving alveolar epithelial or bronchiolar epithelial cells. PMID:19263283

  7. Gonococcal and meningococcal pathogenesis as defined by human cell, cell culture, and organ culture assays.

    PubMed Central

    Stephens, D S

    1989-01-01

    Human cells, cell cultures, and organ cultures have been extremely useful for studying the events that occur when gonococci and meningococci encounter human mucosal surfaces. The specificity and selectivity of these events for human cells are striking and correlate with the adaptation of these pathogens for survival on human mucous membranes. To colonize these sites, meningococci and gonococci have developed mechanisms to damage local host defenses such as the mucociliary blanket, to attach to epithelial cells, and to invade these cells. Attachment to epithelial cells mediated by pili, and to some types of cells mediated by PIIs, serves to anchor the organism close to sources of nutrition and allows multiplication. Intracellular invasion, possibly initiated by the major porin protein, may provide additional nutritional support and protection from host defenses. Mucosal invasion may also result in access of gonococci and meningococci to the bloodstream, leading to dissemination. Images PMID:2497953

  8. Centrifugation of Cultured Osteoblasts And Macrophages as a Model To Study How Gravity Regulates The Function of Skeletal Cells

    NASA Technical Reports Server (NTRS)

    Globus, Ruth K.; Searby, Nancy D.; Almeida, Eduardo A. C.; Sutijono, Darrell; Yu, Joon-Ho; Malouvier, Alexander; Doty, Steven B.; Morey-Holton, Emily; Weinstein, Steven L.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    Mechanical loading helps define the architecture of weight-bearing bone via the tightly regulated process of skeletal turnover. Turnover occurs by the concerted activity of osteoblasts, responsible for bone formation. and osteoclasts, responsible for bone resorption. Osteoclasts are specialized megakaryon macrophages, which differentiate from monocytes in response to resorption stimuli, such as reduced weight-bearing. Habitation in space dramatically alters musculoskeletal loading, which modulates both cell function and bone structure. Our long-term objective is to define the molecular and cellular mechanisms that mediate skeletal adaptations to altered gravity environments. Our experimental approach is to apply hypergravity loads by centrifugation to rodents and cultured cells. As a first step, we examined the influence of centrifugation on the structure of cancellous bone in rats to test the ability of hypergravity to change skeletal architecture. Since cancellous bone undergoes rapid turnover we expected the most dramatic structural changes to occur in the shape of trabeculae of weight-bearing, cancellous bone. To define the cellular responses to hypergravity loads, we exposed cultured osteoblasts and macrophages to centrifugation. The intraosseous and intramedullary pressures within long bones in vivo reportedly range from 12-40 mm Hg, which would correspond to 18-59 gravity (g) in our cultures. We assumed that hydrostatic pressure from the medium above the cell layer is at least one major component of the mechanical load generated by centrifuging cultured cells. and therefore we exposed the cells to 10-50g. In osteoblasts, we examined the structure of their actin and microtubule networks, production of prostaglandin E2 (PGE2), and cell survival. Analysis of the shape of the cytoskeletal networks provides evidence for the ability of centrifugation to affect cell structure, while the production of PGE2 serves as a convenient marker for mechanical stimulation. We

  9. Skeletal muscle satellite cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Molnar, Greg; Hartzell, Charles R.; Schroedl, Nancy A.; Gonda, Steve R.

    1993-01-01

    Satellite cells are postnatal myoblasts responsible for providing additional nuclei to growing or regenerating muscle cells. Satellite cells retain the capacity to proliferate and differentiate in vitro and therefore provide a useful model to study postnatal muscle development. Most culture systems used to study postnatal muscle development are limited by the two-dimensional (2-D) confines of the culture dish. Limiting proliferation and differentiation of satellite cells in 2-D could potentially limit cell-cell contacts important for developing the level of organization in skeletal muscle obtained in vivo. Culturing satellite cells on microcarrier beads suspended in the High-Aspect-Ratio-Vessel (HARV) designed by NASA provides a low shear, three-dimensional (3-D) environment to study muscle development. Primary cultures established from anterior tibialis muscles of growing rats (approximately 200 gm) were used for all studies and were composed of greater than 75 % satellite cells. Different inoculation densities did not affect the proliferative potential of satellite cells in the HARV. Plating efficiency, proliferation, and glucose utilization were compared between 2-D flat culture and 3-D HARV culture. Plating efficiency (cells attached - cells plated x 100) was similar between the two culture systems. Proliferation was reduced in HARV cultures and this reduction was apparent for both satellite cells and non-satellite cells. Furthermore, reduction in proliferation within the HARV could not be attributed to reduced substrate availability since glucose levels in media from HARV and 2-D cell culture were similar. Morphologically, microcarrier beads within the HARVS were joined together by cells into three-dimensional aggregates composed of greater than 10 beads/aggregate. Aggregation of beads did not occur in the absence of cells. Myotubes were often seen on individual beads or spanning the surface of two beads. In summary, proliferation and differentiation of

  10. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8.

    PubMed

    Eto, Akiko; Saito, Tomoya; Yokote, Hiroyuki; Kurane, Ichiro; Kanatani, Yasuhiro

    2015-11-01

    LC16m8 is a live, attenuated, cell-cultured smallpox vaccine that was developed and licensed in Japan in the 1970s, but was not used in the campaign to eradicate smallpox. In the early 2000s, the potential threat of bioterrorism led to reconsideration of the need for a smallpox vaccine. Subsequently, LC16m8 production was restarted in Japan in 2002, requiring re-evaluation of its safety and efficacy. Approximately 50,000 children in the 1970s and about 3500 healthy adults in the 2000s were vaccinated with LC16m8 in Japan, and 153 adults have been vaccinated with LC16m8 or Dryvax in phase I/II clinical trials in the USA. These studies confirmed the safety and efficacy of LC16m8, while several studies in animal models have shown that LC16m8 protects the host against viral challenge. The World Health Organization Strategic Advisory Group of Experts on Immunization recommended LC16m8, together with ACAM2000, as a stockpile vaccine in 2013. In addition, LC16m8 is expected to be a viable alternative to first-generation smallpox vaccines to prevent human monkeypox. PMID:26319072

  11. Nanotechnology in drug delivery: the need for more cell culture based studies in screening

    PubMed Central

    2014-01-01

    Advances in biomedical science are leading to upsurge synthesis of nanodelivery systems for drug delivery. The systems were characterized by controlled, targeted and sustained drug delivery ability. Humans are the target of these systems, hence, animals whose systems resembles humans were used to predict outcome. Thus, increasing costs in money and time, plus ethical concerns over animal usage. However, with consideration and planning in experimental conditions, in vitro pharmacological studies of the nanodelivery can mimic the in vivo system. This can function as a simple method to investigate the effect of such materials without endangering animals especially at screening phase. PMID:25057288

  12. Dynamic cell culture system (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  13. Establishment of an in vitro Peyer's patch cell culture system correlative to in vivo study using intestine and screening of lactic acid bacteria enhancing intestinal immunity.

    PubMed

    Jin, Hekui; Higashikawa, Fumiko; Noda, Masafumi; Zhao, Xingrong; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2010-01-01

    Some lactic acid bacteria (LAB) are known as representative of probiotics. To screen LAB effective to enhance intestinal immunity, in the present study, we developed an accurate and convenient in vitro evaluation system using Peyer's patch cells (PP-cells) isolated from the mice intestine. We observed that the amount of immunoglobulin A (IgA) produced by PP-cells co-cultured with LAB was well correlative to that in PP-cells, intestine and feces isolated from live mice after oral administration of LAB [correlation coefficient (r)=0.888, 0.883, and 0.920, respectively]. In addition, using this in vitro system, we suggest that the IgA level of PP-cells co-culturing with plant-derived LAB might be more enhanced than with animal-derived LAB. PMID:20118555

  14. Three-Dimensional Cell Culture: A Breakthrough in Vivo

    PubMed Central

    Antoni, Delphine; Burckel, Hélène; Josset, Elodie; Noel, Georges

    2015-01-01

    Cell culture is an important tool for biological research. Two-dimensional cell culture has been used for some time now, but growing cells in flat layers on plastic surfaces does not accurately model the in vivo state. As compared to the two-dimensional case, the three-dimensional (3D) cell culture allows biological cells to grow or interact with their surroundings in all three dimensions thanks to an artificial environment. Cells grown in a 3D model have proven to be more physiologically relevant and showed improvements in several studies of biological mechanisms like: cell number monitoring, viability, morphology, proliferation, differentiation, response to stimuli, migration and invasion of tumor cells into surrounding tissues, angiogenesis stimulation and immune system evasion, drug metabolism, gene expression and protein synthesis, general cell function and in vivo relevance. 3D culture models succeed thanks to technological advances, including materials science, cell biology and bioreactor design. PMID:25768338

  15. Quantitative analysis of cultured thymic reticulo-epithelial cells labelled by different antibodies: a flow cytometric study.

    PubMed Central

    Fabien, N; Auger, C; Bonnard, M; Andreoni, C; Rigal, D; Monier, J C

    1989-01-01

    Quantitative measurements of cultured human and murine thymic, and human thymoma reticuloepithelial cells (REC), immunolabeled by different antibodies (Ab) (TE3, TE4, anti-HTLV p19(p19), lu5, K11 and Aks) and by thymic hormones (thymulin and thymosin alpha 1 (Ta1)) within these cells, were performed using a flow cytometric technique. The anti-keratin polyclonal Ab labeled nearly the whole human or murine population. The p19 monoclonal Ab (MoAb), specific for the subcortical/medullary thymic regions, labelled 37-77% of the human REC. The TE3 MoAb, specific for the cortical region, labelled 54-83% of the REC. These percentages suggest that the cultured thymic REC (TREC) had markers of both regions together and therefore that these markers are not absolutely specific to determine their subcortical/medullary or cortical thymic origin. For the three populations there were more cells containing Ta1 than thymulin. The overlap of the percentage of labelled cells suggests that the same cell could synthesize the two hormones and that these hormones could be localized within the TE3 positive cells. PMID:2649289

  16. Cell culture techniques in honey bee research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell culture techniques are indispensable in most if not all life science disciplines to date. Wherever cell culture models are lacking scientific development is hampered. Unfortunately this has been and still is the case in honey bee research because permanent honey bee cell lines have not yet been...

  17. Cell Culture as an Alternative in Education.

    ERIC Educational Resources Information Center

    Nardone, Roland M.

    1990-01-01

    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  18. Immunolocalization of thymosin alpha 1, thymopoietin and thymulin in mouse thymic epithelial cells at different stages of culture: a light and electron microscopic study.

    PubMed Central

    Fabien, N; Auger, C; Monier, J C

    1988-01-01

    The secretory evolution of the thymic hormones (thymulin, thymosin alpha 1 and thymopoietin) in cultured thymic reticuloepithelial cells (TREC) was studied by immunocytochemical techniques using monoclonal anti-thymulin or anti-thymosin alpha 1 and polyclonal anti-thymopoietin antibodies (Ab). The culture of TREC was performed with a medium where L-valine was replaced by D-valine, thus ensuring rapid and selective development of these cells. The number of thymulin, thymosin alpha 1 or thymopoietin-containing cells increased progressively from Day 6 to Day 12 of the culture. The localization of the three thymic hormones within the TREC also varied according to the age of the culture. By light microscopy the staining of the three hormones was localized in some cytoplasmic granules at the beginning of the culture and at Day 90, while at Day 12 it was throughout the cytoplasm. In electron microscopy these localizations corresponded respectively to vacuoles of different sizes and to cytosol. All these results show that the synthesis and excretion of thymulin, thymosin alpha 1 and thymopoietin evolve during the development of TREC in culture. Images Figure 1 Figure 2 PMID:3284819

  19. Genomics in mammalian cell culture bioprocessing

    PubMed Central

    Wuest, Diane M.; Harcum, Sarah W.; Lee, Kelvin H.

    2013-01-01

    Explicitly identifying the genome of a host organism including sequencing, mapping, and annotating its genetic code has become a priority in the field of biotechnology with aims at improving the efficiency and understanding of cell culture bioprocessing. Recombinant protein therapeutics, primarily produced in mammalian cells, constitute a $108 billion global market. The most common mammalian cell line used in biologic production processes is the Chinese hamster ovary (CHO) cell line, and although great improvements have been made in titer production over the past 25 years, the underlying molecular and physiological factors are not well understood. Confident understanding of CHO bioprocessing elements (e.g. cell line selection, protein production, and reproducibility of process performance and product specifications) would significantly improve with a well understood genome. This review describes mammalian cell culture use in bioprocessing, the importance of obtaining CHO cell line genetic sequences, and the current status of sequencing efforts. Furthermore, transcriptomic techniques and gene expression tools are presented, and case studies exploring genomic techniques and applications aimed to improve mammalian bioprocess performance are reviewed. Finally, future implications of genomic advances are surmised. PMID:22079893

  20. Seed coat removal improves Fe bioavailability in cooked lentils: studies using an in vitro digestion/Caco-2 cell culture model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the range of Fe concentration and relative Fe bioavailability of 24 varieties of cooked lentils, as well as the impact of seed coat removal on lentil Fe nutritional quality. Relative Fe bioavailability was assessed by the in vitro/Caco-2 cell culture method. While Fe concentrat...

  1. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies

    EPA Science Inventory

    Human adenovirus is relatively resistant to UV radiation and has been used as a conservative testing microbe for evaluations of UV disinfection systems as components of water treatment processes. In this study, we attempted to validate the applicability of integrated cell culture...

  2. A novel co-culture model of murine K12 osteosarcoma cells and S. aureus on common orthopedic implant materials: 'the race to the surface' studied in vitro.

    PubMed

    McConda, David B; Karnes, Jonathan M; Hamza, Therwa; Lindsey, Brock A

    2016-07-01

    Infection is a major cause of orthopedic implant failure. There are few studies assessing both tissue cell and bacterial adherence on common orthopedic implant materials in a co-culture environment. An in vitro co-culture model was created using K12 osteosarcoma cells and Staphylococcus aureus in a medium incubated over metal disks for 48 h. The results showed that, in the presence of S. aureus, there were fewer osteosarcoma cells attached to the disks for all substrata tested. There were significantly more osteosarcoma cells adhering to the cobalt chrome than the stainless steel and titanium disks. Overall, in the presence of osteosarcoma cells, there were more bacteria adhering to the disks for all the substrata tested, with significantly more bacteria adhering to the stainless steel disks compared to cobalt chrome and titanium disks. Scanning electron microscopy verified that osteosarcoma cells and bacteria were adherent to the metal disks after incubation for 48 h. Furthermore, the observation that more bacteria were in the co-culture than in the control sample suggests that the osteosarcoma cells serve as a nutrient source for the bacteria. Future models assessing the interaction of osteogenic cells with bacteria on a substratum would be improved if the model accounted for the role of the immune system in secondary bone healing. PMID:27142312

  3. An appropriate selection of a 3D alginate culture model for hepatic Huh-7 cell line encapsulation intended for viral studies.

    PubMed

    Tran, Nhu Mai; Dufresne, Murielle; Duverlie, Gilles; Castelain, Sandrine; Défarge, Christian; Paullier, Patrick; Legallais, Cecile

    2013-01-01

    Three-dimensional (3D) culture systems have been introduced to provide cells with a biomimetic environment that is similar to in vivo conditions. Among the polymeric molecules available, sodium-alginate (Na-alg) salt is a material that is currently employed in different areas of drug delivery and tissue engineering, because it offers biocompatibility and optimal chemical properties, and its gelation with calcium chloride provides calcium-alginate (Ca-alg) scaffolds with mechanical stability and relative permeability. In this work, four different preparations of Ca-alg beads with varying Na-alg viscosity and concentration were used for a human hepatoma cell line (Huh-7) encapsulation. The effects of Ca-alg bead preparation on structural cell organization, liver-specific functions, and the expression of specific receptors implicated in hepatotropic virus permissivity were evaluated. Hepatic cells were cultured in 500 μm diameter Ca-alg beads for 7 days under dynamic conditions. For all culture systems, cell viability reached almost 100% at day 7. Cell proliferation was concomitantly followed by hepatocyte organization in aggregates, which adopted two different morphologies (spheroid aggregates or multicellular channel-like structures), depending on Ca-alg bead preparation. These cellular organizations established a real 3D hepatocyte architecture with cell polarity, cell junctions, and abundant bile canaliculi possessing microvillus-lined channels. The functionality of these 3D cultures was confirmed by the production of albumin and the exhibition of CYP1A activity over culture time, which were variable, according to Ca-alg bead condition. The expression of specific receptors of hepatitis C virus by Huh-7 cells suggests encouraging data for the further development of a new viral culture system in Ca-alg beads. In summary, this 3D hepatic cell culture represents a promising physiologically relevant system for further in vitro studies and demonstrates that an

  4. Effect of Chemotherapeutic Drugs on Caspase-3 Activity, as a Key Biomarker for Apoptosis in Ovarian Tumor Cell Cultured as Monolayer. A Pilot Study

    PubMed Central

    Gregoraszczuk, Ewa L; Rak-Mardyła, Agnieszka; Ryś, Janusz; Jakubowicz, Jerzy; Urbański, Krzysztof

    2015-01-01

    We aimed to develop a cost-effective and robust method to predict drug resistance in individual patients. Representative tissue fragments were obtained from tumors removed from female patients, aged 24-74 years old. The tumor tissue was taken by a histopathology’s or a surgeon under sterile conditions. Cells obtained by enzymatic dissociation from tumor after surgery, were cultured as a monolayer for 6 days. Paclitaxel, doxorubicin, carboplatin and endoxan alone or in combination were added at the beginning of culture and after 6 days, Alamar blue test was used for showing action on cell proliferation why caspase- 3 activity assays for verifying action on apoptosis. Inhibitory action on cell proliferation was noted in 2 of 12 patients tumor treated with both single and combined drugs. Using caspase-3 assay we showed that 50% of tumor cells was resistant to single chemotherapeutic drugs and 40% for combined. In 2 of 12 tumors, which did not reacted on single drugs, positive synergistic action on cell proliferation was observed in combination of D + E and C + E. This pilot study suggests: 1) monolayer culture of tumor cells, derived from individual patients, before chemotherapy could provide a suitable model for studying resistance for drugs; 2) caspase-3 activity is cheap and useful methods; 3) Alamar blue test should be taken into consideration for measuring cell proliferation. PMID:26664382

  5. Long-term inactivation study of three enteroviruses in artificial surface and groundwaters, using PCR and cell culture.

    PubMed

    de Roda Husman, A M; Lodder, W J; Rutjes, S A; Schijven, J F; Teunis, P F M

    2009-02-01

    Since the transmission of pathogenic viruses via water is indistinguishable from the transmission via other routes and since the levels in drinking water, although significant for health, may be too low for detection, quantitative viral risk assessment is a useful tool for assessing disease risk due to consumption of drinking water. Quantitative viral risk assessment requires information concerning the ability of viruses detected in drinking water to infect their host. To obtain insight into the infectivity of viruses in relation to the presence of virus genomes, inactivation of three different enteroviruses in artificial ground and surface waters under different controlled pH, temperature, and salt conditions was studied by using both PCR and cell culture over time. In salt-peptone medium, the estimated ratio of RNA genomes to infectious poliovirus 1 in freshly prepared suspensions was about 10(0). At 4 degrees C this ratio was 10(3) after 600 days, and at 22 degrees C it was 10(4) after 200 days. For poliovirus 1 and 2 the RNA/infectious virus ratio was higher in artificial groundwater than in artificial surface water, but this was not the case for coxsackievirus B4. When molecular detection is used for virus enumeration, it is important that the fraction of infectious virus (based on all virus genomes detected) decays with time, especially at temperatures near 22 degrees C. PMID:19074604

  6. Effect of Cocoa and Its Flavonoids on Biomarkers of Inflammation: Studies of Cell Culture, Animals and Humans

    PubMed Central

    Goya, Luis; Martín, María Ángeles; Sarriá, Beatriz; Ramos, Sonia; Mateos, Raquel; Bravo, Laura

    2016-01-01

    Chronic inflammation has been identified as a necessary step to mediate atherosclerosis and cardiovascular disease and as a relevant stage in the onset and progression of several types of cancer. Considerable attention has recently been focused on the identification of dietary bioactive compounds with anti-inflammatory activities as an alternative natural source for prevention of inflammation-associated diseases. The remarkable capacity of cocoa flavanols as antioxidants, as well as to modulate signaling pathways involved in cellular processes, such as inflammation, metabolism and proliferation, has encouraged research on this type of polyphenols as useful bioactive compounds for nutritional prevention of cardiovascular disease and cancer. Data from numerous studies suggest that cocoa and cocoa-derived flavanols can effectively modify the inflammatory process, and thus potentially provide a benefit to individuals with elevated risk factors for atherosclerosis/cardiovascular pathology and cancer. The present overview will focus on the most recent findings about the effects of cocoa, its main constituents and cocoa derivatives on selected biomarkers of the inflammatory process in cell culture, animal models and human cohorts. PMID:27070643

  7. Effect of Cocoa and Its Flavonoids on Biomarkers of Inflammation: Studies of Cell Culture, Animals and Humans.

    PubMed

    Goya, Luis; Martín, María Ángeles; Sarriá, Beatriz; Ramos, Sonia; Mateos, Raquel; Bravo, Laura

    2016-01-01

    Chronic inflammation has been identified as a necessary step to mediate atherosclerosis and cardiovascular disease and as a relevant stage in the onset and progression of several types of cancer. Considerable attention has recently been focused on the identification of dietary bioactive compounds with anti-inflammatory activities as an alternative natural source for prevention of inflammation-associated diseases. The remarkable capacity of cocoa flavanols as antioxidants, as well as to modulate signaling pathways involved in cellular processes, such as inflammation, metabolism and proliferation, has encouraged research on this type of polyphenols as useful bioactive compounds for nutritional prevention of cardiovascular disease and cancer. Data from numerous studies suggest that cocoa and cocoa-derived flavanols can effectively modify the inflammatory process, and thus potentially provide a benefit to individuals with elevated risk factors for atherosclerosis/cardiovascular pathology and cancer. The present overview will focus on the most recent findings about the effects of cocoa, its main constituents and cocoa derivatives on selected biomarkers of the inflammatory process in cell culture, animal models and human cohorts. PMID:27070643

  8. Three-dimensional tissue culture based on magnetic cell levitation

    NASA Astrophysics Data System (ADS)

    Souza, Glauco R.; Molina, Jennifer R.; Raphael, Robert M.; Ozawa, Michael G.; Stark, Daniel J.; Levin, Carly S.; Bronk, Lawrence F.; Ananta, Jeyarama S.; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A.; Gelovani, Juri G.; Killian, T. C.; Arap, Wadih; Pasqualini, Renata

    2010-04-01

    Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies.

  9. Osteogenic differentiation of CD271+ cells from rabbit bone marrow cultured on three phase PCL/TZ-HA bioactive scaffolds: comparative study with mesenchymal stem cells (MSCs)

    PubMed Central

    Colosimo, Alessia; Rofani, Cristina; Ciraci, Elisa; Salerno, Aurelio; Oliviero, Maria; Maio, Ernesto Di; Iannace, Salvatore; Netti, Paolo A; Velardi, Francesco; Berardi, Anna C

    2015-01-01

    Tissue engineering is one of the major challenges of orthopedics and trauma surgery for bone regeneration. Biomaterials filled with mesenchymal stem cells (MSCs) are considered the most promising approach in bone tissue engineering. Furthermore, our previous study showed that the multi-phase poly [ε-caprolactone]/thermoplastic zein-hydroxyapatite (PCL/TZ-HA) biomaterials improved rabbit (r) MSCs adhesion and osteoblast differentiation, thus demonstrating high potential of this bioengineered scaffold for bone regeneration. In the recent past, CD271 has been applied as a specific selective marker for the enrichment of MSCs from bone marrow (BM-MSCs). In the present study, we aimed at establishing whether CD271-based enrichment could be an efficient method for the selection of rBM-MSCs, displaying higher ability in osteogenic differentiation than non-selected rBM-MSCs in an in vitro system. CD271+ cells were isolated from rabbit bone marrow and were compared with rMSCs in their proliferation rate and osteogenic differentiation capability. Furthermore, rCD271+ cells were tested in their ability to adhere, proliferate and differentiate into osteogenic lineage, while growing on PCL/TZ-HA scaffolds, in comparison to rMSCs. Our result demonstrate that rCD271+ cells were able to adhere, proliferate and differentiate into osteoblasts when cultured on PCL/TZ-HA scaffolds in significantly higher levels as compared to rMSCs. Based on these findings, CD271 marker might serve as an optimal alternative MSCs selection method for the potential preclinical and clinical application of these cells in bone tissue regeneration. PMID:26550238

  10. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    PubMed

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-01-01

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells. PMID:26573336

  11. Particle Trajectories in Rotating Wall Cell Culture Devices

    NASA Technical Reports Server (NTRS)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  12. Culture of Cells from Amphibian Embryos.

    ERIC Educational Resources Information Center

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  13. Acetaldehyde and hexanaldehyde from cultured white cells

    PubMed Central

    Shin, Hye-Won; Umber, Brandon J; Meinardi, Simone; Leu, Szu-Yun; Zaldivar, Frank; Blake, Donald R; Cooper, Dan M

    2009-01-01

    Background Noninvasive detection of innate immune function such as the accumulation of neutrophils remains a challenge in many areas of clinical medicine. We hypothesized that granulocytes could generate volatile organic compounds. Methods To begin to test this, we developed a bioreactor and analytical GC-MS system to accurately identify and quantify gases in trace concentrations (parts per billion) emitted solely from cell/media culture. A human promyelocytic leukemia cell line, HL60, frequently used to assess neutrophil function, was grown in serum-free medium. Results HL60 cells released acetaldehyde and hexanaldehyde in a time-dependent manner. The mean ± SD concentration of acetaldehyde in the headspace above the cultured cells following 4-, 24- and 48-h incubation was 157 ± 13 ppbv, 490 ± 99 ppbv, 698 ± 87 ppbv. For hexanaldehyde these values were 1 ± 0.3 ppbv, 8 ± 2 ppbv, and 11 ± 2 ppbv. In addition, our experimental system permitted us to identify confounding trace gas contaminants such as styrene. Conclusion This study demonstrates that human immune cells known to mimic the function of innate immune cells, like neutrophils, produce volatile gases that can be measured in vitro in trace amounts. PMID:19402909

  14. [Experimental studies on the bioeffects of pulsed ultrasound to the cultured mammalian cell in vitro (author's transl)].

    PubMed

    Tsuzaki, T

    1981-12-01

    Cultured cell originated from human amniotic epithelium was sonicated in 2 HMz pulsed ultrasound at various intensities for 30-60 min. Cell suspending medium on sonication was either phosphate buffered saline solution or Eagle's MEM containing calf serum of 20%. On the evaluation of cell growth suppression, relative growth ratios, the growth ratios in sonicated groups to control groups were calculated on 2, 4 and 7 days after sonication. Regression analysis between these relative growth ratios and spatial average-temporal peak intensities on 4 and 7 days after sonication showed linear correlation. Cell growth suppression threshold in the period was 246 or 240 mW/cm2 in spatial peak-temporal average value respectively. On the other hand, intensity measurements in experimental acoustic field by steel ball method showed that spatial peak values were about 2-5 times as large as spatial average values, and beam width in acoustic field (1.7 cm) was a little broader than the inner diameter of the cell suspending tube (1.2 cm). Cell growth suppression disappeared by elevation of viscosity in the cell suspending medium, and reappeared by the prolongation of sonication time or the increment of temporal peak value. PMID:7338663

  15. On Studying Organizational Cultures.

    ERIC Educational Resources Information Center

    Pettigrew, Andrew M.

    1979-01-01

    Examines the values of the concepts of symbol, language, ideology, belief, ritual, and myth in understanding the creation of new cultures and in unraveling the related processes by which entrepreneurs give energy, purpose, and commitment to the organizations they are bringing into being. (Author/IRT)

  16. Plant Tissue Culture Studies.

    ERIC Educational Resources Information Center

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  17. On the origin of lipofuscin; the iron content of residual bodies, and the relation of these organelles to the lysosomal vacuome. A study on cultured human glial cells

    SciTech Connect

    Brunk, U.T. )

    1989-01-01

    Cultured human glial cells constitute a suitable model system for the study of lipofuscinogenesis in vitro. These cells, although not post-mitotic, can be kept for several months in stable monolayers due to their display of very pronounced density-dependent inhibition of cell growth. Residual bodies, or lipofuscin pigment granules, accumulate over time in this pseudo post-mitotic cell system. I. In early dense cultures, exposed to purified rat liver mitochondriae, it was possible to follow the uptake of mitochondriae and their degradation, which was found to be incomplete and result in the formation of numerous residual bodies containing lipofuscin-type material. It was concluded that incomplete degradation of mitochondriae may be an important origin of lipofuscin. II. Dense, older cultures exposed to electron dense marker particles (colloidal thorium dioxide) accumulated these markers within endosomes, and later in secondary lysosomes of various types, including residual bodies. It was concluded that residual bodies constitute an integral part of the lysosomal vacuome system. III. Phase III glial cells were cultured on formvar-coated gold EM-grids and studied by whole cell transmission electron microscopy using TEM and STEM techniques in combination with energy dispersive X-ray microanalysis. It was found that residual bodies contained iron. This fact was taken as a further indication that lipofuscin has its origin in autophagocytosed mitochondriae and ER-material rich in metallo-enzymes. Due to their high concentration of iron, residual bodies may constitute unstable structures within the cells. Since iron is a well known catalyst of various peroxidative processes, the surrounding lysosomal membrane might be damaged, e.g. by oxidative stress, with risk for leakage of degradative lysosomal enzymes into the cell sap.

  18. Cell viability studies and operation in cellular culture medium of n-type organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Barra, M.; Viggiano, D.; Di Capua, R.; Di Girolamo, F.; Santoro, F.; Taglialatela, M.; Cassinese, A.

    2012-02-01

    The possibility of the fabrication of organic devices suitable to be applied in bio-sensing fields depends largely on the availability of organic compounds displaying robust electrical properties even in aqueous solutions and effective biocompatibility features. In this paper, we report about the good cellular biocompatibility and the electrical response stability in an ionic medium of n-type organic transistors based on the recently developed PDI-8CN2 oligomer. The biocompatibility has been tested by analyzing the adhesion and viability of two different cell lines, human epithelial HeLa cells and murine neuronal F11 cells, on PDI-8CN2 films grown by organic molecular beam deposition (OMBD) on SiO2 substrates. The effect of film thickness on cell attachment was also tested. Uncoated SiO2 substrates were used as control surfaces and sexithiophene (T6) as device testing control. Moreover, the possible toxicity of -CN groups of PDI-8CN2 was tested on HeLa cell cultures, using PDI-8 and T6 molecules as controls. Results showed that, although at high concentration these organic compounds are toxic in solution, if they are presented in form of film, cell lines can attach and grow on them. The electrical response stability of PDI-8CN2 transistors in a cellular culture medium characterized by high concentrations of ionic species has been also investigated. For this purpose, low-voltage operation devices with VGS ranging from -5 V to 5 V, able to strongly reduce the influence of Faradaic currents coming from the electrical operation in an highly ionic environment, have been fabricated on 35 nm thick SiO2 layers and electrically characterized. These results are useful to experimentally define the main critical issues to be further addressed for the fabrication of reliable bio-sensors based on organic transistors.

  19. Use of an insect cell culture growth medium to isolate bacteria from horses with effusive, fibrinous pericarditis: a preliminary study.

    PubMed

    Jones, Samuel L; Valenzisi, Amy; Sontakke, Sushama; Sprayberry, Kimberly A; Maggi, Ricardo; Hegarty, Barbara; Breitschwerdt, Edward

    2007-03-31

    Effusive, fibrinous pericarditis is an uncommon disease entity in horses. In 2001, pericarditis occurred in conjunction with an epizootic in central Kentucky that was associated with exposure to eastern tent caterpillars (ETCs). Bacterial isolation from equine pericardial fluid samples was attempted using an insect cell culture growth medium (ICCGM). Using previously cultured, stored frozen samples from four horses with fibrinous pericarditis, inoculation of 10% blood agar plates yielded no growth, whereas simultaneous inoculation of ICCGM resulted in the isolation of Proprionibacterium acnes, Staphylococcus equorum, a Streptococcus sp. and Pseudomonas rhodesiae from pericardial fluid samples. A similar or novel caterpillar-associated bacteria was not identified; however, use of an ICCGM might enhance isolation of bacteria from equine pericardial fluid. PMID:17204376

  20. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Cell cultures. 101.6 Section 101.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures....

  1. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Cell cultures. 101.6 Section 101.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures....

  2. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Cell cultures. 101.6 Section 101.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures....

  3. AMMONIA REMOVAL FROM MAMMALIAN CELL CULTURE MEDIUM

    EPA Science Inventory

    Metabolites such as ammonia and lactic formed during mammalian cell culture can frequently be toxic to the cells themselves beyond a threshold concentration of the metabolites. ell culture conducted in the presence of such accumulated metabolites is therefore limited in productiv...

  4. Biochemical Assays of Cultured Cells

    NASA Technical Reports Server (NTRS)

    Barlow, G. H.

    1985-01-01

    Subpopulations of human embryonic kidney cells isolated from continuous flow electrophoresis experiments performed at McDonnell Douglas and on STS-8 have been analyzed. These analyses have included plasminogen activator assays involving indirect methodology on fibrin plated and direct methodology using chromogenic substrates. Immunological studies were performed and the conditioned media for erythropoietin activity and human granulocyte colony stimulating (HGCSF) activity was analyzed.

  5. Increased exosome production from tumour cell cultures using the Integra CELLine Culture System.

    PubMed

    Mitchell, J Paul; Court, Jacqueline; Mason, Malcolm David; Tabi, Zsuzsanna; Clayton, Aled

    2008-06-01

    Exosomes are nanometer-sized vesicles, secreted from most cell types, with documented immune-modulatory functions. Exosomes can be purified from cultured cells but to do so effectively, requires maintenance of cells at high density in order to obtain sufficient accumulation of exosomes in the culture medium, prior to purification. Whilst high density cultures can be achieved with cells in suspension, this remains difficult with adherent cells, resulting in low quantity of exosomes for subsequent study. We have used the Integra CELLine culture system, originally designed for hybridoma cultures, to achieve a significant increase in obtainable exosomes from adherent and non-adherent tumour cells. Traditional cultures of mesothelioma cells (cultured in 75 cm(2) flasks) gave an average yield of 0.78 microg+/-0.14 microg exosome/ml of conditioned medium. The CELLine Adhere 1000 (CLAD1000) flask, housing the same cell line, increased exosome yield approximately 12 fold to 10.06 microg+/-0.97 microg/ml. The morphology, phenotype and immune function of these exosomes were compared, and found to be identical in all respects. Similarly an 8 fold increase in exosome production was obtained from NKL cells (a suspension cell line) using a CELLine 1000 (CL1000) flask. The CELLine system also incurred ~5.5 fold less cost and reduced labour for cell maintenance. This simple culture system is a cost effective, useful method for significantly increasing the quantity of exosomes available from cultured cells, without detrimental effects. This tool should prove advantageous in future studies of exosome-immune modulation in cancer and other settings. PMID:18423480

  6. High-power acoustic insult to living cultured cells as studied by high-frequency scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Miyasaka, Chiaki; Tittmann, Bernhard R.

    2002-06-01

    A plurality of articles discussing combined effects of acoustic high-pressure (mechanical factor) and heat (thermal factor) caused by acoustic vibration on biological tissues and cells has been published. Herein, we contribute the preliminary results describing the behavior of living human skin cells when separately applying shock waves and thermal insult to them. First, we gradually increased temperature of a culturing medium from 37.5 to 52 degree(s)C using the heat plate with temperature controller, and carried out in-situ observation of the cells grown on a substrate via the medium using a scanning acoustic microscope. Second, we provided the pressure using high power ultrasonic pulses generated by a laser induced ultrasonic shock wave system to the cells, wherein the pressure caused by the pulses was measured by a hydrophone, and wherein temperature was monitored by thermocouples. The cells were observed just after giving the impact. The difference between phenomena indicating cellular insult and injury (e.g., shrinkage or lift-off) were clearly visualized by the scanning acoustic microscope with frequency at 1.0 GHz.

  7. Morphological appearances of human lens epithelial cells in culture.

    PubMed

    Power, W; Neylan, D; Collum, L

    1993-01-01

    A system for culturing human lens epithelial cells in the laboratory was developed. The morphological appearances of the cells was studied using phase contrast, scanning and transmission electron microscopy. Cell marker studies using monoclonal antibodies to cytokeratin, vimentin and epithelial membrane antigen were also performed. There was a marked increase in cell size as a function of time in culture. After 3 to 4 weeks cells showed early signs of ageing. By 6 to 8 weeks the majority of the cells had become very irregular in shape and demonstrated irregularities of the plasma membrane and intra-cytoplasmic vacuole formation. The cells stained strongly for vimentin and epithelial membrane antigen. Staining with cytokeratin was somewhat weaker. This culture technique provides us with a suitable model for studying the growth behavior of these cells. PMID:7512459

  8. Horizontally rotated cell culture system with a coaxial tubular oxygenator

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)

    1991-01-01

    The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.

  9. Snythesis and differentiation of plasma proteins in cultured embryonic chicken liver cells: a system for study of regulation of protein synthesis.

    PubMed Central

    Grieninger, G; Granick, S

    1975-01-01

    A new system is described for studying the control of protein synthesis. In a monolayer culture of chick embryo liver cells, plasma proteins are synthesized for three days at in vivo rates. The plasma proteins are secreted into the culture medium and without concentration are detected there simply and sensitively by a modified Laurell electronimmunoassay. Secretion of the newly synthesized plasma proteins occurs within 30 min of their synthesis. Thus, rates of synthesis of the plasma proteins can be followed readily from rates of their accumulation in the culture medium. This system has the following advantages for the study of protein synthesis: cells do not have to be disrupted for the assay; the cell population can be followed over several days; it is not necessary to label the proteins radioactively; and turnover of plasma proteins is negligible and need not be taken into account. The usefulness of the system is illustrated by a number of findings. The spectrum of plasma proteins synthesized in culture changed qualitatively and quantitatively. Albumin synthesis steadily decreased with culture time and stopped at the third day, whereas the synthesis of some new plasma proteins ("adult") was induced. These qualitative changes suggest differential gene expression in culture and a special control of albumin synthesis in vivo, different from the synthesis of the other plasma proteins. Quantitative changes in the rates of synthesis of specific plasma proteins suggest a competition among their messenger RNAs for components of the translational machinery. Insulin has a differential effect on the synthesis of specific plasma proteins at concentrations within the physiological range of the hormone. Images PMID:1061087

  10. Emulsions Containing Perfluorocarbon Support Cell Cultures

    NASA Technical Reports Server (NTRS)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  11. [Studies on the cytotoxic action of various silicone rubber impression materials by means of cell culture (author's transl)].

    PubMed

    Watanabe, H

    1977-07-01

    Biological test of the silicone rubber impression materials was done by utilizing tissue cultures of L strain cells. Criteria for cytotoxicity were based upon response index in agar diffusion method which was determined by zone index and lysis index, and morphological observations of the cells. The materials used were chosen among those which were commercially available. Base material, catalyst, unset and set mixes of both materials were tested respectively. X-ray fluorescence analysis of the material was also performed. Following results were obtained. 1) Base material of all the materials showed zone index of a range between 11.8 mm and 18.6 mm. On the otherhand, lysis index was relatively small and minimum response index was 11.8 mm/8.6 mm. The cells appeared normal after cultivation with the base materials, though tissue culture medium became opaque due to dissolution of the base materials. It is revealed that the above results mean little cytotoxicity to the cells. 2) Catalyst, on the otherhand, yielded intense cytotoxicity. Minimum response index for the catalyst was 13.4 mm/14.8 mm. Morphological observation was parallel to the results of agar diffusion method. 3) Unset mixes also yielded intense to moderate cytotoxicity. 4) Set mixes showed a similar in level of cytotoxicity to the unset mixes. 5) X-ray fluorescence analysis of the materials revealed existence of such elements as Si, Sr, Sn, S, Cu and Fe. Moreover, Zn was found in materials A, B, C, D and E; P in materials A and B, and Pb in materials E and F. However, it was unable to show what compound was formed by these elements. It is expected that the present results could give a clue on animal experiments or clinical use from the view point of biocompatibility of silicone rubber impression materials. PMID:282367

  12. Tocopherol production in plant cell cultures.

    PubMed

    Caretto, Sofia; Nisi, Rossella; Paradiso, Annalisa; De Gara, Laura

    2010-05-01

    Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, essential dietary components for mammals and exclusively synthesized by photosynthetic organisms. Of the four forms (alpha, beta, gamma and delta), alpha-tocopherol is the major vitamin E form present in green plant tissues, and has the highest vitamin E activity. Synthetic alpha-tocopherol, being a racemic mixture of eight different stereoisomers, always results less effective than the natural form (R,R,R) alpha-tocopherol. This raises interest in obtaining this molecule from natural sources, such as plant cell cultures. Plant cell and tissue cultures are able to produce and accumulate valuable metabolites that can be used as food additives, nutraceuticals and pharmaceuticals. Sunflower cell cultures, growing under heterotrophic conditions, were exploited to establish a suitable in vitro production system of natural alpha-tocopherol. Optimization of culture conditions, precursor feeding and elicitor application were used to improve the tocopherol yields of these cultures. Furthermore, these cell cultures were useful to investigate the relationship between alpha-tocopherol biosynthesis and photomixotrophic culture conditions, revealing the possibility to enhance tocopherol production by favouring sunflower cell photosynthetic properties. The modulation of alpha-tocopherol levels in plant cell cultures can provide useful hints for a regulatory impact on tocopherol metabolism. PMID:20166145

  13. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  14. [Comparative studies on detection of Chlamydophila psittaci and Chlamydophila abortus in meat turkey flocks using cell culture, ELISA, and PCR].

    PubMed

    Sting, R; Lerke, E; Hotzel, H; Jodas, S; Popp, C; Hafez, H M

    2006-02-01

    The prevalence of chlamydia in 10 meat turkey flocks was investigated. As samples served of each moment of collection and sex of the animals 10 cloacal swabs which were taken at the age of 1, 4, 8 and 12 (females) or 16 weeks (males) and at the time of slaughter at the age of 16 or 20 weeks. Spleen samples were taken at the time of slaughter, additionally. These were pooled making 1 pool out of 5 individual samples. The cloacal and spleen pools were examined by nested PCR (nPCR), Capture-ELISA and Capture Blocking-ELISA directly as well as after isolation attempts in cell cultures. The most sensitive method to detect chlamydia, with 6 isolates proved to be the isolation by cell culture followed by detection using nPCR. Not corresponding to the results of the nPCR were 4 positive reactions found by the Capture-ELISA which could in no case be affirmed by Capture-Blocking-ELISA. The direct examination of cloacal swab pools by nPCR proved positive in only 2 cases. In contrast to this the examination of these samples by Capture-ELISA showed a high percentage of 71.9% positive results, of which only 2 cases were confirmed by nPCR and none by Capture-Blocking-ELISA. Of the 8 Chlamydia positive results in the nPCR 7 could be classified by DNA sequencing to Cp. abortus and only one to Cp. psittaci. PMID:16555483

  15. Constructing a High Density Cell Culture System

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1996-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  16. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  17. Sensitivity of Human Intrahepatic Cholangiocarcinoma Subtypes to Chemotherapeutics and Molecular Targeted Agents: A Study on Primary Cell Cultures

    PubMed Central

    Fraveto, Alice; Cardinale, Vincenzo; Bragazzi, Maria Consiglia; Giuliante, Felice; De Rose, Agostino Maria; Grazi, Gian Luca; Napoletano, Chiara; Semeraro, Rossella; Lustri, Anna Maria; Costantini, Daniele; Nevi, Lorenzo; Di Matteo, Sabina; Renzi, Anastasia; Carpino, Guido; Gaudio, Eugenio; Alvaro, Domenico

    2015-01-01

    We investigated the sensitivity of intrahepatic cholangiocarcinoma (IHCCA) subtypes to chemotherapeutics and molecular targeted agents. Primary cultures of mucin- and mixed-IHCCA were prepared from surgical specimens (N. 18 IHCCA patients) and evaluated for cell proliferation (MTS assay) and apoptosis (Caspase 3) after incubation (72 hours) with increasing concentrations of different drugs. In vivo, subcutaneous human tumor xenografts were evaluated. Primary cultures of mucin- and mixed-IHCCA were characterized by a different pattern of expression of cancer stem cell markers, and by a different drug sensitivity. Gemcitabine and the Gemcitabine-Cisplatin combination were more active in inhibiting cell proliferation in mixed-IHCCA while Cisplatin or Abraxane were more effective against mucin-IHCCA, where Abraxane also enhances apoptosis. 5-Fluoracil showed a slight inhibitory effect on cell proliferation that was more significant in mixed- than mucin-IHCCA primary cultures and, induced apoptosis only in mucin-IHCCA. Among Hg inhibitors, LY2940680 and Vismodegib showed slight effects on proliferation of both IHCCA subtypes. The tyrosine kinase inhibitors, Imatinib Mesylate and Sorafenib showed significant inhibitory effects on proliferation of both mucin- and mixed-IHCCA. The MEK 1/2 inhibitor, Selumetinib, inhibited proliferation of only mucin-IHCCA while the aminopeptidase-N inhibitor, Bestatin was more active against mixed-IHCCA. The c-erbB2 blocking antibody was more active against mixed-IHCCA while, the Wnt inhibitor, LGK974, similarly inhibited proliferation of mucin- and mixed-IHCCA. Either mucin- or mixed-IHCCA showed high sensitivity to nanomolar concentrations of the dual PI3-kinase/mTOR inhibitor, NVP-BEZ235. In vivo, in subcutaneous xenografts, either NVP-BEZ235 or Abraxane, blocked tumor growth. In conclusion, mucin- and mixed-IHCCA are characterized by a different drug sensitivity. Cisplatin, Abraxane and the MEK 1/2 inhibitor, Selumetinib were more

  18. Relationship between P-glycoprotein expression and cyclosporin A in kidney. An immunohistological and cell culture study.

    PubMed Central

    García del Moral, R.; O'Valle, F.; Andújar, M.; Aguilar, M.; Lucena, M. A.; López-Hidalgo, J.; Ramírez, C.; Medina-Cano, M. T.; Aguilar, D.; Gómez-Morales, M.

    1995-01-01

    P-glycoprotein (P-gp), encoded in humans by the mdr-1 gene, acts physiologically as an efflux pump to expel hydrophobic substances from cells. This glycoprotein is closely related to multidrug resistance in tumor cells and can be modulated by cyclosporin A (CsA). We investigated the relationship between CsA and P-gp in 52 renal allograft biopsies and in cultures of Madin-Darby canine kidney (MDCK) renal tubule cells to determine whether the intrarenal accumulation of CsA or chronic stimulation with the drug modified the expression of P-gp. Expression of P-gp and CsA was analyzed by immunohistochemistry. Immunostaining was evaluated semiquantitatively. Modulation of P-gp in MDCK cells after chronic stimulation with CsA for 7, 30, and 60 days was analyzed by flow cytometry. P-gp and CsA immunostaining in renal post-transplant biopsies showed considerable overlap in all cases (Spearman's test, r = 0.577, P < 0.001). After 7 days in vitro, the number of cells expressing P-gp increased progressively; a further increase in mean fluorescence was found after 60 days (P < 0.001, Student's t-test). Our findings suggest that in non-neoplastic cells, CsA may stimulate P-gp as a mechanism of detoxification. Individual differences in the adaptive responses to glycoprotein may be responsible for the appearance of nephrotoxicity or a CsA-resistant rejection reaction in cases of overexpression on lymphocytes and macrophages. Images Figure 1 PMID:7856751

  19. Applications of mouse airway epithelial cell culture for asthma research.

    PubMed

    Horani, Amjad; Dickinson, John D; Brody, Steven L

    2013-01-01

    Primary airway epithelial cell culture provides a valuable tool for studying cell differentiation, cell-cell interactions, and the role of immune system factors in asthma pathogenesis. In this chapter, we discuss the application of mouse tracheal epithelial cell cultures for the study of asthma biology. A major advantage of this system is the ability to use airway epithelial cells from mice with defined genetic backgrounds. The in vitro proliferation and differentiation of mouse airway epithelial cells uses the air-liquid interface condition to generate well-differentiated epithelia with characteristics of native airways. Protocols are provided for manipulation of differentiation, induction of mucous cell metaplasia, genetic modification, and cell and pathogen coculture. Assays for the assessment of gene expression, responses of cells, and analysis of specific cell subpopulations within the airway epithelium are included. PMID:23943446

  20. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures.

    PubMed

    Gebhard, C; Gabriel, C; Walter, I

    2016-06-01

    Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions. PMID:26287450

  1. Culture and Manipulation of Embryonic Cells

    PubMed Central

    Edgar, Lois G.; Goldstein, Bob

    2012-01-01

    The direct manipulation of embryonic cells is an important tool for addressing key questions in cell and developmental biology. C. elegans is relatively unique among genetic model systems in being amenable to manipulation of embryonic cells. Embryonic cell manipulation has allowed the identification of cell interactions by direct means, and it has been an important technique for dissecting mechanisms by which cell fates are specified, cell divisions are oriented, and morphogenesis is accomplished. Here, we present detailed methods for isolating, manipulating and culturing embryonic cells of C. elegans. PMID:22226523

  2. Three dimensional spheroid cell culture for nanoparticle safety testing.

    PubMed

    Sambale, Franziska; Lavrentieva, Antonina; Stahl, Frank; Blume, Cornelia; Stiesch, Meike; Kasper, Cornelia; Bahnemann, Detlef; Scheper, Thomas

    2015-07-10

    Nanoparticles are widely employed for many applications and the number of consumer products, incorporating nanotechnology, is constantly increasing. A novel area of nanotechnology is the application in medical implants. The widespread use of nanoparticles leads to their higher prevalence in our environment. This, in turn, raises concerns regarding potential risks to humans. Previous studies have shown possible hazardous effects of some nanoparticles on mammalian cells grown in two-dimensional (2D) cultures. However, 2D in vitro cell cultures display several disadvantages such as changes in cell shape, cell function, cell responses and lack of cell-cell contacts. For this reason, the development of better models for mimicking in vivo conditions is essential. In the present work, we cultivated A549 cells and NIH-3T3 cells in three-dimensional (3D) spheroids and investigated the effects of zinc oxide (ZnO-NP) and titanium dioxide nanoparticles (TiO2-NP). The results were compared to cultivation in 2D monolayer culture. A549 cells in 3D cell culture formed loose aggregates which were more sensitive to the toxicity of ZnO-NP in comparison to cells grown in 2D monolayers. In contrast, NIH-3T3 cells showed a compact 3D spheroid structure and no differences in the sensitivity of the NIH-3T3 cells to ZnO-NP were observed between 2D and 3D cultures. TiO2-NP were non-toxic in 2D cultures but affected cell-cell interaction during 3D spheroid formation of A549 and NIH-3T3 cells. When TiO2-NP were directly added during spheroid formation in the cultures of the two cell lines tested, several smaller spheroids were formed instead of a single spheroid. This effect was not observed if the nanoparticles were added after spheroid formation. In this case, a slight decrease in cell viability was determined only for A549 3D spheroids. The obtained results demonstrate the importance of 3D cell culture studies for nanoparticle safety testing, since some effects cannot be revealed in 2D

  3. Spheroid Culture of Mesenchymal Stem Cells

    PubMed Central

    Cesarz, Zoe; Tamama, Kenichi

    2016-01-01

    Compared with traditional 2D adherent cell culture, 3D spheroidal cell aggregates, or spheroids, are regarded as more physiological, and this technique has been exploited in the field of oncology, stem cell biology, and tissue engineering. Mesenchymal stem cells (MSCs) cultured in spheroids have enhanced anti-inflammatory, angiogenic, and tissue reparative/regenerative effects with improved cell survival after transplantation. Cytoskeletal reorganization and drastic changes in cell morphology in MSC spheroids indicate a major difference in mechanophysical properties compared with 2D culture. Enhanced multidifferentiation potential, upregulated expression of pluripotency marker genes, and delayed replicative senescence indicate enhanced stemness in MSC spheroids. Furthermore, spheroid formation causes drastic changes in the gene expression profile of MSC in microarray analyses. In spite of these significant changes, underlying molecular mechanisms and signaling pathways triggering and sustaining these changes are largely unknown. PMID:26649054

  4. Alpha-naphthylisothiocyanate cytotoxicity in hepatocytes and other cultured cells

    SciTech Connect

    Bailie, M.B.; Roth, R.A. )

    1991-03-11

    Alpha-naphthylisothiocyanate (ANIT) is a model hepatotoxicant that causes injury to liver parenchymal and bile ductular cells in vivo. In this study, toxicity to various cells in culture was evaluated. In short term cultures of rat hepatocytes (HCs), a 4hr exposure to ANIT caused a concentration dependent increase in cytotoxicity as measured by lactate dehydrogenase (LDH) release. HCs cultured for 24hr or longer demonstrated a delay in ANIT-induced LDH release when compared to 2.5hr cultures. In addition, the magnitude of the cytotoxic response was greater in longer term cultures. The threshold for ANIT-induced cytotoxicity in HCs was between 20 and 63uM. In porcine endothelial cell cultures, ANIT cytotoxicity was similar to that seen in HCs. In two transformed cells lines, the Swiss 3T3 fibroblast and WB cell, a 24hr exposure to ANTI caused a concentration dependent increase in LDH release. Like the HCs, the threshold concentration was between 20 and 63uM. These results indicate that ANIT is directly cytotoxic to various cells in culture. Since endothelium and fibroblasts are deficient in cytochrome P-450 mixed function oxidase activity, ANIT toxicity in culture may be largely independent of this xenobiotic metabolizing system.

  5. Culture and characterization of human junctional epithelial cells.

    PubMed

    Matsuyama, T; Izumi, Y; Sueda, T

    1997-03-01

    This study was undertaken to establish a culture of junctional epithelial cells derived from gingival tissue attached to the tooth surface and to characterize these cells immunocytochemically and ultrastructurally. Primary cultures of cells were obtained from the junctional tissue explanted on type I collagen-coated dishes and immersed in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum (FBS). Cells were subcultured with conditioned serum-free keratinocyte medium (keratinocyte-SFM + 5% FBS) on dishes coated with solubilized extract of the basement membrane. After 24 hours, the medium was changed to keratinocyte-SFM (0.09 mM Ca2+). The cell-doubling time was 40.5 hours. As a control, cells from gingival tissue were cultured by the same method. Cells from junctional tissue and gingival tissue were compared immunocytochemically using monoclonal antibodies to keratin, vimentin, and desmoplakins I and II and using Dolichos biflorus agglutinin (DBA). The keratin AE1 and AE3 was expressed by all of culture cells. The vimentin (specific for the intermediate filament of mesenchymal cells) was also expressed by all cells. The expression pattern of keratin 19 was observed not only by cells from junctional tissue but also by cells from gingival tissue. All keratin peptides were expressed in both cells. However, DBA reacted only with cells from the junctional tissue. Anti-desmoplakin I and II reacted with both cells, however, the staining patterns differed. DBA-positive cultured epithelial cells from the junctional tissue showed poor tonofilament bundles and were rich in cytoplasmic organelles. These findings suggest that junctional epithelial cells can be isolated from junctional tissue and cultured under improved conditions. PMID:9100198

  6. Multiwell cell culture plate format with integrated microfluidic perfusion system

    NASA Astrophysics Data System (ADS)

    Domansky, Karel; Inman, Walker; Serdy, Jim; Griffith, Linda G.

    2006-01-01

    A new cell culture analog has been developed. It is based on the standard multiwell cell culture plate format but it provides perfused three-dimensional cell culture capability. The new capability is achieved by integrating microfluidic valves and pumps into the plate. The system provides a means to conduct high throughput assays for target validation and predictive toxicology in the drug discovery and development process. It can be also used for evaluation of long-term exposure to drugs or environmental agents or as a model to study viral hepatitis, cancer metastasis, and other diseases and pathological conditions.

  7. Protein extracts from cultured cells contain nonspecific serum albumin.

    PubMed

    Miyara, Masatsugu; Umeda, Kanae; Ishida, Keishi; Sanoh, Seigo; Kotake, Yaichiro; Ohta, Shigeru

    2016-06-01

    Serum is an important component of cell culture media. The present study demonstrates contamination of intracellular protein extract by bovine serum albumin from the culture media and illustrates how this contamination can cause the misinterpretation of western blot results. Preliminary experiments can prevent the misinterpretation of some experimental results, and optimization of the washing process may enable specific protein detection. PMID:26967711

  8. Metabolic flux rewiring in mammalian cell cultures.

    PubMed

    Young, Jamey D

    2013-12-01

    Continuous cell lines (CCLs) engage in 'wasteful' glucose and glutamine metabolism that leads to accumulation of inhibitory byproducts, primarily lactate and ammonium. Advances in techniques for mapping intracellular carbon fluxes and profiling global changes in enzyme expression have led to a deeper understanding of the molecular drivers underlying these metabolic alterations. However, recent studies have revealed that CCLs are not necessarily entrenched in a glycolytic or glutaminolytic phenotype, but instead can shift their metabolism toward increased oxidative metabolism as nutrients become depleted and/or growth rate slows. Progress to understand dynamic flux regulation in CCLs has enabled the development of novel strategies to force cultures into desirable metabolic phenotypes, by combining fed-batch feeding strategies with direct metabolic engineering of host cells. PMID:23726154

  9. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  10. Three Dimensional Culture of Human Renal Cell Carcinoma Organoids

    PubMed Central

    Batchelder, Cynthia A.; Martinez, Michele L.; Duru, Nadire; Meyers, Frederick J.; Tarantal, Alice F.

    2015-01-01

    Renal cell carcinomas arise from the nephron but are heterogeneous in disease biology, clinical behavior, prognosis, and response to systemic therapy. Development of patient-specific in vitro models that efficiently and faithfully reproduce the in vivo phenotype may provide a means to develop personalized therapies for this diverse carcinoma. Studies to maintain and model tumor phenotypes in vitro were conducted with emerging three-dimensional culture techniques and natural scaffolding materials. Human renal cell carcinomas were individually characterized by histology, immunohistochemistry, and quantitative PCR to establish the characteristics of each tumor. Isolated cells were cultured on renal extracellular matrix and compared to a novel polysaccharide scaffold to assess cell-scaffold interactions, development of organoids, and maintenance of gene expression signatures over time in culture. Renal cell carcinomas cultured on renal extracellular matrix repopulated tubules or vessel lumens in renal pyramids and medullary rays, but cells were not observed in glomeruli or outer cortical regions of the scaffold. In the polysaccharide scaffold, renal cell carcinomas formed aggregates that were loosely attached to the scaffold or free-floating within the matrix. Molecular analysis of cell-scaffold constructs including immunohistochemistry and quantitative PCR demonstrated that individual tumor phenotypes could be sustained for up to 21 days in culture on both scaffolds, and in comparison to outcomes in two-dimensional monolayer cultures. The use of three-dimensional scaffolds to engineer a personalized in vitro renal cell carcinoma model provides opportunities to advance understanding of this disease. PMID:26317980

  11. A practical guide to hydrogels for cell culture.

    PubMed

    Caliari, Steven R; Burdick, Jason A

    2016-04-28

    There is growing appreciation of the role that the extracellular environment plays in regulating cell behavior. Mechanical, structural, and compositional cues, either alone or in concert, can drastically alter cell function. Biomaterials, and particularly hydrogels, have been developed and implemented to present defined subsets of these cues for investigating countless cellular processes as a means of understanding morphogenesis, aging, and disease. Although most scientists concede that standard cell culture materials (tissue culture plastic and glass) do a poor job of recapitulating native cellular milieus, there is currently a knowledge barrier for many researchers in regard to the application of hydrogels for cell culture. Here, we introduce hydrogels to those who may be unfamiliar with procedures to culture and study cells with these systems, with a particular focus on commercially available hydrogels. PMID:27123816

  12. Mammosphere culture of cancer stem cells in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Saadin, Katayoon; White, Ian M.

    2012-03-01

    It is known that tumor-initiating cells with stem-like properties will form spherical colonies - termed mammospheres - when cultured in serum-free media on low-attachment substrates. Currently this assay is performed in commercially available 96-well trays with low-attachment surfaces. Here we report a novel microsystem that features on-chip mammosphere culture on low attachment surfaces. We have cultured mammospheres in this microsystem from well-studied human breast cancer cell lines. To enable the long-term culture of these unattached cells, we have integrated diffusion-based delivery columns that provide zero-convection delivery of reagents, such as fresh media, staining agents, or drugs. The multi-layer system consists of parallel cell-culture chambers on top of a low-attachment surface, connected vertically with a microfluidic reagent delivery layer. This design incorporates a reagent reservoir, which is necessary to reduce evaporation from the cell culture micro-chambers. The development of this microsystem will lead to the integration of mammosphere culture with other microfluidic functions, including circulating tumor cell recovery and high throughput drug screening. This will enable the cancer research community to achieve a much greater understanding of these tumor initiating cancer stem cells.

  13. Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells

    PubMed Central

    Li, Bo-jiang; Li, Ping-hua; Huang, Rui-hua; Sun, Wen-xing; Wang, Han; Li, Qi-fa; Chen, Jie; Wu, Wang-jun; Liu, Hong-lin

    2015-01-01

    The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells. PMID:26104526

  14. Cell cultures from the symbiotic soft coral Sinularia flexibilis.

    PubMed

    Khalesi, Mohammad K; Vera-Jiménez, N I; Aanen, D K; Beeftink, H H; Wijffels, R H

    2008-01-01

    The symbiotic octocoral Sinularia flexibilis is a producer of potential pharmaceuticals. Sustainable mass production of these corals as a source of such compounds demands innovative approaches, including coral cell culture. We studied various cell dissociation methodologies and the feasibility of cultivation of S. flexibilis cells on different media and cell dissociation methodologies. Mechanical dissociation of coral tissue always yielded the highest number of cells and allowed subsequent cellular growth in all treatments. The best results from chemical dissociation reagents were found with trypsin-ethylene diamine tetraacetic acid. Coral cells obtained from spontaneous dissociation did not grow. Light intensity was found to be important for coral cell culture showing an enduring symbiosis between the cultured cells and their intracellular algae. The Grace's insect medium and Grace's modified insect medium were found to be superior substrates. To confirm the similarity of the cultured cells and those in the coral tissue, a molecular test with Internal Transcribed Spacer primers was performed. Thereby, the presence of similar cells of both the coral cells and zooxanthella in different culture media was confirmed. PMID:18661193

  15. Identifying viable regulatory and innovation pathways for regenerative medicine: a case study of cultured red blood cells.

    PubMed

    Mittra, J; Tait, J; Mastroeni, M; Turner, M L; Mountford, J C; Bruce, K

    2015-01-25

    The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5-10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field. PMID:25094050

  16. Growth of melanocytes in human epidermal cell cultures

    SciTech Connect

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C. )

    1990-08-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient.

  17. Hypergravity signal transduction and gene expression in cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Kumei, Y.; Whitson, P. A.

    1994-01-01

    A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.

  18. Comparative assessment of the stability of nonfouling poly(2-methyl-2-oxazoline) and poly(ethylene glycol) surface films: an in vitro cell culture study.

    PubMed

    Chen, Yin; Pidhatika, Bidhari; von Erlach, Thomas; Konradi, Rupert; Textor, Marcus; Hall, Heike; Lühmann, Tessa

    2014-09-01

    Poly(ethylene glycol) (PEG) has been the most frequently reported and commercially used polymer for surface coatings to convey nonfouling properties. PEGylated surfaces are known to exhibit limited chemical stability, particularly due to oxidative degradation, which limits long-term applications. In view of excellent anti-adhesive properties in the brush conformation and resistance to oxidative degradation, poly(2-methyl-2-oxazoline) (PMOXA) has been proposed recently as an alternative to PEG. In this study, the authors systematically compare the (bio)chemical stability of PEG- and PMOXA-based polymer brush monolayer thin films when exposed to cultures of human umbilical vein endothelial cells (HUVECs) and human foreskin fibroblasts (HFFs). To this end, the authors used cell-adhesive protein micropatterns in a background of the nonfouling PEG and PMOXA brushes, respectively, and monitored the outgrowth of HUVECs and HFFs for up to 21 days and 1.5 months. Our results demonstrate that cellular micropatterns spaced by PMOXA brushes are significantly more stable under serum containing cell culture conditions in terms of confinement of cells to the adhesive patterns, when compared to corresponding micropatterns generated by PEG brushes. Moreover, homogeneous PEG and PMOXA-based brush monolayers on Nb2O5 surfaces were investigated after immersion in endothelial cell medium using ellipsometry and x-ray photoelectron spectroscopy. PMID:25280844

  19. Optimization of Buffalo (Bubalus bubalis) Embryonic Stem Cell Culture System

    PubMed Central

    Zandi, Mohammad; Muzaffar, Musharifa; Shah, Syed Mohmad; Kumar Singh, Manoj; Palta, Prabhat; Kumar Singla, Suresh; Manik, Radheysham; Chauhan, Manmohan Singh

    2015-01-01

    Objective In order to retain an undifferentiated pluripotent state, embryonic stem (ES) cells have to be cultured on feeder cell layers. However, use of feeder layers limits stem cell research, since experimental data may result from a combined ES cell and feeder cell response to various stimuli. Materials and Methods In this experimental study, a buffalo ES cell line was established from in vitro derived blastocysts and characterized by the Alkaline phosphatase (AP) and immunoflourescence staining of various pluripotency markers. We examined the effect of various factors like fibroblast growth factor 2 (FGF-2), leukemia inhibitory factor (LIF) and Y-27632 to support the growth and maintenance of bubaline ES cells on gelatin coated dishes, in order to establish feeder free culture systems. We also analyzed the effect of feeder-conditioned media on stem cell growth in gelatin based cultures both in the presence as well as in the absence of the growth factors. Results The results showed that Y-27632, in the presence of FGF-2 and LIF, resulted in higher colony growth and increased expression of Nanog gene. Feeder-Conditioned Medium resulted in a significant increase in growth of buffalo ES cells on gelatin coated plates, however, feeder layer based cultures produced better results than gelatin based cultures. Feeder layers from buffalo fetal fibroblast cells can support buffalo ES cells for more than two years. Conclusion We developed a feeder free culture system that can maintain buffalo ES cells in the short term, as well as feeder layer based culture that can support the long term maintenance of buffalo ES cells. PMID:26199905

  20. Isolation and culture of pulmonary endothelial cells.

    PubMed

    Ryan, U S

    1984-06-01

    Methods for isolation, identification and culture of pulmonary endothelial cells are now routine. In the past, methods of isolation have used proteolytic enzymes to detach cells; thereafter, traditional methods for cell passaging have used trypsin/EDTA mixtures. Cells isolated and passaged using proteolytic enzymes have been useful in establishing the field and in verifying certain endothelial properties. However, there is a growing awareness of the role of endothelial cells in processing vasoactive substances, in responding to hormones and other agonists and in cell-cell interactions with other cell types of the vascular wall, with blood cells and with cellular products. Consequently, a new requirement has arisen for cells in vitro that maintain the differentiated properties of their counterparts in vivo. The deleterious effects of trypsin and other proteolytic enzymes commonly used in cell culture on surface structures of endothelial cells such as enzymes, receptors and junctional proteins, as well as on extracellular layers such as the glycocalyx or "endothelial fuzz," have led to the development of methods that avoid use of proteolytic enzymes at both the isolation step and during subsequent subculture. This chapter describes traditional methods for isolating pulmonary endothelial cells but emphasizes newer approaches using mechanical harvest and scale-up using microcarriers. The new methods allow maintenance of long-term, large-scale cultures of cells that retain the full complement of surface properties and that maintain the cobblestone monolayer morphology and differentiated functional properties. Methods for identification of isolated cells are therefore also considered as methods for validation of cultures during their in vitro lifespan. PMID:6090112

  1. Microfabricated polymeric vessel mimetics for 3-D cancer cell culture

    PubMed Central

    Jaeger, Ashley A.; Das, Chandan K.; Morgan, Nicole Y.; Pursley, Randall H.; McQueen, Philip G.; Hall, Matthew D.; Pohida, Thomas J.; Gottesman, Michael M.

    2013-01-01

    Modeling tumor growth in vitro is essential for cost-effective testing of hypotheses in preclinical cancer research. 3-D cell culture offers an improvement over monolayer culture for studying cellular processes in cancer biology because of the preservation of cell-cell and cell-ECM interactions. Oxygen transport poses a major barrier to mimicking in vivo environments and is not replicated in conventional cell culture systems. We hypothesized that we can better mimic the tumor microenvironment using a bioreactor system for controlling gas exchange in cancer cell cultures with silicone hydrogel synthetic vessels. Soft-lithography techniques were used to fabricate oxygen-permeable silicone hydrogel membranes containing arrays of micropillars. These membranes were inserted into a bioreactor and surrounded by basement membrane extract (BME) within which fluorescent ovarian cancer (OVCAR8) cells were cultured. Cell clusters oxygenated by synthetic vessels showed a ∼100um drop-off to anoxia, consistent with in vivo studies of tumor nodules fed by the microvasculature. We showed oxygen tension gradients inside the clusters oxygenated by synthetic vessels had a ∼100 µm drop-off to anoxia, which is consistent with in vivo studies. Oxygen transport in the bioreactor system was characterized by experimental testing with a dissolved oxygen probe and finite element modeling of convective flow. Our study demonstrates differing growth patterns associated with controlling gas distributions to better mimic in vivo conditions. PMID:23911071

  2. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies.

    PubMed

    Ryu, Hodon; Cashdollar, Jennifer L; Fout, G Shay; Schrantz, Karen A; Hayes, Samuel

    2015-01-01

    Practical difficulties of the traditional adenovirus infectivity assay such as intensive labor requirements and longer turnaround period limit the direct use of adenovirus as a testing microorganism for systematic, comprehensive disinfection studies. In this study, we attempted to validate the applicability of integrated cell culture quantitative PCR (ICC-qPCR) as an alternative to the traditional cell culture method with human adenovirus type 2 (HAdV2) in a low-pressure UV disinfection study and to further optimize the procedures of ICC-qPCR for 24-well plate format. The relatively high stability of the hexon gene of HAdV2 was observed after exposure to UV radiation, resulting in a maximum gene copy reduction of 0.5 log10 at 280 mJ cm(-2). Two-day post-inoculation incubation period and a maximum spiking level of 10(5) MPN mL(-1) were selected as optimum conditions of ICC-qPCR with the tested HAdV2. An approximate 1:1 correlation of virus quantities by the traditional and ICC-qPCR cell culture based methods suggested that ICC-qPCR is a satisfactory alternative for practical application in HAdV2 disinfection studies. ICC-qPCR results, coupled with a first-order kinetic model (i.e., the inactivation rate constant of 0.0232 cm(2) mJ(-1)), showed that an UV dose of 172 mJ cm(-2) achieved a 4-log inactivation credit for HAdV2. This estimate is comparable to other studies with HAdV2 and other adenovirus respiratory types. The newly optimized ICC-qPCR shows much promise for further study on its applicability of other slow replicating viruses in disinfection studies. PMID:26030683

  3. Transferring isolated mitochondria into tissue culture cells

    PubMed Central

    Yang, Yi-Wei; Koob, Michael D.

    2012-01-01

    We have developed a new method for introducing large numbers of isolated mitochondria into tissue culture cells. Direct microinjection of mitochondria into typical mammalian cells has been found to be impractical due to the large size of mitochondria relative to microinjection needles. To circumvent this problem, we inject isolated mitochondria through appropriately sized microinjection needles into rodent oocytes or single-cell embryos, which are much larger than tissue culture cells, and then withdraw a ‘mitocytoplast’ cell fragment containing the injected mitochondria using a modified holding needle. These mitocytoplasts are then fused to recipient cells through viral-mediated membrane fusion and the injected mitochondria are transferred into the cytoplasm of the tissue culture cell. Since mouse oocytes contain large numbers of mouse mitochondria that repopulate recipient mouse cells along with the injected mitochondria, we used either gerbil single-cell embryos or rat oocytes to package injected mouse mitochondria. We found that the gerbil mitochondrial DNA (mtDNA) is not maintained in recipient rho0 mouse cells and that rat mtDNA initially replicated but was soon completely replaced by the injected mouse mtDNA, and so with both procedures mouse cells homoplasmic for the mouse mtDNA in the injected mitochondria were obtained. PMID:22753025

  4. Establishment, Culture, and Characterization of Guinea Pig Fetal Fibroblast Cell

    PubMed Central

    Mahboobi, Reza; Dianatpour, Mehdi; Zare, Shahrokh; Hosseini, Seyed Ebrahim

    2014-01-01

    Establishment of Guinea pig fetal fibroblast cells and their biological evaluation before and after cryopreservation were the main purposes of this study. After determination of the proper age of pregnancy by ultrasonography, 30 days old fetuses of Guinea pigs were recovered. Their skins were cut into small pieces (1 mm2) and were cultured. When reaching 80–90% confluence, the cells were passaged. Cells of the second and eighth passages were cultured in 24-well plates (4 × 104 cells/well) for 6 days and three wells per day were counted. The average cell counts at each time point were then plotted against time and the population doubling time (PDT) was determined. Then, vials of cells (2 × 106 cells/mL) were cryopreserved for 1 month and after thawing, the cell viability was evaluated. The PDT of the second passage was about 23 h and for the eighth passage was about 30 h. The viability of the cultures was 95% in the second passage and 74.5% in the eighth passage. It was shown that the Guinea pig fetal fibroblast cell culture can be established using the adherent culture method while, after freezing, the viability indices of these cells were favorable. PMID:24790770

  5. Human cell culture in a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  6. Cultural Education--Iroquois Cultural Study for Elementary Grades.

    ERIC Educational Resources Information Center

    Steele, Catherine

    Presenting a sequenced cultural education program, this curriculum guide for an Iroquois cultural study for elementary grades concentrates on providing a supplemental classroom program to an existing social studies curriculum, though it is also aimed at teaching culture in Native American classes. Program objectives are to provide students with…

  7. A synthetic medium for continuous culture of the S-layer carrying Bacillus stearothermophilus PV 72 and studies on the influence of growth conditions on cell wall properties.

    PubMed

    Schuster, K C; Mayer, H F; Kieweg, R; Hampel, W A; Sára, M

    1995-10-01

    Bacterial cell surface layers (S-layers) which show a crystalline structure, defined pores, and a regular arrangement of functional groups can be used for production of isoporous ultrafiltration membranes and as a matrix for immobilization of macromolecules. S-layer-carrying cell wall fragments from thermophilic Bacillaceae possess an extremely thin peptidoglycan-containing layer with pores larger than those in the S-layer lattice. Thus, they can directly be used for biotechnological applications, when an S-layer protein pool is stored in the rigid cell wall layer which is released during cell wall preparation, forming an inner S-layer. In the present study, a synthetic medium for Bacillus stearothermophilus PV 72 was developed by applying the pulse and shift technique with the aim to produce cell wall fragments with before-mentioned properties by varying the growth conditions in continuous culture. The organism was grown at 57 degrees C in a bioreactor with 1 L working volume equipped with exhaust gas analysis and connected to a PC-based process control system. Biomass concentration was 2.2 g/L out of 8 g/L glucose at a dilution rate of 0.3 h(-1), giving a biomass productivity of 0.66 g/L h. Although the organism was grown under different conditions, no change in peptidoglycan composition, extent of peptidoglycan crosslinking, and content of secondary cell wall polymers was observed. The amount of S-layer protein pool stored in the rigid cell wall layer and the autolytic activity depended mainly on the specific growth rate. Cell wall fragments with properties required for ultrafiltration membrane production could be produced by parameter settings in continuous culture. PMID:18623461

  8. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    SciTech Connect

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  9. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  10. Three dimensional culture of pineal cell aggregates: a model of cell-cell co-operation.

    PubMed

    Khan, N A; Shacoori, V; Havouis, R; Querné, D; Moulinoux, J P; Rault, B

    1995-05-01

    Three dimensional (3-D) cultures of pineal cell aggregates were obtained by constant gyratory shaking the heterogenous cell populations, obtained from the rat pineals, in the DMEM (Dulbecco's modified Eagle's medium). Within 4 days, the pineal cells became organized into a tissue like configuration appearing as a compact ball, evidenced by the scanning electron microscopy. The 3-D aggregates seemed to be mainly composed of pinealocytes (round-oval cells), glial (elongated cells) and other unknown cells. The heterogenous cells were separated by intercellular spaces. The ultrastructural characteristics revealed by transmission electron microscopy exhibited the presence of granular lysosomes, typical of pinealocytes actively involved in the secretion. These pineal cell aggregates secreted melatonin and other indole amines i.e. 5-methoxytryptamine (5-MT), indole acetic acid (IAA), 5-methoxy-3-indole acetic acid (5-MIAA), tryptophol (TOL) and 5-methoxytryptophol (5-MTL) in the culture medium, indicating the functional aspect of pinealocytes. The 3-D aggregates cultures had advantages over the pineal monolayer cultures as, after 4 days of culture, the amounts of indole amines secreted by 3-D aggregates were higher than those secreted by monolayer cultures. Besides, the 3-D aggregates remained functional till 24 days in the gyratory culture conditions. In the continuous perifusion system, the 3-D aggregates secreted melatonin while challanged with isoproterenol. This 3-D model of pineal cell aggregates might be useful, in future, to perform other kinetic studies of the release of indole amines in perifusion experiments as this system allows the maintenance of pineal cells for a long period of time. PMID:7550281