Science.gov

Sample records for cell culture studies

  1. Cell culture systems to study glial transformation

    SciTech Connect

    Bressler, J.P.; Cole, R.; de Vellis, J.

    1980-01-01

    The transformation of two different types of glial cells has been studied using an in vivo-/in vitro model and a complete in vitro model. The purpose of the study and to define in vitro model systems is to study the the neoplastic transformation of pure populations of glial cells. Data are presented to demonstrate that the transformed cells are glial and tumorigenic. (ACR)

  2. Endothelial cells in culture: a model for studying vascular functions.

    PubMed

    Bachetti, T; Morbidelli, L

    2000-07-01

    Vascular endothelium - lining the inner side of blood bessels - is one of the largest secretory tissues of the body. Therefore, understanding the cellular and molecular biology of the endothelial cells is essential for the development of new approaches for both the prevention and therapy of cardiovascular diseases. To this aim, in vitro cultures of endothelial cells provide a valuable technical resource. This review focuses on some of the critical phases of the endothelial cells culturing methodology such as: i) isolation and growing of endothelial cells; ii) identification of endothelial cells by morphological, biochemical and cellular markers; iii) studying endothelial cells in function of vascular pharmacology, vasomotor tone, vessel remodelling (angiogenesis/apoptosis), blood haemostasis, inflammatory reactions, and molecular engineering. Practical suggestions for culturing endothelial cells are presented while pros and cons of each method are discussed. PMID:10860629

  3. Qualitative study of three cell culture methods.

    PubMed

    Wang, Aiguo; Xia, Tao; Ran, Peng; Chen, Xuemin; Nuessler, Andreas K

    2002-01-01

    Primary rat hepatocytes were cultured using different in vitro models and the enzyme leakage, albumin secretion, and cytochrome P450 1A (CYP 1A) activity were observed. The results showed that the level of LDH was decreased over time in culture. However, on day 5, LDH showed a significant increase in monolayer culture (MC) while after day 8 no LDH was detectable in sandwich culture (SC). The levels of AST and ALT did not change significantly over the investigated time. The CYP 1A activity was gradually decreased in a time-dependent manner in MC and SC. The decline of CYP 1A was faster in MC than in SC. This effect was partially reversed by using cytochrome P450 (CYP450) inducer such as Omeprazol and 3-methylcholanthrene (3-MC) and the CYP 1A induction was always higher in MC than in SC. In bioreactor basic CYP 1A activity was preserved over 2 weeks and the highest albumin production was observed in bioreactor followed by SC and MC. Taken together, it was indicated each investigated model had its advantages and disadvantages. It was also underlined that various in vitro models may address different questions. PMID:12674760

  4. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    NASA Astrophysics Data System (ADS)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters evaluated in this study provide the basic ground work and pre-flight assessment needed to justify a model for microgravity studies with jatropha in vitro cell cultures. Future studies should focus on results of experiments performed with jatropha in vitro cultures in microgravity.

  5. Sex Stratified Neuronal Cultures to Study Ischemic Cell Death Pathways

    PubMed Central

    Verma, Saurabh; Traystman, Richard J.; Herson, Paco S.

    2013-01-01

    Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome. PMID:24378980

  6. Studies of the metabolism of cell cultures by microspectrofluoroscopy

    NASA Astrophysics Data System (ADS)

    Hoehne, Wolfgang; Schramm, Werner; Moritzen, V.; Burgmann, U.; Kronfeldt, Heinz D.

    1996-01-01

    The monitoring of the state of cellular energy metabolism and respiratory activity is a necessary procedure in cell biology and pharmacology. One method is the observation of the redox state by NADH and FAD autofluorescence measurements. Using this technique, investigations on endothelial cell cultures were done to study their behavior under pharmacologic influences. One application was the investigation of cytotoxicity of cyanides, blocking the mitochondrial respiratory chain. Further we studied the activation of energy metabolism as a step of the cellular reaction on extracellular impacts. The measurements have been performed with a fluorescence microscope Zei(beta) Axioplan, extended by a PMT and a CCD camera. During examination, the cell cultures were kept under nearly physiological conditions using a specialized perfusion chamber. The measurements took place on cellular monolayers. Different excitation geometries have been studied to overcome the difficulties, which arose from the very weak absorption of the cell monolayer, resulting in a low quantum yield and SNR. In classical cytotoxicity studies, only the statistical long-time effects (e.g. IC50) of cell damages are recorded. By redox microspectrofluorometry it is possible to observe the process of damage in its progress, shown by the presented results. In the second, more complex model, we studied the reaction of cells on ligands like PIA (Phenylisopropyladenosin). In this case, the intracellular reaction is connected with an increased production of cAMP. Again, this requires an increased production of ATP, which leads to an activation of the cellular energy metabolism. The spectroscopic results are interpreted by a first model.

  7. Soft Micro-Channels for Cell Culturing and Migration Studies

    NASA Astrophysics Data System (ADS)

    Abbasirazgaleh, Sara

    Various techniques and methods have been studied and developed to aid nerve regeneration and repairing nerve injuries. Among all, nerve grafting is the gold standard for bridging the gap between the injured nerve stumps. Despite the advantages of this technique, there are also various drawbacks that have encouraged the exploration of alternative, less invasive methods for promoting nerve regeneration. In this thesis, we have fabricated soft micro-channels for cell culturing and migration studies which could act as an interface capable of long-term, reliable, and high-resolution stimulation device for nerve regeneration. Micro-channels fabrication is performed using a combination of photolithography technique and physical vapor deposition (PVD) methods. Initially, the surfaces of the micro-channels are treated with oxygen plasma to convert the surface of PDMS from hydrophobic to hydrophilic and to further provide an optimal environment for cells to adhere and grow. Next, in vitro studies were performed on the fabricated micro-channels to demonstrate feasibility of the platform to promote adherence and growth of PC12 cells (cell line derived from a pheochromocytomas of the rat adrenal medulla).

  8. Elicitation studies in cell suspension cultures of Cannabis sativa L.

    PubMed

    Flores-Sanchez, Isvett Josefina; Pec, Jaroslav; Fei, Junni; Choi, Young Hae; Dusek, Jaroslav; Verpoorte, Robert

    2009-08-20

    Cannabis sativa L. plants produce a diverse array of secondary metabolites. Cannabis cell cultures were treated with biotic and abiotic elicitors to evaluate their effect on secondary metabolism. Metabolic profiles analysed by (1)H NMR spectroscopy and principal component analysis (PCA) showed variations in some of the metabolite pools. However, no cannabinoids were found in either control or elicited cannabis cell cultures. Tetrahydrocannabinolic acid (THCA) synthase gene expression was monitored during a time course. Results suggest that other components in the signaling pathway can be controlling the cannabinoid pathway. PMID:19500620

  9. Psyllid cell culture: System to study Candidatus Liberibacter replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cell culture system was established for the potato psyllid, Bactericera cockerelli (Hemiptera: Psyllidae), a highly competent vector of the phloem-inhabiting bacterium Candidatus Liberibacter psyllaurous (CLp) associated with the zebra complex disease in potato. Commonly referred to as Zebra Chip ...

  10. Advances in cell culture

    SciTech Connect

    Maramorosch, K. )

    1987-01-01

    This book presents papers on advances in cell culture. Topics covered include: Genetic changes in the influenza viruses during growth in cultured cells; The biochemistry and genetics of mosquito cells in culture; and Tree tissue culture applications.

  11. A Cell Culture System for the Study of Amyloid Pathogenesis

    PubMed Central

    Kluve-Beckerman, Barbara; Liepnieks, Juris J.; Wang, Lishan; Benson, Merrill D.

    1999-01-01

    A murine macrophage culture system that is both easy to employ and amenable to manipulation has been developed to study the cellular processes involved in AA amyloid formation. Amyloid deposition, as identified by Congo red-positive, green birefringent material, is achieved by providing cultures with recombinant serum amyloid A2 (rSAA2), a defined, readily produced, and highly amyloidogenic protein. In contrast to fibril formation, which can occur in vitro with very high concentrations of SAA and low pH, amyloid deposition in culture is dependent on metabolically active macrophages maintained in neutral pH medium containing rSAA2 at a concentration typical of that seen in acute phase serum. Although amyloid-enhancing factor is not required, its addition to culture medium results in larger and more numerous amyloid deposits. Amyloid formation in culture is accompanied by C-terminal processing of SAA and the generation of an 8.5-kd fragment analogous to amyloid A protein produced in vivo. Consistent with the possibility that impaired catabolism of SAA plays a role in AA amyloid pathogenesis, treatment of macrophages with pepstatin, an aspartic protease inhibitor, results in increased amyloid deposition. Finally, the amyloidogenicity exhibited by SAA proteins in macrophage cultures parallels that seen in vivo, eg, SAA2 is highly amyloidogenic, whereas CE/J SAA is nonamyloidogenic. The macrophage culture model presented here offers a new approach to the study of AA amyloid pathogenesis. PMID:10393845

  12. Double-layer agar cell cultures as a method of studying cell growth factors

    SciTech Connect

    Cherepantseva, E.A.; Shevlyagin, V.Ya.; Al'tshtein, A.D.

    1986-12-01

    This paper describes the development of a method of double-layer agar cell cultures which can be conveniently used to study the ability of some donor cells to produce tumor growth factors for other recipient or test cells. The donor and recipient cells are placed in different layers of agar, separated by an intermediate layer. Under a microscope, the two cell layers can be distinguished and assessed in relation to colony formation. Hamster cells were used in the experiments. The role of proliferation in manifestation of the donor properties of the cells was assessed, using donor cells seeded in different amounts of agar and also cells irradiated with gamma-rays and which had lost their ability to divide. The cells were compared and results are presented.

  13. Proteomic Analysis of Grape Berry Cell Cultures Reveals that Developmentally Regulated Ripening Related Processes Can Be Studied Using Cultured Cells

    PubMed Central

    Sharathchandra, Ramaschandra G.; Stander, Charmaine; Jacobson, Dan; Ndimba, Bongani; Vivier, Melané A.

    2011-01-01

    Background This work describes a proteomics profiling method, optimized and applied to berry cell suspensions to evaluate organ-specific cultures as a platform to study grape berry ripening. Variations in berry ripening within a cluster(s) on a vine and in a vineyard are a major impediment towards complete understanding of the functional processes that control ripening, specifically when a characterized and homogenous sample is required. Berry cell suspensions could overcome some of these problems, but their suitability as a model system for berry development and ripening needs to be established first. Methodology/Principal Findings In this study we report on the proteomic evaluation of the cytosolic proteins obtained from synchronized cell suspension cultures that were established from callus lines originating from green, véraison and ripe Vitis vinifera berry explants. The proteins were separated using liquid phase IEF in a Microrotofor cell and SDS PAGE. This method proved superior to gel-based 2DE. Principal component analysis confirmed that biological and technical repeats grouped tightly and importantly, showed that the proteomes of berry cultures originating from the different growth/ripening stages were distinct. A total of twenty six common bands were selected after band matching between different growth stages and twenty two of these bands were positively identified. Thirty two % of the identified proteins are currently annotated as hypothetical. The differential expression profile of the identified proteins, when compared with published literature on grape berry ripening, suggested common trends in terms of relative abundance in the different developmental stages between real berries and cell suspensions. Conclusions The advantages of having suspension cultures that accurately mimic specific developmental stages are profound and could significantly contribute to the study of the intricate regulatory and signaling networks responsible for berry development and ripening. PMID:21379583

  14. Epithelial Cell Culture from Human Adenoids: A Functional Study Model for Ciliated and Secretory Cells

    PubMed Central

    Gonzlez, Claudia; Espinosa, Marisol; Snchez, Mara Trinidad; Droguett, Karla; Ros, Mariana; Fonseca, Ximena; Villaln, Manuel

    2013-01-01

    Background. Mucociliary transport (MCT) is a defense mechanism of the airway. To study the underlying mechanisms of MCT, we have both developed an experimental model of cultures, from human adenoid tissue of ciliated and secretory cells, and characterized the response to local chemical signals that control ciliary activity and the secretion of respiratory mucins in vitro. Materials and Methods. In ciliated cell cultures, ciliary beat frequency (CBF) and intracellular Ca2+ levels were measured in response to ATP, UTP, and adenosine. In secretory cultures, mucin synthesis and secretion were identified by using immunodetection. Mucin content was taken from conditioned medium and analyzed in the presence or absence of UTP. Results. Enriched ciliated cell monolayers and secretory cells were obtained. Ciliated cells showed a basal CBF of 10.7?Hz that increased significantly after exposure to ATP, UTP, or adenosine. Mature secretory cells showed active secretion of granules containing different glycoproteins, including MUC5AC. Conclusion. Culture of ciliated and secretory cells grown from adenoid epithelium is a reproducible and feasible experimental model, in which it is possible to observe ciliary and secretory activities, with a potential use as a model to understand mucociliary transport control mechanisms. PMID:23484122

  15. Cell isolation and culture.

    PubMed Central

    Zhang, Sihui; Kuhn, Jeffrey R

    2013-01-01

    Cell isolation and culture are essential tools for the study of cell function. Isolated cells grown under controlled conditions can be manipulated and imaged at a level of resolution that is not possible in whole animals or even tissue explants. Recent advances have allowed for large-scale isolation and culture of primary C. elegans cells from both embryos and all four larval stages. Isolated cells can be used for single-cell profiling, electrophysiology, and high-resolution microscopy to assay cell autonomous development and behavior. This chapter describes protocols for the isolation and culture of C. elegans embryonic and larval stage cells. Our protocols describe isolation of embryonic and L1 stage cells from nematodes grown on high-density NA22 bacterial plates and isolation of L2 through L4 stage cells from nematodes grown in axenic liquid culture. Both embryonic and larval cells can be isolated from nematode populations within 3 hours and can be cultured for several days. A primer on sterile cell culture techniques is given in the appendices. PMID:23430760

  16. [Thermophilic eukaryotic cell cultures].

    PubMed

    Bakhutashvili, V I; Dzhavakhishvili, N A; Kupradze, S A; Chkhotua, R N; Bobokhidze, N G

    1991-01-01

    Thermophilic clones of lymphoblastoid cell cultures Namalwa were generated and found to be capable of life and reproduction at a temperature of 60 degrees C. The reproductive dynamics, cytology, and ultrastructure of these clones were studied. PMID:1803780

  17. Use of liver cell cultures in mutagenesis studies

    SciTech Connect

    Huberman, E.; Jones, C.A.

    1980-09-30

    A sensitive cell-mediated assay has been developed for testing the mutagenesis of liver carcinogens. Mutagenesis was detected in Chinese hamster V79 cells that were cocultivated with hepatocytes isolated after collagenase/hyaluronidase digestion of rat liver slices. Mutations were characterized by resistance to ouabain and 6-thioguanine. Seven of the nitrosamines, which are potent liver carcinogens, exhibited a mutagenic response. Mutagenesis with these carcinogens could be detected at ..mu..molar doses. The polyaromatic hydrocarbon benzo(a)pyrene, which is not a liver carcinogen, but can cause fibrosarcomas, was not mutagenic in this assay, but was mutagenic in a fibroblast-mediated assay. The liver carcinogen, aflatoxin B/sub 1/, which usually does not induce fibrosarcomas, exhibited an inverse situation; it was mutagenic for V79 cells in the presence of liver cells but not in the presence of fibroblasts. We suggest that the use of various cell types, including hepatocytes prepared by the slicing method for carcinogen metabolism, and mutable V79 cells offers a sensitive assay for determining the mutagenic potential of chemical carcinogens, and may also allow a study of their organ specificity.

  18. Assessment of cell death studies by monitoring hydrogen peroxide in cell culture.

    PubMed

    Hirsch, Irina; Prell, Erik; Weiwad, Matthias

    2014-07-01

    Hydrogen peroxide (H2O2) has been widely used to study the oxidative stress response. However, H2O2 is unstable and easily decomposes into H2O and O2. Consequently, a wide range of exposure times and treatment concentrations has been described in the literature. In the present study, we established a ferrous oxidation-xylenol orange (FOX) assay, which was originally described for food and body liquids, as a method for the precise quantification of H2O2 concentrations in cell culture media. We observed that the presence of FCS and high cell densities significantly accelerate the decomposition of H2O2, therefore acting as a protection against cell death by accidental necrosis. PMID:24747006

  19. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  20. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds

    PubMed Central

    Röder, Alexander; García-Gareta, Elena; Theodoropoulos, Christina; Ristovski, Nikola; Blackwood, Keith A.; Woodruff, Maria A.

    2015-01-01

    The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface properties to assess whether seeding efficiencies and cell growth on 3D scaffolds were affected. Cell attachment and growth of murine calvarial osteoblast (MC3T3-E1) cells within a melt-electrospun poly-ε-caprolactone scaffold were assessed when cultured in either “low-adhesive” non-treated or corona discharged-treated well-plates. Increased cell adhesion was observed on the scaffold placed in the surface treated culture plates compared to the scaffold in the non-treated plates 24 h after seeding, although it was not significant. However, higher cell metabolic activity was observed on the bases of all well-plates than on the scaffold, except for day 21, well metabolic activity was higher in the scaffold contained in non-treated plate than the base. These results indicate that there is no advantage in using non-treated plates to improve initial cell seeding in 3D polymeric tissue engineering scaffolds, however non-treated plates may provide an improved metabolic environment for long-term studies. PMID:26703748

  1. Biotransformations of Antidiabetic Vanadium Prodrugs in Mammalian Cells and Cell Culture Media: A XANES Spectroscopic Study.

    PubMed

    Levina, Aviva; McLeod, Andrew I; Pulte, Anna; Aitken, Jade B; Lay, Peter A

    2015-07-20

    The antidiabetic activities of vanadium(V) and -(IV) prodrugs are determined by their ability to release active species upon interactions with components of biological media. The first X-ray absorption spectroscopic study of the reactivity of typical vanadium (V) antidiabetics, vanadate ([V(V)O4](3-), A) and a vanadium(IV) bis(maltolato) complex (B), with mammalian cell cultures has been performed using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1 (mouse adipocytes and preadipocytes) cell lines, as well as the corresponding cell culture media. X-ray absorption near-edge structure data were analyzed using empirical correlations with a library of model vanadium(V), -(IV), and -(III) complexes. Both A and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly five- and six-coordinate V(V) species (∼75% total V) in a cell culture medium within 24 h at 310 K. Speciation of V in intact HepG2 cells also changed with the incubation time (from ∼20% to ∼70% V(IV) of total V), but it was largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular fractionation of A549 cells suggested that V(V) reduction to V(IV) occurred predominantly in the cytoplasm, while accumulation of V(V) in the nucleus was likely to have been facilitated by noncovalent bonding to histone proteins. The nuclear V(V) is likely to modulate the transcription process and to be ultimately related to cell death at high concentrations of V, which may be important in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes) showed a higher propensity to form V(IV) species, despite the prevalence of V(V) in the medium. The distinct V biochemistry in these cells is consistent with their crucial role in insulin-dependent glucose and fat metabolism and may also point to an endogenous role of V in adipocytes. PMID:25906315

  2. Liver Cell Culture Devices

    PubMed Central

    Andria, B.; Bracco, A.; Cirino, G.; Chamuleau, R. A. F. M.

    2010-01-01

    In the last 15 years many different liver cell culture devices, consisting of functional liver cells and artificial materials, have been developed. They have been devised for numerous different applications, such as temporary organ replacement (a bridge to liver transplantation or native liver regeneration) and as in vitro screening systems in the early stages of the drug development process, like assessing hepatotoxicity, hepatic drug metabolism, and induction/inhibition studies. Relevant literature is summarized about artificial human liver cell culture systems by scrutinizing PubMed from 2003 to 2009. Existing devices are divided in 2D configurations (e.g., static monolayer, sandwich, perfused cells, and flat plate) and 3D configurations (e.g., liver slices, spheroids, and different types of bioreactors). The essential features of an ideal liver cell culture system are discussed: different types of scaffolds, oxygenation systems, extracellular matrixes (natural and artificial), cocultures with nonparenchymal cells, and the role of shear stress problems. Finally, miniaturization and high-throughput systems are discussed. All these factors contribute in their own way to the viability and functionality of liver cells in culture. Depending on the aim for which they are designed, several good systems are available for predicting hepatotoxicity and hepatic metabolism within the general population. To predict hepatotoxicity in individual cases genomic analysis might be essential as well.

  3. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    PubMed

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method. PMID:26683462

  4. Study of the biological features of in vitro cultured ?? T cells

    PubMed Central

    ZHANG, YAN; ZHI, LIMING; ZHANG, ZAN

    2016-01-01

    The aim of the present study was to investigate the biological features of in vitro cultured ?? T cells. The ?? T cells were in vitro cultured and on different culture days cell proliferation, phenotype, killing activity and the secretion of cytokines were analyzed. Cell numbers were counted by an automated cell counter, phenotype of the cells and cytokines were analyzed by flow cytometry, and killing activities of the cells against gastric cancer SGC-7901 cells were tested using the cell counting kit-8. From days 7 to 14, in vitro cultured ?? T cells enter the exponential phase. On day 14, maximum proliferation fold was observed, and on day 10, the maximum specific growth rate max was achieved. Flow phenotype cluster of differentiation 3+-T-cell receptor ??+ of the ?? T cells in the first 717 days achieved a higher proportion and showed no significant differences between 10 days. Secretion of the cytokines interferon-? and tumor necrosis factor-? gradually increased in the first 714 days. The maximum was achieved on day 14, and subsequently began to decrease. The cytolytic activity of the ?? T cells to kill the SGC-7901 cells in the first 714 days had an improved killing effect, a slight decline from the first 17 days; in the effector cell to target cell (E:T) ratio 20:1, 10:1 and 5:1 conditions, ?? T cells kill SGC-7901 cells more effectively than 1:1 and 1:2. In conclusion, ?? T cells cultured in the first 714 days are suitable for clinical transfusion, and the optimal transfusion time is day 10. An E:T ratio >5:1 is preferred. PMID:26870341

  5. ASBESTOS AND GASTRO-INTESTINAL CANCER: CELL CULTURE STUDIES

    EPA Science Inventory

    Three forms of asbestos: amosite, crocidolite, and chrysotile, were assayed for their cytotoxicity and mutagenicity in cell clture. Using embjryonic human intestine derived and adult rat liver derived epitelial cells, the order of toxicity was chrysotile > amosite = crocidolite. ...

  6. Biology on a Chip: Microfabrication for Studying the Behavior of Cultured Cells

    PubMed Central

    Li, Nianzhen; Tourovskaia, Anna; Folch, Albert

    2013-01-01

    The ability to culture cells in vitro has revolutionized hypothesis testing in basic cell and molecular biology research and has become a standard methodology in drug screening and toxicology assays. However, the traditional cell culture methodology—consisting essentially of the immersion of a large population of cells in a homogeneous fluid medium—has become increasingly limiting, both from a fundamental point of view (cells in vivo are surrounded by complex spatiotemporal microenvironments) and from a practical perspective (scaling up the number of fluid handling steps and cell manipulations for high-throughput studies in vitro is prohibitively expensive). Micro fabrication technologies have enabled researchers to design, with micrometer control, the biochemical composition and topology of the substrate, the medium composition, as well as the type of neighboring cells surrounding the microenvironment of the cell. In addition, microtechnology is conceptually well suited for the development of fast, low-cost in vitro systems that allow for high-throughput culturing and analysis of cells under large numbers of conditions. Here we review a variety of applications of microfabrication in cell culture studies, with an emphasis on the biology of various cell types. PMID:15139302

  7. Preliminary study of spectral features of normal and malignant cell cultures

    NASA Astrophysics Data System (ADS)

    Atif, M.; Farooq, W. A.; Siddiqui, Maqsood A.; Al-Khedhairy, Abdulaziz A.

    2016-04-01

    In this study the fluorescence emission spectra of normal and malignant cell cultures were recorded at an excitation wavelength of 290 nm, corresponding to the higher fluorescence intensity at 350 nm (due to tryptophan) of three malignant cells and normal cells. Similarly, Stokes shift spectra were recorded for normal and malignant cell cultures with a shift, Δλ, of 70 nm. The Stokes shift shows the existence of discriminating features between normal and carcinoma cell lines due to the higher concentration of phenylalanine and tryptophan in carcinoma cell lines which are completely absent in normal cell lines. Hence, both the emission spectra and the Stokes shift spectra showed considerably different spectral features between the normal and malignant cells. The preliminary studies indicate the potential application of fluorescence spectroscopy for cancer detection using the spectral features of biofluorophores.

  8. Expression of alpha 2-glycoprotein by glial precursor cells: an immunocytochemical study with glial cultures.

    PubMed

    Bhat, N R; Arimoto, K; Warecka, K; Brunngraber, E G

    1986-09-01

    Studies on the presence of the brain-specific alpha 2-glycoprotein in cultures of newborn rat brain cells revealed that a population of glial precursor cells expressed this antigen at an early stage of development. This cell population consisted of small, phase-dark cells that proliferated in culture and occupied the surface of a layer of flat epithelial-like astrocytes. The latter cell type did not react with the antibodies. The number of alpha 2-glycoprotein positive cells gradually decreased from a high concentration of 88% of the total overlying cells at 6 days of culture to 44% at 23 days. The morphological heterogeneity of the overlying cells was noticeable after 10 days in culture as clusters of cells with elaborate processes started to develop. alpha 2-Glycoprotein was found to be concentrated in these structures. A glioma cell line (C-6 glia) which represents a unique in vitro model for the glial progenitor cells, was also found to express this glycoprotein antigen. PMID:3530381

  9. Cell culture as a tool for the study of poultry skeletal muscle development.

    PubMed

    McFarland, D C

    1992-03-01

    Postnatal development of skeletal muscle is the responsibility of the myogenic satellite cells. Satellite cells, isolated from the pectoralis major muscle of young growing tom turkeys, have been cultured in vitro to provide a system for studying cellular and hormonal aspects of poultry skeletal muscle development. Satellite cell clones derived from primary cultures have been developed so that in vitro observations would not be confounded by the presence of nonmyogenic cells. Likewise, a serum-free medium that promotes proliferation of the turkey satellite cell has been developed to provide a hormonally controlled environment for in vitro developmental studies. These two techniques have enabled us to examine the following: 1) factors that influence satellite cell proliferation and differentiation, 2) the interaction of hormones with cellular receptors, 3) secretion of biologically important proteins from cells and 4) the expression of genes important to muscle development. PMID:1371806

  10. Organ Explant Culture of Neonatal Rat Ventricles: A New Model to Study Gene and Cell Therapy

    PubMed Central

    den Haan, A. Dnise; Veldkamp, Marieke W.; Bakker, Diane; Boink, Geert J. J.; Janssen, Rob B.; de Bakker, Jacques M. T.; Tan, Hanno L.

    2013-01-01

    Testing cardiac gene and cell therapies in vitro requires a tissue substrate that survives for several days in culture while maintaining its physiological properties. The purpose of this study was to test whether culture of intact cardiac tissue of neonatal rat ventricles (organ explant culture) may be used as a model to study gene and cell therapy. We compared (immuno) histology and electrophysiology of organ explant cultures to both freshly isolated neonatal rat ventricular tissue and monolayers. (Immuno) histologic studies showed that organ explant cultures retained their fiber orientation, and that expression patterns of ?-actinin, connexin-43, and ?-smooth muscle actin did not change during culture. Intracellular voltage recordings showed that spontaneous beating was rare in organ explant cultures (20%) and freshly isolated tissue (17%), but common (82%) in monolayers. Accordingly, resting membrane potential was -83.94.4 mV in organ explant cultures, ?80.53.5 mV in freshly isolated tissue, and ?60.94.3 mV in monolayers. Conduction velocity, measured by optical mapping, was 18.21.0 cm/s in organ explant cultures, 18.01.2 cm/s in freshly isolated tissue, and 24.30.7 cm/s in monolayers. We found no differences in action potential duration (APD) between organ explant cultures and freshly isolated tissue, while APD of monolayers was prolonged (APD at 70% repolarization 88.87.8, 79.12.9, and 134.04.5 ms, respectively). Organ explant cultures and freshly isolated tissue could be paced up to frequencies within the normal range for neonatal rat (CL 150 ms), while monolayers could not. Successful lentiviral (LV) transduction was shown via Egfp gene transfer. Co-culture of organ explant cultures with spontaneously beating cardiomyocytes increased the occurrence of spontaneous beating activity of organ explant cultures to 86%. We conclude that organ explant cultures of neonatal rat ventricle are structurally and electrophysiologically similar to freshly isolated tissue and a suitable new model to study the effects of gene and cell therapy. PMID:23516623

  11. Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: an in vitro cell culture study.

    PubMed

    Nagineni, C N; Amiel, D; Green, M H; Berchuck, M; Akeson, W H

    1992-07-01

    The poor healing abilities of the anterior cruciate ligament (ACL) in contrast to those of the medial collateral ligament (MCL) are well known. Different intrinsic properties of the constituent cells of these ligaments have been proposed to be one of the factors in the differential repair mechanisms. To examine this hypothesis, we have established primary cell lines of ACL and MCL from the tissue explants of approximately similar dimensions and have studied their behavior in vitro. The outgrowth of cells from ACL explants was slower than from MCL explants, as shown by the size of the surrounding clusters of cells. Both ACL and MCL cultures exhibited typical fibroblastic morphology. No significant differences were observed in either attachment or growth of cells from the attached explants derived from various segments of ACL and MCL. Growth curves of ACL and MCL cultures at both passage numbers 2 and 6 showed a slower rate of proliferation of ACL cells than MCL cells (p less than 0.005). DNA synthesis measured in terms of [3H]thymidine incorporation (CPM/10(3) cells) of both log phase (ACL = 607.5 +/- 5.4 vs. MCL = 1356.4 +/- 11.3) and confluent (ACL = 83.0 +/- 3.6 vs. MCL = 189.8 +/- 5.4) cultures, supports the conclusion that differential proliferation rates of these cells exist in culture. FITC-phalloidin staining (for actin) of later passage cultures (P3-P5) showed a spread-out appearance of ACL cells and an elongated appearance of MCL cells. Relatively more stress fibers were seen within ACL cells. SDS-PAGE and Western blot analysis of cellular proteins revealed higher actin (43 kDa) content in ACL cells than in MCL cells. In vitro wound closure assay was performed by creating a uniform wound of 0.6 mm width in the confluent layer of ACL and MCL cultures. By 48 h postwounding, cell-free zones created in ACL cultures were occupied partially by single cells in a nonconfluent fashion. In contrast, the wounded zone in the MCL cultures was almost completely covered by the cells. Results presented in this report demonstrate a lower proliferation and migration potential of ACL cells in comparison with MCL cells. These differences in intrinsic properties of ACL and MCL cells that were observed in vitro might contribute to the differential healing potentials of these ligaments in vivo. PMID:1613622

  12. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures.

    PubMed

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E A; Kasprowicz, Richard; Coles, Mark; O'Toole, Peter; Chawla, Sangeeta

    2016-01-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator. PMID:26915695

  13. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures

    PubMed Central

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O’Toole, Peter; Chawla, Sangeeta

    2016-01-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator. PMID:26915695

  14. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures

    NASA Astrophysics Data System (ADS)

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O’Toole, Peter; Chawla, Sangeeta

    2016-02-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.

  15. Development and progression of neoplastic disease. Morphologic and cell culture studies with airway epithelium

    SciTech Connect

    Nettesheim, P.; Terzaghi, M.; Klein-Szanto, A.J.P.

    1981-01-01

    Morphologic and cell culture studies on neoplastic development occurring in airway epithelium are discussed. The morphologic studies suggest that severe disturbances of cell growth, cell replication, and cell maturation exist in pre-neoplastic epithelium. In vivo-in vitro studies demonstrate that non-neoplastic carcinogen altered cells can be detected immediately after carcinogen exposure. These cells are identified by their enhanced in vitro growth capacity, which also makes it possible to select for them. Evidence exists indicating that some of these carcinogen altered cells are the precursors of later appearing cancer cells. With the use of the epithelial focus (EF) assay, the cellular dynamics of neoplastic development, as it occurs in vivo, can be investigated. Studies show that some phases of neoplastic disease continue to develop for many months in carcinogen exposed organs even if the carcinogen dose was subtumorigenic.

  16. Cell Culture Made Easy.

    ERIC Educational Resources Information Center

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  17. Cell Culture Made Easy.

    ERIC Educational Resources Information Center

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are

  18. Optimizing stem cell culture

    PubMed Central

    Van Der Sanden, Boudewijn; Dhobb, Mehdi; Berger, Franois; Wion, Didier

    2010-01-01

    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindberghs plane. PMID:20803548

  19. Establishment of feline intestinal epithelial cell cultures for the propagation and study of feline enteric coronaviruses.

    PubMed

    Desmarets, Lowiese M B; Theuns, Sebastiaan; Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Vermeulen, Ben L; Roukaerts, Inge D M; Nauwynck, Hans J

    2013-01-01

    Feline infectious peritonitis (FIP) is the most feared infectious cause of death in cats, induced by feline infectious peritonitis virus (FIPV). This coronavirus is a virulent mutant of the harmless, ubiquitous feline enteric coronavirus (FECV). To date, feline coronavirus (FCoV) research has been hampered by the lack of susceptible cell lines for the propagation of serotype I FCoVs. In this study, long-term feline intestinal epithelial cell cultures were established from primary ileocytes and colonocytes by simian virus 40 (SV40) T-antigen- and human Telomerase Reverse Transcriptase (hTERT)-induced immortalization. Subsequently, these cultures were evaluated for their usability in FCoV research. Firstly, the replication capacity of the serotype II strains WSU 79-1683 and WSU 79-1146 was studied in the continuous cultures as was done for the primary cultures. In accordance with the results obtained in primary cultures, FCoV WSU 79-1683 still replicated significantly more efficient compared to FCoV WSU 79-1146 in both continuous cultures. In addition, the cultures were inoculated with faecal suspensions from healthy cats and with faecal or tissue suspensions from FIP cats. The cultures were susceptible to infection with different serotype I enteric strains and two of these strains were further propagated. No infection was seen in cultures inoculated with FIPV tissue homogenates. In conclusion, a new reliable model for FCoV investigation and growth of enteric field strains was established. In contrast to FIPV strains, FECVs showed a clear tropism for intestinal epithelial cells, giving an explanation for the observation that FECV is the main pathotype circulating among cats. PMID:23964891

  20. Expression of FcIgG receptors on cultured fetal rat brain cells. Studies on normal, preneoplastic and malignant cells.

    PubMed

    Aanderud, S; Lillehaug, J; Tønder, O; Laerum, O D

    1983-01-01

    The expression of FcIgG receptor (FcR) was studied during various stages of growth and subculturing of: (1) fetal rat brain cells (FBC); (2) FBC during in vitro neoplastic transformation after a transplacental pulse of the alkylating carcinogen ethylnitrosurea in vivo, and (3) an established neoplastic brain tumor cell line. Hemadsorption of antibody-coated sheep erythrocytes was used for the detection of FcR-positive cells. Such cells were not detected in cryostat sections of fetal rat brains, but in primary cultures of FBC 1 day after the explantation. FcR-positive cells were present throughout the logarithmic-growth phase. When reaching confluency after 5-7 days in culture. FcR-positive cells could not be detected. In the secondary cultures the occurrence of FcR-positive cells showed a similar variation related to growth: The growth-related receptor was also present on cells growing into arteficial defects in confluent cultures, while the resting cells in the same cultures were FcR-negative. With further subculturing the cells became epithelioid and slowly growing without FcR. Morphologically induced differentiation of such epithelioid cells by 12-O-tetra-decanoyl phorbol-13-acetate did not change the FcR expression. We did not detect any change in the receptor expression related to the malignant transformation, and the malignant cell line was FcR-negative. Expression of FcR on FBC undergoing malignant transformation therefore seems to be mainly connected to the mode of growth (log-phase versus confluence). PMID:6848476

  1. Histochemical study of brown-fat cells in the golden hamster (Mesocricetus auratus) in cultures

    SciTech Connect

    Sokolov, V.E.; Boyadzhieva-Mikhailova, A.; Koncheva, L.; Angelova, P.; Evgen'eva, T.P.

    1985-11-01

    The authors undertake the task of studying the synthesis of certain hormones by brown-fat cells. The authors used brown-fat cells from the golden hamster. The metabolism of brown-fat cells was studied on precultured cells, which made it possible to detect the synthesis of the studied substances rather than their accumulation in the organ. The authors conducted three experiments. First, fragments of brown fat were cultivated in diffusion chambers in vivo. Pieces of brown fat were cultivated in parallel in vitro on agar (organotypic cultures) and on plasma (histotypic cultures). During cultivation in diffusion chambers, the chambers were implanted in the abdominal cavity of young white rats. For in vitro cultivation, TCM 199 plus 15-20% calf serum was used. A total of 36 cultures with 12 cultures in each series of experiments were performed. The auto-radiographic studies of brown-fat cells were conducted on 24-hour cultures and on brown-fat fragments taken from the intact animal. The cultures were incubated with isotopes for 1 h. Either (/sup 3/H)lysine (87.3 Ci/mM specific activity), (/sup 3/H)arginine (16.7 Ci/mM), (/sup 3/H)glycerol (43 Ci/mM), or (/sup 3/H)cholesterol (43 Ci/mM) were added to the medium. After incubation, the cultures were washed three times in pure medium, fixed in Sierra fluid, and embedded in paraffin. The paraffin sections were covered with Ilford K/sub 2/ emulsion, and the preparations were exposed for 20 days at 4/sup 0/C temperature. Radio-immunological methods were used to study the accumulation of estradiol-17-beta in the culture medium by the Dobson method and that of testerone. The culture medium was taken on cultivation days 2,4,6,8, and 10. The medium was changed during cultivation every third day, which made it possible to judge the rates of accumulation of material with increase in the cultivation times.

  2. [Mammalian cell culture as a model for studying the intracellular traffic of densovirus proteins].

    PubMed

    Kozlov, E N; Mukha, D V

    2015-02-01

    The intracellular localization of the fusion protein composed of green fluorescent protein (GFP) and one of the capsid proteins (namely VP1) of the German cockroach densovirus BgDV1 was investigated using the HeLa human cell culture. The intracellular localization of GFP was analyzed in a series of control experiments. Histochemical analysis with GFP antibodies showed that the fusion protein is localized exclusively inside the nucleus of cells because of the transitory expression of the corresponding vector constructions, whereas the GFP is located both in the nucleus and the cytoplasm. We can conclude that the signal of the nuclear localization of the capsid protein of the German cockroach densovirus is functionally active, not only within the cells of this insect but within the human cell culture as well. This observation extends the experimental possibilities for studying the genetic control of intracellular traffic of densovirus proteins. PMID:25966595

  3. Magnetic approaches to study collective three-dimensional cell mechanics in long-term cultures (invited)

    NASA Astrophysics Data System (ADS)

    Zhao, Ruogang; Boudou, Thomas; Wang, Wei-Gang; Chen, Christopher S.; Reich, Daniel H.

    2014-05-01

    Contractile forces generated by cells and the stiffness of the surrounding extracellular matrix are two central mechanical factors that regulate cell function. To characterize the dynamic evolution of these two mechanical parameters during tissue morphogenesis, we developed a magnetically actuated micro-mechanical testing system in which fibroblast-populated collagen microtissues formed spontaneously in arrays of microwells that each contains a pair of elastomeric microcantilevers. We characterized the magnetic actuation performance of this system and evaluated its capacity to support long-term cell culture. We showed that cells in the microtissues remained viable during prolonged culture periods of up to 15 days, and that the mechanical properties of the microtissues reached and maintained at a stable state after a fast initial increase stage. Together, these findings demonstrate the utility of this microfabricated bio-magneto-mechanical system in extended mechanobiological studies in a physiologically relevant 3D environment.

  4. Multigenerational Study of Chemically Induced Cytotoxicity and Proliferation in Cultures of Human Proximal Tubular Cells

    PubMed Central

    Lash, Lawrence H.; Putt, David A.; Benipal, Bavneet

    2014-01-01

    Primary cultures of human proximal tubular (hPT) cells are a useful experimental model to study transport, metabolism, cytotoxicity, and effects on gene expression of a diverse array of drugs and environmental chemicals because they are derived directly from the in vivo human kidney. To extend the model to investigate longer-term processes, primary cultures (P0) were passaged for up to four generations (P1P4). hPT cells retained epithelial morphology and stained positively for cytokeratins through P4, although cell growth and proliferation successively slowed with each passage. Necrotic cell death due to the model oxidants tert-butyl hydroperoxide (tBH) and methyl vinyl ketone (MVK) increased with increasing passage number, whereas that due to the selective nephrotoxicant S-(1,2-dichlorovinyl)-l-cysteine (DCVC) was modest and did not change with passage number. Mitochondrial activity was lower in P2P4 cells than in either P0 or P1 cells. P1 and P2 cells were most sensitive to DCVC-induced apoptosis. DCVC also increased cell proliferation most prominently in P1 and P2 cells. Modest differences with respect to passage number and response to DCVC exposure were observed in expression of three key proteins (Hsp27, GADD153, p53) involved in stress response. Hence, although there are some modest differences in function with passage, these results support the use of multiple generations of hPT cells as an experimental model. PMID:25411799

  5. A primary culture system of adult rat heart cells for the study of toxicologic agents.

    PubMed

    Welder, A A; Grant, R; Bradlaw, J; Acosta, D

    1991-12-01

    Tricyclic antidepressants (TCAs) are currently used in the treatment of mental depression and nocturnal enuresis. Clinically, these drugs are useful; however, cardiotoxicity can occur even with therapeutic dosages. For example, TCAs are known to alter myocardial function, induce arrhythmias, and produce heart block in individuals with a normal cardiovascular history. The present study was undertaken to establish a culture system of spontaneously contracting adult primary myocardial cells for toxicologic testing and to examine their contractility, morphology, and lactate dehydrogenase release (LDH) after treatment with one of the most cardiotoxic TCAs, amitriptyline. Primary myocardial cell cultures were obtained from approximately 60- to 90-day-old Sprague-Dawley rats. After the cells had been grown in culture for 11 days, they were treated with amitriptyline (1 x 10(-3), 1 x 10(-4), and 1 x 10(-5) M) for 2 to 24 h. The highest concentration of amitriptyline (1 x 10(-3) M) completely destroyed the cardiac muscle cells. In addition to moderate and severe vacuole, granule, and pseudopodia formation, all contractile activity was inhibited as early as 2 h after exposure to the intermediate concentration of 1 x 10(-4) M amitriptyline. Significant LDH release did not occur until 8 h after treatment with this intermediate concentration. Even though there was no significant LDH release at all 3 time points tested, there was a 50% decrease in beating activity (154 +/- 9 to 77 +/- 5 beats/min) and initiation of vacuole formation by 2 h with the lowest concentration of amitriptyline (1 x 10(-5) M). This study presents a new apparatus for the isolation of adult cardiac myocytes for the establishment of primary cell cultures for toxicologic testing. Furthermore, these data demonstrate that amitriptyline induces a concentration- and time-dependent cardiotoxic profile in a model of spontaneously contracting adult cardiac muscle cells in culture. PMID:1757397

  6. May toxicity of amiodarone be prevented by antioxidants? A cell-culture study

    PubMed Central

    2012-01-01

    Background Atrial Fibrillation is the most common arrhythmia encountered following cardiac surgery. The most commonly administered drug used in treatment and prophylaxis is amiodarone which has several toxic effects on major organ functions. There are few clinical data concerning prevention of toxic effects and there is no routinely suggested agent. The aim of this study is to document the cytotoxic effects of amiodarone on cell culture media and compare the cytoprotective effects of commonly used antioxidant agents. Methods L929 mouse fibroblast cell line was cultured and 100,000 cells/well-plate were obtained. First group of cells were treated with increasing concentrations of amiodarone (20 to 180 ?M) alone. Second and third group of cells were incubated with one-fold equimolar dose of vitamin C and N-acetyl cysteine prior to amiodarone exposure. The viability of cells were measured by MTT assay and the cytoprotective effect of each agent was compared. Results The cytotoxicity of amiodarone was significant with concentrations of 100 ?M and more. The viabilities of both vitamin C and N-acetyl cysteine treated cells were higher compared to untreated cells. Conclusions Vitamin C and N-acetyl cysteine are commonly used in the clinical setting for different purposes in context of their known antioxidant actions. Their role in prevention of amiodarone induced cytotoxicity is not fully documented. The study fully demonstrates the cytoprotective role of both agents in amiodarone induced cytotoxicity on cell culture media; more pronounced with vitamin C in some concentrations. The findings may be projectile for further clinical studies. PMID:22741616

  7. Ultrastructural study of cultured ovine bone marrow-derived mesenchymal stromal cells.

    PubMed

    Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Mastrodonato, Maria; Blasi, Antonella; Francioso, Edda; Rossi, Roberta; Crovace, Antonio; Resta, Leonardo

    2015-09-01

    Ovine bone marrow-derived mesenchymal stromal cells (oBM-MSCs) represent a good animal model for cell-based therapy and tissue engineering. Despite their use as a new therapeutic tool for several clinical applications, the morphological features of oBM-MSCs are yet unknown. Therefore, in this study the ultrastructural phenotype of these cells was analysed by transmission electron microscopy (TEM). The oBM-MSCs were isolated from the iliac crest and cultured until they reached near-confluence. After trypsinization, they were processed to investigate their ultrastructural features as well as specific surface marker proteins by flow cytometry and immunogold electron microscopy. Flow cytometry displayed that all oBM-MSCs lacked expression of CD31, CD34, CD45, HLA-DR whereas they expressed CD44, CD58, HLAI and a minor subset of the cell population (12%) exhibited CD90. TEM revealed the presence of two morphologically distinct cell types: cuboidal electron-lucent cells and spindle-shaped electron-dense cells, both expressing the CD90 antigen. Most of the electron-lucent cells showed glycogen aggregates, dilated cisternae of RER, moderately developed Golgi complex, and secretory activity. The electron-dense cell type was constituted by two different cell-populations: type A cells with numerous endosomes, dense bodies, rod-shaped mitochondria and filopodia; type B cells with elongated mitochondria, thin pseudopodia and cytoplasmic connectivity with electron-lucent cells. These morphological findings could provide a useful support to identify "in situ" the cellular components involved in the cell-therapy when cultured oBM-MSCs are injected. PMID:26196242

  8. Mammalian Cell Culture Simplified.

    ERIC Educational Resources Information Center

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  9. Neurotoxic effects of indocyanine green -cerebellar granule cell culture viability study

    PubMed Central

    Toczylowska, Beata; Zieminska, Elzbieta; Goch, Grazyna; Milej, Daniel; Gerega, Anna; Liebert, Adam

    2014-01-01

    The aim of this study was to examine neurotoxicity indocyanine green (ICG). We assessed viability of primary cerebellar granule cell culture (CGC) exposed to ICG to test two mechanisms that could be the first triggers causing neuronal toxicity: imbalance in calcium homeostasis and the degree of oligomerization of ICG molecules. We have observed this imbalance in CGC after exposure to 75-125?? ICG and dose and application sequence dependent protective effect of Gadovist on surviving neurons in vitro when used with ICG. Spectroscopic studies suggest the major cause of toxicity of the ICG is connected with oligomers formation. ICG at concentration of 25 ?M (which is about 4 times higher than the highest concentration of ICG in the brain applied in in-vivo human studies) is not neurotoxic in the cell culture. PMID:24688815

  10. Zinc increases EGF-stimulated DNA synthesis in primary mouse hepatocytes. Studies in tumor promoter-treated cell cultures.

    PubMed

    Kobusch, A B; Bock, K W

    1990-02-01

    To investigate factors influencing cell proliferation, cells are often cultured in serum-free medium. In the present study it is shown that addition of zinc chloride (40 microM) to primary mouse hepatocytes, cultured in Dulbecco's minimal essential medium, markedly enhanced growth factor (EGF)-stimulated [3H]thymidine incorporation into DNA. Treatment of cell cultures with phenobarbital or 3,4,3',4'-tetrachlorobiphenyl (enzyme inducers and tumor promoters in vivo) or with 12-O-tetradecanoylphorbol-13-acetate (the classical skin tumor promoter) further increased EGF-stimulated DNA synthesis. The results emphasize the need to adequately substitute zinc in serum-free cultured cells. PMID:2106323

  11. PRIMARY CELL CULTURES FROM THE TELEOST, 'CYPRINODON VARIEGATUS': CULTURE ESTABLISHMENT AND APPLICATION IN CARCINOGEN EXPOSURE STUDIES

    EPA Science Inventory

    Methods were developed for aseptic maintenance of Cyprinodon variegatus fry for extended periods. Preliminary studies indicated that under optimum conditions sterile embryos develop normally for a sufficient time to function as carcinogenteratogen assay systems. An embryo-primary...

  12. Digital Microfluidic Cell Culture.

    PubMed

    Ng, Alphonsus H C; Li, Bingyu Betty; Chamberlain, M Dean; Wheeler, Aaron R

    2015-12-01

    Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF. PMID:26643019

  13. A microgroove patterned multiwell cell culture plate for high-throughput studies of cell alignment.

    PubMed

    Lcker, Petra B; Javaherian, Sahar; Soleas, John P; Halverson, Duncan; Zandstra, Peter W; McGuigan, Alison P

    2014-12-01

    Grooved substrates are commonly used to guide cell alignment and produce in vitro tissues that mimic certain aspects of in vivo cellular organization. These more sophisticated tissues provide valuable in vitro models for testing drugs and for dissecting out molecular mechanisms that direct tissue organization. To increase the accessibility of these tissue models we describe a simple and yet reproducible strategy to produce 1?m-spaced grooved well plates suitable for conducting automated analysis of cellular responses. We characterize the alignment of four human cell types: retinal epithelial cells, umbilical vein endothelial cells, foreskin fibroblasts, and human pluripotent stem-cell-derived cardiac cells on grooves. We find all cells align along the grooves to differing extents at both sparse and confluent densities. To increase the sophistication of in vitro tissue organization possible, we also created hybrid substrates with controlled patterns of microgrooved and flat regions that can be identified in real-time using optical microscopy. Using our hybrid patterned surfaces we explore: (i) the ability of neighboring cells to provide a template to organize surrounding cells that are not directly exposed to grooved topographic cues, and (ii) the distance over which this template effect can operate in confluent cell sheets. We find that in fibroblast sheets, but not epithelial sheets, cells aligned on grooves can direct alignment of neighboring cells in flat regions over a limited distance of approximately 200??m. Our hybrid surface plate provides a novel tool for studying the collective response of groups of cells exposed to differential topographical cues. PMID:24889796

  14. Pure populations of murine macrophages from cultured embryonic stem cells. Application to studies of chemotaxis and apoptotic cell clearance.

    PubMed

    Zhuang, Lihui; Pound, John D; Willems, Jorine J L P; Taylor, A Helen; Forrester, Lesley M; Gregory, Christopher D

    2012-11-30

    Embryonic stem cells provide a potentially convenient source of macrophages in the laboratory. Given the propensity of macrophages for plasticity in phenotype and function, standardised culture and differentiation protocols are required to ensure consistency in population output and activity in functional assays. Here we detail the development of an optimised culture protocol for the production of murine embryonic stem cell-derived macrophages (ESDM). This protocol provides improved yields of ESDM and we demonstrate that the cells are suitable for application to the study of macrophage responses to apoptotic cells. ESDM so produced were of higher purity than commonly used primary macrophage preparations and were functional in chemotaxis assays and in phagocytosis of apoptotic cells. Maturation of ESDM was found to be associated with reduced capacity for directed migration and increased capacity for phagocytic clearance of apoptotic cells. These results show ESDM to be functionally active in sequential phases of interaction with apoptotic cells and establish these macrophage populations as useful models for further study of molecular mechanisms underlying the recognition and removal of apoptotic cells. PMID:22721870

  15. Cytocompatibility of the selected calcium phosphate based bone cements: comparative study in human cell culture.

    PubMed

    Olkowski, Rados?aw; Kaszczewski, Piotr; Czechowska, Joanna; Siek, Dominika; Pijocha, Dawid; Zima, Aneta; ?lsarczyk, Anna; Lewandowska-Szumie?, Ma?gorzata

    2015-12-01

    Calcium phosphate cements (CPC) are valuable bone fillers. Recently they have been also considered as the basis for drug-, growth factors- or cells-delivery systems. Broad possibilities to manipulate CPC composition provide a unique opportunity to obtain materials with a wide range of physicochemical properties. In this study we show that CPC composition significantly influences cell response. Human bone derived cells were exposed to the several well-characterized different cements based on calcium phosphates, magnesium phosphates and calcium sulfate hemihydrate (CSH). Cell viability assays, live/dead staining and real-time observation of cells in contact with the materials (time-laps) were performed. Although all the investigated materials have successfully passed a standard cytocompatibility assay, cell behavior in a direct contact with the materials varied depending on the material and the experimental system. The most recommended were the ?-TCP-based materials which proved suitable as a support for cells in a direct contact. The materials which caused a decrease of calcium ions concentration in culture induced the negative cell response, however this effect might be expected efficiently compensated in vivo. All the materials consisting of CSH had negative impact on the cells. The obtained results strongly support running series of cytocompatibility studies for preclinical evaluation of bone cements. PMID:26511138

  16. [Karyological study of a long-term cell culture of calf kidney].

    PubMed

    Ignatova, M; Karadzhov, I

    1982-01-01

    Studied was the karyologic type of a long-term calf kidney cell culture. The optimal conditions were found for the preparation of good metaphase plaques of such cell culture, with clearly visible chromosomes. The changes in the chromosomes, setting in at the level of the 1st, 10th, 20th, and 27th passage were followed up. While the chromosomes in the first passage did not show any visible changes (with the exception of the 3rd chromosome where the presence of satelites was found), these underwent structural changes that started in the tenth passage, reached their peak in the twentieth passage, and receded later on. The most frequently encountered structural changes were the isochromosome gaps, dicentric configurations, acentric fragments, and polyploidy that appeared at the level of the 27th passage in four out of the twenty metaphase plaques. Discussed is the importance of the structural changes found. PMID:7168141

  17. Cytotoxic and aryl hydrocarbon hydroxylase-inducing effects of laboratory rodent diets. A cell culture study

    SciTech Connect

    Toerroenen, R.; Pelkonen, K.; Kaerenlampi, S. )

    1991-01-01

    Extracts of several rodent diets were studied for their cytotoxic and aryl hydrocarbon hydroxylase-inducing properties by an in vitro method. The cell culture system based on a mouse hepatoma cell line (Hepa-1) was shown to be convenient and sensitive method for screening of diets for these parameters implying the presence of compounds potentially harmful in vivo. Considerable differences among diets and batches were detected. Smallest effects were observed with a semipurified diet and with the unrefined diet which - contrary to other four unrefined diets - contained no fish.

  18. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices : cell culture and flow studies with glial cells.

    SciTech Connect

    Peterson, Sophie Louise; Sasaki, Darryl Yoshio; Gourley, Paul Lee; McDonald, Anthony Eugene

    2004-06-01

    Oxygen plasma treatment of poly(dimethylsiloxane) (PDMS) thin films produced a hydrophilic surface that was biocompatible and resistant to biofouling in microfluidic studies. Thin film coatings of PDMS were previously developed to provide protection for semiconductor-based microoptical devices from rapid degradation by biofluids. However, the hydrophobic surface of native PDMS induced rapid clogging of microfluidic channels with glial cells. To evaluate the various issues of surface hydrophobicity and chemistry on material biocompatibility, we tested both native and oxidized PDMS (ox-PDMS) coatings as well as bare silicon and hydrophobic alkane and hydrophilic oligoethylene glycol silane monolayer coated under both cell culture and microfluidic studies. For the culture studies, the observed trend was that the hydrophilic surfaces supported cell adhesion and growth, whereas the hydrophobic ones were inhibitive. However, for the fluidic studies, a glass-silicon microfluidic device coated with the hydrophilic ox-PDMS had an unperturbed flow rate over 14 min of operation, whereas the uncoated device suffered a loss in rate of 12%, and the native PDMS coating showed a loss of nearly 40%. Possible protein modification of the surfaces from the culture medium also were examined with adsorbed films of albumin, collagen, and fibrinogen to evaluate their effect on cell adhesion.

  19. Development of primary cell cultures using hemocytes and phagocytic tissue cells of Locusta migratoria: an application for locust immunity studies.

    PubMed

    Duressa, Tewodros Firdissa; Huybrechts, Roger

    2016-01-01

    Insect cell cultures played central roles in unraveling many insect physiological and immunological processes. Regardless, despite imminent needs, insect cell lines were developed primarily from Dipteran and Lepidopteran orders, leaving many important insects such as Orthopteran locusts under-represented. Besides the lack of cell lines, the slow progress in development of in vitro techniques is attributed to poor communications between different laboratories regarding optimized primary cell cultures. Therefore, we report here about methods developed for primary cell culture of Locusta migratoria hemocyte and phagocytic tissue cells by which we could maintain viable hemocytes in vitro for over 5d and phagocytic tissue cells for over 12d. 2-Mercaptoethanol and phenyl-thiourea supplements in Grace's medium together with addition of fetal bovine serum 30min after cell seeding resulted in a successful setup of the primary cell cultures and a week-long survival of the hemocytes and phagocytic tissue cells in vitro. PMID:26427710

  20. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  1. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  2. Oscillating Cell Culture Bioreactor

    NASA Technical Reports Server (NTRS)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid dynamic shear (i.e., as required for viability of shear-sensitive cells) to the developing engineered tissue construct. This bioreactor was recently utilized to show independent and interactive effects of a growth factor (IGF-I) and slow bidirectional perfusion on the survival, differentiation, and contractile performance of 3D tissue engineering cardiac constructs. The main application of this system is within the tissue engineering industry. The ideal final application is within the automated mass production of tissue- engineered constructs. Target industries could be both life sciences companies as well as bioreactor device producing companies.

  3. LIMITED BENEFICIAL EFFECTS OF PERFLUOROCARBON EMULSIONS ON ENCAPSULATED CELLS IN CULTURE: EXPERIMENTAL AND MODELING STUDIES

    PubMed Central

    Goh, Fernie; Gross, Jeffrey D.; Simpson, Nicholas E.; Sambanis, Athanassios

    2010-01-01

    Due to the high solubility of oxygen in perfluorocarbons (PFCs), these compounds have been explored for improved cell and tissue oxygenation. The goal of this study is to investigate the effects of a PFC emulsion on cellular growth and function in a tissue engineered construct. A perfluorotributylamine (PFTBA) emulsion was co-encapsulated at 10 vol% with mouse βTC-tet insulinoma cells in calcium alginate beads and cultured under normoxic and severely hypoxic conditions. The number of metabolically active cells and the induced insulin secretion rate were measured over time for up to 16 days. Results showed no significant effect of PFTBA relative to the PFTBA-free control. The alginate-PFC-cell system was also modeled mathematically, and simulations tracked the number of viable cells over time under the same conditions used experimentally. Simulations revealed only a small, likely experimentally undetectable difference in cell density between the PFC-containing and PFC-free control beads. It is concluded that PFTBA up to 10 vol% has no significant effect on the growth and function of encapsulated βTC-tet cells under normoxic and hypoxic conditions. PMID:20804794

  4. Design Study Conducted of a Stirred and Perfused Specimen Chamber for Culturing Suspended Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Kizito, John P.

    2003-01-01

    A tightly knit numerical/experimental collaboration among the NASA Ames Research Center, NASA Glenn Research Center, and Payload Systems, Inc., was formed to analyze cell culturing systems for the International Space Station. The Cell Culture Unit is a facility scheduled for deployment on the space station by the Cell Culture Unit team at Ames. The facility houses multiple cell specimen chambers (CSCs), all of which have inlets and outlets to allow for replenishment of nutrients and for waste removal. For improved uniformity of nutrient and waste concentrations, each chamber has a pair of counterrotating stir bars as well. Although the CSC can be used to grow a wide variety of organic cells, the current study uses yeast as a model cell. Previous work identified groundbased protocols for perfusion and stirring to achieve yeast growth within the CSC that is comparable to that for yeast cultures grown in a shaken Ehrlenmeyer flask.

  5. Development and characterization of a primary culture of chicken embryonic tracheal epithelial cells and their use in avian studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major route of infection of avian influenza is through cells of the airway epithelium. To study the molecular mechanism of infection and early host responses we created a primary chicken tracheal cell culture. Epithelial cells were isolated from the trachea of 18 day old chicken embryos and cult...

  6. Studies on primary cell cultures derived from ovarian tissue of Penaeus monodon.

    PubMed

    Fraser, C A; Hall, M R

    1999-01-01

    As part of a bioassay approach to investigate ovarian development and function, primary cell cultures were derived from Penaeus monodon ovaries at various stages of maturation. These cultures were established in modified Grace's or modified 2x L-15 media. Various supplements including growth factors, vitamins and minerals were trailed. Four morphologically different types of cells (epithelioid, fibroblastic, rounded, and epithelioid with large nuclei) were maintained for up to 17 months. Epithelioid cells grew best in modified Grace's medium but were generally short-lived (less than two months). Fibroblast-like cells formed confluent monolayers in modified 2x L-15 medium, were passaged three times and survived for 17 months. In other cultures, millions of rounded cells migrated from tissue. They survived for prolonged periods (up to ten months), either loosely attached to the flask or suspended in the medium. A change in dominant cell type from fibroblastic to epithelioid was observed in some cultures after three or nine months incubation. These epithelioid cells which had very large nuclei, grew to confluence but could not be sub-cultured. It is noteworthy that the rounded cells and the epithelioid cells with the large nuclei both produced vitellogenin in protein-free media. PMID:10627674

  7. [Electron microscopic study of cell cultures chronically infected with fixed rabies virus].

    PubMed

    Ianova, N N; Bogomolova, N N

    1981-01-01

    HEp-2 and Vero cell cultures chronically infected with rabies virus were examined electron microscopically. In the cytoplasm and intercellular spaces of these cultures structures were found morphologically similar to virus particles previously described in cells acutely infected with rabies virus. The observed virus particles were elongated, oval or spherical in shape. Their inner structure appeared as homogeneous material of varying optic density surrounded with a 3-layer membrane. Changes in the ultrastructural organization of the infected cells were observed consisting in the appearance of lipid inclusions, formation of structures of concentrically packed membranes, formation of multilayer areas of the cell membrane. PMID:7269529

  8. Basic techniques in Mammalian cell tissue culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2015-01-01

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. 2015 by John Wiley & Sons, Inc. PMID:25727327

  9. Application of speckle dynamics for studying metabolic activity of cell cultures with herpes virus

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. P.; Bakharev, A. A.; Malygin, A. S.; Mikhaylova, J. A.; Borodin, E. M.; Poryvayeva, A. P.; Glinskikh, N. P.

    2014-05-01

    The report considers the results of the experiments in which digital values of light intensity I and the image area correlation index ? values were recorded on a real-time basis for one or two days. Three cell cultures with viruses along with intact cultures were investigated. High correlation of dependence of ? values on time t values was demonstrated for three cultures. The ?=?(t) and I=I(t) dependences for cells with and without viruses differ considerably. It was shown that the presence of viruses could be determined as early as ten minutes after measurements were started.

  10. The Organotypic Longitudinal Spinal Cord Slice Culture for Stem Cell Study

    PubMed Central

    Sypecka, Joanna; Koniusz, Sylwia; Kawalec, Maria

    2015-01-01

    The objective of this paper is to describe in detail the method of organotypic longitudinal spinal cord slice culture and the scientific basis for its potential utility. The technique is based on the interface method, which was described previously and thereafter was modified in our laboratory. The most important advantage of the presented model is the preservation of the intrinsic spinal cord fiber tract and the ventrodorsal polarity of the spinal cord. All the processes occurring during axonal growth, regeneration, synapse formation, and myelination could be visualized while being cultured in vitro for up to 4-5 weeks after the slices had been isolated. Both pups and adult animals can undergo the same, equally efficient procedures when going by the protocol in question. The urgent need for an appropriate in vitro model for spinal cord regeneration results from a greater number of clinical trials concerning regenerative medicine in the spinal cord injury and from still insufficient knowledge of the molecular mechanisms involved in the neuroreparative processes. The detailed method of organotypic longitudinal spinal cord slice culture is accompanied by examples of its application to studying biological processes to which both the CNS inhabiting and grafted cells are subjected. PMID:25802530

  11. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  12. A primary chicken tracheal cell culture system for the study of infection with avian respiratory viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major route of infection of avian influenza virus (AIV) and Newcastle disease virus (NDV) in chickens is through cells of the airway epithelium. Here we describe the development and optimization of conditions for culture of tracheal epithelial cells from chicken embryos as well as their use in st...

  13. Studies on the effects of microgravity on the ultrastructure and functions of cultured mammalian cells (L-6)

    NASA Technical Reports Server (NTRS)

    Sato, Atsushige

    1993-01-01

    The human body consists of 10(exp 13) cells. Understanding the mechanisms by which the cells sense and respond to microgravity is very important as the basis for space biology. The cells were originally isolated aseptically from mammalian bodies and cultured in vitro. A set of cell culture vessels was developed to be applied to three kinds of space flight experiments. Experiment 1 is to practice the cell culture technique in a space laboratory and obtain favorable growth of the cells. Aseptic handling in tryspin treatment and medium renewal will be tested. The cells, following space flight, will be returned to the ground and cultured continuously to investigate the effects of space flight on the cellular characteristics. Experiment 2 is to examine the cytoskeletal structure of the cells under microgravity conditions. The cytoskeletal structure plays essential roles in the morphological construction, movements, axonal transport, and differentiation of the cells. The cells fixed during space flight will be returned and the cytoskeleton and ultrastructure observed using electron microscopy and fluorescence microscopy. Experiment 3 is to study the cellular productivity of valuable substances. The waste medium harvested during space flight are returned and quantitated for the cellular products. The effects of microgravity on mammalian cells will be clarified from the various aspects.

  14. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures

    PubMed Central

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-01-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49fhi/CD90lo cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49fhi/CD90lo cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. PMID:24802970

  15. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures.

    PubMed

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-08-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. PMID:24802970

  16. Cultured Human Renal Cortical Cells

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the STS-90 shuttle flight in April 1998, cultured renal cortical cells revealed new information about genes. Timothy Hammond, an investigator in NASA's microgravity biotechnology program was interested in culturing kidney tissue to study the expression of proteins useful in the treatment of kidney diseases. Protein expression is linked to the level of differentiation of the kidney cells, and Hammond had difficulty maintaining differentiated cells in vitro. Intrigued by the improvement in cell differentiation that he observed in rat renal cells cultured in NASA's rotating wall vessel (a bioreactor that simulates some aspects of microgravity) and during an experiment performed on the Russian Space Station Mir, Hammond decided to sleuth out which genes were responsible for controlling differentiation of kidney cells. To do this, he compared the gene activity of human renal cells in a variety of gravitational environments, including the microgravity of the space shuttle and the high-gravity environment of a centrifuge. Hammond found that 1,632 genes out of 10,000 analyzed changed their activity level in microgravity, more than in any of the other environments. These results have important implications for kidney research as well as for understanding the basic mechanism for controlling cell differentiation.

  17. A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases

    PubMed Central

    Heller, Janosch P.; Kwok, Jessica C. F.; Vecino, Elena; Martin, Keith R.; Fawcett, James W.

    2015-01-01

    Diseases such as age-related macular degeneration (AMD) affect the retinal pigment epithelium (RPE) and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 min yielded 4 × 104 viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch’s membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch’s membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases. PMID:26635529

  18. Principles of cancer cell culture.

    PubMed

    Cree, Ian A

    2011-01-01

    The basics of cell culture are now relatively common, though it was not always so. The pioneers of cell culture would envy our simple access to manufactured plastics, media and equipment for such studies. The prerequisites for cell culture are a well lit and suitably ventilated laboratory with a laminar flow hood (Class II), CO(2) incubator, benchtop centrifuge, microscope, plasticware (flasks and plates) and a supply of media with or without serum supplements. Not only can all of this be ordered easily over the internet, but large numbers of well-characterised cell lines are available from libraries maintained to a very high standard allowing the researcher to commence experiments rapidly and economically. Attention to safety and disposal is important, and maintenance of equipment remains essential. This chapter should enable researchers with little prior knowledge to set up a suitable laboratory to do basic cell culture, but there is still no substitute for experience within an existing well-run laboratory. PMID:21516394

  19. P NMR Study of Elicitor Treated Phaseolus vulgaris Cell Suspension Cultures.

    PubMed

    Ojalvo, I; Rokem, J S; Navon, G; Goldberg, I

    1987-11-01

    The addition of an elicitor (glucan) to Phaseolus vulgaris cell suspension cultures increased the formation of the phytoalexin phaseollin. Intracellular pH and phosphate concentrations were studied with (31)P nuclear magnetic resonance spectroscopy on elicitor-treated cells which were aerated during the nuclear magnetic resonance measurement. The pH of the vacuole and to a lesser extent the pH of the cytoplasm were affected at 10 minutes after elicitor addition; a decrease in pH from 5.3 to 4.8 was noted in the vacuole and from 7.46 to 7.28 in the cytoplasm. The ratio between the amount of Pi in the vacuole to that in the cytoplasm also changed within 10 minutes after elicitor addition. The signal for ATP (beta-ATP) was low after elicitor addition and was high again 23 hours after elicitation. Forty-eight hours after elicitor addition, vacuolar and cytoplasmic pH had almost returned to their initial values. The rapid change in vacuolar and cytoplasmic pH may cause the change of metabolism that occurs in elicitor-treated P. vulgaris cells. PMID:16665766

  20. A macrophage/fibroblast co-culture system using a cell migration chamber to study inflammatory effects of biomaterials.

    PubMed

    Zhou, Guoying; Loppnow, Harald; Groth, Thomas

    2015-10-15

    Chronic inflammatory reactions hamper the use of biomaterials after implantation. Thus, the aim of the study was to develop a novel predictive in vitro macrophage/fibroblast co-culture model based on cell migration chambers that allows a timely and locally controlled interaction of both cell types to study the inflammatory responses of biomaterials in vitro. Here, self-assembled monolayers (SAMs) with different wettability and charge properties were used as model biomaterials on which co-cultures were established by use of fence chambers having internal and external compartments. This allowed establishing separated and mixed co-cultures of both cell types before and after removal of the chamber, respectively. The key advantages of this novel co-culture model included not only to establish a timely-resolved study of cytokine release, but also the ability to assess individual macrophage migration in both macrophage mono-cultures and co-cultures. All inflammatory reactions in terms of macrophage adhesion, macrophage migration, foreign body giant cell (FBGC) formation, ?1 integrin expression and pro-inflammatory cytokine production were found strongly surface property dependent. The results show that the hydrophobic CH3 surface caused the strongest inflammatory reactions, whereas the hydrophilic/anionic COOH surface caused the least inflammatory response, indicating low and high biocompatibility of the surfaces, respectively. Most importantly, we found that both macrophage motility and directional movement were increased in the presence of fibroblasts in co-cultures compared with macrophage mono-cultures. Overall, the novel co-culture system provides access to a range of parameters for studying inflammatory reactions and reveals how material surface properties affect the inflammatory responses. PMID:26292266

  1. Anabolic-androgenic steroids: in cell culture.

    PubMed

    Kochakian, C D; Welder, A A

    1993-06-01

    Testosterone and related steroids at physiological concentrations positively stimulate in cell culture a number of reactions in a variety of tissues from different species of animals. Cells maintained in cell culture provide a means to study toxic effects in target organs and also the mechanism of action of these steroids. PMID:8331026

  2. Psyllid cell culture: A system to study Candidatus Liberibacter species replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Primary cell cultures were made from the Potato Psyllid, Bactericera cockerelli (Hemiptera: Psyllidae). The potato psyllid is an important agricultural pest insect due to its ability to transmit the bacterial pathogen Candidatus Liberibacter psyllaurous, CLp. The pathogen is a phloem limited bacteri...

  3. Hypoxic stress, brain vascular system, and ?-amyloid: a primary cell culture study.

    PubMed

    Muche, Abebe; Brger, Susanne; Arendt, Thomas; Schliebs, Reinhard

    2015-01-01

    This study stresses the hypothesis whether hypoxic events contribute to formation and deposition of ?-amyloid (A?) in cerebral blood vessels by affecting the processing of endothelial amyloid precursor protein (APP). Therefore, cerebral endothelial cells (ECs) derived from transgenic Tg2576 mouse brain, were subjected to short periods of hypoxic stress, followed by assessment of formation and secretion of APP cleavage products sAPP?, sAPP?, and A? as well as the expression of endothelial APP. Hypoxic stress of EC leads to enhanced secretion of sAPP? into the culture medium as compared to normoxic controls, which is accompanied by increased APP expression, induction of vascular endothelial growth factor (VEGF) synthesis, nitric oxide production, and differential changes in endothelial p42/44 (ERK1/2) expression. The hypoxia-mediated up-regulation of p42/44 at a particular time of incubation was accompanied by a corresponding down-regulation of the phosphorylated form of p42/44. To reveal any role of hypoxia-induced VEGF in endothelial APP processing, ECs were exposed by VEGF. VEGF hardly affected the amount of sAPP? and A?(1-40) secreted into the culture medium, whereas the suppression of the VEGF receptor action by SU-5416 resulted in decreased release of sAPP? and A?(1-40) in comparison to control incubations, suggesting a role of VEGF in controlling the activity of ?-secretase, presumably via the VEGF receptor-associated tyrosine kinase. The data suggest that hypoxic stress represents a mayor risk factor in causing A? deposition in the brain vascular system by favoring the amyloidogenic route of endothelial APP processing. The hypoxic-stress-induced changes in ?-secretase activity are presumably mediated by altering the phosphorylation status of p42/44, whereas the stress-induced up-regulation of VEGF appears to play a counteracting role by maintaining the balance of physiological APP processing. PMID:24257464

  4. Transplantation of cultured bovine corneal endothelial cells to rabbit cornea: clinical implications for human studies.

    PubMed Central

    Gospodarowicz, D; Greenburg, G; Alvarado, J

    1979-01-01

    Rabbit corneas denuded of their endothelium were coated with bovine corneal endothelial cells (from steers) previously maintained in tissue culture for short (20 generations) or prolonged (200 generations) periods. When grafted back into female rabbits, the corneal buttons remained clear and showed no edema. In contrast, denuded corneas coated with bovine keratocytes and grafted into rabbits became opaque and edematous within 7 days and remained so thereafter. Bovine corneal endothelial cells of the grafted corneas, which had remained clear for over 100 days, proliferated actively when put back into tissue culture. The corneal endothelial cells of the graft were characteristic of the male (XY). The chromosome number of the endothelium of the recipient rabbit was 2n = 44 with sex chromosomes characteristic of the female (XX). Results of the karyotype analysis show that there was no invasion of the corneal button by the recipient endothelium and, conversely, no invasion of the recipient endothelium by the endothelium on the corneal button. These results demonstrate that cultured corneal endothelial cells remain functional in vitro and can replace a damaged or nonfunctional endothelium in vivo. Images PMID:370830

  5. Study on application of high doses plasmodium berghei in cell culture

    NASA Astrophysics Data System (ADS)

    Spencer, L. M.; De Santis, M.; Davila, J.; Foinquinos, A.; Salcedo, E.; Sajo-Bohus, L.

    2012-02-01

    Malaria, one of the most important infection disease problems in the world, is caused by protozoan parasites of the genus Plasmodium. This disease is responsible for hundreds of the millions of clinical cases and more than one million deaths per year, for this reason, malaria is a priority and the WHO estimates that half of the world population is at risk. In this work we study how the absorbed dose inactivates the parasite (Plasmodium berghei) in rodent model (BALB/c mice), by applying X-ray irradiation. The dose was increased from 10 to 50 Gy in parasitized red blood cells (PRBC) with merozoite stage using in vitro short cultures. Also the reduction of the irradiation effect was determined by intra-peritoneal inoculations of irradiated parasites. Afterwards, the parasitaemia was assessed daily on smears made from tail blood and stained with Giemsa's reagent. Besides, the effect of irradiation was evaluated using an immunological test as indirect immunofluorescence assay (IFA). The results of this study showed that the most effective radiation for inactivation of parasites is about 50 Gy and the immunofluorescence pattern showed a different distribution of the fluorescence on parasites. These results showed direct correlation between the effect of irradiated parasites and parasitaemia in the group of mice infected with RBC after 50 Gy irradiation. Our results indicated that the threshold is between 30 to 50 Gy to inactivate the parasites.

  6. Stromal cells in long-term murine bone marrow culture: FACS studies and origin of stromal cells in radiation chimeras

    SciTech Connect

    Lennon, J.E.; Micklem, H.S.

    1986-05-01

    Adherent layers from hematopoietically active long-term bone marrow cultures (LTBMC), incubated with fluorescent beads, were analyzed for autofluorescence and phagocytic ability, using a fluorescence-activated cell sorter (FACS). Four groups of cells were separated from the adherent layers, including a group of large polygonal fibroblastoid stromal cells. Long-term chimeras were made by lethal irradiation of CBA/Ca (CBA) and C57Bl6/J (B6) mice and repopulation with phosphoglycerate kinase (PGK-1) alloenzyme-congenic bone marrow cells. Hematopoietically active LTBMC were established from such chimeras, and donor and host contributions of FACS-sorted adherent-layer cells were measured. While macrophages and other hematopoietic cells were of donor origin, the fibroblastoid stromal cells were mainly or entirely host derived.

  7. Toxicity study of water transferred graphene-based nanostructures for cell culture substrate

    NASA Astrophysics Data System (ADS)

    Borghi, Fabricio; van der Laan, Tim; Ishaq, Musarat; Kumar, Shailesh; Ostrikov, Kostya

    2014-10-01

    Graphene has attracted enormous attention due to its unique physical and chemical properties. Early researches had focused on it electrical properties for device applications. Nowadays graphene has attracted increased interest in bio-medical applications, such as cell culture substrates. Substrates are critical for: investigating early stage development of cells, new drugs tests and tissue engineering. Benefits of graphene for this application are: it can be produced with desired structural morphology, its surface properties can be modified via plasma or chemical treatment (decorated with specific functional groups), and it can be transferred to a plethora of substrates (high influence of cells fate). Successful applications of graphene-based materials for bio-med applications are predominantly produced via chemical methods. When produced via Thermal CVD, the transfer to the desired substrate involves chemical treatment, potentially contaminating the graphene. In this work, we use a unique plasma produced graphene, transferred to glass via a chemical-free process, as cell culture substrates. This work aims graphene's bio-toxicity. Our results show that our material is non toxic, and cells morphology and proliferation indicates similar growth among all samples and the control.

  8. Free radical scavenging and antioxidant activity of betanin: electron spin resonance spectroscopy studies and studies in cultured cells.

    PubMed

    Esatbeyoglu, Tuba; Wagner, Anika E; Motafakkerazad, Rouhollah; Nakajima, Yu; Matsugo, Seiichi; Rimbach, Gerald

    2014-11-01

    Betanin is a red pigment present in red beetroot. Recently, potential health benefits of betanin-rich beetroot have been suggested. However, little is known regarding the free radical scavenging and antioxidant activity of betanin. Electron spin resonance spectroscopy (ESR) and spin trapping techniques were applied to evaluate the ability of betanin to scavenge hydroxyl, superoxide, 2,2 diphenyl-1-picrylhydrazyl (DPPH), and galvinoxyl free radicals. In addition, we tested in cultured cells the ability of betanin to prevent DNA damage and to induce the transcription factor Nrf2 (nuclear factor (erythroid-derived 2)-like 2) as well as its down-stream target heme oxygenase1 (HO-1), paraoxonase1 (PON1) and glutathione (GSH). Betanin dose-dependently scavenged DPPH-, galvinoxyl-, superoxide-, and hydroxyl-radicals in the ESR and spin trapping studies and prevented hydrogen peroxide induced DNA damage as determined by the Comet assay. Furthermore, betanin treatment induced the transcription factor Nrf2 and resulted in an increase of HO-1 protein levels, PON1-transactivation and cellular GSH. Present data suggest that betanin is both a free radical scavenger and an inducer of antioxidant defense mechanism in cultured cells. PMID:25152328

  9. Culture Conditions for Mouse Pancreatic Stem Cells

    PubMed Central

    Noguchi, Hirofumi; Saitoh, Issei; Kataoka, Hitomi Usui; Watanabe, Masami; Noguchi, Yasufumi; Fujiwara, Toshiyoshi

    2013-01-01

    Recently, mouse pancreatic stem cells have been isolated from adult mouse pancreata. However, these pancreatic stem cells could be maintained only under specific culture conditions with lot-limited fetal bovine serum (FBS). For the efficient isolation and maintenance of mouse pancreatic stem cells, it is important to identify culture conditions that can be used independent of the FBS lot. In this study, we evaluated the culture conditions required to maintain mouse pancreatic stem cells. The mouse pancreatic stem cells derived from the pancreas of a newborn mouse, HN#101, were cultured under the following conditions: 1) Dulbeccos modified Eagles medium (DMEM) with 20% lot-limited FBS, in which mouse pancreatic stem cells could be cultured without changes in morphology and growth activity; 2) complete embryonic stem (ES) cell media; and 3) complete ES cell media on feeder layers of mitomycin C-treated STO cells, which were the same culture conditions used for mouse ES cells. Under culture conditions #1 and #3, the HN#101 cells continued to form a flat cobblestone monolayer and continued to divide actively beyond the population doubling level (PDL) 100 without growth inhibition, but this did not occur under culture condition #2. The gene expression profile and differentiated capacity of the HN#101 cells cultured for 2 months under culture condition #3 were similar to those of HN#101 cells at PDL 50. These data suggest that complete ES cell media on feeder layers could be useful for maintaining the undifferentiated state of pancreatic stem cells.

  10. A COMPREHENSIVE STUDY ON APOPTOSIS INDUCTION BY AZADIRACHTIN IN Spodoptera frugiperda CULTURED CELL LINE Sf9.

    PubMed

    Shu, Benshui; Wang, Wenxiang; Hu, Qingbo; Huang, Jingfei; Hu, Meiying; Zhong, Guohua

    2015-07-01

    The induction of apoptosis by azadirachtin, a well-known botanical tetranortriterpenoid isolated from the neem tree (Azadirachta indica A. Juss) and other members of the Meliaceae, was investigated in Spodoptera frugiperda cultured cell line (Sf9). Morphological changes in Sf9 cells treated by various concentrations of azadirachtin were observed at different times under light microscopy. Morphological and biochemical analysis indicated that Sf9 cells treated by 1.5 ?g/mL azadirachtin showed typical morphological changes, which were indicative of apoptosis and a clear DNA ladder. The flow cytometry analysis showed the apoptosis rate reached a maximum value of 32.66% at 24 h with 1.5 ?g/mL azadirachtin in Sf9 cells. The inhibition of Sf9 cell proliferation suggested that the effect of azadirachtin was dose dependent and the EC50 at 48 and 72 h was 2.727 10(-6) and 6.348 10(-9) ?g/mL, respectively. The treatment of azadirachtin in Sf9 cells could significantly increase the activity of Sf caspase-1, but showed no effect on the activity of Topo I, suggesting that the apoptosis induced by azadirachtinin Sf9 cells is through caspase-dependent pathway. These results provided not only a series of morphological, biochemical, and toxicological comprehensive evidences for induction of apoptosis by azadirachtin, but also a reference model for screening insect cell apoptosis inducers from natural compounds. PMID:25828604

  11. A study on proliferation and gene expression in normal human urothelial cells in culture.

    PubMed

    Chamorro, Clara Ibel; Zeiai, Said; Engberg, Gisela Reinfeldt; Brodin, David; Nordenskjld, Agneta; Fossum, Magdalena

    2015-02-01

    Cultured human urothelial cells can be used in tissue engineering for reconstruction of urothelial defects. For safety reasons, a fine characterization of the cells is required before use in reconstructive surgery. For these reasons, we aimed to characterize the effect of in vitro propagation of urothelial cells on gene expression and proliferative capacity. Gene expression of urothelial cells in passage two and eight was captured by using a microarray chip covering the whole human genome. To find relationships in biological functions and pathways, differentially regulated genes were subjected to pathway analysis using the WEB-based Gene Set Analysis Toolkit (WebGestalt). Proliferative capacity was tested with population doubling time, efficiency in colony formation assays, and immunocytochemistry. In addition, senescence markers were evaluated. Bioinformatics analysis revealed gene expression profile differences. Downregulated genes at passage eight clustered in biological pathways of cell cycle and DNA repair processes; upregulated genes had no obvious association to any specific biological function or pathway according to WebGestalt analysis, but individual genes with extracellular matrix, apoptosis, and cell morphology. Data were supported by reverse transcription-polymerase chain reaction (RT-PCR) and in vitro growth experiments. Passage two urothelial cells had higher efficiency in colony formation and lower population doubling time. An increase in senescence markers was detected at passage eight. We conclude that pretransplantation quality controls are important and, for reconstructive purposes, cells should be transplanted back to the patient as soon as possible to procure good proliferative capacity also after transplantation. PMID:25159583

  12. Cell culture experiments planned for the space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  13. Huanglongbing and psyllid cell cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We successfully established cell cultures of the Asian citrus psyllid, Diaphorina citri (Psyllidae: Hemiptera), DcHH-1. The cell culture also supported growth of Candidatus Liberibacter asiaticus. This bacterial pathogen is associated with Huanglongbing, known as citrus greening disease. Research on...

  14. Study of staphylococcal toxic shock syndrome toxin in human epithelial cell culture

    SciTech Connect

    Kushnaryov, V.M.; Bergdoll, M.S.; MacDonald, H.S.; Vellinga, J.; Reiser, R.

    1984-10-01

    Staphylococcal toxic shock syndrome toxin (TST) inhibited growth of normal human epithelial (Chang) cells in culture, increasing the generation time 28% and 64% at concentrations of 4 x 10..pi../sup 7/M and 8 x 10..pi../sup 7/M, respectively. Fluorescence and electron microscopy of the cells treated with TST revealed the location of TST in the coated pits, specialized areas of the cell membrane known to contain high-affinity receptors for other polypeptide ligands. TST was labeled with /sup 125/I without detectable damage to the molecule and was shown to bind specifically to epithelial cells. A 100-fold excess of unlabeled TST inhibited binding of /sup 125/I-labeled toxin to the cells. Binding data indicated 10/sup 4/ receptor sites per cell for TST and a dissociation constant of 4 x 10..pi../sup 9/M. Specific high-affinity binding of /sup 125/I-labeled TST to epithelial cells and the location of receptor sites in coated pits implies a possibility that the toxin is internalized by receptor-mediated endocytosis.

  15. FTIR microscopic studies on normal and H-Ras transfected cultured mouse fibroblast cells

    NASA Astrophysics Data System (ADS)

    Salman, Ahmad; Ramesh, Jagannathan; Grossman, Nili; Hammody, Ziad; Cohen, Beny; Mordechai, Shaul

    2000-11-01

    Infrared (IR) absorption spectra are well known for their selectivity and minutiae fingerprint of molecular structure. The biochemical changes in the sub-cellular levels developing in abnormal cells, including a majority of cancer forms, manifest themselves in different optical signatures, which can be detected in infrared spectroscopy. The molecular vibrational modes which are responsible for IR absorption spectra, are characteristic of the biochemistry of the cells and their sub-cellular components. We measured the infrared absorption spectra of monolayers of cultured normal and ras gene transformed mouse fibroblasts, using microscopic infrared system (micro-FTIR) technique. The absorption for normal cells was higher than the malignant ones in the spectral range 1000 - 1500 and 2800 - 3000 cm-1. The effect on phospholipid metabolism due to ras gene incorporation is also discussed.

  16. THE COMPARISON OF TWO VITRO PALATAL ORGAN CULTURE MODELS TO STUDY CELL SIGNALING PATHWAYS DURING PALATOGENESIS

    EPA Science Inventory

    This study was performed to determine the best palatal organ culture model to use in evaluating the role of epidermal growth factor (EGF) signaling in the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Previous work has shown that TCDD and EGF can induce teratogenic effe...

  17. Studies of formation and efflux of methotrexate polyglutamates with cultured hepatic cells

    SciTech Connect

    Galivan, J.; Balinska, M.

    1983-01-01

    Methotrexate polyglutamates are extensively synthesized when cultured hepatocytes and H35 hepatoma cells are exposed to micromolar concentrations of methotrexate. The predominant species found within the cell have from two to four additional gamma-linked glutamate residues. When either cell type containing a mixture of methotrexate and its polyglutamate derivatives is exposed to medium lacking methotrexate, there is a rapid release of methotrexate. This release has a T/sub 1/2/ of 2 to 4 min and is apparently complete within 30 to 60 min. Methotrexate polyglutamates leave the cells much more slowly and appear to do so by two mechanisms. Although cleavage to methotrexate and subsequent efflux appears to be quantitatively the more important pathway, there is also a slow, finite loss of intact methotrexate polyglutamates from cells which exclude trypan blue. The T/sub 1/2/ for the loss of methotrexate polyglutamates by both cell types, when placed in medium lacking methotrexate, is approximately 6 to 8 hr. These results suggest that the polyglutamate derivatives are forms of methotrexate which are as cytotoxic as methotrexate but which offer a potentially greater capacity for cellular destruction because they are retained longer in the tissue.

  18. In vitro study of biodegradation of a Co-Cr alloy using a human cell culture model.

    PubMed

    Harmand, M F

    1995-01-01

    The evaluation of a potential biomaterial is based on two approaches: firstly, the study of the local and systemic effects of the biomaterial implanted in the host; and secondly the study of the behaviour of the biomaterial itself with increasing time. The progress achieved in human cell culturing allows in vitro evaluation of a new biomaterial using the human cell(s) system(s) characteristic of the tissue which it will be exposed to in vivo. This kind of approach permits the assessment of the biodegradation of a biomaterial whatever it is: metal; alloy; ceramic; glass; polymer; with or without specialized coating.... The experimental approach is as follows: discs representative of the biomaterial (surface state, cleaning, sterilization process) are manufactured in order to cover the bottom of the culture wells. Thereafter, they are either brought in the presence of complete culture medium alone, or in the presence of a subconfluent cell layer. A kinetic analysis is performed using various incubation periods at 37 degrees C. Released biodegradation products are identified and quantified, in both the medium and cell compartment, and on the other hand cytotoxicity is assessed. A Co-Cr alloy was studied over a 9-day period according to the experimental schedule, and showed a higher corrosion rate in the presence of osteoblasts in the range of 25-30%. Moreover, an intracellular uptake of both Cr and Co was detected, which will have physiological importance. PMID:7772567

  19. Alternative Method for Primary Nasal Epithelial Cell Culture Using Intranasal Brushing and Feasibility for the Study of Epithelial Functions in Allergic Rhinitis

    PubMed Central

    Park, Do Yang; Kim, Sujin; Kim, Chang-Hoon; Yoon, Joo-Heon

    2016-01-01

    Purpose Although differentiated normal human nasal epithelial (NHNE) cells can be used to study the role of human nasal epithelium, there is a need for effective culture models of nasal epithelium in sinonasal disease status, including allergic rhinitis (AR). We aimed to examine the feasibility of intranasal brushing for culture of nasal epithelial cells in AR patients and to verify the hypothesis that allergic nasal epithelial (ARNE) cells differ in histologic and physiologic characteristics. Methods We established a system for isolating (via intranasal brushing) and culturing (with air-liquid interface, ALI) nasal epithelial cells from healthy volunteers (n=8) and AR patients (n=8). We used this system to compare the histologic findings and physiologic characteristics of NHNE and ARNE. Results The histology results showed that fully differentiated ALI culture was obtained at least 14 days after confluence and that both ciliated and secretory cells were well differentiated in ALI culture using nasal brushing. The histology results of ARNE culture were significantly different from NHNE. The number of ciliated cells was lower, and secretory cells were more dominant in ARNE cell culture compared to NHNE cells. We also observed, by electron microscopy, loose tight junctions and short cilia in cultured ARNE cells. In addition, the mRNA level of TSLP which was one of the epithelial-derived allergic cytokines was significantly higher, and the expressions of genes involved in ciliogenesis were lower in cultured ARNE cells without allergen stimulation. Conclusions Our findings suggest that ALI culture of ARNE cells using intranasal brushing may be an alternative method for epithelial cell culture in AR patients and that cultured ARNE cells will be useful for in vitro studies of the mechanisms at play during AR because they maintain unique allergic characteristics. PMID:26540504

  20. Knockdown of Drosha in human alveolar type II cells alters expression of SP-A in culture: a pilot study

    PubMed Central

    Silveyra, Patricia; Chroneos, Zissis C; DiAngelo, Susan L; Thomas, Neal J; Noutsios, Georgios T; Tsotakos, Nikolaos; Howrlylak, Judie A; Umstead, Todd M; Floros, Joanna

    2014-01-01

    Human surfactant protein A (SP-A) plays an important role in surfactant metabolism and lung innate immunity. SP-A is synthesized and secreted by alveolar type II cells (ATII), one of the two cell types of the distal lung epithelium (ATII and ATI). We have shown that miRNA interactions with sequence polymorphisms on the SP-A mRNA 3?UTRs mediate differential expression of SP-A1 and SP-A2 gene variants in vitro. In the present study, we describe a physiologically relevant model to study miRNA regulation of SP-A in human ATII. For these studies, we purified and cultured human ATII on an air-liquid interface matrix (A/L) or plastic wells without matrix (P). Gene expression analyses confirmed that cells cultured in A/L maintained the ATII phenotype for over 5 days, whereas P-cultured cells differentiated to ATI. When we transfected ATII with siRNAs to inhibit the expression of Drosha, a critical effector of miRNA maturation, the levels of SP-A mRNA and protein increased in a time dependent manner. We next characterized cultured ATII and ATI by studying expression of 1,066 human miRNAs using miRNA PCR arrays. We detected expression of >300 miRNAs with 24 miRNAs differentially expressed in ATII vs. ATI, 12 of which predicted to bind SP-A 3?UTRs, indicating that these may be implicated in SP-A downregulation in ATI. Thus, miRNAs not only affect SPA expression, but also may contribute to the maintenance of the ATII cell phenotype and/or the trans-differentiation of ATII to ATI cells, and may represent new molecular markers that distinguish ATII and ATI. PMID:25058539

  1. High density cell culture system

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1994-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  2. Dynamized Preparations in Cell Culture

    PubMed Central

    Sunila, Ellanzhiyil Surendran; Preethi, Korengath Chandran; Kuttan, Girija

    2009-01-01

    Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929) and Chinese Hamster Ovary (CHO) cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties. PMID:18955237

  3. Dynamized preparations in cell culture.

    PubMed

    Sunila, Ellanzhiyil Surendran; Kuttan, Ramadasan; Preethi, Korengath Chandran; Kuttan, Girija

    2009-06-01

    Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929) and Chinese Hamster Ovary (CHO) cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties. PMID:18955237

  4. Good Caco-2 cell culture practices.

    PubMed

    Natoli, Manuela; Leoni, Bruno D; D'Agnano, Igea; Zucco, Flavia; Felsani, Armando

    2012-12-01

    The human Caco-2 cells differentiate spontaneously in culture forming monolayers of mature intestinal enterocytes which have been used as a model of the intestinal barrier for in vitro toxicology studies. Reproducibility problems often reported in literature have been generally ascribed to different culture-related conditions, such as the type of animal serum used, the supplements added to the culture media, the passage number and the source of cell clones. The Caco-2 cell culture protocol here described has been recently optimized in our laboratory, producing a homogeneous and highly polarized monolayer of cells which display many of the characteristics of the intestinal enterocytes. This protocol differs from standard protocols mainly because Caco-2 cells are subcultured when they reach just 50% of confluence, instead of 80%, retaining a high proliferation potential. When this cell population is seeded at high density on filter inserts differentiates almost synchronously and much more homogenously. PMID:22465559

  5. Good Caco-2 cell culture practices.

    TOXLINE Toxicology Bibliographic Information

    Natoli M; Leoni BD; D'Agnano I; Zucco F; Felsani A

    2012-12-01

    The human Caco-2 cells differentiate spontaneously in culture forming monolayers of mature intestinal enterocytes which have been used as a model of the intestinal barrier for in vitro toxicology studies. Reproducibility problems often reported in literature have been generally ascribed to different culture-related conditions, such as the type of animal serum used, the supplements added to the culture media, the passage number and the source of cell clones. The Caco-2 cell culture protocol here described has been recently optimized in our laboratory, producing a homogeneous and highly polarized monolayer of cells which display many of the characteristics of the intestinal enterocytes. This protocol differs from standard protocols mainly because Caco-2 cells are subcultured when they reach just 50% of confluence, instead of 80%, retaining a high proliferation potential. When this cell population is seeded at high density on filter inserts differentiates almost synchronously and much more homogenously.

  6. Efficient Gene Transfer in Chick Retinas for Primary Cell Culture Studies: An Ex-ovo Electroporation Approach.

    PubMed

    Vergara, M Natalia; Gutierrez, Christian; Canto-Soler, M Valeria

    2015-01-01

    The cone photoreceptor-enriched cultures derived from embryonic chick retinas have become an indispensable tool for researchers around the world studying the biology of retinal neurons, particularly photoreceptors. The applications of this system go beyond basic research, as they can easily be adapted to high throughput technologies for drug development. However, genetic manipulation of retinal photoreceptors in these cultures has proven to be very challenging, posing an important limitation to the usefulness of the system. We have recently developed and validated an ex ovo plasmid electroporation technique that increases the rate of transfection of retinal cells in these cultures by five-fold compared to other currently available protocols(1). In this method embryonic chick eyes are enucleated at stage 27, the RPE is removed, and the retinal cup is placed in a plasmid-containing solution and electroporated using easily constructed custom-made electrodes. The retinas are then dissociated and cultured using standard procedures. This technique can be applied to overexpression studies as well as to the downregulation of gene expression, for example via the use of plasmid-driven RNAi technology, commonly achieving transgene expression in 25% of the photoreceptor population. The video format of the present publication will make this technology easily accessible to researchers in the field, enabling the study of gene function in primary retinal cultures. We have also included detailed explanations of the critical steps of this procedure for a successful outcome and reproducibility. PMID:26556302

  7. A study of murine bone marrow cells cultured in bioreactors which create an environment which simulated microgravity

    NASA Technical Reports Server (NTRS)

    Lawless, Brother Desales

    1990-01-01

    Previous research indicated that mouse bone marrow cells could be grown in conditions of simulated microgravity. This environment was created in rotating bioreactor vessels. On three attempts mouse cells were grown successfully in the vessels. The cells reached a stage where the concentrations were doubling daily. Phenotypic analysis using a panel of monoclonal antibodies indicated that the cell were hematopoietic pluripotent stem cells. One unsuccessful attempt was made to reestablish the immune system in immunocompromised mice using these cells. Since last summer, several unsuccessful attempts were made to duplicate these results. It was determined by electron microscopy that the cells successfully grown in 1989 contained virus particles. It was suggested that these virally parasitized cells had been immortalized. The work of this summer is a continuation of efforts to grow mouse bone marrow in these vessels. A number of variations of the protocol were introduced. Certified pathogen free mice were used in the repeat experiments. In some attempts the medium of last summer was used; in others Dexture Culture Medium containing Iscove's Medium supplemented with 20 percent horse serum and 10-6 M hydrocortisone. Efforts this summer were directed solely to repeating the work of last summer. Plans were made for investigations if stem cells were isolated. Immortalization of the undifferentiated stem cell would be attempted by transfection with an oncogenic vector. Selective differentiation would be induced in the stem cell line by growing it with known growth factors and immune response modulators. Interest is in identifying any surface antigens unique to stem cells that would help in their characterization. Another goal was to search for markers on stem cells that would distinguish them from stem cells committed to a particular lineage. If the undifferentiated hematopoietic stem cell was obtained, the pathways that would terminally convert it to myeloid, lyphoid, erythroid, or other cell lines would be studied. Transfection with a known gene would be attempted and then conversion to a terminally identifiable cell.

  8. In Vitro culture studies of FlorEssence on human tumor cell lines.

    PubMed

    Tai, Joseph; Cheung, Susan

    2005-02-01

    FlorEssence (FE) is an herbal tea widely used by patients to treat chronic conditions in North America, particularly cancer patients during chemo- and radiation therapy. Although individual components of FE have antioxidant, antiestrogenic, immunostimulant and antitumor properties, in vitro evidence of anticancer activity for the herbal tea itself is still lacking. We studied the antiproliferative effect of FE on MCF7 and MDA-MB-468 human breast cancer, and Jurkat and K562 leukemia cell lines. We found that FE significantly inhibited the proliferation of both breast and leukemia cells in vitro only at high concentrations, with 50% inhibition of MDA-MB-468 cells at about 1[sol ]20 dilution, Jurkat cells at about 1[sol ]10 dilution and MCF7 and K562 cells at less than 1[sol ]10 dilution. Flow cytometry analysis showed that treatment with a high concentration of FE induced G2[sol ]M arrest in MCF7 and Jurkat cells, with also an increased SubG0[sol ]G1 fraction in MCF7 cells. MDA-MB-468 cells showed a significantly increased Sub G0[sol ]G1 fraction after treatment with 1[sol ]10 dilution of FE while the cell cycle of K562 was unaffected. When MCF7 and MDA-MB-468 breast cancer cells were treated with a combination of FE with either paclitaxel or cisplatin, results showed that only the combination of 1[sol ]20 dilution of FE with 0.5 microM cisplatin resulted in a small but significantly higher MCF7 cell survival than 0.5 microM cisplatin treatment alone. FE at 1[sol ]20 and 1[sol ]50 dilutions did not affect the antiproliferative properties of these two commonly used chemotherapeutic agents. The results suggest that FE at high concentrations show differential inhibitory effect on different human cancer cell lines. Further studies are needed to assess the biological activities of FE. PMID:15852489

  9. Three dimensional culture of HepG2 liver cells on a rat decellularized liver matrix for pharmacological studies.

    PubMed

    Hussein, Kamal H; Park, Kyung M; Ghim, Jinn H; Yang, Se R; Woo, Heung M

    2016-02-01

    Three-dimensional in vitro tumor models are needed to obtain more information about drug behavior in tumors. The aim of this study is to establish a new model for hepatocellular carcinoma (HCC) using decellularized rat livers. After generating the rat liver scaffolds, HepG2 liver cancer cells were perfused via the portal vein and placed in a bioreactor for 10 days. Histology was performed to analyze cell distribution within the scaffolds. Function and tumor-related gene expression were examined by polymerase chain reaction (PCR). We evaluated the function of HepG2 cells grown on scaffolds in the presence of a well-known anti-cancer drug to investigate the potential application of our system for drug screening. The scaffolds were devoid of cellular materials and preserved extracellular matrix components. HepG2 cells grew well on the scaffolds. The PCR results showed that the cells maintained function and invasion ability at significantly higher levels than cells grown on two-dimensional (2-D) dishes or spheroids on Matrigel. Unlike the 2-D cultures, albumin secretion and alpha-fetoprotein expression in three-dimensional cultures were less susceptible to lower concentrations of the drug. Cells grown in scaffolds seemed to respond to the drug in an analogous manner to its known activity in vivo. These findings strengthen the potential use of rat liver scaffolds for screening HCC drugs. 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 263-273, 2016. PMID:25726837

  10. Cell culture purity issues and DFAT cells

    SciTech Connect

    Wei, Shengjuan; Department of Animal Sciences, Washington State University, Pullman, WA 99164 ; Bergen, Werner G.; Zan, Linsen; Dodson, Michael V.

    2013-04-12

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  11. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  12. Insect cell culture in reagent bottles

    PubMed Central

    Rieffel, S.; Roest, S.; Klopp, J.; Carnal, S.; Marti, S.; Gerhartz, B.; Shrestha, B.

    2014-01-01

    Growing insect cells with high air space in culture vessel is common from the early development of suspension cell culture. We believed and followed it with the hope that it allows sufficient air for optimal cell growth. However, we missed to identify how much air exactly cells need for its growth and multiplication. Here we present the innovative method that changed the way we run insect cell culture. The method is easy to adapt, cost-effective and useful for both academic and industrial research labs. We believe this method will revolutionize the way we run insect cell culture by increasing throughput in a cost-effective way. In our study we identified:Insect cells need to be in suspension; air space in culture vessel and type of culture vessel is of less importance. Shaking condition that introduces small air bubbles and maintains it in suspension for longer time provides better oxygen transfer in liquid. For this, high-fill volume in combination with speed and shaking diameter are important.Commercially available insect cells are not fragile as original isolates. These cells can easily withstand higher shaking speed.Growth condition in particular lab set-up needs to be optimized. The condition used in one lab may not be optimum for another lab due to different incubators from different vendors. PMID:26150948

  13. Substrate Micropatterning as a New in Vitro Cell Culture System to Study Myelination

    PubMed Central

    2011-01-01

    Myelination is a highly regulated developmental process whereby oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system ensheathe axons with a multilayered concentric membrane. Axonal myelination increases the velocity of nerve impulse propagation. In this work, we present a novel in vitro system for coculturing primary dorsal root ganglia neurons along with myelinating cells on a highly restrictive and micropatterned substrate. In this new coculture system, neurons survive for several weeks, extending long axons on defined Matrigel tracks. On these axons, myelinating cells can achieve robust myelination, as demonstrated by the distribution of compact myelin and nodal markers. Under these conditions, neurites and associated myelinating cells are easily accessible for studies on the mechanisms of myelin formation and on the effects of axonal damage on the myelin sheath. PMID:22348182

  14. Functional Studies of Na(+),K(+)-ATPase Using Transfected Cell Cultures.

    PubMed

    Arystarkhova, Elena; Sweadner, Kathleen J

    2016-01-01

    The properties of different combinations of Na,K-ATPase subunits or their mutations can be studied in stably transfected mammalian cells. As a specific example, the methods here are for transfection of a modulatory subunit into cells with endogenous α and β subunits. Renal Na,K-ATPase is tightly bound to a small single-span membrane protein, the γ subunit, or FXYD2. The protein co-localizes and co-immunoprecipitates with the α/β complex, however it is not required for basic enzyme properties. Functional consequences of association with FXYD2 were investigated in stably transfected cells. The outcome was that FXYD2 reduced activity of Na,K-ATPase at the level of apparent affinity for Na(+) and to a smaller extent for K(+). Moreover, expression of FXYD2 reduced cell growth. Here we describe the methodologies as well as potential pitfalls. PMID:26695043

  15. A novel approach for in vitro studies applying electrical fields to cell cultures by transformer-like coupling.

    PubMed

    Hess, R; Neubert, H; Seifert, A; Bierbaum, S; Hart, D A; Scharnweber, D

    2012-12-01

    The purpose of this study was to develop a new apparatus for in vitro studies applying low frequency electrical fields to cells without interfering side effects like biochemical reactions or magnetic fields which occur in currently available systems. We developed a non-invasive method by means of the principle of transformer-like coupling where the magnetic field is concentrated in a toroid and, therefore, does not affect the cell culture. Next to an extensive characterization of the electrical field parameters, initial cell culture studies have focused on examining the response of bone marrow-derived human mesenchymal stem cells (MSCs) to pulsed electrical fields. While no significant differences in the proliferation of human MSCs could be detected, significant increases in ALP activity as well as in gene expression of other osteogenic markers were observed. The results indicate that transformer-like coupled electrical fields can be used to influence osteogenic differentiation of human MSCs in vitro and can pose a useful tool in understanding the influence of electrical fields on the cellular and molecular level. PMID:22798202

  16. Cold response of dedifferentiated barley cells at the gene expression, hormone composition, and freezing tolerance levels: studies on callus cultures.

    PubMed

    Vashegyi, Ildik; Marozsn-Tth, Zsuzsa; Galiba, Gbor; Dobrev, Petre I; Vankova, Radomira; Tth, Balzs

    2013-06-01

    In this study, data is presented how dark-grown, embryogenic barley callus cells respond to cold without any light-dependent, chloroplast-related mechanism, independently of the systemic signals. The expression of HvCBF9, HvCBF14, and HvCOR14b genes, members of one of the most important cold-inducible regulatory system, was measured by real-time PCR. Characteristic of the cold response was similar in the crowns of seedlings and in dark-grown callus cultures, however, gene expression levels were lower in calli. Endogenous concentration of auxins, abscisic acid, and salicylic acid did not change, but phaseic acid and neophaseic acid showed robust accumulation after cold acclimation. Freezing tolerance of the cultures was also higher after 7days of cold-hardening. The results suggest the presence of a basal, light-independent, cold-responsive activation of the CBF-COR14b pathway in barley cultures. The effects of Dicamba, the exogenous auxin analog used for maintaining tissue cultures were also studied. Dicamba seems to be a general enhancer of the gene expression and physiological responses to cold stress, but has no specific effect on the activation. Our data along with previous findings show that this system might be a suitable model for studying certain basic cellular mechanisms involved in the cold acclimation process in cereals. PMID:22669585

  17. The Effect of Simulated Microgravity on Human Mesenchymal Stem Cells Cultured in an Osteogenic Differentiation System: A Bioinformatics Study

    PubMed Central

    Sheyn, Dima; Pelled, Gadi; Netanely, Dvir; Domany, Eytan

    2010-01-01

    One proposed strategy for bone regeneration involves ex vivo tissue engineering, accomplished using bone-forming cells, biodegradable scaffolds, and dynamic culture systems, with the goal of three-dimensional tissue formation. Rotating wall vessel bioreactors generate simulated microgravity conditions ex vivo, which lead to cell aggregation. Human mesenchymal stem cells (hMSCs) have been extensively investigated and shown to possess the potential to differentiate into several cell lineages. The goal of the present study was to evaluate the effect of simulated microgravity on all genes expressed in hMSCs, with the underlying hypothesis that many important pathways are affected during culture within a rotating wall vessel system. Gene expression was analyzed using a whole genome microarray and clustering with the aid of the National Institutes of Health's Database for Annotation, Visualization and Integrated Discovery database and gene ontology analysis. Our analysis showed 882 genes that were downregulated and 505 genes that were upregulated after exposure to simulated microgravity. Gene ontology clustering revealed a wide variety of affected genes with respect to cell compartment, biological process, and signaling pathway clusters. The data sets showed significant decreases in osteogenic and chondrogenic gene expression and an increase in adipogenic gene expression, indicating that ex vivo adipose tissue engineering may benefit from simulated microgravity. This finding was supported by an adipogenic differentiation assay. These data are essential for further understanding of ex vivo tissue engineering using hMSCs. PMID:20807102

  18. Chemical synthesis, characterisation, and biocompatibility of nanometre scale porous anodic aluminium oxide membranes for use as a cell culture substrate for the vero cell line: a preliminary study.

    PubMed

    Poinern, Grrard Eddy Jai; Le, Xuan Thi; O'Dea, Mark; Becker, Thomas; Fawcett, Derek

    2014-01-01

    In this preliminary study we investigate for the first time the biomedical potential of using porous anodic aluminium oxide (AAO) membranes as a cell substrate for culturing the Cercopithecus aethiops (African green monkey) Kidney (Vero) epithelial cell line. One advantage of using the inorganic AAO membrane is the presence of nanometre scale pore channels that allow the exchange of molecules and nutrients across the membrane. The size of the pore channels can be preselected by adjusting the controlling parameters of a temperature controlled two-step anodization process. The cellular interaction and response of the Vero cell line with an in-house synthesised AAO membrane, a commercially available membrane, and a glass control were assessed by investigating cell adhesion, morphology, and proliferation over a 72?h period. The number of viable cells proliferating over the respective membrane surfaces revealed that the locally produced in-house AAO membrane had cells numbers similar to the glass control. The study revealed evidence of focal adhesion sites over the surface of the nanoporous membranes and the penetration of cellular extensions into the pore structure as well. The outcome of the study has revealed that nanometre scale porous AAO membranes have the potential to become practical cell culture scaffold substrates with the capability to enhance adhesion and proliferation of Vero cells. PMID:24579077

  19. Chemical Synthesis, Characterisation, and Biocompatibility of Nanometre Scale Porous Anodic Aluminium Oxide Membranes for Use as a Cell Culture Substrate for the Vero Cell Line: A Preliminary Study

    PubMed Central

    Poinern, Grrard Eddy Jai; Le, Xuan Thi; Becker, Thomas; Fawcett, Derek

    2014-01-01

    In this preliminary study we investigate for the first time the biomedical potential of using porous anodic aluminium oxide (AAO) membranes as a cell substrate for culturing the Cercopithecus aethiops (African green monkey) Kidney (Vero) epithelial cell line. One advantage of using the inorganic AAO membrane is the presence of nanometre scale pore channels that allow the exchange of molecules and nutrients across the membrane. The size of the pore channels can be preselected by adjusting the controlling parameters of a temperature controlled two-step anodization process. The cellular interaction and response of the Vero cell line with an in-house synthesised AAO membrane, a commercially available membrane, and a glass control were assessed by investigating cell adhesion, morphology, and proliferation over a 72?h period. The number of viable cells proliferating over the respective membrane surfaces revealed that the locally produced in-house AAO membrane had cells numbers similar to the glass control. The study revealed evidence of focal adhesion sites over the surface of the nanoporous membranes and the penetration of cellular extensions into the pore structure as well. The outcome of the study has revealed that nanometre scale porous AAO membranes have the potential to become practical cell culture scaffold substrates with the capability to enhance adhesion and proliferation of Vero cells. PMID:24579077

  20. Cell culture processes for monoclonal antibody production

    PubMed Central

    Li, Feng; Vijayasankaran, Natarajan; Shen, Amy (Yijuan); Kiss, Robert

    2010-01-01

    Animal cell culture technology has advanced significantly over the last few decades and is now generally considered a reliable, robust and relatively mature technology. A range of biotherapeutics are currently synthesized using cell culture methods in large scale manufacturing facilities that produce products for both commercial use and clinical studies. The robust implementation of this technology requires optimization of a number of variables, including (1) cell lines capable of synthesizing the required molecules at high productivities that ensure low operating cost; (2) culture media and bioreactor culture conditions that achieve both the requisite productivity and meet product quality specifications; (3) appropriate on-line and off-line sensors capable of providing information that enhances process control; and (4) good understanding of culture performance at different scales to ensure smooth scale-up. Successful implementation also requires appropriate strategies for process development, scale-up and process characterization and validation that enable robust operation and ensure compliance with current regulations. This review provides an overview of the state-of-the art technology in key aspects of cell culture, e.g., generation of highly productive cell lines and optimization of cell culture process conditions. We also summarize the current thinking on appropriate process development strategies and process advances that might affect process development. PMID:20622510

  1. The study of energy metabolism in bladder cancer cells in co-culture conditions using a microfluidic chip

    PubMed Central

    Xu, Xiao-Dong; Shao, Shi-Xiu; Cao, Yan-Wei; Yang, Xue-Cheng; Shi, Hao-Qing; Wang, You-Lin; Xue, Sen-Yao; Wang, Xin-Sheng; Niu, Hai-Tao

    2015-01-01

    Objectives: This study aimed to systematically analyze changes in mitochondrial-related protein expression in bladder cancer cells and tumor-associated fibroblasts and to investigate the characteristics of bladder cancer cell energy metabolism. Methods: In this study, we utilized the following techniques to achieve the objectives: (1) a co-culture system of bladder tumor cells and fibroblasts was built using a microfluidic chip as a three-dimensional culture system; (2) the concentration of lactic acid in the medium from the different groups was determined using an automatic micro-plate reader; (3) a qualitative analysis of mitochondria-related protein expression was performed by immunofluorescent staining; and (4) a quantitative analysis of mitochondrial-associated protein expression was conducted via Western blot. SPSS software was utilized to analyze the data. Results: (1) Determination of lactic acid concentration: The lactic acid concentration was determined to be highest in the experimental group, followed by the T24 cell control group and then the fibroblast control group. (2) Qualitative results: In the control group, the mitochondrial-related protein fluorescence intensity was higher in the fibroblasts compared with the cancer cells, and the fluorescence intensity of the fibroblasts was reduced compared with the experimental group. The mitochondrial-related protein fluorescence intensity of the cancer cells was higher in the experimental group compared with the control group, and the opposite results were obtained with the fibroblasts. (3) Quantitative results: The expression of mitochondria-related proteins was higher in fibroblasts compared with cancer cells in the control group, and the opposite results were obtained in the experimental group (P<0.05). The expression of mitochondria-related proteins was increased in cancer cells in the experimental group compared with the control group; the opposite results were observed for the fibroblasts (P<0.05). Conclusions: The energy metabolism of bladder tumor cells does not parallel the “Warburg effect” because even under sufficient oxygen conditions, cancer cells still undergo glycolysis. Bladder cancer cells also have an efficient oxidative phosphorylation process wherein cancer cells promote glycolysis in adjacent interstitial cells, thereby causing increased formation of nutritional precursors. These high-energy metabolites are transferred to adjacent tumor cells in a specified direction and enter the Krebs Cycle. Ultimately, oxidative phosphorylation increases, and sufficient ATP is produced. PMID:26550142

  2. Study of the Effects of Ultrasonic Waves on the Reproductive Integrity of Mammalian Cells Cultured in Vitro

    NASA Technical Reports Server (NTRS)

    Martins, B. I.

    1971-01-01

    The effects of monochromatic ultrasonic waves of 0.1, 0.5, 1.0, 2.0 and, 3.3 MHz frequency on the colony-forming ability of mammalian cells (M3-1,V79, Chang's and T-1) cultured in vitro have been studied to determine the nature of the action of ultrasonic energy on biological systems at the cellular level. The combined effect of ultrasound and X-rays has also been studied. It is concluded: (1) Ultrasonic irradiation causes both lethal and sublethal damage. (2) There is a threshold dose rate for lethal effects. (3) The effectiveness of ultrasonic waves in causing cell death probably depends on the frequency and the amplitude of the waves for a given cell line, indicating a possible resonance phenomenon.

  3. Advances in cell culture: anchorage dependence

    PubMed Central

    Merten, Otto-Wilhelm

    2015-01-01

    Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000–6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems—microcarrier/microcarrier-clump cultures using stirred-tank reactors—for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes. PMID:25533097

  4. Evaluation of Silicon Nitride as a Substrate for Culture of PC12 Cells: An Interfacial Model for Functional Studies in Neurons

    PubMed Central

    Medina Benavente, Johan Jaime; Mogami, Hideo; Sakurai, Takashi; Sawada, Kazuaki

    2014-01-01

    Silicon nitride is a biocompatible material that is currently used as an interfacial surface between cells and large-scale integration devices incorporating ion-sensitive field-effect transistor technology. Here, we investigated whether a poly-L-lysine coated silicon nitride surface is suitable for the culture of PC12 cells, which are widely used as a model for neural differentiation, and we characterized their interaction based on cell behavior when seeded on the tested material. The coated surface was first examined in terms of wettability and topography using contact angle measurements and atomic force microscopy and then, conditioned silicon nitride surface was used as the substrate for the study of PC12 cell culture properties. We found that coating silicon nitride with poly-L-lysine increased surface hydrophilicity and that exposing this coated surface to an extracellular aqueous environment gradually decreased its roughness. When PC12 cells were cultured on a coated silicon nitride surface, adhesion and spreading were facilitated, and the cells showed enhanced morphological differentiation compared to those cultured on a plastic culture dish. A bromodeoxyuridine assay demonstrated that, on the coated silicon nitride surface, higher proportions of cells left the cell cycle, remained in a quiescent state and had longer survival times. Therefore, our study of the interaction of the silicon nitride surface with PC12 cells provides important information for the production of devices that need to have optimal cell culture-supporting properties in order to be used in the study of neuronal functions. PMID:24587271

  5. Evaluation of silicon nitride as a substrate for culture of PC12 cells: an interfacial model for functional studies in neurons.

    PubMed

    Medina Benavente, Johan Jaime; Mogami, Hideo; Sakurai, Takashi; Sawada, Kazuaki

    2014-01-01

    Silicon nitride is a biocompatible material that is currently used as an interfacial surface between cells and large-scale integration devices incorporating ion-sensitive field-effect transistor technology. Here, we investigated whether a poly-L-lysine coated silicon nitride surface is suitable for the culture of PC12 cells, which are widely used as a model for neural differentiation, and we characterized their interaction based on cell behavior when seeded on the tested material. The coated surface was first examined in terms of wettability and topography using contact angle measurements and atomic force microscopy and then, conditioned silicon nitride surface was used as the substrate for the study of PC12 cell culture properties. We found that coating silicon nitride with poly-L-lysine increased surface hydrophilicity and that exposing this coated surface to an extracellular aqueous environment gradually decreased its roughness. When PC12 cells were cultured on a coated silicon nitride surface, adhesion and spreading were facilitated, and the cells showed enhanced morphological differentiation compared to those cultured on a plastic culture dish. A bromodeoxyuridine assay demonstrated that, on the coated silicon nitride surface, higher proportions of cells left the cell cycle, remained in a quiescent state and had longer survival times. Therefore, our study of the interaction of the silicon nitride surface with PC12 cells provides important information for the production of devices that need to have optimal cell culture-supporting properties in order to be used in the study of neuronal functions. PMID:24587271

  6. Culture and transfection of axolotl cells.

    PubMed

    Denis, Jean-François; Sader, Fadi; Ferretti, Patrizia; Roy, Stéphane

    2015-01-01

    The use of cells grown in vitro has been instrumental for multiple aspects of biomedical research and especially molecular and cellular biology. The ability to grow cells from multicellular organisms like humans, squids, or salamanders is important to simplify the analyses and experimental designs to help understand the biology of these organisms. The advent of the first cell culture has allowed scientists to tease apart the cellular functions, and in many situations these experiments help understand what is happening in the whole organism. In this chapter, we describe techniques for the culture and genetic manipulation of an established cell line from axolotl, a species widely used for studying epimorphic regeneration. PMID:25740487

  7. Comparison of Coconut Water and Jordanian Propolis on Survival of Bench-dried Periodontal Ligament Cells: An in vitro Cell Culture Study

    PubMed Central

    Al-Jundi, Suhad; Mhaidat, Nizar

    2013-01-01

    ABSTRACT Aim: The aim of this study is to assess and compare the efficacy of Jordanian propolis and full concentration mature coconut water in their ability to preserve periodontal ligament (PDL) cell viability after exposure of PDL cells to up to 120 minutes dry storage. Materials and methods: PDL cells were obtained from sound permanent first molars which were cultured in Dulbecco's Modified Eagles Medium (DMEM). Cultures were subjected to 0, 30, 45, 60, 90 and 120 minutes dry storage times then incubated with 100% mature coconut water, Jordanian propolis and DMEM for 45 minutes at room temperature (18-26C). Untreated cells served as controls at each dry storage time tested. PDL cell viability was assessed by MTT assay. Statistical analysis of data was accomplished by using one-way analysis of variance complemented by Tukey test and the level of significance was 5% ( p < 0.05). Results: Up to 60 minutes dry storage, no significant improvement on the percentage of viable cells was found from soaking in all tested media. On the other hand, soaking in mature coconut water only resulted in higher percentages of viable cells at >60 minutes dry storage. However, this improvement was not significant (p > 0.05). Conclusion: Avulsed teeth which have been left dry for <45 minutes should be replanted immediately, whereas avulsed teeth which have been left dry for >45 minutes may benefit from soaking for 45 minutes in mature coconut water. How to cite this article: Al-Haj Ali SN, Al-Jundi S, Mhaidat N. Comparison of Coconut Water and Jordanian Propolis on Survival of Bench-dried Periodontal Ligament Cells: An in vitro Cell Culture Study. Int J Clin Pediatr Dent 2013;6(3):161-165. PMID:25206215

  8. Cell culture compositions

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  9. C22-bronchial and T7-alveolar epithelial cell lines of the immortomouse are excellent murine cell culture model systems to study pulmonary peroxisome biology and metabolism.

    PubMed

    Karnati, Srikanth; Palaniswamy, Saranya; Alam, Mohammad Rashedul; Oruqaj, Gani; Stamme, Cordula; Baumgart-Vogt, Eveline

    2016-03-01

    In pulmonary research, temperature-sensitive immortalized cell lines derived from the lung of the "immortomouse" (H-2k(b)-tsA58 transgenic mouse), such as C22 club cells and T7 alveolar epithelial cells type II (AECII), are frequently used cell culture models to study CC10 metabolism and surfactant synthesis. Even though peroxisomes are highly abundant in club cells and AECII and might fulfill important metabolic functions therein, these organelles have never been investigated in C22 and T7 cells. Therefore, we have characterized the peroxisomal compartment and its associated gene transcription in these cell lines. Our results show that peroxisomes are highly abundant in C22 and T7 cells, harboring a common set of enzymes, however, exhibiting specific differences in protein composition and gene expression patterns, similar to the ones observed in club cells and AECII in situ in the lung. C22 cells contain a lower number of larger peroxisomes, whereas T7 cells possess more numerous tubular peroxisomes, reflected also by higher levels of PEX11 proteins. Moreover, C22 cells harbor relatively higher amounts of catalase and antioxidative enzymes in distinct subcellular compartments, whereas T7 cells exhibit higher levels of ABCD3 and plasmalogen synthesizing enzymes as well as nuclear receptors of the PPAR family. This study suggest that the C22 and T7 cell lines of the immortomouse lung are useful models to study the regulation and metabolic function of the peroxisomal compartment and its alterations by paracrine factors in club cells and AECII. PMID:26686684

  10. Study of Silymarin and Vitamin E Protective Effects on Silver Nanoparticle Toxicity on Mice Liver Primary Cell Culture.

    PubMed

    Faedmaleki, Firouz; Shirazi, Farshad H; Ejtemaeimehr, Shahram; Anjarani, Soghra; Salarian, Amir-Ahmad; Ahmadi Ashtiani, Hamidreza; Rastegar, Hossein

    2016-02-01

    Nanotechnology is a most promising field for generating new applications in medicine, although, only few nano products are currently in use for medical purposes. A most prominent nanoproduct is nanosilver. Nano-silver has biological properties which are significant for consumer products, food technology, textiles, and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). For their antibacterial activity, silver nanoparticles (Ag NPs) are largely used in various commercially available products. The use of nano-silver is becoming more and more widespread in medicine and related applications, and due to its increasing exposure, toxicological and environmental issues need to be raised. Cytotoxicity induced by silver nanoparticles (AgNPs) and the role that oxidative stress plays in this process were demonstrated in human hepatoma cells AgNPs agglomerated in the cytoplasm and nuclei of treated cells, and they induced intracellular oxidative stress. AgNP reduced ATP content of the cell and caused damage to mitochondria and increased production of reactive oxygen species (ROS) in a dose-dependent manner. Silymarin was known as a hepatoprotective agent that is used in the treatment of hepatic diseases including viral hepatitis, alcoholic liver diseases, Amanita mushroom poisoning, liver cirrhosis, toxic and drug-induced liver diseases. It promotes protein synthesis, helps in regenerating liver tissue, controls inflammation, enhances glucuronidation, and protects against glutathione depletion. Vitamin E is a well-known antioxidant and has hepatoprotective effect in liver diseases. In this study, we investigated the cytotoxic effects of Ag NPs on primary liver cells of mice. Cell viability (cytotoxicity) was examined with MTT assay after primary liver cells of mice exposure to AgNPs at 1, 10, 50, 100, 150, 200, 400 ppm for 24h. AgNPs caused a concentration- dependent decrease of cell viability (IC50 value = 121.7 ppm or µg/ml). Then the hepatoprotective effect of silymarin and vitamin E were experimented on silver nanoparticle toxicity on mice liver primary cell culture. The results showed that silymarin at 600µg/ml and vitamin E at 2500µmol/l have protective effects on silver nanoparticle toxicity on mice liver primary cell culture. Viability percentage of the primary liver cell of the mouse were exposed to silver nanoparticles at 121.7ppm and co-treatment of silymarin, and vitamin E is more than viability percentage of the primary liver cell of the mouse were exposed to silver nanoparticles and silymarin or silver nanoparticles and vitamin E. PMID:26997594

  11. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    NASA Astrophysics Data System (ADS)

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Bernkop Schnürch, Andreas

    2008-01-01

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy.

  12. Evaluation of an air-liquid interface cell culture model for studies on the inflammatory and cytotoxic responses to tobacco smoke aerosols.

    PubMed

    Azzopardi, David; Haswell, Linsey E; Foss-Smith, Geoff; Hewitt, Katherine; Asquith, Nathan; Corke, Sarah; Phillips, Gary

    2015-10-01

    In vitro toxicological studies for tobacco product assessment have traditionally been undertaken using the particulate phase of tobacco smoke. However, this does not truly reflect exposure conditions that occur in smokers. Thus in vitro cell culture systems are required in which cells are exposed to tobacco whole smoke (WS) at the air-liquid interface (ALI). In this study bronchial epithelial cells were cultured on semi-permeable membranes, transitioned to the ALI and the robustness and sensitivity of the cells to tobacco WS and vapour phase (VP) assessed. Although no effect of air exposure was observed on cell viability, IL-6 and IL-8 release was increased. Exposure to WS resulted in a significant dose dependent decrease in cell viability and a significant non-dose dependent increase in inflammatory mediator secretion. The VP was found to contribute approximately 90% of the total cytotoxicity derived from WS. The cell culture system was also able to differentiate between two smoking regimens and was sensitive to passage number with increased inflammatory mediator secretion and lower cell viability observed in cell cultures of low passage number following WS exposure. This simple cell culture system may facilitate studies on the toxicological impact of future tobacco products and nicotine delivery devices. PMID:26096598

  13. Culture Studies: Hawaiian Studies Project.

    ERIC Educational Resources Information Center

    Hazama, Dorothy, Ed.

    Reports and materials from the Hawaiian Studies Project are presented. The document, designed for elementary school teachers contains two major sections. The first section describes the planning phase of the project, the Summer Institute for Hawaiian Culture Studies (1976) and the follow-up workshops and consultant help (1976-77). The appendix to

  14. Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study.

    PubMed

    Warnock, Jennifer J; Fox, Derek B; Stoker, Aaron M; Beatty, Mark; Cockrell, Mary; Janicek, John C; Cook, James L

    2014-01-01

    Introduction. Tissue engineering is a new methodology for addressing meniscal injury or loss. Synovium may be an ideal source of cells for in vitro meniscal fibrocartilage formation, however, favorable in vitro culture conditions for synovium must be established in order to achieve this goal. The objective of this study was to determine cellularity, cell distribution, and extracellular matrix (ECM) formation of equine fibroblast-like synoviocytes (FLS) cultured on synthetic scaffolds, for potential application in synovium-based meniscal tissue engineering. Scaffolds included open-cell poly-L-lactic acid (OPLA) sponges and polyglycolic acid (PGA) scaffolds cultured in static and dynamic culture conditions, and PGA scaffolds coated in poly-L-lactic (PLLA) in dynamic culture conditions. Materials and Methods. Equine FLS were seeded on OPLA and PGA scaffolds, and cultured in a static environment or in a rotating bioreactor for 12 days. Equine FLS were also seeded on PGA scaffolds coated in 2% or 4% PLLA and cultured in a rotating bioreactor for 14 and 21 days. Three scaffolds from each group were fixed, sectioned and stained with Masson's Trichrome, Safranin-O, and Hematoxylin and Eosin, and cell numbers and distribution were analyzed using computer image analysis. Three PGA and OPLA scaffolds from each culture condition were also analyzed for extracellular matrix (ECM) production via dimethylmethylene blue (sulfated glycosaminoglycan) assay and hydroxyproline (collagen) assay. PLLA coated PGA scaffolds were analyzed using double stranded DNA quantification as areflection of cellularity and confocal laser microscopy in a fluorescent cell viability assay. Results. The highest cellularity occurred in PGA constructs cultured in a rotating bioreactor, which also had a mean sulfated glycosaminoglycan content of 22.3 g per scaffold. PGA constructs cultured in static conditions had the lowest cellularity. Cells had difficulty adhering to OPLA and the PLLA coating of PGA scaffolds; cellularity was inversely proportional to the concentration of PLLA used. PLLA coating did not prevent dissolution of the PGA scaffolds. All cell scaffold types and culture conditions produced non-uniform cellular distribution. Discussion/Conclusion. FLS-seeding of PGA scaffolds cultured in a rotating bioreactor resulted in the most optimal cell and matrix characteristics seen in this study. Cells grew only in the pores of the OPLA sponge, and could not adhere to the PLLA coating of PGA scaffold, due to the hydrophobic property of PLA. While PGA culture in a bioreactor produced measureable GAG, no culture technique produced visible collagen. For this reason, and due to the dissolution of PGA scaffolds, the culture conditions and scaffolds described here are not recommended for inducing fibrochondrogenesis in equine FLS for meniscal tissue engineering. PMID:24765587

  15. Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study

    PubMed Central

    Fox, Derek B.; Stoker, Aaron M.; Beatty, Mark; Cockrell, Mary; Janicek, John C.; Cook, James L.

    2014-01-01

    Introduction. Tissue engineering is a new methodology for addressing meniscal injury or loss. Synovium may be an ideal source of cells for in vitro meniscal fibrocartilage formation, however, favorable in vitro culture conditions for synovium must be established in order to achieve this goal. The objective of this study was to determine cellularity, cell distribution, and extracellular matrix (ECM) formation of equine fibroblast-like synoviocytes (FLS) cultured on synthetic scaffolds, for potential application in synovium-based meniscal tissue engineering. Scaffolds included open-cell poly-L-lactic acid (OPLA) sponges and polyglycolic acid (PGA) scaffolds cultured in static and dynamic culture conditions, and PGA scaffolds coated in poly-L-lactic (PLLA) in dynamic culture conditions. Materials and Methods. Equine FLS were seeded on OPLA and PGA scaffolds, and cultured in a static environment or in a rotating bioreactor for 12 days. Equine FLS were also seeded on PGA scaffolds coated in 2% or 4% PLLA and cultured in a rotating bioreactor for 14 and 21 days. Three scaffolds from each group were fixed, sectioned and stained with Massons Trichrome, Safranin-O, and Hematoxylin and Eosin, and cell numbers and distribution were analyzed using computer image analysis. Three PGA and OPLA scaffolds from each culture condition were also analyzed for extracellular matrix (ECM) production via dimethylmethylene blue (sulfated glycosaminoglycan) assay and hydroxyproline (collagen) assay. PLLA coated PGA scaffolds were analyzed using double stranded DNA quantification as areflection of cellularity and confocal laser microscopy in a fluorescent cell viability assay. Results. The highest cellularity occurred in PGA constructs cultured in a rotating bioreactor, which also had a mean sulfated glycosaminoglycan content of 22.3 g per scaffold. PGA constructs cultured in static conditions had the lowest cellularity. Cells had difficulty adhering to OPLA and the PLLA coating of PGA scaffolds; cellularity was inversely proportional to the concentration of PLLA used. PLLA coating did not prevent dissolution of the PGA scaffolds. All cell scaffold types and culture conditions produced non-uniform cellular distribution. Discussion/Conclusion. FLS-seeding of PGA scaffolds cultured in a rotating bioreactor resulted in the most optimal cell and matrix characteristics seen in this study. Cells grew only in the pores of the OPLA sponge, and could not adhere to the PLLA coating of PGA scaffold, due to the hydrophobic property of PLA. While PGA culture in a bioreactor produced measureable GAG, no culture technique produced visible collagen. For this reason, and due to the dissolution of PGA scaffolds, the culture conditions and scaffolds described here are not recommended for inducing fibrochondrogenesis in equine FLS for meniscal tissue engineering. PMID:24765587

  16. A Multilayered Cell Culture Model for Transport Study in Solid Tumors: Evaluation of Tissue Penetration of Polyethyleneimine Based Cationic Micelles

    PubMed Central

    Miura, Seiji; Suzuki, Hidenori; Bae, You Han

    2014-01-01

    Limited drug distribution is partially responsible for the efficacy gap between preclinical and clinical studies of nano-sized drug carriers for cancer therapy. In this study, we examined the transport behavior of cationic micelles formed from a triblock copolymer of poly(D,L-lactide-co-glycolide)-block-branched polyethyleneimine-block-poly(D,L-lactide-co-glycolide) using a unique in vitro tumor model composed of a multilayered cell culture (MCC) and an Ussing chamber system. The Cy3-labeled cationic micelles showed remarkable Cy3 distribution in the MCC whereas charge-shielded micelles with a poly(ethylene glycol) surface accumulated on the surface of the MCC. Penetration occurred against convectional flow caused by a hydraulic pressure gradient. The study using fluorescence resonance energy transfer (FRET) showed that the cationic micelles dissociate at the interface between the culture media and the MCC or possibly inside of the first-layer cells and penetrates into the MCC as unimers. The penetration and distribution were energy-dependent and suppressed by various endocytic inhibitors. These suggest that cationic unimers mainly utilized clathrin-mediated endocytosis and macropinocytosis for cellular entry and a significant fraction were exocytosed by an unknown mechanism. PMID:25866552

  17. Characterization of ex vivo cultured limbal, conjunctival, and oral mucosal cells: A comparative study with implications in transplantation medicine

    PubMed Central

    Dhamodaran, Kamesh; Subramani, Murali; Jeyabalan, Nallathambi; Ponnalagu, Murugeswari; Chevour, Priyanka; Shetty, Reshma; Matalia, Himanshu; Shetty, Rohit; Prince, Sabina Evan

    2015-01-01

    Purpose Limbal epithelial stem cell deficiency is caused by exposure of the cornea to thermal, chemical, or radiation burns or by diseases (aniridia and Stevens-Johnson syndrome). Autologous cell transplantation is a widely used therapeutic modality for restoring the corneal surface in such pathological conditions. Ex vivo cultured limbal, conjunctival, and oral biopsies have been widely used to reconstruct the corneal surface with variable outcomes. Culture characterization of the ex vivo cultured cells would provide insight and clues into the underlying signaling mechanisms that would aid in determining the probable transplantation outcome. Comparison of the vital proteins and genes among the three ex vivo cultured tissues has implications in clinical practice. To address this issue, we characterized and compared the proliferative and differentiated properties of ex vivo cultured limbal, conjunctival, and oral biopsies used for cell-based therapy for corneal surface restoration. Methods Limbal, conjunctival, and oral biopsies were collected with informed patient consent. Explant cultures were established on the denuded human amniotic membrane with corneal lineage differentiation medium. The day 14 cultures were characterized for epithelial and corneal lineage-specific markers using reverse transcription (RT)PCR for cytokeratin 3, 4, 12, 13, 15, connexin 43, vimentin, p63?, and ABCG2 markers. mRNA expression was estimated in day 14 cultures with real-time quantitative real time (qRT)-PCR for pluripotency markers (OCT4, SOX2, NANOG), putative corneal stem cell markers (ABCG2 and p63?), proliferation markers (cyclin d1, Ki-67, PCNA, and CDC20), apoptotic markers (BCL2, BAX, caspase 3, and caspase 9), Notch signaling pathway markers (Notch1, Jagged1, Hes1, Hes3, Hes5, and Hey1), and autophagic markers (LC3A, LC3B, ATG7, RAB7, LAMP1, and LAMP2). Fluorescence-activated cell sorter profiling was performed for pluripotent markers and putative corneal stem cell markers ABCG2 and p63?. Results The protein and mRNA expression levels of the pluripotent markers were lower, whereas those of the putative stem/progenitor markers ABCG2, ?Np63?, and Notch signaling molecules (Notch1 and Jagged1) were elevated in limbal cultures. The gene expression levels of the autophagy markers (LC3A, LC3B, and LAMP1) were significantly increased in the limbal cultures compared to the oral and conjunctival cultures. Conclusions In conclusion, the limbal epithelial cultures showed higher expression of proliferative, limbal stem cell marker, Notch signaling, and autophagy markers suggesting a role in stem cell maintenance and differentiation. This implicates the probable factors that might drive a successful transplantation. Our findings provide the initial steps toward understanding transplantation medicine in an ex vivo model. PMID:26283864

  18. Culture & differentiation of mesenchymal stem cell into osteoblast on degradable biomedical composite scaffold: In vitro study

    PubMed Central

    Jain, Krishan G.; Mohanty, Sujata; Ray, Alok R.; Malhotra, Rajesh; Airan, Balram

    2015-01-01

    Background & objectives: There is a significant bone tissue loss in patients from diseases and traumatic injury. The current autograft transplantation gold standard treatment has drawbacks, namely donor site morbidity and limited supply. The field of tissue engineering has emerged with a goal to provide alternative sources for transplantations to bridge this gap between the need and lack of bone graft. The aim of this study was to prepare biocomposite scaffolds based on chitosan (CHT), polycaprolactone (PCL) and hydroxyapatite (HAP) by freeze drying method and to assess the role of scaffolds in spatial organization, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro, in order to achieve bone graft substitutes with improved physical-chemical and biological properties. Methods: Pure chitosan (100CHT) and composites (40CHT/HAP, 30CHT/HAP/PCL and 25CHT/HAP/PCL scaffolds containing 40, 30, 25 parts per hundred resin (phr) filler, respectively) in acetic acid were freeze dried and the porous foams were studied for physicochemical and in vitro biological properties. Results: Scanning electron microscope (SEM) images of the scaffolds showed porous microstructure (20-300 μm) with uniform pore distribution in all compositions. Materials were tested under compressive load in wet condition (using phosphate buffered saline at pH 7.4). The in vitro studies showed that all the scaffold compositions supported mesenchymal stem cell attachment, proliferation and differentiation as visible from SEM images, [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay, alkaline phosphatase (ALP) assay and quantitative reverse transcription (qRT)-PCR. Interpretation & conclusions: Scaffold composition 25CHT/HAP/PCL showed better biomechanical and osteoinductive properties as evident by mechanical test and alkaline phosphatase activity and osteoblast specific gene expression studies. This study suggests that this novel degradable 3D composite may have great potential to be used as scaffold in bone tissue engineering. PMID:26831424

  19. Photoreceptor-like cells from reprogramming cultured mammalian RPE cells

    PubMed Central

    Yan, Run-Tao; Huang, Jian; Guidry, Clyde; Wang, Shu-Zhen

    2013-01-01

    Purpose Previous studies showed that chick retinal pigment epithelium (RPE) cells can be reprogrammed by a specific gene to take on the path of photoreceptor differentiation. In this study, we tested whether this reprogramming scheme could be applied to mammalian RPE cells. Methods Human RPE cell lines ARPE-19, a spontaneously transformed line of RPE cells derived from a 19-year-old person, and hTERT-RPE1, a telomerase-immortalized RPE cell line derived from a 1-year-old person, were commercially obtained and cultured as recommended. Primary RPE cell cultures were established using RPE isolated from 3- to 6-month-old pig and postnatal day 5 mouse. Cultured cells were transduced with a virus expressing neuroD, neurogenin1 (ngn1), or ngn3, basic helix-loop-helix (bHLH) genes previously identified as capable of inducing RPE-to-photoreceptor reprogramming in the chick system. Alternatively, cells in the culture were transfected chemically or physically through electroporation with vector DNA expressing one of the three genes. The cultures were then analyzed for RPE-to-photoreceptor reprogramming with in situ hybridization and/or immunostaining for photoreceptor gene expression. Results Both hTERT-RPE1 and ARPE-19 cultures gave rise to cells bearing markers of photoreceptors after transduction or transfection with vehicles expressing neuroD or ngn1. The new cells expressed genes encoding photoreceptor proteins, including interphotoreceptor retinoid-binding protein IRBP), recoverin, retinal cone arrestin 3, transducin ?-subunit, Cone-rod homeobox protein (Crx), and red opsin. They displayed morphologies resembling differentiating photoreceptor cells. In primary porcine and mouse RPE cell cultures, transduction with lenti virus (Lvx-IRES-ZsGreen1) expressing ngn1 or ngn3 resulted in the emergence of ZsGreen1+ cells that exhibited morphologies reminiscent of differentiating photoreceptor cells. Immunochemistry showed that some ZsGreen1+ cells were positive for neural marker microtubule-associated protein 2 (Map2) and photoreceptor hallmark proteins red opsin and rhodopsin. Conclusions The results suggest that cells in human RPE cell lines and in primary cultures of porcine and mouse RPE respond to gene-induced reprogramming by giving rise to photoreceptor-like cells. The responsiveness of primary RPE cells, especially those from porcine cells, enhances the biologic feasibility of exploring RPE-to-photoreceptor reprogramming for in situ mammalian photoreceptor replacement without cell transplantation. PMID:23734087

  20. Protein Inhibition by Microinjection and RNA-Mediated Interference in Tissue Culture Cells: Complementary Approaches to Study Protein Function

    PubMed Central

    Stout, Jane R.; Rizk, Rania S; Walczak, Claire E.

    2010-01-01

    A major goal in cell biology is to understand the molecular mechanisms of the biological process under study, which requires functional information about the roles of individual proteins in the cell. For many non-genetic model organisms researchers have relied on the use of inhibitory reagents, such as antibodies that can be microinjected into cells. More recently, the advent of RNA-mediated interference (RNAi) has allowed scientists to knockdown individual proteins and to examine the consequences of the knockdown. In this chapter we present a comparison between microinjection of inhibitory reagents and RNAi for the analysis of protein function in mammalian tissue culture cells, providing both a description of the techniques as well as a discussion of the benefits and drawbacks of each approach. In addition, we present a strategy to employ RNAi for organisms without a sequenced genome. While the focus of our research is on the organization of the mitotic spindle during cell division and thus the examples utilized are from that system, the approaches described here should be readily applicable to multiple experimental models. PMID:19085130

  1. Protein Inhibition by Microinjection and RNA-Mediated Interference in Tissue Culture Cells: Complementary Approaches to Study Protein Function

    NASA Astrophysics Data System (ADS)

    Stout, Jane R.; Rizk, Rania S.; Walczak, Claire E.

    A major goal in cell biology is to understand the molecular mechanisms of the biological process under study, which requires functional information about the roles of individual proteins in the cell. For many non-genetic model organisms researchers have relied on the use of inhibitory reagents, such as antibodies that can be microinjected into cells. More recently, the advent of RNA-mediated interference (RNAi) has allowed scientists to knockdown individual proteins and to examine the consequences of the knockdown. In this chapter we present a comparison between microinjection of inhibitory reagents and RNAi for the analysis of protein function in mammalian tissue culture cells, providing both a description of the techniques as well as a discussion of the benefits and drawbacks of each approach. In addition, we present a strategy to employ RNAi for organisms without a sequenced genome. While the focus of our research is on the organization of the mitotic spindle during cell division and thus the examples utilized are from that system, the approaches described here should be readily applicable to multiple experimental models.

  2. Endothelial Cell Culture on Fibrillar Collagen: Model to Study Platelet Adhesion and Liposome Targeting to Intercellular Collagen Matrix

    NASA Astrophysics Data System (ADS)

    Chazov, E. I.; Alexeev, A. V.; Antonov, A. S.; Koteliansky, V. E.; Leytin, V. L.; Lyubimova, E. V.; Repin, V. S.; Sviridov, D. D.; Torchilin, V. P.; Smirnov, V. N.

    1981-09-01

    Human umbilical endothelial cells (ECs) were grown on fibrillar type I collagen in 16.4-mm multiwell tissue culture plates. Human platelets were added to the wells, and platelet adhesion to collagen was examined by scanning electron microscopy and radioisotopic technique in the absence of ECs and in preconfluent and confluent EC cultures. Single adherent platelets of different shapes as well as small aggregates were seen on collagen surface. Human plasma fibronectin added to the system stimulated platelet adhesion and their spreading on collagen. ECs had no effect on the percentage of platelets adherent to collagen-coated gaps in preconfluent culture but decreased the number of spread platelets. It is demonstrated that collagen-coated gaps can bind 14C-labeled liposome-antibody and 14C-labeled liposome-fibronectin conjugates. ECs grown on fibrillar collagen are suggested as useful models for screening of antiplatelet drugs and for the study of drug targeting to the areas of vascular injury for prevention of thrombosis.

  3. Isoniazid Proliposome Powders for InhalationPreparation, Characterization and Cell Culture Studies

    PubMed Central

    Rojanarat, Wipaporn; Changsan, Narumon; Tawithong, Ekawat; Pinsuwan, Sirirat; Chan, Hak-Kim; Srichana, Teerapol

    2011-01-01

    The aims of this study were to develop proliposome powders containing isoniazid (INH) in a dry powder aerosol form. INH-proliposome powders were prepared by a spray drying method. Proliposome physicochemical properties were determined using cascade impactor, X-ray diffraction and differential scanning calorimetry. The toxicity of proliposomes to respiratory-associated cell lines and its potential to provoke immunological responses from alveolar macrophages (AM) were determined. Free INH and INH-proliposome bioactivities were tested in vitro and in AM infected with Mycobacterium bovis (M. bovis). Aerosolization properties of INH-proliposome powders at 60 L/min, the powders showed mass median aerodynamic diameters of 2.994.92 ?m, with fine particle fractions (aerosolized particles less than 4.4 ?m) of 1535%. Encapsulation of INH was 1830%. Proliposome formulations containing INH to mannitol ratios of 4:6 and 6:4 exhibited the greatest overlapping peak between the drug and mannitol. INH-proliposomes were evidently nontoxic to respiratory-associated cells, and did not activate AM to produce inflammatory mediatorsincluding interleukin-1? (IL-1?), tumor necrosis factor-? (TNF-?), and nitric oxideat a toxic level. The efficacy of INH-proliposome against AM infected with M. bovis was significantly higher than that of free INH (p < 0.05). INH-proliposomes are potential candidates for an alternative tuberculosis treatment. PMID:21845086

  4. Ultrastructural study of Listeria monocytogenes entry into cultured human colonic epithelial cells.

    PubMed Central

    Karunasagar, I; Senghaas, B; Krohne, G; Goebel, W

    1994-01-01

    Evidence that Listeria monocytogenes enters Caco-2 cells through the apical surface is presented. Attachment of bacteria to host cells seems to induce modifications of microvilli which are either in direct contact with the bacterial surface or in close vicinity, resulting in the formation of lamellipodia involved in the cellular uptake of the bacteria. Such modifications are not induced by L. monocytogenes SLCC 53, which carries a deletion in the prfA gene, although attachment of this mutant to Caco-2 cells occurs. Listeria innocua does not attach well to Caco-2 cells and also fails to cause structural alterations of the microvilli. Treatment of confluent monolayers of Caco-2 cells with ethylene glycol-bis(beta-aminoethyl ether)- N,N,N1,N1-tetraacetic acid (EGTA), which disrupts intercellular junctions, greatly reduced the uptake of Listeria cells. Attachment and invasion of L. monocytogenes was not accompanied by accumulation of filamentous actin around the entering bacterial cell. Images PMID:8039928

  5. [Culture of mussel Mytiuls edulis I. mantle cells].

    PubMed

    Daugavet, M A; Blinova, M I

    2015-01-01

    To date, cell lines derived from marine invertebrates have not been available. Hence primary cell cultures serve as model systems for various experiments. In present study we established primary culture of mussel Mytilus edulis L. mantle cells. Cells were isolated by means of explant culture or enzymatic dissociation of mantle tissue. They maintained viability up to 22 months regardless of culture initiation method. In course of culturing, cells, which were transferred onto new plates, successfully attached to a new surface. Physiological activity of cultured cells was also confirmed by formation of crystals, which appeared after 4-6 months. After continuous time of culturing, mantle cells can be cryopreserved using 5 % DMSO with post-freezing survival up to 50%. These results demonstrate that M. edulis mantle cells can maintain viability and physiological activity for exceptionally long time and can be cryopreserved for further examination. PMID:26035973

  6. Cytopathogenicity of Naegleria fowleri for rat neuroblastoma cell cultures: scanning electron microscopy study.

    PubMed Central

    Marciano-Cabral, F; John, D T

    1983-01-01

    Neuroblastoma cells were inoculated with Naegleria fowleri Lee and examined for cytopathology at various periods post-inoculation by scanning electron microscopy. By 18 h post-inoculation, approximately 50% of neuroblastoma cells were nonviable, as evidenced by trypan blue exclusion and light microscopic examination. This cytopathology resulted from piecemeal consumption of target cells mediated by a sucker apparatus extending from the surface of N. fowleri. Images PMID:6852919

  7. An appropriate selection of a 3D alginate culture model for hepatic Huh-7 cell line encapsulation intended for viral studies.

    PubMed

    Tran, Nhu Mai; Dufresne, Murielle; Duverlie, Gilles; Castelain, Sandrine; Dfarge, Christian; Paullier, Patrick; Legallais, Cecile

    2013-01-01

    Three-dimensional (3D) culture systems have been introduced to provide cells with a biomimetic environment that is similar to in vivo conditions. Among the polymeric molecules available, sodium-alginate (Na-alg) salt is a material that is currently employed in different areas of drug delivery and tissue engineering, because it offers biocompatibility and optimal chemical properties, and its gelation with calcium chloride provides calcium-alginate (Ca-alg) scaffolds with mechanical stability and relative permeability. In this work, four different preparations of Ca-alg beads with varying Na-alg viscosity and concentration were used for a human hepatoma cell line (Huh-7) encapsulation. The effects of Ca-alg bead preparation on structural cell organization, liver-specific functions, and the expression of specific receptors implicated in hepatotropic virus permissivity were evaluated. Hepatic cells were cultured in 500??m diameter Ca-alg beads for 7 days under dynamic conditions. For all culture systems, cell viability reached almost 100% at day 7. Cell proliferation was concomitantly followed by hepatocyte organization in aggregates, which adopted two different morphologies (spheroid aggregates or multicellular channel-like structures), depending on Ca-alg bead preparation. These cellular organizations established a real 3D hepatocyte architecture with cell polarity, cell junctions, and abundant bile canaliculi possessing microvillus-lined channels. The functionality of these 3D cultures was confirmed by the production of albumin and the exhibition of CYP1A activity over culture time, which were variable, according to Ca-alg bead condition. The expression of specific receptors of hepatitis C virus by Huh-7 cells suggests encouraging data for the further development of a new viral culture system in Ca-alg beads. In summary, this 3D hepatic cell culture represents a promising physiologically relevant system for further in vitro studies and demonstrates that an adequate encapsulation condition can be selected for each target application in liver tissue engineering, specifically in viral studies. PMID:22889091

  8. An assay for growth of mouse bone marrow cells in microtiter liquid culture using the tetrazolium salt MTT, and its application to studies of myelopoiesis.

    PubMed

    Monner, D A

    1988-12-01

    Mouse bone marrow cells were grown in liquid culture in microtiter plates in the presence of different colony-stimulating factors (CSF). Growth was assayed using the tetrazolium salt MTT, which is reduced in the mitochondria of viable cells to a water-insoluble blue formazan dye. Two technical problems have limited the use of this assay: the solubilization of the dye crystals and the necessity to acidify the phenol red in the culture medium. Both could be solved here by the use of a developing solution of 5% formic acid in isopropanol. Using manual mixing combined with a short sonication by floating the plates in a sonic bath, the crystals were dissolved within minutes. There was no flocculation of protein, even using medium with 20% serum. The color remained stable for at least 4 h. This enabled the semi-automatic measurement of large numbers of cultures directly in the microtiter plates. Growth and differentiation of myelopoietic precursor cells in the liquid cultures was shown to be comparable to that in soft agar. Cell growth was CSF-dependent. The calculated cell yield per colony forming cell (CFC) seeded was within the range of the average cell number per colony found in soft agar, and the spectrum of mature cells obtained reflected the type of CSF used as stimulus. Using the combined culture and assay systems, it was possible to perform detailed kinetic studies of myelopoiesis. This technique should be useful for studying the mechanisms of action of pharmacological modulators of myelopoiesis. PMID:3072291

  9. Optimization and characterization of an in vitro bovine mammary cell culture system to study regulation of milk protein synthesis and mammary differentiation

    SciTech Connect

    Talhouk, R.S.

    1988-01-01

    A long term bovine mammary cell culture system that maintains normal mammary cell function was established and optimized to study milk protein synthesis and secretion and mammary differentiation. This culture system used bovine mammary acini isolated from developing or lactating mammary gland by enzymatic dissociation, and cryopreserved until thawed and plated for growth in vitro for these studies. Cells in M199 with lactogenic hormones {plus minus} fetal calf serum (FCS) were cultured on plastic, 100ul and 500ul type I collagen, and Matrigel, or embedded within type I collagen. Cell morphology, cell number, and total TCA-precipitable {sup 35}S-labelled proteins were monitored. Milk protein ({alpha}{sub s,1}-casein, lactoferrin (LF), {alpha}-lactalbumin, and {beta}-lactoglobulin) secretion and intracellular levels were determined by an ELISA assay.

  10. Comparative study on biologic and immunologic characteristics of the pancreas islet cell between 24 degrees C and 37 degrees C culture in the rat.

    PubMed

    Kim, S C; Han, D J; Kim, I H; Woo, K O; We, Y M; Kang, S Y; Back, J H; Kim, Y H; Kim, J H; Lim, D G

    2005-10-01

    The aim of this study was to investigate the effect of culture at 24 degrees C on cell viability, cellular function, immunogenicity, and cytokine profiles of rat pancreatic islets. Pancreatic islets were isolated from Lewis rats and cultured at either 24 degrees C or 37 degrees C for 14 days. Islet recovery was counted as islet equivalents; islet viability was examined with fluorescent vital staining. Islet function was measured with a glucose stimulation test. Annexin V, and MHC class I and II expression were measured using flow cytometric assay for apoptosis and immunogenicity, respectively. Lymphocyte cell proliferation was examined with WST-1 proliferation assay. Cytokine profiles were analyzed with quantitative real time RT-PCR. All these parameters were measured on 1, 3, 5, 7 and 14 culture days after islet isolation. Islet recovery was higher in islets cultured at 24 degrees C than 37 degrees C without a change in viability. Insulin secretion after glucose stimulation was more effective in 24 degrees C culture conditions. Decreased apoptotic cell death was demonstrated in 24 degrees C cultured islets. Both MHC class I and II expression on islets and lymphocyte proliferation upon coculture with islets were less prominent in 24 degrees C cultured islets. TNF-alpha expression was lower in islets cultured at 24 degrees C than in islets cultured at 37 degrees C. Both IL-1beta and IL-10 cytokine expressions were similar under both culture conditions. This study demonstrated that cell recovery and function are increased in islets cultured at 24 degrees C than those at 37 degrees C with decreased antigenicity and proinflammatory cytokine expression. PMID:16298632

  11. Increased melanogenesis is a risk factor for oxidative DNA damage--study on cultured melanocytes and atypical nevus cells.

    PubMed

    Smit, Nico P M; van Nieuwpoort, Frans A; Marrot, Laurent; Out, Coby; Poorthuis, Ben; van Pelt, Hans; Meunier, Jean-Roch; Pavel, Stan

    2008-01-01

    Melanin synthesis is an oxygen-dependent process that acts as a potential source of reactive oxygen species (ROS) inside pigment-forming cells. The synthesis of the lighter variant of melanin, pheomelanin, consumes cysteine and this may limit the capacity of the cellular antioxidative defense. We show that tyrosine-induced melanogenesis in cultured normal human melanocytes (NHM) is accompanied by increased production of ROS and decreased concentration of intracellular glutathione. Clinical atypical (dysplastic) nevi (DN) regularly contain more melanin than do normal melanocytes (MC). We also show that in these cultured DN cells three out of four exhibit elevated synthesis of pheomelanin and this is accompanied by their early senescence. By using various redox-sensitive molecular probes, we demonstrate that cultured DN cells produce significantly more ROS than do normal MC from the same donor. Our experiments employing single-cell gel electrophoresis (comet assay) usually reveal higher fragmentation of DNA in DN cells than in normal MC. Even if in some cases the normal alkaline comet assay shows no differences in DNA fragmentation between DN cells and normal MC, the use of the comet assay with formamidopyrimidine DNA glycosylase can disclose that the DNA of the cultured DN cells harbor more oxidative damage than the DNA of normal MC from the same person. PMID:18435613

  12. Microfabricated platforms for mechanically dynamic cell culture.

    PubMed

    Moraes, Christopher; Sun, Yu; Simmons, Craig A

    2010-01-01

    The ability to systematically probe in vitro cellular response to combinations of mechanobiological stimuli for tissue engineering, drug discovery or fundamental cell biology studies is limited by current bioreactor technologies, which cannot simultaneously apply a variety of mechanical stimuli to cultured cells. In order to address this issue, we have developed a series of microfabricated platforms designed to screen for the effects of mechanical stimuli in a high-throughput format. In this protocol, we demonstrate the fabrication of a microactuator array of vertically displaced posts on which the technology is based, and further demonstrate how this base technology can be modified to conduct high-throughput mechanically dynamic cell culture in both two-dimensional and three-dimensional culture paradigms. PMID:21206477

  13. Microfabricated Platforms for Mechanically Dynamic Cell Culture

    PubMed Central

    Moraes, Christopher; Sun, Yu; Simmons, Craig A.

    2010-01-01

    The ability to systematically probe in vitro cellular response to combinations of mechanobiological stimuli for tissue engineering, drug discovery or fundamental cell biology studies is limited by current bioreactor technologies, which cannot simultaneously apply a variety of mechanical stimuli to cultured cells. In order to address this issue, we have developed a series of microfabricated platforms designed to screen for the effects of mechanical stimuli in a high-throughput format. In this protocol, we demonstrate the fabrication of a microactuator array of vertically displaced posts on which the technology is based, and further demonstrate how this base technology can be modified to conduct high-throughput mechanically dynamic cell culture in both two-dimensional and three-dimensional culture paradigms. PMID:21206477

  14. Ascorbate Biosynthesis in Arabidopsis Cell Suspension Culture

    PubMed Central

    Davey, Mark W.; Gilot, Christophe; Persiau, Geert; stergaard, Jens; Han, Yu; Bauw, Guy C.; Van Montagu, Marc C.

    1999-01-01

    The biosynthesis of l-ascorbic acid (l-AA) in an Arabidopsis (L.) Heynh. cell suspension culture was studied by quantifying the effects of incubation with a range of potential biosynthetic precursors, analogs, and inhibitors on the intracellular levels of reduced and oxidized forms of l-AA. Our results support the recently published biosynthetic pathway of l-AA from l-galactose (G.L. Wheeler, M.A. Jones, N. Smirnoff [1998] Nature 393: 365369), but suggest that Arabidopsis cell suspension culture simultaneously contains two other routes leading to l-AA. The possible physiological significance of these alternate routes is discussed. PMID:10517845

  15. Studies on two biological phenomena in in vitro cell cultures: the reversibility of leukemic blast cells and the immunologic enhancement of tumor growth.

    PubMed

    Berceanu, S; Mo?oiu, I; Gociu, M

    1983-01-01

    The nature of the leukemic process is discussed with respect to the possible in vitro transformation of the leukemic blast cells into myeloid differentiated cells. During the period 1968-1970 we noticed this process in bone marrow cultures in fluid medium. The differentiation was established on morphologic and cytochemical criteria; the proportion of mature cells or those undergoing maturation with peroxidase positive reaction increased over 50% reaching even 70-80%. Our recent observations can be discussed from several points of view but leukemic blast cell reversibility is now a phenomenon with therapeutical applications. The phenomenon of malignant cells growth enhancement has been considered as an antibody mediated immune process. In a previous paper we have demonstrated in AKR mice the possibility of achieving the growth enhancement of lymphoblastic cells in mixed cultures with normal autologous or isologous splenic cells. Other investigations have been carried out by means of mixed cultures in human leukemias and malignant lymphomas. The intensity of blast-cell proliferation was followed up by comparing the number of colonies and TH3 incorporation in simple cultures with those in mixed cultures. The observations made in the 20 culture systems followed-up over 3-5 and 8-10 days proved the "malignant cell growth enhancement" by the immune mononuclear cells (lymphocytes and macrophages). PMID:6342111

  16. Carrier-free cultured autologous oral mucosa epithelial cell sheet (CAOMECS) for corneal epithelium reconstruction: a histological study.

    PubMed

    Bardag-Gorce, Fawzia; Oliva, Joan; Wood, Andrew; Hoft, Richard; Pan, Derek; Thropay, Jacquelyn; Makalinao, Andrew; French, Samuel W; Niihara, Yutaka

    2015-04-01

    This study investigates the therapeutic effects of carrier-free cultured autologous oral mucosa epithelial cell sheet (CAOMECS) transplantation for experimentally induced severe rabbit limbal stem cell deficiency (LSCD). Buccal biopsies were performed and CAOMECS were cultured and transplanted onto diseased corneas. Six-month follow-up examinations indicated that three out of four corneas with CAOMECS grafts showed a decrease in superficial vascularization, while almost all the sham corneas did not show a similar decrease. H&E staining of corneas showed that CAOMECS transplantation reduced blood vessel invasion of central cornea, reduced lymphocyte infiltration and fibrotic tissue formation. DeltaNp63 stained markedly in the grafted cornea and to a lesser extent in the sham corneas. PCNA and Ki-67 staining were much greater in the sham corneas than in the grafted and normal corneas. K3 and K13 staining demonstrated that CAOMECS transplanted corneas had much more K3- and less K13- positive cells compared to the sham corneas. Muc5AC was decreased in the central region of grafted corneas. Very little alpha-smooth muscle actin (aSMA) staining was detected in grafted corneas, while there was a greater amount of aSMA staining in sham corneas. Staining for anti-angiogenic factor TIMP -3 was also increased, and pro-angiogenic factor MMP-3 was decreased in grafted corneas compared to sham corneas. Our results indicate that CAOMECS grafts resulted in improved epithelialization of the corneal surface and decreased vascularization and fibrosis of the diseased corneas. PMID:25881998

  17. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  18. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  19. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  20. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  1. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-05-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18265370

  2. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2007-01-01

    This unit opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18428653

  3. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-05-01

    This unit opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18770828

  4. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2007-08-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:20972966

  5. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-12-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18429293

  6. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-11-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18428384

  7. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  8. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  9. Purified Culture Systems for Bovine Oviductal Stromal Cells

    PubMed Central

    YAMAMOTO, Yuki; KOBAYASHI, Yoshihiko; OKUDA, Kiyoshi

    2013-01-01

    Abstract Isolated stromal cells from the ampullary and isthmic parts of bovine oviductal tissues were cultured in monolayer and spheroid (cell aggregate) systems. Prostaglandin F2? (PGF) plays a crucial role in oviductal contraction and is produced by oviductal epithelial cells in cattle. Since stromal cells of many organs produce PGF, PGF production by bovine oviductal stromal cells was investigated. After PGF synthesis was confirmed, the utility of isolation and culture methods for oviductal stromal cells was evaluated by PGF production in the present study. The homogeneity of the cells was > 99%. PGF production of the cells was increased by tumor necrosis factor-?. The stromal cells aggregated and formed a spheroid by the treatments with several reagents. PGF production was higher in the spheroid culture than in the monolayer culture. The isolation and culture methods described here will facilitate studies of the physiological function of bovine oviductal stromal cells. PMID:24096613

  10. How do culture media influence in vitro perivascular cell behavior?

    PubMed

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra Juliane

    2015-12-01

    Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries. PMID:26179857

  11. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems.

    PubMed

    Pappas, Dimitri

    2016-01-21

    Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function. Microfluidic methods to culture cells have created approaches to provide a range of environments from single-cell analysis to complex three-dimensional devices. In this review we discuss recent advances in tumor cell culture, cancer cell analysis, and advanced studies enabled by microfluidic systems. PMID:26579548

  12. A simple method to quickly and simultaneously purify and enrich intact rat brain microcapillaries and endothelial and glial cells for ex vivo studies and cell culture.

    PubMed

    Lenhard, Thorsten; Hlsermann, Uta; Martinez-Torres, Francisco; Fricker, Gert; Meyding-Lamad, Uta

    2013-06-26

    The blood-brain barrier is morphologically composed of cerebral microcapillary endothelium through its tight junctions. It serves as a mechanical, metabolic and cellular barrier and can also protect the brain from pathogen invasion. Many brain diseases involve a disturbance of blood-brain barrier function either as a consequence of a noxa or as primary failure. In vitro models of the blood-brain barrier are suitable tools to study drug transport, pathogen transmigration and leukocyte diapedesis across the cerebral endothelium. Such models have previously been derived mainly from porcine or bovine brain tissues. We describe here a simple method by which rat cerebral microcapillaries and cells of glial origin can be quickly and simultaneously purified. By using a capillary fragment size restriction method based on glass bead columns different fractions can be separated: vital, long capillary fragments for ex vivo uptake studies and smaller capillary fragments for endothelial culture. Furthermore, fractions can be obtained for astroglial and oligodendroglial cell cultures. With this method both microcapillary enrichment and glial cell purification are quickly achieved, which reduces expenditure, number of required animals and laboratory working time. PMID:23665392

  13. A spore counting method and cell culture model for chlorine disinfection studies of Encephalitozoon syn. Septata intestinalis.

    PubMed

    Wolk, D M; Johnson, C H; Rice, E W; Marshall, M M; Grahn, K F; Plummer, C B; Sterling, C R

    2000-04-01

    The microsporidia have recently been recognized as a group of pathogens that have potential for waterborne transmission; however, little is known about the effects of routine disinfection on microsporidian spore viability. In this study, in vitro growth of Encephalitozoon syn. Septata intestinalis, a microsporidium found in the human gut, was used as a model to assess the effect of chlorine on the infectivity and viability of microsporidian spores. Spore inoculum concentrations were determined by using spectrophotometric measurements (percent transmittance at 625 nm) and by traditional hemacytometer counting. To determine quantitative dose-response data for spore infectivity, we optimized a rabbit kidney cell culture system in 24-well plates, which facilitated calculation of a 50% tissue culture infective dose (TCID(50)) and a minimal infective dose (MID) for E. intestinalis. The TCID(50) is a quantitative measure of infectivity and growth and is the number of organisms that must be present to infect 50% of the cell culture wells tested. The MID is as a measure of a system's permissiveness to infection and a measure of spore infectivity. A standardized MID and a standardized TCID(50) have not been reported previously for any microsporidian species. Both types of doses are reported in this paper, and the values were used to evaluate the effects of chlorine disinfection on the in vitro growth of microsporidia. Spores were treated with chlorine at concentrations of 0, 1, 2, 5, and 10 mg/liter. The exposure times ranged from 0 to 80 min at 25 degrees C and pH 7. MID data for E. intestinalis were compared before and after chlorine disinfection. A 3-log reduction (99.9% inhibition) in the E. intestinalis MID was observed at a chlorine concentration of 2 mg/liter after a minimum exposure time of 16 min. The log(10) reduction results based on percent transmittance-derived spore counts were equivalent to the results based on hemacytometer-derived spore counts. Our data suggest that chlorine treatment may be an effective water treatment for E. intestinalis and that spectrophotometric methods may be substituted for labor-intensive hemacytometer methods when spores are counted in laboratory-based chlorine disinfection studies. PMID:10742198

  14. A Spore Counting Method and Cell Culture Model for Chlorine Disinfection Studies of Encephalitozoon syn. Septata intestinalis

    PubMed Central

    Wolk, D. M.; Johnson, C. H.; Rice, E. W.; Marshall, M. M.; Grahn, K. F.; Plummer, C. B.; Sterling, C. R.

    2000-01-01

    The microsporidia have recently been recognized as a group of pathogens that have potential for waterborne transmission; however, little is known about the effects of routine disinfection on microsporidian spore viability. In this study, in vitro growth of Encephalitozoon syn. Septata intestinalis, a microsporidium found in the human gut, was used as a model to assess the effect of chlorine on the infectivity and viability of microsporidian spores. Spore inoculum concentrations were determined by using spectrophotometric measurements (percent transmittance at 625 nm) and by traditional hemacytometer counting. To determine quantitative dose-response data for spore infectivity, we optimized a rabbit kidney cell culture system in 24-well plates, which facilitated calculation of a 50% tissue culture infective dose (TCID50) and a minimal infective dose (MID) for E. intestinalis. The TCID50 is a quantitative measure of infectivity and growth and is the number of organisms that must be present to infect 50% of the cell culture wells tested. The MID is as a measure of a system's permissiveness to infection and a measure of spore infectivity. A standardized MID and a standardized TCID50 have not been reported previously for any microsporidian species. Both types of doses are reported in this paper, and the values were used to evaluate the effects of chlorine disinfection on the in vitro growth of microsporidia. Spores were treated with chlorine at concentrations of 0, 1, 2, 5, and 10 mg/liter. The exposure times ranged from 0 to 80 min at 25°C and pH 7. MID data for E. intestinalis were compared before and after chlorine disinfection. A 3-log reduction (99.9% inhibition) in the E. intestinalis MID was observed at a chlorine concentration of 2 mg/liter after a minimum exposure time of 16 min. The log10 reduction results based on percent transmittance-derived spore counts were equivalent to the results based on hemacytometer-derived spore counts. Our data suggest that chlorine treatment may be an effective water treatment for E. intestinalis and that spectrophotometric methods may be substituted for labor-intensive hemacytometer methods when spores are counted in laboratory-based chlorine disinfection studies. PMID:10742198

  15. Dicistronic binary vector system-A versatile tool for gene expression studies in cell cultures and plants.

    PubMed

    Ali, Zahid; Schumacher, Heinz Martin; Heine-Dobbernack, Elke; El-Banna, Antar; Hafeez, Fauzia Yusuf; Jacobsen, Hans-Jrg; Kiesecker, Heiko

    2010-01-01

    Dicistronic binary vector constructs based on pGreenII vectors for Agrobacterium mediated gene transfer alleviate the translational expression monitoring of a target gene in plants. The functionality of the transformation vectors was proven by marker gene constructs containing a mannopine synthase promoter (p-MAS) fused to a beta-glucuronidase (gus) gene followed by an internal ribosome entry site and a firefly luciferase (luc) gene. The cap-dependent translation of a physically independent target protein can be monitored by the cap-independently co-translated luciferase, because both mRNAs are located on the same strand. Among three different IRES elements, the tobamo IRES element showed highest activity in transient expression. As a proof of principle for physiological studies the gus gene was replaced by a sodium antiporter gene (Atnhx1). Comparative studies with Atnhx1 transgenic luc expressing tobacco cell cultures and pea plants (Pisum sativum L.) showed improved salt tolerance in relation to their wild type counterparts grown under corresponding conditions. A coincidence of the luc gene expression and increased sodium chloride tolerance is demonstrated by measurement of luminescence and cell growth. PMID:19835918

  16. Progress Towards Drosophila Epithelial Cell Culture

    PubMed Central

    Simcox, Amanda

    2015-01-01

    Drosophila epithelial research is at the forefront of the field; however, there are no well-characterized epithelial cell lines that could provide a complementary in vitro model for studies conducted in vivo. Here, a protocol is described that produces epithelial cell lines. The method uses genetic manipulation of oncogenes or tumor suppressors to induce embryonic primary culture cells to rapidly progress to permanent cell lines. It is, however, a general method and the type of cells that comprise a given line is not controlled experimentally. Indeed, only a small fraction of the lines produced are epithelial in character. For this reason, additional work needs to be done to develop a more robust epithelial cell-specific protocol. It is expected that Drosophila epithelial cell lines will have great utility for in vitro analysis of epithelial biology, particularly high-throughput analyses such as RNAi screens. PMID:23097097

  17. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  18. Chromosome-wide aneuploidy study of cultured circulating myeloid progenitor cells from workers occupationally exposed to formaldehyde

    PubMed Central

    Lan, Qing; Smith, Martyn T.; Tang, Xiaojiang; Guo, Weihong; Vermeulen, Roel; Ji, Zhiying; Hu, Wei; Hubbard, Alan E.; Shen, Min; McHale, Cliona M.; Qiu, Chuangyi; Liu, Songwang; Reiss, Boris; Beane-Freeman, Laura; Blair, Aaron; Ge, Yichen; Xiong, Jun; Li, Laiyu; Rappaport, Stephen M.; Huang, Hanlin; Rothman, Nathaniel; Zhang, Luoping

    2015-01-01

    Formaldehyde (FA) is an economically important industrial chemical to which millions of people worldwide are exposed environmentally and occupationally. Recently, the International Agency for Cancer Research concluded that there is sufficient evidence that FA causes leukemia, particularly myeloid leukemia. To evaluate the biological plausibility of this association, we employed a chromosome-wide aneuploidy study approach, which allows the evaluation of aneuploidy and structural chromosome aberrations (SCAs) of all 24 chromosomes simultaneously, to analyze cultured myeloid progenitor cells from 29 workers exposed to relatively high levels of FA and 23 unexposed controls. We found statistically significant increases in the frequencies of monosomy, trisomy, tetrasomy and SCAs of multiple chromosomes in exposed workers compared with controls, with particularly notable effects for monosomy 1 [P = 6.02E-06, incidence rate ratio (IRR) = 2.31], monosomy 5 (P = 9.01E-06; IRR = 2.24), monosomy 7 (P = 1.57E-05; IRR = 2.17), trisomy 5 (P = 1.98E-05; IRR = 3.40) and SCAs of chromosome 5 (P = 0.024; IRR = 4.15). The detection of increased levels of monosomy 7 and SCAs of chromosome 5 is particularly relevant as they are frequently observed in acute myeloid leukemia. Our findings provide further evidence that leukemia-related cytogenetic changes can occur in the circulating myeloid progenitor cells of healthy workers exposed to FA, which may be a potential mechanism underlying FA-induced leukemogenesis. PMID:25391402

  19. Monolayers of porcine alveolar epithelial cells in primary culture as an in vitro model for drug absorption studies.

    PubMed

    Steimer, Anne; Franke, Helmut; Haltner-Ukomado, Eleonore; Laue, Michael; Ehrhardt, Carsten; Lehr, Claus-Michael

    2007-06-01

    Filter-grown monolayers of porcine alveolar epithelial cells (pAEpC) in primary culture have been characterized as an in vitro model for pulmonary absorption screening of xenobiotics, including substrates of efflux systems. Experimental conditions and a protocol for transport experiments were optimized using transepithelial electrical resistances (TEER) and permeability of marker compounds as acceptance criteria. Since new drugs often feature poor water solubility, monolayer integrity in the presence of a solubilizer (dimethyl sulfoxide) was tested. Transport studies were carried out with budesonide and triamcinolone acetonide, i.e., two drugs commonly administered to the lungs. Furthermore, expression of P-glycoprotein (P-gp) was assessed by immunofluorescence microscopy and transport studies employing the substrates rhodamine 123 and digoxin. Hydrocortisone-supplemented (0.5 microg/ml) small airway basal medium as transport buffer and a maximal solubilizer concentration of 1.5% dimethyl sulfoxide were found to provide suitable conditions for drug transport studies across pAEpC, as reflected, e.g., by a minimum TEER of 600 Omega cm(2). Permeation of marker compounds was reproducible throughout several cell preparations and proved the model successful in distinguishing between low- and high-permeable drugs. P-gp expression was confirmed by immunocytochemistry, even though transport studies revealed no polarity in transepithelial marker transport. In conclusion, our results demonstrate that filter-grown monolayers of pAEpC can be used to study drug transport across alveolar epithelial barrier and thus, may represent a suitable in vitro model for pulmonary drug absorption and delivery. PMID:17267190

  20. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture

    PubMed Central

    Tibbitt, Mark W.; Anseth, Kristi S.

    2010-01-01

    Methods for culturing mammalian cells ex vivo are increasingly needed to study cell and tissue physiology and to grow replacement tissue for regenerative medicine. Two-dimensional culture has been the paradigm for typical in vitro cell culture; however, it has been demonstrated that cells behave more natively when cultured in three-dimensional environments. Permissive, synthetic hydrogels and promoting, natural hydrogels have become popular as three-dimensional cell culture platforms; yet, both of these systems possess limitations. In this perspective, we discuss the use of both synthetic and natural hydrogels as scaffolds for three-dimensional cell culture as well as synthetic hydrogels that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix. Ultimately, advances in synthetic–biologic hydrogel hybrids are needed to provide robust platforms for investigating cell physiology and fabricating tissue outside of the organism. PMID:19472329

  1. Centrifugation of Cultured Osteoblasts And Macrophages as a Model To Study How Gravity Regulates The Function of Skeletal Cells

    NASA Technical Reports Server (NTRS)

    Globus, Ruth K.; Searby, Nancy D.; Almeida, Eduardo A. C.; Sutijono, Darrell; Yu, Joon-Ho; Malouvier, Alexander; Doty, Steven B.; Morey-Holton, Emily; Weinstein, Steven L.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    Mechanical loading helps define the architecture of weight-bearing bone via the tightly regulated process of skeletal turnover. Turnover occurs by the concerted activity of osteoblasts, responsible for bone formation. and osteoclasts, responsible for bone resorption. Osteoclasts are specialized megakaryon macrophages, which differentiate from monocytes in response to resorption stimuli, such as reduced weight-bearing. Habitation in space dramatically alters musculoskeletal loading, which modulates both cell function and bone structure. Our long-term objective is to define the molecular and cellular mechanisms that mediate skeletal adaptations to altered gravity environments. Our experimental approach is to apply hypergravity loads by centrifugation to rodents and cultured cells. As a first step, we examined the influence of centrifugation on the structure of cancellous bone in rats to test the ability of hypergravity to change skeletal architecture. Since cancellous bone undergoes rapid turnover we expected the most dramatic structural changes to occur in the shape of trabeculae of weight-bearing, cancellous bone. To define the cellular responses to hypergravity loads, we exposed cultured osteoblasts and macrophages to centrifugation. The intraosseous and intramedullary pressures within long bones in vivo reportedly range from 12-40 mm Hg, which would correspond to 18-59 gravity (g) in our cultures. We assumed that hydrostatic pressure from the medium above the cell layer is at least one major component of the mechanical load generated by centrifuging cultured cells. and therefore we exposed the cells to 10-50g. In osteoblasts, we examined the structure of their actin and microtubule networks, production of prostaglandin E2 (PGE2), and cell survival. Analysis of the shape of the cytoskeletal networks provides evidence for the ability of centrifugation to affect cell structure, while the production of PGE2 serves as a convenient marker for mechanical stimulation. We examined cell survival, reasoning that osteoblasts might mold skeletal structure in a hypergravity environment in part by regulating apoptosis and thus the duration of osteoblast productivity. Finally, we tested the influence of centrifugation on microbial activation of a macrophage cell line (RAW264.7). In response to the appropriate hormonal stimulation, this cell line is reportedly capable of undergoing differentiation to express osteoclast markers. In addition, a component of the cell wall of gram-negative bacteria, lipopolysaccaride (LPS), stimulates the formation of osteoclasts in vivo. Thus we tested the influence on centrifugation on RAW264.7 cells stimulated with LPS to provide an index of the function of osteoclast precursors.

  2. Cell culture metabolomics in the diagnosis of lung cancer-the influence of cell culture conditions.

    PubMed

    Kalluri, U; Naiker, M; Myers, M A

    2014-06-01

    Lung cancer is the leading cause of cancer deaths. Unfortunately, lung cancer is often diagnosed only when it becomes symptomatic or at an advanced stage when few treatment options are available. Hence, a diagnostic test suitable for screening widespread populations is required to enable earlier diagnosis. Analysis of exhaled breath provides a non-invasive method for early detection of lung cancer. Analysis of volatile organic compounds (VOCs) by various mass spectral techniques has identified potential biomarkers of disease. Nevertheless, the metabolic origins and the disease specificity of VOCs need further elucidation. Cell culture metabolomics can be used as a bottom-up approach to identify biomarkers of pathological conditions and can also be used to study the metabolic pathways that produce such compounds. This paper summarizes the current knowledge of lung cancer biomarkers in exhaled breath and emphasizes the critical role of cell culture conditions in determining the VOCs produced in vitro. Hypoxic culture conditions more closely mimic the conditions of cancer cell growth in vivo. We propose that since hypoxia influences cell metabolism and so potentially the VOCs that the cancer cells produce, the cell culture metabolomics projects should consider culturing cancer cells in hypoxic conditions. PMID:24861817

  3. Gonococcal and meningococcal pathogenesis as defined by human cell, cell culture, and organ culture assays.

    PubMed Central

    Stephens, D S

    1989-01-01

    Human cells, cell cultures, and organ cultures have been extremely useful for studying the events that occur when gonococci and meningococci encounter human mucosal surfaces. The specificity and selectivity of these events for human cells are striking and correlate with the adaptation of these pathogens for survival on human mucous membranes. To colonize these sites, meningococci and gonococci have developed mechanisms to damage local host defenses such as the mucociliary blanket, to attach to epithelial cells, and to invade these cells. Attachment to epithelial cells mediated by pili, and to some types of cells mediated by PIIs, serves to anchor the organism close to sources of nutrition and allows multiplication. Intracellular invasion, possibly initiated by the major porin protein, may provide additional nutritional support and protection from host defenses. Mucosal invasion may also result in access of gonococci and meningococci to the bloodstream, leading to dissemination. Images PMID:2497953

  4. Skeletal muscle satellite cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Molnar, Greg; Hartzell, Charles R.; Schroedl, Nancy A.; Gonda, Steve R.

    1993-01-01

    Satellite cells are postnatal myoblasts responsible for providing additional nuclei to growing or regenerating muscle cells. Satellite cells retain the capacity to proliferate and differentiate in vitro and therefore provide a useful model to study postnatal muscle development. Most culture systems used to study postnatal muscle development are limited by the two-dimensional (2-D) confines of the culture dish. Limiting proliferation and differentiation of satellite cells in 2-D could potentially limit cell-cell contacts important for developing the level of organization in skeletal muscle obtained in vivo. Culturing satellite cells on microcarrier beads suspended in the High-Aspect-Ratio-Vessel (HARV) designed by NASA provides a low shear, three-dimensional (3-D) environment to study muscle development. Primary cultures established from anterior tibialis muscles of growing rats (approximately 200 gm) were used for all studies and were composed of greater than 75 % satellite cells. Different inoculation densities did not affect the proliferative potential of satellite cells in the HARV. Plating efficiency, proliferation, and glucose utilization were compared between 2-D flat culture and 3-D HARV culture. Plating efficiency (cells attached - cells plated x 100) was similar between the two culture systems. Proliferation was reduced in HARV cultures and this reduction was apparent for both satellite cells and non-satellite cells. Furthermore, reduction in proliferation within the HARV could not be attributed to reduced substrate availability since glucose levels in media from HARV and 2-D cell culture were similar. Morphologically, microcarrier beads within the HARVS were joined together by cells into three-dimensional aggregates composed of greater than 10 beads/aggregate. Aggregation of beads did not occur in the absence of cells. Myotubes were often seen on individual beads or spanning the surface of two beads. In summary, proliferation and differentiation of satellite cells on microcarrier beads within the HARV bioreactor results in a three dimensional level of organization that could provide a more suitable model to study postnatal muscle development.

  5. Nanotechnology in drug delivery: the need for more cell culture based studies in screening

    PubMed Central

    2014-01-01

    Advances in biomedical science are leading to upsurge synthesis of nanodelivery systems for drug delivery. The systems were characterized by controlled, targeted and sustained drug delivery ability. Humans are the target of these systems, hence, animals whose systems resembles humans were used to predict outcome. Thus, increasing costs in money and time, plus ethical concerns over animal usage. However, with consideration and planning in experimental conditions, in vitro pharmacological studies of the nanodelivery can mimic the in vivo system. This can function as a simple method to investigate the effect of such materials without endangering animals especially at screening phase. PMID:25057288

  6. Performance of enzymatic fuel cell in cell culture.

    PubMed

    Lamberg, P; Shleev, S; Ludwig, R; Arnebrant, T; Ruzgas, T

    2014-05-15

    Here we present the very first study of an enzymatic fuel cell (EFC) in a cell culture. An EFC with Corynascus thermophilus cellobiose dehydrogenase (CDH) based bioanode and Myrothecium verrucaria bilirubin oxidase (BOx) based biocathode was constructed at the bottom of a medusa cell culture plate. The constructed EFC had a power density of up to 25 ?W cm(-2) at 0.5 V potential in simple buffer solution and in cell culturing medium. L929 murine fibroblast cells were seeded on top of the EFC and possible effects of the EFC on the cells and vice versa were studied. It was shown that on average the power of the EFC drops by about 70% under a nearly confluent layer of cells. The EFC appeared to have a toxic effect on the L929 cell line. It was concluded that the bioanode, consisting of CDH, produced hydrogen peroxide at toxic concentrations. However, the toxic effect was circumvented by co-immobilizing catalase on the bioanode. PMID:24374299

  7. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8.

    PubMed

    Eto, Akiko; Saito, Tomoya; Yokote, Hiroyuki; Kurane, Ichiro; Kanatani, Yasuhiro

    2015-11-01

    LC16m8 is a live, attenuated, cell-cultured smallpox vaccine that was developed and licensed in Japan in the 1970s, but was not used in the campaign to eradicate smallpox. In the early 2000s, the potential threat of bioterrorism led to reconsideration of the need for a smallpox vaccine. Subsequently, LC16m8 production was restarted in Japan in 2002, requiring re-evaluation of its safety and efficacy. Approximately 50,000 children in the 1970s and about 3500 healthy adults in the 2000s were vaccinated with LC16m8 in Japan, and 153 adults have been vaccinated with LC16m8 or Dryvax in phase I/II clinical trials in the USA. These studies confirmed the safety and efficacy of LC16m8, while several studies in animal models have shown that LC16m8 protects the host against viral challenge. The World Health Organization Strategic Advisory Group of Experts on Immunization recommended LC16m8, together with ACAM2000, as a stockpile vaccine in 2013. In addition, LC16m8 is expected to be a viable alternative to first-generation smallpox vaccines to prevent human monkeypox. PMID:26319072

  8. Dynamic cell culture system (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  9. Cell culture techniques in honey bee research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell culture techniques are indispensable in most if not all life science disciplines to date. Wherever cell culture models are lacking scientific development is hampered. Unfortunately this has been and still is the case in honey bee research because permanent honey bee cell lines have not yet been...

  10. Cell Culture as an Alternative in Education.

    ERIC Educational Resources Information Center

    Nardone, Roland M.

    1990-01-01

    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  11. Purification and partial characterization of a peroxidase from plant cell cultures of Cassia didymobotrya and biotransformation studies.

    PubMed Central

    Vitali, A; Botta, B; Delle Monache, G; Zappitelli, S; Ricciardi, P; Melino, S; Petruzzelli, R; Giardina, B

    1998-01-01

    An acidic peroxidase (EC 1.11.1.7) produced by cell suspension cultures of Cassia didymobotrya (wild senna) was purified from culture medium collected on the 29th day. The enzyme was shown to be a glycoprotein with a pI of 3.5, a molecular mass of approx. 43 kDa by SDS/PAGE and 50 kDa by gel filtration. The N-terminal sequence was very similar to those of other plant peroxidases. The peroxidase was characterized by a high specificity towards coniferyl alcohol and other natural phenolics such as guaiacol and ferulic and caffeic acids. These findings suggest that the enzyme is involved in lignification processes of the cell wall. Moreover, the enzyme was able to catalyse the oxidation of 4,3',4'-trihydroxychalcone and 4, 3',4'-trihydroxy-3-methoxychalcone to the corresponding 3, 3'-biflavanones, as mixtures of racemic and meso forms. PMID:9531492

  12. Purification and partial characterization of a peroxidase from plant cell cultures of Cassia didymobotrya and biotransformation studies.

    PubMed

    Vitali, A; Botta, B; Delle Monache, G; Zappitelli, S; Ricciardi, P; Melino, S; Petruzzelli, R; Giardina, B

    1998-04-15

    An acidic peroxidase (EC 1.11.1.7) produced by cell suspension cultures of Cassia didymobotrya (wild senna) was purified from culture medium collected on the 29th day. The enzyme was shown to be a glycoprotein with a pI of 3.5, a molecular mass of approx. 43 kDa by SDS/PAGE and 50 kDa by gel filtration. The N-terminal sequence was very similar to those of other plant peroxidases. The peroxidase was characterized by a high specificity towards coniferyl alcohol and other natural phenolics such as guaiacol and ferulic and caffeic acids. These findings suggest that the enzyme is involved in lignification processes of the cell wall. Moreover, the enzyme was able to catalyse the oxidation of 4,3',4'-trihydroxychalcone and 4, 3',4'-trihydroxy-3-methoxychalcone to the corresponding 3, 3'-biflavanones, as mixtures of racemic and meso forms. PMID:9531492

  13. Three-Dimensional Cell Culture: A Breakthrough in Vivo

    PubMed Central

    Antoni, Delphine; Burckel, Hélène; Josset, Elodie; Noel, Georges

    2015-01-01

    Cell culture is an important tool for biological research. Two-dimensional cell culture has been used for some time now, but growing cells in flat layers on plastic surfaces does not accurately model the in vivo state. As compared to the two-dimensional case, the three-dimensional (3D) cell culture allows biological cells to grow or interact with their surroundings in all three dimensions thanks to an artificial environment. Cells grown in a 3D model have proven to be more physiologically relevant and showed improvements in several studies of biological mechanisms like: cell number monitoring, viability, morphology, proliferation, differentiation, response to stimuli, migration and invasion of tumor cells into surrounding tissues, angiogenesis stimulation and immune system evasion, drug metabolism, gene expression and protein synthesis, general cell function and in vivo relevance. 3D culture models succeed thanks to technological advances, including materials science, cell biology and bioreactor design. PMID:25768338

  14. Primary cell culture method for the honeybee Apis mellifera.

    PubMed

    Ju, Hyunhee; Ghil, Sungho

    2015-10-01

    Honeybees are among the most important pollinators in nature, and honeybee-associated products are useful in various areas, including the food industry. However, honeybees may be infected by various types of pathogens. The study of honeybee-associated diseases would greatly benefit from a successful cell culture system, but although some honeybee cell culture techniques have been introduced, these methods have not yet been fully established. Here, we describe a primary cell culture method for the honeybee, Apis mellifera. We isolated, sterilized, and seeded egg cells into non-coated cell culture dishes to generate cell aggregates. After approximately 10d, aggregates were dissociated and seeded to cell culture dishes. Cell passages were continuously performed, with sub-culturing every 3-4d. The cells expressed non-adherent phenotypes. Their growth increased with the passage number when they were cultured in growth medium based on L-15 insect medium but not Schneider's insect medium. Finally, polymerase chain reaction confirmed that the cells originated from A. mellifera. Our results suggest that the culturing methods described herein are appropriate for isolating primary cells from honeybee eggs. These methods could thus facilitate the study of honeybee-associated pathogenesis, development, and toxicology. PMID:26138241

  15. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies

    EPA Science Inventory

    Human adenovirus is relatively resistant to UV radiation and has been used as a conservative testing microbe for evaluations of UV disinfection systems as components of water treatment processes. In this study, we attempted to validate the applicability of integrated cell culture...

  16. Seed coat removal improves Fe bioavailability in cooked lentils: studies using an in vitro digestion/Caco-2 cell culture model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the range of Fe concentration and relative Fe bioavailability of 24 varieties of cooked lentils, as well as the impact of seed coat removal on lentil Fe nutritional quality. Relative Fe bioavailability was assessed by the in vitro/Caco-2 cell culture method. While Fe concentrat...

  17. Osteogenic differentiation of CD271+ cells from rabbit bone marrow cultured on three phase PCL/TZ-HA bioactive scaffolds: comparative study with mesenchymal stem cells (MSCs)

    PubMed Central

    Colosimo, Alessia; Rofani, Cristina; Ciraci, Elisa; Salerno, Aurelio; Oliviero, Maria; Maio, Ernesto Di; Iannace, Salvatore; Netti, Paolo A; Velardi, Francesco; Berardi, Anna C

    2015-01-01

    Tissue engineering is one of the major challenges of orthopedics and trauma surgery for bone regeneration. Biomaterials filled with mesenchymal stem cells (MSCs) are considered the most promising approach in bone tissue engineering. Furthermore, our previous study showed that the multi-phase poly [?-caprolactone]/thermoplastic zein-hydroxyapatite (PCL/TZ-HA) biomaterials improved rabbit (r) MSCs adhesion and osteoblast differentiation, thus demonstrating high potential of this bioengineered scaffold for bone regeneration. In the recent past, CD271 has been applied as a specific selective marker for the enrichment of MSCs from bone marrow (BM-MSCs). In the present study, we aimed at establishing whether CD271-based enrichment could be an efficient method for the selection of rBM-MSCs, displaying higher ability in osteogenic differentiation than non-selected rBM-MSCs in an in vitro system. CD271+ cells were isolated from rabbit bone marrow and were compared with rMSCs in their proliferation rate and osteogenic differentiation capability. Furthermore, rCD271+ cells were tested in their ability to adhere, proliferate and differentiate into osteogenic lineage, while growing on PCL/TZ-HA scaffolds, in comparison to rMSCs. Our result demonstrate that rCD271+ cells were able to adhere, proliferate and differentiate into osteoblasts when cultured on PCL/TZ-HA scaffolds in significantly higher levels as compared to rMSCs. Based on these findings, CD271 marker might serve as an optimal alternative MSCs selection method for the potential preclinical and clinical application of these cells in bone tissue regeneration. PMID:26550238

  18. Polydimethylsiloxane SlipChip for mammalian cell culture applications.

    PubMed

    Chang, Chia-Wen; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2015-11-01

    This paper reports a polydimethylsiloxane (PDMS) SlipChip for in vitro cell culture applications, multiple-treatment assays, cell co-cultures, and cytokine detection assays. The PDMS SlipChip is composed of two PDMS layers with microfluidic channels on each surface that are separated by a thin silicone fluid (Si-fluid) layer. The integration of Si-fluid enables the two PDMS layers to be slid to different positions; therefore, the channel patterns can be re-arranged for various applications. The SlipChip design significantly reduces the complexity of sample handling, transportation, and treatment processes. To apply the developed SlipChip for cell culture applications, human lung adenocarcinoma epithelial cells (A549) and lung fibroblasts (MRC-5) were cultured to examine the biocompatibility of the developed PDMS SlipChip. Moreover, embryonic pluripotent stem cells (ES-D3) were also cultured in the device to evaluate the retention of their stemness in the device. The experimental results show that cell morphology, viability and proliferation are not affected when the cells are cultured in the SlipChip, indicating that the device is highly compatible with mammalian cell culture. In addition, the stemness of the ES-D3 cells was highly retained after they were cultured in the device, suggesting the feasibility of using the SlipChip for stem cell research. Various cell experiments, such as simultaneous triple staining of cells and co-culture of MRC-5 with A549 cells, were also performed to demonstrate the functionalities of the PDMS SlipChip. Furthermore, we used a cytokine detection assay to evaluate the effect of endotoxin (lipopolysaccharides, LPS) treatment on the cytokine secretion of A549 cells using the SlipChip. The developed PDMS SlipChip provides a straightforward and effective platform for various on-chip in vitro cell cultures and consequent analysis, which is promising for a number of cell biology studies and biomedical applications. PMID:26381390

  19. Three-dimensional tissue culture based on magnetic cell levitation.

    PubMed

    Souza, Glauco R; Molina, Jennifer R; Raphael, Robert M; Ozawa, Michael G; Stark, Daniel J; Levin, Carly S; Bronk, Lawrence F; Ananta, Jeyarama S; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A; Gelovani, Juri G; Killian, T C; Arap, Wadih; Pasqualini, Renata

    2010-04-01

    Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies. PMID:20228788

  20. Three-dimensional Tissue Culture Based on Magnetic Cell Levitation

    PubMed Central

    Souza, Glauco R.; Molina, Jennifer R.; Raphael, Robert M.; Ozawa, Michael G.; Stark, Daniel J.; Levin, Carly S.; Bronk, Lawrence F.; Ananta, Jeyarama S.; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A.; Gelovani, Juri G.

    2015-01-01

    Cell culture is an essential tool for drug discovery, tissue engineering, and stem cell research. Conventional tissue culture produces two-dimensional (2D) cell growth with gene expression, signaling, and morphology that can differ from those in vivo and thus compromise clinical relevancy1–5. Here we report a three-dimensional (3D) culture of cells based on magnetic levitation in the presence of hydrogels containing gold and magnetic iron oxide (MIO) nanoparticles plus filamentous bacteriophage. This methodology allows for control of cell mass geometry and guided, multicellular clustering of different cell types in co-culture through spatial variance of the magnetic field. Moreover, magnetic levitation of human glioblastoma cells demonstrates similar protein expression profiles to those observed in human tumor xenografts. Taken together, these results suggest levitated 3D culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and allows for long-term multi-cellular studies. PMID:20228788

  1. Cell culture, oxidative stress, and antioxidants: avoiding pitfalls.

    PubMed

    Halliwell, Barry

    2014-01-01

    Cell culture is widely used by biochemists and cell/molecular biologists, but the fluctuating (and often elevated) levels of O 2 to which cells in culture are exposed can affect many of their properties. So can the low level of antioxidants found in some cell culture media. Reagents, especially "antioxidants," added to cell culture media can react with the constituents of the media to produce H 2 O 2 and degradation products that can influence cell behavior. Several published papers describing the cellular effects of ascorbate, polyphenols, and carotenoids have, in fact, reported artifacts due to the actions of the degradation products of these "antioxidants." A greater awareness of the potential artifacts in cell culture studies is needed among the free radical/antioxidant community. PMID:24923566

  2. Plant Tissue Culture Studies.

    ERIC Educational Resources Information Center

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  3. Alterations in nonspecific cross-reacting antigen localization during cell culture. An immunoelectron microscopic study using a human lung adenocarcinoma cell line.

    PubMed

    Suemizu, H; Tsutsumi, Y; Watanabe, K; Kuroki, M; Matsuoka, Y

    1989-12-01

    Nonspecific cross-reacting antigen (NCA), a constituent of the carcinoembryonic antigen family, was localized ultrastructurally in a human lung adenocarcinoma cell line, PC-9. NCA was distributed predominantly on the plasma membrane in the early phases of cell culture. Deletion of fetal bovine serum (FBS) from the culture medium suppressed cell division without significantly altering cell viability, and induced a dramatic but reversible change in NCA localization. Under these conditions, NCA was localized to membrane degradation products within cytoplasmic vesicles and vacuoles. Acid phosphatase activity was also present in some of these intracellular structures. Similar changes in NCA localization were seen in cells cultured with FBS at day 6 when the cells reached a plateau stage of growth. These findings strongly suggest that plasma membrane degradation is accelerated by the cessation of cell growth. Cytoplasmic reactivity for NCA in cancer cells may therefore reflect degradation of plasma membrane-associated NCA and may not necessarily be correlated with increased systhesis of this glycoprotein. PMID:2624104

  4. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system

    PubMed Central

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-01-01

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells. PMID:26573336

  5. Fetal Leydig cell culture--an in vitro system for the study of trophic hormone and GnRH receptors and actions.

    PubMed

    Dufau, M L; Knox, G F

    1985-11-01

    In fetal and neonatal rat Leydig cells cultured in the presence of LH, gonadotropin and GnRH receptors and acute testosterone responses to hCG, were maintained for up to 78 days. Addition of GnRH agonists markedly inhibited steroid production in LH-treated cultures, and abolished the acute testosterone response to hCG. GnRH receptors were not detectable in fetal testes but were present post-natally and increased markedly with age. In cultured fetal testis, GnRH receptors were detected on the third day, and were increased by exposure to GnRH agonists. In LH-treated cultures, GnRH sites were reduced by about 50% and did not increase during incubation with GnRH agonists. LH supported 17 alpha-hydroxylase/17-20 desmolase activities and pregnenolone formation were observed in short (1-4 days) and long-term cultures. Also, LH stimulation of 3 beta-hydroxysteroid dehydrogenase was observed by histochemical studies at 7 days of culture. GnRH agonists inhibited LH dependent steroid production in a dose-dependent fashion and abolished the acute testosterone response to human chorionic gonadotropin. The major component of the steroid inhibitory effect of GnRH agonist occurs beyond cAMP production. A distal lesion of the microsomal enzymes of the androgen pathway is largely responsible for the GnRH-induced decreases in LH-supported androgen production. The expression of functional GnRH receptors during culture and their suppression by LH suggest that pituitary gonadotropins exert a tonic inhibitory effect upon testicular GnRH receptors. The presence of functional GnRH receptors and inhibitory actions in cultured fetal and neonatal Leydig cells indicates that GnRH-related peptides can influence the actions of gonadotropins on the fetal Leydig cell population. PMID:3001417

  6. Culture of Cells from Amphibian Embryos.

    ERIC Educational Resources Information Center

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  7. Acetaldehyde and hexanaldehyde from cultured white cells

    PubMed Central

    Shin, Hye-Won; Umber, Brandon J; Meinardi, Simone; Leu, Szu-Yun; Zaldivar, Frank; Blake, Donald R; Cooper, Dan M

    2009-01-01

    Background Noninvasive detection of innate immune function such as the accumulation of neutrophils remains a challenge in many areas of clinical medicine. We hypothesized that granulocytes could generate volatile organic compounds. Methods To begin to test this, we developed a bioreactor and analytical GC-MS system to accurately identify and quantify gases in trace concentrations (parts per billion) emitted solely from cell/media culture. A human promyelocytic leukemia cell line, HL60, frequently used to assess neutrophil function, was grown in serum-free medium. Results HL60 cells released acetaldehyde and hexanaldehyde in a time-dependent manner. The mean ± SD concentration of acetaldehyde in the headspace above the cultured cells following 4-, 24- and 48-h incubation was 157 ± 13 ppbv, 490 ± 99 ppbv, 698 ± 87 ppbv. For hexanaldehyde these values were 1 ± 0.3 ppbv, 8 ± 2 ppbv, and 11 ± 2 ppbv. In addition, our experimental system permitted us to identify confounding trace gas contaminants such as styrene. Conclusion This study demonstrates that human immune cells known to mimic the function of innate immune cells, like neutrophils, produce volatile gases that can be measured in vitro in trace amounts. PMID:19402909

  8. Particle Trajectories in Rotating Wall Cell Culture Devices

    NASA Technical Reports Server (NTRS)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  9. Correlated mass spectrometry imaging and confocal Raman microscopy for studies of three-dimensional cell culture sections.

    PubMed

    Ahlf, Dorothy R; Masyuko, Rachel N; Hummon, Amanda B; Bohn, Paul W

    2014-09-21

    A novel method of correlated imaging, combining confocal Raman microscopy (CRM) and matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) was developed in order to investigate the structural and chemical diversity inherent in three-dimensional (3D) cell cultures. These 3D spheroidal cell cultures are high throughput in vitro model systems that recapitulate some of the chemical and physiological gradients characteristic of tissues. As a result, they are ideal for testing new imaging approaches due to the native diversity of cellular phenotypes found within a single culture. Individually, confocal Raman microscopy (CRM) and mass spectrometry imaging (MSI) produce different kinds of chemical information. CRM imaging reveals differences in cellular integrity and protein secretion across a typical near-equatorial transverse slice, while MSI shows localization of small molecules to discrete regions of the spheroid section. Correlating information obtained from these disparate imaging methods begins with an external fiducial mask, added to the spheroidal samples to orient image acquisition on the two orthogonal platforms. Rather than combine the images directly, principal component analysis is used to reveal the most chemically-informative elements, which are then combined using digital image correlation. Using this approach, relationships between the principal components of each method are visualized so that they may be compared on commensurate spatial length scales. PMID:25030970

  10. Fish Rhabdovirus Replication in Non-Piscine Cell Culture: New System for the Study of Rhabdovirus-Cell Interaction in Which the Virus and Cell Have Different Temperature Optima

    PubMed Central

    Clark, H Fred; Soriano, Elvira Z.

    1974-01-01

    The replication of three rhabdoviruses associated with diseases of fish has been demonstrated in cells of continuously cultivated non-piscine cell lines. Spring viremia of carp (SVC) virus and the salmonid fish viruses, Egtved and infectious hematopoietic necrosis virus, all replicated in mammalian WI-38 (human diploid cell strain) and BHK/21 cells and in cells of one or more reptilian cell lines at the temperatures commonly used to propagate these viruses in fish cells. The infections were cytopathic: SVC virus plaque assays may be performed in several types of mammalian cell culture. “Autointerference” apparently mediated by abortive “T” particle formation was observed during serial nondiluted passages of SVC virus in BHK/21 and TH1 cells, but not in RTG-2 or WI-38 cells. Optimal temperatures for replication of SVC and Egtved viruses in BHK/21 cells were identical to those determined in poikilothermic vertebrate cell cultures. However, these viruses replicated relatively more efficiently at suboptimal temperatures in “cold-blooded” vertebrate cells than in the hamster cells. Studies of [3H]uridine incorporation into uninfected BHK/21 cells incubated at different temperatures revealed that [3H]uridine uptake is sharply reduced at temperatures below 24.5 C. Growth curve studies of SVC virus in BHK/21 cells incubated at 23 C revealed that a clear-cut large excess of virus-induced [3H]uridine incorporation could be demonstrated in the absence of actinomycin D. Actinomycin D treatment (1 μg/ml) led to efficient inhibition of control cell [3H]uridine uptake, but also markedly reduced the total counts per minute of virus-induced [3H]uridine uptake, without depressing the yield of released infectious virus. Actinomycin D added to SVC virus-infected BHK/21 cell cultures at concentrations as low as 0.01 μg/ml caused a significant decrease in the level of virus-induced [3H]uridine uptake, despite the fact that this concentration is insufficient to efficiently suppress “background” cellular [3H]uridine incorporation. Images PMID:4210338

  11. [The detection of lipofuscin in a culture of hybridoma cells].

    PubMed

    Tatariunas, A B; Popov, V I; Mantsygin, Iu A; Karnaukhov, V N

    1990-03-01

    Lipofuscin granules (LG) are found in the cultured hybridoma cells producing monoclonal antibodies to phage. LG have been studied using light and electron microscopy. Luminescent spectra of LG clusters in hybridoma cells are presented. The increase of own luminescence intensity of LG in the course of excitation by ultraviolet (365/nm) is shown. The advantages of hybridoma cells culture for investigation of LG on the cell level are discussed. PMID:2364152

  12. [Stem cell factor production from cultured nasal epithelial cells--effect on SCF production by drugs].

    PubMed

    Koyama, Mamoru; Otsuka, Hirokuni; Kusumi, Taeko; Yamauchi, Yoko

    2002-02-01

    We studied whether epithelial cells cultured in serum-free medium contained other cells or not, there were differences in SCF production from cultured nasal epithelial cells between groups of nonallergic and allergic patients, and among degrees of serum mite-CAP RAST classes of allergic patients, and how drugs inhibited SCF production. As a result, no other contaminating cells except mast cell existed in cultured cells. There was a significant difference in SCF production of cultured cells between nonallergic and class 1-2, 3-4, 5-6, and between class 1-2 and 3-4, 5-6 of mite CAP-RAST class. Cyclosporin, prednisolone, fluticasone, ketotifen, and clemastine inhibited SCF production from cultured epithelial cells, but cromoglicate and suplatast did not. Inhibition means the reduction of SCF from cells, not the growth of cultured nasal epithelial cells. PMID:11905054

  13. On the origin of lipofuscin; the iron content of residual bodies, and the relation of these organelles to the lysosomal vacuome. A study on cultured human glial cells

    SciTech Connect

    Brunk, U.T. )

    1989-01-01

    Cultured human glial cells constitute a suitable model system for the study of lipofuscinogenesis in vitro. These cells, although not post-mitotic, can be kept for several months in stable monolayers due to their display of very pronounced density-dependent inhibition of cell growth. Residual bodies, or lipofuscin pigment granules, accumulate over time in this pseudo post-mitotic cell system. I. In early dense cultures, exposed to purified rat liver mitochondriae, it was possible to follow the uptake of mitochondriae and their degradation, which was found to be incomplete and result in the formation of numerous residual bodies containing lipofuscin-type material. It was concluded that incomplete degradation of mitochondriae may be an important origin of lipofuscin. II. Dense, older cultures exposed to electron dense marker particles (colloidal thorium dioxide) accumulated these markers within endosomes, and later in secondary lysosomes of various types, including residual bodies. It was concluded that residual bodies constitute an integral part of the lysosomal vacuome system. III. Phase III glial cells were cultured on formvar-coated gold EM-grids and studied by whole cell transmission electron microscopy using TEM and STEM techniques in combination with energy dispersive X-ray microanalysis. It was found that residual bodies contained iron. This fact was taken as a further indication that lipofuscin has its origin in autophagocytosed mitochondriae and ER-material rich in metallo-enzymes. Due to their high concentration of iron, residual bodies may constitute unstable structures within the cells. Since iron is a well known catalyst of various peroxidative processes, the surrounding lysosomal membrane might be damaged, e.g. by oxidative stress, with risk for leakage of degradative lysosomal enzymes into the cell sap.

  14. Use of an insect cell culture growth medium to isolate bacteria from horses with effusive, fibrinous pericarditis: a preliminary study.

    PubMed

    Jones, Samuel L; Valenzisi, Amy; Sontakke, Sushama; Sprayberry, Kimberly A; Maggi, Ricardo; Hegarty, Barbara; Breitschwerdt, Edward

    2007-03-31

    Effusive, fibrinous pericarditis is an uncommon disease entity in horses. In 2001, pericarditis occurred in conjunction with an epizootic in central Kentucky that was associated with exposure to eastern tent caterpillars (ETCs). Bacterial isolation from equine pericardial fluid samples was attempted using an insect cell culture growth medium (ICCGM). Using previously cultured, stored frozen samples from four horses with fibrinous pericarditis, inoculation of 10% blood agar plates yielded no growth, whereas simultaneous inoculation of ICCGM resulted in the isolation of Proprionibacterium acnes, Staphylococcus equorum, a Streptococcus sp. and Pseudomonas rhodesiae from pericardial fluid samples. A similar or novel caterpillar-associated bacteria was not identified; however, use of an ICCGM might enhance isolation of bacteria from equine pericardial fluid. PMID:17204376

  15. AMMONIA REMOVAL FROM MAMMALIAN CELL CULTURE MEDIUM

    EPA Science Inventory

    Metabolites such as ammonia and lactic formed during mammalian cell culture can frequently be toxic to the cells themselves beyond a threshold concentration of the metabolites. ell culture conducted in the presence of such accumulated metabolites is therefore limited in productiv...

  16. Ascorbic acid transport into cultured pituitary cells

    SciTech Connect

    Cullen, E.I.; May, V.; Eipper, R.A.

    1986-05-01

    An amidating enzyme designated peptidyl-glycine ..cap alpha..-amidating monooxygenase (PAM) has been studied in a variety of tissues and is dependent on molecular oxygen and stimulated by copper and ascorbic acid. To continue investigating the relationship among cellular ascorbic acid concentrations, amidating ability, and PAM activity, the authors studied ascorbic acid transport in three cell preparations that contain PAM and produce amidated peptides: primary cultures of rat anterior and intermediate pituitary and mouse AtT-20 tumor cells. When incubated in 50 ..mu..M (/sup 14/C)ascorbic acid all three cell preparations concentrated ascorbic acid 20- to 40-fold, producing intracellular ascorbate concentrations of 1 to 2 mM, based on experimentally determined cell volumes. All three cell preparations displayed saturable ascorbic acid uptake with half-maximal initial rates occurring between 9 and 18 ..mu..M ascorbate. Replacing NaCl in the uptake buffer with choline chloride significantly diminished ascorbate uptake in all three preparations. Ascorbic acid efflux from these cells was slow, displaying half-lives of 7 hours. Unlike systems that transport dehydroascorbic acid, the transport system for ascorbic acid in these cells was not inhibited by glucose. Thus, ascorbate is transported into pituitary cells by a sodium-dependent, active transport system.

  17. Biochemical Assays of Cultured Cells

    NASA Technical Reports Server (NTRS)

    Barlow, G. H.

    1985-01-01

    Subpopulations of human embryonic kidney cells isolated from continuous flow electrophoresis experiments performed at McDonnell Douglas and on STS-8 have been analyzed. These analyses have included plasminogen activator assays involving indirect methodology on fibrin plated and direct methodology using chromogenic substrates. Immunological studies were performed and the conditioned media for erythropoietin activity and human granulocyte colony stimulating (HGCSF) activity was analyzed.

  18. 3D Culture of MIN-6 Cells on Decellularized Pancreatic Scaffold: In Vitro and In Vivo Study

    PubMed Central

    Wu, Di; Wan, Jian; Huang, Yan; Guo, Yibing; Xu, Tianxin; Zhu, Mingyan; Fan, Xiangjun; Zhu, Shajun; Ling, Changchun; Li, Xiaohong; Lu, Jingjing; Zhu, Hui; Zhou, Pengcheng; Lu, Yuhua; Wang, Zhiwei

    2015-01-01

    Type 1 diabetes is an autoimmune disease which is due to the lack of ? cells. The ideal therapy to cure the disease is pancreas transplantation, but its application is confined to a limited number of people due to the shortage of organ and the need for life-long immunosuppression. Regenerative medicine methods such as a tissue engineered pancreas seem to provide a useful method. In order to construct a microenvironment similar to the native pancreas that is suitable for not only cell growth but also cellular function exertion, a decellularized mouse pancreas was used as a natural 3D scaffold in this experiment. MIN-6 ? cells were planted in the bioscaffold. The cell engraftment was verified by HE staining and SEM. Immunostaining procedures were performed to confirm the normal function of the engrafted cells. qRT-PCR demonstrated that insulin gene expression of the recellularized pancreas was upregulated compared with conventional plate-cultured cells. In vivo experiment was also accomplished to further evaluate the function of the recellularized bioscaffold and the result was inspiring. And beyond doubt this will bring new hope for type 1 diabetic patients. PMID:26688810

  19. Dorsal Root Ganglia Neurons and Differentiated Adipose-derived Stem Cells: An In Vitro Co-culture Model to Study Peripheral Nerve Regeneration

    PubMed Central

    de Luca, Alba C.; Faroni, Alessandro; Reid, Adam J.

    2015-01-01

    Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair. PMID:25742570

  20. Culturing adult stem cells from mouse small intestinal crypts.

    PubMed

    Hamilton, Kathryn E; Crissey, Mary Ann S; Lynch, John P; Rustgi, Anil K

    2015-04-01

    In recent years, the study of primary cells in culture has evolved from an extraphysiological, two-dimensional platform to novel, three-dimensional platforms in which the addition of matrix components and/or supporting cells provide an ex vivo niche. Such studies have provided the basis on which to study more advanced physiological processes in detail, including multilayered, long-term cultures, epithelial-stromal interactions, and stem cell behaviors that more closely recapitulate normal morphology than two-dimensional culture. Various techniques for three-dimensional organotypic culture and crypt culture of primary cells from mouse and human small intestine and colon have been described. These methods have allowed for the study of specific stem cell characteristics, including survival, self-renewal, and long-term growth in culture, as well as the ability to propagate all the appropriate progenitor and postmitotic lineages. These assays have become a widely accepted functional measure of "stemness" and, in combination with lineage-tracing experiments in various genetically engineered mouse models, have been critical in the identification of specific markers of intestinal stem cells. In this protocol we draw upon recently described methods for the isolation and culture of mouse small intestinal enterospheres/enteroids from isolated crypts and/or single cells. Cultures of murine colon epithelium, as well as human small intestine and colon, require additional growth factors not discussed here. The description provided here represents current knowledge, and it is possible, if not likely, that modifications in the future will emerge. PMID:25834260

  1. A phosphorus-31 nuclear magnetic resonance study of phosphate uptake and storage in cultured Catharanthus roseus and Daucus carota plant cells.

    PubMed

    Brodelius, P; Vogel, H J

    1985-03-25

    High resolution 31P NMR spectra (103.2 MHz) of oxygenated Catharanthus roseus and Daucus carota cells grown in suspension cultures were obtained using a solenoidal perfusion probe. The spectra showed resonances for various phosphorylated metabolites such as ATP, ADP, NAD(P)(H), nucleoside diphosphoglucose, and sugar phosphates. The relative levels of the phosphorylated metabolites remained constant throughout the growth curve. No resonances for storage compounds such as polyphosphates, pyrophosphate, or phytates were observed. Two resolved resonances for Pi indicated an intracellular pH of 7.3 and 5.7 (or below) for the cytoplasm and vacuoles, respectively. The time course of Pi uptake and storage during growth in fresh culture medium was followed by studying the level of vacuolar Pi with 31P NMR (145.7 MHz). Simultaneously, the level of Pi in the culture medium was followed with radioactive 32P. C. roseus quickly takes up all the Pi from the culture medium (maximum rate 1.7 mumol min-1 g-1 (dry weight of cells]. The Pi is first stored in the vacuoles; subsequently, one part of this pool is used to keep a constant cytoplasmic Pi level while another part is apparently accumulated as an NMR invisible Pi store, probably in another cell organelle. In contrast, D. carota does not accumulate Pi in the vacuoles and consequently it takes up Pi from the medium at a much slower rate (0.05 mumol min-1 g-1 (dry weight of cells]. PMID:3972837

  2. Mammalian cell cultures for biologics manufacturing.

    PubMed

    Kantardjieff, Anne; Zhou, Weichang

    2014-01-01

    Biopharmaceuticals represent a growing sector of the pharmaceutical industry, and are used for a wide range of indications, including oncology and rheumatology. Cultured mammalian cells have become the predominant expression system for their production, partly due to their ability to complete the posttranslational modifications required for drug safety and efficacy. Over the past decade, the productivity of mammalian cell culture production processes has growth dramatically through improvements in both volumetric and specific productivities. This article presents an overview of the biologics market, including analysis of sales and approvals; as well as a review of industrial production cell lines and cell culture operations. PMID:24258145

  3. Replication of cultured lung epithelial cells

    SciTech Connect

    Guzowski, D.; Bienkowski, R.

    1986-03-05

    The authors have investigated the conditions necessary to support replication of lung type 2 epithelial cells in culture. Cells were isolated from mature fetal rabbit lungs (29d gestation) and cultured on feeder layers of mitotically inactivated 3T3 fibroblasts. The epithelial nature of the cells was demonstrated by indirect immunofluorescent staining for keratin and by polyacid dichrome stain. Ultrastructural examination during the first week showed that the cells contained myofilaments, microvilli and lamellar bodies (markers for type 2 cells). The following changes were observed after the first week: increase in cell size; loss of lamellar bodies and appearance of multivesicular bodies; increase in rough endoplasmic reticulum and golgi; increase in tonafilaments and well-defined junctions. General cell morphology was good for up to 10 wk. Cells cultured on plastic surface degenerated after 1 wk. Cell replication was assayed by autoradiography of cultures exposed to (/sup 3/H)-thymidine and by direct cell counts. The cells did not replicate during the first week; however, between 2-10 wk the cells incorporated the label and went through approximately 6 population doublings. They have demonstrated that lung alveolar epithelial cells can replicate in culture if they are maintained on an appropriate substrate. The coincidence of ability to replicate and loss of markers for differentiation may reflect the dichotomy between growth and differentiation commonly observed in developing systems.

  4. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  5. Sodium 22+ washout from cultured rat cells

    SciTech Connect

    Kino, M.; Nakamura, A.; Hopp, L.; Kuriyama, S.; Aviv, A.

    1986-10-01

    The washout of Na/sup +/ isotopes from tissues and cells is quite complex and not well defined. To further gain insight into this process, we have studied /sup 22/Na/sup +/ washout from cultured Wistar rat skin fibroblasts and vascular smooth muscle cells (VSMCs). In these preparations, /sup 22/Na/sup +/ washout is described by a general three-exponential function. The exponential factor of the fastest component (k1) and the initial exchange rate constant (kie) of cultured fibroblasts decrease in magnitude in response to incubation in K+-deficient medium or in the presence of ouabain and increase in magnitude when the cells are incubated in a Ca++-deficient medium. As the magnitude of the kie declines (in the presence of ouabain) to the level of the exponential factor of the middle component (k2), /sup 22/Na/sup +/ washout is adequately described by a two-exponential function. When the kie is further diminished (in the presence of both ouabain and phloretin) to the range of the exponential factor of the slowest component (k3), the washout of /sup 22/Na/sup +/ is apparently monoexponential. Calculations of the cellular Na/sup +/ concentrations, based on the /sup 22/Na/sup +/ activity in the cells at the initiation of the washout experiments, and the medium specific activity agree with atomic absorption spectrometry measurements of the cellular concentration of this ion. Thus, all three components of /sup 22/Na/sup +/ washout from cultured rat cells are of cellular origin. Using the exponential parameters, compartmental analyses of two models (in parallel and in series) with three cellular Na/sup +/ pools were performed. The results indicate that, independent of the model chosen, the relative size of the largest Na+ pool is 92-93% in fibroblasts and approximately 96% in VSMCs. This pool is most likely to represent the cytosol.

  6. Emulsions Containing Perfluorocarbon Support Cell Cultures

    NASA Technical Reports Server (NTRS)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  7. Contact Inhibition of Movement in the Cultures of Transformed Cells

    PubMed Central

    Guelstein, V. I.; Ivanova, O. Yu.; Margolis, L. B.; Vasiliev, Ju. M.; Gelfand, I. M.

    1973-01-01

    Results of cell-cell collisions were studied with the aid of time-lapse microcinematography in primary cultures of normal mouse-embryo fibroblast-like cells and in cultures of transformed mouse cells of two types: (a) primary fibroblast-like cells transformed by Moloney mouse sarcoma virus; (b) neoplastic fibroblasts of the CIM strain. Collisions of normal fibroblast-like cells and CIM cells in mixed cultures were also analyzed. Classification of the results of collisions was based on observation of the movements of the active cell edge during the first hour after the moment when this edge had contacted another cell. Three types of collision results were detected: halt of the active edge, overlapping, and underlapping. The relative number of overlappings was not higher and that of halts not lower in the cultures of transformed cells as compared with those of normal cells. Analysis of the collisions of normal fibroblasts with transformed cells gave similar results. Thus, the altered morphology of the cultures of these transformed cells cannot be explained by loss of contact inhibition of movement leading to increased ability of cells to move over the surfaces of other cells after collision. PMID:4516201

  8. Horizontally rotated cell culture system with a coaxial tubular oxygenator

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)

    1991-01-01

    The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.

  9. Constructing a High Density Cell Culture System

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1996-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  10. Sensitivity of Human Intrahepatic Cholangiocarcinoma Subtypes to Chemotherapeutics and Molecular Targeted Agents: A Study on Primary Cell Cultures

    PubMed Central

    Fraveto, Alice; Cardinale, Vincenzo; Bragazzi, Maria Consiglia; Giuliante, Felice; De Rose, Agostino Maria; Grazi, Gian Luca; Napoletano, Chiara; Semeraro, Rossella; Lustri, Anna Maria; Costantini, Daniele; Nevi, Lorenzo; Di Matteo, Sabina; Renzi, Anastasia; Carpino, Guido; Gaudio, Eugenio; Alvaro, Domenico

    2015-01-01

    We investigated the sensitivity of intrahepatic cholangiocarcinoma (IHCCA) subtypes to chemotherapeutics and molecular targeted agents. Primary cultures of mucin- and mixed-IHCCA were prepared from surgical specimens (N. 18 IHCCA patients) and evaluated for cell proliferation (MTS assay) and apoptosis (Caspase 3) after incubation (72 hours) with increasing concentrations of different drugs. In vivo, subcutaneous human tumor xenografts were evaluated. Primary cultures of mucin- and mixed-IHCCA were characterized by a different pattern of expression of cancer stem cell markers, and by a different drug sensitivity. Gemcitabine and the Gemcitabine-Cisplatin combination were more active in inhibiting cell proliferation in mixed-IHCCA while Cisplatin or Abraxane were more effective against mucin-IHCCA, where Abraxane also enhances apoptosis. 5-Fluoracil showed a slight inhibitory effect on cell proliferation that was more significant in mixed- than mucin-IHCCA primary cultures and, induced apoptosis only in mucin-IHCCA. Among Hg inhibitors, LY2940680 and Vismodegib showed slight effects on proliferation of both IHCCA subtypes. The tyrosine kinase inhibitors, Imatinib Mesylate and Sorafenib showed significant inhibitory effects on proliferation of both mucin- and mixed-IHCCA. The MEK 1/2 inhibitor, Selumetinib, inhibited proliferation of only mucin-IHCCA while the aminopeptidase-N inhibitor, Bestatin was more active against mixed-IHCCA. The c-erbB2 blocking antibody was more active against mixed-IHCCA while, the Wnt inhibitor, LGK974, similarly inhibited proliferation of mucin- and mixed-IHCCA. Either mucin- or mixed-IHCCA showed high sensitivity to nanomolar concentrations of the dual PI3-kinase/mTOR inhibitor, NVP-BEZ235. In vivo, in subcutaneous xenografts, either NVP-BEZ235 or Abraxane, blocked tumor growth. In conclusion, mucin- and mixed-IHCCA are characterized by a different drug sensitivity. Cisplatin, Abraxane and the MEK 1/2 inhibitor, Selumetinib were more active against mucin-IHCCA while, Gemcitabine, Gemcitabine-Cisplatin combination, the c-erbB2 blocking antibody and bestatin worked better against mixed-IHCCA. Remarkably, we identified a dual PI3-kinase/mTOR inhibitor that both in vitro and in vivo, exerts dramatic antiproliferative effects against both mucin- and mixed-IHCCA. PMID:26571380

  11. Relationship between P-glycoprotein expression and cyclosporin A in kidney. An immunohistological and cell culture study.

    PubMed Central

    Garca del Moral, R.; O'Valle, F.; Andjar, M.; Aguilar, M.; Lucena, M. A.; Lpez-Hidalgo, J.; Ramrez, C.; Medina-Cano, M. T.; Aguilar, D.; Gmez-Morales, M.

    1995-01-01

    P-glycoprotein (P-gp), encoded in humans by the mdr-1 gene, acts physiologically as an efflux pump to expel hydrophobic substances from cells. This glycoprotein is closely related to multidrug resistance in tumor cells and can be modulated by cyclosporin A (CsA). We investigated the relationship between CsA and P-gp in 52 renal allograft biopsies and in cultures of Madin-Darby canine kidney (MDCK) renal tubule cells to determine whether the intrarenal accumulation of CsA or chronic stimulation with the drug modified the expression of P-gp. Expression of P-gp and CsA was analyzed by immunohistochemistry. Immunostaining was evaluated semiquantitatively. Modulation of P-gp in MDCK cells after chronic stimulation with CsA for 7, 30, and 60 days was analyzed by flow cytometry. P-gp and CsA immunostaining in renal post-transplant biopsies showed considerable overlap in all cases (Spearman's test, r = 0.577, P < 0.001). After 7 days in vitro, the number of cells expressing P-gp increased progressively; a further increase in mean fluorescence was found after 60 days (P < 0.001, Student's t-test). Our findings suggest that in non-neoplastic cells, CsA may stimulate P-gp as a mechanism of detoxification. Individual differences in the adaptive responses to glycoprotein may be responsible for the appearance of nephrotoxicity or a CsA-resistant rejection reaction in cases of overexpression on lymphocytes and macrophages. Images Figure 1 PMID:7856751

  12. Morphological characterization of adult mouse Leydig cells in culture.

    PubMed

    Wang, Jian-Qi; Cao, Wen-Guang

    2016-01-22

    The morphology and function of Leydig cells are changed during the development, mature and senility of Leydig cells along the life span of males. This study was to observe the growth morphology of adult mouse Leydig cells in culture, aiming to provide a reference for furthermore understanding of the biological function of Leydig cells by invitro model. Testes of two-month-old mice were decapsulated and then the Leydig cells were isolated by collagenase digestion and were cultured in DMEM/F12 supplemented with 10% FBS. The Leydig cells were identified by HSD3B staining and RT-PCR. After 48-h Leydig cell culture, both the nucleus and the cytoplasm were very clear under the optical microscope. The nucleus was big and round and the cytoplasm was filled with abundant lipid drops with a strong refractivity. After 5-day culture, Leydig cells were fully elongated in spindle, triangular, polygonal, oval or irregular shapes. Some cells grew in aggregation, and some cells grew independently. Leydig cells in aggregation elongated many cellular tentacles for intercellular connections, which formed an epithelium-like appearance. After HSD3B staining, the individual Leydig cells were stained with different extents, demonstrated that the heterogeneity of HSD3B activity in individual Leydig cells in primary culture. RT-PCR results showed that Leydig cells in culture after 5 days could express Leydig cell-specific transcriptions, HSD3B6, CYP17A1 and StAR. These results showed the morphological characterization of adult mouse Leydig cells in culture, which will lay a foundation to elucidate the relationship between the morphology and function of Leydig cells. PMID:26686420

  13. Optimising gene repair strategies in cell culture.

    PubMed

    Thorpe, P; Stevenson, B J; Porteous, D J

    2002-06-01

    Gene repair, the precise modification of the genome, offers a number of advantages over replacement gene therapy. In practice, gene targeting strategies are limited by the inefficiency of homologous recombination in mammalian cells. A number of strategies, including RNA-DNA oligonucleotides (RDOs) and short DNA fragments (SDFs), show promise in improving the efficiency of gene correction. We are using GFP as a reporter for gene repair in living cells. A single base substitution was introduced into GFP to create a nonsense mutation (STOP codon, W399X). RDOs and SDFs are used to repair this mutation episomally in transient transfections and restore green fluorescence. The correction efficiency is determined by FACS analysis. SDFs appear to correct GFP W399X in a number of different cell lines (COS7, A549, HT1080, HuH-7), although all at a similar low frequency ( approximately 0.6% of transfected cells). RDOs correct only one of our cell lines significantly (HT1080-RAD51), these cells overexpress the human RAD51 gene; the bacterial RecA homologue. The GFP W399X reporter is a fusion gene with hygromycin (at the 5' end), this has allowed us to make stable cell lines (A549, HT1080) to study genomic correction. Initial studies using our correction molecules show only low efficiencies of genomic repair ( approximately 10(-4)). Polyethylenimine (PEI) is used to deliver RDOs and SDFs into mammalian cells in culture for our study. We have used fluorescently labelled RDOs and SDFs to study the effectiveness of this process. FACS analysis of transfected nuclei implied efficient delivery (>90%) both with SDFs and RDOs. However, confocal fluorescence microscopy suggests that a large proportion of the complexed RDO/SDF appears to remain outside the nucleus (or attached to the nuclear membrane). On the basis of these data we are assessing new delivery methods and factors that may alter recombination status to optimise gene repair. PMID:12032691

  14. A primary culture system of postnatal rat heart cells for the study of cocaine and methamphetamine toxicity.

    PubMed

    Welder, A A

    1992-04-01

    It is now well documented that both cocaine (Coc) and methamphetamine (Meth) are independently capable of inducing injurious effects on the adult and developing myocardium. In addition, when these drugs are used concomitantly such as in polydrug abuse, it has been suggested that they may cause synergistic adverse effects on the myocardium. In this investigation, primary myocardial cell cultures were established from 3-5-day-old Sprague-Dawley rats to describe the adverse effects of Coc and Meth on the myocardium. After the cells were in culture for 4 days, they were exposed to 1 x 10(-5) and 1 x 10(-3) M Coc alone; 1 x 10(-5) and 1 x 10(-3) M Meth alone; and combinations of 1 x 10(-3) M Coc with 1 x 10(-5) M Meth and 1 x 10(-5) M Coc with 1 x 10(-5) M Meth. Lactate dehydrogenase (LDH) release, morphology, and beating activity were evaluated after exposure to the drugs for 1, 4 and 24 h. With all treatment groups for the first 4 h, LDH release was not significantly different from untreated controls. Significant LDH release (P less than 0.001) was exhibited at 24 h with 1 x 10(-3) M Coc alone, 1 x 10(-3) M Meth alone, and 1 x 10(-3) M Coc with 1 x 10(-5) M Meth. For 24 h of treatment, cellular injury (pseudopodia, vacuolization, granulation) induced by 1 x 10(-3) M and 1 x 10(-5) M Coc alone was extensive and minimal, respectively. When 1 x 10(-5) M Meth was added with 1 x 10(-5) M Coc, pseudopodia formation was extensive. No measurable beating activity was observed at 1, 4 and 24 h exposure to 1 x 10(-3) M Coc alone and 1 x 10(-3) M Coc with 1 x 10(-5) M Meth. At 1 h, beating activity after treatment with 1 x 10(-5) M Coc alone and 1 x 10(-5) M Meth alone was not significantly different from untreated controls; however, the percentage of areas exhibiting contractile activity was depressed. Addition of Meth (1 x 10(-5) M) potentiated Coc-induced (1 x 10(-5) M) depression of contractile activity at all 3 time-points. These data suggest that Coc and Meth may interact synergistically at the cellular level to directly potentiate injury to postnatal myocardial cell cultures. PMID:1570632

  15. [The study of quantitative karyotypic variability by induction of chromosomal instability in cultured cells of the Indian muntjac skin fibroblasts].

    PubMed

    Polianskaia, G G; Samokish, V A

    1999-01-01

    The influence of mycoplasmal contamination and somatic cell hybridization on the character of karyotypic variability in cell cultures of Indian muntjac skin fibroblasts has been investigated. Mycoplasma arginini and Acholeplasma laidlawii, used as factors inducing chromosomal instability, do not break the main regulations peculiar to intact control. They regulations are: 1) nonrandom character of cell distribution according to the number of chromosomal deviations from MSVK; 2) specific character of deviations of each chromosome from MSVK; 3) presence of significant connections between separate chromosomes by simultaneous mainly single directed numeral deviations. However, mycoplasmal contamination promotes the increase in the number of deviations in the direction of a decreasing chromosomes number. There is a breach of some connections between chromosomes by simultaneous deviations. They are chromosomes with broken connections according to the number of deviations which form telomeric associations (dicentrics). The number of these associations excel essentially intact control. The formation of new MSVK in subline M2 cells of the Indian muntjac in the process of chromosomal segregation in cell hybrid (M2 x clone of JF1 rat Jensen sarcoma) depends on the presence of significant connections between chromosomes by simultaneous numerical deviations in direction of MSVK formation. They are chromosomes that take part in the formation of new MSVK which form telomeric associations. These associations can be observed till stabilization of new MSVK. Probably, the support of the balance of karyotypic structure by factors inducing chromosomal instability is connected with change of some connections between chromosomes according to the number by simultaneous deviations as well as with the formation of dicentrics. PMID:10591121

  16. Improvement of photoaged skin wrinkles with cultured human fibroblasts and adipose-derived stem cells: a comparative study.

    PubMed

    Jeong, Jae Hoon; Fan, Yingfang; You, Ga Young; Choi, Tae Hyun; Kim, Sukwha

    2015-03-01

    We investigated the antiwrinkle effects of cultured human fibroblasts and adipose-derived stem cells (ADSCs) and the mechanisms underlying the reduction of wrinkles in photoaged skin. The fibroblasts and ADSCs were isolated from human tissue and cultured. A total of 28 6-week-old female BALB/c nude mice were classified into four groups, including the normal control group and three groups that were irradiated six times a week for 6-weeks using ultraviolet B radiation to induce photoaged wrinkles. ADSCs were injected into the wrinkles in the skin of the second group and fibroblasts were injected into the wrinkles in the skin of the third group. The fourth group was the irradiated negative control group (no therapy). After 4 weeks of injections, the wrinkles were compared by replica analysis, biopsies were performed, and the dermal thickness and collagen densities were measured. We determined the amounts of type 1 collagen and matrix metalloproteinases (MMPs) 1, 2, 3, 9, and 13 using real-time polymerase chain reaction and Western blot analysis, and we assessed tropoelastin and fibrillin-1 expression in the dermis by immunohistochemistry. Replica analysis showed significant wrinkle reduction in the fibroblast group and the ADSC group. ADSCs stimulated collagen expression and decreased MMP expression. Although fibroblasts stimulated more collagen expression than ADSCs, they also increased MMP expression. Overall, the ADSC group showed higher collagen density and had better outcomes in the tropoelastin and fibrillin-1 assessments. Both cultured fibroblasts and ADSCs could play an important role in wrinkle reduction despite differences in their mechanisms of action. PMID:25484240

  17. Skeletal muscle satellite cells cultured in simulated microgravity.

    PubMed

    Molnar, G; Schroedl, N A; Gonda, S R; Hartzell, C R

    1997-05-01

    Satellite cells are postnatal myoblasts responsible for providing additional nuclei to growing or regenerating muscle cells. Satellite cells retain the capacity to proliferate and differentiate in vitro and, therefore, provide a useful model to study postnatal muscle development. Most culture systems used to study postnatal muscle development are limited by the two-dimensional (2-D) confines of the culture dish. Limiting proliferation and differentiation of satellite cells in 2-D could potentially limit cell-cell contacts important for developing the level of organization in skeletal muscle obtained in vivo. Culturing satellite cells on microcarrier beads suspended in the High-Aspect-Ratio-Vessel (HARV) designed by NASA provides a low shear, three-dimensional (3-D) environment to study muscle development. Primary cultures established from anterior tibialis muscles of growing rats (approximately 200 gm) were used for all studies and were composed of greater than 75% satellite cells. Different inoculation densities did not affect the proliferative potential of satellite cells in the HARV. Plating efficiency, proliferation, and glucose utilization were compared between 2-D culture and 3-D HARV culture. Plating efficiency (cells attached divided by cells plated x 100) was similar between the two culture systems. Proliferation was reduced in HARV cultures and this reduction was apparent for both satellite cells and nonsatellite cells. Furthermore, reduction in proliferation within the HARV could not be attributed to reduced substrate availability because glucose levels in medium from HARV and 2-D cell culture were similar. Morphologically, microcarrier beads within the HARV were joined together by cells into 3-D aggregates composed of greater than 10 beads/aggregate. Aggregation of beads did not occur in the absence of cells. Myotubes were often seen on individual beads or spanning the surface of two beads. In summary, proliferation and differentiation of satellite cells on microcarrier beads within the HARV bioreactor results in a 3-D level of organization that could provide a more suitable model to study postnatal muscle development than is currently available with standard culture methods. PMID:9196898

  18. Culture and Manipulation of Embryonic Cells

    PubMed Central

    Edgar, Lois G.; Goldstein, Bob

    2012-01-01

    The direct manipulation of embryonic cells is an important tool for addressing key questions in cell and developmental biology. C. elegans is relatively unique among genetic model systems in being amenable to manipulation of embryonic cells. Embryonic cell manipulation has allowed the identification of cell interactions by direct means, and it has been an important technique for dissecting mechanisms by which cell fates are specified, cell divisions are oriented, and morphogenesis is accomplished. Here, we present detailed methods for isolating, manipulating and culturing embryonic cells of C. elegans. PMID:22226523

  19. Isolation of mitochondria from tissue culture cells.

    PubMed

    Clayton, David A; Shadel, Gerald S

    2014-10-01

    The number of mitochondria per cell varies substantially from cell line to cell line. For example, human HeLa cells contain at least twice as many mitochondria as smaller mouse L cells. This protocol starts with a washed cell pellet of 1-2 mL derived from ?10? cells grown in culture. The cells are swollen in a hypotonic buffer and ruptured with a Dounce or Potter-Elvehjem homogenizer using a tight-fitting pestle, and mitochondria are isolated by differential centrifugation. PMID:25275104

  20. Spheroid Culture of Mesenchymal Stem Cells.

    PubMed

    Cesarz, Zoe; Tamama, Kenichi

    2016-01-01

    Compared with traditional 2D adherent cell culture, 3D spheroidal cell aggregates, or spheroids, are regarded as more physiological, and this technique has been exploited in the field of oncology, stem cell biology, and tissue engineering. Mesenchymal stem cells (MSCs) cultured in spheroids have enhanced anti-inflammatory, angiogenic, and tissue reparative/regenerative effects with improved cell survival after transplantation. Cytoskeletal reorganization and drastic changes in cell morphology in MSC spheroids indicate a major difference in mechanophysical properties compared with 2D culture. Enhanced multidifferentiation potential, upregulated expression of pluripotency marker genes, and delayed replicative senescence indicate enhanced stemness in MSC spheroids. Furthermore, spheroid formation causes drastic changes in the gene expression profile of MSC in microarray analyses. In spite of these significant changes, underlying molecular mechanisms and signaling pathways triggering and sustaining these changes are largely unknown. PMID:26649054

  1. Spheroid Culture of Mesenchymal Stem Cells

    PubMed Central

    Cesarz, Zoe; Tamama, Kenichi

    2016-01-01

    Compared with traditional 2D adherent cell culture, 3D spheroidal cell aggregates, or spheroids, are regarded as more physiological, and this technique has been exploited in the field of oncology, stem cell biology, and tissue engineering. Mesenchymal stem cells (MSCs) cultured in spheroids have enhanced anti-inflammatory, angiogenic, and tissue reparative/regenerative effects with improved cell survival after transplantation. Cytoskeletal reorganization and drastic changes in cell morphology in MSC spheroids indicate a major difference in mechanophysical properties compared with 2D culture. Enhanced multidifferentiation potential, upregulated expression of pluripotency marker genes, and delayed replicative senescence indicate enhanced stemness in MSC spheroids. Furthermore, spheroid formation causes drastic changes in the gene expression profile of MSC in microarray analyses. In spite of these significant changes, underlying molecular mechanisms and signaling pathways triggering and sustaining these changes are largely unknown. PMID:26649054

  2. Feeding frequency affects cultured rat pituitary cells in low gravity.

    PubMed

    Hymer, W C; Grindeland, R E; Salada, T; Cenci, R; Krishnan, K; Mukai, C; Nagaoka, S

    1996-06-27

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity-related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and/or paracrine feedback interactions. Finally, the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cell culture can also be accomplished in low gravity. PMID:8987570

  3. A cytotoxic analysis of a sardinian plant extract cream on human oral primary cell cultures: an in vitro study.

    PubMed

    Sinjari, B; Diomede, F; Murmura, G; Traini, T; Merciaro, I; Trubiani, O; Caputi, S

    2015-01-01

    Wound healing agents support the natural healing process, reduce trauma and likelihood of secondary infections and hasten wound closure. The aim of this work was to evaluate the effect of different concentration of a new Sardinian plant cream (RD7) on two human primary cultures: Periodontal Ligament Stem Cells (hPDLSCs) and Gingival Fibroblasts (hGFs) derived from oral tissues in terms of morphological changes, cell proliferation and wound healing properties. RD7, is an interactive dressing containing phytocomplex derived from Sardinian endemic or not, medicinal plant extracts, with an important anti-radical, anti-inflammatory and antiseptic activity finalized to rapidly promote tissue regeneration and the formation of granulation tissue. hPDLSCs and hGFs were seeded at different concentrations (0.5, 1, 2.5 and 5 mg/ml) of RD7. The cell proliferation and viability was evaluated using colorimetric assays (MTT assay) and trypan blue exclusion test. Meanwhile, the morphological cell changes were evaluated by means of optic (OM) and scanning electronic microscopes (SEM). The induction of the migratory properties was evaluated by means of wound healing assay. In vitro results, using hPDLSCs and hGFs, showed a decrease of cell growth starting at 24 h of incubation, at high concentrations (2.5 mg/ml and 5 mg/ml). This cell growth reduction was associated to evident morphological changes, whilst, at low concentrations (0.5 and 1 mg/ml) a typical unchanged morphology of both hPDLSCs and hGFs was shown. Wound healing assay showed a complete wound full closure occurring after 24 h of treatment in samples treated with low concentration of RD7. The results of the present work indicate that low concentrations of RD7 have no cytotoxicity effect, stimulate cell proliferation and contribute to induce the migratory properties in hPDLSCs and hGFs, therefore it could be considered a new product for use in clinical practice. PMID:25864746

  4. Three dimensional spheroid cell culture for nanoparticle safety testing.

    PubMed

    Sambale, Franziska; Lavrentieva, Antonina; Stahl, Frank; Blume, Cornelia; Stiesch, Meike; Kasper, Cornelia; Bahnemann, Detlef; Scheper, Thomas

    2015-07-10

    Nanoparticles are widely employed for many applications and the number of consumer products, incorporating nanotechnology, is constantly increasing. A novel area of nanotechnology is the application in medical implants. The widespread use of nanoparticles leads to their higher prevalence in our environment. This, in turn, raises concerns regarding potential risks to humans. Previous studies have shown possible hazardous effects of some nanoparticles on mammalian cells grown in two-dimensional (2D) cultures. However, 2D in vitro cell cultures display several disadvantages such as changes in cell shape, cell function, cell responses and lack of cell-cell contacts. For this reason, the development of better models for mimicking in vivo conditions is essential. In the present work, we cultivated A549 cells and NIH-3T3 cells in three-dimensional (3D) spheroids and investigated the effects of zinc oxide (ZnO-NP) and titanium dioxide nanoparticles (TiO2-NP). The results were compared to cultivation in 2D monolayer culture. A549 cells in 3D cell culture formed loose aggregates which were more sensitive to the toxicity of ZnO-NP in comparison to cells grown in 2D monolayers. In contrast, NIH-3T3 cells showed a compact 3D spheroid structure and no differences in the sensitivity of the NIH-3T3 cells to ZnO-NP were observed between 2D and 3D cultures. TiO2-NP were non-toxic in 2D cultures but affected cell-cell interaction during 3D spheroid formation of A549 and NIH-3T3 cells. When TiO2-NP were directly added during spheroid formation in the cultures of the two cell lines tested, several smaller spheroids were formed instead of a single spheroid. This effect was not observed if the nanoparticles were added after spheroid formation. In this case, a slight decrease in cell viability was determined only for A549 3D spheroids. The obtained results demonstrate the importance of 3D cell culture studies for nanoparticle safety testing, since some effects cannot be revealed in 2D cell culture. PMID:25595712

  5. Metabolic flux rewiring in mammalian cell cultures

    PubMed Central

    Young, Jamey D.

    2013-01-01

    Continuous cell lines (CCLs) engage in “wasteful” glucose and glutamine metabolism that leads to accumulation of inhibitory byproducts, primarily lactate and ammonium. Advances in techniques for mapping intracellular carbon fluxes and profiling global changes in enzyme expression have led to a deeper understanding of the molecular drivers underlying these metabolic alterations. However, recent studies have revealed that CCLs are not necessarily entrenched in a glycolytic or glutaminolytic phenotype, but instead can shift their metabolism toward increased oxidative metabolism as nutrients become depleted and/or growth rate slows. Progress to understand dynamic flux regulation in CCLs has enabled the development of novel strategies to force cultures into desirable metabolic phenotypes, by combining fed-batch feeding strategies with direct metabolic engineering of host cells. PMID:23726154

  6. Multiwell cell culture plate format with integrated microfluidic perfusion system

    NASA Astrophysics Data System (ADS)

    Domansky, Karel; Inman, Walker; Serdy, Jim; Griffith, Linda G.

    2006-01-01

    A new cell culture analog has been developed. It is based on the standard multiwell cell culture plate format but it provides perfused three-dimensional cell culture capability. The new capability is achieved by integrating microfluidic valves and pumps into the plate. The system provides a means to conduct high throughput assays for target validation and predictive toxicology in the drug discovery and development process. It can be also used for evaluation of long-term exposure to drugs or environmental agents or as a model to study viral hepatitis, cancer metastasis, and other diseases and pathological conditions.

  7. Co-Culture of ? TC-6 Cells and ? TC-1 Cells: Morphology and Function

    PubMed Central

    Kim, Sung Man; Lee, Eun Ju; Jung, Hye Sook; Han, Na; Kim, You Jeong; Kim, Tae Kyoon; Kim, Tae Nyun; Kwon, Min Jeong; Lee, Soon Hee; Park, Jeong Hyun; Rhee, Byoung Doo

    2015-01-01

    Background In vitro experiments using only ?-cell lines instead of islets are limited because pancreatic islets are composed of four different types of endocrine cells. Several recent studies have focused on cellular interactions among these cell types, especially ?- and ?-cells. Because islet isolation needs time and experience, we tested a simple co-culture system with ?- and ?-cells. Their morphology and function were assessed by comparison to each single cell culture and pancreatic islets. Methods ? TC-6 cells and ? TC-1 cells were maintained in Dulbecco's Minimal Essential Medium containing 5 mM glucose and 10% fetal bovine serum. Cells were mixed at a 1:1 ratio (5105) in 6-well plates and cultured for 24, 48, and 72 hours. After culture, cells were used for insulin and glucagon immunoassays and tested for glucose-stimulated insulin secretion (GSIS). Results ? TC-6 and ? TC-1 cells became condensed by 24 hours and were more strongly compacted after 48 hours. ? TC-1 cells showed both ?-? and ?-? cell contacts. GSIS increased with increasing glucose concentration in co-cultured cells, which showed lower secreted insulin levels than ? TC-1 cells alone. The increase in the secreted insulin/insulin content ratio was significantly lower for co-cultured cells than for ?-cells alone (P=0.04). Compared to islets, the ?-/?-cell co-culture showed a higher ratio of GSIS to insulin content, but the difference was not statistically significant (P=0.09). Conclusion ? TC-6 and ? TC-1 cells in the co-culture system showed cell-to-cell contacts and a similar stimulated insulin secretion pattern to islets. The co-culture system may be used to better mimic pancreatic islets in in vitro assessments. PMID:25325280

  8. Characterizing the mechanics of cultured cell monolayers

    PubMed Central

    Peter, Loic; Bellis, Julien; Baum, Buzz; Kabla, Alexandre J.; Charras, Guillaume T.

    2012-01-01

    One-cell-thick monolayers are the simplest tissues in multicellular organisms, yet they fulfill critical roles in development and normal physiology. In early development, embryonic morphogenesis results largely from monolayer rearrangement and deformation due to internally generated forces. Later, monolayers act as physical barriers separating the internal environment from the exterior and must withstand externally applied forces. Though resisting and generating mechanical forces is an essential part of monolayer function, simple experimental methods to characterize monolayer mechanical properties are lacking. Here, we describe a system for tensile testing of freely suspended cultured monolayers that enables the examination of their mechanical behavior at multi-, uni-, and subcellular scales. Using this system, we provide measurements of monolayer elasticity and show that this is two orders of magnitude larger than the elasticity of their isolated cellular components. Monolayers could withstand more than a doubling in length before failing through rupture of intercellular junctions. Measurement of stress at fracture enabled a first estimation of the average force needed to separate cells within truly mature monolayers, approximately ninefold larger than measured in pairs of isolated cells. As in single cells, monolayer mechanical properties were strongly dependent on the integrity of the actin cytoskeleton, myosin, and intercellular adhesions interfacing adjacent cells. High magnification imaging revealed that keratin filaments became progressively stretched during extension, suggesting they participate in monolayer mechanics. This multiscale study of monolayer response to deformation enabled by our device provides the first quantitative investigation of the link between monolayer biology and mechanics. PMID:22991459

  9. Purification and culture of oligodendrocyte lineage cells.

    PubMed

    Dugas, Jason C; Emery, Ben

    2013-09-01

    Oligodendrocytes are the cells of the vertebrate central nervous system responsible for forming myelin sheaths, which are essential for the rapid propagation of action potential. The formation of oligodendrocytes and myelin sheaths is tightly regulated, both temporally and spatially, by a number of extracellular and intracellular factors. For example, notch ligands, thyroid hormones, and mitogens such as platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) can all interact with oligodendrocyte precursor cell-expressed receptors to impact proliferation, differentiation, and myelin gene expression. To facilitate oligodendrocyte biology research, we have developed a technique using immunopanning to isolate different stages of the oligodendrocyte lineage, oligodendrocyte precursor cells and/or postmitotic oligodendrocytes, from postnatal rat or mouse brains. These cells can be cultured in defined, serum-free media in conditions that either promote differentiation into mature oligodendrocytes or continued proliferation as immature oligodendrocyte precursors. These cells represent an ideal system in which to study the regulation of oligodendrocyte proliferation, migration, differentiation, myelin gene expression, or other fundamental aspects of oligodendrocyte biology. PMID:24003197

  10. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  11. Identifying viable regulatory and innovation pathways for regenerative medicine: a case study of cultured red blood cells.

    PubMed

    Mittra, J; Tait, J; Mastroeni, M; Turner, M L; Mountford, J C; Bruce, K

    2015-01-25

    The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5-10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field. PMID:25094050

  12. Characterization of primary cultures of adult human epididymis epithelial cells

    PubMed Central

    Leir, Shih-Hsing; Browne, James A.; Eggener, Scott E.; Harris, Ann

    2014-01-01

    Objective To establish cultures of epithelial cells from all regions of the human epididymis to provide reagents for molecular approaches to functional studies of this epithelium. Design Experimental laboratory study. Setting University research institute. Patient(s) Epididymis from seven patients undergoing orchiectomy for suspected testicular cancer without epididymal involvement. Intervention(s) Human epididymis epithelial cells harvested from adult epididymis tissue. Main Outcome Measure(s) Establishment of a robust culture protocol for adult human epididymal epithelial cells. Result(s) Cultures of caput, corpus, and cauda epithelial cells were established from epididymis tissue of seven donors. Cells were passaged up to eight times and maintained differentiation markers. They were also cryopreserved and recovered successfully. Androgen receptor, clusterin, and cysteine-rich secretory protein 1 were expressed in cultured cells, as shown by means of immunofluorescence, Western blot, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The distribution of other epididymis markers was also shown by means of qRT-PCR. Cultures developed transepithelial resistance (TER), which was androgen responsive in the caput but androgen insensitive in the corpus and cauda, where unstimulated TER values were much higher. Conclusion(s) The results demonstrate a robust in vitro culture system for differentiated epithelial cell types in the caput, corpus, and cauda of the human epididymis. These cells will be a valuable resource for molecular analysis of epididymis epithelial function, which has a pivotal role in male fertility. PMID:25542823

  13. The effect of TRAIL molecule on cell viability in in vitro beta cell culture.

    PubMed

    Tekmen, I; Ozyurt, D; Peketin, C; Buldan, Z

    2007-06-01

    Insulin-dependent diabetes mellitus (IDDM) is an organ-specific autoimmune disorder triggered by autoreactive T cells directed to pancreas beta-cell antigens. In this disorder, more than 90% of beta cells are destroyed. Cell death may be mediated via soluble or membrane-bound cell death ligands. One of these ligands may be tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-alpha superfamily. In the present study, we examined whether TRAIL had cytotoxic effects on adult rat pancreas beta cell cultures and INS1-E rat insulinoma cell line cultures or not. In this study, cell destruction models were built with TRAIL concentrations of 10, 100 and 1000 ng. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used for evaluating cell viability. It was detected that cell cultures with TRAIL added showed no differences statistically when compared with control cultures containing no toxic additions. These results showed that TRAIL did not have significant cytotoxic effects on pancreas beta cell culture and INS-1E rat insulinoma cell line cultures. Detection of the expression of TRAIL receptors and natural apoptosis inhibitor proteins will be favourable to investigate the resistance mechanisms to TRAIL-induced cell death in this cell culture system. PMID:17530468

  14. Epithelial cell detachment by Porphyromonas gingivalis biofilm and planktonic cultures.

    PubMed

    Huang, Lijia; van Loveren, Cor; Ling, Junqi; Wei, Xi; Crielaard, Wim; Deng, Dong Mei

    2016-04-01

    Porphyromonas gingivalis is present as a biofilm at the sites of periodontal infections. The detachment of gingival epithelial cells induced by P. gingivalis biofilms was examined using planktonic cultures as a comparison. Exponentially grown planktonic cultures or 40-h biofilms were co-incubated with epithelial cells in a 24-well plate for 4 h. Epithelial cell detachment was assessed using imaging. The activity of arginine-gingipain (Rgp) and gene expression profiles of P. gingivalis cultures were examined using a gingipain assay and quantitative PCR, respectively. P. gingivalis biofilms induced significantly higher cell detachment and displayed higher Rgp activity compared to the planktonic cultures. The genes involved in gingipain post-translational modification, but not rgp genes, were significantly up-regulated in P. gingivalis biofilms. The results underline the importance of including biofilms in the study of bacterial and host cell interactions. PMID:26963862

  15. Mammosphere culture of cancer stem cells in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Saadin, Katayoon; White, Ian M.

    2012-03-01

    It is known that tumor-initiating cells with stem-like properties will form spherical colonies - termed mammospheres - when cultured in serum-free media on low-attachment substrates. Currently this assay is performed in commercially available 96-well trays with low-attachment surfaces. Here we report a novel microsystem that features on-chip mammosphere culture on low attachment surfaces. We have cultured mammospheres in this microsystem from well-studied human breast cancer cell lines. To enable the long-term culture of these unattached cells, we have integrated diffusion-based delivery columns that provide zero-convection delivery of reagents, such as fresh media, staining agents, or drugs. The multi-layer system consists of parallel cell-culture chambers on top of a low-attachment surface, connected vertically with a microfluidic reagent delivery layer. This design incorporates a reagent reservoir, which is necessary to reduce evaporation from the cell culture micro-chambers. The development of this microsystem will lead to the integration of mammosphere culture with other microfluidic functions, including circulating tumor cell recovery and high throughput drug screening. This will enable the cancer research community to achieve a much greater understanding of these tumor initiating cancer stem cells.

  16. Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells

    PubMed Central

    Li, Bo-jiang; Li, Ping-hua; Huang, Rui-hua; Sun, Wen-xing; Wang, Han; Li, Qi-fa; Chen, Jie; Wu, Wang-jun; Liu, Hong-lin

    2015-01-01

    The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells. PMID:26104526

  17. Growth of melanocytes in human epidermal cell cultures

    SciTech Connect

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C. )

    1990-08-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient.

  18. Isolation and culture of pulmonary endothelial cells.

    PubMed Central

    Ryan, U S

    1984-01-01

    Methods for isolation, identification and culture of pulmonary endothelial cells are now routine. In the past, methods of isolation have used proteolytic enzymes to detach cells; thereafter, traditional methods for cell passaging have used trypsin/EDTA mixtures. Cells isolated and passaged using proteolytic enzymes have been useful in establishing the field and in verifying certain endothelial properties. However, there is a growing awareness of the role of endothelial cells in processing vasoactive substances, in responding to hormones and other agonists and in cell-cell interactions with other cell types of the vascular wall, with blood cells and with cellular products. Consequently, a new requirement has arisen for cells in vitro that maintain the differentiated properties of their counterparts in vivo. The deleterious effects of trypsin and other proteolytic enzymes commonly used in cell culture on surface structures of endothelial cells such as enzymes, receptors and junctional proteins, as well as on extracellular layers such as the glycocalyx or "endothelial fuzz," have led to the development of methods that avoid use of proteolytic enzymes at both the isolation step and during subsequent subculture. This chapter describes traditional methods for isolating pulmonary endothelial cells but emphasizes newer approaches using mechanical harvest and scale-up using microcarriers. The new methods allow maintenance of long-term, large-scale cultures of cells that retain the full complement of surface properties and that maintain the cobblestone monolayer morphology and differentiated functional properties. Methods for identification of isolated cells are therefore also considered as methods for validation of cultures during their in vitro lifespan. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. PMID:6090112

  19. Comparative assessment of the stability of nonfouling poly(2-methyl-2-oxazoline) and poly(ethylene glycol) surface films: an in vitro cell culture study.

    PubMed

    Chen, Yin; Pidhatika, Bidhari; von Erlach, Thomas; Konradi, Rupert; Textor, Marcus; Hall, Heike; Lühmann, Tessa

    2014-09-01

    Poly(ethylene glycol) (PEG) has been the most frequently reported and commercially used polymer for surface coatings to convey nonfouling properties. PEGylated surfaces are known to exhibit limited chemical stability, particularly due to oxidative degradation, which limits long-term applications. In view of excellent anti-adhesive properties in the brush conformation and resistance to oxidative degradation, poly(2-methyl-2-oxazoline) (PMOXA) has been proposed recently as an alternative to PEG. In this study, the authors systematically compare the (bio)chemical stability of PEG- and PMOXA-based polymer brush monolayer thin films when exposed to cultures of human umbilical vein endothelial cells (HUVECs) and human foreskin fibroblasts (HFFs). To this end, the authors used cell-adhesive protein micropatterns in a background of the nonfouling PEG and PMOXA brushes, respectively, and monitored the outgrowth of HUVECs and HFFs for up to 21 days and 1.5 months. Our results demonstrate that cellular micropatterns spaced by PMOXA brushes are significantly more stable under serum containing cell culture conditions in terms of confinement of cells to the adhesive patterns, when compared to corresponding micropatterns generated by PEG brushes. Moreover, homogeneous PEG and PMOXA-based brush monolayers on Nb2O5 surfaces were investigated after immersion in endothelial cell medium using ellipsometry and x-ray photoelectron spectroscopy. PMID:25280844

  20. Hypergravity signal transduction and gene expression in cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Kumei, Y.; Whitson, P. A.

    1994-01-01

    A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.

  1. Optimization of Buffalo (Bubalus bubalis) Embryonic Stem Cell Culture System

    PubMed Central

    Zandi, Mohammad; Muzaffar, Musharifa; Shah, Syed Mohmad; Kumar Singh, Manoj; Palta, Prabhat; Kumar Singla, Suresh; Manik, Radheysham; Chauhan, Manmohan Singh

    2015-01-01

    Objective In order to retain an undifferentiated pluripotent state, embryonic stem (ES) cells have to be cultured on feeder cell layers. However, use of feeder layers limits stem cell research, since experimental data may result from a combined ES cell and feeder cell response to various stimuli. Materials and Methods In this experimental study, a buffalo ES cell line was established from in vitro derived blastocysts and characterized by the Alkaline phosphatase (AP) and immunoflourescence staining of various pluripotency markers. We examined the effect of various factors like fibroblast growth factor 2 (FGF-2), leukemia inhibitory factor (LIF) and Y-27632 to support the growth and maintenance of bubaline ES cells on gelatin coated dishes, in order to establish feeder free culture systems. We also analyzed the effect of feeder-conditioned media on stem cell growth in gelatin based cultures both in the presence as well as in the absence of the growth factors. Results The results showed that Y-27632, in the presence of FGF-2 and LIF, resulted in higher colony growth and increased expression of Nanog gene. Feeder-Conditioned Medium resulted in a significant increase in growth of buffalo ES cells on gelatin coated plates, however, feeder layer based cultures produced better results than gelatin based cultures. Feeder layers from buffalo fetal fibroblast cells can support buffalo ES cells for more than two years. Conclusion We developed a feeder free culture system that can maintain buffalo ES cells in the short term, as well as feeder layer based culture that can support the long term maintenance of buffalo ES cells. PMID:26199905

  2. Cultural Education--Iroquois Cultural Study for Elementary Grades.

    ERIC Educational Resources Information Center

    Steele, Catherine

    Presenting a sequenced cultural education program, this curriculum guide for an Iroquois cultural study for elementary grades concentrates on providing a supplemental classroom program to an existing social studies curriculum, though it is also aimed at teaching culture in Native American classes. Program objectives are to provide students with

  3. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies.

    PubMed

    Ryu, Hodon; Cashdollar, Jennifer L; Fout, G Shay; Schrantz, Karen A; Hayes, Samuel

    2015-01-01

    Practical difficulties of the traditional adenovirus infectivity assay such as intensive labor requirements and longer turnaround period limit the direct use of adenovirus as a testing microorganism for systematic, comprehensive disinfection studies. In this study, we attempted to validate the applicability of integrated cell culture quantitative PCR (ICC-qPCR) as an alternative to the traditional cell culture method with human adenovirus type 2 (HAdV2) in a low-pressure UV disinfection study and to further optimize the procedures of ICC-qPCR for 24-well plate format. The relatively high stability of the hexon gene of HAdV2 was observed after exposure to UV radiation, resulting in a maximum gene copy reduction of 0.5 log10 at 280 mJ cm(-2). Two-day post-inoculation incubation period and a maximum spiking level of 10(5) MPN mL(-1) were selected as optimum conditions of ICC-qPCR with the tested HAdV2. An approximate 1:1 correlation of virus quantities by the traditional and ICC-qPCR cell culture based methods suggested that ICC-qPCR is a satisfactory alternative for practical application in HAdV2 disinfection studies. ICC-qPCR results, coupled with a first-order kinetic model (i.e., the inactivation rate constant of 0.0232cm(2) mJ(-1)), showed that an UV dose of 172 mJ cm(-2) achieved a 4-log inactivation credit for HAdV2. This estimate is comparable to other studies with HAdV2 and other adenovirus respiratory types. The newly optimized ICC-qPCR shows much promise for further study on its applicability of other slow replicating viruses in disinfection studies. PMID:26030683

  4. Microfabricated polymeric vessel mimetics for 3-D cancer cell culture

    PubMed Central

    Jaeger, Ashley A.; Das, Chandan K.; Morgan, Nicole Y.; Pursley, Randall H.; McQueen, Philip G.; Hall, Matthew D.; Pohida, Thomas J.; Gottesman, Michael M.

    2013-01-01

    Modeling tumor growth in vitro is essential for cost-effective testing of hypotheses in preclinical cancer research. 3-D cell culture offers an improvement over monolayer culture for studying cellular processes in cancer biology because of the preservation of cell-cell and cell-ECM interactions. Oxygen transport poses a major barrier to mimicking in vivo environments and is not replicated in conventional cell culture systems. We hypothesized that we can better mimic the tumor microenvironment using a bioreactor system for controlling gas exchange in cancer cell cultures with silicone hydrogel synthetic vessels. Soft-lithography techniques were used to fabricate oxygen-permeable silicone hydrogel membranes containing arrays of micropillars. These membranes were inserted into a bioreactor and surrounded by basement membrane extract (BME) within which fluorescent ovarian cancer (OVCAR8) cells were cultured. Cell clusters oxygenated by synthetic vessels showed a ∼100um drop-off to anoxia, consistent with in vivo studies of tumor nodules fed by the microvasculature. We showed oxygen tension gradients inside the clusters oxygenated by synthetic vessels had a ∼100 µm drop-off to anoxia, which is consistent with in vivo studies. Oxygen transport in the bioreactor system was characterized by experimental testing with a dissolved oxygen probe and finite element modeling of convective flow. Our study demonstrates differing growth patterns associated with controlling gas distributions to better mimic in vivo conditions. PMID:23911071

  5. Human cell culture in a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  6. Establishment, Culture, and Characterization of Guinea Pig Fetal Fibroblast Cell

    PubMed Central

    Mahboobi, Reza; Dianatpour, Mehdi; Zare, Shahrokh; Hosseini, Seyed Ebrahim

    2014-01-01

    Establishment of Guinea pig fetal fibroblast cells and their biological evaluation before and after cryopreservation were the main purposes of this study. After determination of the proper age of pregnancy by ultrasonography, 30 days old fetuses of Guinea pigs were recovered. Their skins were cut into small pieces (1?mm2) and were cultured. When reaching 8090% confluence, the cells were passaged. Cells of the second and eighth passages were cultured in 24-well plates (4 104 cells/well) for 6 days and three wells per day were counted. The average cell counts at each time point were then plotted against time and the population doubling time (PDT) was determined. Then, vials of cells (2 106 cells/mL) were cryopreserved for 1 month and after thawing, the cell viability was evaluated. The PDT of the second passage was about 23?h and for the eighth passage was about 30?h. The viability of the cultures was 95% in the second passage and 74.5% in the eighth passage. It was shown that the Guinea pig fetal fibroblast cell culture can be established using the adherent culture method while, after freezing, the viability indices of these cells were favorable. PMID:24790770

  7. Establishment, culture, and characterization of Guinea pig fetal fibroblast cell.

    PubMed

    Mehrabani, Davood; Mahboobi, Reza; Dianatpour, Mehdi; Zare, Shahrokh; Tamadon, Amin; Hosseini, Seyed Ebrahim

    2014-01-01

    Establishment of Guinea pig fetal fibroblast cells and their biological evaluation before and after cryopreservation were the main purposes of this study. After determination of the proper age of pregnancy by ultrasonography, 30 days old fetuses of Guinea pigs were recovered. Their skins were cut into small pieces (1?mm(2)) and were cultured. When reaching 80-90% confluence, the cells were passaged. Cells of the second and eighth passages were cultured in 24-well plates (4 10(4) cells/well) for 6 days and three wells per day were counted. The average cell counts at each time point were then plotted against time and the population doubling time (PDT) was determined. Then, vials of cells (2 10(6) cells/mL) were cryopreserved for 1 month and after thawing, the cell viability was evaluated. The PDT of the second passage was about 23?h and for the eighth passage was about 30?h. The viability of the cultures was 95% in the second passage and 74.5% in the eighth passage. It was shown that the Guinea pig fetal fibroblast cell culture can be established using the adherent culture method while, after freezing, the viability indices of these cells were favorable. PMID:24790770

  8. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  9. Effect of LLLT on endothelial cells culture.

    PubMed

    Gralczyk, Krzysztof; Szyma?ska, Justyna; ?ukowicz, Ma?gorzata; Drela, Ewelina; Kotzbach, Roman; Dubiel, Mariusz; Michalska, Ma?gorzata; Gralczyk, Barbara; Zaj?c, Andrzej; Ro??, Danuta

    2015-01-01

    Growth factors as vascular endothelial growth factor (VEGF), produced by the endothelial cells, take an essential part in pathological and physiological angiogenesis. The possibility of angiogenesis modulation by application of laser radiation may contribute to the improvement of its use in this process. Thus, the aim of the study was to investigate the influence of low-level laser therapy (LLLT) on the proliferation of endothelial cells, secretion of VEGF-A and presence of soluble VEGF receptors (sVEGFR-1 and sVEGFR-2) in the medium after in vitro culture. Isolated human umbilical vein endothelial cells (HUVECs) were irradiated using a diode laser at a wavelength of 635 nm and power density of 1,875 mW/cm(2). Depending on radiation energy density, the experiment was conducted in four groups: I 0 J/cm(2) (control group), II 2 J/cm(2), III 4 J/cm(2), and IV 8 J/cm(2). The use of laser radiation wavelength of 635 nm, was associated with a statistically significant increase in proliferation of endothelial cells (p?=?0.0041). Moreover, at 635-nm wavelength, all doses of radiation significantly reduced the concentration of sVEGFR-1 (p?=?0.0197). PMID:25231826

  10. Campylobacter jejuni non-culturable coccoid cells.

    PubMed

    Beumer, R R; de Vries, J; Rombouts, F M

    1992-01-01

    The behaviour of Campylobacter jejuni in the environment is poorly documented. Rapid loss of viability on culture media is reported. This phenomenon is associated with the development of so-called coccoid cells. It has been suggested that these cells can be infective to animals and man. Results obtained with ATP-measurements of coccoid cells and Direct Viable Count (DVC) support this hypothesis. Introduction of coccoid cells into simulated gastric, ileal and colon environments did not result in the presence of culturable cells. Oral administration to laboratory animals and volunteers caused no typical symptoms of campylobacteriosis. Until 30 days after uptake of the cells antibodies against C. jejuni could not be detected in the blood, and the presence of this microorganism in stool samples could not be demonstrated. PMID:1622752

  11. The consensus mechanics of cultured mammalian cells

    PubMed Central

    Hoffman, Brenton D.; Massiera, Gladys; Van Citters, Kathleen M.; Crocker, John C.

    2006-01-01

    Although understanding cells' responses to mechanical stimuli is seen as increasingly important for understanding cell biology, how to best measure, interpret, and model cells' mechanical properties remains unclear. We determine the frequency-dependent shear modulus of cultured mammalian cells by using four different methods, both unique and well established. This approach clarifies the effects of cytoskeletal heterogeneity, ATP-dependent processes, and cell regional variations on the interpretation of such measurements. Our results clearly indicate two qualitatively similar, but distinct, mechanical responses, corresponding to the cortical and intracellular networks, each having an unusual, weak power-law form at low frequency. The two frequency-dependent responses we observe are remarkably similar to those reported for a variety of cultured mammalian cells measured with different techniques, suggesting it is a useful consensus description. Finally, we discuss possible physical explanations for the observed mechanical response. PMID:16793927

  12. Immunodissection and culture of rabbit cortical collecting tubule cells

    SciTech Connect

    Spielman, W.S.; Sonnenburg, W.K.; Allen, M.L.; Arend, L.J.; Gerozissis, K.; Smith, W.L.

    1986-08-01

    A mouse monoclonal antibody designated IgG3 (rct-30) has been prepared that reacts specifically with an antigen on the surface of all cells comprising the cortical and medullary rabbit renal collecting tubule including the arcades. Plastic culture dishes coated with IgG3 (rct-30) were used to isolate collecting tubule cells from collagenase dispersions of rabbit renal cortical cells by immunoadsorption. Typically, 10W rabbit cortical collecting tubule (RCCT) cells were obtained from 5 g of renal cortex (2 kidneys). Between 20 and 30% of the RCCT cells were reactive with peanut lectin suggesting that RCCT cells are a mixture of principal and intercalated cells. Approximately 10X RCCT cells were obtained after 4 to 5 days in primary culture. Moreover, RCCT cells continued to proliferate after passaging with a doubling time of approx.32 h. RCCT cells passaged once and then cultured 4-5 days were found 1) to synthesize cAMP in response to arginine vasopressin (AVP), prostaglandin E2 (PGE2), isoproterenol, and parathyroid hormone, but not calcitonin, prostaglandin D2, or prostaglandin I, and 2) to release PGE2 in response to bradykinin but not arginine vasopressin or isoproterenol. The results indicate that cultured RCCT cells retain many of the hormonal, histochemical, and morphological properties expected for a mixture of principal and intercalated rabbit cortical collecting tubule epithelia. RCCT cells should prove useful both for studying hormonal interactions in the cortical collecting tubule and as a starting population for isolating intercalated collecting tubule epithelia.

  13. Shock wave application to cell cultures.

    PubMed

    Holfeld, Johannes; Tepeköylü, Can; Kozaryn, Radoslaw; Mathes, Wolfgang; Grimm, Michael; Paulus, Patrick

    2014-01-01

    Shock waves nowadays are well known for their regenerative effects. Basic research findings showed that shock waves do cause a biological stimulus to target cells or tissue without any subsequent damage. Therefore, in vitro experiments are of increasing interest. Various methods of applying shock waves onto cell cultures have been described. In general, all existing models focus on how to best apply shock waves onto cells. However, this question remains: What happens to the waves after passing the cell culture? The difference of the acoustic impedance of the cell culture medium and the ambient air is that high, that more than 99% of shock waves get reflected! We therefore developed a model that mainly consists of a Plexiglas built container that allows the waves to propagate in water after passing the cell culture. This avoids cavitation effects as well as reflection of the waves that would otherwise disturb upcoming ones. With this model we are able to mimic in vivo conditions and thereby gain more and more knowledge about how the physical stimulus of shock waves gets translated into a biological cell signal ("mechanotransduction"). PMID:24747842

  14. Comparative evaluation of maintenance of cell viability of an experimental transport media “coconut water” with Hank's balanced salt solution and milk, for transportation of an avulsed tooth: An in vitro cell culture study

    PubMed Central

    Thomas, Toby; Gopikrishna, Velayutham; Kandaswamy, Deivanayagam

    2008-01-01

    The purpose of this study was to evaluate the efficiency of a new storage medium, coconut water, in comparison with other traditional storage media like Hank's balanced salt solution (HBBS) and milk, in maintaining the viability of an established cell line BHK-21/C13 (baby hamster kidney fibroblasts) using the direct suspension cell culture technique. The storage media tested in the study were divided into three major groups and two control groups - Group A: HBBS, Group B: milk, and Group C: coconut water. The positive and negative controls corresponded to 0-minute and 24-hour dry times respectively. The three groups were then divided into five subgroups, each denoting the storage time periods 15 min, 30 min, 45 min, 60 min and 120 min respectively. The cell line BHK-21/C13 was subcultured and the number of cells was standardized by making a cell suspension using Minimal Essential Medium in five culture plates. One ml of each experimental group (HBBS, milk and coconut water) was added to eight wells of each culture plate. The culture plates containing the cells and the experimental groups were incubated for the respective time periods. The cells were then counted with a Neubauer counting chamber, under light microscope. The results were statistically analyzed using One-way ANOVA and Multiple Range Test using the Tukey-HSD procedure to identify the significant groups at p ≤ 0.05. Within the parameters of this study, it appears that coconut water may be a better alternative to HBSS or milk, in terms of maintaining cell viability. Coconut water can be used as a superior transport medium for avulsed teeth. PMID:20142880

  15. Chromosome preparation from cultured cells.

    PubMed

    Howe, Bradley; Umrigar, Ayesha; Tsien, Fern

    2014-01-01

    Chromosome (cytogenetic) analysis is widely used for the detection of chromosome instability. When followed by G-banding and molecular techniques such as fluorescence in situ hybridization (FISH), this assay has the powerful ability to analyze individual cells for aberrations that involve gains or losses of portions of the genome and rearrangements involving one or more chromosomes. In humans, chromosome abnormalities occur in approximately 1 per 160 live births(1,2), 60-80% of all miscarriages(3,4), 10% of stillbirths(2,5), 13% of individuals with congenital heart disease(6), 3-6% of infertility cases(2), and in many patients with developmental delay and birth defects(7). Cytogenetic analysis of malignancy is routinely used by researchers and clinicians, as observations of clonal chromosomal abnormalities have been shown to have both diagnostic and prognostic significance(8,9). Chromosome isolation is invaluable for gene therapy and stem cell research of organisms including nonhuman primates and rodents(10-13). Chromosomes can be isolated from cells of live tissues, including blood lymphocytes, skin fibroblasts, amniocytes, placenta, bone marrow, and tumor specimens. Chromosomes are analyzed at the metaphase stage of mitosis, when they are most condensed and therefore more clearly visible. The first step of the chromosome isolation technique involves the disruption of the spindle fibers by incubation with Colcemid, to prevent the cells from proceeding to the subsequent anaphase stage. The cells are then treated with a hypotonic solution and preserved in their swollen state with Carnoy's fixative. The cells are then dropped on to slides and can then be utilized for a variety of procedures. G-banding involves trypsin treatment followed by staining with Giemsa to create characteristic light and dark bands. The same procedure to isolate chromosomes can be used for the preparation of cells for procedures such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and spectral karyotyping (SKY)(14,15). PMID:24513647

  16. Chromosome Preparation From Cultured Cells

    PubMed Central

    Howe, Bradley; Umrigar, Ayesha; Tsien, Fern

    2014-01-01

    Chromosome (cytogenetic) analysis is widely used for the detection of chromosome instability. When followed by G-banding and molecular techniques such as fluorescence in situ hybridization (FISH), this assay has the powerful ability to analyze individual cells for aberrations that involve gains or losses of portions of the genomeand rearrangements involving one or more chromosomes. In humans, chromosome abnormalities occur in approximately 1 per 160 live births1,2, 60-80% of all miscarriages3,4, 10% of stillbirths2,5, 13% of individuals with congenital heart disease6, 3-6% of infertility cases2, and in many patients with developmental delayand birth defects7. Cytogenetic analysis of malignancy is routinely used by researchers and clinicians, as observations of clonal chromosomal abnormalities have been shown to have both diagnostic and prognostic significance8,9. Chromosome isolation is invaluable for gene therapy and stem cell research of organisms including nonhuman primates and rodents10-13. Chromosomes can be isolated from cells of live tissues, including blood lymphocytes, skin fibroblasts, amniocytes, placenta, bone marrow, and tumor specimens. Chromosomes are analyzed at the metaphase stage of mitosis, when they are most condensed and therefore more clearly visible. The first step of the chromosome isolation technique involves the disruption of the spindle fibers by incubation with Colcemid, to prevent the cells from proceeding to the subsequent anaphase stage. The cells are then treated with a hypotonic solution and preserved in their swollen state with Carnoy's fixative. The cells are then dropped on to slides and can then be utilized for a variety of procedures. G-banding involves trypsin treatment followed by staining with Giemsa to create characteristic light and dark bands. The same procedure to isolate chromosomes can be used for the preparation of cells for procedures such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and spectral karyotyping (SKY)14,15. PMID:24513647

  17. Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure, and phosphate nutrition

    SciTech Connect

    Casadevall, E.; Dif, D.; Largeau, C.; Gudin, C.; Chaumont, D.; Desanti, O.

    1985-01-01

    The growth of the hydrocarbon-rich alga Botryococcus braunii was studied under air-lift conditions using batch and continuous cultures. Large variations in the physiological state of B. braunii were achieved in batch cultures and in continuous cultures with various dilution rates. The possible effects of these variations upon hydrocarbons (nature, relative abundance, location, level, productivity) and also on the production of exocellular polysaccharides were examined. The relationships between the physiological state of B. braunii and its hydrocarbon and polysaccharide production were discussed and compared with those generally observed in unicellular algae. The factors giving rise to the transition from high to low productivity stages were considered. To this end the authors examined, at first, the variations in cell ultrastructure and the resulting degeneration occurring during batch cultures. Afterward the parallel changes in some parameters of the medium (pH, phosphate level) were determined and their possible relationships with B. braunii growth and hydrocarbon production were discussed. The main features of phosphate nutrition in B. braunii and its effects on hydrocarbons were finally examined.

  18. Cultural Language Study: Grade 7.

    ERIC Educational Resources Information Center

    Schwartz, Betty L.; Tappenden, Jacqueline W.

    This course guide, the first in a two-year sequence, is designed to give students an overview of Greek and Roman culture and language from the era of the early Aegean civilizations in Greece and Asia Minor to the Augustan Age in Rome. Six units of study are concerned with the growth and development of Greece and with the metamorphosis of Rome from

  19. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  20. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    PubMed Central

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W.

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media for three serial batches and produced increasing proportions of uniformly labeled lycopene (14.3 +/? 1.2 %, 39.6 +/? 0.5 %, and 48.9 +/? 1.5% with consistent yields (from 5.8 to 9 mg/L). An optimized 9-day-long 13C-loading and 18-day-long labeling strategy developed based on glucose utilization and lycopene yields, yielded 13C-lycopene with 93% 13C isotopic purity, and 55% of isotopomers were uniformly labeled. Furthermore, an optimized acetone and hexane extraction led to a four-fold increase in lycopene recovery from cultures compared to a standard extraction. PMID:23561155

  1. Differential effects of selective frankincense (Ru Xiang) essential oil versus non-selective sandalwood (Tan Xiang) essential oil on cultured bladder cancer cells: a microarray and bioinformatics study

    PubMed Central

    2014-01-01

    Background Frankincense (Boswellia carterii, known as Ru Xiang in Chinese) and sandalwood (Santalum album, known as Tan Xiang in Chinese) are cancer preventive and therapeutic agents in Chinese medicine. Their biologically active ingredients are usually extracted from frankincense by hydrodistillation and sandalwood by distillation. This study aims to investigate the anti-proliferative and pro-apoptotic activities of frankincense and sandalwood essential oils in cultured human bladder cancer cells. Methods The effects of frankincense (1,400600 dilutions) (v/v) and sandalwood (16,0007,000 dilutions) (v/v) essential oils on cell viability were studied in established human bladder cancer J82 cells and immortalized normal human bladder urothelial UROtsa cells using a colorimetric XTT cell viability assay. Genes that responded to essential oil treatments in human bladder cancer J82 cells were identified using the Illumina Expression BeadChip platform and analyzed for enriched functions and pathways. The chemical compositions of the essential oils were determined by gas chromatographymass spectrometry. Results Human bladder cancer J82 cells were more sensitive to the pro-apoptotic effects of frankincense essential oil than the immortalized normal bladder UROtsa cells. In contrast, sandalwood essential oil exhibited a similar potency in suppressing the viability of both J82 and UROtsa cells. Although frankincense and sandalwood essential oils activated common pathways such as inflammatory interleukins (IL-6 signaling), each essential oil had a unique molecular action on the bladder cancer cells. Heat shock proteins and histone core proteins were activated by frankincense essential oil, whereas negative regulation of protein kinase activity and G protein-coupled receptors were activated by sandalwood essential oil treatment. Conclusion The effects of frankincense and sandalwood essential oils on J82 cells and UROtsa cells involved different mechanisms leading to cancer cell death. While frankincense essential oil elicited selective cancer cell death via NRF-2-mediated oxidative stress, sandalwood essential oil induced non-selective cell death via DNA damage and cell cycle arrest. PMID:25006348

  2. Verbascoside production by plant cell cultures.

    PubMed

    Inagaki, N; Nishimura, H; Okada, M; Mitsuhashi, H

    1991-01-01

    Verbascoside was found to be produced in all calli derived from eleven species that contained the compound in their leaves. Cell suspension cultures were also established in three species, i.e., Leucosceptrum japonicum f. barbinerve, Syringa josikaea, and Sy. vulgaris, all of which were found to produce verbascoside at more than 1 g/l. Of the three species, suspension cultures of L. japonicum f. barbinerve showed rapid growth and the highest yield of verbascoside (1.89 g/l). In these cultures, the effects of major salt concentration in B5 medium on cell growth and verbascoside production were examined. Maximum cell growth and maximum verbascoside production were both achieved by reducing the major salt concentration to half that of the original medium. PMID:24213785

  3. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies.

    PubMed

    Kanski, Jaroslaw; Aksenova, Marina; Stoyanova, Antonia; Butterfield, D Allan

    2002-05-01

    In this study, free radical scavenging abilities of ferulic acid in relation to its structural characteristics were evaluated in solution, cultured neurons, and synaptosomal systems exposed to hydroxyl and peroxyl radicals. Cultured neuronal cells exposed to the peroxyl radical initiator AAPH die in a dose-response manner and show elevated levels of protein carbonyls. The presence of ferulic acid or similar phenolic compounds, however, greatly reduces free radical damage in neuronal cell systems without causing cell death by themselves. In addition, synaptosomal membrane systems exposed to oxidative stress by hydroxyl and peroxyl radical generators show elevated levels of oxidation as indexed by protein oxidation, lipid peroxidation, and ROS measurement. Ferulic acid greatly attenuates these changes, and its effects are far more potent than those obtained for vanillic, coumaric, and cinnamic acid treatments. Moreover, ferulic acid protects against free radical mediated changes in conformation of synaptosomal membrane proteins as monitored by EPR spin labeling techniques. The results presented in this study suggest the importance of naturally occurring antioxidants such as ferulic acid in therapeutic intervention methodology against neurodegenerative disorders such as Alzheimer's disease in which oxidative stress is implicated. PMID:12015157

  4. Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells

    PubMed Central

    Desnues, Benoît; Cuny, Caroline; Grégori, Gérald; Dukan, Sam; Aguilaniu, Hugo; Nyström, Thomas

    2003-01-01

    Potentially pathogenic bacteria, such as Escherichia coli and Vibrio cholerae, become non-culturable during stasis. The analysis of such cells has been hampered by difficulties in studying bacterial population heterogeneity. Using in situ detection of protein oxidation in single E. coli cells, and using a density-gradient centrifugation technique to separate culturable and non-culturable cells, we show that the proteins in non-culturable cells show increased and irreversible oxidative damage, which affects various bacterial compartments and proteins. The levels of expression of specific stress regulons are higher in non-culturable cells, confirming increased defects relating to oxidative damage and the occurrence of aberrant, such as by amino-acid misincorporation, proteins. Our data suggest that non-culturable cells are produced due to stochastic deterioration, rather than an adaptive programme, and pinpoint oxidation management as the 'Achilles heel' of these cells. PMID:12671690

  5. Long-term culture of capillary endothelial cells.

    PubMed Central

    Folkman, J; Haudenschild, C C; Zetter, B R

    1979-01-01

    Capillary endothelial cells from rats, calves, and humans, have been carried in long-term culture. Bovine capillary endothelial cells have been cloned and maintained by serial passage for longer than 8 months. This prolonged culture was accomplished by using tumor-conditioned medium, gelatin-coated plates, and a method of enriching cells in primary culture. Cultured bovine capillary endothelial cells produce Factor VIII antigen and angiotensin-converting enzyme, but do not have Weibel-Palade bodies. Human cells do contain Weibel-Palade bodies. Capillary endothelial cells are distinguished from aortic endothelial cells by their requirement for conditioned medium. Bovine capillary endothelial cells in regular medium grow slowly with a mean doubling time of 67 hr and eventually die. In tumor-conditioned medium, these cells grow rapidly with a doubling time of 28 hr and continue to proliferate for as long as the tumor-conditioned medium is present. In contrast, bovine aortic endothelial cells grow as rapidly in regular medium as in tumor-conditioned medium. This method allows the production of pure capillary endothelial cells that may prove useful for studies of tumor angiogenesis, metastatic mechanisms, and the role of capillary endothelium in other pathologic states. Images PMID:291937

  6. Cell Culture on MEMS Platforms: A Review

    PubMed Central

    Ni, Ming; Tong, Wen Hao; Choudhury, Deepak; Rahim, Nur Aida Abdul; Iliescu, Ciprian; Yu, Hanry

    2009-01-01

    Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bio-incompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bio-incompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented. PMID:20054478

  7. A comparison of primary cultures of rat cerebral microvascular endothelial cells to rat aortic endothelial cells.

    PubMed

    Gordon, E L; Danielsson, P E; Nguyen, T S; Winn, H R

    1991-04-01

    A method to culture rat cerebral microvascular endothelial cells (RCMECs) was developed and adapted to concurrently obtain cultures of rat aortic endothelial cells (RAECs) without subculturing, cloning, or "weeding." The attachment and growth requirements of endothelial cell clusters from isolated brain microvessels were first evaluated. RCMECs required fetal bovine serum to attach efficiently. Attachment and growth also depended on the matrix provided (fibronectin approximately laminin much greater than gelatin greater than poly-D-lysine approximately Matrigel greater than hyaluronic acid approximately plastic) and the presence of endothelial cell growth supplement and heparin in the growth medium. Non-endothelial cells are removed by allowing these cells to attach to a matrix that RCMECs attach to poorly (e.g., poly-D-lysine) and then transferring isolated endothelial cell clusters to fibronectin-coated dishes. These cell cultures, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarboxyamine perchlorate (DiI-Ac-LDL) and analyzed using flow cytometry, were 97.7 +/- 2.6% (n = 6) pure. By excluding those portions designed to isolate brain microvessels, the method was adapted to obtain RAEC cultures. RAECs do not isolate as clusters and have different morphology in culture, but respond similarly to matrices and growth medium supplements. RCMECs and RAECs have Factor VIII antigen, accumulate DiI-Ac-LDL, contain Weibel-Palade bodies, and have complex junctional structures. The activities of gamma-glutamyl transferase and alkaline phosphatase were measured as a function of time in culture. RCMECs had higher enzymatic activity than RAECs. In both RCMECs and RAECs enzyme activity decreased with time in culture. The function of endothelial cells is specialized depending on its location. This culture method allows comparison of two endothelial cell cultures obtained using very similar culture conditions, and describes their initial characterization. These cultures may provide a model system to study specialized endothelial cell functions and endothelial cell differentiation. PMID:1856157

  8. Production of zebrafish offspring from cultured female germline stem cells.

    PubMed

    Wong, Ten-Tsao; Tesfamichael, Abraham; Collodi, Paul

    2013-01-01

    Zebrafish female germline stem cell (FGSC) cultures were generated from a transgenic line of fish that expresses Neo and DsRed under the control of the germ cell specific promoter, ziwi [Tg(ziwi:neo);Tg(ziwi:DsRed)]. Homogeneous FGSC cultures were established by G418 selection and continued to express ziwi for more than 6 weeks along with the germ cell markers nanos3, dnd, dazl and vasa. A key component of the cell culture system was the use of a feeder cell line that was initiated from ovaries of a transgenic line of fish [Tg(gsdf:neo)] that expresses Neo controlled by the zebrafish gonadal soma derived factor (gsdf) promoter. The feeder cell line was selected in G418 and engineered to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and glial-cell-line derived neurotrophic factor (Gdnf). These factors were shown to significantly enhance FGSC growth, survival and germline competency in culture. Results from cell transplantation experiments revealed that the cultured FGSCs were able to successfully colonize the gonad of sterile recipient fish and generate functional gametes. Up to 20% of surviving recipient fish that were injected with the cultured FGSCs were fertile and generated multiple batches of normal offspring for at least 6 months. The FGSC cultures will provide an in vitro system for studies of zebrafish germ cell growth and differentiation and their high frequency of germline transmission following transplantation could form the basis of a stem cell-mediated strategy for gene transfer and manipulation of the zebrafish genome. PMID:23671620

  9. Functional characterization of choroid plexus epithelial cells in primary culture.

    PubMed

    Villalobos, A R; Parmelee, J T; Pritchard, J B

    1997-08-01

    The objective of this study was to develop and evaluate a primary culture system for choroid plexus epithelial cells as an in vitro model for studying organic cation transport. Cells were dispersed from choroid plexus of neonatal rats by enzymatic digestion and grew as differentiated monolayers when plated on solid or permeable support. Electron microscopy showed that cultured cells were morphologically similar to intact choroid plexus epithelium, having apical tight junctions between cells, numerous mitochondria, basal nuclei and apical microvilli and cilia. As previously demonstrated for intact choroid plexus, immunocytochemistry showed that Na+,K+-ATPase was localized to the apical membrane, and GLUT-1, the facilitative glucose transporter, was localized to the basolateral membrane of cultured cells. Apical transport of L-proline by cultured cells was mediated by a sodium-dependent, electrogenic process, as in whole tissue. 14C-Tetraethylammonium (TEA), a prototypic organic cation, was accumulated by isolated choroid plexus in a time-dependent manner; uptake was inhibited by tetrapentylammonium (TePA). In cultured cells, apical TEA transport was mediated by a saturable process coupled to cellular metabolism. Unlabeled TEA and other organic cations (TePA, N1-methylnicotinamide and mepiperphenidol) inhibited TEA transport; the organic anion, p-aminohippurate, had no effect. Finally, TePA-sensitive transport of 14C-TEA was stimulated after preloading the cells with unlabeled TEA. Based on the morphological, biochemical and functional properties of these cultured cells, we conclude that this primary culture system should be an excellent in vitro model for experimental characterization of choroid plexus function. PMID:9262381

  10. Alteration of CellCell Junctions in Cultured Human Lymphatic Endothelial Cells with Inflammatory Cytokine Stimulation

    PubMed Central

    Kakei, Yasumasa; Shigeta, Takashi; Hasegawa, Takumi; Komori, Takahide

    2014-01-01

    Abstract Background: To maintain normal function, the lymphatic endothelium is regulated by cellcell junctions. There have been few studies of lymphatic endothelial cell junctions using standard cell biological methods. This study had two purposes: to characterize cell junctions in cultured lymphatic endothelial cells and to investigate the effects of the inflammatory cytokine TNF-? on altered cellcell junctions. Methods and Results: Cultured human dermal lymphatic endothelial cells (HDLEC) were immunostained with the tight junction marker, ZO-1, and adherens junction markers, VE-cadherin and PECAM-1. In TNF-?-treated HDLEC, we evaluated changes in endothelial cell junctions by immunostaining and through the use of transendothelial electrical resistance (TER). Immunofluorescence staining of HDLEC revealed heterogeneity among the endothelial cell junctions, which could be classified into continuous and discontinuous junctions. In these cell junctions, ZO-1 and VE-cadherin were co-localized. Double immunofluorescence staining revealed the broad distribution of VE-cadherin at the cell periphery, where VE-cadherin and PECAM-1 were co-localized. TNF-? treatment decreased TER, caused a predominance in the appearance of discontinuous junctions with a reduction in the broad distribution of VE-cadherin at the cell periphery in HDLEC. Conclusions: The results indicate a heterogeneous distribution of cell junctions in HDLEC involving continuous and discontinuous junctions. Our data also suggest that TNF-? alters the normal distribution of cell junctions and affects the endothelial barrier of cultured lymphatic endothelial cells. The broad distribution of VE-cadherin at the cell periphery may reflect the lymphatic permeability. PMID:25166264

  11. Primary Bovine Extra-Embryonic Cultured Cells: A New Resource for the Study of In Vivo Peri-Implanting Phenotypes and Mesoderm Formation

    PubMed Central

    Hue, Isabelle; Evain-Brion, Danièle; Fournier, Thierry; Degrelle, Séverine A.

    2015-01-01

    In addition to nourishing the embryo, extra-embryonic tissues (EETs) contribute to early embryonic patterning, primitive hematopoiesis, and fetal health. These tissues are of major importance for human medicine, as well as for efforts to improve livestock efficiency, but they remain incompletely understood. In bovines, EETs are accessible easily, in large amounts, and prior to implantation. We took advantage of this system to describe, in vitro and in vivo, the cell types present in bovine EETs at Day 18 of development. Specifically, we characterized the gene expression patterns and phenotypes of bovine extra-embryonic ectoderm (or trophoblast; bTC), endoderm (bXEC), and mesoderm (bXMC) cells in culture and compared them to their respective in vivo micro-dissected cells. After a week of culture, certain characteristics (e.g., gene expression) of the in vitro cells were altered with respect to the in vivo cells, but we were able to identify “cores” of cell-type-specific (and substrate-independent) genes that were shared between in vitro and in vivo samples. In addition, many cellular phenotypes were cell-type-specific with regard to extracellular adhesion. We evaluated the ability of individual bXMCs to migrate and spread on micro-patterns, and observed that they easily adapted to diverse environments, similar to in vivo EE mesoderm cells, which encounter different EE epithelia to form chorion, yolk sac, and allantois. With these tissue interactions, different functions arose that were detected in silico and corroborated in vivo at D21–D25. Moreover, analysis of bXMCs allowed us to identify the EE cell ring surrounding the embryonic disc (ED) at D14-15 as mesoderm cells, which had been hypothesized but not shown prior to this study. We envision these data will serve as a major resource for the future in the analysis of peri-implanting phenotypes in response to the maternal metabolism and contribute to subsequent studies of placental/fetal development in eutherians. PMID:26070137

  12. ES-like cell cultures derived from early zebrafish embryos.

    PubMed

    Sun, L; Bradford, C S; Ghosh, C; Collodi, P; Barnes, D W

    1995-09-01

    Pluripotent embryonic stem (ES) cell cultures provide an efficient method for genome manipulation with many applications in marine biotechnology. To develop this technology we have been working to derive fish ES cell lines for in vitro studies of embryo cell growth and differentiation and for the generation of transgenic fish. Zebrafish embryonal cell cultures were derived from blastula-stage embryos in LDF medium supplemented with fetal bovine serum, trout serum, trout embryo extract, selenium, insulin, and leukemia inhibitory factor. Cultures derived under these conditions on feeder layers of zebrafish embryonic fibroblasts possessed a diploid karyotype and exhibited an ES-like morphology with elevated levels of alkaline phosphatase enzyme activity. Injection of primary cell cultures derived from embryos of transgenic fish carrying neo produced chimeric fish detected by polymerase chain reaction analysis. Embryo cells cultured on poly-D-lysine substrate in the presence of retinoic acid or Buffalo rat liver cell-conditioned medium (BRL-CM) and a reduced serum concentration differentiated into neuronal cell types exhibiting elevated levels of acetylcholinesterase enzyme activity and expression of neurofilament and glial fibrillary acidic protein. PMID:7670594

  13. Transcriptome analysis of primary bovine extra-embryonic cultured cells

    PubMed Central

    Degrelle, Sverine A.

    2015-01-01

    The dataset described in this article pertains to the article by Hue et al. (2015) entitled Primary bovine extra-embryonic cultured cells: A new resource for the study of in vivo peri-implanting phenotypes and mesoderm formation [1]. In mammals, extra-embryonic tissues are essential to support not only embryo patterning but also embryo survival, especially in late implanting species. These tissues are composed of three cell types: trophoblast (bTCs), endoderm (bXECs) and mesoderm (bXMCs). Until now, it is unclear how these cells interact. In this study, we have established primary cell cultures of extra-embryonic tissues from bovine embryos collected at day-18 after artificial insemination. We used our homemade bovine 10K array (GPL7417) to analyze the gene expression profiles of these primary extra-embryonic cultured cells compared to the corresponding cells from in vivo micro-dissected embryos. Here, we described the experimental design, the isolation of bovine extra-embryonic cell types as well as the microarray expression analysis. The dataset has been deposited in Gene Expression Omnibus (GEO) (accession number GSE52967). Finally, these primary cell cultures were a powerful tool to start studying their cellular properties, and will further allow in vitro studies on cellular interactions among extra-embryonic tissues, and potentially between extra-embryonic vs embryonic tissues. PMID:26697347

  14. Transcriptome analysis of primary bovine extra-embryonic cultured cells.

    PubMed

    Degrelle, Séverine A

    2015-12-01

    The dataset described in this article pertains to the article by Hue et al. (2015) entitled "Primary bovine extra-embryonic cultured cells: A new resource for the study of in vivo peri-implanting phenotypes and mesoderm formation" [1]. In mammals, extra-embryonic tissues are essential to support not only embryo patterning but also embryo survival, especially in late implanting species. These tissues are composed of three cell types: trophoblast (bTCs), endoderm (bXECs) and mesoderm (bXMCs). Until now, it is unclear how these cells interact. In this study, we have established primary cell cultures of extra-embryonic tissues from bovine embryos collected at day-18 after artificial insemination. We used our homemade bovine 10K array (GPL7417) to analyze the gene expression profiles of these primary extra-embryonic cultured cells compared to the corresponding cells from in vivo micro-dissected embryos. Here, we described the experimental design, the isolation of bovine extra-embryonic cell types as well as the microarray expression analysis. The dataset has been deposited in Gene Expression Omnibus (GEO) (accession number GSE52967). Finally, these primary cell cultures were a powerful tool to start studying their cellular properties, and will further allow in vitro studies on cellular interactions among extra-embryonic tissues, and potentially between extra-embryonic vs embryonic tissues. PMID:26697347

  15. Cell wall proteomics of sugarcane cell suspension cultures.

    PubMed

    Calderan-Rodrigues, Maria Juliana; Jamet, Elisabeth; Bonassi, Maria Beatriz Calderan Rodrigues; Guidetti-Gonzalez, Simone; Begossi, Amanda Carmanhanis; Setem, Las Vaz; Franceschini, Livia Maria; Fonseca, Juliana Guimares; Labate, Carlos Alberto

    2014-03-01

    The use of cell walls to produce cellulosic ethanol from sugarcane bagasse is a new challenge. A better knowledge of proteins involved in cell wall remodelling is essential to improve the saccharification processes. Cell suspension cultures were used for this first cell wall proteomics study of sugarcane. Proteins extracted from cell walls were identified using an adapted protocol. They were extracted using 0.2 M CaCl2 and 2 M LiCl after purification of cell walls. The proteins were then identified by the innovative nanoACQUITY UPLC MS/MS technology and bioinformatics using the translated SUCEST EST cluster database of sugarcane. The experiments were reproduced three times. Since Sorghum bicolor is the closest plant with a fully sequenced genome, homologous proteins were searched for to complete the annotation of proteins, that is, prediction of subcellular localization and functional domains. Altogether, 69 different proteins predicted to be secreted were identified among 377 proteins. The reproducibility of the experiments is discussed. These proteins were distributed into eight functional classes. Oxidoreductases such as peroxidases were well represented, whereas glycoside hydrolases were scarce. This work provides information about the proteins that could be manipulated through genetic transformation, to increase second-generation ethanol production. PMID:24436144

  16. Progress in the development of shrimp cell cultures in Thailand.

    PubMed

    Kasornchandra, J; Khongpradit, R; Ekpanithanpong, U; Boonyaratpalin, S

    1999-01-01

    Primary shrimp cell cultures were developed from lymphoid organ and ovaries of black tiger shrimp, Penaeus monodon, in double-strength Leibovitz's L-15 medium supplemented with 15% fetal bovine serum, 1% glucose, 5 g/L NaCl, 15% shrimp meat extract. The optimum conditions for primary culture in vitro were obtained in L-15 medium with an osmolality of approximately 730 +/- 10 mmol/kg, a temperature range of 25--28 degrees C and incubation in a normal atmosphere. However, basal medium supplemented with 0.01% cholesterol could enhance good growth and cells performance initiated from lymphoid organ. Both epithelial-like and fibroblastic- like cells were observed from those organs within 2 days incubation. Within 3 days, 80% confluent monolayers were obtained from the lymphoid organ while cultures from other tissues required 5 days. Cultures were maintained for at least 43 days. Only cells from lymphoid organ could be subcultured and confluent monolayers achieved within 10 days post-spilt. Healthy cultures of the lymphoid cells did not persist beyond the third passage. Application of these primary shrimp cell cultures for studying pathogenic viruses of shrimp in vitro will be discussed. PMID:10627677

  17. Establishment and in vitro culture of porcine spermatogonial germ cells in low temperature culture conditions.

    PubMed

    Lee, Won-Young; Park, Hyun-Jung; Lee, Ran; Lee, Kyung-Hoon; Kim, Yong-Hee; Ryu, Buom-Yong; Kim, Nam-Hyung; Kim, Jin-Hoi; Kim, Jae-Hwan; Moon, Sung-Hwan; Park, Jin-Ki; Chung, Hak-Jae; Kim, Dong-Hoon; Song, Hyuk

    2013-11-01

    The objective of this study was to establish a porcine spermatogonial germ cell (pSGC) line and develop an in vitro culture system. Isolated total testicular cells (TTCs) from 5-day-old porcine testes were primary cultured at 31, 34, and 37°C. Although the time of colony appearance was delayed at 31°C, strong alkaline phosphatase staining, expressions of pluripotency marker genes such as OCT4, NANOG, and THY1, and the gene expressions of the undifferentiated germ cell markers PLZF and protein gene product 9.5 (PGP9.5) were identified compared to 34 and 37°C. Cell cycle analysis for both pSGC and feeder cells at the three temperatures revealed that more pSGCs were in the G2/M phase at 31°C than 37°C at the subculture stage. In vitro, pSGCs could stably maintain undifferentiated germ cell and stem cell characteristics for over 60days during culture at 31°C. Xenotransplantation of pSGCs to immune deficient mice demonstrated a successful colonization and localization on the seminiferous tubule basement membrane in the recipient testes. In conclusion, pSGCs from neonatal porcine were successfully established and cultured for long periods under a low temperature culture environment in vitro. PMID:24041805

  18. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25?m-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300?m-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright 2012 John Wiley & Sons, Ltd. PMID:23239605

  19. Ultrastructural and tissue-culture studies on the role of fibronectin, collagen and glycosaminoglycans in the migration of neural crest cells in the fowl embryo.

    PubMed

    Newgreen, D F; Gibbins, I L; Sauter, J; Wallenfels, B; Wütz, R

    1982-01-01

    The initial migration of neural crest (NC) cells into cell-free space was studied by transmission electron microscopy at trunk levels of fowl embryos, some of which were fixed in the presence of ruthenium red. Migrating NC cells occurred in zones which contained fewer ruthenium-red stained 15-40nm diameter granules than other regions. The ruthenium-red stained granules were linked by similarly stained thin (greater than 3nm diameter) microfibrils. The granules resemble proteoglycan and the microfibrils may be hyaluronate. NC cells contacted thicker (greater than 10 nm diameter) fibrils and interstitial bodies, which did not require ruthenium red for visualization. Cytoplasmic microfilaments were sometimes aligned at the point of contact with the extracellular fibrils, which may be fibronectin and collagen. Phase-contrast time-lapse videotaping and scanning electron microscopy showed that NC cells of the fowl embryo in vitro migrated earlier and more extensively on glass coated with fibronectin-rich fibrous material and adsorbed fibronectin molecules than on glass coated with collagen type I (fibres and adsorbed molecules). NC cells became completely enmeshed in fibronectin-rich fibres, but generally remained on the surface of collagen-fibre gels. When given a choice, NC cells strongly preferred fibronectin coatings to plain glass, and plain glass to dried collagen gels. NC cells showed a slight preference for plain glass over glass to which collagen was adsorbed. Addition to the culture medium of hyaluronate (initial conc. 20 mg/ml), chondroitin (5 mg/ml) and fully sulphated chondroitin sulphate and dermatan sulphate (up to 10 mg/ml) did not drastically alter NC cell migration on fibronectin-rich fibrous substrates. PMID:7034954

  20. Voltage-Gated ion currents of schwann cells in cell culture models of human neurofibromatosis.

    PubMed

    Fieber, Lynne A

    2003-11-01

    K(+) (K) channels play a role in the proliferation of many cell types in normal cells and certain disease states. Several laboratories have studied K currents in cultured Schwann cells from models of the human diseases, neurofibromatosis type 1 (NF1) and neurofibromatosis type 2 (NF2). These diseases are characterized by the growth of Schwann cell tumors. In all cell culture NF models the K current properties differ in tumor-derived and normal Schwann cells. Depending on the model however, the type of K channel abnormality differs. K channels appear to play a role in the proliferation of Schwann cell cultures of these disease models, because a link has been established between K current blockade and the inhibition of Schwann cell proliferation in NF1 and NF2. Differences in the proliferation response of normal Schwann cells to K channel blockers suggest that in vitro regulation of proliferation in neoplastic and normal Schwann cells is complex. PMID:14598389

  1. The potential role of granulosa cells in the maturation rate of immature human oocytes and embryo development: A co-culture study

    PubMed Central

    Jahromi, Bahia Namavar; Mosallanezhad, Zahra; Matloob, Najmeh; Davari, Maryam

    2015-01-01

    Objective In order to increase the number of mature oocytes usable for intracytoplasmic sperm injection (ICSI), we aimed to investigate the effect of co-culturing granulosa cells (GCs) on human oocyte maturation in vitro, the fertilization rate, and embryo development. Methods A total of 133 immature oocytes were retrieved and were randomly divided into two groups; oocytes that were cultured with GCs (group A) and oocytes that were cultured without GCs (group B). After in vitro maturation, only oocytes that displayed metaphase II (MII) underwent the ICSI procedure. The maturation and fertilization rates were analyzed, as well as the frequency of embryo development. Results The mean age of the patients, their basal levels of follicle-stimulating hormone, and the number of oocytes recovered from the patients were all comparable between the two study groups. The number of oocytes that reached MII (mature oocytes) was 59 out of 70 (84.28%) in group A, compared to 41 out of 63 (65.07%) in group B (p=0.011). No significant difference between fertilization rates was found between the two study groups (p=0.702). The embryo development rate was higher in group A (33/59, 75%) than in group B (12/41, 42.85%; p=0.006). The proportion of highest-quality embryos and the blastocyst formation rate were significantly lower in group B than in group A (p=0.003 and p<0.001, respectively). Conclusion The findings of the current study demonstrate that culturing immature human oocytes with GCs prior to ICSI improves the maturation rate and the likelihood of embryo development. PMID:26473111

  2. Shape memory polymers for active cell culture.

    PubMed

    Davis, Kevin A; Luo, Xiaofan; Mather, Patrick T; Henderson, James H

    2011-01-01

    Shape memory polymers (SMPs) are a class of "smart" materials that have the ability to change from a fixed, temporary shape to a pre-determined permanent shape upon the application of a stimulus such as heat(1-5). In a typical shape memory cycle, the SMP is first deformed at an elevated temperature that is higher than its transition temperature, T(trans;) [either the melting temperature (T(m;)) or the glass transition temperature (T(g;))]. The deformation is elastic in nature and mainly leads to a reduction in conformational entropy of the constituent network chains (following the rubber elasticity theory). The deformed SMP is then cooled to a temperature below its T(trans;) while maintaining the external strain or stress constant. During cooling, the material transitions to a more rigid state (semi-crystalline or glassy), which kinetically traps or "freezes" the material in this low-entropy state leading to macroscopic shape fixing. Shape recovery is triggered by continuously heating the material through T(trans;) under a stress-free (unconstrained) condition. By allowing the network chains (with regained mobility) to relax to their thermodynamically favored, maximal-entropy state, the material changes from the temporary shape to the permanent shape. Cells are capable of surveying the mechanical properties of their surrounding environment(6). The mechanisms through which mechanical interactions between cells and their physical environment control cell behavior are areas of active research. Substrates of defined topography have emerged as powerful tools in the investigation of these mechanisms. Mesoscale, microscale, and nanoscale patterns of substrate topography have been shown to direct cell alignment, cell adhesion, and cell traction forces(7-14). These findings have underscored the potential for substrate topography to control and assay the mechanical interactions between cells and their physical environment during cell culture, but the substrates used to date have generally been passive and could not be programmed to change significantly during culture. This physical stasis has limited the potential of topographic substrates to control cells in culture. Here, active cell culture (ACC) SMP substrates are introduced that employ surface shape memory to provide programmed control of substrate topography and deformation. These substrates demonstrate the ability to transition from a temporary grooved topography to a second, nearly flat memorized topography. This change in topography can be used to control cell behavior under standard cell culture conditions. PMID:21750496

  3. THE METHODS FOR MAINTAINING INSECT CELL CULTURES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect cell cultures are now commonly used in insect physiology, developmental biology, pathology, and molecular biology. As the field has advanced from a methods development to a standard procedure, so has the diversity of scientists using the technique. This paper describes techniques that are e...

  4. ANTHOCYANIN (ACN) STABILITY IN CELL CULTURE MEDIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins (ACNs) are potential oxygen radical scavengers that have coronary vasoactive and vasoprotective properties. Cell or tissue culture systems have been used to examine the bioactivity and mechanisms of action of ACNs on the vascular system. However, due to their unique chemical structure, ...

  5. Chronic Rabies Virus Infection of Cell Cultures

    PubMed Central

    Wiktor, T. J.; Clark, H F.

    1972-01-01

    Exposure of both mammalian and reptilian cells in tissue culture to different strains of fixed rabies virus resulted in a carrier type of infection. No cytopathic effect was observed in either type of culture; infected cultures could be maintained by cell transfer for unlimited numbers of passages. A consistent pattern of cyclically rising and falling levels of viral infection was observed by fluorescent-antibody staining techniques and by titration of released infectious virus. Resistance to super-infection by vesicular stomatis virus and the production of an interferon-like substance by infected cells indicated that the maintenance of a carrier type of infection may be interferon-mediated. The degree of susceptibility of rabies-infected cells to immunolysis by antirabies antibody in the presence of complement was found to be correlated with the amount of virus maturation occurring by budding through the cell membrane and not with the presence of immunofluorescent antigen in the cytoplasm of infected cells. Images PMID:4344636

  6. Penetration of antimicrobials into tissue culture cells and leucocytes.

    PubMed

    Brown, K N; Percival, A

    1978-01-01

    When exposed to HeLa cells in tissue culture for 72 hr., antimicrobials could be categorised into three groups characterised by cell associated concentrations much lower (ampicillin, cephalexin, cloxacillin, flucloxacillin, streptomycin and trimethoprim, all 14% or less), much higher (tetracycline and polymyxins) or approximating to those extracellularly (erythromycin, lincomycin, fusidic acid and gentamicin). For kanamycin, neomycin and sulphonamides, cell associated levels were between 24 and 47% and for penicillin G and cephaloridine were 66% of those extracellularly. With mouse peritoneal macrophages and human peripheral blood leucocytes cell associated levels for representative antibiotics were all lower after 3 hr. exposure than in the tissue culture cells. However, studies on the rate of release of cell associated antibiotic and of the effects of surface active agents indicated that the differences between cell types were due to loss of cell association during washing procedures to remove extracellular antibiotic. The effects of bactericidal antibiotics on survival of bacteria phagocytosed by mouse macrophages suggested that the cell association observed in tissue culture cells represented true intracellular penetration rather than mere binding to the cell surface. Within families of antibiotics, alterations to the molecule change cell penetration and the variations observed can not be explained merely in terms of simple diffusion, molecular size, dissociation constants, lipid solubility or protein binding. PMID:360375

  7. Towards dynamic metabolic flux analysis in CHO cell cultures.

    PubMed

    Ahn, Woo Suk; Antoniewicz, Maciek R

    2012-01-01

    Chinese hamster ovary (CHO) cells are the most widely used mammalian cell line for biopharmaceutical production, with a total global market approaching $100 billion per year. In the pharmaceutical industry CHO cells are grown in fed-batch culture, where cellular metabolism is characterized by high glucose and glutamine uptake rates combined with high rates of ammonium and lactate secretion. The metabolism of CHO cells changes dramatically during a fed-batch culture as the cells adapt to a changing environment and transition from exponential growth phase to stationary phase. Thus far, it has been challenging to study metabolic flux dynamics in CHO cell cultures using conventional metabolic flux analysis techniques that were developed for systems at metabolic steady state. In this paper we review progress on flux analysis in CHO cells and techniques for dynamic metabolic flux analysis. Application of these new tools may allow identification of intracellular metabolic bottlenecks at specific stages in CHO cell cultures and eventually lead to novel strategies for improving CHO cell metabolism and optimizing biopharmaceutical process performance. PMID:22102428

  8. Advanced Cell Culture Techniques for Cancer Drug Discovery

    PubMed Central

    Lovitt, Carrie J.; Shelper, Todd B.; Avery, Vicky M.

    2014-01-01

    Human cancer cell lines are an integral part of drug discovery practices. However, modeling the complexity of cancer utilizing these cell lines on standard plastic substrata, does not accurately represent the tumor microenvironment. Research into developing advanced tumor cell culture models in a three-dimensional (3D) architecture that more prescisely characterizes the disease state have been undertaken by a number of laboratories around the world. These 3D cell culture models are particularly beneficial for investigating mechanistic processes and drug resistance in tumor cells. In addition, a range of molecular mechanisms deconstructed by studying cancer cells in 3D models suggest that tumor cells cultured in two-dimensional monolayer conditions do not respond to cancer therapeutics/compounds in a similar manner. Recent studies have demonstrated the potential of utilizing 3D cell culture models in drug discovery programs; however, it is evident that further research is required for the development of more complex models that incorporate the majority of the cellular and physical properties of a tumor. PMID:24887773

  9. Prevention and Detection of Mycoplasma Contamination in Cell Culture

    PubMed Central

    Nikfarjam, Laleh; Farzaneh, Parvaneh

    2012-01-01

    One of the main problems in cell culture is mycoplasma infection. It can extensively affect cell physiology and metabolism. As the applications of cell culture increase in research, industrial production and cell therapy, more concerns about mycoplasma contamination and detection will arise. This review will provide valuable information about: 1. the ways in which cells are contaminated and the frequency and source of mycoplasma species in cell culture; 2. the ways to prevent mycoplasma contamination in cell culture; 3. the importance of mycoplasma tests in cell culture; 4. different methods to identify mycoplasma contamination; 5. the consequences of mycoplasma contamination in cell culture and 6. available methods to eliminate mycoplasma contamination. Awareness about the sources of mycoplasma and pursuing aseptic techniques in cell culture along with reliable detection methods of mycoplasma contamination can provide an appropriate situation to prevent mycoplasma contamination in cell culture. PMID:23508237

  10. Poly(vinyl alcohol)/gelatin Hydrogels Cultured with HepG2 Cells as a 3D Model of Hepatocellular Carcinoma: A Morphological Study

    PubMed Central

    Moscato, Stefania; Ronca, Francesca; Campani, Daniela; Danti, Serena

    2015-01-01

    It has been demonstrated that three-dimensional (3D) cell culture models represent fundamental tools for the comprehension of cellular phenomena both for normal and cancerous tissues. Indeed, the microenvironment affects the cellular behavior as well as the response to drugs. In this study, we performed a morphological analysis on a hepatocarcinoma cell line, HepG2, grown for 24 days inside a bioartificial hydrogel composed of poly(vinyl alcohol) (PVA) and gelatin (G) to model a hepatocellular carcinoma (HCC) in 3D. Morphological features of PVA/G hydrogels were investigated, resulting to mimic the trabecular structure of liver parenchyma. A histologic analysis comparing the 3D models with HepG2 cell monolayers and tumor specimens was performed. In the 3D setting, HepG2 cells were viable and formed large cellular aggregates showing different morphotypes with zonal distribution. Furthermore, ?-actin and ?5?1 integrin revealed a morphotype-related expression; in particular, the frontline cells were characterized by a strong immunopositivity on a side border of their membrane, thus suggesting the formation of lamellipodia-like structures apt for migration. Based on these results, we propose PVA/G hydrogels as valuable substrates to develop a long term 3D HCC model that can be used to investigate important aspects of tumor biology related to migration phenomena. PMID:25590431

  11. Characterisation and Germline Transmission of Cultured Avian Primordial Germ Cells

    PubMed Central

    Macdonald, Joni; Glover, James D.; Taylor, Lorna; Sang, Helen M.; McGrew, Michael J.

    2010-01-01

    Background Avian primordial germ cells (PGCs) have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds. Principal Findings We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring. Conclusions The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications. PMID:21124737

  12. Social Studies: Selected Cultures. Grade 6.

    ERIC Educational Resources Information Center

    Taylor, Marshall R.

    This revised teachers guide attempts to facilitate the study of selected cultures through a conceptual approach and multimedia instruction in a spiral curriculum. There are six units: 1) Cultures and Archaeology --cultural factors, cultural study, artifacts, fossils, archaeological sites and evidence; 2) Food Gathering Complex --life styles,…

  13. Cell Culture Assay for Human Noroviruses [response

    SciTech Connect

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article In Vitro Cell Culture Infectivity Assay for Human Noroviruses by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  14. Basic study on a lower-energy defibrillation method using computer simulation and cultured myocardial cell models.

    PubMed

    Yaguchi, A; Nagase, K; Ishikawa, M; Iwasaka, T; Odagaki, M; Hosaka, H

    2006-01-01

    Computer simulation and myocardial cell models were used to evaluate a low-energy defibrillation technique. A generated spiral wave, considered to be a mechanism of fibrillation, and fibrillation were investigated using two myocardial sheet models: a two-dimensional computer simulation model and a two-dimensional experimental model. A new defibrillation technique that has few side effects, which are induced by the current passing into the patient's body, on cardiac muscle is desired. The purpose of the present study is to conduct a basic investigation into an efficient defibrillation method. In order to evaluate the defibrillation method, the propagation of excitation in the myocardial sheet is measured during the normal state and during fibrillation, respectively. The advantages of the low-energy defibrillation technique are then discussed based on the stimulation timing. PMID:17959447

  15. Bacterial Cellulose as a Substrate for Microbial Cell Culture

    PubMed Central

    Yin, Na; Santos, Thiago M. A.; Auer, George K.; Crooks, John A.; Oliver, Piercen M.

    2014-01-01

    Bacterial cellulose (BC) has a range of structural and physicochemical properties that make it a particularly useful material for the culture of bacteria. We studied the growth of 14 genera of bacteria on BC substrates produced by Acetobacter xylinum and compared the results to growth on the commercially available biopolymers agar, gellan, and xanthan. We demonstrate that BC produces rates of bacterial cell growth that typically exceed those on the commercial biopolymers and yields cultures with higher titers of cells at stationary phase. The morphology of the cells did not change during growth on BC. The rates of nutrient diffusion in BC being higher than those in other biopolymers is likely a primary factor that leads to higher growth rates. Collectively, our results suggest that the use of BC may open new avenues in microbiology by facilitating bacterial cell culture and isolation. PMID:24441155

  16. [Good cell culture practice--implementation of a relational cell culture database].

    PubMed

    Philipp, Marcel O; Falkner, Erwin; Kapeller, Barbara; Eberl, Heidrun; Frick, Wolfram; Macfelda, Karin; Losert, Udo M

    2002-01-01

    The claim for cell culture to provide validable in vitro models for biomedical research postulates evasion of possible fatal record keeping errors. A prototype of a relational computer database for IBM-compatible personal computers using Microsoft(r) Windows 95/98/2000 and NT for administration of cell culture data has been developed using Microsoft(r) Access 98 (Microsoft Corporation, Redmond, USA), -Access Basic, -Visual Basic and Structured Query Language (SQL) (IBM Corporation, Armonk, USA), and was tested successfully. The modular software application manages the many aspects of cell culture laboratory record keeping like detailed information on tissue donor, primary cell isolation/cell line origin, immunohistochemical/molecular biological characterisation, cell countings at passaging/subcultivation/cell aliquotation and cryopreservation. One main feature is a collection of all methods performed at our cell culture laboratory, where linked tables and files store specific informations. Entries into the database are checked via validation rules for correctness to avoid mistakes. The developed prototype has been demonstrated to be an adaptable, reliable tool for improving quality of information storage according to Good Scientific Practice (GSP), Good Cell Culture Practice (GCCP) and general ISO certification trends. PMID:11927979

  17. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    NASA Technical Reports Server (NTRS)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground-based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities.

  18. Cultural relativism: maintenance of genomic imprints in pluripotent stem cell culture systems.

    PubMed

    Greenberg, Maxim Vc; Bourc'his, Déborah

    2015-04-01

    Pluripotent stem cells (PSCs) in culture have become a widely used model for studying events occurring during mammalian development; they also present an exciting avenue for therapeutics. However, compared to their in vivo counterparts, cultured PSC derivatives have unique properties, and it is well established that their epigenome is sensitive to medium composition. Here we review the specific effects on genomic imprints in various PSC types and culture systems. Imprinted gene regulation is developmentally important, and imprinting defects have been associated with several human diseases. Therefore, imprint abnormalities in PSCs may have considerable consequences for downstream applications. PMID:25974256

  19. Heterologous protein expression affects the death kinetics of baculovirus-infected insect cell cultures: a quantitative study by use of n-target theory.

    PubMed

    Wu, S C; Jarvis, D L; Dale, B E; Liao, J C

    1994-01-01

    The death of cultured insect cells after baculovirus infection is a time-dependent event. Without a quantitative model, it is difficult to characterize its kinetics. Our group has shown that the cell survival rate can be characterized by use of the n-target theory, which involves only two parameters: the number of hypothetical inactivation targets (n) and the first-order death rate (k). In this study, we used different recombinant viruses to examine the effect of heterologous protein expression on the cell survival rate. The proteins expressed were beta-galactosidase, human T-cell leukemia virus type I p40x, human interleukin-2, and human tissue plasminogen activator (tPA). The survival rate was affected by protein expression, but the n value remained constant if the protein expression level was high (above 30 mg/L). Low-level expression of secreted, glycosylated tPA resulted in a reduced n value, which was restored to the normal value when the tPA signal peptide and prosequence were deleted. In addition, if the n value was normal (10-11), the level of protein expression correlated negatively with the death rate. However, if the n value was reduced by unfavorable culture conditions or foreign protein expression, the expression level correlated positively with the death rate. A dimensionless plot with kt as the dimensionless time shows that alteration of the k value while retaining constant n is equivalent to a rescaling of time. Therefore, the survival curves with constant n reduce to a single curve on the dimensionless plot.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7764527

  20. Metabolic measurements in cell culture and tissue constructs

    NASA Astrophysics Data System (ADS)

    Rolfe, P.

    2008-10-01

    This paper concerns the study and use of biological cells in which there is a need for sensors and assemblies for the measurement of a diverse range of physical and chemical variables. In this field cell culture is used for basic research and for applications such as protein and drug synthesis, and in cell, tissue and organ engineering. Metabolic processes are fundamental to cell behaviour and must therefore be monitored reliably. Basic metabolic studies measure the transport of oxygen, glucose, carbon dioxide, lactic acid to, from, or within cells, whilst more advanced research requires examination of energy storage and utilisation. Assemblies are designed to incorporate bioreactor functions for cell culture together with appropriate sensing devices. Oxygen consumption by populations of cells is achieved in a flowthrough assembly that incorporates O2 micro-sensors based on either amperometry or fluorescence. Measurements in single cell are possible with intra-cellular fluorophores acting as biosensors together with optical stimulation and detection. Near infra-red spectroscopy (NIRS) is used for analysis within culture fluid, for example for estimation of glucose levels, as well as within cell populations, for example to study the respiratory enzymes.Â#

  1. Method of determining the number of cells in cell culture

    SciTech Connect

    Connolly, D.T.

    1990-06-12

    This patent describes a color-sensitivity method for determining the number of cells in in vitro cell culture at a sensitivity as low as about 100 or about 500 cells. It comprises lysing the cells and incubating the lysate with p-nitrophenyl phosphate at acid pH for a predetermined period of time at a temperature of from about 35{degrees} to about 38{degrees}C. and then measuring the color development at 400 to 420 nanometers and correlating the color development with cell number by comparing with a control standard of known cell number.

  2. Isolation and culture of bovine mammary epithelial stem cells.

    PubMed

    Li, Ji-Xia; Zhang, Yong; Ma, Li-Bing; Sun, Jian-Hong; Yin, Bao-Ying

    2009-01-01

    Bovine mammary epithelial stem cells (MESCs) are very important in agricultural production and bioengineering. In the present study, we compared different isolation and culture methods for MESCs and observed their growth and differentiation characteristics. MESCs have an extremely weak proliferation capacity, and it is very difficult to obtain and prolong subculture of a bovine mammary epithelial stem cell line. We obtained some multipotent MESC aggregates that looked like spherical colonies. These colonies were only derived from suspension culture and were induced to differentiate into epithelial-like cells, myoepithelial-like cells and secretory cells and to establish a ductal-like structure. In contrast, MESCs cultured in adherent culture displayed low morphogenetic competence and only differentiated into epithelial-like cells. MESCs are often identified by testing their differentiation in vivo; however, herein, we have demonstrated the in vitro differentiation potential of bovine MESCs. In our study, beta 1-integrin and alpha 6-integrin which are expressed by human epidermal stem cells, were found in bovine, which shows that bovine MESCs share the same molecular signature as human MESCs. PMID:19194071

  3. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various...

  4. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various...

  5. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various...

  6. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various...

  7. Studies of transepithelial Cl- transport in cultured cauda epididymal cells of rats by the short-circuit current method.

    PubMed Central

    Leung, A Y; Wong, P Y

    1992-01-01

    1. Monolayer cultures of cauda epididymides from male Sprague-Dawley rats (210-230 g) were studied by the short-circuit current (ISC) technique to characterize the properties of the transepithelial chloride transport. In HCO(3-)-free, HEPES-buffered solution, adrenaline (0.23 microM) added to the basolateral side led to an increase in ISC and transepithelial conductance (gt). 2. Decreasing apical chloride concentration ([Cl-]a) progressively from 126.7 to 0 mM by substituting chloride with gluconate increased the ISC response to adrenaline (delta ISC) in a linear fashion with a slope of -1.6 x 10(-3) mu equiv h-1 cm-2 per millimolar change in [Cl-]a. Pretreating the tissue with a chloride channel blocker diphenylamine-2-carboxylate (DPC) on the apical side significantly reduced the slope to -4.9 x 10(-4) mu equiv h-1 cm-2 per millimolar change in [Cl-]a. 3. By substituting apical chloride with various anions and measuring the change in ISC upon adrenaline stimulation, the selectivity sequence of the apical anion conductance was found to be NO3- approximately Br- > Cl- > I- > gluconate > isethionate. 4. When the monolayers were bathed with Krebs-Henseleit solution containing 25 mM HCO3- and 5% CO2, the delta ISC at each [Cl-]a as well as the dependence of delta ISC on [Cl-]a (slope = -3.3 x 10(-3) mu equiv h-1 cm-2 per millimolar change in [Cl-]a) were significantly greater than the HCO(3-)-free counterpart. Addition of 0.1 mM acetazolamide or 0.5 mM SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid) to the basolateral side significantly reduced the effects of HCO3- and CO2. 5. When the tissues were bathed on both sides with HCO(3-)-free, HEPES-buffered solution and were clamped at various transepithelial potential differences (PDt) from +30 mV (lumen positive) to -30 mV (lumen negative), the relationship between the clamping current response to adrenaline (delta ICL) and the PDt applied was linear. Zero clamping current response was found at -6 mV. Decreasing [Cl-]a to 0 mM reduced the dependence of delta ICL on PDt and delta ICL was positive at all PDt tested. The response of the transepithelial conductance to adrenaline (delta gt) did not depend on the PDt applied but was reduced with decreasing apical chloride concentration.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1297839

  8. Novel method to dynamically load cells in 3D-gel culture for primary blast injury studies

    NASA Astrophysics Data System (ADS)

    Sory, David; Cepa-Areias, Anabela; Overby, Darryl; Proud, William; Institute of Shock Physics, Department of Bioengineering; Royal British Legion CentreBlast I Collaboration

    2015-06-01

    For at least a century explosive devices have been reported as one of the most important causes of injuries on battlefield in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injury at the organ or tissue level, few studies have investigated the mechanism of blast injury at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses similar to those observed in blast waves. The experimental phase involved high strain rate axial compression of biological cylindrical specimens within a hermetically sealed sample holder made of a biocompatible polymer. Numerical simulations were performed in order to characterize the loading path within the sample and assess the loading conditions. A proof of concept is presented so as to establish a new window to address fundamental questions regarding primary blast injury at the cellular level. The Institute of Shock Physics acknowledges the support of AWE, Aldermaston, UK and Imperial College London. The Centre for Blast Injury Studies acknowledges the support of the Royal British Legion and Imperial College London.

  9. Specimen Sample Preservation for Cell and Tissue Cultures

    NASA Technical Reports Server (NTRS)

    Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert

    1996-01-01

    The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.

  10. Co-culture system of human salivary gland epithelial cells and immune cells from primary Sjgren's syndrome patients: an in vitro approach to study the effects of Rituximab on the activation of the Raf-1/ERK1/2 pathway.

    PubMed

    Lisi, Sabrina; Sisto, Margherita; D'Amore, Massimo; Lofrumento, Dario Domenico

    2015-04-01

    Primary Sjgren's syndrome (pSS) is a chronic autoimmune disorder of the exocrine glands with associated lymphocytic infiltrates in the affected glands. Dryness of the mouth and eyes results from involvement of the salivary and lacrimal glands. The efficacy of Rituximab (RTX) in pSS is still open to debate. This study delineates the signaling pathway involved in RTX-mediated down-regulation of pro-inflammatory factors in a co-culture system of pSS salivary gland epithelial cells (SGEC) with syngeneic pSS B-lymphocytes. In addition, the effects of RTX on the activation of the Raf-1/ERK1/2 pathway in pSS SGEC co-cultured with syngeneic pSS T-lymphocytes were also investigated. This study demonstrated that RTX may interfere with the ERK1/2 pathway in a syngeneic co-culture of pSS SGEC with pSS B-lymphocytes, leading to decreased cytokine production by SGEC. These novel findings reveal that syngeneic co-culture of pSS SGEC with pSS B-lymphocytes leads to a down-regulation of Raf-1 in epithelial cells that adversely regulates the activity of the ERK1/2 pathway and determines a subsequent reduction of the release of pro-inflammatory factors. PMID:25381666

  11. New Cultural Studies at Warwick University.

    ERIC Educational Resources Information Center

    Breen, Peter

    1993-01-01

    The British Cultural Studies program at the University of Warwick emphasizes the cultural diversity of Britain. Content includes mythical, cultural, and gender discourses about Britain as they function in economic and political forms; the nexus of economy and culture; and national identities (e.g., Shakespeare). Some course material is appended.

  12. In vitro and in vivo studies on the inhibitory effects of myocardial cell culture medium on growth of a human lung adenocarcinoma cell line, A549

    PubMed Central

    Zheng, Y.; Zhou, J.; Fu, S.Z.; Fan, J.; Wu, J.B.

    2016-01-01

    Background Although the heart is one of the body’s vital organs, with an abundant blood supply, metastasis to the heart is considered rare. In a previous study, we found that the myocardial microenvironment might contain a low molecular weight natural tumour suppressor. The present study was designed to investigate the inhibitory effect of cardiac myocyte–conditioned medium (cmcm) on the growth of A549 human lung adenocarcinoma cells in vitro and in vivo. Methods An mtt assay was used to detect the inhibition ratio with respect to A549 proliferation. Human lung adenocarcinoma cells (A549 cell strain) were transplanted subcutaneously into nude mice to produce tumours. The xenograft tumour growth in mice was observed after selected drug administration. Results After treatment with cmcm and cisplatin (Cis), A549 cell viability significantly declined (p < 0.001). The cell viability in the cmcm and Cis groups were 53.42% ± 3.45% and 58.45% ± 6.39% respectively. Growth of implanted tumour cells in vivo was significantly inhibited in the cmcm group, the group treated with recombinant human adenovirus–p53, and the Cis-treated group compared with a control group. The inhibition rates were 41.44% in the cmcm group, 41.34% in the p53 group, and 64.50% in the Cis group. Lung metastasis capacity was significantly reduced in the presence of cmcm (p < 0.05). Lung metastasis inhibition rates in mice were 56.52% in the cmcm group, 47.83% in the p53 group, and 82.61% in the Cis group. With cmcm, the lives of A549-tumour-bearing mice could be significantly prolonged without any effect on weight loss. Conclusions Use of cmcm has the effect of reducing A549 cell viability, tumour volume, and lung metastasis rate, while prolonging survival duration without severe toxicity.

  13. Effects of carbon monoxide on cardiac muscle cells in culture

    SciTech Connect

    Nag, A.C.; Chen, K.C.; Cheng, Mei General Motors Research Laboratories, Warren, MI )

    1988-09-01

    Embryonic rat cardiac muscle cells grown in the presence of various tensions of CO (5-95%) without the presence of O{sub 2} survived and exhibited reduced cell growth, which was concentration dependent. When cardiac muscle cells were grown in the presence of a mixture of CO (10-20%) and O{sub 2} (10-20%), the growth rate of these cells was comparable to that of the control cells. Cardiac myocytes continued to beat when exposed to varying tensions of CO, except in the case of 95% CO. The cells exposed to different concentrations of CO contained fewer myofibrils of different stages of differentiation compared with the control and the culture exposed to a mixture of 20% O{sub 2} and 20% CO, with cells that contained abundant, highly differentiated myofibrils. There was no significant difference in the structural organization of mitochondria between the control and the surviving experimental cells. It is evident from the present studies that O{sub 2} is required for the optimum in vitro cellular growth of cardiac muscle. Furthermore, CO in combination with O{sub 2} at a concentration of 10 or 20% can produce optimal growth of cardiac muscle cells in culture. To determine maximum labeling index during the labeling period, cells were continuously labeled with ({sup 3}H)thymidine for 24 h before the termination of cultures.

  14. Antibody inhibition of human cytomegalovirus spread in epithelial cell cultures

    PubMed Central

    Cui, Xiaohong; Lee, Ronzo; Adler, Stuart P.; McVoy, Michael A.

    2013-01-01

    Anti-cytomegalovirus (CMV) antibodies reduce the incidence of CMV transmission and ameliorate the severity of CMV-associated disease. Neutralizing activity, measured as the ability of antibodies to prevent entry of cell-free virus, is an important component of natural immunity. However, in vivo CMV amplification may occur mainly via spread between adjacent cells within tissues. Thus, inhibition of cell-to-cell spread may be important when evaluating therapeutic antibodies or humoral responses to infection or immunization. In vitro CMV cell-to-cell spread is largely resistant to antibodies in fibroblast cultures but sensitive in endothelial cell cultures. In the present study antibodies in CMV hyperimmuneglobulin or seropositive human sera inhibited CMV cell-to-cell spread in epithelial cell cultures. Spread inhibition activity was quantitated with a GFP reporter assay employing GFP-tagged epithelialtropic variants of CMV strains Towne or AD169. Measurement of spread inhibition provides an additional parameter for the evaluation of candidate vaccines or immunotherapeutics and to further characterize the role of antibodies in controlling CMV transmission and disease. PMID:23669101

  15. Placental-derived stem cells: Culture, differentiation and challenges

    PubMed Central

    Oliveira, Maira S; Barreto-Filho, Joo B

    2015-01-01

    Stem cell therapy is a promising approach to clinical healing in several diseases. A great variety of tissues (bone marrow, adipose tissue, and placenta) are potentially sources of stem cells. Placenta-derived stem cells (p-SCs) are in between embryonic and mesenchymal stem cells, sharing characteristics with both, such as non-carcinogenic status and property to differentiate in all embryonic germ layers. Moreover, their use is not ethically restricted as fetal membranes are considered medical waste after birth. In this context, the present review will be focused on the biological properties, culture and potential cell therapy uses of placental-derived stem cells. Immunophenotype characterization, mainly for surface marker expression, and basic principles of p-SC isolation and culture (mechanical separation or enzymatic digestion of the tissues, the most used culture media, cell plating conditions) will be presented. In addition, some preclinical studies that were performed in different medical areas will be cited, focusing on neurological, liver, pancreatic, heart, muscle, pulmonary, and bone diseases and also in tissue engineering field. Finally, some challenges for stem cell therapy applications will be highlighted. The understanding of the mechanisms involved in the p-SCs differentiation and the achievement of pure cell populations (after differentiation) are key points that must be clarified before bringing the preclinical studies, performed at the bench, to the medical practice. PMID:26029347

  16. Using Haworthia Cultured Cells as an Aid in Teaching Botany

    ERIC Educational Resources Information Center

    Majumdar, Shyamal K.; Castellano, John M.

    1977-01-01

    Callus induction from species of Haworthia can be done quickly in the laboratory with minimal equipment to study tissue dedifferentiation and cellular redifferentiation. It is shown that the cultured cell can also be used to study and evaluate the effects of various mutagens, carcinogens, and pesticides in controlled environments. (Author/MA)

  17. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells

    SciTech Connect

    Murray, T.R.; Chen, L.; Marshall, B.E.; Macarak, E.J. )

    1990-11-01

    The cellular events involved in generating the hypoxic pulmonary vasoconstriction response are not clearly understood, in part because of the multitude of factors that alter pulmonary vascular tone. The goal of the present studies was to determine if a cell culture preparation containing vascular smooth muscle (VSM) cells could be made to contract when exposed to a hypoxic atmosphere. Cultures containing only fetal bovine pulmonary artery VSM cells were assessed for contractile responses to hypoxic stimuli by two methods. In the first, tension forces generated by cells grown on a flexible growth surface (polymerized polydimethyl siloxane) were manifested as wrinkles and distortions of the surface under the cells. Wrinkling of the surface was noted to progressively increase with time as the culture medium bathing the cells was made hypoxic (PO2 approximately 25 mmHg). The changes were sometimes reversible upon return to normoxic conditions and appeared to be enhanced in cells already exhibiting evidence of some baseline tone. Repeated passage in culture did not diminish the hypoxic response. Evidence for contractile responses to hypoxia was also obtained from measurements of myosin light chain (MLC) phosphorylation. Conversion of MLC to the phosphorylated species is an early step in the activation of smooth muscle contraction. Lowering the PO2 in the culture medium to 59 mmHg caused a 45% increase in the proportion of MLC in the phosphorylated form as determined by two-dimensional gel electrophoresis. Similarly, cultures preincubated for 4 h with 32P and then exposed to normoxia or hypoxia for a 5-min experimental period showed more than twice as much of the label in MLCs of the hypoxic cells.

  18. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    SciTech Connect

    Fan, Ping; He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan

    2011-01-21

    Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli cells can effectively suppress INF-{gamma}-induced MHC II antigen expression in co-cultured ECs compared with single culture group (P < 0.05). TNF-{alpha} induced the expression of IL-6, IL-8 and sICAM in ECs. When co-cultured with Sertoli cells, their expressions were significantly lower than in the EC single culture group (P < 0.05). ECs co-cultured with Sertoli cells also did not significantly increase the stimulation index of spleen lymphocytes compared to the single culture group (P < 0.05). Our results suggested that co-culturing with Sertoli cells can significantly promote the proliferation of ECs, accelerate post-transplant angiogenesis, while reduce EC immunogenicity and stimulus to lymphocytes.

  19. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies

    PubMed Central

    Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-01-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies. PMID:24658586

  20. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    PubMed

    Liu, Aiqin; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-04-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 m pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies. PMID:24658586

  1. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency.

    PubMed

    Utheim, Tor Paaske; Utheim, Øygunn Aass; Khan, Qalb-E-Saleem; Sehic, Amer

    2016-01-01

    The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC), which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD). Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells. PMID:26938569

  2. Development of a bovine luteal cell in vitro culture system suitable for co-culture with early embryos.

    PubMed

    Batista, M; Torres, A; Diniz, P; Mateus, L; Lopes-da-Costa, L

    2012-10-01

    The cross talk between the corpus luteum (CL) and the early embryo, potentially relevant to pregnancy establishment, is difficult to evaluate in the in vivo bovine model. In vitro co-culture of bovine luteal cells and early embryos (days 2-8 post in vitro fertilization) may allow the deciphering of this poorly understood cross talk. However, early embryos and somatic cells require different in vitro culture conditions. The objective of this study was to develop a bovine luteal cell in vitro culture system suitable for co-culture with early embryos in order to evaluate their putative steroidogenic and prostanoid interactions. The corpora lutea of the different stages of the estrous cycle (early, mid, and late) were recovered postmortem and enriched luteal cell populations were obtained. In experiments 1 and 2, the effects of CL stage, culture medium (TCM, DMEM-F12, or SOF), serum concentration (5 or 10%), atmosphere oxygen tension (5 or 20%), and refreshment of the medium on the ability of luteal cells to produce progesterone (P(4)) were evaluated. The production of P(4) was significantly increased in early CL cultures, and luteal cells adapted well to simple media (SOF), low serum concentrations (5%), and oxygen tensions (5%). In experiment 3, previous luteal cell cryopreservation did not affect the production of P(4), PGF(2α), and PGE(2) compared to fresh cell cultures. This enables the use of pools of frozen-thawed cells to decrease the variation in cell function associated with primary cell cultures. In experiment 4, mineral oil overlaying culture wells resulted in a 50-fold decrease of the P(4) quantified in the medium, but had no effect on PGF(2α) and PGE(2) quantification. In conclusion, a luteal cell in vitro culture system suitable for the 5-d-long co-culture with early embryos was developed. PMID:23054443

  3. Cell culture: Progenitor cells from human brain after death

    NASA Astrophysics Data System (ADS)

    Palmer, Theo D.; Schwartz, Philip H.; Taupin, Philippe; Kaspar, Brian; Stein, Stuart A.; Gage, Fred H.

    2001-05-01

    Culturing neural progenitor cells from the adult rodent brain has become routine and is also possible from human fetal tissue, but expansion of these cells from postnatal and adult human tissue, although preferred for ethical reasons, has encountered problems. Here we describe the isolation and successful propagation of neural progenitor cells from human postmortem tissues and surgical specimens. Although the relative therapeutic merits of adult and fetal progenitor cells still need to be assessed, our results may extend the application of these progenitor cells in the treatment of neurodegenerative diseases.

  4. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    NASA Technical Reports Server (NTRS)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  5. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.

    PubMed

    Halldorsson, Skarphedinn; Lucumi, Edinson; Gmez-Sjberg, Rafael; Fleming, Ronan M T

    2015-01-15

    Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture. PMID:25105943

  6. Culturing hybridoma cell lines for monoclonal antibody production.

    PubMed

    Winzeler, Alissa; Wang, Jack T

    2013-07-01

    This protocol describes how to culture hybridoma cell lines (e.g., Thy1.1) for monoclonal antibody production. Supernatants harvested from such cultures can be used to purify various rodent neural cell types by immunopanning. PMID:23818668

  7. Preservative cytotoxicity to cultured corneal epithelial cells.

    PubMed

    Neville, R; Dennis, P; Sens, D; Crouch, R

    1986-05-01

    Cultured human and rat corneal epithelial cells with 51Cr incorporated were used as a model to test the cytolytic action of four common preservatives. Benzalkonium chloride, chlorohexidine and thimerosol were all found to lyse greater than 40% cells when incubated for fifteen minutes at concentrations in clinical use in topical ophthalmic medications. Chlorobutanol is the only preservative tested which has a low level of cytotoxicity (10%) and which, under these conditions, can be considered a safe preservative using cytolytic activity as the means of criteria. PMID:3720343

  8. Defined culture conditions of human embryonic stem cells

    PubMed Central

    Lu, Jean; Hou, Runhua; Booth, Carmen Jane; Yang, Shih-Hung; Snyder, Michael

    2006-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have the potential to differentiate into any tissue in the human body; therefore, they are a valuable resource for regenerative medicine, drug screening, and developmental studies. However, the clinical application of hESCs is hampered by the difficulties of eliminating animal products in the culture medium and/or the complexity of conditions required to support hESC growth. We have developed a simple medium [termed hESC Cocktail (HESCO)] containing basic fibroblast growth factor, Wnt3a, April (a proliferation-inducing ligand)/BAFF (B cell-activating factor belonging to TNF), albumin, cholesterol, insulin, and transferrin, which is sufficient for hESC self-renewal and proliferation. Cells grown in HESCO were maintained in an undifferentiated state as determined by using six different stem cell markers, and their genomic integrity was confirmed by karyotyping. Cells cultured in HESCO readily form embryoid bodies in tissue culture and teratomas in mice. In both cases, the cells differentiated into each of the three cell lineages, ectoderm, endoderm, and mesoderm, indicating that they maintained their pluripotency. The use of a minimal medium sufficient for hESC growth is expected to greatly facilitate clinical application and developmental studies of hESCs. PMID:16595624

  9. Splitting culture medium by air-jet and rewetting for the assessment of the wettability of cultured epithelial cell surfaces.

    PubMed

    Tanaka, Nobuyuki; Kondo, Makoto; Uchida, Ryohei; Kaneko, Makoto; Sugiyama, Hiroaki; Yamato, Masayuki; Okano, Teruo

    2013-12-01

    This study found that the phenomenon of rewetting after squeezing culture medium varied in different culture conditions for rat oral mucosal epithelial cells. When culture medium covering over cultured cells was squeezed by an air-jet application, the motion of squeezed culture medium was able to be observed by using a commercially available movie camera. Squeezed width on cells cultured in keratinocyte culture medium (KCM), which contained with fetal bovine serum, was one-sixth of that in FBS-free KCM. This result corresponded to the mucous layer staining statuses of cultured cells in both cases; positive in KCM and negative in FBS-free medium. Furthermore, the gene expression of mucous glycoprotein MUC4 in KCM was 100 times higher than that in FBS-free medium, and the expression of MUC4 protein only showed on the apical surface of cells cultured in KCM. The relative gene expression levels of MUC1, 13, 15, and 16 in both the normal and FBS-free medium were found to be no more than one-thirtieth of that of MUC4 in KCM. The main factor of the wettability difference between KCM and FBS-free medium was speculated to be the difference of MUC4 expression between both media. This method can be a simple technique for testing not only the surface wettability but also the mucous formation of cultured cells. PMID:24008039

  10. Induced Pluripotent Stem (iPS) Cell Culture Methods and Induction of Differentiation into Endothelial Cells

    PubMed Central

    Chatterjee, Ishita; Li, Fei; Kohler, Erin E.; Rehman, Jalees; Malik, Asrar B.; Wary, Kishore K.

    2015-01-01

    Summary The studies of stem cell behavior and differentiation in a developmental context is complex, time-consuming and expensive, and for this reason, cell culture remains a method of choice for developmental and regenerative biology and mechanistic studies. Similar to ES cells, iPS cells have the ability to differentiate into endothelial cells (ECs), and the route for differentiation appears to mimic the developmental process that occurs during the formation of an embryo. Traditional EC induction methods from embryonic stem (ES) cells rely mostly on the formation the embryoid body (EB), which employs feeder or feeder-free conditions in the presence or absence of supporting cells. Similar to ES cells, iPS cells can be cultured in feeder-layer or feeder-free conditions. Here, we describe the iPS cell culture methods and induction differentiation of these cells into ECs. We use anti-mouse Flk1 and anti-mouse VE-cadherin to isolate and characterize mouse ECs, because these antibodies are commercially available and their use has been described in the literature, including by our group. The ECs produced by this method have been used by our laboratory, and we have demonstrated their in vivo potential. We also discuss how iPS cells differ in their ability to differentiate into endothelial cells in culture. PMID:25687301

  11. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  12. Patulin-induced ion flux in cultured renal cells and reversal by dithiothreitol and glutathione: a scanning electron microscopy (SEM) X-ray microanalysis study.

    PubMed

    Hinton, D M; Riley, R T; Showker, J L; Rigsby, W E

    1989-01-01

    Patulin (PAT), a compound produced by certain species of Aspergillus, Penicillium, and Byssochlamys, is frequently found associated with agricultural commodities. PAT has many effects on membrane function, including the inhibition of the isolated Na+-K+ ATPase. In this study, a scanning electron microscope equipped with an energy dispersive spectroscopy X-ray microanalysis system was used to examine individual cultured renal epithelial cells (LLC-PK1) in order to determine the effects of PAT on the relative intracellular ion concentrations. The estimated EC50 (60 min) for both sodium influx and potassium efflux was between 10 and 50 microns for ouabain. For PAT, the EC50 (60 min) was 250 microns for sodium influx and 100 microns for potassium efflux. However, 1 mM patulin at 240 min caused complete reversal of the sodium and potassium content of cells, and 1 mM ouabain at 240 min did not. The effect of patulin on sodium and potassium flux was both concentration and time dependent and was reversed by dithiothreitol and glutathione. PAT (250 microM) but not ouabain (250 microM) induced massive blebbing of LLC-PK1 cells. Thus, the interaction of PAT with cellular membranes involves both alterations in the regulation of intracellular ion content and the cytoskeleton. We hypothesize that patulin alters intracellular ion content via Na+-K+ ATPase and non-Na+-K+ ATPase mechanisms. PMID:2549248

  13. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    DOEpatents

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  14. In vitro co-culture systems for studying molecular basis of cellular interaction between Aire-expressing medullary thymic epithelial cells and fresh thymocytes

    PubMed Central

    Yamaguchi, Yoshitaka; Kudoh, Jun; Yoshida, Tetsuhiko; Shimizu, Nobuyoshi

    2014-01-01

    ABSTRACT We previously established three mouse cell lines (Aire+TEC1, Aire+TEC2 and Aire+DC) from the medullary thymic epithelial cells (mTECs) and dendritic cells (mDCs). These cells constitutively expressed autoimmune regulator (Aire) gene and they exhibited various features of self antigen-presenting cells (self-APCs) present in the thymic medullary region. Here, we confirmed our previous observation that Aire+ thymic epithelial cells adhere to fresh thymocytes and kill them by inducing apoptosis, thus potentially reproducing in vitro some aspects of the negative selection of T cells in vivo. In this system, a single Aire+ cell appeared able to kill ?30 thymocytes within 24?hrs. Moreover, we observed that ectopic expression of peripheral tissue-specific antigens (TSAs), and expression of several surface markers involved in mTEC development, increased as Aire+ cell density increases toward confluency. Thus, these Aire+ cells appear to behave like differentiating mTECs as if they pass through the developmental stages from intermediate state toward mature state. Surprisingly, an in vitro co-culture system consisting of Aire+ cells and fractionated sub-populations of fresh thymocytes implied the possible existence of two distinct subtypes of thymocytes (named as CD4+ killer and CD4? rescuer) that may determine the fate (dead or alive) of the differentiating Aire+mTECs. Thus, our in vitro co-culture system appears to mimic a part of in vivo thymic crosstalk. PMID:25326516

  15. Methyl Jasmonate Represses Growth and Affects Cell Cycle Progression in Cultured Taxus Cells

    PubMed Central

    Patil, Rohan A.; Lenka, Sangram K.; Normanly, Jennifer; Walker, Elsbeth L.

    2014-01-01

    Methyl jasmonate (MeJA) elicitation is an effective strategy to induce and enhance synthesis of the anticancer agent paclitaxel (Taxol®) in Taxus cell suspension cultures; however, concurrent decreases in growth are often observed, which is problematic for large scale bioprocessing. Here, increased accumulation of paclitaxel in Taxus cuspidata suspension cultures with MeJA elicitation was accompanied by a concomitant decrease in cell growth, evident within the first three days post-elicitation. Both MeJA-elicited and mock-elicited cultures exhibited similar viability with no apoptosis up to day 16 and day 24 of the cell culture period, respectively, suggesting that growth repression is not attributable to cell death. Flow cytometric analyses demonstrated that MeJA perturbed cell cycle progression of asynchronously dividing Taxus cells. MeJA slowed down cell cycle progression, impaired the G1/S transition as observed by an increase in G0/G1 phase cells, and decreased the number of actively dividing cells. Through a combination of deep sequencing and gene expression analyses, the expression status of Taxus cell cycle-associated genes correlated with observations at the culture level. Results from this study provide valuable insight into the mechanisms governing MeJA perception and subsequent events leading to repression of Taxus cell growth. PMID:24832773

  16. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques

    ERIC Educational Resources Information Center

    Mozdziak, Paul E.; Petitte, James N.; Carson, Susan D.

    2004-01-01

    Animal cell culture is a core laboratory technique in many molecular biology, developmental biology, and biotechnology laboratories. Cell culture is a relatively old technique that has been sparingly taught at the undergraduate level. The traditional methodology for acquiring cell culture training has been through trial and error, instruction when

  17. Retaining cellcell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer

    PubMed Central

    Kondo, Jumpei; Endo, Hiroko; Okuyama, Hiroaki; Ishikawa, Osamu; Iishi, Hiroyasu; Tsujii, Masahiko; Ohue, Masayuki; Inoue, Masahiro

    2011-01-01

    Primary culture of the cancer cells from patients tumors can provide crucial information of individual tumors, yet the technology has not been optimized until now. We developed an innovative culture method for primary colorectal cancer cells, based on the principle that cellcell contact of cancer cells was maintained throughout the process. When tumor tissue was dissociated into cell clusters, in which cellcell contact was retained, they rapidly formed spheroids that we termed cancer tissue-originated spheroids (CTOSs). CTOSs of colorectal cancer consisted of highly purified and viable cancer cells, and they were prepared with high efficiency. In immunodeficient mice, CTOSs formed xenograft tumors that retained the features of the parental tumors. Moreover, CTOSs were able to be cultured and expanded in vitro using a 3D culture system and stem cell culture medium. This method allowed evaluation of chemosensitivity and signal pathway activation in cancer cells from individual patients. Easy preparation and culture of pure primary cancer cells provides an innovative platform for studying cancer biology and developing personalized medicine. PMID:21444794

  18. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny

    PubMed Central

    Yin, Xiaolei; Farin, Henner F; van Es, Johan H; Clevers, Hans; Langer, Robert; Karp, Jeffrey M

    2014-01-01

    Although Lgr5+ intestinal stem cells have been expanded in vitro as organoids, homogeneous culture of these cells has not been possible thus far. Here we show that two small molecules, CHIR99021 and valproic acid, synergistically maintain self-renewal of mouse Lgr5+ intestinal stem cells, resulting in nearly homogeneous cultures. The colony-forming efficiency of cells from these cultures is ~100-fold greater than that of cells cultured in the absence of CHIR99021 and valproic acid, and multilineage differentiation ability is preserved. We made use of these homogeneous cultures to identify conditions employing simultaneous modulation of Wnt and Notch signaling to direct lineage differentiation into mature enterocytes, goblet cells and Paneth cells. Expansion in these culture conditions may be feasible for Lgr5+ cells from the mouse stomach and colon and from the human small intestine. These methods provide new tools for the study and application of multiple intestinal epithelial cell types. PMID:24292484

  19. Vibrational spectroscopy characterization of low level laser therapy on mammary culture cells: a micro-FTIR study

    NASA Astrophysics Data System (ADS)

    Magrini, Taciana D.; Villa dos Santos, Nathalia; Pecora Milazzotto, Marcella; Cerchiaro, Giselle; da Silva Martinho, Herculano

    2011-03-01

    Low level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably go from the photobiostimulation/photobioinibition at cellular level to the molecular level. The detailed mechanism underlying this effect is still obscure. This work is dedicated to quantify some relevant aspects of LLLT related to molecular and cellular variations. This goal was attached by exposing malignant breast cells (MCF7) to spatially filtered light of a He-Ne laser (633 nm) with 28.8 mJ/cm2 of fluency. The cell viability was evaluated by microscopic observation using Trypan Blue viability test. The vibrational spectra of each experimental group (micro- FTIR technique) were used to identify the relevant biochemical alterations occurred due the process. The red light had influence over RNA, phosphate and serine/threonine/tyrosine bands. Light effects on cell number or viability were not detected. However, the irradiation had direct influence on metabolic activity of cells.

  20. Cultural studies of science education

    NASA Astrophysics Data System (ADS)

    Higgins, Joanna; McDonald, Geraldine

    2008-07-01

    In response to Stetsenko's [2008, Cultural Studies of Science Education, 3] call for a more unified approach in sociocultural perspectives, this paper traces the origins of the use of sociocultural ideas in New Zealand from the 1970s to the present. Of those New Zealanders working from a sociocultural perspective who responded to our query most had encountered these ideas while overseas. More recently activity theory has been of interest and used in reports of work in early childhood, workplace change in the apple industry, and in-service teacher education. In all these projects the use of activity theory has been useful for understanding how the elements of a system can transform the activity. We end by agreeing with Stetsenko that there needs to be a more concerted approach by those working from a sociocultural perspective to recognise the contribution of others in the field.

  1. A comparative study of the proliferation and osteogenic differentiation of human periodontal ligament cells cultured on ?-TCP ceramics and demineralized bone matrix with or without osteogenic inducers in vitro.

    PubMed

    An, Shaofeng; Gao, Yan; Huang, Xiangya; Ling, Junqi; Liu, Zhaohui; Xiao, Yin

    2015-05-01

    The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. ?-tricalcium phosphate (?-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous ?-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell-Counting kit-8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the ?-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the ?-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the ?-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on ?-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements. PMID:25738431

  2. Long Term Maintenance of Myeloid Leukemic Stem Cells Cultured with Unrelated Human Mesenchymal Stromal Cells

    PubMed Central

    Ito, Sawa; Barrett, A. John; Dutra, Amalia; Pak, Evgenia; Miner, Samantha; Keyvanfar, Keyvan; Hensel, Nancy F.; Rezvani, Katayoun; Muranski, Pawel; Liu, Paul

    2015-01-01

    Mesenchymal stromal cells (MSCs) support the growth and differentiation of normal hematopoietic stem cells (HSCs). Here we studied the ability of MSCs to support the growth and survival of leukemic stem cells (LSCs) in vitro. Primary leukemic blasts isolated from the peripheral blood of 8 patients with acute myeloid leukemia (AML) were co-cultured with equal numbers of irradiated MSCs derived from unrelated donor bone marrow, with or without cytokines for up to 6 weeks. Four samples showed CD34+CD38− predominance, and four were predominantly CD34+CD38+. CD34+ CD38− predominant leukemia cells maintained the CD34+ CD38− phenotype and were viable for 6 weeks when co-cultured with MSCs compared to co-cultures with cytokines or medium only, which showed rapid differentiation and loss of the LSC phenotype. In contrast, CD34+ CD38+ predominant leukemic cells maintained the CD34+CD38+ phenotype when co-cultured with MSCs alone, but no culture conditions supported survival beyond 4 weeks. Cell cycle analysis showed that MSCs maintained a higher proportion of CD34+ blasts in G0 than leukemic cells cultured with cytokines. AML blasts maintained in culture with MSCs for up to 6 weeks engrafted NSG mice with the same efficiency as their non-cultured counterparts, and the original karyotype persisted after co-culture. Chemosensitivity and transwell assays suggest MSCs provide pro-survival benefits to leukemic blasts through cell-cell contact. We conclude that MSCs support long-term maintenance of LSCs in vitro. This simple and inexpensive approach will facilitate basic investigation of LSCs and enable screening of novel therapeutic agents targeting LSCs. PMID:25535865

  3. Lingual Epithelial Stem Cells and Organoid Culture of Them

    PubMed Central

    Hisha, Hiroko; Tanaka, Toshihiro; Ueno, Hiroo

    2016-01-01

    As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine. PMID:26828484

  4. Exposure of Polyethylene Particles Induces Interferon-? Expression in a Natural Killer T Lymphocyte and Dendritic Cell Co-Culture System in vitro: A Preliminary Study

    PubMed Central

    Lin, Tzu-hua; Sunny, Kao; Taishi, Sato; Pajarenin, Jukka; Zhang, Ruth; Loi, Florence; Goodman, Stuart B.; Yao, Zhenyu

    2014-01-01

    Two major issues in total joint arthroplasty are loosening of implants and osteolysis caused by wear particle-induced inflammation. Wear particles stimulate the release of pro-inflammatory cytokines, chemokines and other inflammatory mediators from macrophages and other cells. Although the biological response of macrophages to wear debris is well established, the role of other cell types such as natural killer T lymphocytes (NKT) and dendritic cells (DCs) is limited. Here we show that ultra-high molecular weight polyethylene (UHMWPE) particles stimulate NKT cells to secrete Interferon-? (IFN-?); co-culture with DCs further enhanced IFN-? secretion. Furthermore, UHMWPE particles did not stimulate NKT cells to secrete IL-4, while the NKT cell natural ligand ?-Galactosylceramide (?-GalCer) treatment in the co-culture system significantly enhanced both IFN-? and IL-4 expression by NKT cells. Comparatively, NKT cells and/or DCs exposed to polymethylmethacrylate particles did not stimulate Interferon-? or IL-4 expression. Mouse bone marrow derived macrophage polarization by lipopolysaccharide and conditioned medium from NKT cells and/or DCs exposed to UHMWPE particles increased TNF-?, but reduced arginase-1 expression in macrophages. The current findings indicate that UHMWPE particles stimulate NKT cells/DCs to produce pro-inflammatory cytokines; this pathway is a novel therapeutic target to mitigate wear particle induced peri-prosthetic osteolysis. PMID:24616165

  5. Characteristics of Human Endometrial Stem Cells in Tissue and Isolated Cultured Cells: An Immunohistochemical Aspect

    PubMed Central

    Fayazi, Mehri; Salehnia, Mojdeh; Ziaei, Saeideh

    2016-01-01

    Background: The aim of this study was to investigate the percentage of the stem cells population in human endometrial tissue sections and cultured cells at fourth passage. Methods: Human endometrial specimens were divided into two parts, one part for morphological studies and the other part for in vitro culture. Full thickness of human normal endometrial sections and cultured endometrial cells at fourth passage were analyzed via immunohistochemistry for CD146 and some stemness markers such as Oct4, Nanog, Sox2, and Klf4 and the expression of typical mesenchymal stem cell markers CD90, CD105. Results: 11.88±1.29% of human endometrial cells within tissue sections expressed CD146 marker vs. 28±2.3% of cultured cells, CD90 and CD105 were expressed by functionalis stroma (85±2.4 and 89±3.2%) than basalis stroma (16±1.4 and 17±1.9%), respectively (P<0.05). Oct4 and Nanog-expressing cells comprise 1.43±0.08 and 0.54±0.01% of endometrial stromal cells in endometrial sections vs. 12±3.1% and 8±2.9% of cultured cells, respectively. They reside near the glands in the basal layer of endometrium. Sox2 and Klf4 were not commonly expressed in tissue samples and cultured cells. CD9 and EpCAM were expressed by epithelial cells of the endometrium, rather than by stroma or perivascular cells. Conclusion: The human endometrial stem cells and pluripotency markers may be localized more in basalis layer of endometrium. The immunostaining observations of endometrial cells at fourth passage were correlated with the immunohistochemistry data. PMID:26568058

  6. Cultural Studies in the English Classroom.

    ERIC Educational Resources Information Center

    Berlin, James A., Ed.; Vivion, Michael J., Ed.

    This book opens up ways of teaching and devising programs which place the students' cultural experiences at the center of language production and consumption. It provides concrete models of cultural studies programs and classrooms for high school and college teachers who would like to try the "cultural studies approach." It also offers a

  7. Cultural Studies in the English Classroom.

    ERIC Educational Resources Information Center

    Berlin, James A., Ed.; Vivion, Michael J., Ed.

    This book opens up ways of teaching and devising programs which place the students' cultural experiences at the center of language production and consumption. It provides concrete models of cultural studies programs and classrooms for high school and college teachers who would like to try the "cultural studies approach." It also offers a…

  8. Comparison of human corneal cell cultures in cytotoxicity testing.

    PubMed

    Zorn-Kruppa, Michaela; Tykhonova, Svitlana; Belge, Gazanfer; Diehl, Horst A; Engelke, Maria

    2004-01-01

    The cytotoxic pattern of cosmetic or pharmaceutical compounds within different layers of the human cornea is of special interest with respect to ocular safety testing. The aim of this study was to evaluate the ability of a newly developed human corneal keratocyte (HCK) cell line as an in vitro model to predict toxicity towards keratocytes in the corneal stroma. The cytotoxic response of immortalised HCK cultures towards different surfactants was compared to that of primary cultures of human corneal keratocytes. Our studies revealed comparable results for immortalised and primary keratocytes. Furthermore, we quantified surfactant-induced cytotoxic effects on immortalised cultures of corneal epithelium and endothelium. In conclusion, the HCK cell line represents an appropriate model to test keratocyte-specific toxicity and may serve as a useful building block in the construction of three-dimensional human cornea equivalent models. PMID:15329776

  9. Contamination of cell cultures with bovine viral diarrhea virus (BVDV).

    PubMed

    Uryvaev, L V; Dedova, A V; Dedova, L V; Ionova, K S; Parasjuk, N A; Selivanova, T K; Bunkova, N I; Gushina, E A; Grebennikova, T V; Podchernjaeva, R J

    2012-05-01

    The incidence of contamination of cell strains used in biological and virological studies and of fetal calf sera (FCS) manufactured by Russian and foreign companies used for cell culturing with noncytocidal bovine viral diarrhea virus (BVDV; Pestivirus, Flaviviridae) was analyzed. The virus was detected by reverse transcription PCR and indirect immunofluorescence with monoclonal antibodies to BVDV virion envelope glycoprotein in 25% of 117 cell strains and 45% of 35 tested FCS lots. The virus multiplied and persisted in a wide spectrum of human cell strains and in monkey, swine, sheep, rabbit, dog, cat, and other animal cells. The levels of BVDV genome RNA in contaminated cell cultures reached 10(2)-10(3) g-eq/cell and in serum samples 10(3)-10(7) g-eq/ml. These facts necessitate testing of cells and FCS for BVDV reproduced in cells without signs of infection detectable by light microscopy. The molecular mechanisms of long-term virus persistence in cells without manifestation of cell destruction are unknown. PMID:22808499

  10. Possible implication of ciliary neurotrophic factor (CNTF) and beta-synuclein in the ammonia effect on cultured rat astroglial cells: a study using DNA and protein microarrays.

    PubMed

    Bodega, Guillermo; Surez, Isabel; Lpez-Fernndez, Luis Andrs; Almonacid, Luis; Zaballos, Angel; Fernndez, Benjamn

    2006-06-01

    Astrocytes are considered the key cell in hepatic encephalopathy; although their precise role in the disease has not yet been determined, exposure to ammonia appears to have an important pathogenic effect. We exposed confluent cultures of rat astroglial cells to ammonia (5mM NH(4)Cl) for 1, 3, 5 and 7 days, and determined astroglial levels of actin, glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), GLAST glutamate transporter, 25kDa heat-shock protein (HSP25), HSP60 and HSP70 by Western blot; the glutamine content in culture medium was measured by mass spectrometry. Significant increases were observed for GS, HSP60 and glutamine, and significant reductions for actin and GFAP. Astrocytes exposed to ammonia for 4 days were used to analyze the effect of ammonia in protein and DNA microarrays. After protein microarray data filtration by signal intensity, x-fold change and z-score, 11 proteins were selected, among which the significant increase in beta-synuclein was confirmed by Western blot. DNA microarray data filtration by intensity signal, x-fold change and p-value selected almost 600 genes. The significant increase in alpha-synuclein mRNA was confirmed by quantitative RT-PCR, but no change was observed in alpha-synuclein protein levels. A notable decrease in ciliary neurotrophic factor (CNTF) was demonstrated by Western blot after ammonia treatment, concurring with the reduction in CNTF mRNA observed in DNA microarrays. We discuss the possibility of a pathogenic role for CNTF and a protective role for beta-synuclein in experimental hyperammonemia. This study demonstrates the use of microarrays as tools to ascertain the possible implication of previously unidentified proteins in the pathogenesis of hepatic encephalopathy. PMID:16483693

  11. [Isolation and culture of human embryonic AGM derived HSPCs in hematopoietic culture systems created by AGM stromal cells].

    PubMed

    Wu, Bei-Yan; Huang, Shao-Liang; Chen, Hui-Qin; Zhang, Xu-Chao

    2008-06-01

    This study was purposed to isolate human embryonic AGM derived HSPCs and investigate the effect of AGM stromal cells on AGM-derived HSPCs. Immunohistochemical sections of human AGM tissue were investigated for CD34, Flk-1 and VEGF expression. Human AGM-derived single cells were isolated and seeded onto pre-treated feeder of human AGM stromal cells (hAGMS3 and hAGMS4) by direct contact and non-contact co-culture in Transwell culture system. Growth characteristics of HSPCs with cobblestone area-forming cells (CAFCs) were observed and number of cobblestone area (CA) was counted. Indirect immunofluorescent assay was used to detect CD34 and Flk-1 expression on the surface of suspended cells as well as CAFCs in contact co-culture system. The cells after culture for 2 weeks were collected from both contact and non-contact co-culture systems for CFU assay. The result showed that hematopoietic cells in AGM tissue expressed CD34 and Flk-1. Both of the hematopoietic culture systems could produce CFCs. Nevertheless, direct contact co-culture produced CD34(+)Flk-1(+) CAFC and more CFUs than those from indirect non-contact culture (hAGMS3 system: 1647 +/- 194 vs 389 +/- 31, p < 0.05; hAGMS4 system: 1586 +/- 75 vs 432 +/- 35, p < 0.05). It is concluded that there were CD34(+)Flk-1(+) HSCs in human embryonic AGM region. The hematopoietic co-culture systems composed of AGM-derived HSPCs and AGM stromal cells are successfully established, both direct contact and Transwell non-contact co-culture can expand AGM-derived definitive HSPCs. Cell-cell contact between AGM-derived HSPCs and AGM stromal cells are of most importance to maintain and expand AGM-HSPCs. PMID:18549633

  12. Rotating bio-reactor cell culture apparatus

    NASA Technical Reports Server (NTRS)

    Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)

    1991-01-01

    A bioreactor system is described in which a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.

  13. Maintenance of primary cell cultures of immunocytes from Cacopsylla sp. psyllids: a new in vitrio tool for the study of pest insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Psyllid species are major vectors of plant pathogens, such as phytoplasmas and Liberibacter bacteria, which threaten economic stability of fruit tee crops and vegetable production worldwide. Primary cell cultures of immunocytes have been developed from the three psyllid species, Cacopsylla melanone...

  14. Cultural Studies in Indian Education.

    ERIC Educational Resources Information Center

    Warren, Dave

    1974-01-01

    For many years American Society seemed to feel that all institutional and cultural development of the United States came directly from Western European historical tradition. The greater society lost much of the enrichment and perspective that comes from the acceptance of a cultural pluralism that includes American Indian contributions in society

  15. Three-Dimensional Cultures of Mouse Mammary Epithelial Cells

    PubMed Central

    Mroue, Rana; Bissell, Mina J.

    2013-01-01

    The mammary gland is an ideal “model organism” for studying tissue specificity and gene expression in mammals: it is one of the few organs that develop after birth and it undergoes multiple cycles of growth, differentiation and regression during the animal’s lifetime in preparation for the important function of lactation. The basic “functional differentiation” unit in the gland is the mammary acinus made up of a layer of polarized epithelial cells specialized for milk production surrounded by myoepithelial contractile cells, and the two-layered structure is surrounded by basement membrane. Much knowledge about the regulation of mammary gland development has been acquired from studying the physiology of the gland and of lactation in rodents. Culture studies, however, were hampered by the inability to maintain functional differentiation on conventional tissue culture plastic. We now know that the microenvironment, including the extracellular matrix and tissue architecture, plays a crucial role in directing functional differentiation of organs. Thus, in order for culture systems to be effective experimental models, they need to recapitulate the basic unit of differentiated function in the tissue or organ and to maintain its three-dimensional (3D) structure. Mouse mammary culture models evolved from basic monolayers of cells to an array of complex 3D systems that observe the importance of the microenvironment in dictating proper tissue function and structure. In this chapter, we focus on how 3D mouse mammary epithelial cultures have enabled investigators to gain a better understanding of the organization, development and function of the acinus, and to identify key molecular, structural, and mechanical cues important for maintaining mammary function and architecture. The accompanying chapter of Vidi et al. describes 3D models developed for human cells. Here, we describe how mouse primary epithelial cells and cell lines—essentially those we use in our laboratory—are cultured in relevant 3D microenvironments. We focus on the design of functional assays that enable us to understand the intricate signaling events underlying mammary gland biology, and address the advantages and limitations of the different culture settings. Finally we also discuss how advances in bioengineering tools may help towards the ultimate goal of building tissues and organs in culture for basic research and clinical studies. PMID:23097110

  16. CELL GROWTH IN PLANT CULTURES: AN INTERPRETATION OF THE INFLUENCE OF INITIAL WEIGHT IN CADMIUM AND COPPER TOXICITY TESTS

    EPA Science Inventory

    The authors present an approach for conducting and interpreting results of newly established plant cell culture in toxicity studies. xtended culturing produces uniform suspension and facilities sampling. rimary (new) cultures are more representative of all responses of their plan...

  17. Contraction-induced cluster formation in cardiac cell culture

    NASA Astrophysics Data System (ADS)

    Harada, Takahiro; Isomura, Akihiro; Yoshikawa, Kenichi

    2008-11-01

    The evolution of the spatial arrangement of cells in a primary culture of cardiac tissue derived from newborn rats was studied experimentally over an extended period. It was found that cells attract each other spontaneously to form a clustered structure over the timescale of several days. These clusters exhibit spontaneous rhythmic contraction and have been confirmed to consist of cardiac muscle cells. The addition of a contraction inhibitor (2,3-butanedione-2-monoxime) to the culture medium resulted in the inhibition of both the spontaneous contractions exhibited by the cells as well as the formation of clusters. Furthermore, the formation of clusters is suppressed when high concentrations of collagen are used for coating the substratum to which the cells adhere. From these experimental observations, it was deduced that the cells are mechanically stressed by the tension associated with repeated contractions and that this results in the cells becoming compact and attracting each other, finally resulting in the formation of clusters. This process can be interpreted as modulation of a cellular network by the activity associated with contraction, which could be employed to control cellular networks by modifying the dynamics associated with the contractions in cardiac tissue culture.

  18. Arsenic exposure induces the Warburg effect in cultured human cells

    SciTech Connect

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  19. Embryonic stem cell derived motoneurons provide a highly sensitive cell culture model for botulinum neurotoxin studies, with implications for high-throughput drug discovery

    PubMed Central

    Kiris, Erkan; Nuss, Jonathan E.; Burnett, James C.; Kota, Krishna P.; Koh, Dawn C.; Wanner, Laura M.; Torres-Melendez, Edna; Gussio, Rick; Tessarollo, Lino; Bavari, Sina

    2011-01-01

    Botulinum neurotoxins (BoNTs) inhibit cholinergic synaptic transmission by specifically cleaving proteins that are crucial for neurotransmitter exocytosis. Due to the lethality of these toxins, there are elevated concerns regarding their possible use as bioterrorism agents. Moreover, their widespread use for cosmetic purposes, and as medical treatments, has increased the potential risk of accidental overdosing and environmental exposure. Hence, there is an urgent need to develop novel modalities to counter BoNT intoxication. Mammalian motoneurons are the main target of BoNTs, however, due to the difficulty and poor efficiency of the procedures required to isolate the cells, they are not suitable for high-throughput drug screening assays. Here, we explored the suitability of embryonic stem (ES) cell-derived motoneurons as a renewable, reproducible, and physiologically relevant system for BoNT studies. We found that the sensitivity of ES-derived motoneurons to BoNT/A intoxication is comparable to that of primary mouse spinal motoneurons. Additionally, we demonstrated that several BoNT/A inhibitors protected SNAP-25, the BoNT/A substrate, in the ES-derived motoneuron system. Furthermore, this system is compatible with immunofluorescence-based high-throughput studies. These data suggest that ES-derived motoneurons provide a highly sensitive system that is amenable to large-scale screenings to rapidly identify and evaluate the biological efficacies of novel therapeutics. PMID:21353660

  20. Metabolomic profiling of cultured cancer cells.

    PubMed

    Scoazec, Marie; Durand, Sylvere; Chery, Alexis; Galluzzi, Lorenzo; Kroemer, Guido

    2014-01-01

    Quantitative proteomics approaches have been developed-and now begin to be implemented on a high-throughput basis-to fill-in the large gap between the genomic/transcriptomic setup of (cancer) cells and their phenotypic/behavioral traits, reflecting a significant degree of posttranscriptional regulation in gene expression as well as a robust posttranslational regulation of protein function. However, proteomic profiling assays not only fail to detect labile posttranslational modifications as well as unstable protein-to-protein interactions but also are intrinsically incapable of assessing the enzymatic activity, as opposed to the mere abundance, of a given protein. Thus, determining the abundance of theoretically all the metabolites contained in a cell/tissue/organ/organism may significantly improve the informational value of proteomic approaches. Several techniques have been developed to this aim, including high-performance liquid chromatography (HPLC) coupled to quadrupole time-of-flight (Q-TOF) high-resolution mass spectrometry (HRMS). This approach is particularly advantageous for metabolomic profiling as it offers elevated accuracy and improved sensitivity. Here, we describe a simple procedure to determine the complete complement of intracellular metabolites in cultured malignant cells by HPLC coupled to Q-TOF HRMS. According to this method, (1) cells are collected and processed to minimize contaminations as well as fluctuations in their metabolic profile; (2) samples are separated by HPLC and analyzed on a Q-TOF spectrometer; and (3) data are extracted, normalized, and deconvoluted according to refined mathematical methods. This protocol constitutes a simple approach to determine the intracellular metabolomic profile of cultured cancer cells. With minimal variations (mostly related to sample collection and processing), this method is expected to provide reliable metabolomic data on a variety of cellular samples. PMID:24924132

  1. Neural stem cell differentiation in a cell-collagen-bioreactor culture system.

    PubMed

    Lin, Hsingchi J; O'Shaughnessy, Thomas J; Kelly, Jeremy; Ma, Wu

    2004-11-25

    Neural stem cells and neural progenitors (NSCs/NPs) are capable of self-renewal and can give rise to both neurons and glia. Such cells have been isolated from the embryonic brain and immobilized in three dimensional collagen gels. The collagen-entrapped NSCs/NPs recapitulate CNS stem cell development and form functional synapses and neuronal circuits. However, the cell-collagen constructs from static conditions contain hypoxic, necrotic cores and the cells are short-lived. In the present study, NSCs/NPs isolated from embryonic day 13 rat cortical neuroepithelium are immobilized in type I collagen gels and cultured in NASA-designed rotating wall vessel (RWV) bioreactors for up to 9 weeks. Initially, during the first 2 weeks of culture, a lag phase of cellular growth and differentiation is observed in the RWV bioreactors. Accelerated growth and differentiation, with the cells beginning to form large aggregates (approximately 1 mm in diameter) without death cores, begins during the third week. The collagen-entrapped NSCs/NPs cultured in RWV show active neuronal generation followed by astrocyte production. After 6 weeks in rotary culture, the cell-collagen constructs contain over 10 fold greater nestin+ and GFAP+ cells and two-fold more TuJ1 gene expression than those found in static cultures. In addition, TuJ1+ neurons in RWV culture give rise to extensive neurite outgrowth and considerably more synapsin I+ pre-synaptic puncta surrounding MAP2+ cell bodies and dendrites. These results strongly suggest that the cell-collagen-bioreactor culture system supports long-term NSC/NP growth and differentiation, and RWV bioreactors can be useful in generating neural tissue like constructs, which may have the potential for cell replacement therapy. PMID:15527884

  2. Growth of purified lacrimal acinar cells in Matrigel raft cultures.

    PubMed

    Schechter, Joel; Stevenson, Douglas; Chang, Donald; Chang, Natalie; Pidgeon, Michael; Nakamura, Tamako; Okamoto, Curtis T; Trousdale, Melvin D; Mircheff, Austin K

    2002-03-01

    The objective of this study was to develop a tissue culture system which closely mimics the in situ lacrimal gland for improved study of lacrimal acinar cell physiology. Highly purified preparations of lacrimal acinar cells from adult female New Zealand White rabbits were isolated and grown in suspension culture in the form of Matrigel 'rafts', i.e., aggregates of acinar cells enclosed within a Matrigel coating. The rafts were seeded onto Matrigel-coated culture plates and their growth was followed for up to 28 days. Immunohistochemistry was used to demonstrate the cellular sites of prolactin (PRL), epidermal growth factor (EGF), basic fibroblast growth factor (FGF-2), secretory component (SC) and major histocompatibility complex class-II molecules (MHC-II) within the acinar cells. By 3 days the cultures contained numerous, well-formed acini enclosed within the Matrigel. The acinar epithelial cells demonstrated histotypic polarity, with large, pale-staining, secretory granules aggregated adjacent to the lumen, and exocytotic release of secretory material into the lumen. From 5-10 days the pale-staining secretory granules decreased in number, while the lumenal contents of the acini increased in staining density. Throughout the culturing period as the pale-staining, secretory granules decreased in number, smaller more densely stained, secretory granules increased in number. The number of cells and size of acinar clusters increased steadily throughout the culturing period, and acini frequently achieved dimensions in excess of 0.5 mm. Increases in the size of acinar clusters were often accompanied by an increase in the size of the lumen. Frequently the lumen and its contents bulged asymmetrically towards one edge of the acinus. Immunhistochemistry demonstrated PRL and EGF within the lumens and within the apical cytoplasm of the acinar cells. Acini were strongly immunopositive for SC throughout the 28 day culture period, whereas immunopositivity for MHC-II molecules was strong initially, but diminished dramatically by 21 days. Immunostaining for FGF-2 was most intense on days 1 and 3, with staining throughout the cytoplasm, but became progressively more localized to the periphery of the acini as the culture period lengthened. In cultures of 1-28 days duration, Western blots of cell lysates demonstrated a major band (approximately 40 kDa) for PRL in 3-28 day preparations; a major band (approximately 80 kDa) for SC in 3 day and 7 day preparations that decreased in intensity in 14-28 day preparations; and a major band (approximately 23 kDa) for MHC-II protein in 1-21 day preparations that decreased in intensity in 28 day preparations. Lysosomes increased in number with time in culture, becoming a dominant cytoplasmic feature in 21 and 28 day cultures. Carbachol stimulation of 4 day rafts resulted in increased release of beta-hexosaminidase and SC from the rafts. The authors conclude that Matrigel rafts containing purified lacrimal gland acinar cells offer a highly advantageous system for study of lacrimal acinar cell function and one that correlates well with the in situ gland. PMID:12014916

  3. Radiosensitivity of cultured insect cells: II. Diptera

    SciTech Connect

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five dipteran cell lines representing three mosquito genera and one fruit fly genus were examined. These lines are: (1) ATC-10, Aedes aegypti; (2) RU-TAE-14, Toxorhynchites amboinensis; (3) RU-ASE-2A, Anopheles stephensi; (4) WR69-DM-1, Drosophila melanogaster; and (5) WR69-DM-2, Drosophila melanogaster. Population doubling times for these lines range from approximately 16 to 48 hr. Diploid chromosome numbers are six for the mosquito cells and eight for the fruit fly cells D/sub 0/ values are 5.1 and 6.5 Gy for the Drosophila cell lines and 3.6, 6.2, and 10.2 Gy for the mosquito cell lines. The results of this study demonstrate that dipteran insect cells are a few times more resistant to radiation than mammalian cells, but not nearly as radioresistant as lepidopteran cells.

  4. Cultured meat from stem cells: challenges and prospects.

    PubMed

    Post, Mark J

    2012-11-01

    As one of the alternatives for livestock meat production, in vitro culturing of meat is currently studied. The generation of bio-artificial muscles from satellite cells has been ongoing for about 15 years, but has never been used for generation of meat, while it already is a great source of animal protein. In order to serve as a credible alternative to livestock meat, lab or factory grown meat should be efficiently produced and should mimic meat in all of its physical sensations, such as visual appearance, smell, texture and of course, taste. This is a formidable challenge even though all the technologies to create skeletal muscle and fat tissue have been developed and tested. The efficient culture of meat will primarily depend on culture conditions such as the source of medium and its composition. Protein synthesis by cultured skeletal muscle cells should further be maximized by finding the optimal combination of biochemical and physical conditions for the cells. Many of these variables are known, but their interactions are numerous and need to be mapped. This involves a systematic, if not systems, approach. Given the urgency of the problems that the meat industry is facing, this endeavor is worth undertaking. As an additional benefit, culturing meat may provide opportunities for production of novel and healthier products. PMID:22543115

  5. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells.

    PubMed

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Mel'nikov, P A; Cherepanov, S A; Levinsky, A B; Chehonin, V P

    2016-02-01

    The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas. PMID:26902362

  6. Cardiac Cells Beating in Culture: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  7. Cardiac Cells Beating in Culture: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained

  8. Effects of Feeder Cell Types on Culture of Mouse Embryonic Stem Cell In Vitro

    PubMed Central

    Park, Yun-Gwi; Lee, Seung-Eun; Kim, Eun-Young; Hyun, Hyuk; Shin, Min-Young; Son, Yeo-Jin; Kim, Su-Young; Park, Se-Pill

    2015-01-01

    The suitable feeder cell layer is important for culture of embryonic stem (ES) cells. In this study, we investigated the effect of two kinds of the feeder cell, MEF cells and STO cells, layer to mouse ES (mES) cell culture for maintenance of stemness. We compare the colony formations, alkaline phosphatase (AP) activities, expression of pluripotency marker genes and proteins of D3 cell colonies cultured on MEF feeder cell layer (D3/MEF) or STO cell layers (D3/STO) compared to feeder free condition (D3/–) as a control group. Although there were no differences to colony formations and AP activities, interestingly, the transcripts level of pluripotency marker genes, Pou5f1 and Nanog were highly expressed in D3/MEF (79 and 93) than D3/STO (61and 77) or D3/– (65 and 81). Also, pluripotency marker proteins, NANOG and SOX-2, were more synthesized in D3/MEF (72.8±7.69 and 81.2±3.56) than D3/STO (32.0±4.30 and 56.0±4.90) or D3/– (55.0±4.64 and 62.0±6.20). These results suggest that MEF feeder cell layer is more suitable to mES cell culture. PMID:27004268

  9. Metabolic flux estimation in mammalian cell cultures.

    PubMed

    Goudar, Chetan T; Biener, Richard K; Piret, James M; Konstantinov, Konstantin B

    2014-01-01

    Metabolic flux analysis with its ability to quantify cellular metabolism is an attractive tool for accelerating cell line selection, medium optimization, and other bioprocess development activities. In the stoichiometric flux estimation approach, unknown fluxes are determined using intracellular metabolite mass balance expressions and measured extracellular rates. The simplicity of the stoichiometric approach extends its application to most cell culture systems, and the steps involved in metabolic flux estimation by the stoichiometric method are presented in detail in this chapter. Specifically, overdetermined systems are analyzed since the extra measurements can be used to check for gross measurement errors and system consistency. Cell-specific rates comprise the input data for flux estimation, and the logistic modeling approach is described for robust-specific rate estimation in batch and fed-batch systems. A simplified network of mammalian cell metabolism is used to illustrate the flux estimation procedure, and the steps leading up the consistency index determination are presented. If gross measurement errors are detected, a technique for determining the source of gross measurement error is also described. A computer program that performs most of the calculation described in this chapter is presented, and references to flux estimation software are provided. The procedure presented in this chapter should enable rapid metabolic flux estimation in any mammalian cell bioreaction network by the stoichiometric approach. PMID:24297417

  10. Human norovirus culture in B cells.

    PubMed

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-12-01

    Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires ∼6 h. PMID:26513671

  11. Human norovirus culture in B cells

    PubMed Central

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinj, Jan; Karst, Stephanie M

    2015-01-01

    Human noroviruses (HunoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HunoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HunoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-sydney HunoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HunoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. analysis of infection or attachment samples, including rna extraction and rt-qpcr, requires ~6 h. PMID:26513671

  12. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    SciTech Connect

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  13. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, Robert E.; Schroedl, Nancy A.; Gonda, Steve R.; Hartzell, Charles R.

    1994-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by non-myocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA designed High-Aspect-Ratio-Vessel (HARV) bioreactors provide a low shear environment which allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells in cultured in HARV's adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARV's using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar, however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissue-like organizations of cardiac cells in simulated microgravity.

  14. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, R. E.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R.

    1997-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA-designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organization of cardiac cells in vitro.

  15. Neonatal rat heart cells cultured in simulated microgravity.

    PubMed

    Akins, R E; Schroedl, N A; Gonda, S R; Hartzell, C R

    1997-05-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA-designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organization of cardiac cells in vitro. PMID:9196891

  16. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    SciTech Connect

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  17. Co-culture with endometrial stromal cells enhances the differentiation of human embryonic stem cells into endometrium-like cells

    PubMed Central

    YU, WENZHU; NIU, WENBIN; WANG, SHUNA; CHEN, XUEMEI; SUN, BO; WANG, FANG; SUN, YINGPU

    2015-01-01

    In vitro differentiation of human embryonic stem cells (hESCs) into endometrium-like cells may provide a useful tool for clinical treatment. The aim of the present study was to investigate the differentiation potential of hESCs into endometrium-like cells using three methods, which included induction by feeder cells, co-culture with endometrial stromal cells and induction with embryoid bodies. Following differentiation, the majority of cells positively expressed cytokeratin and epithelial cell adhesion molecule (EPCAM). Factors associated with endometrium cell function, namely the estrogen and progesterone receptors (ER and PR), were also detected. At day 21 following the induction of differentiation, the expression levels of cytokeratin, EPCAM, ER and PR were significantly increased in the co-culture method group, as compared with the other two methods. Furthermore, these cells became decidualized in response to progesterone and prolactin. In addition, the number of cytokeratin-positive or EPCAM-positive cells significantly increased following the induction of differentiation using the co-culture method, as compared with the other two methods. The mRNA expression levels of Wnt members that are associated with endometrial development were subsequently examined, and Wnt5a was found to be significantly upregulated in the differentiated cells induced by feeder cells and co-culture with endometrial stromal cells; however, Wnt4 and Wnt7a expression levels were unaffected. Additionally, the mRNA expression levels of Wnt5a in the differentiated cells co-cultured with endometrial stromal cells were higher when compared with those induced by feeder cells. In conclusion, the present findings indicated that the co-culture system is the optimal protocol for the induction of hESC differentiation into endometrium-like cells, and Wnt5a signaling may be involved in this process. PMID:26170910

  18. Disposable bioreactors for plant micropropagation and mass plant cell culture.

    PubMed

    Ducos, Jean-Paul; Terrier, Bndicte; Courtois, Didier

    2009-01-01

    Different types of bioreactors are used at Nestl R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco. PMID:19475375

  19. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  20. Propagation of human embryonic and induced pluripotent stem cells in an indirect co-culture system

    PubMed Central

    Abraham, Sheena; Sheridan, Steven D.; Laurent, Louise C.; Albert, Kelsey; Stubban, Christopher; Ulitsky, Igor; Miller, Bradley; Loring, Jeanne F.; Rao, Raj R.

    2010-01-01

    We have developed and validated a microporous poly(ethylene terephthalate) membrane-based indirect co-culture system for human pluripotent stem cell (hPSC) propagation, which allows real-time conditioning of the culture medium with human fibroblasts while maintaining the complete separation of the two cell types. The propagation and pluripotent characteristics of a human embryonic stem cell (hESC) line and a human induced pluripotent stem cell (hiPSC) line were studied in prolonged culture in this system. We report that hPSCs cultured on membranes by indirect co-culture with fibroblasts were indistinguishable by multiple criteria from hPSCs cultured directly on a fibroblast feeder layer. Thus this co-culture system is a significant advance in hPSC culture methods, providing a facile stem cell expansion system with continuous medium conditioning while preventing mixing of hPSCs and feeder cells. This membrane culture method will enable testing of novel feeder cells and differentiation studies using co-culture with other cell types, and will simplify stepwise changes in culture conditions for staged differentiation protocols. PMID:20117095

  1. Polyglycolic AcidPolylactic Acid Scaffold Response to Different Progenitor Cell In Vitro Cultures: A Demonstrative and Comparative X-Ray Synchrotron Radiation Phase-Contrast Microtomography Study

    PubMed Central

    Moroncini, Francesca; Mazzoni, Serena; Belicchi, Marzia Laura Chiara; Villa, Chiara; Erratico, Silvia; Colombo, Elena; Calcaterra, Francesca; Brambilla, Lucia; Torrente, Yvan; Albertini, Gianni; Della Bella, Silvia

    2014-01-01

    Spatiotemporal interactions play important roles in tissue development and function, especially in stem cell-seeded bioscaffolds. Cells interact with the surface of bioscaffold polymers and influence material-driven control of cell differentiation. In vitro cultures of different human progenitor cells, that is, endothelial colony-forming cells (ECFCs) from a healthy control and a patient with Kaposi sarcoma (an angioproliferative disease) and human CD133+ muscle-derived stem cells (MSH 133+ cells), were seeded onto polyglycolic acidpolylactic acid scaffolds. Three-dimensional (3D) images were obtained by X-ray phase-contrast microtomography (micro-CT) and processed with the Modified Bronnikov Algorithm. The method enabled high spatial resolution detection of the 3D structural organization of cells on the bioscaffold and evaluation of the way and rate at which cells modified the construct at different time points from seeding. The different cell types displayed significant differences in the proliferation rate. In conclusion, X-ray synchrotron radiation phase-contrast micro-CT analysis proved to be a useful and sensitive tool to investigate the spatiotemporal pattern of progenitor cell organization on a bioscaffold. PMID:23879738

  2. Mechanisms of the proliferation and differentiation of plant cells in cell culture systems.

    PubMed

    Fukuda, H; Ito, M; Sugiyama, M; Komamine, A

    1994-06-01

    Plant cell functions have been investigated in various cell culture systems. In this review, we summarize results obtained from investigations of gene expression during the cell cycle in synchronized cultures of Catharanthus roseus during somatic embryogenesis in suspension cultures of Daucus carota, during organogenesis in tissue cultures of Arabidopsis thaliana and during the transdifferentiation of isolated mesophyll cells to tracheary elements in single-cell cultures of Zinnia elegans. PMID:7981037

  3. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  4. An optimized method for establishing high purity murine CD8+ T cell cultures.

    PubMed

    Zanker, Damien; Xiao, Kun; Oveissi, Sara; Guillaume, Philippe; Luescher, Immanuel F; Chen, Weisan

    2013-01-31

    Establishing CD8(+) T cell cultures has been empirical and the published methods have been largely individual laboratory based. In this study, we optimized culturing conditions and show that IL-2 concentration is the most critical factor for the success of establishing CD8(+) T cell cultures. High IL-2 concentration encouraged T cells to non-specifically proliferate, express a B cell marker, B220, and undergo apoptosis. These cells also lose typical irregular T cell morphology and are incapable of sustaining long-term cultures. Using tetramer and intracellular cytokine assessments, we further demonstrated that many antigen-specific T cells have been rendered nonfunctional when expanded under high IL-2 concentration. When IL-2 is used in the correct range, B220-mediated cell depletion greatly enhanced the success rate of such T cell cultures. PMID:23098837

  5. Culture at a Higher Temperature Mildly Inhibits Cancer Cell Growth but Enhances Chemotherapeutic Effects by Inhibiting Cell-Cell Collaboration

    PubMed Central

    Zhu, Shengming; Wang, Jiangang; Xie, Bingkun; Luo, Zhiguo; Lin, Xiukun; Liao, D. Joshua

    2015-01-01

    Acute febrile infections have historically been used to treat cancer. To explore the underlying mechanism, we studied chronic effects of fever on cancer cell growth and chemotherapeutic efficacy in cell culture. We found that culturing cancer cells at 39°C mildly inhibited cell growth by arresting the cells at the G1 phase of the cell cycle. When cells were seeded in culture dishes at a lower density, e.g. about 1000–2000 cells per 35-mm dish, the growth inhibition was much greater, manifested as many fewer cell colonies in the 39°C dishes, compared with the results at a higher density seeding, e.g. 20,000 cells per dish, suggesting that cell-cell collaboration as the Allee effect in cell culture is inhibited at 39°C. Withdrawal of cells from serum enhanced the G1 arrest at 39°C and, for some cell lines such as A549 lung cancer cells, serum replenishment failed to quickly drive the cells from the G1 into the S and G2-M phases. Therapeutic effects of several chemotherapeutic agents, including clove bud extracts, on several cancer cell lines were more potent at 39°C than at 37°C, especially when the cells were seeded at a low density. For some cell lines and some agents, this enhancement is long-lasting, i.e. continuing after the cessation of the treatment. Collectively these results suggest that hyperthermia may inhibit cancer cell growth by G1 arrest and by inhibition of cell-cell collaboration, and may enhance the efficacy of several chemotherapeutic agents, an effect which may persist beyond the termination of chemotherapy. PMID:26495849

  6. Medium for development of bee cell cultures (Apis mellifera: Hymenoptera: Apidae).

    PubMed

    Hunter, Wayne B

    2010-02-01

    A media for the production of cell cultures from hymenopteran species such as honey bee, Apis mellifera L. (Hymenoptera: Apidae) was developed. Multiple bee cell cultures were produced when using bee larvae and pupae as starting material and modified Hert-Hunter 70 media. Cell culture systems for bees solves an impasse that has hindered efforts to isolate and screen pathogens which may be influencing or causing colony collapse disorder of bees. Multiple life stages of maturing larvae to early pupae were used to successfully establish cell cultures from the tissues of the head, thorax, and abdomen. Multiple cell types were observed which included free-floating suspensions, fibroblast-like, and epithelia-like monolayers. The final culture medium, WH2, was originally developed for hemipterans, Asian citrus psyllid, Diaphorina citri, and leafhopper, Homalodisca vitripennis cell cultures but has been shown to work for a diverse range of insect species such as bees. Bee cell cultures had various doubling times at 21-23 degrees C ranging from 9-15 d. Deformed wing virus was detected in the primary explanted tissues, which tested negative by rt-PCR for Israeli acute paralysis virus (IAPV), Kashmir bee virus, acute bee paralysis virus, and black queen cell virus. Culture inoculation with IAPV from an isolate from Florida field samples, was detectable in cell cultures after two subcultures. Cell culture from hymenoptera species, such as bees, greatly advances the approaches available to the field of study on colony collapse disorders. PMID:20033792

  7. A novel feeder-free culture system for expansion of mouse spermatogonial stem cells.

    PubMed

    Choi, Na Young; Park, Yo Seph; Ryu, Jae-Sung; Lee, Hye Jeong; Arazo-Bravo, Marcos J; Ko, Kisung; Han, Dong Wook; Schler, Hans R; Ko, Kinarm

    2014-06-01

    Spermatogonial stem cells (SSCs, also called germline stem cells) are self-renewing unipotent stem cells that produce differentiating germ cells in the testis. SSCs can be isolated from the testis and cultured in vitro for long-term periods in the presence of feeder cells (often mouse embryonic fibroblasts). However, the maintenance of SSC feeder culture systems is tedious because preparation of feeder cells is needed at each subculture. In this study, we developed a Matrigel-based feeder-free culture system for long-term propagation of SSCs. Although several in vitro SSC culture systems without feeder cells have been previously described, our Matrigel-based feeder-free culture system is time- and cost- effective, and preserves self-renewability of SSCs. In addition, the growth rate of SSCs cultured using our newly developed system is equivalent to that in feeder cultures. We confirmed that the feeder-free cultured SSCs expressed germ cell markers both at the mRNA and protein levels. Furthermore, the functionality of feeder-free cultured SSCs was confirmed by their transplantation into germ cell-depleted mice. These results suggest that our newly developed feeder-free culture system provides a simple approach to maintaining SSCs in vitro and studying the basic biology of SSCs, including determination of their fate. PMID:24854861

  8. Effects of culture media on the susceptibility of cells to apoptotic cell death.

    PubMed

    Anai, Chikara; Kawaguchi, Masatoshi; Eto, Ko

    2014-09-01

    Whether responses of cells to extracellular environments affect the induction of apoptotic cell death is poorly understood. The current study aimed to unravel the different effects of culture media employed in vitro as extracellular environments on the susceptibility of cells to apoptosis. We found that apoptosis is stimulated to the higher levels by culturing human HeLa cells in Opti-MEM with unknown components, a medium that is specifically used for transfections, than by culturing cells in Dulbecco's modified Eagle's medium, a medium that is generally used for maintenance of cells. We showed that apoptosis is suppressed partially by culturing cells in heat-treated Opti-MEM, implicating a heat-sensitive component(s) in stimulating the apoptotic response of cells. Thus, different extracellular environments may contribute to different responses of cells to apoptosis, and this should be considered to evaluate the incidences of apoptotic cell death and could be applied to develop an efficient treatment for curing diseases such as cancer. PMID:24789725

  9. Enhanced chondrocyte culture and growth on biologically inspired nanofibrous cell culture dishes

    PubMed Central

    Bhardwaj, Garima; Webster, Thomas J

    2016-01-01

    Chondral and osteochondral defects affect a large number of people in which treatment options are currently limited. Due to its ability to mimic the natural nanofibrous structure of cartilage, this current in vitro study aimed at introducing a new scaffold, called XanoMatrix™, for cartilage regeneration. In addition, this same scaffold is introduced here as a new substrate onto which to study chondrocyte functions. Current studies on chondrocyte functions are limited due to nonbiologically inspired cell culture substrates. With its polyethylene terephthalate and cellulose acetate composition, good mechanical properties and nanofibrous structure resembling an extracellular matrix, XanoMatrix offers an ideal surface for chondrocyte growth and proliferation. This current study demonstrated that the XanoMatrix scaffolds promote chondrocyte growth and proliferation as compared with the Corning and Falcon surfaces normally used for chondrocyte cell culture. The XanoMatrix scaffolds also have greater hydrophobicity, three-dimensional surface area, and greater tensile strength, making them ideal candidates for alternative treatment options for chondral and osteochondral defects as well as cell culture substrates to study chondrocyte functions. PMID:26917958

  10. [Protection of cultured mammalian cells by rebamipide].

    PubMed

    Antoku, S; Aramaki, R; Tanaka, H; Kusumoto, N

    1997-06-01

    Rebamipide which is used as a drug for gastritis and stomach ulcer has large capability for OH radical scavenging. It is expected that rebamipide has protective effect against ionizing radiations. The present paper deals with protective effect of rebamipide for cultured mammalian cells exposed to ionizing radiations. As rebamipide is insoluble in water, three solvents were used to dissolve. Rebamipide dissolved in dimethyl sulfoxide (DMSO), dimethyl formamide (DMFA) and 0.02 N NaOH was added to the cells in Eagle's minimum essential medium (MEM) supplemented with 10% fetal calf serum and the cells were irradiated with X-rays. After irradiation, the cells were trypsinized, plated in MEM with 10% fetal calf serum and incubated for 7 days in a CO2 incubator to form colonies. Rebamipide dissolved in 0.02 N NaOH exhibited the protective effect expected its OH radical scavenging capability. However, the protective effect of rebamipide dissolved in DMSO was about half of that expected by its radical scavenging capability and that of rebamipide dissolved in DMFA was not observed. Uptake of rebamipide labeled with 14C increased with increasing contact time with rebamipide. These rebamipide mainly distributed in nucleous rather than cytoplasm. PMID:9248142

  11. The measurement of nitric oxide production by cultured endothelial cells.

    PubMed

    Hart, C Michael; Kleinhenz, Dean J; Dikalov, Sergey I; Boulden, Beth M; Dudley, Samuel C

    2005-01-01

    Nitric oxide (NO) produced by vascular endothelial cells (ECs) plays a critical role in normal vascular physiology. Important insights into mechanisms regulating the production of endothelial NO have been derived from in vitro studies employing cultured ECs. Although many techniques for the detection of NO have been described, many of these methods lack adequate sensitivity to detect the small amount of NO produced by cultured ECs. In this chapter, we describe three protocols that employ chemiluminescence, electron spin resonance, or electrochemical techniques to permit the reliable detection of EC NO production. PMID:16291257

  12. Milk stimulates growth of prostate cancer cells in culture.

    PubMed

    Tate, Patricia L; Bibb, Robert; Larcom, Lyndon L

    2011-11-01

    Concern has been expressed about the fact that cows' milk contains estrogens and could stimulate the growth of hormone-sensitive tumors. In this study, organic cows' milk and two commercial substitutes were digested in vitro and tested for their effects on the growth of cultures of prostate and breast cancer cells. Cows' milk stimulated the growth of LNCaP prostate cancer cells in each of 14 separate experiments, producing an average increase in growth rate of over 30%. In contrast, almond milk suppressed the growth of these cells by over 30%. Neither cows' milk nor almond milk affected the growth of MCF-7 breast cancer cells or AsPC-1 pancreatic cancer cells significantly. Soy milk increased the growth rate of the breast cancer cells. These data indicate that prostate and breast cancer patients should be cautioned about the possible promotional effects of commercial dairy products and their substitutes. PMID:22043817

  13. Unique cell culture systems for ground based research

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  14. Cocaethylene toxicity in rat primary myocardial cell cultures.

    PubMed

    Welder, A A; Dickson, L J; Melchert, R B

    1993-01-01

    Cocaethylene is a unique cocaine metabolite formed in the presence of ethanol by the liver. Neither acute nor chronic cardiotoxic effects of this metabolite have been investigated. The purpose of this study was to establish a time- and dose-dependent toxicity profile for cocaethylene in primary myocardial cell cultures established from 3-5-day-old Sprague-Dawley rats. Alterations in lactate dehydrogenase (LDH) release, lysosomal neutral red (NR) retention, thiobarbituric acid-reactive substances (TBARS), morphology, and beating activity were evaluated after treatment of cultures with cocaethylene doses ranging from 1.0 x 10(-3) to 1.0 x 10(-9) M from 1 to 24 h. LDH release was significantly elevated after 24 h only with those cultures exposed to the highest dose of cocaethylene (1.0 x 10(-3) M). The highest dose of cocaethylene also significantly depressed NR retention. While all doses of cocaethylene depressed contractile activity and altered cellular morphology by 24 h, there were no TBARS formed up to 15 h. Thus, both low and high doses of cocaethylene are injurious to the cellular integrity and contractility of myocardial cell cultures. Future studies are warranted to determine mechanisms of cocaethylene toxicity in this in vitro model of spontaneously contracting myocardial cells. PMID:8397880

  15. Characterization of aggregate size in Taxus suspension cell culture.

    PubMed

    Kolewe, Martin E; Henson, Michael A; Roberts, Susan C

    2010-05-01

    Plant cells grow as aggregates in suspension culture, but little is known about the dynamics of aggregation, and no routine methodology exists to measure aggregate size. In this study, we evaluate several different methods to characterize aggregate size in Taxus suspension cultures, in which aggregate diameters range from 50 to 2,000 microm, including filtration and image analysis, and develop a novel method using a specially equipped Coulter counter system. We demonstrate the suitability of this technology to measure plant cell culture aggregates, and show that it can be reliably used to measure total biomass accumulation compared to standard methods such as dry weight. Furthermore, we demonstrate that all three methods can be used to measure an aggregate size distribution, but that the Coulter counter is more reliable and much faster, and also provides far better resolution. While absolute measurements of aggregate size differ based on the three evaluation techniques, we show that linear correlations are sufficient to account for these differences (R(2) > 0.99). We then demonstrate the utility of the novel Coulter counter methodology by monitoring the dynamics of a batch process and find that the mean aggregate size increases by 55% during the exponential growth phase, but decreases during stationary phase. The results indicate that the Coulter counter method can be routinely used for advanced process characterization, particularly to study the relationship between aggregate size and secondary metabolite production, as well as a source of reliable experimental data for modeling aggregation dynamics in plant cell culture. PMID:20217417

  16. Three-dimensional cell culturing by magnetic levitation.

    PubMed

    Haisler, William L; Timm, David M; Gage, Jacob A; Tseng, Hubert; Killian, T C; Souza, Glauco R

    2013-10-01

    Recently, biomedical research has moved toward cell culture in three dimensions to better recapitulate native cellular environments. This protocol describes one method for 3D culture, the magnetic levitation method (MLM), in which cells bind with a magnetic nanoparticle assembly overnight to render them magnetic. When resuspended in medium, an external magnetic field levitates and concentrates cells at the air-liquid interface, where they aggregate to form larger 3D cultures. The resulting cultures are dense, can synthesize extracellular matrix (ECM) and can be analyzed similarly to the other culture systems using techniques such as immunohistochemical analysis (IHC), western blotting and other biochemical assays. This protocol details the MLM and other associated techniques (cell culture, imaging and IHC) adapted for the MLM. The MLM requires 45 min of working time over 2 d to create 3D cultures that can be cultured in the long term (>7 d). PMID:24030442

  17. Endotoxin suppresses surfactant synthesis in cultured rat lung cells

    SciTech Connect

    Li, J.J.; Sanders, R.L.; McAdam, K.P.; Gelfand, J.A.; Burke, J.F.

    1989-02-01

    Pulmonary complications secondary to postburn sepsis are a major cause of death in burned patients. Using an in vitro organotypic culture system, we examined the effect of E. coli endotoxin (LPS) on lung cell surfactant synthesis. Our results showed that E. coli endotoxin (1.0, 2.5, 10 micrograms LPS/ml) was capable of suppressing the incorporation of /sup 3/H-choline into de novo synthesized surfactant, lamellar bodies (LB), and common myelin figures (CMF) at 50%, 68%, and 64%, respectively. In a similar study, we were able to show that LPS also inhibited /sup 3/H-palmitate incorporation by cultured lung cells. LPS-induced suppression of surfactant synthesis was reversed by hydrocortisone. Our results suggest that LPS may play a significant role in reducing surfactant synthesis by rat lung cells, and thus contribute to the pathogenesis of sepsis-related respiratory distress syndrome (RDS) in burn injury.

  18. Optimization of culture conditions for porcine corneal endothelial cells

    PubMed Central

    Proulx, Stphanie; Bourget, Jean-Michel; Gagnon, Nicolas; Martel, Sophie; Deschambeault, Alexandre; Carrier, Patrick; Giasson, Claude J.; Auger, Franois A.; Brunette, Isabelle

    2007-01-01

    Purpose To optimize the growth condition of porcine corneal endothelial cells (PCEC), we evaluated the effect of coculturing with a feeder layer (irradiated 3T3 fibroblasts) with the addition of various exogenous factors, such as epidermal growth factor (EGF), nerve growth factor (NGF), bovine pituitary extract (BPE), ascorbic acid, and chondroitin sulfate, on cell proliferation, size, and morphology. Methods PCEC cultures were seeded at an initial cell density of 400 cells/cm2 in the presence or absence of 20,000 murine-irradiated 3T3 fibroblast/cm2 in the classic media Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 20% fetal bovine serum (FBS). Mean cell size and bromodeoxyuridine incorporation was assessed at various passages. Growth-promoting factors were studies by seeding PCEC at 8,000 cells/cm2 in DMEM with 20% FBS or Opti-MEM I supplemented with 4% FBS and one of the following additives: EGF (0.5, 5, 25 ng/ml), NGF (5, 20, 50 ng/ml), BPE (25, 50, 100, 200 ?g/ml), ascorbic acid (10, 20, 40 ?g/ml) and chondroitin sulfate (0.03, 0.08, 1.6%), alone or in combination. Cell number, size and morphology of PCEC were assessed on different cell populations. Each experiment was repeated at least twice in three sets. In some cases, cell cultures were maintained after confluence to observe post-confluence changes in cell morphology. Results Co-cultures of PCEC grown in DMEM 20% FBS with a 3T3 feeder layer improved the preservation of small polygonal cell shape. EGF, NGF, and chondroitin sulfate did not induce proliferation above basal level nor did these additives help maintain a small size. However, chondroitin sulfate did help preserve a good morphology. BPE and ascorbic acid had dose-dependent effects on proliferation. The combination of BPE, chondroitin sulfate, and ascorbic acid significantly increased cell numbers above those achieved with serum alone. No noticeable changes were observed when PCEC were cocultured with a 3T3 feeder layer in the final selected medium. Conclusions Improvements have been made for the culture of PCEC. The final selected medium consistently allowed the growth of a contact-inhibited cell monolayer of small, polygonal-shaped cells. PMID:17438517

  19. Cell Wall Proteins from Sugar Beet Cells in Suspension Culture

    PubMed Central

    Masuda, Hiroshi; Komiyama, Seiichi; Sugawara, Shiro

    1989-01-01

    Several proteins were extracted from the purified cell walls of suspension-cultured sugar beet cells with 0.5% EDTA (pH 6.8) after prior extraction of the walls with 0.5% deoxycholate and then with 2 molar NaCl. Two abundant proteins (P-I and P-II protein) were separately purified to homogeneity by procedures that included fractionation with ammonium sulfate, column chromatography on DEAE-cellulose and butyl Toyopearl, and preparative polyacrylamide electrophoresis. P-I exists as a dimer of identical subunits, and P-II is composed of four different subunits. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that quite different polypeptides are present in the culture medium and in the NaCl and EDTA extracts of the wall. Images Figure 2 Figure 4 Figure 5 Figure 7 Figure 8 PMID:16666606

  20. Co-culture of Mouse Embryonic Stem Cells with Sertoli Cells Promote in vitro Generation of Germ Cells

    PubMed Central

    Miryounesi, Mohammad; Nayernia, Karim; Dianatpour, Mahdi; Mansouri, Fatemeh; Modarressi, Mohammad Hossein

    2013-01-01

    Objective(s): Sertoli cells support in vivo germ cell production; but, its exact mechanism has not been well understood. The present study was designed to analyze the effect of Sertoli cells in differentiation of mouse embryonic stem cells (mESCs) to germ cells. Materials and Methods: A fusion construct composed of a Stra8 gene promoter and the coding region of enhanced green fluorescence protein was produced to select differentiated mESCs. To analyze sertoli cells effect in differentiation process, mESCs were separated into two groups: the first group was cultured on gelatin with retinoic acid treatment and the second group was co-cultured with sertoli cell feeder without retinoic acid induction. Expressions of pre-meiotic (Stra8), meiotic (Dazl and Sycp3) and post-meiotic (Prm1) genes were evaluated at different differentiation stages (+7, +12 and +18 days of culture). Results: In the first group, expressions of meiotic and post-meiotic genes started 12 and 18 days after induction with retinoic acid, respectively. In the second group, 7 days after co-culturing with Sertoli cells, expression of meiotic and post-meiotic genes was observed. Conclusion: These results show that differentiation process to germ cells is supported by Sertoli cells. Our findings provide a novel effective approach for generation of germ cell in vitro and studying the interaction of germ cells with their niche. PMID:23997904

  1. Gravity, chromosomes, and organized development in aseptically cultured plant cells

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1993-01-01

    The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.

  2. The Effect of Spaceflight on Bone Cell Cultures

    NASA Technical Reports Server (NTRS)

    Landis, William J.

    1999-01-01

    Understanding the response of bone to mechanical loading (unloading) is extremely important in defining the means of adaptation of the body to a variety of environmental conditions such as during heightened physical activity or in extended explorations of space or the sea floor. The mechanisms of the adaptive response of bone are not well defined, but undoubtedly they involve changes occurring at the cellular level of bone structure. This proposal has intended to examine the hypothesis that the loading (unloading) response of bone is mediated by specific cells through modifications of their activity cytoskeletal elements, and/or elaboration of their extracellular matrices. For this purpose, this laboratory has utilized the results of a number of previous studies defining molecular biological, biochemical, morphological, and ultrastructural events of the reproducible mineralization of a primary bone cell (osteoblast) culture system under normal loading (1G gravity level). These data and the culture system then were examined following the use of the cultures in two NASA shuttle flights, STS-59 and STS-63. The cells collected from each of the flights were compared to respective synchronous ground (1G) control cells examined as the flight samples were simultaneously analyzed and to other control cells maintained at 1G until the time of shuttle launch, at which point they were terminated and studied (defined as basal cells). Each of the cell cultures was assayed in terms of metabolic markers- gene expression; synthesis and secretion of collagen and non-collagenous proteins, including certain cytoskeletal components; assembly of collagen into macrostructural arrays- formation of mineral; and interaction of collagen and mineral crystals during calcification of the cultures. The work has utilized a combination of biochemical techniques (radiolabeling, electrophoresis, fluorography, Western and Northern Blotting, and light microscopic immunofluorescence) and structural methods (conventional and high voltage electron microscopy, inununocytochemistry, stereomicroscopy, and 3D image reconstruction). The studies have provided new knowledge of aspects of bone cell development and structural regulation, extracellular matrix assembly, and mineralization during spaceflight and under normal gravity. The information has contributed to insights into the means in general by which cells respond and adapt to different conditions of gravity (loading). The data may as well have suggested an underlying basis for the observed loss of bone by vertebrates, including man, in microgravity; and these scientific results may have implications for understanding bone loss following fracture healing and extended periods of inactivity such as during long-term bedrest.

  3. Organotypic slice cultures to study oligodendrocyte dynamics and myelination.

    PubMed

    Hill, Robert A; Medved, Jelena; Patel, Kiran D; Nishiyama, Akiko

    2014-01-01

    NG2 expressing cells (polydendrocytes, oligodendrocyte precursor cells) are the fourth major glial cell population in the central nervous system. During embryonic and postnatal development they actively proliferate and generate myelinating oligodendrocytes. These cells have commonly been studied in primary dissociated cultures, neuron cocultures, and in fixed tissue. Using newly available transgenic mouse lines slice culture systems can be used to investigate proliferation and differentiation of oligodendrocyte lineage cells in both gray and white matter regions of the forebrain and cerebellum. Slice cultures are prepared from early postnatal mice and are kept in culture for up to 1 month. These slices can be imaged multiple times over the culture period to investigate cellular behavior and interactions. This method allows visualization of NG2 cell division and the steps leading to oligodendrocyte differentiation while enabling detailed analysis of region-dependent NG2 cell and oligodendrocyte functional heterogeneity. This is a powerful technique that can be used to investigate the intrinsic and extrinsic signals influencing these cells over time in a cellular environment that closely resembles that found in vivo. PMID:25177825

  4. Dynamics of single cell property distributions in Chinese hamster ovary cell cultures monitored and controlled with automated flow cytometry.

    PubMed

    Kacmar, James; Srienc, Friedrich

    2005-12-01

    Two important variables that are often not measured online in Chinese hamster ovary (CHO) cell cultures are cell number concentration and culture viability. We have developed an automated flow cytometry system that measured the cell number concentration, single cell viability based on propidium iodide (PI) exclusion, and single cell light scattering from bioreactor samples every 30 min. The bioreactor was monitored during batch growth, and then the cell number concentration was controlled at a set point during cytostat operation. NH(4)Cl was added during steady state operation in cytostat mode to monitor the transient cell population response to adverse growth conditions. The automated measurements correlated well to cell concentration and viability determined manually using a hemacytometer. The described system provides a method to study mammalian cell culture physiology and dynamics in great detail. It presents a new method for the monitoring and control of animal cell culture. PMID:16144728

  5. Superior oxygen and glucose supply in perfusion cell cultures compared to static cell cultures demonstrated by simulations using the finite element method

    PubMed Central

    Sugiura, Shinji; Sakai, Yusuke; Nakazawa, Kohji; Kanamori, Toshiyuki

    2011-01-01

    Oxygen and glucose supply is one of the important factors for the growth and viability of the cells in cultivation of tissues, e.g., spheroid, multilayered cells, and three-dimensional tissue construct. In this study, we used finite element methods to simulate the flow profile as well as oxygen and glucose supply to the multilayered cells in a microwell array chip for static and perfusion cultures. The simulation results indicated that oxygen supply is more crucial than glucose supply in both static and perfusion cultures, and that the oxygen supply through the wall of the perfusion culture chip is important in perfusion cultures. Glucose concentrations decline with time in static cultures, whereas they can be maintained at a constant level over time in perfusion cultures. The simulation of perfusion cultures indicated that the important parameters for glucose supply are the flow rate of the perfusion medium and the length of the cell culture chamber. In a perfusion culture chip made of oxygen-permeable materials, e.g., polydimethylsiloxane, oxygen is hardly supplied via the perfusion medium, but mainly supplied through the walls of the perfusion culture chip. The simulation of perfusion cultures indicated that the important parameters for oxygen supply are the thickness of the flow channel and the oxygen permeability of the walls of the channel, i.e., the type of material and the thickness of the wall. PMID:21799709

  6. Cultural Policy in Nigeria. Studies and Documents on Cultural Policies.

    ERIC Educational Resources Information Center

    Fasuyik, T. A.

    This document, published by the United Nations, is one of approximately twenty in a series designed to show how cultural policies are planned and implemented in various Member States. The studies which cover countries belonging to differing social and economic systems, geographical areas and levels of development present a wide variety of…

  7. The Effect of Primary Cancer Cell Culture Models on the Results of Drug Chemosensitivity Assays: The Application of Perfusion Microbioreactor System as Cell Culture Vessel

    PubMed Central

    Chen, Yi-Dao; Huang, Shiang-Fu; Wang, Hung-Ming

    2015-01-01

    To precisely and faithfully perform cell-based drug chemosensitivity assays, a well-defined and biologically relevant culture condition is required. For the former, a perfusion microbioreactor system capable of providing a stable culture condition was adopted. For the latter, however, little is known about the impact of culture models on the physiology and chemosensitivity assay results of primary oral cavity cancer cells. To address the issues, experiments were performed. Results showed that minor environmental pH change could significantly affect the metabolic activity of cells, demonstrating the importance of stable culture condition for such assays. Moreover, the culture models could also significantly influence the metabolic activity and proliferation of cells. Furthermore, the choice of culture models might lead to different outcomes of chemosensitivity assays. Compared with the similar test based on tumor-level assays, the spheroid model could overestimate the drug resistance of cells to cisplatin, whereas the 2D and 3D culture models might overestimate the chemosensitivity of cells to such anticancer drug. In this study, the 3D culture models with same cell density as that in tumor samples showed comparable chemosensitivity assay results as the tumor-level assays. Overall, this study has provided some fundamental information for establishing a precise and faithful drug chemosensitivity assay. PMID:25654105

  8. The effect of primary cancer cell culture models on the results of drug chemosensitivity assays: the application of perfusion microbioreactor system as cell culture vessel.

    PubMed

    Hsieh, Chia-Hsun; Chen, Yi-Dao; Huang, Shiang-Fu; Wang, Hung-Ming; Wu, Min-Hsien

    2015-01-01

    To precisely and faithfully perform cell-based drug chemosensitivity assays, a well-defined and biologically relevant culture condition is required. For the former, a perfusion microbioreactor system capable of providing a stable culture condition was adopted. For the latter, however, little is known about the impact of culture models on the physiology and chemosensitivity assay results of primary oral cavity cancer cells. To address the issues, experiments were performed. Results showed that minor environmental pH change could significantly affect the metabolic activity of cells, demonstrating the importance of stable culture condition for such assays. Moreover, the culture models could also significantly influence the metabolic activity and proliferation of cells. Furthermore, the choice of culture models might lead to different outcomes of chemosensitivity assays. Compared with the similar test based on tumor-level assays, the spheroid model could overestimate the drug resistance of cells to cisplatin, whereas the 2D and 3D culture models might overestimate the chemosensitivity of cells to such anticancer drug. In this study, the 3D culture models with same cell density as that in tumor samples showed comparable chemosensitivity assay results as the tumor-level assays. Overall, this study has provided some fundamental information for establishing a precise and faithful drug chemosensitivity assay. PMID:25654105

  9. Characterization of human thymic dendritic cells in culture.

    PubMed Central

    Pelletier, M; Tautu, C; Landry, D; Montplaisir, S; Chartrand, C; Perreault, C

    1986-01-01

    Cells with dendritic shape, the so-called dendritic cells (DCs), have been described in many tissues. In order to characterize one DCs population, normal human thymus specimens were obtained from children undergoing cardiovascular surgery. These specimens were either put in culture or fixed for in situ ultrastructural, immunocytochemical and cytochemical studies. In culture, DCs could be differentiated from other non-lymphoid cell populations. They presented long, fine processes and an irregular nucleus. Like interdigitating cells (IDCs) in situ, their cytoplasm contained many free ribosomes and mitochondria, and a well-developed endoplasmic reticulum and Golgi complex. They showed a variable number of tubulovesicular structures and membrane-bound dark homogeneous granules. They never displayed phagolysosomes, tonofilaments or desmosomes. They were Ia+, ATPase+, S-100 protein+, vimentin+, esterase-, lysozyme-, and cytokeratin- cells. Macrophages were easily identified by their numerous lysosomes and large phagolysosomes. They were esterase+, lysozyme+, vimentin+, ATPase +/-, S-100 protein- and cytokeratin-. Although they were Ia+, membrane labelling was not as important as on DC's membrane. In situ, S-100 protein-positive cells had a dendritic shape and were located mainly in medullary regions and at the cortico-medullary border. The staining was diffused both in the nucleus and in the cytoplasm. Lysozyme-positive cells were randomly distributed in the cortex, the medulla and the connective septa. They were round cells and the staining was intracytoplasmic. These observations demonstrate that DCs can be isolated in human thymic cultures, and they suggest that these cells correspond to IDCs in situ. They also provide evidence to suggest that DCs and macrophages are two distinct cellular populations. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2423446

  10. Characterization of human thymic dendritic cells in culture.

    PubMed

    Pelletier, M; Tautu, C; Landry, D; Montplaisir, S; Chartrand, C; Perreault, C

    1986-06-01

    Cells with dendritic shape, the so-called dendritic cells (DCs), have been described in many tissues. In order to characterize one DCs population, normal human thymus specimens were obtained from children undergoing cardiovascular surgery. These specimens were either put in culture or fixed for in situ ultrastructural, immunocytochemical and cytochemical studies. In culture, DCs could be differentiated from other non-lymphoid cell populations. They presented long, fine processes and an irregular nucleus. Like interdigitating cells (IDCs) in situ, their cytoplasm contained many free ribosomes and mitochondria, and a well-developed endoplasmic reticulum and Golgi complex. They showed a variable number of tubulovesicular structures and membrane-bound dark homogeneous granules. They never displayed phagolysosomes, tonofilaments or desmosomes. They were Ia+, ATPase+, S-100 protein+, vimentin+, esterase-, lysozyme-, and cytokeratin- cells. Macrophages were easily identified by their numerous lysosomes and large phagolysosomes. They were esterase+, lysozyme+, vimentin+, ATPase +/-, S-100 protein- and cytokeratin-. Although they were Ia+, membrane labelling was not as important as on DC's membrane. In situ, S-100 protein-positive cells had a dendritic shape and were located mainly in medullary regions and at the cortico-medullary border. The staining was diffused both in the nucleus and in the cytoplasm. Lysozyme-positive cells were randomly distributed in the cortex, the medulla and the connective septa. They were round cells and the staining was intracytoplasmic. These observations demonstrate that DCs can be isolated in human thymic cultures, and they suggest that these cells correspond to IDCs in situ. They also provide evidence to suggest that DCs and macrophages are two distinct cellular populations. PMID:2423446

  11. Organelle Transport in Cultured Drosophila Cells: S2 Cell Line and Primary Neurons.

    PubMed Central

    Gelfand, Vladimir I.

    2013-01-01

    Drosophila S2 cells plated on a coverslip in the presence of any actin-depolymerizing drug form long unbranched processes filled with uniformly polarized microtubules. Organelles move along these processes by microtubule motors. Easy maintenance, high sensitivity to RNAi-mediated protein knock-down and efficient procedure for creating stable cell lines make Drosophila S2 cells an ideal model system to study cargo transport by live imaging. The results obtained with S2 cells can be further applied to a more physiologically relevant system: axonal transport in primary neurons cultured from dissociated Drosophila embryos. Cultured neurons grow long neurites filled with bundled microtubules, very similar to S2 processes. Like in S2 cells, organelles in cultured neurons can be visualized by either organelle-specific fluorescent dyes or by using fluorescent organelle markers encoded by DNA injected into early embryos or expressed in transgenic flies. Therefore, organelle transport can be easily recorded in neurons cultured on glass coverslips using living imaging. Here we describe procedures for culturing and visualizing cargo transport in Drosophila S2 cells and primary neurons. We believe that these protocols make both systems accessible for labs studying cargo transport. PMID:24300413

  12. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions

    PubMed Central

    Kaji, Hirokazu; Camci-Unal, Gulden; Langer, Robert; Khademhosseini, Ali

    2010-01-01

    Background Inside the body, cells lie in direct contact or in close proximity to other cell types in a tightly controlled architecture that often regulates the resulting tissue function. Therefore, tissue engineering constructs that aim to reproduce the architecture and the geometry of tissues will benefit from methods of controlling cell–cell interactions with microscale resolution. Scope of the review We discuss the use of microfabrication technologies for generating patterned co-cultures. In addition, we categorize patterned co-culture systems by cell type and discuss the implications of regulating cell-cell interactions in the resulting biological function of the tissues. Major conclusions Patterned co-cultures are a useful tool for fabricating tissue engineered constructs and for studying cell–cell interactions in vitro, because they can be used to control the degree of homotypic and heterotypic cell–cell contact. In addition, this approach can be manipulated to elucidate important factors involved in cell-matrix interactions. General significance Patterned co-culture strategies hold significant potential to develop biomimetic structures for tissue engineering. It is expected that they would create opportunities to develop artificial tissues in the future. PMID:20655984

  13. Engineering Cell-Compatible Paper Chips for Cell Culturing, Drug Screening, and Mass Spectrometric Sensing.

    PubMed

    Chen, Qiushui; He, Ziyi; Liu, Wu; Lin, Xuexia; Wu, Jing; Li, Haifang; Lin, Jin-Ming

    2015-10-01

    Paper-supported cell culture is an unprecedented development for advanced bioassays. This study reports a strategy for in vitro engineering of cell-compatible paper chips that allow for adherent cell culture, quantitative assessment of drug efficiency, and label-free sensing of intracellular molecules via paper spray mass spectrometry. The polycarbonate paper is employed as an excellent alternative bioscaffold for cell distribution, adhesion, and growth, as well as allowing for fluorescence imaging without light scattering. The cell-cultured paper chips are thus amenable to fabricate 3D tissue construction and cocultures by flexible deformation, stacks and assembly by layers of cells. As a result, the successful development of cell-compatible paper chips subsequently offers a uniquely flexible approach for in situ sensing of live cell components by paper spray mass spectrometry, allowing profiling the cellular lipids and quantitative measurement of drug metabolism with minimum sample pretreatment. Consequently, the developed paper chips for adherent cell culture are inexpensive for one-time use, compatible with high throughputs, and amenable to label-free and rapid analysis. PMID:26377855

  14. Counting and determining the viability of cultured cells.

    PubMed

    Ricardo, Richard; Phelan, Katy

    2008-01-01

    Determining the number of cells in culture is important in standardization of culture conditions and in performing accurate quantitation experiments. A hemacytometer is a thick glass slide with a central area designed as a counting chamber. Cell suspension is applied to a defined area and counted so cell density can be calculated. PMID:19066550

  15. Cholera toxin stimulation of human mammary epithelial cells in culture

    SciTech Connect

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  16. Biolistic transformation of cotton embryogenic cell suspension cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation of cotton is highly dependent on the ability to regenerate fertile plants from transgenic cells through somatic embryogenesis. Induction of embryogenic cell cultures is genotype-dependant. However, once embryogenic cell cultures are available, they can be effectively used fo...

  17. In vitro Spermatogenesis - Optimal Culture Conditions for Testicular Cell Survival, Germ Cell Differentiation, and Steroidogenesis in Rats.

    PubMed

    Reda, Ahmed; Hou, Mi; Landreh, Luise; Kjartansdttir, Kristn Rs; Svechnikov, Konstantin; Sder, Olle; Stukenborg, Jan-Bernd

    2014-01-01

    Although three-dimensional testicular cell cultures have been demonstrated to mimic the organization of the testis in vivo and support spermatogenesis, the optimal culture conditions and requirements remain unknown. Therefore, utilizing an established three-dimensional cell culture system that promotes differentiation of pre-meiotic murine male germ cells as far as elongated spermatids, the present study was designed to test the influence of different culture media on germ cell differentiation, Leydig cell functionality, and overall cell survival. Single-cell suspensions prepared from 7-day-old rat testes and containing all the different types of testicular cells were cultured for as long as 31?days, with or without stimulation by gonadotropins. Leydig cell functionality was assessed on the basis of testosterone production and the expression of steroidogenic genes. Gonadotropins promoted overall cell survival regardless of the culture medium employed. Of the various media examined, the most pronounced expression of Star and Tspo, genes related to steroidogenesis, as well as the greatest production of testosterone was attained with Dulbecco's modified eagle medium?+?glutamine. Although direct promotion of germ cell maturation by the cell culture medium could not be observed, morphological evaluation in combination with immunohistochemical staining revealed unfavorable organization of tubules formed de novo in the three-dimensional culture, allowing differentiation to the stage of pachytene spermatocytes. Further differentiation could not be observed, probably due to migration of germ cells out of the cell colonies and the consequent lack of support from Sertoli cells. In conclusion, the observations reported here show that in three-dimensional cultures, containing all types of rat testicular cells, the nature of the medium per se exerts a direct influence on the functionality of the rat Leydig cells, but not on germ cell differentiation, due to the lack of proper organization of the Sertoli cells. PMID:24616715

  18. In vitro Spermatogenesis Optimal Culture Conditions for Testicular Cell Survival, Germ Cell Differentiation, and Steroidogenesis in Rats

    PubMed Central

    Reda, Ahmed; Hou, Mi; Landreh, Luise; Kjartansdttir, Kristn Rs; Svechnikov, Konstantin; Sder, Olle; Stukenborg, Jan-Bernd

    2014-01-01

    Although three-dimensional testicular cell cultures have been demonstrated to mimic the organization of the testis in vivo and support spermatogenesis, the optimal culture conditions and requirements remain unknown. Therefore, utilizing an established three-dimensional cell culture system that promotes differentiation of pre-meiotic murine male germ cells as far as elongated spermatids, the present study was designed to test the influence of different culture media on germ cell differentiation, Leydig cell functionality, and overall cell survival. Single-cell suspensions prepared from 7-day-old rat testes and containing all the different types of testicular cells were cultured for as long as 31?days, with or without stimulation by gonadotropins. Leydig cell functionality was assessed on the basis of testosterone production and the expression of steroidogenic genes. Gonadotropins promoted overall cell survival regardless of the culture medium employed. Of the various media examined, the most pronounced expression of Star and Tspo, genes related to steroidogenesis, as well as the greatest production of testosterone was attained with Dulbeccos modified eagle medium?+?glutamine. Although direct promotion of germ cell maturation by the cell culture medium could not be observed, morphological evaluation in combination with immunohistochemical staining revealed unfavorable organization of tubules formed de novo in the three-dimensional culture, allowing differentiation to the stage of pachytene spermatocytes. Further differentiation could not be observed, probably due to migration of germ cells out of the cell colonies and the consequent lack of support from Sertoli cells. In conclusion, the observations reported here show that in three-dimensional cultures, containing all types of rat testicular cells, the nature of the medium per se exerts a direct influence on the functionality of the rat Leydig cells, but not on germ cell differentiation, due to the lack of proper organization of the Sertoli cells. PMID:24616715

  19. Cell and tissue culture of Miscanthus Sacchariflorus

    SciTech Connect

    Godovikova, V.A.; Moiseyeva, E.A.; Shumny, V.K.

    1995-11-01

    Since recent time search and introduction of new species of plants have paid attention. More perspective are perennial low maintenance landscape plants from genera Phragmites L. and Miscanthus Anderss. known as high speed growing and great amount of cellulose`s containing. Absence of seeds production and limited distribution area prevent from immediately introduction the plants of this species. The main goal of our investigation is the scientific development of the cell and tissue culture methods to get changing clones, salt and cold tolerant plants and their micropogation. At present there are collection of biovariety represented by subspecies, ecotypes and plant regenerants of two species - Miscanthus purpurascens (Anders.) and Miscanthus sacchariflorus (Maxim.). Successful results have been achieved in screening of culture media, prepared on MS base medium and contained a row of tropic components to protect the explant and callus tissue from oxidation and necrosis. Initially the callus was induced from stem segments, apical and nodular meristem of vegetative shoots of elulalia, growing in hydroponic greenhouse. Morphological and cytologic analysis of plant-regenerants have been done.

  20. Production of calves by transfer of nuclei from cultured inner cell mass cells.

    PubMed

    Sims, M; First, N L

    1994-06-21

    We report here the isolation and in vitro culture of bovine inner cell mass (ICM) cells and the use of ICM cells in nuclear transfer to produce totipotent blastocysts that resulted in calves born. Of 15 cell lines represented in this study, 13 were derived from immunosurgically isolated ICM of 3 in vitro produced day 9-10 bovine blastocysts, while 2 lines were derived from single blastocysts. Approximately 70% of attempted cell lines became established cell lines when started from 3 ICMs. The ability to establish cell lines was dependent on the number of ICMs starting the line. Sire differences were noted in the ability of ICMs to establish cell lines and to form blastocysts. The cell lines were cultured as a low cell density suspension in the medium CR1aa plus selenium, insulin, and transferrin (SIT) and 5% fetal calf serum (FCS) for 6-101 days before use in nuclear transfer, at which time some had multiplied to more than 2000 cells. If allowed to aggregate, cells of established cell lines formed embryoid bodies. A total of 659 nuclear transfer clones were made by fusing the ES cells into enucleated oocytes with polyethylene glycol; 460 of these fused, based on cleavage (70%). After culture of the clones for 7 days in vitro in CR1aa/SIT/5% FCS, 109 (24%) of those fused became blastocysts. Thirty-four blastocysts were transferred into uteri of 27 cows, and 13 cows (49%) became pregnant. Four of the 13 cows gave birth to 4 normal calves. DNA typing showed the calves to be derived from the respective sires of the cell lines. The calves were derived from cultures of less than 28 days. PMID:8016127

  1. Characterization of biomaterial-free cell sheets cultured from human oral mucosal epithelial cells.

    PubMed

    Hyun, Dong Won; Kim, Yun Hee; Koh, Ah Young; Lee, Hyun Ju; Wee, Won Ryang; Jeon, Saewha; Kim, Mee Kum

    2014-11-19

    The purpose of this study was to report the characteristics of biomaterial-free sheets cultured from human oral mucosal epithelial cells without fibrin support, in vitro and after transplantation to limbal-deficient models. Human oral mucosal epithelial cells and limbal epithelial cells were cultured for 2 weeks, and the colony-forming efficiency (CFE) rates were compared. Markers of stem cells (p63), cell proliferation (Ki-67) and epithelial differentiation (cytokeratin; K1, K3, K4, K13) were observed in colonies and in biomaterial-free sheets. Biomaterial-free sheets which had been detached with 1% dispase or biomaterial-free sheets generated by fibrin support were transplanted to 12 limbal-deficient rabbit models. In vitro cell viability, in vivo stability and cytokeratin characteristics of biomaterial-free sheets were compared with those of sheets formed by fibrin-coated culture 1 week after transplantation. Mean CFE rate was significantly higher in human oral mucosal epithelial cells (44.8%) than in human limbal epithelial cells(17.7%). K3 and K4 were well expressed in both colonies and sheets. Biomaterial-free sheets had two to six layers of stratified cells and showed an average of 79.8% viable cells in the sheets after detachment. Cytokeratin expressions of biomaterial-free sheets were comparable to those of sheets cultured by fibrin support, in limbal-deficient models. Both p63 and Ki-67 were well expressed in colonies, isolated sheets and sheets transplanted to limbal-deficient models. Our results suggest that biomaterial-free sheets cultured from human oral mucosal epithelial cells without fibrin support can be an alternative option for cell therapy in use for the treatment of limbal-deficient diseases. Copyright 2014 John Wiley & Sons, Ltd. PMID:25407749

  2. Cultural Studies in Turkey: Education and Practice

    ERIC Educational Resources Information Center

    Pultar, Gonul; Kirtunc, Ayse Lahur

    2004-01-01

    In this essay, the authors aim at contributing to the debate on "International Perspectives on Cultural Studies in/and Education" by presenting a perspective from Turkey, and problematizing the issues that are encountered in the country in the instruction and practice of cultural studies. They start with a brief survey of the Ege University

  3. Anthropology and Popular Culture: A Case Study.

    ERIC Educational Resources Information Center

    Estes, Jack

    The study of popular culture in the United States is an appropriate anthropological endeavor, as evidenced in a case study of the volcanic eruption of Mt. St. Helens in Oregon. By examining its popular arts, anthropologists gain understanding of the culture and its people. For example, an analysis of reactions to the Mt. St. Helens eruption

  4. Human Mesenchymal Stem Cell Position within Scaffolds Influences Cell Fate During Dynamic Culture

    PubMed Central

    Yeatts, Andrew B.; Geibel, Elyse M.; Fears, Fayola F.; Fisher, John P.

    2012-01-01

    Cell based tissue engineering is limited by the size of cell-containing constructs that can be successfully cultured in vitro. This limit is largely a result of the slow diffusion of molecules such as oxygen into the interior of three dimensional scaffolds in static culture. Bioreactor culture has been shown to overcome these limits. In this study we utilize a tubular perfusion system (TPS) bioreactor for the three dimensional dynamic culture of human mesenchymal stem cells (hMSCs) in spherical alginate bead scaffolds. The goal of this study is to examine the effect of shear stress in the system and then quantify the proliferation and differentiation of hMSCs in different radial annuli of the scaffold. Shear stress was shown to have a temporal effect on hMSC osteoblastic differentiation with a strong correlation of shear stress, osteopontin and bone morphogenic protein-2 occurring on day 21, and weaker correlation occurring at early timepoints. Further results revealed an approximate 2.5 fold increase in cell number in the inner annulus of TPS cultured constructs as compared to statically cultured constructs after 21 days. This result demonstrated a nutrient transfer limitation in static culture which can be mitigated by dynamic culture. A significant increase (p < 0.05) in mineralization in the inner and outer annuli of bioreactor cultured 4 mm scaffolds occurred on day 21 with 79 29% and 53 25% mineralization area respectively compared to 6 4% and 19 6% mineralization area respectively in inner and outer annuli of 4 mm statically cultured scaffolds. Surprising lower mineralization area was observed in 2 mm bioreactor cultured beads which had the highest levels of proliferation. These results may demonstrate a relationship between scaffold position and stem cell fate. In addition the decreased proliferation and matrix production in statically cultured scaffolds compared to bioreactor cultured constructs demonstrate the need for bioreactor systems and the effectiveness of the TPS bioreactor in promoting hMSC proliferation and differentiation in three-dimensional scaffolds. PMID:22422570

  5. Composition of the cell wall formed by protoplasts isolated from cell suspension cultures of Vinca rosea.

    PubMed

    Takeuchi, Y; Komamine, A

    1978-01-01

    The biochemistry of cell-wall regeneration in protoplasts obtained from Vinca rosea L. (Catharanthus roseus (L.) G. Don) cells grown in suspension culture by isolating the regenerated wall and the extracellular polysaccharides of protoplasts cultured for various periods, and investigating their composition. Gas-liquid chromatography and tracer studies with D-[U-(14)C]glucose showed that the sugar composition of the extracellular polysaccharides was similar to that of the original cell culture, consisting mainly of polyuronide and 3,6-linked arabinogalactan. the regenerated cell wall was composed of non-cellulosic glucans having 1,3- and 1,4-linkages, while its content in pectic and hemicellulosic components was very low. PMID:24414558

  6. Differential behavior of human bronchial carcinoma cells in culture.

    PubMed

    Klein, J C; Zurcher, C; van Bekkum, D W

    1987-06-15

    A feeder layer culture system suited to grow carcinoma cells derived from solid human lung tumors was developed. This report deals with culturing of the four main histological types of lung carcinomas observed in 37 patients: 19 squamous cell, 6 adenocarcinomas, 7 small cell, and 5 large cell carcinomas. The cultures were initiated from 24 fresh human surgical specimens and from 14 human lung tumors grown as xenografts in nude mice. Three different patterns of behavior in culture were found to be characteristic for squamous cell, adenocarcinomas, and small cell carcinomas, respectively. The culture pattern presented by the primary cultures did not appreciably change after passaging in vitro for periods of up to 2 years, even after infinite cell lines were established. Cultures of large cell carcinoma showed one or more of these patterns. From these patterns cells could be cloned and subsequently cultured as separate stable lines. The system described facilitates the identification of specific types of human lung carcinomas almost immediately (within 1 h) after plating (Phase I) as well as during culture. PMID:3034407

  7. Side Effects of Culture Media Antibiotics on Cell Differentiation.

    PubMed

    Llobet, Laura; Montoya, Julio; Lpez-Gallardo, Ester; Ruiz-Pesini, Eduardo

    2015-11-01

    Besides the advance in scientific knowledge and the production of different compounds, cell culture can now be used to obtain cells for regenerative medicine. To avoid microbial contamination, antibiotics were usually incorporated into culture media. However, these compounds affect cell biochemistry and may modify the differentiation potential of cultured cells. To check this possibility, we grew human adipose tissue-derived stem cells and differentiated them to adipocyte with or without antibiotics commonly used in these culture protocols, such as a penicillin-streptomycin-amphotericin mix or gentamicin. We show that these antibiotics affect cell differentiation. Therefore, antibiotics should not be used in cell culture because aseptic techniques make these compounds unnecessary. PMID:26037505

  8. Methylmercury disrupts the balance between phosphorylated and non-phosphorylated cofilin in primary cultures of mice cerebellar granule cells A proteomic study

    SciTech Connect

    Vendrell, Iolanda; Carrascal, Montserrat; Abian, Joaquin

    2010-01-01

    Methylmercury is an environmental contaminant that is particularly toxic to the developing central nervous system; cerebellar granule neurons are especially vulnerable. Here, primary cultures of cerebellar granule cells (CGCs) were continuously exposed to methylmercury for up to 16 days in vitro (div). LC50 values were 508 +- 199, 345 +- 47, and 243 +- 45 nM after exposure for 6, 11, and 16 div, respectively. Proteins from cultured mouse CGCs were separated by 2DE. Seventy-one protein spots were identified by MALDI-TOF PMF and MALDI-TOF/TOF sequencing. Prolonged exposure to a subcytotoxic concentration of methylmercury significantly increased non-phosphorylated cofilin both in cell protein extracts (1.4-fold; p < 0.01) and in mitochondrial-enriched fractions (1.7-fold; p < 0.01). The decrease in P-cofilin induced by methylmercury was concentration-dependent and occurred after different exposure times. The percentage of P-cofilin relative to total cofilin significantly decreased to 49 +- 13% vs. control cells after exposure to 300 nM methylmercury for 5 div. The balance between the phosphorylated and non-phosphorylated form of cofilin regulates actin dynamics and facilitates actin filament turnover. Filamentous actin dynamics and reorganization are responsible of neuron shape change, migration, polarity formation, regulation of synaptic structures and function, and cell apoptosis. An alteration of the complex regulation of the cofilin phosphorylation/dephosphorylation pathway could be envisaged as an underlying mechanism compatible with reported signs of methylmercury-induced neurotoxicity.

  9. Roles of Adherent Myogenic Cells and Dynamic Culture in Engineered Muscle Function and Maintenance of Satellite Cells

    PubMed Central

    Juhas, Mark; Bursac, Nenad

    2014-01-01

    Highly functional engineered skeletal muscle constructs could serve as physiological models of muscle function and regeneration and have utility in therapeutic replacement of damaged or diseased muscle tissue. In this study, we examined the roles of different myogenic cell fractions and culturing conditions in the generation of highly functional engineered muscle. Fibrin-based muscle bundles were fabricated using either freshly-isolated myogenic cells or their adherent fraction pre-cultured for 36 hours. Muscle bundles made of these cells were cultured in both static and dynamic conditions and systematically characterized with respect to early myogenic events and contractile function. Following 2 weeks of culture, we observed both individual and synergistic benefits of using the adherent cell fraction and dynamic culture on muscle formation and function. In particular, optimal culture conditions resulted in significant increase in the total cross-sectional muscle area (~3-fold), myofiber size (~1.6-fold), myonuclei density (~1.2-fold), and force generation (~9-fold) compared to traditional use of freshly isolated cells and static culture. Curiously, we observed that only a simultaneous use of the adherent cell fraction and dynamic culture resulted in accelerated formation of differentiated myofibers which were critical for providing a niche-like environment for maintenance of a satellite cell pool early during culture. Our study identifies key parameters for engineering large-size, highly functional skeletal muscle tissues with improved ability for retention of functional satellite cells. PMID:25154662

  10. Variation in melanosome numbers in cultured B-16 melanoma cells.

    PubMed

    Doezema, P; Slesinski, R S

    1976-10-01

    Melanosomes from B-16 mouse melanoma cells in culture were isolated by treatment of pigmented cells with 2% SDS, sonication, and heating at 100 degrees C. The total number of melanosomes in cultures of B-16 mouse melanoma cells increased exponentially during the rapid phase of sigmoid growth. The numbers of melanosomes per cell decreased during rapid phase of growth, and repigmentation was observed only when the cultures attained the stationary growth phase. BUdr at a minimum concentration of 0.5 mug/ml decreased both cell growth and numbers of melanosomes per cell, and completely inhibited repigmentation following a period of active growth. Cells cultured in 0.1 mug/ml BUdr grew at the same rate as untreated cells but contained fewer melanosomes/cell and lower total numbers of melanosomes during the late stages of the growth cycle. PMID:972163

  11. Arsenite maintains germinative state in cultured human epidermal cells

    SciTech Connect

    Patterson, Timothy J.; Reznikova, Tatiana V.; Phillips, Marjorie A.; Rice, Robert H. . E-mail: rhrice@ucdavis.edu

    2005-08-22

    Arsenic is a well-known carcinogen for human skin, but its mechanism of action and proximal macromolecular targets remain to be elucidated. In the present study, low micromolar concentrations of sodium arsenite maintained the proliferative potential of epidermal keratinocytes, decreasing their exit from the germinative compartment under conditions that promote differentiation of untreated cells. This effect was observed in suspension and in post-confluent surface cultures as measured by colony-forming ability and by proportion of rapidly adhering colony-forming cells. Arsenite-treated cultures exhibited elevated levels of {beta}1-integrin and {beta}-catenin, two proteins enriched in cells with high proliferative potential. Levels of phosphorylated (inactive) glycogen synthase kinase 3{beta} were higher in the treated cultures, likely accounting for the increased levels of transcriptionally available {beta}-catenin. These findings suggest that arsenic could have co-carcinogenic and tumor co-promoting activities in the epidermis as a result of increasing the population and persistence of germinative cells targeted by tumor initiators and promoters. These findings also identify a critical signal transduction pathway meriting further exploration in pursuit of this phenomenon.

  12. Insulin concentration is critical in culturing human neural stem cells and neurons

    PubMed Central

    Rhee, Y-H; Choi, M; Lee, H-S; Park, C-H; Kim, S-M; Yi, S-H; Oh, S-M; Cha, H-J; Chang, M-Y; Lee, S-H

    2013-01-01

    Cell culture of human-derived neural stem cells (NSCs) is a useful tool that contributes to our understanding of human brain development and allows for the development of therapies for intractable human brain disorders. Human NSC (hNSC) cultures, however, are not commonly used, mainly because of difficulty with consistently maintaining the cells in a healthy state. In this study, we show that hNSC cultures, unlike NSCs of rodent origins, are extremely sensitive to insulin, an indispensable culture supplement, and that the previously reported difficulty in culturing hNSCs is likely because of a lack of understanding of this relationship. Like other neural cell cultures, insulin is required for hNSC growth, as withdrawal of insulin supplementation results in massive cell death and delayed cell growth. However, severe apoptotic cell death was also detected in insulin concentrations optimized to rodent NSC cultures. Thus, healthy hNSC cultures were only produced in a narrow range of relatively low insulin concentrations. Insulin-mediated cell death manifested not only in all human NSCs tested, regardless of origin, but also in differentiated human neurons. The underlying cell death mechanism at high insulin concentrations was similar to insulin resistance, where cells became less responsive to insulin, resulting in a reduction in the activation of the PI3K/Akt pathway critical to cell survival signaling. PMID:23928705

  13. Development of 3D hydrogel culture systems with on-demand cell separation.

    PubMed

    Hamilton, Sharon K; Bloodworth, Nathaniel C; Massad, Christopher S; Hammoudi, Taymour M; Suri, Shalu; Yang, Peter J; Lu, Hang; Temenoff, Johnna S

    2013-04-01

    Recently there has been an increased interest in the effects of paracrine signaling between groups of cells, particularly in the context of better understanding how stem cells contribute to tissue repair. Most current 3D co-culture methods lack the ability to effectively separate two cell populations after the culture period, which is important for simultaneously analyzing the reciprocal effects of each cell type on the other. Here, we detail the development of a 3D hydrogel co-culture system that allows us to culture different cell types for up to 7 days and subsequently separate and isolate the different cell populations using enzyme-sensitive glues. Separable 3D co-culture laminates were prepared by laminating PEG-based hydrogels with enzyme-degradable hydrogel adhesives. Encapsulated cell populations exhibited good segregation with well-defined interfaces. Furthermore, constructs can be separated on-demand upon addition of the appropriate enzyme, while cell viability remains high throughout the culture period, even after laminate separation. This platform offers great potential for a variety of basic cell signaling studies as the incorporation of an enzyme-sensitive adhesive interface allows the on-demand separation of individual cell populations for immediate analysis or further culture to examine persistence of co-culture effects and paracrine signaling on cell populations. PMID:23447378

  14. Development of 3-D Hydrogel Culture Systems With On-Demand Cell Separation

    PubMed Central

    Hamilton, Sharon K.; Bloodworth, Nathaniel C.; Massad, Christopher S.; Hammoudi, Taymour M.; Suri, Shalu; Yang, Peter J.; Lu, Hang; Temenoff, Johnna S.

    2013-01-01

    Recently there has been an increased interest in the effects of paracrine signaling between groups of cells, particularly in the context of better understanding how stem cells contribute to tissue repair. Most current 3-D co-culture methods lack the ability to effectively separate 2 cell populations after the culture period, which is important for simultaneously analyzing the reciprocal effects of each cell type on the other. Here, we detail the development of a 3-D hydrogel co-culture system that allows us to culture different cell types for up to 7 days and subsequently separate and isolate the different cell populations using enzyme-sensitive glues. Separable 3-D co-culture laminates were prepared by laminating PEG-based hydrogels with enzyme-degradable hydrogel adhesives. Encapsulated cell populations exhibited good segregation with well-defined interfaces. Furthermore, constructs can be separated on-demand upon addition of the appropriate enzyme and cell viability remains high throughout the culture period, even after laminate separation. This platform offers great potential for a variety of basic cell signaling studies as the incorporation of an enzyme-sensitive adhesive interface allows the on-demand separation of individual cell populations for immediate analysis or further culture to examine persistence of co-culture effects and paracrine signaling on cell populations. PMID:23447378

  15. Impedimetric quantification of cells encapsulated in hydrogel cultured in a paper-based microchamber.

    PubMed

    Lei, Kin Fong; Huang, Chia-Hao; Tsang, Ngan-Ming

    2016-01-15

    Recently, 3D cell culture technique was proposed to provide a more physiologically-meaningful environment for cell-based assays. With the development of microfluidics technology, cellular response can be quantified by impedance measurement technique in a real-time and non-invasive manner. However, handling of these microfluidic systems requires a trained engineering personnel and the operation is not compatible to traditional biological research laboratories. In this work, we incorporated the impedance measurement technique to paper-based 3D cell culture model and demonstrated non-invasive quantification of cells encapsulated in hydrogel during the culture course. A cellulose filter paper was patterned with an array of circular microchambers. Cells were encapsulated in hydrogel and loaded to the microchambers for culturing cells in 3D environment. At the preset schedule during the culture course, the paper was placed on a glass substrate with measurement electrodes for the impedance measurement. Cells in each microchamber was represented by impedance magnitude and cell proliferation could be studied over time. Also, conventional bio-assay was performed to further confirm the feasibility of the impedimetric quantification of cells encapsulated in hydrogel cultured in the paper-based microchamber. This technique provides a convenient, fast, and non-invasive approach to monitor cells cultured in 3D environment. It has potential to be developed for routine 3D cell culture protocol in biological research laboratories. PMID:26592655

  16. [The role of cultured thymic epithelium and dialyzable leukocyte extracts on the maturation process of T cell. Study of their effects on cyclic nucleotides levels in thymocytes].

    PubMed

    Tsuneta, H

    1984-03-01

    For thr purpose of clarifing the role of cultured thymic epithelium (CTE) and dialyzable leukocyte extracts (DLE) in the maturation process of T cells, the effects of the thymic epithelial supernatant (TES) and DLE on cyclic nucleotides in thymocytes were studied. TES increased cAMP levels significantly in thymocytes of mice. The activity of TES to increase cAMP levels correlated well with the state of the growth of thymic epithelium. Moreover, TES increased cAMP levels in human thymocytes, and augumented lymphocyte transformation (LT) to mitogens in immunodeficiency diseases. From these effects, it was suggested that TES had the activities such as thymic hormones. CTE of which TES increased cAMP levels in thymocytes of mice were transplanted in patients with Wiskott-Aldrich syndrome and Ataxia-telangiectasia. After the transplantation, augumentation of LT was observed in both patients. From these results, it was speculated that CTE were engrafted and became to exert its effect in the host. We concluded that it was possible to select the CTE appropriately for transplantation by means of examining the activity of TES. The basal levels of human thymocytes were very low compared with those of peripheral blood lymphocytes (PBL). A significant increase of cAMP levels was observed in thymocytes with stimulation of DLE. DLE produced no significant change of cyclic nucleotide levels in PBL. These results suggested that DLE affected the maturation of human thymocytes with involvement of cAMP. Though DLE was proved to contain histamin and prostaglandin E2, it was revealed from the present study that the active component responsible to increase cAMP levels in human thymocytes was different from these substances. Fractions III and IV of DLE obtained with gel filtration showed the activity to increase cAMP. It was suggested that these fractions contained the active component. PMID:6086479

  17. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  18. Long-Term Oocyte-Like Cell Development in Cultures Derived from Neonatal Marmoset Monkey Ovary.

    PubMed

    Fereydouni, Bentolhoda; Salinas-Riester, Gabriela; Heistermann, Michael; Dressel, Ralf; Lewerich, Lucia; Drummer, Charis; Behr, Rdiger

    2016-01-01

    We use the common marmoset monkey (Callithrix jacchus) as a preclinical nonhuman primate model to study reproductive and stem cell biology. The neonatal marmoset monkey ovary contains numerous primitive premeiotic germ cells (oogonia) expressing pluripot