Science.gov

Sample records for cell fusion induced

  1. Optically-Induced Cell Fusion on Cell Pairing Microstructures.

    PubMed

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-01-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, "virtual" electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  V(pp), suggesting that this new technology could be promising for selective cell fusion within a group of cells. PMID:26912054

  2. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    PubMed Central

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-01-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells. PMID:26912054

  3. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    NASA Astrophysics Data System (ADS)

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-02-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells.

  4. Laser-induced fusion of human embryonic stem cells with optical tweezers

    NASA Astrophysics Data System (ADS)

    Chen, Shuxun; Cheng, Jinping; Kong, Chi-Wing; Wang, Xiaolin; Han Cheng, Shuk; Li, Ronald A.; Sun, Dong

    2013-07-01

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  5. Laser-induced fusion of human embryonic stem cells with optical tweezers

    SciTech Connect

    Chen Shuxun; Wang Xiaolin; Sun Dong; Cheng Jinping; Han Cheng, Shuk; Kong, Chi-Wing; Li, Ronald A.

    2013-07-15

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  6. Genetic studies of cell fusion induced by herpes simplex virus type 1

    SciTech Connect

    Read, G.S.; Person, S.; Keller, P.M.

    1980-07-01

    Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was a significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.

  7. Genetic studies of cell fusion induced by herpes simplex virus type 1.

    PubMed Central

    Read, G S; Person, S; Keller, P M

    1980-01-01

    Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infections (complementation test). In single infections, fusion began 4 to 6 h after infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was a significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild-type infected cells. Fusion was decreased in mixed infections with the mutants and wild-type virus, but the mutants displayed a codominant fusion phenotype. Fusion was not decreased in mixed infection with pairs of mutants, indicating that the mutants, with one possible exception, are members of the same complementation group. A linkage map was established for six of the mutants by analysis of recombination frequencies. PMID:6251259

  8. Lipopolysaccharide-induced multinuclear cells: Increased internalization of polystyrene beads and possible signals for cell fusion

    SciTech Connect

    Nakanishi-Matsui, Mayumi Yano, Shio; Futai, Masamitsu

    2013-11-01

    Highlights: •LPS induces multinuclear cells from murine macrophage-derived RAW264.7 cells. •Large beads are internalized by cells actively fusing to become multinuclear. •The multinuclear cell formation is inhibited by anti-inflammatory cytokine, IL10. •Signal transduction for cell fusion is different from that for inflammation. -- Abstract: A murine macrophage-derived line, RAW264.7, becomes multinuclear on stimulation with lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria. These multinuclear cells internalized more polystyrene beads than mononuclear cells or osteoclasts (Nakanishi-Matsui, M., Yano, S., Matsumoto, N., and Futai, M., 2012). In this study, we analyzed the time courses of cell fusion in the presence of large beads. They were internalized into cells actively fusing to become multinuclear. However, the multinuclear cells once formed showed only low phagocytosis activity. These results suggest that formation of the multinuclear cells and bead internalization took place simultaneously. The formation of multinuclear cells was blocked by inhibitors for phosphoinositide 3-kinase, phospholipase C, calcineurin, and c-Jun N-terminal kinase. In addition, interleukin 6 and 10 also exhibited inhibitory effects. These signaling molecules and cytokines may play a crucial role in the LPS-induced multinuclear cell formation.

  9. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    SciTech Connect

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-02-05

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis.

  10. Antibodies to CD9, a Tetraspan Transmembrane Protein, Inhibit Canine Distemper Virus-Induced Cell-Cell Fusion but Not Virus-Cell Fusion

    PubMed Central

    Schmid, Erik; Zurbriggen, Andreas; Gassen, Uta; Rima, Bert; ter Meulen, Volker; Schneider-Schaulies, Jürgen

    2000-01-01

    Canine distemper virus (CDV) causes a life-threatening disease in several carnivores including domestic dogs. Recently, we identified a molecule, CD9, a member of the tetraspan transmembrane protein family, which facilitates, and antibodies to which inhibit, the infection of tissue culture cells with CDV (strain Onderstepoort). Here we describe that an anti-CD9 monoclonal antibody (MAb K41) did not interfere with binding of CDV to cells and uptake of virus. In addition, in single-step growth experiments, MAb K41 did not induce differences in the levels of viral mRNA and proteins. However, the virus release of syncytium-forming strains of CDV, the virus-induced cell-cell fusion in lytically infected cultures, and the cell-cell fusion of uninfected with persistently CDV-infected HeLa cells were strongly inhibited by MAb K41. These data indicate that anti-CD9 antibodies selectively block virus-induced cell-cell fusion, whereas virus-cell fusion is not affected. PMID:10906209

  11. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    SciTech Connect

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-12-18

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  12. Functional analysis of the TMPRSS2:ERG fusion gene in cisplatin‑induced cell death.

    PubMed

    Wu, Junqi; Chi, Linfeng; Chen, Zhanghui; Lu, Xianghong; Xiao, Suping; Zhang, Guanglin; Luo, Jindan; Chen, Ge-Ming; Yang, Jun

    2016-04-01

    The TMPRSS2:E‑twenty‑six (ETS) gene fusion occurs frequently in a high proportion of patients with prostate cancer (PCa) in Western countries, and the aberrant expression of TMPRSS2: v‑ETS avian erythroblastosis virus E26 oncogene homolog (ERG), the most common form of the corresponding protein, can regulate cell migration and contribute to tumor invasion and metastasis. However, its association with other cellular events, and in particular, cell death, remain unknown. To examine the function of such fusion genes, an expression plasmid containing the TMPRSS2:ERG (T1/E5) sequence (ΔERG) from a patient sample was constructed and transiently transfected into DU145 cells, which do not express the fusion gene. It was found that the overexpression of ΔERG significantly inhibited the ability of cisplatin to induce apoptosis in DU145 cells. By contrast, VCaP cells, which do contain TMPRSS2:ERG, were sensitized to cisplatin‑induced apoptosis through siRNA inhibition of the fusion gene. To elucidate the underlying mechanism, a stable cell line expressing the ΔERG gene was constructed. Expression of ΔERG did not affect cell migration, but did protect cells from DNA damage and apoptosis induced by cisplatin. Furthermore, knockdown of ΔERG by short interfering RNA resulted in cells regaining their sensitivity to cisplatin. Finally, the gene coding for activating transcription factor 5, which is important for cell survival, may be upregulated by ΔERG. Taken together, these data point to a new function of the TMPRSS2:ERG fusion gene in regulating the apoptotic pathway. PMID:26935606

  13. Clustering and Mobility of HIV-1 Env at Viral Assembly Sites Predict Its Propensity To Induce Cell-Cell Fusion

    PubMed Central

    Roy, Nathan H.; Chan, Jany; Lambelé, Marie

    2013-01-01

    HIV-1 Env mediates virus attachment to and fusion with target cell membranes, and yet, while Env is still situated at the plasma membrane of the producer cell and before its incorporation into newly formed particles, Env already interacts with the viral receptor CD4 on target cells, thus enabling the formation of transient cell contacts that facilitate the transmission of viral particles. During this first encounter with the receptor, Env must not induce membrane fusion, as this would prevent the producer cell and the target cell from separating upon virus transmission, but how Env's fusion activity is controlled remains unclear. To gain a better understanding of the Env regulation that precedes viral transmission, we examined the nanoscale organization of Env at the surface of producer cells. Utilizing superresolution microscopy (stochastic optical reconstruction microscopy [STORM]) and fluorescence recovery after photobleaching (FRAP), we quantitatively assessed the clustering and dynamics of Env upon its arrival at the plasma membrane. We found that Gag assembly induced the aggregation of small Env clusters into larger domains and that these domains were completely immobile. Truncation of the cytoplasmic tail (CT) of Env abrogated Gag's ability to induce Env clustering and restored Env mobility at assembly sites, both of which correlated with increased Env-induced fusion of infected and uninfected cells. Hence, while Env trapping by Gag secures Env incorporation into viral particles, Env clustering and its sequestration at assembly sites likely also leads to the repression of its fusion function, and thus, by preventing the formation of syncytia, Gag helps to secure efficient transfer of viral particles to target cells. PMID:23637402

  14. Cell-Penetrating Peptide Induces Leaky Fusion of Liposomes Containing Late Endosome-Specific Anionic Lipid

    PubMed Central

    Yang, Sung-Tae; Zaitseva, Elena; Chernomordik, Leonid V.; Melikov, Kamran

    2010-01-01

    Cationic cell-penetrating peptides (CPPs) are a promising vehicle for the delivery of macromolecular drugs. Although many studies have indicated that CPPs enter cells by endocytosis, the mechanisms by which they cross endosomal membranes remain elusive. On the basis of experiments with liposomes, we propose that CPP escape into the cytosol is based on leaky fusion (i.e., fusion associated with the permeabilization of membranes) of the bis(monoacylglycero)phosphate (BMP)-enriched membranes of late endosomes. In our experiments, prototypic CPP HIV-1 TAT peptide did not interact with liposomes mimicking the outer leaflet of the plasma membrane, but it did induce lipid mixing and membrane leakage as it translocated into liposomes mimicking the lipid composition of late endosome. Both membrane leakage and lipid mixing depended on the BMP content and were promoted at acidic pH, which is characteristic of late endosomes. Substitution of BMP with its structural isomer, phosphatidylglycerol (PG), significantly reduced both leakage of the aqueous probe from liposomes and lipid mixing between liposomes. Although affinity of binding to TAT was similar for BMP and PG, BMP exhibited a higher tendency to support the inverted hexagonal phase than PG. Finally, membrane leakage and peptide translocation were both inhibited by inhibitors of lipid mixing, further substantiating the hypothesis that cationic peptides cross BMP-enriched membranes by inducing leaky fusion between them. PMID:20959093

  15. Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence.

    PubMed

    Kaur, Ekjot; Rajendra, Jacinth; Jadhav, Shailesh; Shridhar, Epari; Goda, Jayant Sastri; Moiyadi, Aliasgar; Dutt, Shilpee

    2015-06-01

    Understanding of molecular events underlying resistance and relapse in glioblastoma (GBM) is hampered due to lack of accessibility to resistant cells from patients undergone therapy. Therefore, we mimicked clinical scenario in an in vitro cellular model developed from five GBM grade IV primary patient samples and two cell lines. We show that upon exposure to lethal dose of radiation, a subpopulation of GBM cells, innately resistant to radiation, survive and transiently arrest in G2/M phase via inhibitory pCdk1(Y15). Although arrested, these cells show multinucleated and giant cell phenotype (MNGC). Significantly, we demonstrate that these MNGCs are not pre-existing giant cells from parent population but formed via radiation-induced homotypic cell fusions among resistant cells. Furthermore, cell fusions induce senescence, high expression of senescence-associated secretory proteins (SASPs) and activation of pro-survival signals (pAKT, BIRC3 and Bcl-xL) in MNGCs. Importantly, following transient non-proliferation, MNGCs escape senescence and despite having multiple spindle poles during mitosis, they overcome mitotic catastrophe to undergo normal cytokinesis forming mononucleated relapse population. This is the first report showing radiation-induced homotypic cell fusions as novel non-genetic mechanism in radiation-resistant cells to sustain survival. These data also underscore the importance of non-proliferative phase in resistant glioma cells. Accordingly, we show that pushing resistant cells into premature mitosis by Wee1 kinase inhibitor prevents pCdk1(Y15)-mediated cell cycle arrest and relapse. Taken together, our data provide novel molecular insights into a multistep process of radiation survival and relapse in GBM that can be exploited for therapeutic interventions. PMID:25863126

  16. A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance.

    PubMed

    Watterson, Daniel; Robinson, Jodie; Chappell, Keith J; Butler, Mark S; Edwards, David J; Fry, Scott R; Bermingham, Imogen M; Cooper, Matthew A; Young, Paul R

    2016-01-01

    Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus. PMID:26976324

  17. A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance

    PubMed Central

    Watterson, Daniel; Robinson, Jodie; Chappell, Keith J.; Butler, Mark S.; Edwards, David J.; Fry, Scott R.; Bermingham, Imogen M.; Cooper, Matthew A.; Young, Paul R.

    2016-01-01

    Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus. PMID:26976324

  18. Antigen-specific CD8{sup +} T cells induced by the ubiquitin fusion degradation pathway

    SciTech Connect

    Imai, Takashi; Duan Xuefeng; Hisaeda, Hajime; Himeno, Kunisuke

    2008-01-25

    We have developed a DNA vaccine encoding a fusion protein of ubiquitin (Ub) and target proteins at the N-terminus for effective induction of antigen-specific CD8{sup +} T cells. A series of expression plasmids encoding a model antigen, ovalbumin (OVA), fused with mutated Ub, was constructed. Western blotting analyses using COS7 cells transfected with these plasmids revealed that there were three types of amino acid causing different binding capacities between Ub and OVA. Natural Ub with a C-terminal glycine readily dissociated from OVA; on the other hand, artificially mutated Ub, the C-terminal amino acid of which had been exchanged to valine or arginine, stably united with the polypeptide, while Ub with a C-terminal alanine partially dissociated. The ability of DNA vaccination to induce OVA-specific CD8{sup +} T cells closely correlated with the stability of Ub fusion to OVA. Our strategy could be used to optimize the effect of genetic vaccines on the induction of CD8{sup +} T cells.

  19. Wnt signaling induces transcription, spatial proximity, and translocation of fusion gene partners in human hematopoietic cells.

    PubMed

    Ugarte, Giorgia D; Vargas, Macarena F; Medina, Matías A; León, Pablo; Necuñir, David; Elorza, Alvaro A; Gutiérrez, Soraya E; Moon, Randall T; Loyola, Alejandra; De Ferrari, Giancarlo V

    2015-10-01

    Chromosomal translocations are frequently associated with a wide variety of cancers, particularly hematologic malignancies. A recurrent chromosomal abnormality in acute myeloid leukemia is the reciprocal translocation t(8;21) that fuses RUNX1 and ETO genes. We report here that Wnt/β-catenin signaling increases the expression of ETO and RUNX1 genes in human hematopoietic progenitors. We found that β-catenin is rapidly recruited into RNA polymerase II transcription factories (RNAPII-Ser5) and that ETO and RUNX1 genes are brought into close spatial proximity upon Wnt3a induction. Notably, long-term treatment of cells with Wnt3a induces the generation a frequent RUNX1-ETO translocation event. Thus, Wnt/β-catenin signaling induces transcription and translocation of RUNX1 and ETO fusion gene partners, opening a novel window to understand the onset/development of leukemia. PMID:26333776

  20. The Nectin-1α Transmembrane Domain, But Not The Cytoplasmic Tail, Influences Cell Fusion Induced by HSV-1 Glycoproteins

    PubMed Central

    Subramanian, Ravi P.; Dunn, Jennifer E.; Geraghty, Robert J.

    2006-01-01

    Nectin-1 is a receptor for herpes simplex virus (HSV), a member of the immunoglobulin superfamily, and a cellular adhesion molecule. To study domains of nectin-1α involved in cell fusion, we measured the ability of nectin-1α/nectin-2α chimeras, nectin-1α/CD4 chimeras, and transmembrane domain and cytoplasmic tail mutants of nectin-1α to promote cell fusion induced by HSV-1 glycoproteins. Our results demonstrate that only chimeras and mutants containing the entire V-like domain and a link to the plasma membrane conferred cell-fusion activity. The transmembrane domain and cytoplasmic tail of nectin-1 were not required for any viral receptor or cell adhesion function tested. Cellular cytoplasmic factors that bind to the nectin-1α cytoplasmic tail, therefore, did not influence virus entry or cell fusion. Interestingly, the efficiency of cell fusion was reduced when membrane spanning domains of nectin-1α and gD were replaced by glycosylphosphatidylinositol tethers, indicating that transmembrane domains may play a modulatory role in the gD/nectin-1α interaction in fusion. PMID:16005040

  1. The nectin-1{alpha} transmembrane domain, but not the cytoplasmic tail, influences cell fusion induced by HSV-1 glycoproteins

    SciTech Connect

    Subramanian, Ravi P.; Dunn, Jennifer E.; Geraghty, Robert J. . E-mail: rgeragh@uky.edu

    2005-09-01

    Nectin-1 is a receptor for herpes simplex virus (HSV), a member of the immunoglobulin superfamily, and a cellular adhesion molecule. To study domains of nectin-1{alpha} involved in cell fusion, we measured the ability of nectin-1{alpha}/nectin-2{alpha} chimeras, nectin-1{alpha}/CD4 chimeras, and transmembrane domain and cytoplasmic tail mutants of nectin-1{alpha} to promote cell fusion induced by HSV-1 glycoproteins. Our results demonstrate that only chimeras and mutants containing the entire V-like domain and a link to the plasma membrane conferred cell-fusion activity. The transmembrane domain and cytoplasmic tail of nectin-1 were not required for any viral receptor or cell adhesion function tested. Cellular cytoplasmic factors that bind to the nectin-1{alpha} cytoplasmic tail, therefore, did not influence virus entry or cell fusion. Interestingly, the efficiency of cell fusion was reduced when membrane-spanning domains of nectin-1{alpha} and gD were replaced by glycosylphosphatidylinositol tethers, indicating that transmembrane domains may play a modulatory role in the gD/nectin-1{alpha} interaction in fusion.

  2. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    SciTech Connect

    Yue, Xiao-shan; Fujishiro, Masako; Toyoda, Masashi; Akaike, Toshihiro; Ito, Yoshihiro

    2010-04-16

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  3. Alteration of the pH dependence of coronavirus-induced cell fusion: effect of mutations in the spike glycoprotein.

    PubMed Central

    Gallagher, T M; Escarmis, C; Buchmeier, M J

    1991-01-01

    Infection of susceptible murine cells with the coronavirus mouse hepatitis virus type 4 (MHV4) results in extensive cell-cell fusion at pHs from 5.5 to 8.5. The endosomotropic weak bases chloroquine and ammonium chloride do not prevent MHV4 infection. In marked contrast, we have selected variants from a neural cell line persistently infected with MHV4 which are entirely dependent on acid pH to fuse host cells and are strongly inhibited by endosomotropic weak bases. Wild-type and variant viruses were compared at the level of the fusion-active surface (S) glycoprotein gene. Cloning and sequencing of each 4,131-base open reading frame predicted a total of eight amino acid differences which fell into three distinct clusters. Each S glycoprotein, when expressed from cDNA, was synthesized in equivalent amounts, and similar proportions were transported to the cell surface. Wild-type S induced cell-cell fusion at neutral pH, whereas variant S required prolonged exposure to acidic pH to induce fusion. Expression of hybrid S genes prepared by exchange of restriction fragments between wild-type and variant cDNAs revealed that elimination of neutral pH fusion was solely dependent on amino acid alterations at positions 1067 (Q to H), 1094 (Q to H), and 1114 (L to R). These changes lie within a predicted heptad repeat region of the transmembrane cleavage fragment of S (S2). These findings demonstrate that the pH dependence of coronavirus fusion is highly variable and that this variability can be determined by as few as three amino acid residues. Images PMID:1848311

  4. A gold nanoparticle pentapeptide: gene fusion to induce therapeutic gene expression in mesenchymal stem cells.

    PubMed

    Muroski, Megan E; Morgan, Thomas J; Levenson, Cathy W; Strouse, Geoffrey F

    2014-10-22

    Mesenchymal stem cells (MSC) have been identified as having great potential as autologous cell therapeutics to treat traumatic brain injury and spinal injury as well as neuronal and cardiac ischemic events. All future clinical applications of MSC cell therapies must allow the MSC to be harvested, transfected, and induced to express a desired protein or selection of proteins to have medical benefit. For the full potential of MSC cell therapy to be realized, it is desirable to systematically alter the protein expression of therapeutically beneficial biomolecules in harvested MSC cells with high fidelity in a single transfection event. We have developed a delivery platform on the basis of the use of a solid gold nanoparticle that has been surface modified to produce a fusion containing a zwitterionic, pentapeptide designed from Bax inhibiting peptide (Ku70) to enhance cellular uptake and a linearized expression vector to induce enhanced expression of brain-derived neurotrophic factor (BDNF) in rat-derived MSCs. Ku70 is observed to effect >80% transfection following a single treatment of femur bone marrow isolated rat MSCs with efficiencies for the delivery of a 6.6 kbp gene on either a Au nanoparticle (NP) or CdSe/ZnS quantum dot (QD). Gene expression is observed within 4 d by optical measurements, and secretion is observed within 10 d by Western Blot analysis. The combination of being able to selectively engineer the NP, to colocalize biological agents, and to enhance the stability of those agents has provided the strong impetus to utilize this novel class of materials to engineer primary MSCs. PMID:25198921

  5. Effect of the ionophore monensin on herpes simplex virus type 1-induced cell fusion, glycoprotein synthesis, and virion infectivity.

    PubMed

    Kousoulas, K G; Bzik, D J; Person, S

    1983-01-01

    The ionophore monensin inhibited the formation of mature, fully glycosylated glycoproteins gB, gC, and gD during herpes simplex virus type 1 infection of human embryonic lung cells. Underglycosylated forms, including the apparent high-mannose precursor forms of the major glycoproteins, appeared. Monensin inhibited virus-induced cell fusion. Infectious virions produced in the presence of monensin appeared to contain predominantly underglycosylated glycoproteins. PMID:6307921

  6. Regulation of cell-cell fusion by nanotopography.

    PubMed

    Padmanabhan, Jagannath; Augelli, Michael J; Cheung, Bettina; Kinser, Emily R; Cleary, Barnett; Kumar, Priyanka; Wang, Renhao; Sawyer, Andrew J; Li, Rui; Schwarz, Udo D; Schroers, Jan; Kyriakides, Themis R

    2016-01-01

    Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions. PMID:27615159

  7. Fragments of Target Cells are Internalized into Retroviral Envelope Protein-Expressing Cells during Cell-Cell Fusion by Endocytosis

    PubMed Central

    Izumida, Mai; Kamiyama, Haruka; Suematsu, Takashi; Honda, Eri; Koizumi, Yosuke; Yasui, Kiyoshi; Hayashi, Hideki; Ariyoshi, Koya; Kubo, Yoshinao

    2016-01-01

    Retroviruses enter into host cells by fusion between viral and host cell membranes. Retroviral envelope glycoprotein (Env) induces the membrane fusion, and also mediates cell-cell fusion. There are two types of cell-cell fusions induced by the Env protein. Fusion-from-within is induced by fusion between viral fusogenic Env protein-expressing cells and susceptible cells, and virions induce fusion-from-without by fusion between adjacent cells. Although entry of ecotropic murine leukemia virus (E-MLV) requires host cell endocytosis, the involvement of endocytosis in cell fusion is unclear. By fluorescent microscopic analysis of the fusion-from-within, we found that fragments of target cells are internalized into Env-expressing cells. Treatment of the Env-expressing cells with an endocytosis inhibitor more significantly inhibited the cell fusion than that of the target cells, indicating that endocytosis in Env-expressing cells is required for the cell fusion. The endocytosis inhibitor also attenuated the fusion-from-without. Electron microscopic analysis suggested that the membrane fusion resulting in fusion-from-within initiates in endocytic membrane dents. This study shows that two types of the viral cell fusion both require endocytosis, and provides the cascade of fusion-from-within. PMID:26834711

  8. Asymmetric Constriction of Dividing Escherichia coli Cells Induced by Expression of a Fusion between Two Min Proteins

    PubMed Central

    Rowlett, Veronica Wells

    2014-01-01

    The Min system, consisting of MinC, MinD, and MinE, plays an important role in localizing the Escherichia coli cell division machinery to midcell by preventing FtsZ ring (Z ring) formation at cell poles. MinC has two domains, MinCn and MinCc, which both bind to FtsZ and act synergistically to inhibit FtsZ polymerization. Binary fission of E. coli usually proceeds symmetrically, with daughter cells at roughly 180° to each other. In contrast, we discovered that overproduction of an artificial MinCc-MinD fusion protein in the absence of other Min proteins induced frequent and dramatic jackknife-like bending of cells at division septa, with cell constriction predominantly on the outside of the bend. Mutations in the fusion known to disrupt MinCc-FtsZ, MinCc-MinD, or MinD-membrane interactions largely suppressed bending division. Imaging of FtsZ-green fluorescent protein (GFP) showed no obvious asymmetric localization of FtsZ during MinCc-MinD overproduction, suggesting that a downstream activity of the Z ring was inhibited asymmetrically. Consistent with this, MinCc-MinD fusions localized predominantly to segments of the Z ring at the inside of developing cell bends, while FtsA (but not ZipA) tended to localize to the outside. As FtsA is required for ring constriction, we propose that this asymmetric localization pattern blocks constriction of the inside of the septal ring while permitting continued constriction of the outside portion. PMID:24682325

  9. A virus causes cancer by inducing massive chromosomal instability through cell fusion.

    PubMed

    Duelli, Dominik M; Padilla-Nash, Hesed M; Berman, David; Murphy, Kathleen M; Ried, Thomas; Lazebnik, Yuri

    2007-03-01

    Chromosomal instability (CIN) underlies malignant properties of many solid cancers and their ability to escape therapy, and it might itself cause cancer [1, 2]. CIN is sustained by deficiencies in proteins, such as the tumor suppressor p53 [3-5], that police genome integrity, but the primary cause of CIN in sporadic cancers remains uncertain [6, 7]. The primary suspects are mutations that deregulate telomere maintenance, or mitosis, yet such mutations have not been identified in the majority of sporadic cancers [6]. Alternatively, CIN could be caused by a transient event that destabilizes the genome without permanently affecting mechanisms of mitosis or proliferation [5, 8]. Here, we show that an otherwise harmless virus rapidly causes massive chromosomal instability by fusing cells whose cell cycle is deregulated by oncogenes. This synergy between fusion and oncogenes "randomizes" normal diploid human fibroblasts so extensively that each analyzed cell has a unique karyotype, and some produce aggressive, highly aneuploid, heterogeneous, and transplantable epithelial cancers in mice. Because many viruses are fusogenic, this study suggests that viruses, including those that have not been linked to carcinogenesis, can cause chromosomal instability and, consequently, cancer by fusing cells. PMID:17320392

  10. Inducing Humoral Immune Responses Against Regulatory T Cells by Foxp3-Fc(IgG) Fusion Protein.

    PubMed

    Niri, Neda Mousavi; Hadjati, Jamshid; Sadat, Mahdi; Memarnejadian, Arash; Aghasadeghi, Mohammadreza; Akbarzadeh, Abolfazl; Zarghami, Nosratollah

    2015-12-01

    The existence of a developed network of suppressory factors and cells against an immune response in different cancers has been proven; regulatory T cells are a typical issue. Therefore their depletion, elimination, or suppression has been assessed in different research studies that were not entirely successful. By applying an improved vaccine against regulatory T cells, we have evaluated the B cell response elicited by the vaccine in an experimental design. A previously described DNA vaccine and recombinant protein of Foxp3-Fc fusion were produced and used in the vaccination regimen. DNA construct and respective protein were injected into C57BL/6 mice. After 2 weeks, serum levels of IgG antibody and its subtypes against Foxp3 were investigated by ELISA. To produce recombinant Foxp3 for ELISA antigen coating, pET24a-Foxp3 vector was transformed into Escherichia coli strain BL21 as host cells. Afterward, protein was expressed and then purified using Ni-NTA agarose. SDS-PAGE and Western blot analysis were carried out to confirm protein expression. The expression analysis of Foxp3 was confirmed by SDS-PAGE followed by Western blot analysis. FOXP3-Fc DNA vaccine/fusion protein vaccination regimen could induce T helper-dependent humoral responses. Due to the effectiveness of Foxp3-Fc(IgG) in inducing humoral responses, it would be expected to be useful in developing vaccines in tumor therapies for the removal of regulatory T cells as a strategy for increasing the efficiency of other means of immunotherapy. PMID:26683176

  11. Blockade of CD26-mediated T cell costimulation with soluble caveolin-1-Ig fusion protein induces anergy in CD4{sup +}T cells

    SciTech Connect

    Ohnuma, Kei; Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 ; Uchiyama, Masahiko; Department of Computational Intelligence and System Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 ; Hatano, Ryo; Takasawa, Wataru; Endo, Yuko; Dang, Nam H.; Morimoto, Chikao; Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639

    2009-08-21

    CD26 binds to caveolin-1 in antigen-presenting cells (APC), and that ligation of CD26 by caveolin-1 induces T cell proliferation in a TCR/CD3-dependent manner. We report herein the effects of CD26-caveolin-1 costimulatory blockade by fusion protein caveolin-1-Ig (Cav-Ig). Soluble Cav-Ig inhibits T cell proliferation and cytokine production in response to recall antigen, or allogeneic APC. Our data hence suggest that blocking of CD26-associated signaling by soluble Cav-Ig may be an effective approach as immunosuppressive therapy.

  12. Ubiquitin-fusion degradation pathway: A new strategy for inducing CD8 cells specific for mycobacterial HSP65

    SciTech Connect

    Shen Jianying; Hisaeda, Hajime; Chou Bin; Yu Qingsheng; Tu Liping; Himeno, Kunisuke

    2008-01-25

    The ubiquitin-proteasome system (UPS) plays an indispensable role in inducing MHC class I-restricted CD8{sup +} T cells. In this study, we exploited UPS to induce CD8{sup +} T cells specific for mycobacterial HSP65 (mHSP65), one of the leading vaccine candidates against infection with Mycobacterium tuberculosis. A chimeric DNA termed pU-HSP65 encoding a fusion protein between murine ubiquitin and mHSP65 was constructed, and C57BL/6 (B6) mice were immunized with the DNA using gene gun bombardment. Mice immunized with the chimeric DNA acquired potent resistance against challenge with the syngeneic B16F1 melanoma cells transfected with the mHSP65 gene (HSP65/B16F1), compared with those immunized with DNA encoding only mHSP65. Splenocytes from the former group of mice showed a higher grade of cytotoxic activity against HSP65/B16F1 cells and contained a larger number of granzyme B- or IFN-{gamma}-producing CD8{sup +} T cells compared with those from the latter group of mice.

  13. Force-induced globule-coil transition in laminin binding protein and its role for viral-cell membrane fusion.

    PubMed

    Zaitsev, Boris N; Benedetti, Fabrizio; Mikhaylov, Andrey G; Korneev, Denis V; Sekatskii, Sergey K; Karakouz, Tanya; Belavin, Pavel A; Netesova, Nina A; Protopopova, Elena V; Konovalova, Svetlana N; Dietler, Giovanni; Loktev, Valery B

    2014-12-01

    The specific interactions of the pairs laminin binding protein (LBP)-purified tick-borne encephalitis viral surface protein E and certain recombinant fragments of this protein, as well as West Nile viral surface protein E and certain recombinant fragments of that protein, are studied by combined methods of single-molecule dynamic force spectroscopy (SMDFS), enzyme immunoassay and optical surface waves-based biosensor measurements. The experiments were performed at neutral pH (7.4) and acid pH (5.3) conditions. The data obtained confirm the role of LBP as a cell receptor for two typical viral species of the Flavivirus genus. A comparison of these data with similar data obtained for another cell receptor of this family, namely human αVβ3 integrin, reveals that both these receptors are very important. Studying the specific interaction between the cell receptors in question and specially prepared monoclonal antibodies against them, we could show that both interaction sites involved in the process of virus-cell interaction remain intact at pH 5.3. At the same time, for these acid conditions characteristic for an endosome during flavivirus-cell membrane fusion, SMDFS data reveal the existence of a force-induced (effective already for forces as small as 30-70 pN) sharp globule-coil transition for LBP and LBP-fragments of protein E complexes. We argue that this conformational transformation, being an analog of abrupt first-order phase transition and having similarity with the famous Rayleigh hydrodynamic instability, might be indispensable for the flavivirus-cell membrane fusion process. PMID:25319621

  14. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    SciTech Connect

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián; Simon, Felipe; Riedel, Claudia; Ferrick, David; Elorza, Alvaro A.

    2013-08-02

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive.

  15. A fusion protein between streptavidin and the endogenous TLR4 ligand EDA targets biotinylated antigens to dendritic cells and induces T cell responses in vivo.

    PubMed

    Arribillaga, Laura; Durantez, Maika; Lozano, Teresa; Rudilla, Francesc; Rehberger, Federico; Casares, Noelia; Villanueva, Lorea; Martinez, Marta; Gorraiz, Marta; Borrás-Cuesta, Francisco; Sarobe, Pablo; Prieto, Jesús; Lasarte, Juan José

    2013-01-01

    The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA), an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC), are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a Kd ~ 2.6 × 10(-14) mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF- κβ by TLR4-expressing cells, as well as the production of TNF- α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer. PMID:24093105

  16. A Fusion Protein between Streptavidin and the Endogenous TLR4 Ligand EDA Targets Biotinylated Antigens to Dendritic Cells and Induces T Cell Responses In Vivo

    PubMed Central

    Durantez, Maika; Lozano, Teresa; Rudilla, Francesc; Rehberger, Federico; Casares, Noelia; Villanueva, Lorea; Martinez, Marta; Gorraiz, Marta; Borrás-Cuesta, Francisco; Sarobe, Pablo; Prieto, Jesús; Lasarte, Juan José

    2013-01-01

    The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA), an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC), are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a Kd ~ 2.6 × 10−14 mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF-κβ by TLR4-expressing cells, as well as the production of TNF-α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer. PMID:24093105

  17. An Inducible Cell-Cell Fusion System with Integrated Ability to Measure the Efficiency and Specificity of HIV-1 Entry Inhibitors

    PubMed Central

    Herschhorn, Alon; Finzi, Andres; Jones, David M.; Courter, Joel R.; Sugawara, Akihiro; Smith, Amos B.; Sodroski, Joseph G.

    2011-01-01

    HIV-1 envelope glycoproteins (Envs) mediate virus entry by fusing the viral and target cell membranes, a multi-step process that represents an attractive target for inhibition. Entry inhibitors with broad-range activity against diverse isolates of HIV-1 may be extremely useful as lead compounds for the development of therapies or prophylactic microbicides. To facilitate the identification of such inhibitors, we have constructed a cell-cell fusion system capable of simultaneously monitoring inhibition efficiency and specificity. In this system, effector cells stably express a tetracycline-controlled transactivator (tTA) that enables tightly inducible expression of both HIV-1 Env and the Renilla luciferase (R-Luc) reporter protein. Target cells express the HIV-1 receptors, CD4 and CCR5, and carry the firefly luciferase (F-Luc) reporter gene under the control of a tTA-responsive promoter. Thus, Env-mediated fusion of these two cell types allows the tTA to diffuse to the target cell and activate the expression of the F-Luc protein. The efficiency with which an inhibitor blocks cell-cell fusion is measured by a decrease in the F-Luc activity, while the specificity of the inhibitor is evaluated by its effect on the R-Luc activity. The system exhibited a high dynamic range and high Z'-factor values. The assay was validated with a reference panel of inhibitors that target different steps in HIV-1 entry, yielding inhibitory concentrations comparable to published virus inhibition data. Our system is suitable for large-scale screening of chemical libraries and can also be used for detailed characterization of inhibitory and cytotoxic properties of known entry inhibitors. PMID:22069466

  18. Manipulating the genetic identity and biochemical surface properties of individual cells with electric-field-induced fusion

    PubMed Central

    Strömberg, Anette; Ryttsén, Frida; Chiu, Daniel T.; Davidson, Max; Eriksson, Peter S.; Wilson, Clyde F.; Orwar, Owe; Zare, Richard N.

    2000-01-01

    A method for cell–cell and cell–liposome fusion at the single-cell level is described. Individual cells or liposomes were first selected and manipulated either by optical trapping or by adhesion to a micromanipulator-controlled ultramicroelectrode. Spatially selective fusion of the cell–cell or cell–liposome pair was achieved by the application of a highly focused electric field through a pair of 5-μm o.d. carbon-fiber ultramicroelectrodes. The ability to fuse together single cells opens new possibilities in the manipulation of the genetic and cellular makeup of individual cells in a controlled manner. In the study of cellular networks, for example, the alteration of the biochemical identity of a selected cell can have a profound effect on the behavior of the entire network. Fusion of a single liposome with a target cell allows the introduction of the liposomal content into the cell interior as well as the addition of lipids and membrane proteins onto the cell surface. This cell–liposome fusion represents an approach to the manipulation of the cytoplasmic contents and surface properties of single cells. As an example, we have introduced a membrane protein (γ-glutamyltransferase) reconstituted in liposomes into the cell plasma membrane. PMID:10618361

  19. Enhanced Vaccine-Induced CD8+ T Cell Responses to Malaria Antigen ME-TRAP by Fusion to MHC Class II Invariant Chain

    PubMed Central

    Spencer, Alexandra J.; Cottingham, Matthew G.; Jenks, Jennifer A.; Longley, Rhea J.; Capone, Stefania; Colloca, Stefano; Folgori, Antonella; Cortese, Riccardo; Nicosia, Alfredo; Bregu, Migena; Hill, Adrian V. S.

    2014-01-01

    The orthodox role of the invariant chain (CD74; Ii) is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA), higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required. PMID:24945248

  20. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    SciTech Connect

    Schnabl, Bernd Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-10-17

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NF{kappa}B and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo.

  1. Insights into the mechanism of cell death induced by saporin delivered into cancer cells by an antibody fusion protein targeting the transferrin receptor 1.

    PubMed

    Daniels-Wells, Tracy R; Helguera, Gustavo; Rodríguez, José A; Leoh, Lai Sum; Erb, Michael A; Diamante, Graciel; Casero, David; Pellegrini, Matteo; Martínez-Maza, Otoniel; Penichet, Manuel L

    2013-02-01

    We previously developed an antibody-avidin fusion protein (ch128.1Av) that targets the human transferrin receptor 1 (TfR1) and exhibits direct cytotoxicity against malignant B cells in an iron-dependent manner. ch128.1Av is also a delivery system and its conjugation with biotinylated saporin (b-SO6), a plant ribosome-inactivating toxin, results in a dramatic iron-independent cytotoxicity, both in malignant cells that are sensitive or resistant to ch128.1Av alone, in which the toxin effectively inhibits protein synthesis and triggers caspase activation. We have now found that the ch128.1Av/b-SO6 complex induces a transcriptional response consistent with oxidative stress and DNA damage, a response that is not observed with ch128.1Av alone. Furthermore, we show that the antioxidant N-acetylcysteine partially blocks saporin-induced apoptosis suggesting that oxidative stress contributes to DNA damage and ultimately saporin-induced cell death. Interestingly, the toxin was detected in nuclear extracts by immunoblotting, suggesting the possibility that saporin might induce direct DNA damage. However, confocal microscopy did not show a clear and consistent pattern of intranuclear localization. Finally, using the long-term culture-initiating cell assay we found that ch128.1Av/b-SO6 is not toxic to normal human hematopoietic stem cells suggesting that this critical cell population would be preserved in therapeutic interventions using this immunotoxin. PMID:23085102

  2. Autogenous bone marrow stromal cell sheets-loaded mPCL/TCP scaffolds induced osteogenesis in a porcine model of spinal interbody fusion.

    PubMed

    Abbah, Sunny A; Lam, Christopher X F; Ramruttun, Kumarsing A; Goh, James C H; Wong, Hee-Kit

    2011-03-01

    This study was designed to investigate whether a tissue-engineered construct composed of autogenous cell sheets and a polycaprolactone-based bioresorbable scaffold would enhance bone regeneration and spinal interbody fusion in a large animal model. Porcine-derived autogenous bone marrow stromal cells (BMSCs) cultured into multilayered cell sheets were induced into osteogenic differentiation with dexamethasone, l-ascorbic acid, and β-glycerol phosphate. These cell sheets were assembled with bioresorbable scaffolds made from medical-grade poly(epsilon-caprolactone) incorporating 20% β-tricalcium phosphate (mPCL/TCP) as tissue-engineered BMSC constructs. L2/3, L4/5 discectomies and decortication of the vertebral end plates were performed on 16 SPF Yorkshire pigs through an anterolateral approach. The tissue-engineered BMSC constructs were transplanted into the prepared intervertebral disc spaces of half of the pigs (n = 8), whereas cell-free mPCL/TCP served as controls in the remaining pigs. New bone formation and spinal fusion were evaluated at 3 and 6 months using microcomputed tomography, histology, fluorochrome bone labeling, and biomechanical testing. New bone formation was evident as early as 3 months in the BMSC group. At 6 months, bony fusion was observed in >60% (5/8) of segments in the BMSC group. None of the control animals with cell-free scaffold showed fusion at both time points. Biomechanical evaluation further revealed a significantly increased segmental stability in the BMSC group compared with the cell-free group at 6 months postimplantation (p < 0.01). These findings suggest that mPCL/TCP scaffolds loaded with in vitro differentiated autogenous BMSC sheets could induce bone formation and interbody fusion. This in turn resulted in enhanced segmental stability of the lumbar spine. PMID:20973747

  3. C/EBPalpha and C/EBPvarepsilon induce the monocytic differentiation of myelomonocytic cells with the MLL-chimeric fusion gene.

    PubMed

    Matsushita, H; Nakajima, H; Nakamura, Y; Tsukamoto, H; Tanaka, Y; Jin, G; Yabe, M; Asai, S; Ono, R; Nosaka, T; Sugita, K; Morimoto, A; Hayashi, Y; Hotta, T; Ando, K; Miyachi, H

    2008-12-01

    CCAAT/enhancer binding proteins (C/EBPs) have an important function in granulocytic differentiation, and are also involved in the leukemogenesis of acute myeloid leukemia (AML). Their involvement in myelomonocytic leukemia, however, is still unclear. Therefore, the expression and function of C/EBPs in myelomonocytic cells with MLL-fusion genes were investigated. Retinoic acid (RA) induced monocytic differentiation in the myelomonocytic cell lines with MLL-fusion genes, THP-1, MOLM-14 and HF-6 cells, accompanied by monocytic differentiation with the upregulation of C/EBPalpha and C/EBPepsilon. Monocytic differentiation by RA treatment was confirmed in primary AML cells using a clonogenic assay. When the activity of C/EBPalpha or C/EBPepsilon was introduced into HF-6 cells, their cellular growth was arrested through differentiation into monocytes with the concomitant marked downregulation of Myc. Cebpe mRNA was upregulated by the induction of C/EBPalpha-ER, but not vice versa, thus suggesting that C/EBPepsilon may have an important function in the differentiation process. Introduction of Myc isoforms into HF-6 cells partially antagonized the C/EBPs effects. These findings suggest that the ectopic expression of C/EBPepsilon, as well as C/EBPalpha, can induce the monocytic differentiation of myelomonocytic leukemic cells with MLL-fusion gene through the downregulation of Myc, thus providing insight into the development of novel therapeutic approaches. PMID:18776924

  4. Differential Roles of Cell Death-inducing DNA Fragmentation Factor-α-like Effector (CIDE) Proteins in Promoting Lipid Droplet Fusion and Growth in Subpopulations of Hepatocytes.

    PubMed

    Xu, Wenyi; Wu, Lizhen; Yu, Miao; Chen, Feng-Jung; Arshad, Muhammad; Xia, Xiayu; Ren, Hao; Yu, Jinhai; Xu, Li; Xu, Dijin; Li, John Zhong; Li, Peng; Zhou, Linkang

    2016-02-26

    Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec (also called Fsp27), play important roles in lipid metabolism. Cidea and Cidec are LD-associated proteins that promote atypical LD fusion in adipocytes. Here, we find that CIDE proteins are all localized to LD-LD contact sites (LDCSs) and promote lipid transfer, LD fusion, and growth in hepatocytes. We have identified two types of hepatocytes, one with small LDs (small LD-containing hepatocytes, SLHs) and one with large LDs (large LD-containing hepatocytes, LLHs) in the liver. Cideb is localized to LDCSs and promotes lipid exchange and LD fusion in both SLHs and LLHs, whereas Cidea and Cidec are specifically localized to the LDCSs and promote lipid exchange and LD fusion in LLHs. Cideb-deficient SLHs have reduced LD sizes and lower lipid exchange activities. Fasting dramatically induces the expression of Cidea/Cidec and increases the percentage of LLHs in the liver. The majority of the hepatocytes from the liver of obese mice are Cidea/Cidec-positive LLHs. Knocking down Cidea or Cidec significantly reduced lipid storage in the livers of obese animals. Our data reveal that CIDE proteins play differential roles in promoting LD fusion and lipid storage; Cideb promotes lipid storage under normal diet conditions, whereas Cidea and Cidec are responsible for liver steatosis under fasting and obese conditions. PMID:26733203

  5. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion

    PubMed Central

    Jang, Hyun Sik; Hong, Yean Ju; Choi, Hyun Woo; Song, Hyuk; Byun, Sung June; Uhm, Sang Jun; Seo, Han Geuk; Do, Jeong Tae

    2016-01-01

    Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs) also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner. PMID:27232503

  6. Membrane Fusion Induced by Small Molecules and Ions

    PubMed Central

    Mondal Roy, Sutapa; Sarkar, Munna

    2011-01-01

    Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes. PMID:21660306

  7. Cell fusion in Neurospora crassa.

    PubMed

    Herzog, Stephanie; Schumann, Marcel R; Fleißner, André

    2015-12-01

    In recent years, the filamentous fungus Neurospora crassa has advanced as a model organism for studying eukaryotic cell-cell communication and fusion. Cell merger in this fungus employs an unusual mode of communication, in which the fusion partners appear to switch between signal sending and receiving. Many molecular factors mediating this intriguing mechanism and the subsequent membrane merger have been identified. It has become apparent that conserved factors, such as MAP kinases, NADPH oxidases and the STRIPAK complex, together with fungal specific proteins are wired into an intricate signaling network. Here, we will present an overview of recent findings on the molecular mechanism mediating fusion in N. crassa and will discuss the current working model. PMID:26340439

  8. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells

    PubMed Central

    Gong, Jianlin; Avigan, David; Chen, Dongshu; Wu, Zekui; Koido, Shigeo; Kashiwaba, Masahiro; Kufe, Donald

    2000-01-01

    We have reported that fusions of murine dendritic cells (DCs) and murine carcinoma cells reverse unresponsiveness to tumor-associated antigens and induce the rejection of established metastases. In the present study, fusions were generated with primary human breast carcinoma cells and autologous DCs. Fusion cells coexpressed tumor-associated antigens and DC-derived costimulatory molecules. The fusion cells also retained the functional potency of DCs and stimulated autologous T cell proliferation. Significantly, the results show that autologous T cells are primed by the fusion cells to induce MHC class I-dependent lysis of autologous breast tumor cells. These findings demonstrate that fusions of human breast cancer cells and DCs activate T cell responses against autologous tumors. PMID:10688917

  9. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion

    SciTech Connect

    Paquette, Stéphane G.; Banner, David; Chi, Le Thi Bao; Leon, Alberto J.; Xu, Luoling; Ran, Longsi; Huang, Stephen S.H.; Farooqui, Amber; and others

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus–epithelial cell interaction. - Highlights: • We investigated H1N1pdm/sH1N1 infection in primary epithelial cells. • H1N1pdm directly initiated a robust inflammatory gene signature, sH1N1 did not. • H1N1pdm viral RNA triggered a stronger response than sH1N1. • H1N1pdm induces greater response due to direct virus–cell interaction. • These results have potential to impact vaccine and therapeutic development.

  10. Regulation of Varicella-Zoster Virus-Induced Cell-to-Cell Fusion by the Endocytosis-Competent Glycoproteins gH and gE

    PubMed Central

    Pasieka, Tracy Jo; Maresova, Lucie; Shiraki, Kimiyasu; Grose, Charles

    2004-01-01

    The gH glycoprotein of varicella-zoster virus (VZV) is a major fusogen. The realigned short cytoplasmic tail of gH (18 amino acids) harbors a functional endocytosis motif (YNKI) that mediates internalization in both VZV-infected and transfected cells (T. J. Pasieka, L. Maresova, and C. Grose, J. Virol. 77: 4194-4202, 2003). During subsequent confocal microscopy studies of endocytosis-deficient gH mutants, we observed that cells transfected with the gH tail mutants exhibited marked fusion. Therefore, we postulated that VZV gH endocytosis served to regulate cell-to-cell fusion. Subsequent analyses of gH+gL transfection fusion assays by the Kolmogorov-Smirnov statistical test demonstrated that expression of the endocytosis-deficient gH mutants resulted in a statistically significant enhancement of cell-to-cell fusion (P < 0.0001) compared to wild-type gH. On the other hand, coexpression of VZV gE, another endocytosis-competent VZV glycoprotein, was able to temper the fusogenicity of the gH endocytosis mutants by facilitating internalization of the mutant gH protein from the cell surface. When the latter results were similarly analyzed, there was no longer any enhanced fusion by the endocytosis-deficient gH mutant protein. In summary, these studies support a role for gH endocytosis in regulating the cell surface expression of gH and thereby regulating gH-mediated fusion. The data also confirm and extend prior observations of a gE-gH interaction during viral glycoprotein trafficking in a VZV transfection system. PMID:14990707

  11. C/EBPβ regulates sensitivity to bortezomib in prostate cancer cells by inducing REDD1 and autophagosome-lysosome fusion.

    PubMed

    Barakat, David J; Mendonca, Janet; Barberi, Theresa; Zhang, Jing; Kachhap, Sushant K; Paz-Priel, Ido; Friedman, Alan D

    2016-05-28

    The purpose of this study was to ascertain the mechanisms by which advanced prostate cancer cells resist bortezomib therapy. Several independent studies have shown that cells are protected from proteasome inhibition by increased autophagic activity. We investigated whether C/EBPβ, a transcription factor involved in the control of autophagic gene expression, regulates resistance to proteasome inhibition. In PC3 cells over-expressing C/EBPβ, turnover of autophagic substrates and expression of core autophagy genes were increased. Conversely, C/EBPβ knockdown suppressed autophagosome-lysosome fusion. We also found that C/EBPβ knockdown suppressed REDD1 expression to delay early autophagy, an effect rescued by exogenous REDD1. Cells with suppressed C/EBPβ levels showed delayed autophagy activation upon bortezomib treatment. Knockdown of C/EBPβ sensitized PC3 cells to bortezomib, and blockade of autophagy by chloroquine did not further increase cell death in cells expressing shRNA targeting C/EBPβ. Lastly, we observed a decreased growth of PC3 cells and xenografts with C/EBPβ knockdown and such xenografts were sensitized to bortezomib treatment. Our results demonstrate that C/EBPβ is a critical effector of autophagy via regulation of autolysosome formation and promotes resistance to proteasome inhibitor treatment by increasing autophagy. PMID:26968249

  12. The Dark Side of Cell Fusion

    PubMed Central

    Bastida-Ruiz, Daniel; Van Hoesen, Kylie; Cohen, Marie

    2016-01-01

    Cell fusion is a physiological cellular process essential for fertilization, viral entry, muscle differentiation and placental development, among others. In this review, we will highlight the different cancer cell-cell fusions and the advantages obtained by these fusions. We will specially focus on the acquisition of metastatic features by cancer cells after fusion with bone marrow-derived cells. The mechanism by which cancer cells fuse with other cells has been poorly studied thus far, but the presence in several cancer cells of syncytin, a trophoblastic fusogen, leads us to a cancer cell fusion mechanism similar to the one used by the trophoblasts. The mechanism by which cancer cells perform the cell fusion could be an interesting target for cancer therapy. PMID:27136533

  13. Cell Fusion Connects Oncogenesis with Tumor Evolution

    PubMed Central

    Zhou, Xiaofeng; Merchak, Kevin; Lee, Woojin; Grande, Joseph P.; Cascalho, Marilia; Platt, Jeffrey L.

    2016-01-01

    Cell fusion likely drives tumor evolution by undermining chromosomal and DNA stability and/or by generating phenotypic diversity; however, whether a cell fusion event can initiate malignancy and direct tumor evolution is unknown. We report that a fusion event involving normal, nontransformed, cytogenetically stable epithelial cells can initiate chromosomal instability, DNA damage, cell transformation, and malignancy. Clonal analysis of fused cells reveals that the karyotypic and phenotypic potential of tumors formed by cell fusion is established immediately or within a few cell divisions after the fusion event, without further ongoing genetic and phenotypic plasticity, and that subsequent evolution of such tumors reflects selection from the initial diverse population rather than ongoing plasticity of the progeny. Thus, one cell fusion event can both initiate malignancy and fuel evolution of the tumor that ensues. PMID:26066710

  14. Visualization of radiation-induced cell cycle-associated events in tumor cells expressing the fusion protein of Azami Green and the destruction box of human Geminin

    SciTech Connect

    Ishikawa, Mayuko; Ogihara, Yusuke; Miura, Masahiko

    2009-11-20

    Ionizing radiation (IR) influences cell cycle-associated events in tumor cells. We expressed the fusion protein of Azami Green (AG) and the destruction box plus nuclear localization signal of human Geminin, an inhibitor of DNA replication licensing factor, in oral tumor cells. This approach allowed us to visualize G2 arrest in living cells following irradiation. The combination of time-lapse imaging analysis allowed us to observe the nuclear envelope break down (NEBD) at early M phase, and disappearance of fluorescence (DF) at the end of M phase. The duration from NEBD to DF was not much affected in irradiated cells; however, most of daughter cells harbored double-strand breaks. Complete DF was also observed in cells exhibiting abnormal mitosis or cytokinesis. We conclude that the fluorescent Geminin probe could function as a stable cell cycle indicator irrespective of genome integrity.

  15. CRACC-targeting Fc-fusion protein induces activation of NK cells and DCs and improves T cell immune responses to antigenic targets.

    PubMed

    Aldhamen, Yasser A; Rastall, David P W; Chen, Weimin; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Kaminski, Norbert E; Amalfitano, Andrea

    2016-06-01

    The CD2-like receptor activating cytotoxic cell (CRACC) receptor is a member of the SLAM family of receptors that are found on several types of immune cells. We previously demonstrated that increasing the abundance of the adaptor protein EAT-2 during vaccination enhanced innate and adaptive immune responses to vaccine antigens. Engagement of the CRACC receptor in the presence of the EAT-2 adaptor generally results in immune cell activation, while activating CRACC signaling in cells that lack EAT-2 adaptor inhibits their effector and regulatory functions. As EAT-2 is the only SAP adaptor that interacts with the CRACC receptor, we hypothesized that technologies that specifically modulate CRACC signaling during vaccination may also improve antigen specific adaptive immune responses. To test this hypothesis, we constructed a CRACC-targeting Fc fusion protein and included it in vaccination attempts. Indeed, mice co-vaccinated with the CRACC-Fc fusion protein and an adenovirus vaccine expressing the HIV-Gag protein had improved Gag-specific T cell responses, as compared to control mice. These responses are characterized by increased numbers of Gag-specific tetramer+ CD8+ T cells and increases in production of IFNγ, TNFα, and IL2, by Gag-specific CD8+ T cells. Moreover, our results revealed that use of the CRACC-Fc fusion protein enhances vaccine-elicited innate immune responses, as characterized by increased dendritic cells (DCs) maturation and IFNγ production from NK cells. This study highlights the importance of CRACC signaling during the induction of an immune response generally, and during vaccinations specifically, and also lends insight into the mechanisms underlying our prior results noting EAT-2-dependent improvements in vaccine efficacy. PMID:27151882

  16. Deuteron-induced fusion in various environments

    SciTech Connect

    Hale, G.M.; Talley, T.L.

    1994-04-01

    The theory of deuteron-induced fusion will be discussed, first in free space, then in muonic molecules where the Coulomb repulsion is highly screened. It will be shown how a consistent description of the d + t reactions can be obtained in these environments using R-matrix theory. We compare fusion rates obtained from the time-dependent scattering theory with those implied by the partial widths of the resonance associated with muon-catalyzed d-t fusion. Finally, some speculative comments are made about how the d + d reactions might proceed in other media, such as metallic lattices. The unusual properties of states associated with ``shadow`` poles might account for some of the strange results seen in cold fusion experiments. We emphasize that the same methods can, and should, be used to describe this situation as well as the other two well-established phenomena.

  17. Deformability-based microfluidic cell pairing and fusion.

    PubMed

    Dura, Burak; Liu, Yaoping; Voldman, Joel

    2014-08-01

    We present a microfluidic cell pairing device capable of sequential trapping and pairing of hundreds of cells using passive hydrodynamics and flow-induced deformation. We describe the design and operation principles of our device and show its applicability for cell fusion. Using our device, we achieved both homotypic and heterotypic cell pairing, demonstrating efficiencies up to 80%. The platform is compatible with fusion protocols based on biological, chemical and physical stimuli with fusion yields up to 95%. Our device further permits its disconnection from the fluidic hardware enabling its transportation for imaging and culture while maintaining cell registration on chip. Our design principles and cell trapping technique can readily be applied for different cell types and can be extended to trap and fuse multiple (>2) cell partners as demonstrated by our preliminary experiments. PMID:24898933

  18. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion

    SciTech Connect

    Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.; Lee, Benhur; Moncman, Carole L.; McCann, Richard O.; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2006-07-05

    The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1{sup V12} or Cdc42{sup V12} could increase cell-cell fusion promoted by the Hendra or SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA{sup L63} decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia.

  19. Functional analysis of glycoprotein L (gL) from rhesus lymphocryptovirus in Epstein-Barr virus-mediated cell fusion indicates a direct role of gL in gB-induced membrane fusion.

    PubMed

    Plate, Aileen E; Smajlović, Jasmina; Jardetzky, Theodore S; Longnecker, Richard

    2009-08-01

    Glycoprotein L (gL), which complexes with gH, is a conserved herpesvirus protein that is essential for Epstein-Barr virus (EBV) entry into host cells. The gH/gL complex has a conserved role in entry among herpesviruses, yet the mechanism is not clear. To gain a better understanding of the role of gL in EBV-mediated fusion, chimeric proteins were made using rhesus lymphocryptovirus (Rh-LCV) gL (Rh gL), which shares a high sequence homology with EBV gL but does not complement EBV gL in mediating fusion with B cells. A reduction in fusion activity was observed with chimeric gL proteins that contained the amino terminus of Rh gL, although they retained their ability to process and transport gH/gL to the cell surface. Amino acids not conserved within this region in EBV gL when compared to Rh gL were further analyzed, with the results mapping residues 54 and 94 as being functionally important for EBV-mediated fusion. All chimeras and mutants displayed levels of cell surface expression similar to that of wild-type gL and interacted with gH and gp42. Our data also suggest that the role of gL involves the activation or recruitment of gB with the gH/gL complex, as we found that reduced fusion of Rh gL, EBV/Rh-LCV chimeras, and gL point mutants could be restored by replacing EBV gB with Rh gB. These observations demonstrate a distinction between the role of gL in the processing and trafficking of gH to the cell surface and a posttrafficking role in cell-cell fusion. PMID:19457993

  20. Localization of a Region in the Fusion Protein of Avian Metapneumovirus That Modulates Cell-Cell Fusion

    PubMed Central

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M.; Iorio, Ronald M.

    2012-01-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented. PMID:22915815

  1. High magnetic field induced otolith fusion in the zebrafish larvae.

    PubMed

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-01-01

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish. PMID:27063288

  2. High magnetic field induced otolith fusion in the zebrafish larvae

    PubMed Central

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-01-01

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an “all-or-none” manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish. PMID:27063288

  3. Microfluidic device for high-yield pairing and fusion of stem cells with somatic cells

    NASA Astrophysics Data System (ADS)

    Gel, Murat; Hirano, Kunio; Oana, Hidehiro; Kotera, Hidetoshi; Tada, Takashi; Washizu, Masao

    2011-12-01

    Electro cell fusion has significant potential as a biotechnology tool with applications ranging from antibody production to cellular reprogramming. However due to low fusion efficiency of the conventional electro fusion methodology the true potential of the technique has not been reached. In this paper, we report a new method which takes cell fusion efficiency two orders magnitude higher than the conventional electro fusion method. The new method, based on one-toone pairing, fusion and selection of fused cells was developed using a microfabricated device. The device was composed of two microfluidic channels, a micro slit array and a petri dish integrated with electrodes. The electrodes positioned in each channel were used to generate electric field lines concentrating in the micro slits. Cells were introduced into channels and brought in to contact through the micro slit array using dielectrophoresis. The cells in contact were fused by applying a DC pulse to electrodes. As the electric field lines were concentrated at the micro slits the membrane potential was induced only at the vicinity of the micro slits, namely only at the cell-cell contact point. This mechanism assured the minimum damage to cells in the fusion as well as the ability to control the strength and location of induced membrane potential. We introduced mouse embryonic stem cells and mouse embryonic fibroblasts to the microfluidic channels and demonstrated high-yield fusion (> 80%). Post-fusion study showed the method can generate viable hybrids of stem cells and embryonic fibroblasts. Multinucleated hybrid cells adhering on the chip surface were routinely obtained by using this method and on-chip culturing.

  4. Methodologies in the study of cell-cell fusion.

    PubMed

    Cohen, F S; Melikyan, G B

    1998-10-01

    The process of membrane fusion has been profitably studied by fusing cells that express fusion proteins on their surfaces to the membranes of target cells. Primary methods for monitoring the occurrence of fusion between cells are measurement of formation of heterokaryons, measurement of activation of reporter genes, measurement of transfer of lipidic and aqueous fluorescent dyes, and electrophysiological recording of fusion pores. Fluorescence and electrical methods have been well developed for fusion of a nucleated cell expressing viral fusion proteins to red blood cell targets. These techniques are now being extended to the study of fusion between two nucleated cells. Microscopic observation of spread of fluorescent dyes from one cell to another is a sensitive and convenient means of detecting fusion on the level of single events. In such studies, both the membrane and the aqueous continuities that occur as a result of fusion can be measured in the same experiment. By following spread of aqueous dyes of different sizes from one cell to another, the growth of a fusion pore can also be followed. By labeling cells with fluorescent probes, a state of hemifusion can be identified if probes in outer membrane leaflets transfer but probes in inner leaflets or aqueous spaces do not. Electrical measurements-both capacitance and double-whole-cell voltage-clamp techniques-are the most sensitive methods yet developed for detecting the formation of pores and for quantifying their growth. These powerful single-event methodologies should be directly applicable to further advances in expressing nonviral fusion proteins on cell surfaces. PMID:9790869

  5. Genetic basis of cell-cell fusion mechanisms

    PubMed Central

    Aguilar, Pablo S.; Baylies, Mary K.; Fleissner, Andre; Helming, Laura; Inoue, Naokazu; Podbilewicz, Benjamin; Wang, Hongmei; Wong, Melissa

    2013-01-01

    Cell-cell fusion in sexually reproducing organisms is a mechanism to merge gamete genomes, and in multicellular organisms, it is a strategy to sculpt organs such as muscles, bones, and placenta. Moreover, this mechanism has been implicated in pathological conditions such as infection and cancer. Study of genetic model organisms has uncovered a unifying principle: cell fusion is a genetically programmed process. This process can be divided in three stages: (i) competence: cell induction and differentiation, (ii) commitment: cell determination, migration and adhesion, and (iii) cell fusion: membrane merging and cytoplasmic mixing. Recent work has led to the discovery of fusogens, cell fusion proteins that are necessary and sufficient to fuse cell membranes. Two unrelated families of fusogens have been discovered, one in mouse placenta and one in Caenorhabditis elegans (Syncytins and F proteins, respectively). Current research aims to identify new fusogens and determine the mechanisms by which fusogens merge membranes. PMID:23453622

  6. Genetic basis of cell-cell fusion mechanisms.

    PubMed

    Aguilar, Pablo S; Baylies, Mary K; Fleissner, Andre; Helming, Laura; Inoue, Naokazu; Podbilewicz, Benjamin; Wang, Hongmei; Wong, Melissa

    2013-07-01

    Cell-cell fusion in sexually reproducing organisms is a mechanism to merge gamete genomes and, in multicellular organisms, it is a strategy to sculpt organs, such as muscle, bone, and placenta. Moreover, this mechanism has been implicated in pathological conditions, such as infection and cancer. Studies of genetic model organisms have uncovered a unifying principle: cell fusion is a genetically programmed process. This process can be divided in three stages: competence (cell induction and differentiation); commitment (cell determination, migration, and adhesion); and cell fusion (membrane merging and cytoplasmic mixing). Recent work has led to the discovery of fusogens, which are cell fusion proteins that are necessary and sufficient to fuse cell membranes. Two unrelated families of fusogens have been discovered, one in mouse placenta and one in Caenorhabditis elegans (syncytins and F proteins, respectively). Current research aims to identify new fusogens and determine the mechanisms by which they merge membranes. PMID:23453622

  7. Reciprocal Regulation of AKT and MAP Kinase Dictates Virus-Host Cell Fusion

    PubMed Central

    Sharma, Nishi R.; Mani, Prashant; Nandwani, Neha; Mishra, Rajakishore; Rana, Ajay; Sarkar, Debi P.

    2010-01-01

    Viruses of the Paramyxoviridae family bind to their host cells by using hemagglutinin-neuraminidase (HN), which enhances fusion protein (F)-mediated membrane fusion. Although respiratory syncytial virus and parainfluenza virus 5 of this family are suggested to trigger host cell signaling during infection, the virus-induced intracellular signals dictating virus-cell fusion await elucidation. Using an F- or HN-F-containing reconstituted envelope of Sendai virus, another paramyxovirus, we revealed the role and regulation of AKT1 and Raf/MEK/ERK cascades during viral fusion with liver cells. Our observation that extracellular signal-regulated kinase (ERK) activation promotes viral fusion via ezrin-mediated cytoskeletal rearrangements, whereas AKT1 attenuates fusion by promoting phosphorylation of F protein, indicates a counteractive regulation of viral fusion by reciprocal activation of AKT1 and mitogen-activated protein kinase (MAPK) cascades, establishing a novel conceptual framework for a therapeutic strategy. PMID:20164223

  8. Convenient cell fusion assay for rapid screening for HIV entry inhibitors

    NASA Astrophysics Data System (ADS)

    Jiang, Shibo; Radigan, Lin; Zhang, Li

    2000-03-01

    Human immunodeficiency viruses (HIV)-induced cell fusion is a critical pathway of HIV spread from infected cells to uninfected cells. A rapid and simple assay was established to measure HIV-induce cell fusion. This study is particularly useful to rapid screen for HIV inhibitors that block HIV cell-to-cell transmission. Present study demonstrated that coculture of HIV-infected cells with uninfected cells at 37 degree(s)C for 2 hours resulted in the highest cell fusion rate. Using this cell fusion assay, we have identified several potent HIV inhibitors targeted to the HIV gp41 core. These antiviral agents can be potentially developed as antiviral drugs for chemotherapy and prophylaxis of HIV infection and AIDS.

  9. Premature Activation of the Paramyxovirus Fusion Protein before Target Cell Attachment with Corruption of the Viral Fusion Machinery*

    PubMed Central

    Farzan, Shohreh F.; Palermo, Laura M.; Yokoyama, Christine C.; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E.; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-01-01

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents. PMID:21799008

  10. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion.

    PubMed

    Tangmansakulchai, Kulvadee; Abubakar, Zuroida; Kitiyanant, Narisorn; Suwanjang, Wilasinee; Leepiyasakulchai, Chaniya; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-09-01

    Calpain is an intracellular Ca(2+)-dependent protease, and the activation of calpain has been implicated in neurodegenerative diseases. Calpain activity can be regulated by calpastatin, an endogenous specific calpain inhibitor. Several lines of evidence have demonstrated a potential role of calpastatin in preventing calpain-mediated pathogenesis. Additionally, several studies have revealed that calpain activation and mitochondrial damage are involved in the cell death process; however, recent evidence has not clearly indicated a neuroprotective mechanism of calpastatin against calpain-dependent mitochondrial impairment in the process of neuronal cell death. Therefore, the purpose of this study was to investigate the potential ability of calpastatin to inhibit calpain activation and mitochondrial impairment in oxidative stress-induced neuron degeneration. Calpastatin was stably overexpressed in human neuroblastoma SH-SY5Y cells. In non-calpastatin overexpressing SH-SY5Y cells, hydrogen peroxide significantly decreased cell viability, superoxide dismutase activity, mitochondrial membrane potential, ATP production and mitochondrial fusion protein (Opa1) levels in the mitochondrial fraction but increased reactive oxygen species formation, calpain and calcineurin activation, mitochondrial fission protein (Fis1 and Drp1) levels in the mitochondrial fraction and apoptotic cells. Nevertheless, these toxic effects were abolished in hydrogen peroxide-treated calpastatin-overexpressing SH-SY5Y cells. The results of the present study demonstrate the potential ability of calpastatin to diminish calpain and calcineurin activation and mitochondrial impairment in neurons that are affected by oxidative damage. PMID:27453331

  11. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: Implication in multinucleation and chemosensitization

    SciTech Connect

    Park, Jeong-Eun; Woo, Seon Rang; Kang, Chang-Mo; Juhn, Kyoung-Mi; Ju, Yeun-Jin; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun Ran; Park, In-chul; Hong, Sung Hee; Hwang, Sang-Gu; Lee, Jung-Kee; Kim, Hae Kwon; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2011-01-14

    Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, and eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.

  12. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.

    PubMed

    Markosyan, Ruben M; Miao, Chunhui; Zheng, Yi-Min; Melikyan, Gregory B; Liu, Shan-Lu; Cohen, Fredric S

    2016-01-01

    Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry. PMID:26730950

  13. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger

    PubMed Central

    Zheng, Yi-Min; Melikyan, Gregory B.; Liu, Shan-Lu; Cohen, Fredric S.

    2016-01-01

    Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge—a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry. PMID:26730950

  14. Studies on the fusion peptide of a paramyxovirus fusion glycoprotein: roles of conserved residues in cell fusion.

    PubMed Central

    Horvath, C M; Lamb, R A

    1992-01-01

    The role of residues in the conserved hydrophobic N-terminal fusion peptide of the paramyxovirus fusion (F) protein in causing cell-cell fusion was examined. Mutations were introduced into the cDNA encoding the simian virus 5 (SV5) F protein, the altered F proteins were expressed by using an eukaryotic vector, and their ability to mediate syncytium formation was determined. The mutant F proteins contained both single- and multiple-amino-acid substitutions, and they exhibited a variety of intracellular transport properties and fusion phenotypes. The data indicate that many substitutions in the conserved amino acids of the simian virus 5 F fusion peptide can be tolerated without loss of biological activity. Mutant F proteins which were not transported to the cell surface did not cause cell-cell fusion, but all of the mutants which were transported to the cell surface were fusion competent, exhibiting fusion properties similar to or better than those of the wild-type F protein. Mutant F proteins containing glycine-to-alanine substitutions had altered intracellular transport characteristics, yet they exhibited a great increase in fusion activity. The potential structural implications of this substitution and the possible importance of these glycine residues in maintaining appropriate levels of fusion activity are discussed. Images PMID:1548771

  15. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    SciTech Connect

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang; Liu, Yan-Hong; Li, Yan; Wang, Jia-Ye; Hattori, Toshio; Ling, Hong; Zhang, Feng-Min

    2010-01-22

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.

  16. Cell-based analysis of Chikungunya virus E1 protein in membrane fusion

    PubMed Central

    2012-01-01

    Background Chikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV). E1 glycoprotein mediation of viral membrane fusion during CHIKV infection is a crucial step in the release of viral genome into the host cytoplasm for replication. How the E1 structure determines membrane fusion and whether other CHIKV structural proteins participate in E1 fusion activity remain largely unexplored. Methods A bicistronic baculovirus expression system to produce recombinant baculoviruses for cell-based assay was used. Sf21 insect cells infected by recombinant baculoviruses bearing wild type or single-amino-acid substitution of CHIKV E1 and EGFP (enhanced green fluorescence protein) were employed to investigate the roles of four E1 amino acid residues (G91, V178, A226, and H230) in membrane fusion activity. Results Western blot analysis revealed that the E1 expression level and surface features in wild type and mutant substituted cells were similar. However, cell fusion assay found that those cells infected by CHIKV E1-H230A mutant baculovirus showed little fusion activity, and those bearing CHIKV E1-G91D mutant completely lost the ability to induce cell-cell fusion. Cells infected by recombinant baculoviruses of CHIKV E1-A226V and E1-V178A mutants exhibited the same membrane fusion capability as wild type. Although the E1 expression level of cells bearing monomeric-E1-based constructs (expressing E1 only) was greater than that of cells bearing 26S-based constructs (expressing all structural proteins), the sizes of syncytial cells induced by infection of baculoviruses containing 26S-based constructs were larger than those from infections having monomeric-E1 constructs, suggesting that other viral structure proteins participate or regulate E1 fusion activity. Furthermore, membrane fusion in cells infected by baculovirus bearing the A226V mutation constructs exhibited increased cholesterol-dependences and lower pH thresholds. Cells bearing the V178

  17. Mutant Fusion Proteins with Enhanced Fusion Activity Promote Measles Virus Spread in Human Neuronal Cells and Brains of Suckling Hamsters

    PubMed Central

    Shirogane, Yuta; Suzuki, Satoshi O.; Ikegame, Satoshi; Koga, Ritsuko

    2013-01-01

    Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein. PMID:23255801

  18. Protection against morbillivirus-induced encephalitis by immunization with a rationally designed synthetic peptide vaccine containing B- and T-cell epitopes from the fusion protein of measles virus.

    PubMed Central

    Obeid, O E; Partidos, C D; Howard, C R; Steward, M W

    1995-01-01

    Synthetic peptides representing T- and B-cell epitopes from the fusion (F) protein of measles virus (MV) were tested for their ability to induce a protective immune response against intracerebral challenge with neuroadapted strains of MV and canine distemper virus (CDV) in mice. Of the panel of peptides tested, only a chimeric peptide consisting of two copies of a promiscuous T-cell epitope (representing residues 288 to 302 of MV F protein) synthesized at the amino terminus of a B-cell epitope (representing residues 404 to 414 of MV F protein) was able to induce a protective response against challenge with MV and CDV in inbred mice. The protective response induced by this peptide (TTB) was associated with a significant reduction in mortality, histological absence of acute encephalitis, and greatly reduced titers of virus in the brains of TTB-immune mice following challenge compared with the results for nonimmunized controls. A chimeric peptide comprising one copy of the T-cell epitope and one copy of the B-cell epitope (TB) did not induce a protective response. A comparison of the antibody responses induced by the two chimeras suggested that differences in protective efficacy following immunization may be a result of the higher affinity of the antibody induced by the TTB peptide than that of the antibody induced by the TB peptide. In addition, differences in the immunoglobulin G subclass of the antipeptide antibody responses were observed, and these may play a role in the differences in protection observed. These results indicate that appropriately designed synthetic peptides have potential as vaccines for the induction of cross-reactive protection against morbilliviruses. PMID:7531779

  19. Attenuation of Aβ toxicity by promotion of mitochondrial fusion in neuroblastoma cells by liquiritigenin.

    PubMed

    Jo, Doo Sin; Shin, Dong Woon; Park, So Jung; Bae, Ji-Eun; Kim, Joon Bum; Park, Na Yeon; Kim, Jae-Sung; Oh, Jeong Su; Shin, Jung-Won; Cho, Dong-Hyung

    2016-08-01

    Mitochondrial dynamics control mitochondrial morphology and function, and aberrations in these are associated with various neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. To identify novel regulators of mitochondrial dynamics, we screened a phytochemical library and identified liquiritigenin as a potent inducer of mitochondrial fusion. Treatment with liquiritigenin induced an elongated mitochondrial morphology in SK-N-MC cells. In addition, liquiritigenin rescued mitochondrial fragmentation induced by knockout of mitochondrial fusion mediators such as Mfn1, Mfn2, and Opa1. Furthermore, we found that treatment with liquiritigenin notably inhibited mitochondrial fragmentation and cytotoxicity induced by Aβ in SK-N-MC cells. PMID:27515055

  20. Recombinant Bivalent Fusion Protein rVE Induces CD4+ and CD8+ T-Cell Mediated Memory Immune Response for Protection Against Yersinia enterocolitica Infection

    PubMed Central

    Singh, Amit K.; Kingston, Joseph J.; Gupta, Shishir K.; Batra, Harsh V.

    2015-01-01

    Studies investigating the correlates of immune protection against Yersinia infection have established that both humoral and cell mediated immune responses are required for the comprehensive protection. In our previous study, we established that the bivalent fusion protein (rVE) comprising immunologically active regions of Y. pestis LcrV (100–270 aa) and YopE (50–213 aa) proteins conferred complete passive and active protection against lethal Y. enterocolitica 8081 challenge. In the present study, cohort of BALB/c mice immunized with rVE or its component proteins rV, rE were assessed for cell mediated immune responses and memory immune protection against Y. enterocolitica 8081. rVE immunization resulted in extensive proliferation of both CD4 and CD8 T cell subsets; significantly high antibody titer with balanced IgG1: IgG2a/IgG2b isotypes (1:1 ratio) and up-regulation of both Th1 (TNF-α, IFN-γ, IL-2, and IL-12) and Th2 (IL-4) cytokines. On the other hand, rV immunization resulted in Th2 biased IgG response (11:1 ratio) and proliferation of CD4+ T-cell; rE group of mice exhibited considerably lower serum antibody titer with predominant Th1 response (1:3 ratio) and CD8+ T-cell proliferation. Comprehensive protection with superior survival (100%) was observed among rVE immunized mice when compared to the significantly lower survival rates among rE (37.5%) and rV (25%) groups when IP challenged with Y. enterocolitica 8081 after 120 days of immunization. Findings in this and our earlier studies define the bivalent fusion protein rVE as a potent candidate vaccine molecule with the capability to concurrently stimulate humoral and cell mediated immune responses and a proof of concept for developing efficient subunit vaccines against Gram negative facultative intracellular bacterial pathogens. PMID:26733956

  1. Herpes B Virus Utilizes Human Nectin-1 but Not HVEM or PILRα for Cell-Cell Fusion and Virus Entry

    PubMed Central

    Fan, Qing; Amen, Melanie; Harden, Mallory; Severini, Alberto; Griffiths, Anthony

    2012-01-01

    To investigate the requirements of herpesvirus entry and fusion, the four homologous glycoproteins necessary for herpes simplex virus (HSV) fusion were cloned from herpes B virus (BV) (or macacine herpesvirus 1, previously known as cercopithecine herpesvirus 1) and cercopithecine herpesvirus 2 (CeHV-2), both related simian simplexviruses belonging to the alphaherpesvirus subfamily. Western blots and cell-based enzyme-linked immunosorbent assay (ELISA) showed that glycoproteins gB, gD, and gH/gL were expressed in whole-cell lysates and on the cell surface. Cell-cell fusion assays indicated that nectin-1, an HSV-1 gD receptor, mediated fusion of cells expressing glycoproteins from both BV and CeHV-2. However, herpesvirus entry mediator (HVEM), another HSV-1 gD receptor, did not facilitate BV- and CeHV-2-induced cell-cell fusion. Paired immunoglobulin-like type 2 receptor alpha (PILRα), an HSV-1 gB fusion receptor, did not mediate fusion of cells expressing glycoproteins from either simian virus. Productive infection with BV was possible only with nectin-1-expressing cells, indicating that nectin-1 mediated entry while HVEM and PILRα did not function as entry receptors. These results indicate that these alphaherpesviruses have differing preferences for entry receptors. The usage of the HSV-1 gD receptor nectin-1 may explain interspecies transfer of the viruses, and altered receptor usage may result in altered virulence, tropism, or pathogenesis in the new host. A heterotypic cell fusion assay resulting in productive fusion may provide insight into interactions that occur to trigger fusion. These findings may be of therapeutic significance for control of deadly BV infections. PMID:22345445

  2. Renal epithelial cells can release ATP by vesicular fusion

    PubMed Central

    Bjaelde, Randi G.; Arnadottir, Sigrid S.; Overgaard, Morten T.; Leipziger, Jens; Praetorius, Helle A.

    2013-01-01

    Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30), which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1) cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin) reduced both the spontaneous and hypotonically (80%)-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1) and vesicular transport (nocodazole). These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ~90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP) or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50%) or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8 and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells. PMID:24065923

  3. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    SciTech Connect

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin; Liu, Ke; Shang, Zheng-jun

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  4. Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents

    SciTech Connect

    Clancy, Eileen K.; Barry, Chris; Ciechonska, Marta; Duncan, Roy

    2010-02-05

    The reovirus fusion-associated small transmembrane (FAST) proteins evolved to induce cell-cell, rather than virus-cell, membrane fusion. It is unclear whether the FAST protein fusion reaction proceeds in the same manner as the enveloped virus fusion proteins. We now show that fluorescence-based cell-cell and cell-RBC hemifusion assays are unsuited for detecting lipid mixing in the absence of content mixing during FAST protein-mediated membrane fusion. Furthermore, membrane curvature agents that inhibit hemifusion or promote pore formation mediated by influenza hemagglutinin had no effect on p14-induced cell-cell fusion, even under conditions of limiting p14 concentrations. Standard assays used to detect fusion intermediates induced by enveloped virus fusion proteins are therefore not applicable to the FAST proteins. These results suggest the possibility that the nature of the fusion intermediates or the mechanisms used to transit through the various stages of the fusion reaction may differ between these distinct classes of viral fusogens.

  5. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    SciTech Connect

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton; Moncman, Carole L.; Ellis Dutch, Rebecca; McCann, Richard O.

    2010-08-15

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmic tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger.

  6. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    SciTech Connect

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-15

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.

  7. High-Frequency Gravitational Wave Induced Nuclear Fusion

    SciTech Connect

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2007-01-30

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials.

  8. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast

    PubMed Central

    Dudin, Omaya; Bendezú, Felipe O.; Groux, Raphael; Laroche, Thierry; Seitz, Arne

    2015-01-01

    Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion. PMID:25825517

  9. Trophoblast Cell Fusion and Differentiation Are Mediated by Both the Protein Kinase C and A Pathways

    PubMed Central

    Omata, Waka; Ackerman, William E.; Vandre, Dale D.; Robinson, John M.

    2013-01-01

    The syncytiotrophoblast of the human placenta is an epithelial barrier that interacts with maternal blood and is a key for the transfer of nutrients and other solutes to the developing fetus. The syncytiotrophoblast is a true syncytium and fusion of progenitor cytotrophoblasts is the cardinal event leading to the formation of this layer. BeWo cells are often used as a surrogate for cytotrophoblasts, since they can be induced to fuse, and then express certain differentiation markers associated with trophoblast syncytialization. Dysferlin, a syncytiotrophoblast membrane repair protein, is up-regulated in BeWo cells induced to fuse by treatment with forskolin; this fusion is thought to occur through cAMP/protein kinase A-dependent mechanisms. We hypothesized that dysferlin may also be up-regulated in response to fusion through other pathways. Here, we show that BeWo cells can also be induced to fuse by treatment with an activator of protein kinase C, and that this fusion is accompanied by increased expression of dysferlin. Moreover, a dramatic synergistic increase in dysferlin expression is observed when both the protein kinase A and protein kinase C pathways are activated in BeWo cells. This synergy in fusion is also accompanied by dramatic increases in mRNA for the placental fusion proteins syncytin 1, syncytin 2, as well as dysferlin. Dysferlin, however, was shown to be dispensable for stimulus-induced BeWo cell syncytialization, since dysferlin knockdown lines fused to the same extent as control cells. The classical trophoblast differentiation marker human chorionic gonadotropin was also monitored and changes in the expression closely parallel that of dysferlin in all of the experimental conditions employed. Thus different biochemical markers of trophoblast fusion behave in concert supporting the hypothesis that activation of both protein kinase C and A pathways lead to trophoblastic differentiation. PMID:24236208

  10. Inhibition of HIV-1 Env-Mediated Cell-Cell Fusion by Lectins, Peptide T-20, and Neutralizing Antibodies

    PubMed Central

    Yee, Michael; Konopka, Krystyna; Balzarini, Jan; Düzgüneş, Nejat

    2011-01-01

    Background: Broadly cross-reactive, neutralizing human monoclonal antibodies, including 2F5, 2G12, 4E10 and IgG1 b12, can inhibit HIV-1 infection in vitro at very low concentrations. We examined the ability of these antibodies to inhibit cell-cell fusion between Clone69TRevEnv cells induced to express the viral envelope proteins, gp120/gp41 (Env), and highly CD4-positive SupT1 cells. The cells were loaded with green and red-orange cytoplasmic fluorophores, and fusion was monitored by fluorescence microscopy. Results: Cell-cell fusion was inhibited completely by the carbohydrate binding proteins (CBPs), Hippeastrum hybrid (Amaryllis) agglutinin (HHA), and Galanthus nivalis (Snowdrop) agglutinin (GNA), and by the peptide, T-20, at relatively low concentrations. Anti-gp120 and anti-gp41 antibodies, at concentrations much higher than those required for neutralization, were not particularly effective in inhibiting fusion. Monoclonal antibodies b12, m14 IgG and 2G12 had moderate inhibitory activity; the IC50 of 2G12 was about 80 µg/ml. Antibodies 4E10 and 2F5 had no inhibitory activity at the concentrations tested. Conclusions: These observations raise concerns about the ability of neutralizing antibodies to inhibit the spread of viral genetic material from infected cells to uninfected cells via cell-cell fusion. The interaction of gp120/gp41 with cell membrane CD4 may be different in cell-cell and virus-cell membrane fusion reactions, and may explain the differential effects of antibodies in these two systems. The fluorescence assay described here may be useful in high throughput screening of potential HIV fusion inhibitors. PMID:21660189

  11. Cell-to-Cell Transfer of HIV-1 via Virological Synapses Leads to Endosomal Virion Maturation that Activates Viral Membrane Fusion

    PubMed Central

    Dale, Benjamin M.; McNerney, Gregory P.; Thompson, Deanna L.; Hubner, Wolfgang; de los Reyes, Kevin; Chuang, Frank Y.S.; Huser, Thomas; Chen, Benjamin K.

    2012-01-01

    SUMMARY HIV-1 can infect T cells by cell-free virus or by direct virion transfer between cells through cell contact-induced structures called virological synapses (VS). During VS-mediated infection, virions accumulate within target cell endosomes. We show that after crossing the VS, the transferred virus undergoes both maturation and viral membrane fusion. Following VS transfer, viral membrane fusion occurs with delayed kinetics and transferred virions display reduced sensitivity to patient antisera compared to mature, cell-free virus. Furthermore, particle fusion requires that the transferred virions undergo proteolytic maturation within acceptor cell endosomes, which occurs over several hours. Rapid, live cell confocal microscopy demonstrated that viral fusion can occur in compartments that have moved away from the VS. Thus, HIV particle maturation activates viral fusion in target CD4+ T cell endosomes following transfer across the VS and may represent a pathway by which HIV evades antibody neutralization. PMID:22177560

  12. Quantification of cell fusion events human breast cancer cells and breast epithelial cells using a Cre-LoxP-based double fluorescence reporter system.

    PubMed

    Mohr, Marieke; Tosun, Songül; Arnold, Wolfgang H; Edenhofer, Frank; Zänker, Kurt S; Dittmar, Thomas

    2015-10-01

    The biological phenomenon of cell fusion plays an important role in several physiological processes, like fertilization, placentation, or wound healing/tissue regeneration, as well as pathophysiological processes, such as cancer. Despite this fact, considerably less is still known about the factors and conditions that will induce the merging of two plasma membranes. Inflammation and proliferation has been suggested as a positive trigger for cell fusion, but it remains unclear, which of the factor(s) of the inflamed microenvironment are being involved. To clarify this we developed a reliable assay to quantify the in vitro fusion frequency of cells using a fluorescence double reporter vector (pFDR) containing a LoxP-flanked HcRed/DsRed expression cassette followed by an EGFP expression cassette. Because cell fusion has been implicated in cancer progression four human breast cancer cell lines were stably transfected with a pFDR vector and were co-cultured with the stably Cre-expressing human breast epithelial cell line. Cell fusion is associated with a Cre-mediated recombination resulting in induction of EGFP expression in hybrid cells, which can be quantified by flow cytometry. By testing a panel of different cytokines, chemokines, growth factors and other compounds, including exosomes, under normoxic and hypoxic conditions our data indicate that the proinflammatory cytokine TNF-α together with hypoxia is a strong inducer of cell fusion in human MDA-MB-435 and MDA-MB-231 breast cancer cells. PMID:25900663

  13. DNA-Protein Immunization Using Leishmania Peroxidoxin-1 Induces a Strong CD4+ T Cell Response and Partially Protects Mice from Cutaneous Leishmaniasis: Role of Fusion Murine Granulocyte-Macrophage Colony-Stimulating Factor DNA Adjuvant

    PubMed Central

    Bayih, Abebe Genetu; Daifalla, Nada S.; Gedamu, Lashitew

    2014-01-01

    Background To date, no universally effective and safe vaccine has been developed for general human use. Leishmania donovani Peroxidoxin-1 (LdPxn-1) is a member of the antioxidant family of proteins and is predominantly expressed in the amastigote stage of the parasite. The aim of this study was to evaluate the immunogenicity and protective efficacy of LdPxn-1 in BALB/c mice in heterologous DNA-Protein immunization regimen in the presence of fusion murine granulocyte-macrophage colony-stimulating factor (mGMCSF) DNA adjuvant. Methodology and Principal Findings A fusion DNA of LdPxn1 and mGMCSF was cloned into a modified pcDNA vector. To confirm the expression in mammalian system, Chinese hamster ovary cells were transfected with the plasmid vector containing LdPxn1 gene. BALB/c mice were immunized twice with pcDNA-mGMCSF-LdPxn-1 or pcDNA-LdPxn1 DNA and boosted once with recombinant LdPxn-1 protein. Three weeks after the last immunization, mice were infected with Leishmania major promastigotes. The result showed that immunization with pcDNA-mGMCSF-LdPxn1 elicited a mixed Th-1/Th-2 immune response with significantly higher production of IFN-γ than controls. Intracellular cytokine staining of antigen-stimulated spleen cells showed that immunization with this antigen elicited significantly higher proportion of CD4+ T cells that express IFN-γ, TNF-α, or IL-2. The antigen also induced significantly higher proportion of multipotent CD4+ cells that simultaneously express the three Th-1 cytokines. Moreover, a significant reduction in the footpad swelling was seen in mice immunized with pcDNA-mGMCSF-LdPxn1 antigen. Expression study in CHO cells demonstrated that pcDNA-mGMCSF-LdPxn-1 was expressed in mammalian system. Conclusion The result demonstrates that immunization of BALB/c mice with a plasmid expressing LdPxn1 in the presence of mGMCSF adjuvant elicits a strong specific immune response with high level induction of multipotent CD4+ cells that mediate protection of the

  14. Recombinant fusion protein of cholera toxin B subunit with YVAD secreted by Lactobacillus casei inhibits lipopolysaccharide-induced caspase-1 activation and subsequent IL-1 beta secretion in Caco-2 cells

    PubMed Central

    2014-01-01

    Background Lactobacillus species are used as bacterial vectors to deliver functional peptides to the intestine because they are delivered live to the intestine, colonize the mucosal surface, and continue to produce the desired protein. Previously, we generated a recombinant Lactobacillus casei secreting the cholera toxin B subunit (CTB), which can translocate into intestinal epithelial cells (IECs) through GM1 ganglioside. Recombinant fusion proteins of CTB with functional peptides have been used as carriers for the delivery of these peptides to IECs because of the high cell permeation capacity of recombinant CTB (rCTB). However, there have been no reports of rCTB fused with peptides expressed or secreted by Lactobacillus species. In this study, we constructed L. casei secreting a recombinant fusion protein of CTB with YVAD (rCTB–YVAD). YVAD is a tetrapeptide (tyrosine–valine–alanine–aspartic acid) that specifically inhibits caspase-1, which catalyzes the production of interleukin (IL)-1β, an inflammatory cytokine, from its inactive precursor. Here, we examined whether rCTB–YVAD secreted by L. casei binds to GM1 ganglioside and inhibits caspase-1 activation in Caco-2 cells used as a model of IECs. Results We constructed the rCTB–YVAD secretion vector pSCTB–YVAD by modifying the rCTB secretion vector pSCTB. L. casei secreting rCTB–YVAD was generated by transformation with pSCTB–YVAD. Both the culture supernatant of pSCTB–YVAD-transformed L. casei and purified rCTB–YVAD bound to GM1 ganglioside, as did the culture supernatant of pSCTB-transformed L. casei and purified rCTB. Interestingly, although both purified rCTB–YVAD and rCTB translocated into Caco-2 cells, regardless of lipopolysaccharide (LPS), only purified rCTB–YVAD but not rCTB inhibited LPS-induced caspase-1 activation and subsequent IL-1β secretion in Caco-2 cells, without affecting cell viability. Conclusions The rCTB protein fused to a functional peptide secreted by L. casei

  15. Cell Fusion in the War on Cancer: A Perspective on the Inception of Malignancy.

    PubMed

    Platt, Jeffrey L; Zhou, Xiaofeng; Lefferts, Adam R; Cascalho, Marilia

    2016-01-01

    Cell fusion occurs in development and in physiology and rarely in those settings is it associated with malignancy. However, deliberate fusion of cells and possibly untoward fusion of cells not suitably poised can eventuate in aneuploidy, DNA damage and malignant transformation. How often cell fusion may initiate malignancy is unknown. However, cell fusion could explain the high frequency of cancers in tissues with low underlying rates of cell proliferation and mutation. On the other hand, cell fusion might also engage innate and adaptive immune surveillance, thus helping to eliminate or retard malignancies. Here we consider whether and how cell fusion might weigh on the overall burden of cancer in modern societies. PMID:27420051

  16. Cell Fusion in the War on Cancer: A Perspective on the Inception of Malignancy

    PubMed Central

    Platt, Jeffrey L.; Zhou, Xiaofeng; Lefferts, Adam R.; Cascalho, Marilia

    2016-01-01

    Cell fusion occurs in development and in physiology and rarely in those settings is it associated with malignancy. However, deliberate fusion of cells and possibly untoward fusion of cells not suitably poised can eventuate in aneuploidy, DNA damage and malignant transformation. How often cell fusion may initiate malignancy is unknown. However, cell fusion could explain the high frequency of cancers in tissues with low underlying rates of cell proliferation and mutation. On the other hand, cell fusion might also engage innate and adaptive immune surveillance, thus helping to eliminate or retard malignancies. Here we consider whether and how cell fusion might weigh on the overall burden of cancer in modern societies. PMID:27420051

  17. Cell-mediated immune responses and protective efficacy against infection with Mycobacterium tuberculosis induced by Hsp65 and hIL-2 fusion protein in mice.

    PubMed

    Shi, C; Yuan, S; Zhang, H; Zhang, T; Wang, L; Xu, Z

    2009-02-01

    Heat shock protein 65 (Hsp65) is an important immunodominant antigen against tuberculosis (TB), and interleukin-2 (IL-2) plays an important role in the regulation of antimycobacteria immune responses. In order to further increase the immunogenicity of Hsp65 against infection caused by Mycobacterium tuberculosis (MTB), we expressed MTB Hsp65 and human IL-2 fusion protein, Hsp65-hIL-2, in Escherichia coli. The expression of Hsp65-hIL-2 was confirmed by Western blotting using anti-Hsp65 MoAb and anti-hIL-2 MoAb, respectively. Hsp65-IL-2 and Hsp65 were then purified by Ni-NTA affinity chromatography. Mice were immunized with purified Hsp65-hIL-2 or Hsp65 emulsified in the adjuvant combination dimethyl dioctadecylammonium bromide and monophosphoryl lipid A. Eight weeks after immunization, there was significant proliferation of spleen lymphocytes in response to both Hsp65 and Hsp65-hIL-2 proteins. Interestingly, Hsp65-hIL-2 fusion protein elicited significantly higher levels of IFN-gamma and IL-2 in the lymphocytes culture supernatant than that of the BCG (Denmark strain) immunized group and Hsp65 group (P < 0.05). After challenging the immunized mice with MTB, the bacteria loads in the spleens and lungs of mice immunized with the fusion protein were significantly lower than Hsp65 alone group, reaching an equivalent level as BCG immunization group. Our results suggest that the Hsp65 and hIL-2 fusion protein may serve as an alternative vaccine candidate against MTB infection. PMID:19144078

  18. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.

    PubMed

    Inobe, Tomonao; Nukina, Nobuyuki

    2016-07-01

    Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. PMID:26777239

  19. N-(3-Cyanophenyl)-2-phenylacetamide, an effective inhibitor of morbillivirus-induced membrane fusion with low cytotoxicity.

    PubMed

    Singethan, K; Hiltensperger, G; Kendl, S; Wohlfahrt, J; Plattet, P; Holzgrabe, U; Schneider-Schaulies, J

    2010-11-01

    Based on the structural similarity of viral fusion proteins within the family Paramyxoviridae, we tested recently described and newly synthesized acetanilide derivatives for their capacity to inhibit measles virus (MV)-, canine distemper virus (CDV)- and Nipah virus (NiV)-induced membrane fusion. We found that N-(3-cyanophenyl)-2-phenylacetamide (compound 1) has a high capacity to inhibit MV- and CDV-induced (IC(50) μM), but not NiV-induced, membrane fusion. This compound is of outstanding interest because it can be easily synthesized and its cytotoxicity is low [50 % cytotoxic concentration (CC(50)) ≥ 300 μM], leading to a CC(50)/IC(50) ratio of approximately 100. In addition, primary human peripheral blood lymphocytes and primary dog brain cell cultures (DBC) also tolerate high concentrations of compound 1. Infection of human PBMC with recombinant wild-type MV is inhibited by an IC(50) of approximately 20 μM. The cell-to-cell spread of recombinant wild-type CDV in persistently infected DBC can be nearly completely inhibited by compound 1 at 50 μM, indicating that the virus spread between brain cells is dependent on the activity of the viral fusion protein. Our findings demonstrate that this compound is a most applicable inhibitor of morbillivirus-induced membrane fusion in tissue culture experiments including highly sensitive primary cells. PMID:20685931

  20. Functional Analysis of Glycoprotein L (gL) from Rhesus Lymphocryptovirus in Epstein-Barr Virus-Mediated Cell Fusion Indicates a Direct Role of gL in gB-Induced Membrane Fusion▿

    PubMed Central

    Plate, Aileen E.; Smajlović, Jasmina; Jardetzky, Theodore S.; Longnecker, Richard

    2009-01-01

    Glycoprotein L (gL), which complexes with gH, is a conserved herpesvirus protein that is essential for Epstein-Barr virus (EBV) entry into host cells. The gH/gL complex has a conserved role in entry among herpesviruses, yet the mechanism is not clear. To gain a better understanding of the role of gL in EBV-mediated fusion, chimeric proteins were made using rhesus lymphocryptovirus (Rh-LCV) gL (Rh gL), which shares a high sequence homology with EBV gL but does not complement EBV gL in mediating fusion with B cells. A reduction in fusion activity was observed with chimeric gL proteins that contained the amino terminus of Rh gL, although they retained their ability to process and transport gH/gL to the cell surface. Amino acids not conserved within this region in EBV gL when compared to Rh gL were further analyzed, with the results mapping residues 54 and 94 as being functionally important for EBV-mediated fusion. All chimeras and mutants displayed levels of cell surface expression similar to that of wild-type gL and interacted with gH and gp42. Our data also suggest that the role of gL involves the activation or recruitment of gB with the gH/gL complex, as we found that reduced fusion of Rh gL, EBV/Rh-LCV chimeras, and gL point mutants could be restored by replacing EBV gB with Rh gB. These observations demonstrate a distinction between the role of gL in the processing and trafficking of gH to the cell surface and a posttrafficking role in cell-cell fusion. PMID:19457993

  1. Calponin 3 regulates actin cytoskeleton rearrangement in trophoblastic cell fusion.

    PubMed

    Shibukawa, Yukinao; Yamazaki, Natsuko; Kumasawa, Keiichi; Daimon, Etsuko; Tajiri, Michiko; Okada, Yuka; Ikawa, Masahito; Wada, Yoshinao

    2010-11-15

    Cell-cell fusion is an intriguing differentiation process, essential for placental development and maturation. A proteomic approach identified a cytoplasmic protein, calponin 3 (CNN3), related to the fusion of BeWo choriocarcinoma cells. CNN3 was expressed in cytotrophoblasts in human placenta. CNN3 gene knockdown promoted actin cytoskeletal rearrangement and syncytium formation in BeWo cells, suggesting CNN3 to be a negative regulator of trophoblast fusion. Indeed, CNN3 depletion promoted BeWo cell fusion. CNN3 at the cytoplasmic face of cytoskeleton was dislocated from F-actin with forskolin treatment and diffused into the cytoplasm in a phosphorylation-dependent manner. Phosphorylation sites were located at Ser293/296 in the C-terminal region, and deletion of this region or site-specific disruption of Ser293/296 suppressed syncytium formation. These CNN3 mutants were colocalized with F-actin and remained there after forskolin treatment, suggesting that dissociation of CNN3 from F-actin is modulated by the phosphorylation status of the C-terminal region unique to CNN3 in the CNN family proteins. The mutant missing these phosphorylation sites displayed a dominant negative effect on cell fusion, while replacement of Ser293/296 with aspartic acid enhanced syncytium formation. These results indicated that CNN3 regulates actin cytoskeleton rearrangement which is required for the plasma membranes of trophoblasts to become fusion competent. PMID:20861310

  2. Fusion-mediated transfer of plasmids into Spiroplasma floricola cells.

    PubMed

    Salman, M; Tarshis, M; Rottem, S

    1992-07-01

    We have developed and characterized a system for the transfer of plasmids encapsulated in large unilamellar vesicles (LUV) into Spiroplasma floricola BNR1 cells. The approach is based on the ability of S. floricola-derived LUV to fuse with S. floricola cells. The fusion was continuously monitored by an assay for lipid mixing based on the dequenching of the fluorescent probe octadecylrhodamine B (R18) that was incorporated into LUV at self-quenching concentrations. The fusion was also evaluated by fluorescence-activated cell sorter measurements and by sucrose density gradient analysis. LUV-cell fusion occurred only in the presence of low concentrations (5%) of polyethylene glycol (polyethylene glycol 8000) and depended on temperature, the LUV/cell ratio, and divalent cations in the incubation medium. Throughout the fusion process, spiroplasma cells remained intact and viable. Under optimal fusion conditions, the plasmid pACYC, encapsulated in LUV by reversed-phase evaporation, was transferred into live S. floricola cells and expressed chloramphenicol acetyltransferase activity. The expression was transient with maximal chloramphenicol acetyltransferase activity observed after 6 h of incubation of the transfected cells. PMID:1624433

  3. Identification of Novel Fusion Genes in Testicular Germ Cell Tumors.

    PubMed

    Hoff, Andreas M; Alagaratnam, Sharmini; Zhao, Sen; Bruun, Jarle; Andrews, Peter W; Lothe, Ragnhild A; Skotheim, Rolf I

    2016-01-01

    Testicular germ cell tumors (TGCT) are the most frequently diagnosed solid tumors in young men ages 15 to 44 years. Embryonal carcinomas (EC) comprise a subset of TGCTs that exhibit pluripotent characteristics similar to embryonic stem (ES) cells, but the genetic drivers underlying malignant transformation of ECs are unknown. To elucidate the abnormal genetic events potentially contributing to TGCT malignancy, such as the existence of fusion genes or aberrant fusion transcript expression, we performed RNA sequencing of EC cell lines and their nonmalignant ES cell line counterparts. We identified eight novel fusion transcripts and one gene with alternative promoter usage, ETV6. Four out of nine transcripts were found recurrently expressed in an extended panel of primary TGCTs and additional EC cell lines, but not in normal parenchyma of the testis, implying tumor-specific expression. Two of the recurrent transcripts involved an intrachromosomal fusion between RCC1 and HENMT1 located 80 Mbp apart and an interchromosomal fusion between RCC1 and ABHD12B. RCC1-ABHD12B and the ETV6 transcript variant were found to be preferentially expressed in the more undifferentiated TGCT subtypes. In vitro differentiation of the NTERA2 EC cell line resulted in significantly reduced expression of both fusion transcripts involving RCC1 and the ETV6 transcript variant, indicating that they are markers of pluripotency in a malignant setting. In conclusion, we identified eight novel fusion transcripts that, to our knowledge, are the first fusion genes described in TGCT and may therefore potentially serve as genomic biomarkers of malignant progression. PMID:26659575

  4. Identification of novel fusion genes in testicular germ cell tumors

    PubMed Central

    Hoff, Andreas M.; Alagaratnam, Sharmini; Zhao, Sen; Bruun, Jarle; Andrews, Peter W.; Lothe, Ragnhild A.; Skotheim, Rolf I.

    2015-01-01

    Testicular germ cell tumors (TGCT) are the most frequently diagnosed solid tumors in young men ages 15 to 44 years. Embryonal carcinomas (EC) comprise a subset of TGCTs that exhibit pluripotent characteristics similar to embryonic stem (ES) cells, but the genetic drivers underlying malignant transformation of ECs are unknown. To elucidate the abnormal genetic events potentially contributing to TGCT malignancy, such as the existence of fusion genes or aberrant fusion transcript expression, we performed RNA sequencing of EC cell lines and their non-malignant ES cell line counterparts. We identified eight novel fusion transcripts and one gene with alternative promoter usage, ETV6. Four out of nine transcripts were found recurrently expressed in an extended panel of primary TGCTs and additional EC cell lines, but not in normal parenchyma of the testis, implying tumor-specific expression. Two of the recurrent transcripts involved an intrachromosomal fusion between RCC1 and HENMT1 located 80 Mbp apart and an interchromosomal fusion between RCC1 and ABHD12B. RCC1-ABHD12B and the ETV6 transcript variant were found to be preferentially expressed in the more undifferentiated TGCT subtypes. In vitro differentiation of the NTERA2 EC cell line resulted in significantly reduced expression of both fusion transcripts involving RCC1 and the ETV6 transcript variant, indicating that they are markers of pluripotency in a malignant setting. In conclusion, we identified eight novel fusion transcripts that, to our knowledge, are the first fusion genes described in TGCT and may therefore potentially serve as genomic biomarkers of malignant progression. PMID:26659575

  5. Dual Effect of Cyanidin on RANKL-Induced Differentiation and Fusion of Osteoclasts.

    PubMed

    Dou, Ce; Li, Jianmei; Kang, Fei; Cao, Zhen; Yang, Xiaochao; Jiang, Hong; Yang, Bo; Xiang, Junyu; Xu, Jianzhong; Dong, Shiwu

    2016-03-01

    Bone homeostasis is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Osteoclasts are multinucleated cells derived from hematopoietic stem cells (HSCs) or monocyte/macrophage progenitor cells and formed by osteoclasts precursors (OCPs) fusion. Cyanidin is an anthocyanin widely distributed in food diet with novel antioxidant activity. However, the effect of cyanidin on osteoclasts is still unknown. We investigated the effect of cyanidin on RANKL-induced osteoclasts differentiation and cell fusion. The results showed that cyanidin had a dual effect on RANKL-induced osteoclastogenesis. Lower dosage of cyanidin (< 1 µg/ml) has a promoting effect on osteoclastogenesis while higher dosage of cyanidin (> 10 µg/ml) has an inhibitory effect. Fusogenic genes like CD9, ATP6v0d2, DC-STAMP, OC-STAMP, and osteoclasts related genes like NFATc1, mitf, and c-fos were all regulated by cyanidin consistent to its dual effect. Further exploration showed that low concentration of cyanidin could increase osteoclasts fusion whereas higher dosage of cyanidin lead to the increase of LXR-β expression and activation which is suppressive to osteoclasts differentiaton. All these results showed that cyanidin exhibits therapeutic potential in prevention of osteoclasts related bone disorders. PMID:25545964

  6. Organotypic three-dimensional culture model of mesenchymal and epithelial cells to examine tissue fusion events.

    EPA Science Inventory

    Tissue fusion during early mammalian development requires coordination of multiple cell types, the extracellular matrix, and complex signaling pathways. Fusion events during processes including heart development, neural tube closure, and palatal fusion are dependent on signaling ...

  7. Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cell–cell fusion

    SciTech Connect

    Nakamura, Haruhiko; Nakashima, Tomoki; Hayashi, Mikihito; Izawa, Naohiro; Yasui, Tetsuro; Aburatani, Hiroyuki; Tanaka, Sakae; Takayanagi, Hiroshi

    2014-12-12

    Highlights: • Identification of epigenetically regulated genes during osteoclastogenesis. • Pcdh7 is regulated by H3K4me3 and H3K27me3 during osteoclastogenesis. • Pcdh7 expression is increased by RANKL during osteoclastogenesis. • Establishment of novel cell fusion analysis for osteoclasts by imaging cytometer. • Pcdh7 regulates osteoclastogenesis by promoting cell fusion related gene expressions. - Abstract: Gene expression is dependent not only on genomic sequences, but also epigenetic control, in which the regulation of chromatin by histone modification plays a crucial role. Histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) are related to transcriptionally activated and silenced sequences, respectively. Osteoclasts, the multinucleated cells that resorb bone, are generated by the fusion of precursor cells of monocyte/macrophage lineage. To elucidate the molecular and epigenetic regulation of osteoclast differentiation, we performed a chromatin immunoprecipitation sequencing (ChIP-seq) analysis for H3K4me3 and H3K27me3 in combination with RNA sequencing. We focused on the histone modification change from H3K4me3(+)H3K27me3(+) to H3K4me3(+)H3K27me3(–) and identified the protocadherin-7 gene (Pcdh7) to be among the genes epigenetically regulated during osteoclastogenesis. Pcdh7 was induced by RANKL stimulation in an NFAT-dependent manner. The knockdown of Pcdh7 inhibited RANKL-induced osteoclast differentiation due to the impairment of cell–cell fusion, accompanied by a decreased expression of the fusion-related genes Dcstamp, Ocstamp and Atp6v0d2. This study demonstrates that Pcdh7 plays a key role in osteoclastogenesis by promoting cell–cell fusion.

  8. Dynamics of cell aggregates fusion: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Thomas, Gilberto L.; Mironov, Vladimir; Nagy-Mehez, Agnes; Mombach, José C. M.

    2014-02-01

    Fusion of cell tissues is an ubiquitous phenomenon and has important technological applications including tissue biofabrication. In this work we present experimental results of aggregates fusion using adipose derived stem cells (ADSC) and a three dimensional computer simulation of the process using the cellular Potts model with aggregates reaching 10,000 cells. We consider fusion of round aggregates and monitor the dimensionless neck area of contact between the two aggregates to characterize the process, as done for the coalescence of liquid droplets and polymers. Both experiments and simulations show that the evolution of this quantity obeys a power law in time. We also study quantitatively individual cell motion with the simulation and it corresponds to an anomalous diffusion.

  9. In vitro evaluation of human hybrid cell lines generated by fusion of B-lymphoblastoid cells and ex vivo tumour cells as candidate vaccines for haematological malignancies.

    PubMed

    Mohamed, Yehia S; Dunnion, Debbie; Teobald, Iryna; Walewska, Renata; Browning, Michael J

    2012-10-12

    Fusions of dendritic cells (DCs) and tumour cells have been shown to induce protective immunity to tumour challenge in animal models, and to represent a promising approach to cancer immunotherapy. The broader clinical application of this approach, however, is potentially constrained by the lack of replicative capacity and limited standardisation of fusion cell preparations. We show here that fusion of ex vivo tumour cells isolated from patients with a range of haematological malignancies with the human B-lymphoblastoid cell line (LCL), HMy2, followed by chemical selection of the hybridomas, generated stable, self-replicating human hybrid cell lines that grew continuously in tissue culture, and survived freeze/thawing cycles. The hybrid cell lines expressed HLA class I and class II molecules, and the major T-cell costimulatory molecules, CD80 and CD86. All but two of 14 hybrid cell lines generated expressed tumour-associated antigens that were not expressed by HMy2 cells, and were therefore derived from the parent tumour cells. The hybrid cell lines stimulated allogeneic T-cell proliferative responses and interferon-gamma release in vitro to a considerably greater degree than their respective parent tumour cells. The enhanced T-cell stimulation was inhibited by CTLA4-Ig fusion protein, and by blocking antibodies to MHC class I and class II molecules. Finally, all of five LCL/tumour hybrid cell lines tested induced tumour antigen-specific cytotoxic T-cell responses in vitro in PBL from healthy, HLA-A2+ individuals, as detected by HLA-A2-peptide pentamer staining and cellular cytotoxicity. These data show that stable hybrid cell lines, with enhanced immunostimulatory properties and potential for therapeutic vaccination, can be generated by in vitro fusion and chemical selection of B-LCL and ex vivo haematological tumour cells. PMID:22939910

  10. Dendritic-Tumor Fusion Cell-Based Cancer Vaccines

    PubMed Central

    Koido, Shigeo

    2016-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that play a critical role in the induction of antitumor immunity. Therefore, various strategies have been developed to deliver tumor-associated antigens (TAAs) to DCs as cancer vaccines. The fusion of DCs and whole tumor cells to generate DC-tumor fusion cells (DC-tumor FCs) is an alternative strategy to treat cancer patients. The cell fusion method allows DCs to be exposed to the broad array of TAAs originally expressed by whole tumor cells. DCs then process TAAs endogenously and present them through major histocompatibility complex (MHC) class I and II pathways in the context of costimulatory molecules, resulting in simultaneous activation of both CD4+ and CD8+ T cells. DC-tumor FCs require optimized enhanced immunogenicity of both DCs and whole tumor cells. In this context, an effective fusion strategy also needs to produce immunogenic DC-tumor FCs. We discuss the potential ability of DC-tumor FCs and the recent progress in improving clinical outcomes by DC-tumor FC-based cancer vaccines. PMID:27240347

  11. Tissue Regeneration in the Chronically Inflamed Tumor Environment: Implications for Cell Fusion Driven Tumor Progression and Therapy Resistant Tumor Hybrid Cells.

    PubMed

    Dittmar, Thomas; Zänker, Kurt S

    2015-01-01

    The biological phenomenon of cell fusion in a cancer context is still a matter of controversial debates. Even though a plethora of in vitro and in vivo data have been published in the past decades the ultimate proof that tumor hybrid cells could originate in (human) cancers and could contribute to the progression of the disease is still missing, suggesting that the cell fusion hypothesis is rather fiction than fact. However, is the lack of this ultimate proof a valid argument against this hypothesis, particularly if one has to consider that appropriate markers do not (yet) exist, thus making it virtually impossible to identify a human tumor cell clearly as a tumor hybrid cell. In the present review, we will summarize the evidence supporting the cell fusion in cancer concept. Moreover, we will refine the cell fusion hypothesis by providing evidence that cell fusion is a potent inducer of aneuploidy, genomic instability and, most likely, even chromothripsis, suggesting that cell fusion, like mutations and aneuploidy, might be an inducer of a mutator phenotype. Finally, we will show that "accidental" tissue repair processes during cancer therapy could lead to the origin of therapy resistant cancer hybrid stem cells. PMID:26703575

  12. Tissue Regeneration in the Chronically Inflamed Tumor Environment: Implications for Cell Fusion Driven Tumor Progression and Therapy Resistant Tumor Hybrid Cells

    PubMed Central

    Dittmar, Thomas; Zänker, Kurt S.

    2015-01-01

    The biological phenomenon of cell fusion in a cancer context is still a matter of controversial debates. Even though a plethora of in vitro and in vivo data have been published in the past decades the ultimate proof that tumor hybrid cells could originate in (human) cancers and could contribute to the progression of the disease is still missing, suggesting that the cell fusion hypothesis is rather fiction than fact. However, is the lack of this ultimate proof a valid argument against this hypothesis, particularly if one has to consider that appropriate markers do not (yet) exist, thus making it virtually impossible to identify a human tumor cell clearly as a tumor hybrid cell. In the present review, we will summarize the evidence supporting the cell fusion in cancer concept. Moreover, we will refine the cell fusion hypothesis by providing evidence that cell fusion is a potent inducer of aneuploidy, genomic instability and, most likely, even chromothripsis, suggesting that cell fusion, like mutations and aneuploidy, might be an inducer of a mutator phenotype. Finally, we will show that “accidental” tissue repair processes during cancer therapy could lead to the origin of therapy resistant cancer hybrid stem cells. PMID:26703575

  13. Proteasome inhibitor MG-132 enhances histone deacetylase inhibitor SAHA-induced cell death of chronic myeloid leukemia cells by an ROS-mediated mechanism and downregulation of the Bcr-Abl fusion protein

    PubMed Central

    ZHOU, WENJING; ZHU, WEIWEI; MA, LIYA; XIAO, FENG; QIAN, WENBIN

    2015-01-01

    Recently, there has been progress in the treatment of chronic myeloid leukemia (CML). However, novel therapeutic strategies are required in order to address the emerging problem of imatinib resistance. Histone deacetylase inhibitors (HDACi) and proteasome inhibitors are promising alternatives, and may be amenable to integration with current therapeutic approaches. However, the mechanisms underlying the interaction between these two agents remain unclear. The present study assessed the cytotoxic effect of the HDACi, suberoylanilide hydroxamic acid (SAHA), in combination with the proteasome inhibitor, MG-132, in imatinib-sensitive K562 and imatinib-resistant K562G cells, and investigated the mechanism underlying this effect. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and protein expression levels were determined by western blotting. Reactive oxygen species (ROS) generation levels were observed under a fluorescence microscope The results indicated that SAHA and MG-132 act in a synergistic manner to induce cell death in K562 and K562G cells. This effect was associated with Bcr-Abl downregulation and the production of ROS. Notably, the ROS scavenger, N-acetyl-L-cysteine, almost fully reversed the cell death and Bcr-Abl downregulation that was induced by the combination of SAHA and MG-132. By contrast, the pan-caspase inhibitor, z-VAD-fmk, only partially reversed the cell death induced by these two drugs in CML cells. These results indicated that increased intracellular ROS levels are important in the induction of cell death and the downregulation of Bcr-Abl. In conclusion, the present results suggested that combined SAHA and MG-132 may be a promising treatment for CML. PMID:26722260

  14. Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death.

    PubMed

    Thomenius, M; Freel, C D; Horn, S; Krieser, R; Abdelwahid, E; Cannon, R; Balasundaram, S; White, K; Kornbluth, S

    2011-10-01

    In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die. PMID:21475305

  15. Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death

    PubMed Central

    Thomenius, M; Freel, C D; Horn, S; Krieser, R; Abdelwahid, E; Cannon, R; Balasundaram, S; White, K; Kornbluth, S

    2011-01-01

    In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die. PMID:21475305

  16. Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia.

    PubMed

    Segal, Dagan; Dhanyasi, Nagaraju; Schejter, Eyal D; Shilo, Ben-Zion

    2016-08-01

    Indirect flight muscles (IFMs) in Drosophila are generated during pupariation by fusion of hundreds of myoblasts with larval muscle templates (myotubes). Live observation of these muscles during the fusion process revealed multiple long actin-based protrusions that emanate from the myotube surface and require Enabled and IRSp53 for their generation and maintenance. Fusion is blocked when formation of these filopodia is compromised. While filopodia are not required for the signaling process underlying critical myoblast cell-fate changes prior to fusion, myotube-myoblast adhesion appears to be filopodia dependent. Without filopodia, close apposition between the cell membranes is not achieved, the cell-adhesion molecule Duf is not recruited to the myotube surface, and adhesion-dependent actin foci do not form. We therefore propose that the filopodia are necessary to prime the heterotypic adhesion process between the two cell types, possibly by recruiting the cell-adhesion molecule Sns to discrete patches on the myoblast cell surface. PMID:27505416

  17. Genomic instability and telomere fusion of canine osteosarcoma cells.

    PubMed

    Maeda, Junko; Yurkon, Charles R; Fujisawa, Hiroshi; Kaneko, Masami; Genet, Stefan C; Roybal, Erica J; Rota, Garrett W; Saffer, Ethan R; Rose, Barbara J; Hanneman, William H; Thamm, Douglas H; Kato, Takamitsu A

    2012-01-01

    Canine osteosarcoma (OSA) is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH) using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA. PMID:22916246

  18. Lysosome fusion to the cell membrane is mediated by the dysferlin C2A domain in coronary arterial endothelial cells

    PubMed Central

    Han, Wei-Qing; Xia, Min; Xu, Ming; Boini, Krishna M.; Ritter, Joseph K.; Li, Ning-Jun; Li, Pin-Lan

    2012-01-01

    Dysferlin has recently been reported to participate in cell membrane repair in muscle and other cells through lysosome fusion. Given that lysosome fusion is a crucial mechanism that leads to membrane raft clustering, the present study attempted to determine whether dysferlin is involved in this process and its related signalling, and explores the mechanism underlying dysferlin-mediated lysosome fusion in bovine coronary arterial endothelial cells (CAECs). We found that dysferlin is clustered in membrane raft macrodomains after Fas Ligand (FasL) stimulation as detected by confocal microscopy and membrane fraction flotation. Small-interfering RNA targeted to dysferlin prevented membrane raft clustering. Furthermore, the translocation of acid sphingomyelinase (ASMase) to membrane raft clusters, whereby local ASMase activation and ceramide production – an important step that mediates membrane raft clustering – was attenuated. Functionally, silencing of the dysferlin gene reversed FasL-induced impairment of endothelium-dependent vasodilation in isolated small coronary arteries. By monitoring fluorescence quenching or dequenching, silencing of the dysferlin gene was found to almost completely block lysosome fusion to plasma membrane upon FasL stimulation. Further studies to block C2A binding and silencing of AHNAK (a dysferlin C2A domain binding partner), showed that the dysferlin C2A domain is required for FasL-induced lysosome fusion to the cell membrane, ASMase translocation and membrane raft clustering. We conclude that dysferlin determines lysosome fusion to the plasma membrane through its C2A domain and it is therefore implicated in membrane-raft-mediated signaling and regulation of endothelial function in coronary circulation. PMID:22349696

  19. Proteasome Impairment Induces Recovery of Mitochondrial Membrane Potential and an Alternative Pathway of Mitochondrial Fusion

    PubMed Central

    Shirozu, Ryohei; Yashiroda, Hideki

    2015-01-01

    Mitochondria are vital and highly dynamic organelles that continuously fuse and divide to maintain mitochondrial quality. Mitochondrial dysfunction impairs cellular integrity and is known to be associated with various human diseases. However, the mechanism by which the quality of mitochondria is maintained remains largely unexplored. Here we show that impaired proteasome function recovers the growth of yeast cells lacking Fzo1, a pivotal protein for mitochondrial fusion. Decreased proteasome activity increased the mitochondrial oxidoreductase protein Mia40 and the ratio of the short isoform of mitochondrial intermembrane protein Mgm1 (s-Mgm1) to the long isoform (l-Mgm1). The increase in Mia40 restored mitochondrial membrane potential, while the increase in the s-Mgm1/l-Mgm1 ratio promoted mitochondrial fusion in an Fzo1-independent manner. Our findings demonstrate a new pathway for mitochondrial quality control that is induced by proteasome impairment. PMID:26552703

  20. RAB-5- and DYNAMIN-1-Mediated Endocytosis of EFF-1 Fusogen Controls Cell-Cell Fusion.

    PubMed

    Smurova, Ksenia; Podbilewicz, Benjamin

    2016-02-16

    Cell-cell fusion plays essential roles during fertilization and organogenesis. Previous studies in C. elegans led to the identification of the eukaryotic fusion protein (EFF-1 fusogen), which has structural homology to class II viral fusogens. Transcriptional repression of EFF-1 ensures correct fusion fates, and overexpression of EFF-1 results in embryonic lethality. EFF-1 must be expressed on the surface of both fusing cells; however, little is known regarding how cells regulate EFF-1 surface exposure. Here, we report that EFF-1 is actively removed from the plasma membrane of epidermal cells by dynamin- and RAB-5-dependent endocytosis and accumulates in early endosomes. EFF-1 was transiently localized to apical domains of fusion-competent cells. Effective cell-cell fusion occurred only between pairs of cell membranes in which EFF-1 localized. Downregulation of dynamin or RAB-5 caused EFF-1 mislocalization to all apical membrane domains and excessive fusion. Thus, internalization of EFF-1 is a safety mechanism preventing excessive cell fusion. PMID:26854231

  1. RAB-5- and DYNAMIN-1-Mediated Endocytosis of EFF-1 Fusogen Controls Cell-Cell Fusion

    PubMed Central

    Smurova, Ksenia; Podbilewicz, Benjamin

    2016-01-01

    Summary Cell-cell fusion plays essential roles during fertilization and organogenesis. Previous studies in C. elegans led to the identification of the eukaryotic fusion protein (EFF-1 fusogen), which has structural homology to class II viral fusogens. Transcriptional repression of EFF-1 ensures correct fusion fates, and overexpression of EFF-1 results in embryonic lethality. EFF-1 must be expressed on the surface of both fusing cells; however, little is known regarding how cells regulate EFF-1 surface exposure. Here, we report that EFF-1 is actively removed from the plasma membrane of epidermal cells by dynamin- and RAB-5-dependent endocytosis and accumulates in early endosomes. EFF-1 was transiently localized to apical domains of fusion-competent cells. Effective cell-cell fusion occurred only between pairs of cell membranes in which EFF-1 localized. Downregulation of dynamin or RAB-5 caused EFF-1 mislocalization to all apical membrane domains and excessive fusion. Thus, internalization of EFF-1 is a safety mechanism preventing excessive cell fusion. PMID:26854231

  2. Intrinsic activity of human immunodeficiency virus type 1 protease heterologous fusion proteins in mammalian cells.

    PubMed

    Arrigo, S J; Haines, J K; Huffman, K M

    1995-01-01

    We have generated various mammalian expression constructs that produce fusion proteins of human immunodeficiency virus type 1 (HIV-1) protease (PR) with the HIV-1 Nef protein. The expression of these proteins is inducible by the HIV-1 Tat protein. High-level expression of proteolytically active PR was produced from PR imbedded into Nef coding sequences, flanked by PR cleavage sites. The fusion protein was cleaved nearly to completion and did not exhibit the regulated processing that is seen with the virally encoded PR. No cytotoxic effect of PR expression was detected. The self-cleavage of PR could be inhibited by a specific inhibitor of HIV-1 PR (U75875). Elimination of the aminoterminal PR cleavage site did not have a measurable effect on cleavage of the precursor fusion protein. The cleaved fusion proteins appeared to be extremely unstable in the transfected cells. These findings demonstrate the intrinsic activity of HIV-1 PR in mammalian cells, in the context of a heterologous fusion protein. PMID:7832989

  3. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains.

    PubMed

    Wu, Zhenyong; Auclair, Sarah M; Bello, Oscar; Vennekate, Wensi; Dudzinski, Natasha R; Krishnakumar, Shyam S; Karatekin, Erdem

    2016-01-01

    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle -the fusion pore- can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, "flipped" t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability. PMID:27264104

  4. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains

    PubMed Central

    Wu, Zhenyong; Auclair, Sarah M.; Bello, Oscar; Vennekate, Wensi; Dudzinski, Natasha R.; Krishnakumar, Shyam S.; Karatekin, Erdem

    2016-01-01

    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle –the fusion pore– can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, “flipped” t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability. PMID:27264104

  5. Direct Involvement of HERV-W Env Glycoprotein in Human Trophoblast Cell Fusion and Differentiation

    PubMed Central

    Frendo, Jean-Louis; Olivier, Delphine; Cheynet, Valérie; Blond, Jean-Luc; Bouton, Olivier; Vidaud, Michel; Rabreau, Michèle; Evain-Brion, Danièle; Mallet, François

    2003-01-01

    We recently demonstrated that the product of the HERV-W env gene, a retroviral envelope protein also dubbed syncytin, is a highly fusogenic membrane glycoprotein inducing the formation of syncytia on interaction with the type D mammalian retrovirus receptor. In addition, the detection of HERV-W Env protein (Env-W) expression in placental tissue sections led us to propose a role for this fusogenic glycoprotein in placenta formation. To evaluate this hypothesis, we analyzed the involvement of Env-W in the differentiation of primary cultures of human villous cytotrophoblasts that spontaneously differentiate by cell fusion into syncytiotrophoblasts in vitro. First, we observed that HERV-W env mRNA and glycoprotein expression are colinear with primary cytotrophoblast differentiation and with expression of human chorionic gonadotropin (hCG), a marker of syncytiotrophoblast formation. Second, we observed that in vitro stimulation of trophoblast cell fusion and differentiation by cyclic AMP is also associated with a concomitant increase in HERV-W env and hCG mRNA and protein expression. Finally, by using specific antisense oligonucleotides, we demonstrated that inhibition of Env-W protein expression leads to a decrease of trophoblast fusion and differentiation, with the secretion of hCG in culture medium of antisense oligonucleotide-treated cells being decreased by fivefold. Taken together, these results strongly support a direct role for Env-W in human trophoblast cell fusion and differentiation. PMID:12724415

  6. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    SciTech Connect

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun; Lim, Chaeseung; Kim, Jungho; Cha, Dae Ryong; Oh, Junseo

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  7. The molecular role of connexin 43 in human trophoblast cell fusion.

    PubMed

    Dunk, Caroline E; Gellhaus, Alexandra; Drewlo, Sascha; Baczyk, Dora; Pötgens, Andy J G; Winterhager, Elke; Kingdom, John C P; Lye, Steven J

    2012-04-01

    Connexin expression and gap junctional intercellular communication (GJIC) mediated by connexin 43 (Cx43)/gap junction A1 (GJA1) are required for cytotrophoblast fusion into the syncytium, the outer functional layer of the human placenta. Cx43 also impacts intracellular signaling through protein-protein interactions. The transcription factor GCM1 and its downstream target ERVW-1/SYNCYTIN-1 are key players in trophoblast fusion and exert their actions through the ERVW-1 receptor SLC1A5/ASCT-2/RDR/ATB(0). To investigate the molecular role of the Cx43 protein and its interaction with this fusogenic pathway, we utilized stable Cx43-transfected cell lines established from the choriocarcinoma cell line Jeg3: wild-type Jeg3, alphahCG/Cx43 (constitutive Cx43 expression), JpUHD/Cx43 (doxycyclin-inducible Cx43 expression), or JpUHD/trCx43 (doxycyclin-inducible Cx43 carboxyterminal deleted). We hypothesized that truncation of Cx43 at its C-terminus would inhibit trophoblast fusion and protein interaction with either ERVW-1 or SLC1A5. In the alphahCG/Cx43 and JpUHD/Cx43 lines, stimulation with cAMP caused 1) increase in GJA1 mRNA levels, 2) increase in percentage of fused cells, and 3) downregulation of SLC1A5 expression. Cell fusion was inhibited by GJIC blockade using carbenoxylone. Neither Jeg3, which express low levels of Cx43, nor the JpUHD/trCx43 cell line demonstrated cell fusion or downregulation of SLC1A5. However, GCM1 and ERVW-1 mRNAs were upregulated by cAMP treatment in both Jeg3 and all Cx43 cell lines. Silencing of GCM1 prevented the induction of GJA1 mRNA by forskolin in BeWo choriocarcinoma cells, demonstrating that GCM1 is upstream of Cx43. All cell lines and first-trimester villous explants also demonstrated coimmunoprecipitation of SLC1A5 and phosphorylated Cx43. Importantly, SLC1A5 and Cx43 gap junction plaques colocalized in situ to areas of fusing cytotrophoblast, as demonstrated by the loss of E-cadherin staining in the plasma membrane in first

  8. Fusion of CCL21 Non-Migratory Active Breast Epithelial and Breast Cancer Cells Give Rise to CCL21 Migratory Active Tumor Hybrid Cell Lines

    PubMed Central

    Reith, Georg; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S.; Dittmar, Thomas

    2013-01-01

    The biological phenomenon of cell fusion has been linked to tumor progression because several data provided evidence that fusion of tumor cells and normal cells gave rise to hybrid cell lines exhibiting novel properties, such as increased metastatogenic capacity and an enhanced drug resistance. Here we investigated M13HS hybrid cell lines, derived from spontaneous fusion events between M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics and HS578T-Hyg breast cancer cells, concerning CCL21/CCR7 signaling. Western Blot analysis showed that all cell lines varied in their CCR7 expression levels as well as differed in the induction and kinetics of CCR7 specific signal transduction cascades. Flow cytometry-based calcium measurements revealed that a CCL21 induced calcium influx was solely detected in M13HS hybrid cell lines. Cell migration demonstrated that only M13HS hybrid cell lines, but not parental derivatives, responded to CCL21 stimulation with an increased migratory activity. Knockdown of CCR7 expression by siRNA completely abrogated the CCL21 induced migration of hybrid cell lines indicating the necessity of CCL21/CCR7 signaling. Because the CCL21/CCR7 axis has been linked to metastatic spreading of breast cancer to lymph nodes we conclude from our data that cell fusion could be a mechanism explaining the origin of metastatic cancer (hybrid) cells. PMID:23667660

  9. Secretion is required for late events in the cell-fusion pathway of mating yeast.

    PubMed

    Grote, Eric

    2010-06-01

    Secretory vesicles accumulate adjacent to the contact site between the two cells of a yeast mating pair before they fuse, but there is no direct evidence that secretion is required to complete fusion. In this study, temperature-sensitive secretion (sec(ts)) mutants were used to investigate the role of secretion in yeast cell fusion. Cell fusion arrested less than 5 minutes after inhibiting secretion. This rapid fusion arrest was not an indirect consequence of reduced mating pheromone signaling, mating-pair assembly or actin polarity. Furthermore, secretion was required to complete cell fusion when it was transiently inhibited by addition and removal of the lipophilic styryl dye, FM4-64. These results indicate that ongoing secretion is required for late events in the cell-fusion pathway, which include plasma-membrane fusion and the completion of cell-wall remodeling, and they demonstrate a just-in-time delivery mechanism for the cell-fusion machinery. PMID:20460435

  10. Characterization of functionally active interleukin-18/eGFP fusion protein expression during cell cycle phases in recombinant chicken DF1 Cells.

    PubMed

    Wu, Hsing Chieh; Chen, Yu San; Shien, Jui Hung; Shen, Pin Chun; Lee, Long Huw

    2016-05-01

    The dependence of foreign gene expression on cell cycle phases in mammalian cells has been described. In this study, a DF1/chIL-18a cell line that stably expresses the fusion protein chIL-18 was constructed and the enhanced green fluorescence protein connected through a (G4 S)3 linker sequence investigated the relationship between cell cycle phases and fusion protein production. DF1/chIL-18a cells (1 × 10(5) ) were inoculated in 60-mm culture dishes containing 5 mL of media to achieve 50%-60% confluence and were cultured in the presence of the cycle-specific inhibitors 10058-F4, aphidicolin, and colchicine for 24 and 48 h. The percentage of cell density and mean fluorescence intensity in each cell cycle phase were assessed using flow cytometry. The inhibitors effectively arrested cell growth. The fusion protein production rate was higher in the S phase than in the G0/G1 and G2/M phases. When cell cycle progression was blocked in the G0/G1, S, and G2/M phases by the addition of 10058-F4, aphidicolin, and colchicine, respectively, the aphidicolin-induced single cells showed higher fusion protein levels than did the 10058-F4- or colchicine-induced phase cells and the uninduced control cells. Although the cells did not proliferate after the drug additions, the amount of total fusion protein accumulated in aphidicolin-treated cells was similar to that in the untreated cultures. Fusion protein is biologically active because it induces IFN-γ production in splenocyte cultures of chicken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:581-591, 2016. PMID:26850993

  11. Evaluation of Posterolateral Lumbar Fusion in Sheep Using Mineral Scaffolds Seeded with Cultured Bone Marrow Cells

    PubMed Central

    Cuenca-López, María D.; Andrades, José A.; Gómez, Santiago; Zamora-Navas, Plácido; Guerado, Enrique; Rubio, Nuria; Blanco, Jerónimo; Becerra, José

    2014-01-01

    The objective of this study is to investigate the efficacy of hybrid constructs in comparison to bone grafts (autograft and allograft) for posterolateral lumbar fusion (PLF) in sheep, instrumented with transpedicular screws and bars. Hybrid constructs using cultured bone marrow (BM) mesenchymal stem cells (MSCs) have shown promising results in several bone healing models. In particular, hybrid constructs made by calcium phosphate-enriched cells have had similar fusion rates to bone autografts in posterolateral lumbar fusion in sheep. In our study, four experimental spinal fusions in two animal groups were compared in sheep: autograft and allograft (reference group), hydroxyapatite scaffold, and hydroxyapatite scaffold seeded with cultured and osteoinduced bone marrow MSCs (hybrid construct). During the last three days of culture, dexamethasone (dex) and beta-glycerophosphate (β-GP) were added to potentiate osteoinduction. The two experimental situations of each group were tested in the same spinal segment (L4–L5). Spinal fusion and bone formation were studied by clinical observation, X-ray, computed tomography (CT), histology, and histomorphometry. Lumbar fusion rates assessed by CT scan and histology were higher for autograft and allograft (70%) than for mineral scaffold alone (22%) and hybrid constructs (35%). The quantity of new bone formation was also higher for the reference group, quite similar in both (autograft and allograft). Although the hybrid scaffold group had a better fusion rate than the non-hybrid scaffold group, the histological analysis revealed no significant differences between them in terms of quantity of bone formation. The histology results suggested that mineral scaffolds were partly resorbed in an early phase, and included in callus tissues. Far from the callus area the hydroxyapatite alone did not generate bone around it, but the hybrid scaffold did. In nude mice, labeled cells were induced to differentiate in vivo and monitored by

  12. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  13. Studies of near-barrier fusion induced by neutron-rich nuclei at HRIBF

    SciTech Connect

    Liang, J Felix

    2011-01-01

    Fusion induced by neutron-rich radioactive beams is a topic of current interest. The findings will be useful for using radioactive beams to produce superheavy elements. Results from recent measurements performed with neutron-rich radioactive Sn and Te beams are presented. Coupled-channels calculations were carried out to study the observed sub-barrier fusion enhancement. The fusion probability in Sn on Ni were probed by comparing the evaporation residue cross sections at high excitation energies.

  14. Hemi-fused structure mediates and controls fusion and fission in live cells.

    PubMed

    Zhao, Wei-Dong; Hamid, Edaeni; Shin, Wonchul; Wen, Peter J; Krystofiak, Evan S; Villarreal, Seth A; Chiang, Hsueh-Cheng; Kachar, Bechara; Wu, Ling-Gang

    2016-06-23

    Membrane fusion and fission are vital for eukaryotic life. For three decades, it has been proposed that fusion is mediated by fusion between the proximal leaflets of two bilayers (hemi-fusion) to produce a hemi-fused structure, followed by fusion between the distal leaflets, whereas fission is via hemi-fission, which also produces a hemi-fused structure, followed by full fission. This hypothesis remained unsupported owing to the lack of observation of hemi-fusion or hemi-fission in live cells. A competing fusion hypothesis involving protein-lined pore formation has also been proposed. Here we report the observation of a hemi-fused Ω-shaped structure in live neuroendocrine chromaffin cells and pancreatic β-cells, visualized using confocal and super-resolution stimulated emission depletion microscopy. This structure is generated from fusion pore opening or closure (fission) at the plasma membrane. Unexpectedly, the transition to full fusion or fission is determined by competition between fusion and calcium/dynamin-dependent fission mechanisms, and is notably slow (seconds to tens of seconds) in a substantial fraction of the events. These results provide key missing evidence in support of the hemi-fusion and hemi-fission hypothesis in live cells, and reveal the hemi-fused intermediate as a key structure controlling fusion and fission, as fusion and fission mechanisms compete to determine the transition to fusion or fission. PMID:27309816

  15. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir, Sanjiv; Pritha, Ray

    2015-07-14

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  16. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir; Sanjiv , Pritha; Ray

    2009-04-28

    Novel double and triple fusion reporter gene constructs harboring distinct imageable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  17. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir, Sanjiv; Pritha, Ray

    2011-06-07

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  18. The Effect of Acute Microgravity on Mechanically-Induced Membrane Damage and Membrane-Membrane Fusion Events

    NASA Technical Reports Server (NTRS)

    Clarke, Mark, S. F.; Vanderburg, Charles R.; Feedback, Daniel L.

    2001-01-01

    Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". This response is characterized by both membrane rupture and membrane resealing events mediated by membrane-membrane fusion. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.

  19. The effect of acute microgravity on mechanically-induced membrane damage and membrane-membrane fusion events

    NASA Technical Reports Server (NTRS)

    Clarke, M. S.; Vanderburg, C. R.; Feeback, D. L.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". Both membrane rupture and membrane resealing events mediated by membrane-membrane fusion characterize this response. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.

  20. Hybrid cells derived from breast epithelial cell/breast cancer cell fusion events show a differential RAF-AKT crosstalk

    PubMed Central

    2012-01-01

    Background The biological phenomenon of cell fusion has been linked to several characteristics of tumour progression, including an enhanced metastatogenic capacity and an enhanced drug resistance of hybrid cells. We demonstrated recently that M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics spontaneously fused with MDA-MB-435-Hyg breast cancer cells, thereby giving rise to stable M13MDA435 hybrid cells, which are characterised by a unique gene expression profile and migratory behaviour. Here we investigated the involvement of the PLC-β/γ1, PI3K/AKT and RAS-RAF-ERK signal transduction cascades in the EGF and SDF-1α induced migration of two M13MDA435 hybrid cell clones in comparison to their parental cells. Results Analysis of the migratory behaviour by using the three-dimensional collagen matrix migration assay showed that M13SV1-EGFP-Neo cells as well as M13MDA435 hybrid cells, but not the breast cancer cell line, responded to EGF stimulation with an increased locomotory activity. By contrast, SDF-1α solely stimulated the migration of M13SV1-EGFP-Neo cells, whereas the migratory activity of the other cell lines was blocked. Analysis of signal transduction cascades revealed a putative differential RAF-AKT crosstalk in M13MDA435-1 and -3 hybrid cell clones. The PI3K inhibitor Ly294002 effectively blocked the EGF induced migration of M13MDA435-3 hybrid cells, whereas the EGF induced locomotion of M13MDA435-1 hybrid cells was markedly increased. Analysis of RAF-1 S259 phosphorylation, being a major mediator of the negative regulation of RAF-1 by AKT, showed decreased pRAF-1 S259 levels in LY294002 treated M13MDA435-1 hybrid cells. By contrast, pRAF-1 S259 levels remained unaltered in the other cell lines. Inhibition of PI3K/AKT signalling by Ly294002 relieves the AKT mediated phosphorylation of RAF-1, thereby restoring MAPK signalling. Conclusions Here we show that hybrid cells could evolve exhibiting a differential active RAF

  1. FUSION-COMPETENT STATE INDUCED BY A C-TERMINAL HIV-1 FUSION PEPTIDE IN CHOLESTEROL-RICH MEMBRANES

    PubMed Central

    Apellániz, Beatriz; Nieva, José L.

    2015-01-01

    The replicative cycle of the Human Immunodeficiency Virus type-1 begins after fusion of the viral and target-cell membranes. The envelope glycoprotein gp41 transmembrane subunit contains conserved hydrophobic domains that engage and perturb the merging lipid bilayers. In this work, we have characterized the fusion-committed state generated in vesicles by CpreTM, a synthetic peptide derived from the sequence connecting the membrane-proximal external region (MPER) and the transmembrane domain (TMD) of gp41. Pre-loading cholesterol-rich vesicles with CpreTM rendered them competent for subsequent lipid-mixing with fluorescently-labeled target vesicles. Highlighting the physiological relevance of the lasting fusion-competent state, the broadly neutralizing antibody 4E10 bound to the CpreTM-primed vesicles and inhibited lipid-mixing. Heterotypic fusion assays disclosed dependence on the lipid composition of the vesicles that acted either as virus or cell membrane surrogates. Lipid-mixing exhibited above all a critical dependence on the cholesterol content in those experiments. We infer that the fusion-competent state described herein resembles bona-fide perturbations generated by the pre-hairpin MPER-TMD connection within the viral membrane. PMID:25617671

  2. p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance

    PubMed Central

    2010-01-01

    Background Cancer cells recurrently develop into acquired resistance to the administered drugs. The iatrogenic mechanisms of induced chemotherapy-resistance remain elusive and the degree of drug resistance did not exclusively correlate with reductions of drug accumulation, suggesting that drug resistance may involve additional mechanisms. Our aim is to define the potential targets, that makes drug-sensitive MCF-7 breast cancer cells turn to drug-resistant, for the anti-cancer drug development against drug resistant breast cancer cells. Methods Doxorubicin resistant human breast MCF-7 clones were generated. The doxorubicin-induced cell fusion events were examined. Heterokaryons were identified and sorted by FACS. In the development of doxorubicin resistance, cell-fusion associated genes, from the previous results of microarray, were verified using dot blot array and quantitative RT-PCR. The doxorubicin-induced expression patterns of pro-survival and pro-apoptotic genes were validated. Results YB-1 and ABCB5 were up regulated in the doxorubicin treated MCF-7 cells that resulted in certain degree of genomic instability that accompanied by the drug resistance phenotype. Cell fusion increased diversity within the cell population and doxorubicin resistant MCF-7 cells emerged probably through clonal selection. Most of the drug resistant hybrid cells were anchorage independent. But some of the anchorage dependent MCF-7 cells exhibited several unique morphological appearances suggesting minor population of the fused cells maybe de-differentiated and have progenitor cell like characteristics. Conclusion Our work provides valuable insight into the drug induced cell fusion event and outcome, and suggests YB-1, GST, ABCB5 and ERK3 could be potential targets for the anti-cancer drug development against drug resistant breast cancer cells. Especially, the ERK-3 serine/threonine kinase is specifically up-regulated in the resistant cells and known to be susceptible to synthetic

  3. Mitofusin-2 protects against cold stress-induced cell injury in HEK293 cells

    SciTech Connect

    Zhang, Wenbin; Chen, Yaomin; Yang, Qun; Che, Honglei; Chen, Xiangjun; Yao, Ting; Zhao, Fang; Liu, Mingchao; Ke, Tao; Chen, Jingyuan; Luo, Wenjing

    2010-06-25

    Mitochondrial impairment is hypothesized to contribute to cell injury during cold stress. Mitochondria fission and fusion are closely related in the function of the mitochondria, but the precise mechanisms whereby these processes regulate cell injury during cold stress remain to be determined. HEK293 cells were cultured in a cold environment (4.0 {+-} 0.1 {sup o}C) for 2, 4, 8, or 12 h. Western blot analyses showed that these cells expressed decreased fission-related protein Drp1 and increased fusion-related protein Mfn2 at 4 h; meanwhile, electron microscopy analysis revealed large and long mitochondrial morphology within these cells, indicating increased mitochondrial fusion. With silencing of Mfn2 but not of Mfn1 by siRNA promoted cold-stress-induced cell death with decreased ATP production in HEK293 cells. Our results show that increased expression of Mfn2 and mitochondrial fusion are important for mitochondrial function as well as cell survival during cold stress. These findings have important implications for understanding the mechanisms of mitochondrial fusion and fission in cold-stress-induced cell injury.

  4. Small-Molecule Hydrophobic Tagging Induced Degradation of HaloTag Fusion Proteins

    PubMed Central

    Neklesa, Taavi K.; Tae, Hyun Seop; Schneekloth, Ashley R.; Stulberg, Michael J.; Corson, Timothy W.; Sundberg, Thomas B.; Raina, Kanak; Holley, Scott A.; Crews, Craig M.

    2011-01-01

    The ability to regulate any protein of interest in living systems with small molecules remains a challenge. We hypothesized that appending a hydrophobic moiety to the surface of a protein would mimic the partially denatured state of the protein, thus engaging the cellular quality control machinery to induce its proteasomal degradation. We designed and synthesized bifunctional small molecules that bind a bacterial dehalogenase (HaloTag protein) and present a hydrophobic group on its surface. Remarkably, hydrophobic tagging of the HaloTag protein with an adamantyl moiety induced the degradation of cytosolic, isoprenylated, and transmembrane fusion proteins in cell culture. We demonstrated the in vivo utility of hydrophobic tagging by degrading proteins expressed in zebrafish embryos and by inhibiting RasG12V-driven tumor progression in mice. Therefore, hydrophobic tagging of HaloTag fusion proteins affords small molecule control over any protein of interest, making it an ideal system for validating potential drug targets in disease models. PMID:21725302

  5. Calculations of Proton Emission Cross Sections in Deuteron Induced Reactions of Some Fusion Structural Materials

    NASA Astrophysics Data System (ADS)

    Yiğit, M.; Tel, E.; Tanır, G.

    2013-06-01

    The growing demands for energy consumption have led to the increase of the research and development activities on new energy sources. Fusion energy has the highest potential to become a very safe, clean and abundant energy source for the future. To get energy from fusion are needed for development of fusion reactor technology. Particularly, the design and development of international facilities as International Thermonuclear Experimental Reactor and International Fusion Material Irradiation Facility requires for the cross-section data of deuteron induced reactions. Moreover, the selection of fusion structural materials are an indispensable component for this technology. Therefore, the cross-section data of deuteron induced reactions on fusion structural materials are of great importance for development of fusion reactor technology. In this study, reaction model calculations of the cross sections of deuteron induced reactions on structural fusion materials such as 27Al, 59Co, 55Mn, 50Cr, 54Cr, 64Ni, 109Ag, 184W and 186W have been carried out for incident energies up to 50 MeV. In these calculations, the pre-equilibrium and equilibrium effects for ( d, p) stripping reactions have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model and hybrid model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. In the calculations the program code ALICE/ASH was used. The calculated results are discussed and compared with the experimental data taken from the literature.

  6. Search for systematic behavior of incomplete-fusion probability and complete-fusion suppression induced by {sup 9}Be on different targets

    SciTech Connect

    Gomes, P. R. S.; Linares, R.; Lubian, J.; Lopes, C. C.; Cardozo, E. N.; Pereira, B. H. F.

    2011-07-15

    We present a trial to obtain a systematic behavior of the results available in the literature on the complete and incomplete fusion induced by the weakly bound projectile {sup 9}Be on targets with different masses and/or charges. We stress that although the incomplete-fusion probability and the complete-fusion suppression are very closely related quantities, the first is an experimental value whereas the later is model dependent. A trend of systematic behavior for the incomplete-fusion probability as a function of the target charge is achieved, but not for the complete-fusion suppression.

  7. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion*

    PubMed Central

    Suenaga, Tadahiro; Matsumoto, Maki; Arisawa, Fuminori; Kohyama, Masako; Hirayasu, Kouyuki; Mori, Yasuko; Arase, Hisashi

    2015-01-01

    Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection. PMID:26105052

  8. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion.

    PubMed

    Suenaga, Tadahiro; Matsumoto, Maki; Arisawa, Fuminori; Kohyama, Masako; Hirayasu, Kouyuki; Mori, Yasuko; Arase, Hisashi

    2015-08-01

    Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection. PMID:26105052

  9. pH-Dependent Vesicle Fusion Induced by the Ectodomain of the Human Immunodeficiency Virus Membrane Fusion Protein gp41: Two Kinetically Distinct Processes and Fully-Membrane-Associated gp41 with Predominant β Sheet Fusion Peptide Conformation

    PubMed Central

    Ratnayake, Punsisi U.; Sackett, Kelly; Nethercott, Matthew J.; Weliky, David P.

    2014-01-01

    The gp41 protein of the Human Immunodeficiency Virus (HIV) catalyzes fusion between HIV and host cell membranes. The ~180-residue ectodomain of gp41 is outside the virion and is the most important gp41 region for membrane fusion. The ectodomain consists of an apolar fusion peptide (FP) region followed by N-heptad repeat (NHR), loop, and C-heptad repeat (CHR) regions. The FP is critical for fusion and is hypothesized to bind to the host cell membrane. Large ectodomain constructs either with or without the FP are highly aggregated at physiologic pH but soluble in the pH 3–4 range with hyperthermostable hairpin structure with antiparallel NHR and CHR helices. The present study focuses on the large gp41 ectodomain constructs “Hairpin” (HP) containing NHR+loop+CHR and “FP-Hairpin” (FP-HP) containing FP+NHR+loop+CHR. Both proteins induce rapid and extensive fusion of anionic vesicles at pH 4 where the protein is positively-charged but do not induce fusion at pH 7 where the protein is negatively charged. This observation, along with lack of fusion of neutral vesicles at either pH supports the significance of attractive protein/membrane electrostatics in fusion. The functional role of the hydrophobic FP is supported by increases in the rate and extent of fusion for FP-HP relative to HP. There are two kinetically distinct fusion processes at pH 4: (1) a faster ~100 ms−1 process with rate strongly positively correlated with vesicle charge; and (2) a slower ~5 ms−1 process with extent strongly inversely correlated with this charge. The faster charge-dependent process is likely related to the electrostatic energy released upon initial monomer protein binding to the vesicle. After dissipation of this energy, the subsequent slower process is likely due to the equilibrium membrane-associated structure of the protein. The slower process may be more physiologically relevant because HIV/host cell fusion occurs at physiologic pH with gp41 restricted to the narrow region

  10. Fusion probability for neutron-rich radioactive Sn induced reactions

    SciTech Connect

    Liang, J Felix; Gross, Carl J; Kohley, Zachary W; Shapira, Dan; Varner Jr, Robert L; Allmond, James M; Caraley, Anne L; Lagergren, Karin B; Mueller, Paul Edward

    2012-01-01

    Evaporation residue cross sections for $^{124,126,127,128}$Sn+$^{64}$Ni and $^{132}$Sn+$^{58}$Ni have been measured to study the effects of neutron excess in neutron-rich radioactive nuclei on fusion. For the reactions with $^{64}$Ni, the fusion probability does not decrease with increasing neutron excess in Sn, contrary to the result of the stable beam Sn+Zr measurement. A comparison of the reduced evaporation residue cross sections for $^{126}$Sn+$^{64}$Ni and $^{132}$Sn+$^{58}$Ni, which make the same compound nucleus, shows that the fusion probability is indistinguishable for reactions involving the same atomic elements but different isotope combinations.

  11. VEGFR2-targeted fusion antibody improved NK cell-mediated immunosurveillance against K562 cells.

    PubMed

    Ren, Xueyan; Xie, Wei; Wang, Youfu; Xu, Menghuai; Liu, Fang; Tang, Mingying; Li, Chenchen; Wang, Min; Zhang, Juan

    2016-08-01

    MHC class I polypeptide-related sequence A (MICA), which is normally expressed on cancer cells, activates NK cells via NK group 2-member D pathway. However, some cancer cells escape NK-mediated immune surveillance by shedding membrane MICA causing immune suppression. To address this issue, we designed an antibody-MICA fusion targeting tumor-specific antigen (vascular endothelial growth factor receptor 2, VEGFR2) based on our patented antibody (mAb04) against VEGFR2. In vitro results demonstrate that the fusion antibody retains both the antineoplastic and the immunomodulatory activity of mAb04. Further, we revealed that it enhanced NK-mediated immunosurveillance against K562 cells through increasing degranulation and cytokine production of NK cells. The overall data suggest our new fusion protein provides a promising approach for cancer-targeted immunotherapy and has prospects for potential application of chronic myeloid leukemia. PMID:27154226

  12. The reorganization of actin filaments is required for vacuolar fusion of guard cells during stomatal opening in Arabidopsis.

    PubMed

    Li, Li-Juan; Ren, Fei; Gao, Xin-Qi; Wei, Peng-Cheng; Wang, Xue-Chen

    2013-02-01

    The reorganization of actin filaments (AFs) and vacuoles in guard cells is involved in the regulation of stomatal movement. However, it remains unclear whether there is any interaction between the reorganization of AFs and vacuolar changes during stomatal movement. Here, we report the relationship between the reorganization of AFs and vacuolar fusion revealed in pharmacological experiments, and characterizing stomatal opening in actin-related protein 2 (arp2) and arp3 mutants. Our results show that cytochalasin-D-induced depolymerization or phalloidin-induced stabilization of AFs leads to an increase in small unfused vacuoles during stomatal opening in wild-type (WT) Arabidopsis plants. Light-induced stomatal opening is retarded and vacuolar fusion in guard cells is impaired in the mutants, in which the reorganization and the dynamic parameters of AFs are aberrant compared with those of the WT. In WT, AFs tightly surround the small separated vacuoles, forming a ring that encircles the boundary membranes of vacuoles partly fused during stomatal opening. In contrast, in the mutants, most AFs and actin patches accumulate abnormally around the nuclei of the guard cells, which probably further impair vacuolar fusion and retard stomatal opening. Our results suggest that the reorganization of AFs regulates vacuolar fusion in guard cells during stomatal opening. PMID:22891733

  13. Rapid fusion between mesenchymal stem cells and cardiomyocytes yields electrically active, non-contractile hybrid cells

    PubMed Central

    Shadrin, Ilya Y.; Yoon, Woohyun; Li, Liqing; Shepherd, Neal; Bursac, Nenad

    2015-01-01

    Cardiac cell therapies involving bone marrow-derived human mesenchymal stem cells (hMSCs) have shown promising results, although their mechanisms of action are still poorly understood. Here, we investigated direct interactions between hMSCs and cardiomyocytes in vitro. Using a genetic Ca2+ indicator gCaMP3 to efficiently label hMSCs in co-cultures with neonatal rat ventricular myocytes (NRVMs), we determined that 25–40% of hMSCs (from 4 independent donors) acquired periodic Ca2+ transients and cardiac markers through spontaneous fusion with NRVMs. Sharp electrode and voltage-clamp recordings in fused cells showed action potential properties and Ca2+ current amplitudes in between those of non-fused hMSCs and NRVMs. Time-lapse video-microscopy revealed the first direct evidence of active fusion between hMSCs and NRVMs within several hours of co-culture. Application of blebbistatin, nifedipine or verapamil caused complete and reversible inhibition of fusion, suggesting potential roles for actomyosin bridging and Ca2+ channels in the fusion process. Immunostaining for Cx43, Ki67, and sarcomeric α-actinin showed that fused cells remain strongly coupled to surrounding NRVMs, but downregulate sarcomeric structures over time, acquiring a non-proliferative and non-contractile phenotype. Overall, these results describe the phenotype and mechanisms of hybrid cell formation via fusion of hMSCs and cardiomyocytes with potential implications for cardiac cell therapy. PMID:26159124

  14. Construction and Characterization of Insect Cell-Derived Influenza VLP: Cell Binding, Fusion, and EGFP Incorporation

    PubMed Central

    Pan, Yi-Shin; Wei, Hung-Ju; Chang, Chung-Chieh; Lin, Chung-Hung; Wei, Ting-Shyang; Wu, Suh-Chin; Chang, Ding-Kwo

    2010-01-01

    We have constructed virus-like particles (VLPs) harboring hemagglutinin (HA), neuraminidase (NA), matrix protein 1 (M1) ,and proton channel protein (M2) using baculovirus as a vector in the SF9 insect cell. The size of the expressed VLP was estimated to be ~100 nm by light scattering experiment and transmission electron microscopy. Recognition of HA on the VLP surface by the HA2-specific monoclonal antibody IIF4 at acidic pH, as probed by surface plasmon resonance, indicated the pH-induced structural rearrangement of HA. Uptake of the particle by A549 mediated by HA-sialylose receptor interaction was visualized by the fluorescent-labeled VLP. The HA-promoted cell-virus fusion activity was illustrated by fluorescence imaging on the Jurkat cells incubated with rhodamine-loaded VLP performed at fusogenic pH. Furthermore, the green fluorescence protein (GFP) was fused to NA to produce VLP with a pH-sensitive probe, expanding the use of VLP as an antigen carrier and a tool for viral tracking. PMID:21197092

  15. Laser-induced fast fusion of gold nanoparticle-modified polyelectrolyte microcapsules.

    PubMed

    Wu, Yingjie; Frueh, Johannes; Si, Tieyan; Möhwald, Helmuth; He, Qiang

    2015-02-01

    In this study we investigated the effect of laser-induced membrane fusion of polyelectrolyte multilayer (PEM) based microcapsules bearing surface-attached gold nanoparticles (AuNPs) in aqueous media. We demonstrate that a dense coating of the capsules with AuNPs leads to enhanced light absorption, causing an increase of local temperature. This enhances the migration of polyelectrolytes within the PEMs and thus enables a complete fusion of two or more capsules. The encapsulated substances can achieve complete merging upon short-term laser irradiation (30 s, 30 mW @ 650 nm). The whole fusion process is followed by optical microscopy and scanning electron microscopy. In control experiments, microcapsules without AuNPs do not show a significant capsule fusion upon irradiation. It was also found that the duration of capsule fusion is affected by the density of AuNPs on the shell - the higher the density of AuNPs the shorter the fusion time. All these findings confirm that laser-induced microcapsule fusion is a new type of membrane fusion. This effect helps to study the interior exchange reactions of functional microcapsules, micro-reactors and drug transport across multilayers. PMID:25521939

  16. Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion

    SciTech Connect

    Wu Liguo; Hutt-Fletcher, Lindsey M. . E-mail: lhuttf@lsuhsc.edu

    2007-06-20

    Cell fusion mediated by Epstein-Barr virus requires three conserved glycoproteins, gB and gHgL, but activation is cell type specific. B cell fusion requires interaction between MHC class II and a fourth virus glycoprotein, gp42, which complexes non-covalently with gHgL. Epithelial cell fusion requires interaction between gHgL and a novel epithelial cell coreceptor and is blocked by excess gp42. We show here that gp42 interacts directly with gH and that point mutations in the region of gH recognized by an antibody that differentially inhibits epithelial and B cell fusion significantly impact both the core fusion machinery and cell-specific events. Substitution of alanine for glycine at residue 594 completely abrogates fusion with either B cells or epithelial cells. Substitution of alanine for glutamic acid at residue 595 reduces fusion with epithelial cells, greatly enhances fusion with B cells and allows low levels of B cell fusion even in the absence of gL.

  17. Selection for intrabody solubility in mammalian cells using GFP fusions.

    PubMed

    Guglielmi, Laurence; Denis, Vincent; Vezzio-Vié, Nadia; Bec, Nicole; Dariavach, Piona; Larroque, Christian; Martineau, Pierre

    2011-12-01

    Single-chain antibody fragments (scFv) expressed in the cytoplasm of mammalian cells, also called intrabodies, have many applications in functional proteomics. These applications are, however, limited by the aggregation-prone behaviour of many intrabodies. We show here that two scFv with highly homologous sequences and comparable soluble expression levels in Escherichia coli cytoplasm have different behaviours in mammalian cells. When over-expressed, one of the scFv aggregates in the cytoplasm whereas the second one is soluble and active. When expressed at low levels, using a retroviral vector, as a fusion with the green fluorescent protein (GFP) the former does not form aggregates and is degraded, resulting in weakly fluorescent cells, whereas the latter is expressed as a soluble protein, resulting in strongly fluorescent cells. These data suggest that the GFP signal can be used to evaluate the soluble expression of intrabodies in mammalian cells. When applied to a subset of an E.coli-optimised intrabody library, we showed that the population of GFP+ cells contains indeed soluble mammalian intrabodies. Altogether, our data demonstrate that the requirements for soluble intrabody expression are different in E.coli and mammalian cells, and that intrabody libraries can be directly optimised in human cells using a simple GFP-based assay. PMID:21997307

  18. Characterization of the plasma membrane localization and orientation of HPV16 E5 for cell-cell fusion

    SciTech Connect

    Hu Lulin; Ceresa, Brian P.

    2009-10-10

    Human papillomavirus (HPV) is a non-enveloped DNA virus with an approx 8000 base pair genome. Infection with certain types of HPV is associated with cervical cancer, although the molecular mechanism by which HPV induces carcinogenesis is poorly understood. Three genes encoded by HPV16 are regarded as oncogenic - E5, E6, and E7. The role of E5 has been controversial. Expression of HPV16 E5 causes cell-cell fusion, an event that can lead to increased chromosomal instability, particularly in the presence of cell cycle checkpoint inhibitors like HPV16 E6 and E7. Using biochemical and cell biological assays to better understand HPV16 E5, we find that HPV16 E5 localizes to the plasma membrane with an intracellular amino terminus and an extracellular carboxyl-terminus. Further, HPV16 E5 must be expressed on both cells for cell fusion to occur. When the extracellular epitope of HPV16 E5 is targeted with an antibody, the number of bi-nucleated cells decreases.

  19. The Conserved Disulfide Bond within Domain II of Epstein-Barr Virus gH Has Divergent Roles in Membrane Fusion with Epithelial Cells and B Cells

    PubMed Central

    Möhl, Britta S.; Sathiyamoorthy, Karthik; Jardetzky, Theodore S.

    2014-01-01

    essential but still poorly characterized role as an important determinant for EBV cell tropism. In the current studies, we found that mutants in the DB C278/C335 and the neighboring tyrosine 336 have cell type-specific functional deficits with selective decreases in epithelial cell, but not B cell, binding and fusion. The present study brings new insights into the gH function as a determinant for epithelial cell tropism during herpesvirus-induced membrane fusion and highlights a specific gH motif required for epithelial cell fusion. PMID:25231307

  20. Microtubule-dependent balanced cell contraction and luminal-matrix modification accelerate epithelial tube fusion.

    PubMed

    Kato, Kagayaki; Dong, Bo; Wada, Housei; Tanaka-Matakatsu, Miho; Yagi, Yoshimasa; Hayashi, Shigeo

    2016-01-01

    Connection of tubules into larger networks is the key process for the development of circulatory systems. In Drosophila development, tip cells of the tracheal system lead the migration of each branch and connect tubules by adhering to each other and simultaneously changing into a torus-shape. We show that as adhesion sites form between fusion cells, myosin and microtubules form polarized bundles that connect the new adhesion site to the cells' microtubule-organizing centres, and that E-cadherin and retrograde recycling endosomes are preferentially deposited at the new adhesion site. We demonstrate that microtubules help balancing tip cell contraction, which is driven by myosin, and is required for adhesion and tube fusion. We also show that retrograde recycling and directed secretion of a specific matrix protein into the fusion-cell interface promote fusion. We propose that microtubule bundles connecting these cell-cell interfaces coordinate cell contractility and apical secretion to facilitate tube fusion. PMID:27067650

  1. Investigation of contribution of incomplete fusion in the total fusion process induced by 9Be on 181Ta target at near barrier energies

    NASA Astrophysics Data System (ADS)

    Kharab, Rajesh; Chahal, Rajiv; Kumar, Rajiv

    2016-02-01

    We have studied the relative contribution of incomplete fusion (ICF) and complete fusion (CF) in total fusion (TF) induced by 9Be on 181Ta target at energies in the vicinity of Coulomb barrier using classical dynamical model and Wong's formula in conjugation with energy dependent Woods-Saxon formula. It is found that at above barrier energies ICF contributes almost 30% in TF while at energies below the barrier qualitatively its contribution is much more than thirty percent.

  2. Microtubule-dependent balanced cell contraction and luminal-matrix modification accelerate epithelial tube fusion

    PubMed Central

    Kato, Kagayaki; Dong, Bo; Wada, Housei; Tanaka-Matakatsu, Miho; Yagi, Yoshimasa; Hayashi, Shigeo

    2016-01-01

    Connection of tubules into larger networks is the key process for the development of circulatory systems. In Drosophila development, tip cells of the tracheal system lead the migration of each branch and connect tubules by adhering to each other and simultaneously changing into a torus-shape. We show that as adhesion sites form between fusion cells, myosin and microtubules form polarized bundles that connect the new adhesion site to the cells' microtubule-organizing centres, and that E-cadherin and retrograde recycling endosomes are preferentially deposited at the new adhesion site. We demonstrate that microtubules help balancing tip cell contraction, which is driven by myosin, and is required for adhesion and tube fusion. We also show that retrograde recycling and directed secretion of a specific matrix protein into the fusion-cell interface promote fusion. We propose that microtubule bundles connecting these cell–cell interfaces coordinate cell contractility and apical secretion to facilitate tube fusion. PMID:27067650

  3. Studies with GFP-Vpr fusion proteins: induction of apoptosis but ablation of cell-cycle arrest despite nuclear membrane or nuclear localization.

    PubMed

    Waldhuber, Megan G; Bateson, Michael; Tan, Judith; Greenway, Alison L; McPhee, Dale A

    2003-08-15

    The human immunodeficiency virus type 1 (HIV-1) Vpr protein is known to arrest the cell cycle in G(2)/M and induce apoptosis following arrest. The functions of Vpr relative to its location in the cell remain unresolved. We now demonstrate that the location and function of Vpr are dependent on the makeup of fusion proteins and that the functions of G(2)/M arrest and apoptosis are separable. Using green fluorescence protein mutants (EGFP or EYFP), we found that fusion at either the N- or C-terminus compromised the ability of Vpr to arrest cell cycling, relative to that of His-Vpr or wild-type protein. Additionally, utilizing the ability to specifically identify cells expressing the fusion proteins, we confirm that Vpr can induce apoptosis, but appears to be independent of cell-cycle arrest in G(2)/M. Both N- and C-terminal Vpr/EYFP fusion proteins induced apoptosis but caused minimal G(2)/M arrest. These studies with Vpr fusion proteins indicate that the functions of Vpr leading to G(2)/M arrest and apoptosis are separable and that fusion of Vpr to EGFP or EYFP affected the localization of the protein. Our findings suggest that nuclear membrane localization and nuclear import and export are strongly governed by modification of the N-terminus of Vpr. PMID:12951024

  4. Laser-induced tissue fluorescence in radiofrequency tissue-fusion characterization

    NASA Astrophysics Data System (ADS)

    Su, Lei; Fonseca, Martina B.; Arya, Shobhit; Kudo, Hiromi; Goldin, Robert; Hanna, George B.; Elson, Daniel S.

    2014-01-01

    Heat-induced tissue fusion is an important procedure in modern surgery and can greatly reduce trauma, complications, and mortality during minimally invasive surgical blood vessel anastomosis, but it may also have further benefits if applied to other tissue types such as small and large intestine anastomoses. We present a tissue-fusion characterization technology using laser-induced fluorescence spectroscopy, which provides further insight into tissue constituent variations at the molecular level. In particular, an increase of fluorescence intensity in 450- to 550-nm range for 375- and 405-nm excitation suggests that the collagen cross-linking in fused tissues increased. Our experimental and statistical analyses showed that, by using fluorescence spectral data, good fusion could be differentiated from other cases with an accuracy of more than 95%. This suggests that the fluorescence spectroscopy could be potentially used as a feedback control method in online tissue-fusion monitoring.

  5. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    SciTech Connect

    Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  6. Fusion materials irradiation test facility test-cell instrumentation

    NASA Astrophysics Data System (ADS)

    Fuller, J. L.; Burke, R. J.

    1982-05-01

    Many of the facility instrumentation components and systems currently under development, though specifically designed for FMIT purposes, are similar to those useful for fusion reactors. Various ceramic-insulated signal-cable components are being evaluated for 14-MeV neutron tolerance. Thermocouples are shown to decalibrate in high energy fields. Nondestructive optical viewing of deuteron-induced residual gas flow is planned for beam profiling in real space and phase space. Various optics were irradiated to 10(18) n/cm(2) at 14 MeV with good results. Feasibility of neutron and gamma field imaging was demonstrated using pinhole collimator and microchannel plate devices. Infrared thermography and optical monitoring of the target surface is being investigated. Considerable experience on the compatibility of optical and insulator materials with (highly reactive) lithium was obtained.

  7. [SapM-induced fusion blocking of autophagosome-lysosome is depended on interaction with Rab7].

    PubMed

    Hu, Dong; Wang, Wan; Zhao, Runpeng; Xu, Xuewei; Xing, Yingru; Ni, Shengfa; Xu, Congjing; Tie, Baoxian; Zhang, Rongbo; Wu, Jing

    2016-09-01

    Objective To study the role of Rab7 in the blockage of autophagosome-lysosome fusion induced by secretory acid phosphatase (SapM), a virulence factor of mycobacterium tuberculosis. Methods The Raw264.7 cells were transfected with siRab7, and the P62 was detected using Western blotting. After transfected with mCherry-SapM, the co-localization of SapM and Rab7 in Raw264.7 cells was detected by immunofluorescence cytochemistry and the interaction of SapM with Rab7 was determined by co-immunoprecipitation. SapM mutants including SapM(δ ARCA), SapM(δ FRED) and SapM(δ CT) were used to transfect Raw264.7 cells, and their associations with Rab7 were analyzed. Results The treatment of siRab7 induced a significant increase of P62 in these cells. Immunofluorescence cytochemistry showed the intracellular co-localization of SapM and Rab7. Co-immunoprecipitation showed that SapM and Rab7 were precipitated by each other. Only SapM(δ CT) failed to interact with Rab7 among the three SapM mutants. Conclusion The inhibition of autophagosome-lysosome fusion induced by SapM is dependent on the interaction between SapM and Rab7. PMID:27609571

  8. Oscillatory recruitment of signaling proteins to cell tips promotes coordinated behavior during cell fusion.

    PubMed

    Fleissner, André; Leeder, Abigail C; Roca, M Gabriela; Read, Nick D; Glass, N Louise

    2009-11-17

    Cell-cell communication is essential for coordinating physiological responses in multicellular organisms and is required for various developmental processes, including cell migration, differentiation, and fusion. To facilitate communication, functional differences are usually required between interacting cells, which can be established either genetically or developmentally. However, genetically identical cells in the same developmental state are also capable of communicating, but must avoid self-stimulation. We hypothesized that such cells must alternate their physiological state between signal sending and receiving to allow recognition and behavioral changes. To test this hypothesis, we studied cell communication in the filamentous fungus Neurospora crassa, a simple and experimentally amenable model system. In N. crassa, germinating asexual spores (germlings) of identical genotype chemotropically sense others in close proximity, show attraction-mediated directed growth, and ultimately undergo cell fusion. Here, we report that two proteins required for cell fusion, a MAP kinase (MAK-2) and a protein of unknown molecular function (SO), exhibit rapid oscillatory recruitment to the plasma membranes of interacting germlings undergoing chemotropic interactions via directed growth. Using an inhibitable MAK-2 variant, we show that MAK-2 kinase activity is required both for chemotropic interactions and for oscillation of MAK-2 and SO to opposing cell tips. Thus, N. crassa germlings undergoing chemotropic interactions rapidly alternate between two different physiological states, associated with signal delivery and response. Such spatiotemporal coordination of signaling allows genetically identical and developmentally equivalent cells to avoid self-stimulation and to coordinate their behavior to achieve the beneficial physiological outcome of cell fusion. PMID:19884508

  9. Identification of Domains on the Fusion (F) Protein Trimer That Influence the Hemagglutinin-Neuraminidase Specificity of the F Protein in Mediating Cell-Cell Fusion

    PubMed Central

    Tsurudome, Masato; Ito, Morihiro; Nishio, Machiko; Nakahashi, Mito; Kawano, Mitsuo; Komada, Hiroshi; Nosaka, Tetsuya; Ito, Yasuhiko

    2011-01-01

    For most paramyxoviruses, virus type-specific interaction between fusion (F) protein and attachment protein (hemagglutinin-neuraminidase [HN], hemagglutinin [H], or glycoprotein [G]) is a prerequisite for mediating virus-cell fusion and cell-cell fusion. Our previous cell-cell fusion assay using the chimeric F proteins of human parainfluenza virus 2 (HPIV2) and simian virus 41 (SV41) suggested that the middle region of the HPIV2 F protein contains the site(s) that determines its specificity for the HPIV2 HN protein. In the present study, we further investigated the sites of the F protein that could be critical for determining the HN protein specificity. By analyzing the reported structure of the F protein of parainfluenza virus 5 (PIV5), we found that four major domains (M1, M2, M3, and M4) and five minor domains (A to E) in the middle region of the PIV5 F protein were exposed on the trimer surface. We then replaced these domains with the SV41 F counterparts individually or in combination and examined whether the resulting chimeras could mediate cell-cell fusion when coexpressed with the SV41 HN protein. The results showed that a chimera designated M(1+2), which harbored SV41 F-derived domains M1 and M2, mediated cell-cell fusion with the coexpressed SV41 HN protein, suggesting that these domains are involved in determining the HN protein specificity. Intriguingly, another chimera which harbored the SV41 F-derived domain B in addition to domains M1 and M2 showed increased specificity for the SV41 HN protein compared to that of M(1+2), although it was capable of mediating cell-cell fusion by itself. PMID:21270148

  10. Lipid-Induced Endoplasmic Reticulum Stress Impairs Selective Autophagy at the Step of Autophagosome-Lysosome Fusion in Hepatocytes.

    PubMed

    Miyagawa, Koichiro; Oe, Shinji; Honma, Yuichi; Izumi, Hiroto; Baba, Ryoko; Harada, Masaru

    2016-07-01

    Blockage of hepatic autophagic degradation system occurs in obesity and is associated with the development of nonalcoholic fatty liver disease. However, the mechanism of this blockage remains unclear. We found a high-fat diet induced accumulation of autophagosomes in the mice livers. However, autophagy substrates such as p62 and ubiquitinated proteins also accumulated in the livers in this model. These findings indicate the possibility that a high-fat diet impairs autophagic flux in the liver. Then, to assess the autophagic flux in more detail, we performed analyses of autophagic flux in cultured hepatocytes exposed to monounsaturated fatty acids (FAs) or saturated FAs (SFAs). SFAs but not monounsaturated FAs suppressed degradation of contents in the autophagosomes. We analyzed each stage of the autophagy pathway (ie, autophagosome formation, autophagosome-lysosome fusion, lysosomal degradation) in cultured hepatocytes treated with monounsaturated FAs or SFAs and found that SFAs impaired autophagosome-lysosome fusion. This impairment occurred in an endoplasmic reticulum stress-dependent manner. Moreover, ubiquitin and p62-positive inclusions observed in high-fat diet-fed mice livers and SFA-treated cells were sequestered within autophagosomes. We also found that SFA-induced accumulation of Ser351-phosphorylated p62, which is indispensable for selective autophagy, further increased on administration of a lysosomal proteinase inhibitor. Although lipid-induced endoplasmic reticulum stress interferes with the autophagosome-lysosome fusion, selective autophagic sequestration of aggregated proteins is not inhibited. PMID:27157992

  11. Site-specific modification of genome with cell-permeable Cre fusion protein in preimplantation mouse embryo

    SciTech Connect

    Kim, Kyoungmi; Kim, Hwain; Lee, Daekee

    2009-10-09

    Site-specific recombination (SSR) by Cre recombinase and its target sequence, loxP, is a valuable tool in genetic analysis of gene function. Recently, several studies reported successful application of Cre fusion protein containing protein transduction peptide for inducing gene modification in various mammalian cells including ES cell as well as in the whole animal. In this study, we show that a short incubation of preimplantation mouse embryos with purified cell-permeable Cre fusion protein results in efficient SSR. X-Gal staining of preimplantation embryos, heterozygous for Gtrosa26{sup tm1Sor}, revealed that treatment of 1-cell or 2-cell embryos with 3 {mu}M of Cre fusion protein for 2 h leads to Cre-mediated excision in 70-85% of embryos. We have examined the effect of the concentration of the Cre fusion protein and the duration of the treatment on embryonic development, established a condition for full term development and survival to adulthood, and demonstrated the germ line transmission of excised Gtrosa26 allele. Potential applications and advantages of the highly efficient technique described here are discussed.

  12. The Utility of Allograft Mesenchymal Stem Cells for Spine Fusion: A Literature Review

    PubMed Central

    Lubelski, Daniel; Abdullah, Kalil G.; Benzel, Edward C.; Mroz, Thomas E.

    2012-01-01

    More than 50% of patients complain of postoperative donor site morbidity following iliac crest bone graft harvest, and recent discoveries have identified adverse outcomes following bone morphogenetic protein use in spine fusion. This has led the spine community to turn toward alternative methods to promote fusion following spine surgery. The present article reviews numerous studies that have shown the osteogenic potential of mesenchymal stem cells (MSCs). MSCs have been used with both in vitro and in vivo models and have involved animal studies ranging from rats to macaque monkeys to successfully induce bone regeneration in lesions of the tibia and spine. There is no fear of graft rejection, as there may be with other allograft materials, because neither undifferentiated nor differentiated MSCs elicit lymphocyte response when transplanted; they tend to alter the cytokine profile to an anti-inflammatory state. Early clinical trials are underway with various commercially available MSC formulations. Although there is much enthusiasm, it is integral that the spine surgery community carefully evaluate the use of MSCs in spine fusion through well-designed and executed studies to determine the efficacy and safety profiles in spine surgery patients. PMID:27054055

  13. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors

    SciTech Connect

    Filone, Claire Marie; Heise, Mark; Doms, Robert W. . E-mail: doms@mail.med.upenn.edu; Bertolotti-Ciarlet, Andrea . E-mail: aciarlet@mail.med.upenn.edu

    2006-12-20

    Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expression of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by {beta}-galactosidase {alpha}-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.

  14. Nuclear fusion induced by x rays in a crystal

    NASA Astrophysics Data System (ADS)

    Belyaev, V. B.; Miller, M. B.; Otto, J.; Rakityansky, S. A.

    2016-03-01

    The nuclei that constitute a crystalline lattice oscillate relative to each other with a very low energy that is not sufficient to penetrate through the Coulomb barriers separating them. An additional energy, which is needed to tunnel through the barrier and fuse, can be supplied by external electromagnetic waves (x rays or synchrotron radiation). Exposing the solid compound LiD (lithium deuteride) to x rays for the duration of 111 h, we detect 88 events of nuclear fusion d +6Li→8Be* . Our theoretical estimate agrees with what we observed. One possible application of the phenomenon we found is in measurements of the rates of various nuclear reactions (not necessarily fusion) at extremely low energies inaccessible in accelerator experiments.

  15. Recurrent chimeric fusion RNAs in non-cancer tissues and cells

    PubMed Central

    Babiceanu, Mihaela; Qin, Fujun; Xie, Zhongqiu; Jia, Yuemeng; Lopez, Kevin; Janus, Nick; Facemire, Loryn; Kumar, Shailesh; Pang, Yuwei; Qi, Yanjun; Lazar, Iulia M.; Li, Hui

    2016-01-01

    Gene fusions and their products (RNA and protein) were once thought to be unique features to cancer. However, chimeric RNAs can also be found in normal cells. Here, we performed, curated and analyzed nearly 300 RNA-Seq libraries covering 30 different non-neoplastic human tissues and cells as well as 15 mouse tissues. A large number of fusion transcripts were found. Most fusions were detected only once, while 291 were seen in more than one sample. We focused on the recurrent fusions and performed RNA and protein level validations on a subset. We characterized these fusions based on various features of the fusions, and their parental genes. They tend to be expressed at higher levels relative to their parental genes than the non-recurrent ones. Over half of the recurrent fusions involve neighboring genes transcribing in the same direction. A few sequence motifs were found enriched close to the fusion junction sites. We performed functional analyses on a few widely expressed fusions, and found that silencing them resulted in dramatic reduction in normal cell growth and/or motility. Most chimeras use canonical splicing sites, thus are likely products of ‘intergenic splicing’. We also explored the implications of these non-pathological fusions in cancer and in evolution. PMID:26837576

  16. Recurrent chimeric fusion RNAs in non-cancer tissues and cells.

    PubMed

    Babiceanu, Mihaela; Qin, Fujun; Xie, Zhongqiu; Jia, Yuemeng; Lopez, Kevin; Janus, Nick; Facemire, Loryn; Kumar, Shailesh; Pang, Yuwei; Qi, Yanjun; Lazar, Iulia M; Li, Hui

    2016-04-01

    Gene fusions and their products (RNA and protein) were once thought to be unique features to cancer. However, chimeric RNAs can also be found in normal cells. Here, we performed, curated and analyzed nearly 300 RNA-Seq libraries covering 30 different non-neoplastic human tissues and cells as well as 15 mouse tissues. A large number of fusion transcripts were found. Most fusions were detected only once, while 291 were seen in more than one sample. We focused on the recurrent fusions and performed RNA and protein level validations on a subset. We characterized these fusions based on various features of the fusions, and their parental genes. They tend to be expressed at higher levels relative to their parental genes than the non-recurrent ones. Over half of the recurrent fusions involve neighboring genes transcribing in the same direction. A few sequence motifs were found enriched close to the fusion junction sites. We performed functional analyses on a few widely expressed fusions, and found that silencing them resulted in dramatic reduction in normal cell growth and/or motility. Most chimeras use canonical splicing sites, thus are likely products of 'intergenic splicing'. We also explored the implications of these non-pathological fusions in cancer and in evolution. PMID:26837576

  17. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed Central

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature. PMID:27239276

  18. Development of a Lentivirus Vector-Based Assay for Non-Destructive Monitoring of Cell Fusion Activity

    PubMed Central

    Neshati, Zeinab; Liu, Jia; Zhou, Guangqian; Schalij, Martin J.; de Vries, Antoine A. F.

    2014-01-01

    Cell-to-cell fusion can be quantified by endowing acceptor and donor cells with latent reporter genes/proteins and activators of these genes/proteins, respectively. One way to accomplish this goal is by using a bipartite lentivirus vector (LV)-based cell fusion assay system in which the cellular fusion partners are transduced with a flippase-activatable Photinus pyralis luciferase (PpLuc) expression unit (acceptor cells) or with a recombinant gene encoding FLPeNLS+, a nuclear-targeted and molecularly evolved version of flippase (donor cells). Fusion of both cell populations will lead to the FLPe-dependent generation of a functional PpLuc gene. PpLuc activity is typically measured in cell lysates, precluding consecutive analysis of one cell culture. Therefore, in this study the PpLuc-coding sequence was replaced by that of Gaussia princeps luciferase (GpLuc), a secretory protein allowing repeated analysis of the same cell culture. In myotubes the spread of FLPeNLS+ may be limited due to its nuclear localization signal (NLS) causing low signal outputs. To test this hypothesis, myoblasts were transduced with LVs encoding either FLPeNLS+ or an NLS-less version of FLPe (FLPeNLS−) and subsequently co-cultured in different ratios with myoblasts containing the FLPe-activatable GpLuc expression cassette. At different times after induction of cell-to-cell fusion the GpLuc activity in the culture medium was determined. FLPeNLS+ and FLPeNLS− both activated the latent GpLuc gene but when the percentage of FLPe-expressing myoblasts was limiting, FLPeNLS+ generally yielded slightly higher signals than FLPeNLS− while at low acceptor-to-donor cell ratios FLPeNLS− was usually superior. The ability of FLPeNLS+ to spread through myofibers and to induce reporter gene expression is thus not limited by its NLS. However, at high FLPe concentrations the presence of the NLS negatively affected reporter gene expression. In summary, a rapid and simple chemiluminescence assay for

  19. Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review).

    PubMed

    Sinkovics, Joseph G

    2009-09-01

    Evolving young genomes of archaea, prokaryota and unicellular eukaryota were wide open for the acceptance of alien genomic sequences, which they often preserved and vertically transferred to their descendants throughout three billion years of evolution. Established complex large genomes, although seeded with ancestral retroelements, have come to regulate strictly their integrity. However, intruding retroelements, especially the descendents of Ty3/Gypsy, the chromoviruses, continue to find their ways into even the most established genomes. The simian and hominoid-Homo genomes preserved and accommodated a large number of endogenous retroviral genomic segments. These retroelements may mature into exogenous retroviruses, or into functional new genes. Phages and viruses have been instrumental in incorporating and transferring host cell genes. These events profoundly influenced and altered the course of evolution. Horizontal (lateral) gene transfers (HGT) overwhelmed the genomes of the ancient protocells and the evolving unicellular microorganisms, actually leading to their Cambrian explosion. While the rigidly organized genomes of multicellular organisms increasingly resist H/LGT, de-differentiated cells assuming the metabolism of their onto- or phylogenetic ancestors, open up widely to the practice of H/LGT by direct transfer, or to transfers mediated by viruses, or by cell fusions. This activity is intensified in malignantly transformed cells, thus rendering these subjects receptive to therapy with oncolytic viruses and with viral vectors of tumor-suppressive or immunogenic genetic materials. Naturally formed hybrids of dendritic and tumor cells are often tolerogenic, whereas laboratory products of these unisons may be immunogenic in the hosts of origin. As human breast cancer stem cells are induced by a treacherous class of CD8+ T cells to undergo epithelial to mesenchymal (ETM) transition and to yield to malignant transformation by the omnipresent proto

  20. Using ApoE Nanolipoprotein Particles To Analyze SNARE-Induced Fusion Pores.

    PubMed

    Bello, Oscar D; Auclair, Sarah M; Rothman, James E; Krishnakumar, Shyam S

    2016-03-29

    Here we introduce ApoE-based nanolipoprotein particle (NLP)-a soluble, discoidal bilayer mimetic of ∼23 nm in diameter, as fusion partners to study the dynamics of fusion pores induced by SNARE proteins. Using in vitro lipid mixing and content release assays, we report that NLPs reconstituted with synaptic v-SNARE VAMP2 (vNLP) fuse with liposomes containing the cognate t-SNARE (Syntaxin1/SNAP25) partner, with the resulting fusion pore opening directly to the external buffer. Efflux of encapsulated fluorescent dextrans of different sizes show that unlike the smaller nanodiscs, these larger NLPs accommodate the expansion of the fusion pore to at least ∼9 nm, and dithionite quenching of fluorescent lipid introduced in vNLP confirms that the NLP fusion pores are short-lived and eventually reseal. The NLPs also have capacity to accommodate larger number of proteins and using vNLPs with defined number of VAMP2 protein, including physiologically relevant copy numbers, we find that 3-4 copies of VAMP2 (minimum 2 per face) are required to keep a nascent fusion pore open, and the SNARE proteins act cooperatively to dilate the nascent fusion pore. PMID:26972604

  1. Cofilin-induced cooperative conformational changes of actin subunits revealed using cofilin-actin fusion protein

    PubMed Central

    Umeki, Nobuhisa; Hirose, Keiko; Uyeda, Taro Q. P.

    2016-01-01

    To investigate cooperative conformational changes of actin filaments induced by cofilin binding, we engineered a fusion protein made of Dictyostelium cofilin and actin. The filaments of the fusion protein were functionally similar to actin filaments bound with cofilin in that they did not bind rhodamine-phalloidin, had quenched fluorescence of pyrene attached to Cys374 and showed enhanced susceptibility of the DNase loop to cleavage by subtilisin. Quantitative analyses of copolymers made of different ratios of the fusion protein and control actin further demonstrated that the fusion protein affects the structure of multiple neighboring actin subunits in copolymers. Based on these and other recent related studies, we propose a mechanism by which conformational changes induced by cofilin binding is propagated unidirectionally to the pointed ends of the filaments, and cofilin clusters grow unidirectionally to the pointed ends following this path. Interestingly, the fusion protein was unable to copolymerize with control actin at pH 6.5 and low ionic strength, suggesting that the structural difference between the actin moiety in the fusion protein and control actin is pH-sensitive. PMID:26842224

  2. Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion

    PubMed Central

    Li, Zhuo; Hung, Cher; Paterson, Reay G.; Michel, Frank; Fuentes, Sandra; Place, Ryan; Lin, Yuan; Hogan, Robert J.; Lamb, Robert A.; He, Biao

    2015-01-01

    Paramyxoviruses include many important animal and human pathogens. Most paramyxoviruses have two integral membrane proteins: fusion protein (F) and attachment proteins hemagglutinin, hemagglutinin–neuraminidase, or glycoprotein (G), which are critical for viral entry into cells. J paramyxovirus (JPV) encodes four integral membrane proteins: F, G, SH, and transmembrane (TM). The function of TM is not known. In this work, we have generated a viable JPV lacking TM (JPV∆TM). JPV∆TM formed opaque plaques compared with JPV. Quantitative syncytia assays showed that JPV∆TM was defective in promoting cell-to-cell fusion (i.e., syncytia formation) compared with JPV. Furthermore, cells separately expressing F, G, TM, or F plus G did not form syncytia whereas cells expressing F plus TM formed some syncytia. However, syncytia formation was much greater with coexpression of F, G, and TM. Biochemical analysis indicates that F, G, and TM interact with each other. A small hydrophobic region in the TM ectodomain from amino acid residues 118 to 132, the hydrophobic loop (HL), was important for syncytial promotion, suggesting that the TM HL region plays a critical role in cell-to-cell fusion. PMID:26392524

  3. Expression and activity analysis of a new fusion protein targeting ovarian cancer cells.

    PubMed

    Su, Manman; Chang, Weiqin; Wang, Dingding; Cui, Manhua; Lin, Yang; Wu, Shuying; Xu, Tianmin

    2015-09-01

    The aim of the present study was to develop a new therapeutic drug to improve the prognosis of ovarian cancer patients. Human urokinase-type plasminogen activator (uPA)17-34-kunitz-type protease inhibitor (KPI) eukaryotic expression vector was constructed and recombinant human uPA17-34-KPI (rhuPA17-34-KPI) in P. pastoris was expressed. In the present study, the DNA sequences that encode uPA 17-34 amino acids were created according to the native amino acids sequence and inserted into the KPI-pPICZαC vector, which was constructed. Then, uPA17‑34-KPI-pPICZαC was transformed into P. pastoris X-33, and rhuPA17-34-KPI was expressed by induction of methanol. The bioactivities of a recombinant fusion protein were detected with trypsin inhibition analysis, and the inhibitory effects on the growth of ovarian cancer cells were identified using the TUNEL assay, in vitro wound‑healing assay and Matrigel model analysis. The results of the DNA sequence analysis of the recombinant vector uPA17-34-KPI‑pPICZα demonstrated that the DNA‑encoding human uPA 17-34 amino acids, 285-288 amino acids of amyloid precursor protein (APP) and 1-57 amino acids of KPI were correctly inserted into the pPICZαC vector. Following induction by methonal, the fusion protein with a molecular weight of 8.8 kDa was observed using SDS-PAGE and western blot analysis. RhuPA17-34-KPI was expressed in P. pastoris with a yield of 50 mg/l in a 50-ml tube. The recombinant fusion protein was able to inhibit the activity of trypsin, inhibit growth and induce apoptosis of SKOV3 cells, and inhibit the invasion and metastasis of ovarian cancer cells. By considering uPA17-34 amino acid specific binding uPAR as the targeted part of fusion protein and utilizing the serine protease inhibitor activity of KPI, it was found that the recombinant fusion protein uPA17-34-KPI inhibited the invasion and metastasis of ovarian tumors, and may therefore be regarded as effective in targeted treatment. PMID

  4. Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma.

    PubMed

    Yoo, Hae Yong; Kim, Pora; Kim, Won Seog; Lee, Seung Ho; Kim, Sangok; Kang, So Young; Jang, Hye Yoon; Lee, Jong-Eun; Kim, Jaesang; Kim, Seok Jin; Ko, Young Hyeh; Lee, Sanghyuk

    2016-06-01

    CTLA4 and CD28 are co-regulatory receptors with opposite roles in T-cell signaling. By RNA sequencing, we identified a fusion between the two genes from partial gene duplication in a case of angioimmunoblastic T-cell lymphoma. The fusion gene, which codes for the extracellular domain of CTLA4 and the cytoplasmic region of CD28, is likely capable of transforming inhibitory signals into stimulatory signals for T-cell activation. Ectopic expression of the fusion transcript in Jurkat and H9 cells resulted in enhanced proliferation and AKT and ERK phosphorylation, indicating activation of downstream oncogenic pathways. To estimate the frequency of this gene fusion in mature T-cell lymphomas, we examined 115 T-cell lymphoma samples of diverse subtypes using reverse transcriptase polymerase chain reaction analysis and Sanger sequencing. We identified the fusion in 26 of 45 cases of angioimmunoblastic T-cell lymphomas (58%), nine of 39 peripheral T-cell lymphomas, not otherwise specified (23%), and nine of 31 extranodal NK/T cell lymphomas (29%). We further investigated the mutation status of 70 lymphoma-associated genes using ultra-deep targeted resequencing for 74 mature T-cell lymphoma samples. The mutational landscape we obtained suggests that T-cell lymphoma results from diverse combinations of multiple gene mutations. The CTLA4-CD28 gene fusion is likely a major contributor to the pathogenesis of T-cell lymphomas and represents a potential target for anti-CTLA4 cancer immunotherapy. PMID:26819049

  5. Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma

    PubMed Central

    Yoo, Hae Yong; Kim, Pora; Kim, Won Seog; Lee, Seung Ho; Kim, Sangok; Kang, So Young; Jang, Hye Yoon; Lee, Jong-Eun; Kim, Jaesang; Kim, Seok Jin; Ko, Young Hyeh; Lee, Sanghyuk

    2016-01-01

    CTLA4 and CD28 are co-regulatory receptors with opposite roles in T-cell signaling. By RNA sequencing, we identified a fusion between the two genes from partial gene duplication in a case of angioimmunoblastic T-cell lymphoma. The fusion gene, which codes for the extracellular domain of CTLA4 and the cytoplasmic region of CD28, is likely capable of transforming inhibitory signals into stimulatory signals for T-cell activation. Ectopic expression of the fusion transcript in Jurkat and H9 cells resulted in enhanced proliferation and AKT and ERK phosphorylation, indicating activation of downstream oncogenic pathways. To estimate the frequency of this gene fusion in mature T-cell lymphomas, we examined 115 T-cell lymphoma samples of diverse subtypes using reverse transcriptase polymerase chain reaction analysis and Sanger sequencing. We identified the fusion in 26 of 45 cases of angioimmunoblastic T-cell lymphomas (58%), nine of 39 peripheral T-cell lymphomas, not otherwise specified (23%), and nine of 31 extranodal NK/T cell lymphomas (29%). We further investigated the mutation status of 70 lymphoma-associated genes using ultra-deep targeted resequencing for 74 mature T-cell lymphoma samples. The mutational landscape we obtained suggests that T-cell lymphoma results from diverse combinations of multiple gene mutations. The CTLA4-CD28 gene fusion is likely a major contributor to the pathogenesis of T-cell lymphomas and represents a potential target for anti-CTLA4 cancer immunotherapy. PMID:26819049

  6. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells

    PubMed Central

    2014-01-01

    Background Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells. Methods Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes. Results In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. Conclusions In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the

  7. Tracking Fusion of Human Mesenchymal Stem Cells After Transplantation to the Heart

    PubMed Central

    Freeman, Brian T.; Kouris, Nicholas A.

    2015-01-01

    Evidence suggests that transplanted mesenchymal stem cells (MSCs) can aid recovery of damaged myocardium caused by myocardial infarction. One possible mechanism for MSC-mediated recovery is reprogramming after cell fusion between transplanted MSCs and recipient cardiac cells. We used a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging to detect fusion of transplanted human pluripotent stem cell-derived MSCs to cells of organs of living mice. Human MSCs, with transient expression of a viral fusogen, were delivered to the murine heart via a collagen patch. At 2 days and 1 week later, living mice were probed for bioluminescence indicative of cell fusion. Cell fusion was detected at the site of delivery (heart) and in distal tissues (i.e., stomach, small intestine, liver). Fusion was confirmed at the cellular scale via fluorescence in situ hybridization for human-specific and mouse-specific centromeres. Human cells in organs distal to the heart were typically located near the vasculature, suggesting MSCs and perhaps MSC fusion products have the ability to migrate via the circulatory system to distal organs and engraft with local cells. The present study reveals previously unknown migratory patterns of delivered human MSCs and associated fusion products in the healthy murine heart. The study also sets the stage for follow-on studies to determine the functional effects of cell fusion in a model of myocardial damage or disease. Significance Mesenchymal stem cells (MSCs) are transplanted to the heart, cartilage, and other tissues to recover lost function or at least limit overactive immune responses. Analysis of tissues after MSC transplantation shows evidence of fusion between MSCs and the cells of the recipient. To date, the biologic implications of cell fusion remain unclear. A newly developed in vivo tracking system was used to identify MSC fusion products in living mice. The migratory patterns of fusion products were determined both in the

  8. ICRF-induced DD fusion product losses in TFTR

    SciTech Connect

    Darrow, D.S.; Zweben, S.J.; Budny, R.V.

    1994-10-01

    When ICRF power is applied to TFTR plasmas in which there is no externally-supplied minority species, an enhanced loss of DD fusion products results. The characteristics of the loss are consistent with particles at or near the birth energy having their perpendicular velocity increased by the ICRF such that those near the passing/trapped boundary are carried into the first orbit loss cone. A rudimentary model of this process predicts losses of a magnitude similar to those seen. Extrapolations based upon this data for hypothetical ICRF ash removal from reactor plasmas suggest that the technique will not be energy efficient.

  9. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    SciTech Connect

    Robinson, Claire; Kolb, Andreas F.

    2009-02-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A {beta}-galactosidase reporter gene was inserted in place of the {beta}-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the {beta}-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal {beta}-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the {beta}-casein gene.

  10. Human Metapneumovirus Is Capable of Entering Cells by Fusion with Endosomal Membranes

    PubMed Central

    Cox, Reagan G.; Mainou, Bernardo A.; Johnson, Monika; Hastings, Andrew K.; Schuster, Jennifer E.; Dermody, Terence S.; Williams, John V.

    2015-01-01

    Human metapneumovirus (HMPV), a member of the Paramyxoviridae family, is a leading cause of lower respiratory illness. Although receptor binding is thought to initiate fusion at the plasma membrane for paramyxoviruses, the entry mechanism for HMPV is largely uncharacterized. Here we sought to determine whether HMPV initiates fusion at the plasma membrane or following internalization. To study the HMPV entry process in human bronchial epithelial (BEAS-2B) cells, we used fluorescence microscopy, an R18-dequenching fusion assay, and developed a quantitative, fluorescence microscopy assay to follow virus binding, internalization, membrane fusion, and visualize the cellular site of HMPV fusion. We found that HMPV particles are internalized into human bronchial epithelial cells before fusing with endosomes. Using chemical inhibitors and RNA interference, we determined that HMPV particles are internalized via clathrin-mediated endocytosis in a dynamin-dependent manner. HMPV fusion and productive infection are promoted by RGD-binding integrin engagement, internalization, actin polymerization, and dynamin. Further, HMPV fusion is pH-independent, although infection with rare strains is modestly inhibited by RNA interference or chemical inhibition of endosomal acidification. Thus, HMPV can enter via endocytosis, but the viral fusion machinery is not triggered by low pH. Together, our results indicate that HMPV is capable of entering host cells by multiple pathways, including membrane fusion from endosomal compartments. PMID:26629703

  11. Paramyxovirus mediated cell fusion requires co-expression of both the fusion and hemagglutinin-neuraminidase glycoproteins.

    PubMed

    Heminway, B R; Yu, Y; Galinski, M S

    1994-01-01

    Syncytia formation in either CV-1 or HeLa T4+ cells required recombinant expression of both fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins from the human parainfluenza virus type 3 (HPIV3), human parainfluenza virus type 2 (HPIV2), and simian virus 5 (SV5). In this system, recombinant T7 transcription vectors (pT7-5 or pGEM) containing F or HN, were transfected individually or in combination into cells previously infected with a recombinant vaccinia virus expressing T7 RNA polymerase (vTF7-3). While both proteins were processed and expressed at the cell surface, syncytia formation occurred only when both glycoproteins were co-expressed. The function of HN in the fusion process could not be replaced using lectins or by co-expression of heterologous F and HN proteins. Further, cell fusion was not observed when experiments were performed using individually expressed F and HN proteins in adjacent cells. The data presented in this report support the notion that a specific interaction between both paramyxoviral glycoproteins is required for the formation of syncytia in tissue culture monolayers. PMID:8165862

  12. Topical and Targeted Delivery of siRNAs to Melanoma Cells Using a Fusion Peptide Carrier

    PubMed Central

    Ruan, Renquan; Chen, Ming; Sun, Sijie; Wei, Pengfei; Zou, Lili; Liu, Jing; Gao, Dayong; Wen, Longping; Ding, Weiping

    2016-01-01

    Topical application of siRNAs through the skin is a potentially effective strategy for the treatment of melanoma tumors. In this study, we designed a new and safe fusion peptide carrier SPACE-EGF to improve the skin and cell penetration function of the siRNAs and their targeting ability to B16 cells, such that the apoptosis of B16 cells can be induced. The results show that the carrier is stable and less toxic. The EGF motif does not affect the skin and cell penetration function of the SPACE. Because EGF can strongly bind EGFR, which is overexpressed in cancer cells, the targeting ability of the SPACE-EGF-siRNA complex is increased. In vitro experiments indicate that GAPDH siRNAs conjugated with SPACE-EGF can significantly reduce the GAPDH concentration in B16 cells, and c-Myc siRNAs can cause the gene silencing of c-Myc and thus the apoptosis of cells. In vivo experiments show that the topical application of c-Myc siRNAs delivered by SPACE-EGF through the skin can significantly inhibit the growth of melanoma tumors. This work may provide insight into the development of new transdermal drug carriers to treat a variety of skin disorders. PMID:27374619

  13. Characterization of functionally active gene fusions in human papillomavirus related oropharyngeal squamous cell carcinoma.

    PubMed

    Guo, Theresa; Gaykalova, Daria A; Considine, Michael; Wheelan, Sarah; Pallavajjala, Aparna; Bishop, Justin A; Westra, William H; Ideker, Trey; Koch, Wayne M; Khan, Zubair; Fertig, Elana J; Califano, Joseph A

    2016-07-15

    The Cancer Genome Atlas (TCGA) sequencing analysis of head and neck squamous cell carcinoma (HNSCC) recently reported on gene fusions, however, few human papillomavirus (HPV) positive samples were included, and the functional relevance of identified fusions was not explored. We therefore performed an independent analysis of gene fusions in HPV-positive oropharyngeal SCC (OPSCC). RNA sequencing was performed on 47 HPV-positive OPSCC primary tumors and 25 normal mucosal samples from cancer unaffected controls on an Illumina TruSeq platform. MapSplice2 was used for alignment and identification of fusion candidates. Putative fusions with less than five spanning reads, detected in normal tissues, or that mapped to the same gene were filtered out. Selected fusions were validated by RT-PCR and Sanger sequencing. Within 47 HPV-positive OPSCC tumors, 282 gene fusions were identified. Most fusions (85.1%) occurred in a single tumor, and the remaining fusions recurred in 2-16 tumors. Gene fusions were associated with significant up regulation of 16 genes (including EGFR and ERBB4) and down regulation of four genes (PTPRT, ZNF750, DLG2, SLCO5A1). Expression of these genes followed similar patterns of up regulation and down regulation in tumors without these fusions compared to normal tissue. Five of six gene fusions selected for validation were confirmed through RT-PCR and sequencing. This integrative analysis provides a method of prioritizing functionally relevant gene fusions that may be expanded to other tumor types. These results demonstrate that gene fusions may be one mechanism by which functionally relevant genes are altered in HPV-positive OPSCC. PMID:26949921

  14. A soluble form of Epstein-Barr virus gH/gL inhibits EBV-induced membrane fusion and does not function in fusion

    SciTech Connect

    Rowe, Cynthia L.; Connolly, Sarah A.; Chen, Jia; Jardetzky, Theodore S.; Longnecker, Richard

    2013-02-05

    We investigated whether soluble EBV gH/gL (sgH/gL) functions in fusion and made a series of truncations of gH/gL domains based on the gH/gL crystal structure. We found sgH/gL failed to mediate cell-cell fusion both when co-expressed with the other entry glycoproteins and when added exogenously to fusion assays. Interestingly, sgH/gL inhibited cell-cell fusion in a dose dependent manner when co-expressed. sgH/gL from HSV was unable to inhibit EBV fusion, suggesting the inhibition was specific to EBV gH/gL. sgH/gL stably binds gp42, but not gB nor gH/gL. The domain mutants, DI/gL, DI-II/gL and DI-II-III/gL were unable to bind gp42. Instead, DI-II/gL, DI-II-III/gL and sgH/gL but not DI/gL decreased the expression of gp42, resulting in decreased overall fusion. Overall, our results suggest that domain IV may be required for proper folding and the transmembrane domain and cytoplasmic tail of EBV gH/gL are required for the most efficient fusion.

  15. Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

    PubMed Central

    Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2005-01-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal fusion model and cancellous bone matrix was used to compare an enriched cellular composite bone graft alone, bone matrix plus bone marrow clot, and an enriched bone matrix composite graft plus bone marrow clot. Union score, quantitative computed tomography, and mechanical testing were used to define outcome. The union score for the enriched bone matrix plus bone marrow clot composite was superior to the enriched bone matrix alone and the bone matrix plus bone marrow clot. The enriched bone matrix plus bone marrow clot composite also was superior to the enriched bone matrix alone in fusion volume and in fusion area. These data confirm that the addition of a bone marrow clot to an enriched cell-matrix composite graft results in significant improvement in graft performance. Enriched composite grafts prepared using this strategy provide a rapid, simple, safe, and inexpensive method for intraoperative concentration and delivery of bone marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting. PMID:12567137

  16. Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion.

    PubMed

    Paredes, Angel M; Ferreira, Davis; Horton, Michelle; Saad, Ali; Tsuruta, Hiro; Johnston, Robert; Klimstra, William; Ryman, Kate; Hernandez, Raquel; Chiu, Wah; Brown, Dennis T

    2004-07-01

    Alphaviruses have the ability to induce cell-cell fusion after exposure to acid pH. This observation has served as an article of proof that these membrane-containing viruses infect cells by fusion of the virus membrane with a host cell membrane upon exposure to acid pH after incorporation into a cell endosome. We have investigated the requirements for the induction of virus-mediated, low pH-induced cell-cell fusion and cell-virus fusion. We have correlated the pH requirements for this process to structural changes they produce in the virus by electron cryo-microscopy. We found that exposure to acid pH was required to establish conditions for membrane fusion but that membrane fusion did not occur until return to neutral pH. Electron cryo-microscopy revealed dramatic changes in the structure of the virion as it was moved to acid pH and then returned to neutral pH. None of these treatments resulted in the disassembly of the virus protein icosahedral shell that is a requisite for the process of virus membrane-cell membrane fusion. The appearance of a prominent protruding structure upon exposure to acid pH and its disappearance upon return to neutral pH suggested that the production of a "pore"-like structure at the fivefold axis may facilitate cell penetration as has been proposed for polio (J. Virol. 74 (2000) 1342) and human rhino virus (Mol. Cell 10 (2002) 317). This transient structural change also provided an explanation for how membrane fusion occurs after return to neutral pH. Examination of virus-cell complexes at neutral pH supported the contention that infection occurs at the cell surface at neutral pH by the production of a virus structure that breaches the plasma membrane bilayer. These data suggest an alternative route of infection for Sindbis virus that occurs by a process that does not involve membrane fusion and does not require disassembly of the virus protein shell. PMID:15207623

  17. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers

    PubMed Central

    Ricarte-Filho, Julio C.; Li, Sheng; Garcia-Rendueles, Maria E.R.; Montero-Conde, Cristina; Voza, Francesca; Knauf, Jeffrey A.; Heguy, Adriana; Viale, Agnes; Bogdanova, Tetyana; Thomas, Geraldine A.; Mason, Christopher E.; Fagin, James A.

    2013-01-01

    Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program. PMID:24135138

  18. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers.

    PubMed

    Ricarte-Filho, Julio C; Li, Sheng; Garcia-Rendueles, Maria E R; Montero-Conde, Cristina; Voza, Francesca; Knauf, Jeffrey A; Heguy, Adriana; Viale, Agnes; Bogdanova, Tetyana; Thomas, Geraldine A; Mason, Christopher E; Fagin, James A

    2013-11-01

    Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program. PMID:24135138

  19. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion

    SciTech Connect

    Petit, Chad M.; Chouljenko, Vladimir N.; Iyer, Arun; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G. . E-mail: vtgusk@lsu.edu

    2007-04-10

    The SARS-coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of {sup 3}H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion.

  20. Aggregation and hemi-fusion of anionic vesicles induced by the antimicrobial peptide cryptdin-4.

    PubMed

    Cummings, Jason E; Vanderlick, T Kyle

    2007-07-01

    We show that cryptdin-4 (Crp4), an antimicrobial peptide found in mice, induces the aggregation and hemi-fusion of charged phospholipid vesicles constructed of the anionic lipid POPG and the zwitterionic lipid POPC. Hemi-fusion is confirmed with positive total lipid-mixing assay results, negative inner monolayer lipid-mixing assay results, and negative results from contents-mixing assays. Aggregation, as quantified by absorbance and dynamic light scattering, is self-limiting, creating finite-sized vesicle assemblies. The rate limiting step in the formation process is the mixing of juxtaposed membrane leaflets, which is regulated by bound peptide concentration as well as vesicle radius (with larger vesicles less prone to hemi-fusion). Bound peptide concentration is readily controlled by total peptide concentration and the fraction of anionic lipid in the vesicles. As little as 1% PEGylated lipid significantly reduces aggregate size by providing a steric barrier for membrane apposition. Finally, as stable hemi-fusion is a rare occurrence, we compare properties of Crp4 to those of many peptides known to induce complete fusion and lend insight into conditions necessary for this unusual type of membrane merger. PMID:17531950

  1. The Influenza Hemagglutinin Fusion Domain Is an Amphipathic Helical Hairpin That Functions by Inducing Membrane Curvature*

    PubMed Central

    Smrt, Sean T.; Draney, Adrian W.; Lorieau, Justin L.

    2015-01-01

    The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk. PMID:25398882

  2. La3+-induced fusion of phosphatidylserine liposomes. Close approach, intermembrane intermediates, and the electrostatic surface potential.

    PubMed Central

    Bentz, J; Alford, D; Cohen, J; Düzgüneş, N

    1988-01-01

    The fusion of large unilamellar phosphatidylserine liposomes (PS LUV) induced by La3+ has been monitored using the 1-aminoapthalene-3,6,8-trisulfonic acid/p-xylenebis(pyridinium bromide) (ANTS/DPX) fluorescence assay for the mixing of aqueous contents. The fusion event is extensive and nonleaky, with up to 95% mixing of contents in the fused liposomes. However, addition of excess EDTA leads to disruption of the fusion products in a way that implies the existence of metastable intermembrane contact sites. The maximal fusion activity occurs between 10 and 100 microM La3+ and fusion can be terminated rapidly, without loss of contents, by the addition of excess La3+, e.g., 1 mM La3+ at pH 7.4. This observation is explained by the very large intrinsic binding constant (approximately 10(5) M-1) of La3+ to the PS headgroup, as measured by microelectrophoresis. Addition of 1 mM La3+ causes charge reversal of the membrane and a large positive surface potential. La3+ binding to PS causes the release of a proton. These data can be explained if La3+ can chelate to PS at two sites, with one of the sites being the primary amino group. This binding model successfully predicts that at pH 4.5 fusion occurs up to 2 mM La3+, due to reduced La3+ binding at low pH. We conclude that the general mechanism of membrane fusion includes three kinetic steps. In addition to (a) aggregation, there is (b) the close approach of the surfaces, or thinning of the hydration layer, and (c) the formation of intermembrane intermediates which determine the extent to which membrane destabilization leads to fusion (mixing of aqueous contents), as opposed to lysis. The lifetime of these intermembrane intermediates appears to depend upon La3+ binding to both PS sites. PMID:3382713

  3. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming.

    PubMed

    Powell, Anne E; Anderson, Eric C; Davies, Paige S; Silk, Alain D; Pelz, Carl; Impey, Soren; Wong, Melissa H

    2011-02-15

    The most deadly phase in cancer progression is attributed to the inappropriate acquisition of molecular machinery leading to metastatic transformation and spread of disease to distant organs. Although it is appreciated that metastasis involves epithelial-mesenchymal interplay, the underlying mechanism defining this process is poorly understood. Specifically, how cancer cells evade immune surveillance and gain the ability to navigate the circulatory system remains a focus. One possible mechanism underlying metastatic conversion is fusion between blood-derived immune cells and cancer cells. While this notion is a century old, in vivo evidence that cell fusion occurs within tumors and imparts genetic or physiologic changes remains controversial. We have previously demonstrated in vivo cell fusion between blood cells and intestinal epithelial cells in an injury setting. Here, we hypothesize that immune cells, such as macrophages, fuse with tumor cells imparting metastatic capabilities by transferring their cellular identity. We used parabiosis to introduce fluorescent-labeled bone marrow-derived cells to mice with intestinal tumors, finding that fusion between circulating blood-derived cells and tumor epithelium occurs during the natural course of tumorigenesis. Moreover, we identify the macrophage as a key cellular partner for this process. Interestingly, cell fusion hybrids retain a transcriptome identity characteristic of both parental derivatives, while also expressing a unique subset of transcripts. Our data supports the novel possibility that tumorigenic cell fusion may impart physical behavior attributed to migratory macrophages, including navigation of circulation and immune evasion. As such, cell fusion may represent a promising novel mechanism underlying the metastatic conversion of cancer cells. PMID:21303980

  4. Viral fusion protein transmembrane domain adopts β-strand structure to facilitate membrane topological changes for virus–cell fusion

    PubMed Central

    Yao, Hongwei; Lee, Michelle W.; Waring, Alan J.; Wong, Gerard C. L.; Hong, Mei

    2015-01-01

    The C-terminal transmembrane domain (TMD) of viral fusion proteins such as HIV gp41 and influenza hemagglutinin (HA) is traditionally viewed as a passive α-helical anchor of the protein to the virus envelope during its merger with the cell membrane. The conformation, dynamics, and lipid interaction of these fusion protein TMDs have so far eluded high-resolution structure characterization because of their highly hydrophobic nature. Using magic-angle-spinning solid-state NMR spectroscopy, we show that the TMD of the parainfluenza virus 5 (PIV5) fusion protein adopts lipid-dependent conformations and interactions with the membrane and water. In phosphatidylcholine (PC) and phosphatidylglycerol (PG) membranes, the TMD is predominantly α-helical, but in phosphatidylethanolamine (PE) membranes, the TMD changes significantly to the β-strand conformation. Measured order parameters indicate that the strand segments are immobilized and thus oligomerized. 31P NMR spectra and small-angle X-ray scattering (SAXS) data show that this β-strand–rich conformation converts the PE membrane to a bicontinuous cubic phase, which is rich in negative Gaussian curvature that is characteristic of hemifusion intermediates and fusion pores. 1H-31P 2D correlation spectra and 2H spectra show that the PE membrane with or without the TMD is much less hydrated than PC and PG membranes, suggesting that the TMD works with the natural dehydration tendency of PE to facilitate membrane merger. These results suggest a new viral-fusion model in which the TMD actively promotes membrane topological changes during fusion using the β-strand as the fusogenic conformation. PMID:26283363

  5. Tumor necrosis factor-{alpha} enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    SciTech Connect

    Song, Kai; Zhu, Fei; Zhang, Han-zhong; Shang, Zheng-jun

    2012-08-15

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black

  6. Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming.

    PubMed

    Cantone, Irene; Bagci, Hakan; Dormann, Dirk; Dharmalingam, Gopuraja; Nesterova, Tatyana; Brockdorff, Neil; Rougeulle, Claire; Vallot, Celine; Heard, Edith; Chaligne, Ronan; Merkenschlager, Matthias; Fisher, Amanda G

    2016-01-01

    Erasure of epigenetic memory is required to convert somatic cells towards pluripotency. Reactivation of the inactive X chromosome (Xi) has been used to model epigenetic reprogramming in mouse, but human studies are hampered by Xi epigenetic instability and difficulties in tracking partially reprogrammed iPSCs. Here we use cell fusion to examine the earliest events in the reprogramming-induced Xi reactivation of human female fibroblasts. We show that a rapid and widespread loss of Xi-associated H3K27me3 and XIST occurs in fused cells and precedes the bi-allelic expression of selected Xi-genes by many heterokaryons (30-50%). After cell division, RNA-FISH and RNA-seq analyses confirm that Xi reactivation remains partial and that induction of human pluripotency-specific XACT transcripts is rare (1%). These data effectively separate pre- and post-mitotic events in reprogramming-induced Xi reactivation and reveal a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome. PMID:27507283

  7. Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming

    PubMed Central

    Cantone, Irene; Bagci, Hakan; Dormann, Dirk; Dharmalingam, Gopuraja; Nesterova, Tatyana; Brockdorff, Neil; Rougeulle, Claire; Vallot, Celine; Heard, Edith; Chaligne, Ronan; Merkenschlager, Matthias; Fisher, Amanda G.

    2016-01-01

    Erasure of epigenetic memory is required to convert somatic cells towards pluripotency. Reactivation of the inactive X chromosome (Xi) has been used to model epigenetic reprogramming in mouse, but human studies are hampered by Xi epigenetic instability and difficulties in tracking partially reprogrammed iPSCs. Here we use cell fusion to examine the earliest events in the reprogramming-induced Xi reactivation of human female fibroblasts. We show that a rapid and widespread loss of Xi-associated H3K27me3 and XIST occurs in fused cells and precedes the bi-allelic expression of selected Xi-genes by many heterokaryons (30–50%). After cell division, RNA-FISH and RNA-seq analyses confirm that Xi reactivation remains partial and that induction of human pluripotency-specific XACT transcripts is rare (1%). These data effectively separate pre- and post-mitotic events in reprogramming-induced Xi reactivation and reveal a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome. PMID:27507283

  8. Cell-free fusion of bacteria-containing phagosomes with endocytic compartments

    PubMed Central

    Becken, Ulrike; Jeschke, Andreas; Veltman, Katharina; Haas, Albert

    2010-01-01

    Uptake of microorganisms by professional phagocytic cells leads to formation of a new subcellular compartment, the phagosome, which matures by sequential fusion with early and late endocytic compartments, resulting in oxidative and nonoxidative killing of the enclosed microbe. Few tools are available to study membrane fusion between phagocytic and late endocytic compartments in general and with pathogen-containing phagosomes in particular. We have developed and applied a fluorescence microscopy assay to study fusion of microbe-containing phagosomes with different-aged endocytic compartments in vitro. This revealed that fusion of phagosomes containing nonpathogenic Escherichia coli with lysosomes requires Rab7 and SNARE proteins but not organelle acidification. In vitro fusion experiments with phagosomes containing pathogenic Salmonella enterica serovar Typhimurium indicated that reduced fusion of these phagosomes with early and late endocytic compartments was independent of endosome and cytosol sources and, hence, a consequence of altered phagosome quality. PMID:21071675

  9. Cell-free fusion of bacteria-containing phagosomes with endocytic compartments.

    PubMed

    Becken, Ulrike; Jeschke, Andreas; Veltman, Katharina; Haas, Albert

    2010-11-30

    Uptake of microorganisms by professional phagocytic cells leads to formation of a new subcellular compartment, the phagosome, which matures by sequential fusion with early and late endocytic compartments, resulting in oxidative and nonoxidative killing of the enclosed microbe. Few tools are available to study membrane fusion between phagocytic and late endocytic compartments in general and with pathogen-containing phagosomes in particular. We have developed and applied a fluorescence microscopy assay to study fusion of microbe-containing phagosomes with different-aged endocytic compartments in vitro. This revealed that fusion of phagosomes containing nonpathogenic Escherichia coli with lysosomes requires Rab7 and SNARE proteins but not organelle acidification. In vitro fusion experiments with phagosomes containing pathogenic Salmonella enterica serovar Typhimurium indicated that reduced fusion of these phagosomes with early and late endocytic compartments was independent of endosome and cytosol sources and, hence, a consequence of altered phagosome quality. PMID:21071675

  10. Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells

    SciTech Connect

    Hayakawa, Kazuo; Ikeya, Makoto; Fukuta, Makoto; Woltjen, Knut; Tamaki, Sakura; Takahara, Naoko; Kato, Tomohisa; Sato, Shingo; Otsuka, Takanobu; Toguchida, Junya

    2013-03-22

    Highlights: ► We tried to identify targets of synovial sarcoma (SS)-associated SYT–SSX fusion gene. ► We established pluripotent stem cell (PSC) lines with inducible SYT–SSX gene. ► SYT–SSX responsive genes were identified by the induction of SYT–SSX in PSC. ► SS-related genes were selected from database by in silico analyses. ► 51 genes were finally identified among SS-related genes as targets of SYT–SSX in PSC. -- Abstract: Synovial sarcoma (SS) is a malignant soft tissue tumor harboring chromosomal translocation t(X; 18)(p11.2; q11.2), which produces SS-specific fusion gene, SYT–SSX. Although precise function of SYT–SSX remains to be investigated, accumulating evidences suggest its role in gene regulation via epigenetic mechanisms, and the product of SYT–SSX target genes may serve as biomarkers of SS. Lack of knowledge about the cell-of-origin of SS, however, has placed obstacle in the way of target identification. Here we report a novel approach to identify SYT–SSX2 target genes using human pluripotent stem cells (hPSCs) containing a doxycycline-inducible SYT–SSX2 gene. SYT–SSX2 was efficiently induced both at mRNA and protein levels within three hours after doxycycline administration, while no morphological change of hPSCs was observed until 24 h. Serial microarray analyses identified genes of which the expression level changed more than twofold within 24 h. Surprisingly, the majority (297/312, 95.2%) were up-regulated genes and a result inconsistent with the current concept of SYT–SSX as a transcriptional repressor. Comparing these genes with SS-related genes which were selected by a series of in silico analyses, 49 and 2 genes were finally identified as candidates of up- and down-regulated target of SYT–SSX, respectively. Association of these genes with SYT–SSX in SS cells was confirmed by knockdown experiments. Expression profiles of SS-related genes in hPSCs and human mesenchymal stem cells (hMSCs) were strikingly

  11. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion

    PubMed Central

    Liao, Jen-Chung

    2016-01-01

    Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs) genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2) vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs) were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6) was implanted with collagen-β-tricalcium phosphate (TCP)-hydroxyapatite (HA), Group II (n = 6) was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6) was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA). Spinal fusion was examined using computed tomography (CT), manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12), 8 in Group II (67%, 8/12), and 12 in Group III (100%, 12/12). The fusion rate, determined by manual palpation, was 0% (0/6) in Group I, 0% (0/6) in Group II, and 83% (5/6) in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits. PMID:27399674

  12. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion.

    PubMed

    Liao, Jen-Chung

    2016-01-01

    Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs) genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2) vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs) were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6) was implanted with collagen-β-tricalcium phosphate (TCP)-hydroxyapatite (HA), Group II (n = 6) was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6) was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA). Spinal fusion was examined using computed tomography (CT), manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12), 8 in Group II (67%, 8/12), and 12 in Group III (100%, 12/12). The fusion rate, determined by manual palpation, was 0% (0/6) in Group I, 0% (0/6) in Group II, and 83% (5/6) in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits. PMID:27399674

  13. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  14. Comparison of microinjection (piezo-electric) and cell fusion for nuclear transfer success with different cell types in cattle.

    PubMed

    Galli, Cesare; Lagutina, Irina; Vassiliev, Ivan; Duchi, Roberto; Lazzari, Giovanna

    2002-01-01

    Amongst the many variables that can determine success of cloning, the source of nuclei, the procedure used for nuclear transfer, and the activation of the reconstructed embryo are very important aspects. In this study, we have compared the two most common procedures for transferring nuclei to enucleated oocytes--cell fusion (CF) and piezoelectric microinjection (PEM) using different somatic cells--and we have investigated the effect of different activation procedures. Granulosa cells and fibroblasts were grown to confluency or in low serum to induce a quiescent state, while lymphocytes were thawed immediately prior to use. Enucleated oocytes were reconstructed either with CF or PME by 21-23 h postmaturation. For cell fusion, one pulse of 1 kVolt/cm for 30 microsec was used; for PEM, the cell membrane was broken by repeated pipetting and transferred in a 12% PVP solution to facilitate injection. Manipulated oocytes were activated with ionomycin and cycloheximide (CHX) or 6-DMAP (DMAP) and cultured in microdrops of SOF-BSA-AA. On day 7 (day 0: nuclear transfer), embryo development was evaluated and embryos were either transferred fresh or were frozen. More embryos were successfully reconstructed with PEM than CF, but a higher number of reconstructed embryos by CF developed to blastocyst at D + 7. In addition, in both systems more embryos were obtained after activation with DMAP than with CHX. The transfer of 141 embryos to recipients resulted in a pregnancy rate of 50%, and no differences were observed between the source of donor cell, the reconstruction methods, or the activation protocol. Six calves were delivered at term, and four survived. High pregnancy losses were observed throughout the gestation period. PMID:12398800

  15. Fusion reactions in collisions induced by Li isotopes on Sn targets

    SciTech Connect

    Fisichella, M.; Shotter, A. C.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Marchetta, C.; Musumarra, A.; Pellegriti, M. G.; Ruiz, C.; Scuderi, V.; Strano, E.; Torresi, D.; Zadro, M.

    2012-10-20

    Fusion cross sections for the {sup 6}Li+{sup 120}Sn and {sup 7}Li+{sup 119}Sn systems have been measured. We aim to search for possible effects due to the different neutron transfer Q-values, by comparing the fusion cross sections for the two systems below the barrier. This experiment is the first step of a wider systematic aiming to study the above problems in collisions induced by stable and unstable Li isotopes on tin all forming the same compound nucleus.

  16. Radiation-induced electrical breakdown of helium in fusion reactor superconducting magnet systems

    SciTech Connect

    Perkins, L.J.

    1983-12-02

    A comprehensive theoretical study has been performed on the reduction of the electrical breakdown potential of liquid and gaseous helium under neutron and gamma radiation. Extension of the conventional Townsend breakdown theory indicates that radiation fields at the superconducting magnets of a typical fusion reactor are potentially capable of significantly reducing currently established (i.e., unirradiated) helium breakdown voltages. Emphasis is given to the implications of these results including future deployment choices of magnet cryogenic methods (e.g., pool-boiling versus forced-flow), the possible impact on magnet shielding requirements and the analogous situation for radiation-induced electrical breakdown in fusion RF transmission systems.

  17. Horizontal Transmission and Retention of Malignancy, as well as Functional Human Genes, After Spontaneous Fusion of Human Glioblastoma and Hamster Host Cells In Vivo

    PubMed Central

    Goldenberg, David M.; Zagzag, David; Heselmeyer-Haddad, Kerstin M.; Berroa Garcia, Lissa Y; Ried, Thomas; Loo, Meiyu; Chang, Chien-Hsing; Gold, David V.

    2011-01-01

    Cell fusion in vitro has been used to study cancer, gene mapping and regulation, and the production of antibodies via hybridomas. However, in-vivo heterosynkaryon formation by cell-cell fusion has received less attention. This investigation describes the spontaneous fusion of a human glioblastoma with normal hamster cells after xenogeneic transplantation, resulting in malignant cells that express both human and hamster genes and gene products, and retention of glioblastoma traits with an enhanced ability to metastasize. Three of 7 human genes found showed translation of their proteins during serial propagation in vivo or in vitro for years; namely, CD74, CXCR4, and PLAGL2, each implicated with malignancy or glioblastoma. This supports the thesis that genetic hybridization of cancer and normal cells can transmit malignancy and also, as first described herein, regulatory genes involved in the tumor’s organotypic morphology. Evidence also is increasing that even cell-free human cancer DNA can induce malignancy and transfer genetic information to normal cells. Hence, we posit that the transfer of genetic information between tumor and stromal cells, whether by cell-cell fusion or other mechanisms, is implicated in the progression of malignancy, and may further define the crosstalk between cancer cells and their stromal neighbors. PMID:21796629

  18. Downregulation of Pink1 influences mitochondrial fusion-fission machinery and sensitizes to neurotoxins in dopaminergic cells.

    PubMed

    Rojas-Charry, Liliana; Cookson, Mark R; Niño, Andrea; Arboleda, Humberto; Arboleda, Gonzalo

    2014-09-01

    It is now well established that mitochondria are organelles that, far from being static, are subject to a constant process of change. This process, which has been called mitochondrial dynamics, includes processes of both fusion and fission. Loss of Pink1 (PTEN-induced putative kinase 1) function is associated with early onset recessive Parkinson's disease and it has been proposed that mitochondrial dynamics might be affected by loss of the mitochondrial kinase. Here, we report the effects of silencing Pink1 on mitochondrial fusion and fission events in dopaminergic neuron cell lines. Cells lacking Pink1 were more sensitive to cell death induced by C2-Ceramide, which inhibits proliferation and induces apoptosis. In the same cell lines, mitochondrial morphology was fragmented and this was enhanced by application of forskolin, which stimulates the cAMP pathway that phosphorylates Drp1 and thereby inactivates it. Cells lacking Pink1 had lower Drp1 and Mfn2 expression. Based on these data, we propose that Pink1 may exert a neuroprotective role in part by limiting mitochondrial fission. PMID:24792327

  19. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    SciTech Connect

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Poehlmann, Stefan

    2011-05-10

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation.

  20. Ammonium chloride, an inhibitor of phagosome-lysosome fusion in macrophages, concurrently induces phagosome-endosome fusion, and opens a novel pathway: studies of a pathogenic mycobacterium and a nonpathogenic yeast.

    PubMed

    Hart, P D; Young, M R

    1991-10-01

    The weak base ammonium chloride has been previously reported to inhibit lysosomal movements and phagosome-lysosome (Ph-L) fusion in cultured mouse macrophages (M phi), thus reducing delivery, to an intraphagosomal infection, of endocytosed solutes that have concentrated in secondary lysosomes. We have now addressed the question, whether NH4Cl might affect any direct interaction (if it exists) between such infection phagosomes and earlier, nonlysosomal compartments of the endocytic pathway, i.e., solute-containing endosomes. The phagosomes studied were formed after ingestion of the mouse pathogen Mycobacterium microti and the nonpathogenic yeast Saccharomyces cerevisiae; and the endosomes were formed after nonreceptor-mediated endocytosis of electronopaque and fluorescent soluble markers. By electron microscopy, survey of the cell profiles of M phi that had been treated with 10 mM NH4Cl so that Ph-L fusion was prevented, and that displayed many ferritin-labeled endosomes, revealed numerous examples of the fusion of electronlucent endosomes, revealed numerous examples of the fusion of electronlucent vesicles with phagosomes, whether containing M. microti bacilli or S. cerevisiae yeasts. Fusion was recognized by transfer of label and by morphological evidence of fusion in progress. The fusing vesicles were classed as endosomes, not NH4Cl-lysosomes, by their appearance and provenance, and because lysosome participation was excluded by the concurrent, NH4Cl-caused block of Ph-L fusion and associated lysosomal stasis. No evidence of such phagosome-endosome (Ph-E) fusion was observed in profiles from M phi treated with chloroquine, nor in those from normal, untreated M phi. NH4Cl-treated living M phi that had ingested yeasts at 37 degrees C, followed by endocytosis of lucifer yellow at 17 degrees C (to accumulate labeled endosomes and postpone label passing to lysosomes), were then restored to 37 degrees C. Fluorescence microscopy showed that as many as half of the yeast

  1. The EFF-1A Cytoplasmic Domain Influences Hypodermal Cell Fusions in C. elegans But Is Not Dependent on 14-3-3 Proteins

    PubMed Central

    Shinn-Thomas, Jessica H.; del Campo, Jacob J.; Wang, Jianjun; Mohler, William A.

    2016-01-01

    Background Regulatory and biophysical mechanisms of cell-cell fusion are largely unknown despite the fundamental requirement for fused cells in eukaryotic development. Only two cellular fusogens that are not of clear recent viral origin have been identified to date, both in nematodes. One of these, EFF-1, is necessary for most cell fusions in Caenorhabditis elegans. Unregulated EFF-1 expression causes lethality due to ectopic fusion between cells not developmentally programmed to fuse, highlighting the necessity of tight fusogen regulation for proper development. Identifying factors that regulate EFF-1 and its paralog AFF-1 could lead to discovery of molecular mechanisms that control cell fusion upstream of the action of a membrane fusogen. Bioinformatic analysis of the EFF-1A isoform’s predicted cytoplasmic domain (endodomain) previously revealed two motifs that have high probabilities of interacting with 14-3-3 proteins when phosphorylated. Mutation of predicted phosphorylation sites within these motifs caused measurable loss of eff-1 gene function in cell fusion in vivo. Moreover, a human 14-3-3 isoform bound to EFF-1::GFP in vitro. We hypothesized that the two 14-3-3 proteins in C. elegans, PAR-5 and FTT-2, may regulate either localization or fusion-inducing activity of EFF-1. Methodology/Principal Findings Timing of fusion events was slightly but significantly delayed in animals unable to produce full-length EFF-1A. Yet, mutagenesis and live imaging showed that phosphoserines in putative 14-3-3 binding sites are not essential for EFF-1::GFP accumulation at the membrane contact between fusion partner cells. Moreover, although the EFF-1A endodomain was required for normal rates of eff-1-dependent epidermal cell fusions, reduced levels of FTT-2 and PAR-5 did not visibly affect the function of wild-type EFF-1 in the hypodermis. Conclusions/Significance Deletion of the EFF-1A endodomain noticeably affects the timing of hypodermal cell fusions in vivo. However

  2. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells

    SciTech Connect

    Yang, Liu; Hu, Hsien-Ming; Zielinska-Kwiatkowska, Anna; Chansky, Howard A.

    2010-11-05

    Research highlights: {yields} Inducible and reversible siRNA knockdown of an oncogenic fusion protein such as EWS-Fli1 is feasible and more advantageous than other siRNA methods. {yields} The tumor suppressor gene FOXO1 is a new EWS-Fli1 target. {yields} While trans-activators are known for the FOXO1 gene, there has been no report on negative regulators of FOXO1 transcription. {yields} This study provides first evidence that the EWS-Fli1 oncogenic fusion protein can function as a transcriptional repressor of the FOXO1 gene. -- Abstract: Ewing's family tumors are characterized by a specific t(11;22) chromosomal translocation that results in the formation of EWS-Fli1 oncogenic fusion protein. To investigate the effects of EWS-Fli1 on gene expression, we carried out DNA microarray analysis after specific knockdown of EWS-Fli1 through transfection of synthetic siRNAs. EWS-Fli1 knockdown increased expression of genes such as DKK1 and p57 that are known to be repressed by EWS-Fli1 fusion protein. Among other potential EWS-Fli1 targets identified by our microarray analysis, we have focused on the FOXO1 gene since it encodes a potential tumor suppressor and has not been previously reported in Ewing's cells. To better understand how EWS-Fli1 affects FOXO1 expression, we have established a doxycycline-inducible siRNA system to achieve stable and reversible knockdown of EWS-Fli1 in Ewing's sarcoma cells. Here we show that FOXO1 expression in Ewing's cells has an inverse relationship with EWS-Fli1 protein level, and FOXO1 promoter activity is increased after doxycycline-induced EWS-Fli1 knockdown. In addition, we have found that direct binding of EWS-Fli1 to FOXO1 promoter is attenuated after doxycycline-induced siRNA knockdown of the fusion protein. Together, these results suggest that suppression of FOXO1 function by EWS-Fli1 fusion protein may contribute to cellular transformation in Ewing's family tumors.

  3. The Membrane Fusion Step of Vaccinia Virus Entry Is Cooperatively Mediated by Multiple Viral Proteins and Host Cell Components

    PubMed Central

    Laliberte, Jason P.; Weisberg, Andrea S.; Moss, Bernard

    2011-01-01

    For many viruses, one or two proteins allow cell attachment and entry, which occurs through the plasma membrane or following endocytosis at low pH. In contrast, vaccinia virus (VACV) enters cells by both neutral and low pH routes; four proteins mediate cell attachment and twelve that are associated in a membrane complex and conserved in all poxviruses are dedicated to entry. The aim of the present study was to determine the roles of cellular and viral proteins in initial stages of entry, specifically fusion of the membranes of the mature virion and cell. For analysis of the role of cellular components, we used well characterized inhibitors and measured binding of a recombinant VACV virion containing Gaussia luciferase fused to a core protein; viral and cellular membrane lipid mixing with a self-quenching fluorescent probe in the virion membrane; and core entry with a recombinant VACV expressing firefly luciferase and electron microscopy. We determined that inhibitors of tyrosine protein kinases, dynamin GTPase and actin dynamics had little effect on binding of virions to cells but impaired membrane fusion, whereas partial cholesterol depletion and inhibitors of endosomal acidification and membrane blebbing had a severe effect at the later stage of core entry. To determine the role of viral proteins, virions lacking individual membrane components were purified from cells infected with members of a panel of ten conditional-lethal inducible mutants. Each of the entry protein-deficient virions had severely reduced infectivity and except for A28, L1 and L5 greatly impaired membrane fusion. In addition, a potent neutralizing L1 monoclonal antibody blocked entry at a post-membrane lipid-mixing step. Taken together, these results suggested a 2-step entry model and implicated an unprecedented number of viral proteins and cellular components involved in signaling and actin rearrangement for initiation of virus-cell membrane fusion during poxvirus entry. PMID:22194690

  4. Studies of OC-STAMP in Osteoclast Fusion: A New Knockout Mouse Model, Rescue of Cell Fusion, and Transmembrane Topology

    PubMed Central

    Reyes-Gutierrez, Pablo; Jia, Hong; Odgren, Paul E.; Donahue, Leah Rae; Birnbaum, Mark J.; Odgren, Paul R.

    2015-01-01

    The fusion of monocyte/macrophage lineage cells into fully active, multinucleated, bone resorbing osteoclasts is a complex cell biological phenomenon that utilizes specialized proteins. OC-STAMP, a multi-pass transmembrane protein, has been shown to be required for pre-osteoclast fusion and for optimal bone resorption activity. A previously reported knockout mouse model had only mononuclear osteoclasts with markedly reduced resorption activity in vitro, but with paradoxically normal skeletal micro-CT parameters. To further explore this and related questions, we used mouse ES cells carrying a gene trap allele to generate a second OC-STAMP null mouse strain. Bone histology showed overall normal bone form with large numbers of TRAP-positive, mononuclear osteoclasts. Micro-CT parameters were not significantly different between knockout and wild type mice at 2 or 6 weeks old. At 6 weeks, metaphyseal TRAP-positive areas were lower and mean size of the areas were smaller in knockout femora, but bone turnover markers in serum were normal. Bone marrow mononuclear cells became TRAP-positive when cultured with CSF-1 and RANKL, but they did not fuse. Expression levels of other osteoclast markers, such as cathepsin K, carbonic anhydrase II, and NFATc1, were not significantly different compared to wild type. Actin rings were present, but small, and pit assays showed a 3.5-fold decrease in area resorbed. Restoring OC-STAMP in knockout cells by lentiviral transduction rescued fusion and resorption. N- and C-termini of OC-STAMP were intracellular, and a predicted glycosylation site was shown to be utilized and to lie on an extracellular loop. The site is conserved in all terrestrial vertebrates and appears to be required for protein stability, but not for fusion. Based on this and other results, we present a topological model of OC-STAMP as a 6-transmembrane domain protein. We also contrast the osteoclast-specific roles of OC- and DC-STAMP with more generalized cell fusion

  5. Studies of OC-STAMP in Osteoclast Fusion: A New Knockout Mouse Model, Rescue of Cell Fusion, and Transmembrane Topology.

    PubMed

    Witwicka, Hanna; Hwang, Sung-Yong; Reyes-Gutierrez, Pablo; Jia, Hong; Odgren, Paul E; Donahue, Leah Rae; Birnbaum, Mark J; Odgren, Paul R

    2015-01-01

    The fusion of monocyte/macrophage lineage cells into fully active, multinucleated, bone resorbing osteoclasts is a complex cell biological phenomenon that utilizes specialized proteins. OC-STAMP, a multi-pass transmembrane protein, has been shown to be required for pre-osteoclast fusion and for optimal bone resorption activity. A previously reported knockout mouse model had only mononuclear osteoclasts with markedly reduced resorption activity in vitro, but with paradoxically normal skeletal micro-CT parameters. To further explore this and related questions, we used mouse ES cells carrying a gene trap allele to generate a second OC-STAMP null mouse strain. Bone histology showed overall normal bone form with large numbers of TRAP-positive, mononuclear osteoclasts. Micro-CT parameters were not significantly different between knockout and wild type mice at 2 or 6 weeks old. At 6 weeks, metaphyseal TRAP-positive areas were lower and mean size of the areas were smaller in knockout femora, but bone turnover markers in serum were normal. Bone marrow mononuclear cells became TRAP-positive when cultured with CSF-1 and RANKL, but they did not fuse. Expression levels of other osteoclast markers, such as cathepsin K, carbonic anhydrase II, and NFATc1, were not significantly different compared to wild type. Actin rings were present, but small, and pit assays showed a 3.5-fold decrease in area resorbed. Restoring OC-STAMP in knockout cells by lentiviral transduction rescued fusion and resorption. N- and C-termini of OC-STAMP were intracellular, and a predicted glycosylation site was shown to be utilized and to lie on an extracellular loop. The site is conserved in all terrestrial vertebrates and appears to be required for protein stability, but not for fusion. Based on this and other results, we present a topological model of OC-STAMP as a 6-transmembrane domain protein. We also contrast the osteoclast-specific roles of OC- and DC-STAMP with more generalized cell fusion

  6. Geometry of the Contact Zone between Fused Membrane-Coated Beads Mimicking Cell-Cell Fusion.

    PubMed

    Savić, Filip; Kliesch, Torben-Tobias; Verbeek, Sarah; Bao, Chunxiao; Thiart, Jan; Kros, Alexander; Geil, Burkhard; Janshoff, Andreas

    2016-05-24

    The fusion of lipid membranes is a key process in biology. It enables cells and organelles to exchange molecules with their surroundings, which otherwise could not cross the membrane barrier. To study such complex processes we use simplified artificial model systems, i.e., an optical fusion assay based on membrane-coated glass spheres. We present a technique to analyze membrane-membrane interactions in a large ensemble of particles. Detailed information on the geometry of the fusion stalk of fully fused membranes is obtained by studying the diffusional lipid dynamics with fluorescence recovery after photobleaching experiments. A small contact zone is a strong obstruction for the particle exchange across the fusion spot. With the aid of computer simulations, fluorescence-recovery-after-photobleaching recovery times of both fused and single-membrane-coated beads allow us to estimate the size of the contact zones between two membrane-coated beads. Minimizing delamination and bending energy leads to minimal angles close to those geometrically allowed. PMID:27224487

  7. Cdc42p GDP/GTP Cycling Is Necessary for Efficient Cell Fusion during Yeast Mating

    PubMed Central

    Barale, Sophie; McCusker, Derek

    2006-01-01

    The highly conserved small Rho G-protein, Cdc42p plays a critical role in cell polarity and cytoskeleton organization in all eukaryotes. In the yeast Saccharomyces cerevisiae, Cdc42p is important for cell polarity establishment, septin ring assembly, and pheromone-dependent MAP-kinase signaling during the yeast mating process. In this study, we further investigated the role of Cdc42p in the mating process by screening for specific mating defective cdc42 alleles. We have identified and characterized novel mating defective cdc42 alleles that are unaffected in vegetative cell polarity. Replacement of the Cdc42p Val36 residue with Met resulted in a specific cell fusion defect. This cdc42[V36M] mutant responded to mating pheromone but was defective in cell fusion and in localization of the cell fusion protein Fus1p, similar to a previously isolated cdc24 (cdc24-m6) mutant. Overexpression of a fast cycling Cdc42p mutant suppressed the cdc24-m6 fusion defect and conversely, overexpression of Cdc24p suppressed the cdc42[V36M] fusion defect. Taken together, our results indicate that Cdc42p GDP–GTP cycling is critical for efficient cell fusion. PMID:16571678

  8. Production and characterization of active recombinant interleukin-12/eGFP fusion protein in stably-transfected DF1 chicken cells.

    PubMed

    Wu, Hsing Chieh; Chen, Yu San; Shen, Pin Chun; Shien, Jui Hung; Lee, Long Huw; Chiu, Hua Hsien

    2015-01-01

    The adjuvant activity of chicken interleukin-12 (chIL-12) protein has been described as similar to that of mammalian IL-12. Recombinant chIL-12 can be produced using several methods, but chIL-12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL-12 which stably expressed a fusion protein, chIL-12 and enhanced green fluorescent protein (eGFP) connected by a (G4 S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 10(6) DF1/chIL-12 cells were inoculated in a T-175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL(-1) and 2,207 ± 3.28 ng mL(-1) , respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN-γ, which was measured using an enzyme-linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL-12 cells with DMSO or producing chIL-12 in a fusion protein form does not have adverse effects on the bioactivity of chIL-12. PMID:25583174

  9. Targeted killing of rhabdomyosarcoma cells by a MAP-based human cytolytic fusion protein.

    PubMed

    Brehm, Hannes; Hristodorov, Dmitrij; Pardo, Alessa; Mladenov, Radoslav; Niesen, Judith; Fischer, Rainer; Tur, Mehmet K; Barth, Stefan

    2015-09-01

    The treatment of rhabdomyosarcoma (RMS) is challenging, and the prognosis remains especially poor for high-grade RMS with metastasis. The conventional treatment of RMS is based on multi-agent chemotherapy combined with resection and radiotherapy, which are often marked by low success rate. Alternative therapeutic options include the combination of standard treatments with immunotherapy. We generated a microtubule-associated protein (MAP)-based fully human cytolytic fusion protein (hCFP) targeting the fetal acetylcholine receptor, which is expressed on RMS cells. We were able to express and purify functional scFv35-MAP from Escherichia coli cells. Moreover, we found that scFv35-MAP is rapidly internalized by target cells after binding its receptor, and exhibits specific cytotoxicity toward FL-OH1 and RD cells in vitro. We also confirmed that scFv35-MAP induces apoptosis in FL-OH1 and RD cells. The in vivo potential of scFv35-MAP will need to be considered in further studies. PMID:25888452

  10. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein

    SciTech Connect

    McBride, Corrin E.; Machamer, Carolyn E.

    2010-09-15

    Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein and may point to important differences in assembly and infectivity of these two coronaviruses.

  11. Deuteron-Induced Cross Section Calculations of Some Structural Fusion Materials

    NASA Astrophysics Data System (ADS)

    Kaplan, A.; Özdoğan, H.; Aydın, A.; Tel, E.

    2013-02-01

    The development of fusion materials for the safety of fusion power systems and understanding nuclear properties is important. The reaction cross-section data have a critical importance on fusion reactors and development for fusion reactor technology. In this study, the theoretical cross sections of some structural fusion materials such as Cr, V, Fe, Ni, Zr and Ta in deuteron-induced reactions have been investigated. The new calculations on the excitation functions of 50Cr(d, α)48V, 51V(d, 2n)51Cr, 51V(d, 4n)49Cr, 54Fe(d, α)52Mn, 54Fe(d, n)55Co, 58Ni(d, α)56Co, 96Zr(d, n)97Nb, 96Zr(d, 2n)96Nb and 181Ta(d, 2n)181W reactions have been carried out up to 90 MeV incident deuteron energies. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the geometry dependent hybrid model and hybrid model. Equilibrium effects have been calculated according to the Weisskopf-Ewing model. The ALICE/ASH computer code has been used in all calculations. The calculated results have been compared with the experimental data existing in EXFOR database and found to be in good agreement.

  12. Adenoviral vector which delivers FasL-GFP fusion protein regulated by the tet-inducible expression system.

    PubMed

    Rubinchik, S; Ding, R; Qiu, A J; Zhang, F; Dong, J

    2000-05-01

    Fas ligand (FasL) is a member of the tumor necrosis family and when bound to its receptor, Fas, induces apoptosis. It plays important roles in immune response, degenerative and lymphoproliferative diseases, development and tumorigenesis. It is also involved in generation of immune privilege sites in the eye and testis. Harnessing the power of this molecule is expected to lead to a powerful chemotherapeutic. We describe the construction and characterization of replication-deficient adenoviral vectors that express a fusion of murine FasL and green fluorescent protein (GFP). FasL-GFP retains full activity of wild-type FasL, at the same time allowing for easy visualization and quantification in both living and fixed cells. The fusion protein is under the control of a tetracycline-regulated gene expression system. Tight control of expression is achieved by creating a novel 'double recombinant' Ad vector, in which the tet-responsive element and the transactivator element are built into the opposite ends of the same vector to avoid enhancer interference. Expression can be conveniently regulated by tetracycline or its derivatives in a dose-dependent manner. The vector was able to deliver FasL-GFP gene to cells in vitro efficiently, and the expression level and function of the fusion protein was modulated by the concentration of doxycycline. This regulation allows us to produce high titers of the vector by inhibiting FasL expression in an apoptosis-resistant cell line. Induction of apoptosis was demonstrated in all cell lines tested. These results indicate that our vector is a potentially valuable tool for FasL-based gene therapy of cancer and for the study of FasL/Fas-mediated apoptosis and immune privilege. PMID:10845726

  13. A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge

    NASA Astrophysics Data System (ADS)

    Deliyannis, Georgia; Boyle, Jefferey S.; Brady, Jamie L.; Brown, Lorena E.; Lew, Andrew M.

    2000-06-01

    Improving the immunological potency, particularly the Ab response, is a serious hurdle for the protective efficacy and hence broad application of DNA vaccines. We examined the immunogenicity and protective efficacy of a hemagglutinin-based influenza DNA vaccine that was targeted to antigen-presenting cells (APCs) by fusion to CTLA4. The targeted vaccine was shown to induce an accelerated and increased Ab response (as compared with those receiving the nontargeted control) that was predominated by IgG1 and recognized conformationally dependent viral epitopes. Moreover, mice receiving the APC-targeted DNA vaccine had significantly reduced viral titers (100-fold) after a nonlethal virus challenge. The increased protective efficacy was most likely because of increased Ab responses, as cytotoxic T lymphocyte responses were not enhanced. Targeting was demonstrated by direct binding studies of CTLA4 fusion proteins to the cognate ligand (B7; expressed on APCs in vivo). In addition, a targeted protein was detected at 4-fold higher levels in draining lymph nodes within 2-24 h of administration. Therefore, this study demonstrates that targeting DNA-encoded antigen to APCs results in enhanced immunity and strongly suggests that this approach may be useful in improving the protective efficacy of DNA vaccines.

  14. A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge

    PubMed Central

    Deliyannis, Georgia; Boyle, Jefferey S.; Brady, Jamie L.; Brown, Lorena E.; Lew, Andrew M.

    2000-01-01

    Improving the immunological potency, particularly the Ab response, is a serious hurdle for the protective efficacy and hence broad application of DNA vaccines. We examined the immunogenicity and protective efficacy of a hemagglutinin-based influenza DNA vaccine that was targeted to antigen-presenting cells (APCs) by fusion to CTLA4. The targeted vaccine was shown to induce an accelerated and increased Ab response (as compared with those receiving the nontargeted control) that was predominated by IgG1 and recognized conformationally dependent viral epitopes. Moreover, mice receiving the APC-targeted DNA vaccine had significantly reduced viral titers (100-fold) after a nonlethal virus challenge. The increased protective efficacy was most likely because of increased Ab responses, as cytotoxic T lymphocyte responses were not enhanced. Targeting was demonstrated by direct binding studies of CTLA4 fusion proteins to the cognate ligand (B7; expressed on APCs in vivo). In addition, a targeted protein was detected at 4-fold higher levels in draining lymph nodes within 2–24 h of administration. Therefore, this study demonstrates that targeting DNA-encoded antigen to APCs results in enhanced immunity and strongly suggests that this approach may be useful in improving the protective efficacy of DNA vaccines. PMID:10823919

  15. Compaction, Fusion, and Functional Activation of Three-Dimensional Human Mesenchymal Stem Cell Aggregate

    PubMed Central

    Tsai, Ang-Chen; Liu, Yijun; Yuan, Xuegang

    2015-01-01

    Human mesenchymal stem cells (hMSCs) are primary candidates in cell therapy and tissue engineering and are being tested in clinical trials for a wide range of diseases. Originally isolated and expanded as plastic adherent cells, hMSCs have intriguing properties of in vitro self-assembly into three-dimensional (3D) aggregates that improve a range of biological properties, including multilineage potential, secretion of therapeutic factors, and resistance against ischemic condition. While cell–cell contacts and cell–extracellular matrix interactions mediate 3D cell aggregation, the adaptive changes of hMSC cytoskeleton during self-assembly and associated metabolic reconfiguration may also influence aggregate properties and functional activation. In this study, we investigated the role of actin in regulating 3D hMSC aggregate compaction, fusion, spreading and functional activation. Individual hMSC aggregates with controlled initial cell number were formed by seeding a known number of hMSCs (500, 2000, and 5000 cells/well) in multi-well plates of an ultra-low adherent surface to form multicellular aggregates in individual wells. To assess the influence of actin-mediated contractility on hMSC aggregation and properties, actin modulators, including cytochalasin D (cytoD), nocodazole, lysophosphatidic acid (LPA), and Y-27632, were added at different stages of aggregation and their impacts on hMSC aggregate compaction and apoptosis were monitored. The results suggest that actin-mediated contractility influences hMSC aggregation, compaction, fusion, and spreading on adherent surface. Formation of multi-cellular aggregates significantly upregulated caspase 3/7 expression, expression of C-X-C chemokine receptor type 4 (CXCR-4), cell migration, secretion of prostaglandin E2 (PGE-2) and interleukin 6 (IL-6), and resistance to in vitro ischemic stress. The functional enhancement, however, is dependent on caspase activation, because treatment with Q-VD-OPh, a pan

  16. Roles of the Putative Integrin-Binding Motif of the Human Metapneumovirus Fusion (F) Protein in Cell-Cell Fusion, Viral Infectivity, and Pathogenesis

    PubMed Central

    Wei, Yongwei; Zhang, Yu; Cai, Hui; Mirza, Anne M.; Iorio, Ronald M.; Peeples, Mark E.; Niewiesk, Stefan

    2014-01-01

    ABSTRACT Human metapneumovirus (hMPV) is a relatively recently identified paramyxovirus that causes acute upper and lower respiratory tract infection. Entry of hMPV is unusual among the paramyxoviruses, in that fusion is accomplished by the fusion (F) protein without the attachment glycoprotein (G protein). It has been suggested that hMPV F protein utilizes integrin αvβ1 as a cellular receptor. Consistent with this, the F proteins of all known hMPV strains possess an integrin-binding motif (329RGD331). The role of this motif in viral entry, infectivity, and pathogenesis is poorly understood. Here, we show that α5β1 and αv integrins are essential for cell-cell fusion and hMPV infection. Mutational analysis found that residues R329 and G330 in the 329RGD331 motif are essential for cell-cell fusion, whereas mutations at D331 did not significantly impact fusion activity. Furthermore, fusion-defective RGD mutations were either lethal to the virus or resulted in recombinant hMPVs that had defects in viral replication in cell culture. In cotton rats, recombinant hMPV with the R329K mutation in the F protein (rhMPV-R329K) and rhMPV-D331A exhibited significant defects in viral replication in nasal turbinates and lungs. Importantly, inoculation of cotton rats with these mutants triggered a high level of neutralizing antibodies and protected against hMPV challenge. Taken together, our data indicate that (i) α5β1 and αv integrins are essential for cell-cell fusion and viral replication, (ii) the first two residues in the RGD motif are essential for fusion activity, and (iii) inhibition of the interaction of the integrin-RGD motif may serve as a new target to rationally attenuate hMPV for the development of live attenuated vaccines. IMPORTANCE Human metapneumovirus (hMPV) is one of the major causative agents of acute respiratory disease in humans. Currently, there is no vaccine or antiviral drug for hMPV. hMPV enters host cells via a unique mechanism, in that viral

  17. A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains.

    PubMed Central

    Berson, J F; Long, D; Doranz, B J; Rucker, J; Jirik, F R; Doms, R W

    1996-01-01

    Entry of human immunodeficiency virus type 1 (HIV-1) into cells requires binding to CD4 and fusion with a cellular membrane. Fusion does not occur in most nonhuman cells even when they express human CD4, indicating that one or more human accessory factors are required for virus infection. Recently, a seven-transmembrane domain protein has been shown to serve as an accessory factor for T-cell-tropic (T-tropic) HIV-1 isolates (Y. Feng, C. C. Broder, P. E. Kennedy, and E. A. Berger, Science 272:872-877, 1996). Here we show that expression of this glycoprotein, termed fusin, in murine, feline, simian, and quail cell lines, in conjunction with human CD4, rendered these cells fully permissive for HIV-1 envelope glycoprotein (Env)-mediated membrane fusion. Expression of CD4 or fusin alone did not permit fusion. In addition, introduction of fusin and CD4 into a human cell line, U87MG, that is resistant to HIV-1 induced syncytium formation and to infection by HIV-1 when expressing CD4 alone made this cell line permissive for Env-mediated cell-cell fusion. Fusion was observed only with T-tropic Env proteins. Macrophage-tropic (M-tropic) Env proteins from the SF162, ADA, and Ba-L HIV-1 strains did not fuse with cells expressing fusin and CD4, suggesting that M-tropic viruses utilize an accessory molecule other than fusin. Finally, coexpression of fusin and CD4 made both a murine and feline cell line susceptible to virus infection by T-tropic, but not M-tropic, HIV-1 strains. PMID:8709256

  18. Selective Retention of Bone Marrow-Derived Cells to Enhance Spinal Fusion

    PubMed Central

    Matsukura, Yoichi; Nitto, Hironori; Boehm, Cynthia A.; Valdevit, Antonio D.; Kambic, Helen E.; Davros, William J.; Easley, Kirk A.; Powell, Kimerly A.

    2005-01-01

    Connective tissue progenitors can be concentrated rapidly from fresh bone marrow aspirates using some porous matrices as a surface for cell attachment and selective retention, and for creating a cellular graft that is enriched with respect to the number of progenitor cells. We evaluated the potential value of this method using demineralized cortical bone powder as the matrix. Matrix alone, matrix plus marrow, and matrix enriched with marrow cells were compared in an established canine spinal fusion model. Fusions were compared based on union score, fusion mass, fusion volume, and by mechanical testing. Enriched matrix grafts delivered a mean of 2.3 times more cells and approximately 5.6 times more progenitors than matrix mixed with bone marrow. The union score with enriched matrix was superior to matrix alone and matrix plus marrow. Fusion volume and fusion area also were greater with the enriched matrix. These data suggest that the strategy of selective retention provides a rapid, simple, and effective method for concentration and delivery of marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting procedures in various clinical settings. PMID:15738828

  19. A delay in membrane fusion: lag times observed by fluorescence microscopy of individual fusion events induced by an electric field pulse.

    PubMed

    Dimitrov, D S; Sowers, A E

    1990-09-11

    Low light level video microscopy of the fusion of DiI- (1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) labeled rabbit erythrocyte ghosts with unlabeled rabbit erythrocyte ghosts, held in stable apposition by dielectrophoresis in sodium phosphate buffers, showed reproducible time intervals (delays) between the application of a single fusogenic electric pulse and the earliest detection of fluorescence in the unlabeled adjacent membranes. The delay increased over the range 0.3-4 s with a decrease in (i) the electric field strength of the fusion-inducing pulse from 1000 to 250 V/mm, (ii) the decay half-time of the fusogenic pulse in the range 1.8-0.073 ms, and (iii) the dielectrophoretic force which brings the membranes into close apposition. A change in the buffer viscosity from 1.8 to 10 mP.s caused the delay to increase from 0.36 to 3.7 s (in glycerol solutions) or to 5.2 s (in sucrose solutions). The delay decreased 2-3 times with an increase in temperature from 21 to 37 degrees C. It did not differ significantly for "white" ghosts [0.013 mM hemoglobin (Hb)] or "red" ghosts (0.15 mM Hb) or buffer strength over the range 5-60 mM (sodium phosphate, pH 8.5). The calculated activation energy, 17 kcal/mol, does not depend on the field strength. The yield of fused cells was high when the delay was short. The delay in electrofusion resembles the delays in pH-dependent fusion of vesicular stomatitis viruses with erythrocyte ghosts [Clague, M. J., Schoch, C., Zech, L., & Blumenthal, R. (1990) Biochemistry 29, 1303-1308] and of fibroblasts expressing influenza hemagglutinin and red blood cells [Morris, S. J., Sarkar, D.P., White, J. M., & Blumenthal, R. (1989) J. Biol. Chem. 264, 3972-3978].(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2174698

  20. Broad target cell selectivity of Kaposi's sarcoma-associated herpesvirus glycoprotein-mediated cell fusion and virion entry

    SciTech Connect

    Kaleeba, Johnan A.R.; Berger, Edward A. . E-mail: edward_berger@nih.gov

    2006-10-10

    The molecular mechanism of Kaposi's sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) entry is poorly understood. We tested a broad variety of cell types of diverse species and tissue origin for their ability to function as targets in a quantitative reporter gene assay for KSHV-glycoprotein-mediated cell fusion. Several human, non-human primate, and rabbit cell lines were efficient targets, whereas rodent and all human lymphoblastoid cell lines were weak targets. Parallel findings were obtained with a virion entry assay using a recombinant KSHV encoding a reporter gene. No correlation was observed between target cell activity and surface expression of {alpha}3{beta}1 integrin, a proposed KSHV receptor. We hypothesize that target cell permissiveness in both the cell fusion and virion entry assays reflects the presence of a putative KSHV fusion-entry receptor.

  1. Cluster Model for Near-barrier Fusion Induced by Weakly Bound and Halo Nuclei

    SciTech Connect

    Beck, C.; Keeley, N.

    2008-05-12

    The influence on the fusion process of coupling transfer/breakup channels is investigated for the medium weight {sup 6,7}Li+{sup 59}Co systems in the vicinity of the Coulomb barrier. Coupling effects are discussed within a comparison of predictions of the Continuum Discretized Coupled-Channels model. Applications to {sup 6}He+{sup 59}Co induced by the borromean halo nucleus {sup 6}He are also proposed.

  2. Near-barrier Fusion Induced by Stable Weakly Bound and Exotic Halo Light Nuclei

    SciTech Connect

    Beck, C.; Zafra, A. Sanchez I.; Diaz-Torres, A.; Thompson, I. J.; Keeley, N.

    2006-08-14

    The effect of breakup is investigated for the medium weight 6Li+59Co system in the vicinity of the Coulomb barrier. The strong coupling of breakup/transfer channels to fusion is discussed within a comparison of predictions of the Continuum Discretized Coupled-Channels model which is also applied to 6He+59Co a reaction induced by the borromean halo nucleus 6He.

  3. Analyzing cell fusion events within the central nervous system using bone marrow chimerism.

    PubMed

    Kemp, Kevin; Hares, Kelly

    2015-01-01

    It has emerged that cells which typically reside in the bone marrow have the capacity to cross the blood brain barrier and contribute genetic material to a range of neuronal cell types within the central nervous system. One such mechanism to account for this phenomenon is cellular fusion, occurring between migrating bone marrow-derived stem cells and neuronal cells in-situ. Biologically, the significance as to why cells from distinct lineages fuse with cells of the central nervous system is, as yet, unclear. Growing evidence however suggests that these cell fusion events could provide an efficient means of rescuing the highly complex and differentiated neuronal cell types that cannot be replaced in adulthood. To facilitate further understanding of cell fusion within the central nervous system, we describe here a technique to establish chimeric mice that are stably reconstituted with green fluorescent protein expressing sex-mismatched bone marrow. These chimeric mice are known to represent an excellent model for studying bone marrow cell migration and infiltration throughout the body, while in parallel, as will be described here, also provide a means to neatly analyze both bone marrow-derived cell fusion and trans-differentiation events within the central nervous system. PMID:25947664

  4. Myelin-reactive antibodies mediate the pathology of MBP-PLP fusion protein MP4-induced EAE.

    PubMed

    Kuerten, Stefanie; Pauly, Robert; Rottlaender, Andrea; Rodi, Michael; Gruppe, Traugott L; Addicks, Klaus; Tary-Lehmann, Magdalena; Lehmann, Paul V

    2011-07-01

    Experimental autoimmune encephalomyelitis (EAE) is frequently used for studies of multiple sclerosis (MS). Because in most EAE models T cells mediate the pathology in the absence of B cells/autoantibodies, the notion has evolved that also MS may be a primarily T cell-mediated disease. We have previously introduced MBP-PLP fusion protein (MP4)-induced EAE in C57BL/6 mice. Here we show that the disease in this model is antibody-dependent. Immunization of B cell-deficient mice did not induce EAE. When such B cell-deficient mice were, however, injected with MBP/PLP-specific antibodies in addition to the immunization with MP4, they developed disease of a severity and course that was similar to the wild-type mice. The deposition of antibodies in demyelinated lesions provided further evidence for the contribution of MBP/PLP-specific antibodies to CNS lesion formation. Based upon these data we suggest a two-stage model for the involvement of MBP/PLP-specific antibodies in autoimmune CNS pathology. PMID:21489887

  5. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets

    PubMed Central

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  6. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  7. Aqueous extract from a Chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes), prevents herpes simplex virus entry through inhibition of viral-induced membrane fusion.

    PubMed

    Pan, Hong-Hui; Yu, Xiong-Tao; Li, Ting; Wu, Hong-Ling; Jiao, Chun-Wei; Cai, Mian-Hua; Li, Xiang-Min; Xie, Yi-Zhen; Wang, Yi; Peng, Tao

    2013-01-01

    Chaga medicinal mushroom, Inonotus obliquus, a popular prescription in traditional medicine in Europe and Asia, was used to reduce inflammation in the nasopharynx and to facilitate breathing. The aqueous extract from I. obliquus (AEIO) exhibited marked decrease in herpes simplex virus (HSV) infection (the 50% inhibitory concentration was 3.82 μg/mL in the plaque reduction assay and 12.29 μg/mL in the HSV-1/blue assay) as well as safety in Vero cells (the 50% cellular cytotoxicity was > 1 mg/mL, and selection index was > 80). Using a time course assay, effective stage analysis, and fusion inhibition assay, the mechanism of anti-HSV activity was found against the early stage of viral infection through inhibition of viral-induced membrane fusion. Therefore, AEIO could effectively prevent HSV-1 entry by acting on viral glycoproteins, leading to the prevention of membrane fusion, which is different from nucleoside analog antiherpetics. PMID:23510282

  8. A Mechanistic Paradigm for Broad-Spectrum Antivirals that Target Virus-Cell Fusion

    PubMed Central

    Hollmann, Axel; Tanner, Lukas B.; Akyol Ataman, Zeynep; Yun, Tatyana; Shui, Guanghou; Aguilar, Hector C.; Zhang, Dong; Meriwether, David; Roman-Sosa, Gleyder; Robinson, Lindsey R.; Juelich, Terry L.; Buczkowski, Hubert; Chou, Sunwen; Castanho, Miguel A. R. B.; Wolf, Mike C.; Smith, Jennifer K.; Banyard, Ashley; Kielian, Margaret; Reddy, Srinivasa; Wenk, Markus R.; Selke, Matthias; Santos, Nuno C.; Freiberg, Alexander N.; Jung, Michael E.; Lee, Benhur

    2013-01-01

    LJ001 is a lipophilic thiazolidine derivative that inhibits the entry of numerous enveloped viruses at non-cytotoxic concentrations (IC50≤0.5 µM), and was posited to exploit the physiological difference between static viral membranes and biogenic cellular membranes. We now report on the molecular mechanism that results in LJ001's specific inhibition of virus-cell fusion. The antiviral activity of LJ001 was light-dependent, required the presence of molecular oxygen, and was reversed by singlet oxygen (1O2) quenchers, qualifying LJ001 as a type II photosensitizer. Unsaturated phospholipids were the main target modified by LJ001-generated 1O2. Hydroxylated fatty acid species were detected in model and viral membranes treated with LJ001, but not its inactive molecular analog, LJ025. 1O2-mediated allylic hydroxylation of unsaturated phospholipids leads to a trans-isomerization of the double bond and concurrent formation of a hydroxyl group in the middle of the hydrophobic lipid bilayer. LJ001-induced 1O2-mediated lipid oxidation negatively impacts on the biophysical properties of viral membranes (membrane curvature and fluidity) critical for productive virus-cell membrane fusion. LJ001 did not mediate any apparent damage on biogenic cellular membranes, likely due to multiple endogenous cytoprotection mechanisms against phospholipid hydroperoxides. Based on our understanding of LJ001's mechanism of action, we designed a new class of membrane-intercalating photosensitizers to overcome LJ001's limitations for use as an in vivo antiviral agent. Structure activity relationship (SAR) studies led to a novel class of compounds (oxazolidine-2,4-dithiones) with (1) 100-fold improved in vitro potency (IC50<10 nM), (2) red-shifted absorption spectra (for better tissue penetration), (3) increased quantum yield (efficiency of 1O2 generation), and (4) 10–100-fold improved bioavailability. Candidate compounds in our new series moderately but significantly (p≤0.01) delayed the

  9. Enhanced protein expression in mammalian cells using engineered SUMO fusions: secreted phospholipase A2.

    PubMed

    Peroutka, Raymond J; Elshourbagy, Nabil; Piech, Tara; Butt, Tauseef R

    2008-09-01

    SUMOylation, the covalent attachment of SUMO (small ubiquitin-like modifier), is a eukaryotic post-translational event that has been demonstrated to play a critical role in several biological processes. When used as an N-terminal tag or fusion partner, SUMO has been shown to enhance functional protein production significantly by improving folding, solubility, and stability. We have engineered several SUMOs and, through their fusion, developed a system for enhancing the expression and secretion of complex proteins. To demonstrate the fidelity of this fusion technology, secreted phospholipase A(2) proteins (sPLA(2)) were produced using HEK-293T and CHO-K1 cells. Five mouse sPLA(2) homologs were expressed and secreted in mammalian cell cultures using SUMO or SUMO-derived, N-terminal fusion partners. Mean and median increases of 43- and 18-fold, respectively, were obtained using novel SUMO mutants that are resistant to digestion by endogenous deSUMOylases. PMID:18539905

  10. Low-density Lipoprotein Receptor Deficiency Causes Impaired Osteoclastogenesis and Increased Bone Mass in Mice because of Defect in Osteoclastic Cell-Cell Fusion*

    PubMed Central

    Okayasu, Mari; Nakayachi, Mai; Hayashida, Chiyomi; Ito, Junta; Kaneda, Toshio; Masuhara, Masaaki; Suda, Naoto; Sato, Takuya; Hakeda, Yoshiyuki

    2012-01-01

    Osteoporosis is associated with both atherosclerosis and vascular calcification attributed to hyperlipidemia. However, the cellular and molecular mechanisms explaining the parallel progression of these diseases remain unclear. Here, we used low-density lipoprotein receptor knockout (LDLR−/−) mice to elucidate the role of LDLR in regulating the differentiation of osteoclasts, which are responsible for bone resorption. Culturing wild-type osteoclast precursors in medium containing LDL-depleted serum decreased receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation, and this defect was additively rescued by simultaneous treatment with native and oxidized LDLs. Osteoclast precursors constitutively expressed LDLR in a RANKL-independent manner. Osteoclast formation from LDLR−/− osteoclast precursors was delayed, and the multinucleated cells formed in culture were smaller and contained fewer nuclei than wild-type cells, implying impaired cell-cell fusion. Despite these findings, RANK signaling, including the activation of Erk and Akt, was normal in LDLR−/− preosteoclasts, and RANKL-induced expression of NFATc1 (a master regulator of osteoclastogenesis), cathepsin K, and tartrate-resistant acid phosphatase was equivalent in LDLR-null and wild-type cells. In contrast, the amounts of the osteoclast fusion-related proteins v-ATPase V0 subunit d2 and dendritic cell-specific transmembrane protein in LDLR−/− plasma membranes were reduced when compared with the wild type, suggesting a correlation with impaired cell-cell fusion, which occurs on the plasma membrane. LDLR−/− mice consistently exhibited increased bone mass in vivo. This change was accompanied by decreases in bone resorption parameters, with no changes in bone formation parameters. These findings provide a novel mechanism for osteoclast differentiation and improve the understanding of the correlation between osteoclast formation and lipids. PMID:22500026

  11. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection.

    PubMed

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-07-01

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. PMID:27226547

  12. Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor

    PubMed Central

    Sarker, Muzaddid; de Antueno, Roberto; Langelaan, David N.; Parmar, Hiren B.; Shin, Kyungsoo; Rainey, Jan K.; Duncan, Roy

    2015-01-01

    Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS) in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST) protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS) but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation. PMID:26061049

  13. Effect of COR proteins on the freeze-induced fusion of liposomes

    SciTech Connect

    Uemura, M.; Steponkus, P.L. ); Gilmour, S.J.; Thomashow, M.F. )

    1993-05-01

    Although substantial progress has been made in identifying genes that are regulated during cold acclimation, with few exceptions, the function of the COR proteins encoded by these genes is not known. The objectives of this study were to determine if COR6.6 and COR15am, which are synthesized in Arabidopsis thaliana, influence the freeze-induced fusion of lipid bilayers. When small unilamellar vesicles (SUVs) composed of either POPC (16:0/18:1) or DOPC (18:1/18:1) were frozen to temperatures over the range of [minus]2[degrees]C to [minus]30[degrees]C liposome fusion occurred at temperatures below [minus]2[degrees]C, with a substantial increase occurring at temperatures below the T[sub m] of the lipids ([minus]3[degrees]C for POPC and [minus]18[degrees]C for DOPC). Freeze-induced fusion was not observed SUVs composed of BL[sub 2]PC (18:2/18:2), which has a t[sub m] of [minus]55[degrees]C. Addition of either COR6.6 or COR15am significantly decreased the incidence of fusion of large unilamellar vesicles of DOPC if proteins were added to the liposome suspension before freezing; there was no effect if the COR proteins were only encapsulated within the liposomes. With SUVs formed from the total lipid extract of the plasma membrane of either non-acclimated (NA) or cold-acclimated (ACC) rye leave, there was differential response to freezing. In NA-SUVs, the incidence of fusion increased after freezing to [minus]5[degrees]C and reached a maximum at [minus]10[degrees]C; in ACC-SUVs, the maximum incidence of fusion occurred at [minus]20[degrees]C. The difference in cryostability reflects differences in the lipid composition of the plasma membrane after cold acclimation. But there was a significant decrease in the incidence of fusion in both NA- and ACC-SUVs when frozen in the presence of either COR6.6 or COR15am. Thus, although the cryostability of lipid bilayers is primarily influenced by the lipid composition of the bilayers, there is an additive effect of the COR proteins.

  14. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    SciTech Connect

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer; Bani-Yaghoub, Mahmud; Taylor, Rod; Johnston, Linda J.; Pezacki, John Paul

    2009-04-24

    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline, the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.

  15. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles

    PubMed Central

    Dhanyasi, Nagaraju; Segal, Dagan; Shimoni, Eyal; Shinder, Vera

    2015-01-01

    Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell–cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast–myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell–cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process. PMID:26459604

  16. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels.

    PubMed

    Boland, Thomas; Mironov, Vladimir; Gutowska, Anna; Roth, Elisabeth A; Markwald, Roger R

    2003-06-01

    We recently developed a cell printer (Wilson and Boland, 2003) that enables us to place cells in positions that mimic their respective positions in organs. However, this technology was limited to the printing of two-dimensional (2D) tissue constructs. Here we describe the use of thermosensitive gels to generate sequential layers for cell printing. The ability to drop cells on previously printed successive layers provides a real opportunity for the realization of three-dimensional (3D) organ printing. Organ printing will allow us to print complex 3D organs with computer-controlled, exact placing of different cell types, by a process that can be completed in several minutes. To demonstrate the feasibility of this novel technology, we showed that cell aggregates can be placed in the sequential layers of 3D gels close enough for fusion to occur. We estimated the optimum minimal thickness of the gel that can be reproducibly generated by dropping the liquid at room temperature onto a heated substrate. Then we generated cell aggregates with the corresponding (to the minimal thickness of the gel) size to ensure a direct contact between printed cell aggregates during sequential printing cycles. Finally, we demonstrated that these closely-placed cell aggregates could fuse in two types of thermosensitive 3D gels. Taken together, these data strongly support the feasibility of the proposed novel organ-printing technology. PMID:12740943

  17. Subcellular distribution of docking/fusion proteins in neutrophils, secretory cells with multiple exocytic compartments.

    PubMed

    Brumell, J H; Volchuk, A; Sengelov, H; Borregaard, N; Cieutat, A M; Bainton, D F; Grinstein, S; Klip, A

    1995-12-15

    Neutrophils contain at least four distinct types of secretory organelles, which undergo exocytosis during infection and inflammation. The signaling pathways leading to secretion of individual granules and their kinetics of exocytosis vary greatly, causing temporal and regional differences in docking and fusion with the plasma membrane. As a step toward understanding the processes underlying differential granular secretion in neutrophils, we assessed the presence and distribution of a number of proteins reported to be involved in vesicular docking and/or fusion in other systems. Specific Abs were used for immunoblotting of cells fractionated by density gradients and free-flow electrophoresis, and for localization by confocal immunofluorescence and electron microscopy. Syntaxin 1, VAMP (vesicle-associated membrane protein)-1, synaptosome-associated protein-25 (SNAP-25), synaptophysin, and cellubrevin were not detectable in human neutrophils. In contrast, syntaxin 4, VAMP-2, and the 39-kDa isoform of secretory carrier membrane protein (SCAMP) were present. SCAMP was found mainly in secondary and tertiary granules and in a fraction containing secretory vesicles, but was virtually absent from the primary (lysosomal) granules. This profile is consistent with the proposed "post-Golgi" distribution of SCAMP. VAMP-2 was largely absent from primary and secondary granules, but concentrated in tertiary granules and secretory vesicles. This pattern of distribution parallels the increasing sensitivity of these exocytic compartments to intracellular free calcium. Accordingly, ionomycin induced translocation of VAMP-2 toward the plasma membrane. Syntaxin 4 was found almost exclusively in the plasma membrane, and it accumulated in lamellipodia of migrating cells. This regional accumulation may contribute to localized secretion into the phagosomal lumen. PMID:7499863

  18. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro

    PubMed Central

    Kemény, Lajos V.; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells’ nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma–stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments. PMID:27271591

  19. Induction of apoptosis in MCF‑7 human breast cancer cells by Khz (fusion of Ganoderma lucidum and Polyporus umbellatus mycelium).

    PubMed

    Kim, Tae Hwan; Kim, Ju Sung; Kim, Zoo Haye; Huang, Ren Bin; Chae, Young Lye; Wang, Ren Sheng

    2016-02-01

    Khz (fusion of Ganoderma lucidum and Polyporus umbellatus), isolated from the mycelia of G. lucidum and P. umbellatus, exerts anti‑proliferative effects against malignant cells; however, its activity against human breast cancer cells remains to be elucidated. In the present study, cell proliferation was assessed using a 3-(4,5‑dimethylthiazol‑2‑yl)-2,5‑diphenyltetrazolium bromide assay, and poptosis was examined using annexin V‑propidium iodide staining and flow cytometry. The activation of caspases 7, 8 and 9 were detected in the Khz‑treated cells using western blotting. The results demonstrated that Khz increased the intracellular calcium concentration and induced the production of reactive oxygen species in MCF‑7 breast cancer cells, as determined using flow cytometry. The results also demonstrated that Khz inhibited cell proliferation and induced apoptosis in the MCF‑7 cells. In addition, the mechanism by which Khz induces apoptosis in cancer cells was investigated. Khz induced apoptosis preferentially in transformed cells, with a minimal effect on non‑transformed cells, suggesting its potential as an anticancer therapeutic agent. Oxidative stress is associated with apoptotic and non‑apoptotic cell death, although pro‑oxidative conditions are not a pre‑requisite for apoptosis. Assessment of the activation status of caspases 7, 8 and 9 revealed that the levels of cleaved caspases were significantly increased in the cells treated with Khz. It is widely accepted that calcium signaling is important in apoptosis, and the present study observed an increase in [Ca2+]i in response to Khz treatment. The anti‑proliferative and pro‑apoptotic effects of Khz suggest that this extract may be developed as a potential anticancer agent. PMID:26648109

  20. The thyroid cancer PAX8-PPARG fusion protein activates Wnt/TCF-responsive cells that have a transformed phenotype.

    PubMed

    Vu-Phan, Dang; Grachtchouk, Vladimir; Yu, Jingcheng; Colby, Lesley A; Wicha, Max S; Koenig, Ronald J

    2013-10-01

    A chromosomal translocation results in the production of a paired box 8-peroxisome proliferator-activated receptor gamma (PAX8-PPARG) fusion protein (PPFP) in ∼35% of follicular thyroid carcinomas. To examine the role of PPFP in thyroid oncogenesis, the fusion protein was stably expressed in the non-transformed rat thyroid cell line PCCL3. PPFP conferred on PCCL3 cells the ability to invade through Matrigel and to form colonies in anchorage-independent conditions. PPFP also increased the fraction of cells with Wnt/TCF-responsive green fluorescent protein reporter gene expression. This Wnt/TCF-activated population was enriched for colony-forming and invading cells. These actions of PPFP required a functional PPARG DNA binding domain (DBD) within PPFP and were further stimulated by PPARG agonists. These data indicate that PPFP, through its PPARG DBD, induces Wnt/TCF pathway activation in a subpopulation of cells, and these cells have properties of cellular transformation including increased invasiveness and anchorage-independent growth. PMID:24025583

  1. MT1-MMP is required for myeloid cell fusion via regulation of Rac1 signaling

    PubMed Central

    Gonzalo, Pilar; Guadamillas, Marta C.; Hernández-Riquer, Mª Victoria; Pollán, Ángela; Grande-García, Araceli; Bartolomé, Rubén A.; Vasanji, Amit; Ambrogio, Chiara; Chiarle, Roberto; Teixidó, Joaquín; Risteli, Juha; Apte, Suneel S.; del Pozo, Miguel A.; Arroyo, Alicia G.

    2009-01-01

    SUMMARY Cell fusion is essential for fertilization, myotube formation, and inflammation. Macrophages fuse in various circumstances but the molecular signals involved in the distinct steps of their fusion are not fully characterized. Using null mice and derived cells, we show that the protease MT1-MMP is necessary for macrophage fusion during osteoclast and giant cell formation in vitro and in vivo. Specifically, MT1-MMP is required for lamellipodia formation and for proper cell morphology and motility of bone marrow myeloid progenitors prior to membrane fusion. These functions of MT1-MMP do not depend on MT1-MMP catalytic activity or downstream pro-MMP-2 activation. Instead, MT1-MMP-null cells show a decreased Rac1 activity and reduced membrane targeting of Rac1 and the adaptor protein p130Cas. Retroviral rescue experiments and protein binding assays delineate a signaling pathway in which MT1-MMP, via its cytosolic tail, contributes to macrophage migration and fusion by regulating Rac1 activity through an association with p130Cas. PMID:20152179

  2. Measurement and analysis of activation induced in titanium with fusion peak neutrons

    NASA Astrophysics Data System (ADS)

    Klix, A.; Domula, A.; Forrest, R.; Zuber, K.

    2011-10-01

    The intense neutron flux densities in fusion reactor blankets produce activation in the blanket materials relevant to operational safety, decommissioning, etc. The aim of the present work is to check the European Activation System EASY-2007 for its capability to predict important gamma activities induced in titanium in a fusion neutron field. Many advanced low-activation materials for fusion applications contain titanium, most notably in the breeder material Li 2TiO 3. In the present work, a small sample of Ti was irradiated with the intense DT neutron generator of Technical University of Dresden. The gamma-radioactivity following irradiation was measured and nuclide activities were derived. For each of the measured gamma activities, the corresponding value was calculated with EASY, and calculation-to-experiment ratios ( C/ E) were determined. EASY predicted the induced gamma activities, isotopes of scandium, well with some overestimation for 47Sc. The results of this measurement together with available EXFOR and validated state-of-the-art activation libraries are discussed.

  3. Hot fusion-evaporation cross sections of 44Ca-induced reactions with lanthanide targets

    NASA Astrophysics Data System (ADS)

    Werke, T. A.; Mayorov, D. A.; Alfonso, M. C.; Tereshatov, E. E.; Folden, C. M.

    2015-11-01

    Background: Previously reported cross sections of 45Sc-induced reactions with lanthanide targets are much smaller than 48Ca-induced reactions on the same targets. 44Ca is one proton removed from 45Sc and could be used to produce nuclei with a relative neutron content between those produced in the 45Sc- and 48Ca-induced reactions. Purpose: As part of a systematic investigation of fusion-evaporation reactions, cross sections of 44Ca-induced reactions on lanthanide targets were measured. These results are compared to available data for 48Ca- and 45Sc-induced fusion-evaporation cross sections on the same lanthanide targets. Collectively, these data provide insight into the importance of the survival against fission of excited compound nuclei produced near spherical shell closures. Methods: A beam of 6+Ca at an energy of ≈5 MeV /u was delivered by the K500 superconducting cyclotron at the Cyclotron Institute at Texas A&M University. The desired evaporation residues were selected by the Momentum Achromat Recoil Spectrometer and identified via their characteristic α -decay energies. Excitation functions for the 44Ca+158Gd ,159Tb, and 162Dy reactions were measured at five or more energies each. A theoretical model was employed to study the fusion-evaporation process. Results: The 44Ca-induced reactions have x n cross sections that are two orders of magnitude larger than 45Sc-induced reactions but two orders of magnitude smaller than 48Ca-induced reactions on the same targets. Proton emission competes effectively with neutron emission for the 44Ca+159Tb and 162Dy reactions. The maximum 4 n cross sections in the 44Ca+158Gd ,159Tb, and 162Dy reactions were 2100 ± 230 ,230 ± 20 , and 130 ±20 μ b , respectively. The 44Ca+158Gd and 159Tb cross sections are in good agreement with the respective cross bombardments of 48Ca+154Gd and 45Sc+158Gd once differences in capture cross sections and compound nucleus formation probabilities are corrected for. Conclusions: Excitation

  4. Generation and preclinical characterization of an NKp80-Fc fusion protein for redirected cytolysis of natural killer (NK) cells against leukemia.

    PubMed

    Deng, Gang; Zheng, Xiaodong; Zhou, Jing; Wei, Haiming; Tian, Zhigang; Sun, Rui

    2015-09-11

    The capacity of natural killer (NK) cells to mediate Fc receptor-dependent effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), largely contributes to their clinical application. Given that activation-induced C-type lectin (AICL), an identified ligand for the NK-activating receptor NKp80, is frequently highly expressed on leukemia cells, the lack of therapeutic AICL-specific antibodies limits clinical application. Here we explore a strategy to reinforce NK anti-leukemia reactivity by combining targeting AICL-expressing leukemia cells with the induction of NK cell ADCC using NKp80-Fc fusion proteins. The NKp80-Fc fusion protein we generated bound specifically to leukemia cells in an AICL-specific manner. Cell binding assays between NK and leukemia cells showed that NKp80-Fc significantly increased NK target cell conjugation. In functional analyses, treatment with NKp80-Fc clearly induced the ADCC effect of NK cells. NKp80-Fc not only promoted NK-mediated leukemia cell apoptosis in the early stage of cell conjugation but also enhanced NK cell degranulation and cytotoxicity activity in the late stage. The bifunctional NKp80-Fc could redirect NK cells toward leukemia cells and triggered NK cell killing in vitro. Moreover, NKp80-Fc enhanced the lysis of NK cells against tumors in leukemia xenograft non-obese diabetic/severe combined immunodeficiency mice. Taken together, our results demonstrate that NKp80-Fc potently amplifies NK cell anti-leukemia effects in vitro and in vivo through induction of the NK cell ADCC effect. This method could potentially be useful for molecular targeted therapy, and the fusion proteins may be a promising drug for immunotherapy of leukemia. PMID:26198633

  5. Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas

    DOE PAGESBeta

    Lattuada, D.; Barbarino, M.; Bonasera, A.; Bang, W.; Quevedo, H. J.; Warren, M.; Consoli, F.; De Angelis, R.; Andreoli, P.; Kimura, S.; et al

    2016-04-19

    In this paper, we present a new and general method for measuring the astrophysical S factor of nuclear reactions in laser-induced plasmas and we apply it to 2H(d,n)3He. The experiment was performed with the Texas Petawatt Laser, which delivered 150–270 fs pulses of energy ranging from 90 to 180 J to D2 or CD4 molecular clusters (where D denotes 2H). After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S factor using the measured energy distribution of the ions, the measured volume of the fusion plasma,more » and the measured fusion yields. This method is model independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution, especially at high energies, and of the relevant fusion yields. In the 2H(d,n)3He and 3He(d,p)4He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S factor in the d+d case (lower Gamow energies), for the d+3He case the data are not precise enough to obtain the S factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment.« less

  6. Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas

    NASA Astrophysics Data System (ADS)

    Lattuada, D.; Barbarino, M.; Bonasera, A.; Bang, W.; Quevedo, H. J.; Warren, M.; Consoli, F.; De Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.

    2016-04-01

    In this work, we present a new and general method for measuring the astrophysical S factor of nuclear reactions in laser-induced plasmas and we apply it to :mmultiscripts>(d ,n )3He . The experiment was performed with the Texas Petawatt Laser, which delivered 150-270 fs pulses of energy ranging from 90 to 180 J to D2 or CD4 molecular clusters (where D denotes 2H ) . After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S factor using the measured energy distribution of the ions, the measured volume of the fusion plasma, and the measured fusion yields. This method is model independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution, especially at high energies, and of the relevant fusion yields. In the :mmultiscripts>(d ,n )3He and 3He(d ,p )4He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S factor in the d +d case (lower Gamow energies), for the d +3He case the data are not precise enough to obtain the S factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment.

  7. Heat generation above break-even from laser-induced fusion in ultra-dense deuterium

    SciTech Connect

    Holmlid, Leif

    2015-08-15

    Previous results from laser-induced processes in ultra-dense deuterium D(0) give conclusive evidence for ejection of neutral massive particles with energy >10 MeV u{sup −1}. Such particles can only be formed from nuclear processes like nuclear fusion at the low laser intensity used. Heat generation is of interest for future fusion energy applications and has now been measured by a small copper (Cu) cylinder surrounding the laser target. The temperature rise of the Cu cylinder is measured with an NTC resistor during around 5000 laser shots per measured point. No heating in the apparatus or the gas feed is normally used. The fusion process is suboptimal relative to previously published studies by a factor of around 10. The small neutral particles H{sub N}(0) of ultra-dense hydrogen (size of a few pm) escape with a substantial fraction of the energy. Heat loss to the D{sub 2} gas (at <1 mbar pressure) is measured and compensated for under various conditions. Heat release of a few W is observed, at up to 50% higher energy than the total laser input thus a gain of 1.5. This is uniquely high for the use of deuterium as fusion fuel. With a slightly different setup, a thermal gain of 2 is reached, thus clearly above break-even for all neutronicity values possible. Also including the large kinetic energy which is directly measured for MeV particles leaving through a small opening gives a gain of 2.3. Taking into account the lower efficiency now due to the suboptimal fusion process, previous studies indicate a gain of at least 20 during long periods.

  8. High-frequency fusion of Streptomyces parvulus or Streptomyces antibioticus protoplasts induced by polyethylene glycol.

    PubMed Central

    Ochi, K; Hitchcock, M J; Katz, E

    1979-01-01

    Conditions were established for the regeneration of protoplasts of Streptomyces parvulus and Streptomyces antibioticus to the mycelial form. Regeneration was accomplished with a hypertonic medium that contained sucrose, CaCl2, MgCl2, and low levels of phosphate. High-frequency fusion of protoplasts derived from auxotrophic strains of S. parvulus or S. antibioticus was induced by polyethylene glycol 4,000 (42%, wt/vol). The frequency of genetic transfer by the fusogenic procedure varied with the auxotrophic strains examined. Fusion with auxotrophic strains of S. parvulus resulted in the formation of true prototrophic recombinants. Similar studies with S. antibioticus revealed that both stable prototrophic recombinants and heterokaryons were formed. PMID:479112

  9. Characterization of an immunomodulatory Der p 2-FIP-fve fusion protein produced in transformed rice suspension cell culture.

    PubMed

    Su, Chin-Fen; Kuo, I-Chun; Chen, Peng-Wen; Huang, Chiung-Hui; Seow, See Voon; Chua, Kaw Yan; Yu, Su-May

    2012-02-01

    Der p 2, a major allergen of Dermatophagoides pteronyssinus mites, is one of the most clinically relevant allergens to allergic patients worldwide. FIP-fve protein (Fve) from the golden needle mushroom (Flammulina velutipes) is an immunomodulatory protein with potential Th1-skewed adjuvant properties. Here, we produced and immunologically evaluated a Der p 2-Fve fusion protein as a potential immunotherapeutic for allergic diseases. Using an inducible expression system in cultured rice suspension cells, the recombinant Der p 2-Fve fusion protein (designated as OsDp2Fve) was expressed in rice cells under the control of an α-amylase gene (αAmy8) promoter and secreted under sucrose starvation. OsDp2Fve was partially purified from the cultured medium. The conformation of Der p 2 in OsDp2Fve remains intact as reflected by its unaltered allergenicity, as assessed by human IgE ELISA and histamine release assays, compared to non-fusion Der p 2 protein. Furthermore, the Fve protein expressed in OsDp2Fve retains its in vitro lymphoproliferative activity but loses its hemagglutination and lymphoagglutination effects compared to the native protein. Notably, in vivo evaluation showed that mice administered with OsDp2Fve possessed an enhanced production of Der p 2-specific IgG antibodies without potentiating the production of Der p 2-specific IgE and Th2 effector cytokines in comparison with mice co-administered with native Fve and Der p 2 proteins. These results suggest that the recombinant Der p 2-Fve fusion protein produced in rice suspension cell cultures has a great potential for allergy immunotherapy. PMID:21556691

  10. Fematrin-1 is involved in fetomaternal cell-to-cell fusion in Bovinae placenta and has contributed to diversity of ruminant placentation.

    PubMed

    Nakaya, Yuki; Koshi, Katsuo; Nakagawa, So; Hashizume, Kazuyoshi; Miyazawa, Takayuki

    2013-10-01

    During placentation, mammals employ different strategies for nourishing and supporting fetuses. Members of the Bovidae family, consisting of cloven-hoofed ruminants, utilize multiple maternal attachment points on the placenta, known as cotyledons, and hybrid cells, named trinucleate cells or syncytial plaques, made up of a fusion of fetal trophoblasts and maternal endometrial cells to provide essential hormones and maintain long gestation periods. These hybrid cells are unique to the Bovidae, as fetomaternal borders are clearly separated by syncytiotrophoblasts or epithelial cells in the placenta of other mammals. Recently, it was reported that Syncytin-Rum1 was inserted into ruminant genomes, including cattle and sheep, and was possibly involved in fetomaternal cell-to-cell fusion in both species. However, Syncytin-Rum1 alone is insufficient to explain the morphological diversity of the fetomaternal hybrids between Bovinae and Caprinae (i.e., trinucleate cells in Bovinae and syncytial plaques in Caprinae). Here we report that the bovine endogenous retrovirus K1 (BERV-K1) envelope, which we term Fematrin-1, was specifically expressed in binucleated trophoblasts throughout gestation in cattle and induced fusion with bovine endometrial cells in vitro at a significantly higher level than Syncytin-Rum1 under physiological conditions. Fematrin-1 was found to be integrated into intron 18 of FAT tumor suppressor homolog 2 (FAT2) about 18.3 to 25.4 million years ago and has been subject to purifying selection through the evolution of Bovinae. Phylogenetically, Fematrin-1 is distinct from Syncytin genes found in other mammalian species that form syncytiotrophoblasts. Our results suggest that the newly acquired endogenous retroelement has contributed to generating placentation diversity through ruminant evolution. PMID:23864631

  11. [Element distribution analysis of welded fusion zone by laser-induced breakdown spectroscopy].

    PubMed

    Yang, Chun; Zhang, Yong; Jia, Yun-Hai; Wang, Hai-Zhou

    2014-04-01

    Over the past decade there has been intense activity in the study and development of laser-induced breakdown spectroscopy (LIBS). As a new tool for surface microanalysis, it caused widespread in materials science because of the advantage of rapid and high sensitivity. In the present paper, the distribution of Ni, Mn, C and Si near weld fusion line was analyzed on two kinds of weld sample. Line scanning mode analysis was carried out by three different kinds of methods, namely laser-induced breakdown spectroscopy (LIBS), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and electron probe X-ray microanalyser (EPMA). The concentration variation trend of Ni and Mn acquired by LIBS is coincident with SEM/EDS and EPMA. The result shows that the content of Ni and Mn was significantly different between weld seam and base metal on both the samples. The content of Ni and Mn was much higher in weld seam than in base metal, and a sharp concentration gradient was analyzed in the fusion zone. According to the distribution of Ni and Mn, all the three methods got a similar value of welded fusion zone width. The concentration variation trend of C and Si acquired by LIBS is not coincident with SEM/EDS and EPMA. The concentration difference between weld seam and base metal was analyzed by LIBS, but had not by SEM/EDS and EPMA, because of the low concentration and slight difference. The concentration gradient of C and Si in fusion zone was shows clearly by LIBS. For higher sensitivity performance, LIBS is much more adapted to analyze low content element than SEM/EDS and EPMA. PMID:25007635

  12. Retinol Binding Protein-Albumin Domain III Fusion Protein Deactivates Hepatic Stellate Cells

    PubMed Central

    Park, Sangeun; Choi, Soyoung; Lee, Min-Goo; Lim, Chaeseung; Oh, Junseo

    2012-01-01

    Liver fibrosis is characterized by accumulation of extracellular matrix, and activated hepatic stellate cells (HSCs) are the primary source of the fibrotic neomatrix and considered as therapeutic target cells. We previously showed that albumin in pancreatic stellate cells (PSCs), the key cell type for pancreatic fibrogenesis, is directly involved in the formation of vitamin A-containing lipid droplets, inhibiting PSC activation. In this study, we evaluated the anti-fibrotic activity of both albumin and retinol binding protein-albumin domain III fusion protein (R-III), designed for stellate cell-targeted delivery of albumin III, in rat primary HSCs and investigated the underlying mechanism. Forced expression of albumin or R-III in HSCs after passage 2 (activated HSCs) induced lipid droplet formation and deactivated HSCs, whereas point mutations in high-affinity fatty acid binding sites of albumin domain III abolished their activities. Exogenous R-III, but not albumin, was successfully internalized into and deactivated HSC-P2. When HSCs at day 3 after plating (pre-activated HSCs) were cultured in the presence of purified R-III, spontaneous activation of HSCs was inhibited even after passage 2, suggestive of a potential for preventive effect. Furthermore, treatment of HSCs-P2 with R-III led to a significant reduction in both cytoplasmic levels of all-trans retinoic acid and the subsequent retinoic acid signaling. Therefore, our data suggest that albumin deactivates HSCs with reduced retinoic acid levels and that R-III may have therapeutic and preventive potentials on liver fibrosis. PMID:23161170

  13. Cell fusion as the formation mechanism of unreduced gametes in the gynogenetic diploid hybrid fish.

    PubMed

    Wang, Jing; Liu, Qingfeng; Luo, Kaikun; Chen, Xuan; Xiao, Jun; Zhang, Chun; Tao, Min; Zhao, Rurong; Liu, Shaojun

    2016-01-01

    The gynogenetic diploid hybrid clone line (GDH) derived from red crucian carp (♀ RCC) × common carp (♂ CC) possesses the unusual reproductive trait of producing unreduced diploid eggs. To identify the mechanism underlying this phenomenon, we examined the structure, in vivo developmental process and in vitro dynamic development of the GDH gonad. In summary, compared with RCC and CC, GDH showed certain special straits. First, a high frequency (84.7%) of germ cell fusion occurred in gonadal tissue culture in vitro as observed by time-lapse microscopy. Second, microstructural and ultrastructural observation showed numerous binucleated and multinucleated germ cells in the gonad, providing evidence of germ cell fusion in vivo. By contrast, in the diploid RCC and CC ovaries, neither cell fusion nor multinucleated cells were observed during the development of gonads. Third, the ovary of GDH remained at stage I for 10 months, whereas those of RCC and CC remained at that stage for 2 months, indicating that the GDH germ cells underwent abnormal development before meiosis. This report is the first to demonstrate that cell fusion facilitates the formation of unreduced gametes in vertebrates, which is a valuable finding for both evolutionary biology and reproductive biology. PMID:27530321

  14. Cell fusion as the formation mechanism of unreduced gametes in the gynogenetic diploid hybrid fish

    PubMed Central

    Wang, Jing; Liu, Qingfeng; Luo, Kaikun; Chen, Xuan; Xiao, Jun; Zhang, Chun; Tao, Min; Zhao, Rurong; Liu, Shaojun

    2016-01-01

    The gynogenetic diploid hybrid clone line (GDH) derived from red crucian carp (♀ RCC) × common carp (♂ CC) possesses the unusual reproductive trait of producing unreduced diploid eggs. To identify the mechanism underlying this phenomenon, we examined the structure, in vivo developmental process and in vitro dynamic development of the GDH gonad. In summary, compared with RCC and CC, GDH showed certain special straits. First, a high frequency (84.7%) of germ cell fusion occurred in gonadal tissue culture in vitro as observed by time-lapse microscopy. Second, microstructural and ultrastructural observation showed numerous binucleated and multinucleated germ cells in the gonad, providing evidence of germ cell fusion in vivo. By contrast, in the diploid RCC and CC ovaries, neither cell fusion nor multinucleated cells were observed during the development of gonads. Third, the ovary of GDH remained at stage I for 10 months, whereas those of RCC and CC remained at that stage for 2 months, indicating that the GDH germ cells underwent abnormal development before meiosis. This report is the first to demonstrate that cell fusion facilitates the formation of unreduced gametes in vertebrates, which is a valuable finding for both evolutionary biology and reproductive biology. PMID:27530321

  15. Fusion Pore Size Limits 5-HT Release From Single Enterochromaffin Cell Vesicles.

    PubMed

    Raghupathi, Ravinarayan; Jessup, Claire F; Lumsden, Amanda L; Keating, Damien J

    2016-07-01

    Enterochromaffin cells are the major site of serotonin (5-HT) synthesis and secretion providing ∼95% of the body's total 5-HT. 5-HT can act as a neurotransmitter or hormone and has several important endocrine and paracrine roles. We have previously demonstrated that EC cells release small amounts of 5-HT per exocytosis event compared to other endocrine cells. We utilized a recently developed method to purify EC cells to demonstrate the mechanisms underlying 5-HT packaging and release. Using the fluorescent probe FFN511, we demonstrate that EC cells express VMAT and that VMAT plays a functional role in 5-HT loading into vesicles. Carbon fiber amperometry studies illustrate that the amount of 5-HT released per exocytosis event from EC cells is dependent on both VMAT and the H(+)-ATPase pump, as demonstrated with reserpine or bafilomycin, respectively. We also demonstrate that increasing the amount of 5-HT loaded into EC cell vesicles does not result in an increase in quantal release. As this indicates that fusion pore size may be a limiting factor involved, we compared pore diameter in EC and chromaffin cells by assessing the vesicle capture of different-sized fluorescent probes to measure the extent of fusion pore dilation. This identified that EC cells have a reduced fusion pore expansion that does not exceed 9 nm in diameter. These results demonstrate that the small amounts of 5-HT released per fusion event in EC cells can be explained by a smaller fusion pore that limits 5-HT release capacity from individual vesicles. PMID:26574734

  16. Alternate carbohydrate and nontraditional inducer leads to increased productivity of a collagen binding domain fusion protein via fed-batch fermentation.

    PubMed

    Fruchtl, McKinzie; Sakon, Joshua; Beitle, Robert

    2016-05-20

    The production of collagen binding domain fusion proteins is of significant importance because of their potential as therapeutic biomaterials. It was previously reported that the expression of collagen-binding domain fusion proteins in Escherichia coli was higher when expressed using lactose as an inducer and chemically defined growth media on a shake flask scale. In an effort to further investigate factors that affect expression levels on a fed-batch scale, alternative induction techniques were tested in conjunction with fed-batch fermentation. In this paper, we discuss ten fed-batch fermentation experiments utilizing either glucose or glycerol feed and using lactose or isopropyl-β-d-thiogalactopyranoside (IPTG) as an induction source. It was found that glycerol-fed fermentations induced with lactose allowed for greater expression of target protein, though lesser cell densities were achieved. PMID:26975843

  17. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  18. A specific flagellum beating mode for inducing fusion in mammalian fertilization and kinetics of sperm internalization.

    PubMed

    Ravaux, Benjamin; Garroum, Nabil; Perez, Eric; Willaime, Hervé; Gourier, Christine

    2016-01-01

    The salient phases of fertilization are gamete adhesion, membrane fusion, and internalization of the spermatozoon into the oocyte but the precise timeline and the molecular, membrane and cell mechanisms underlying these highly dynamical events are far from being established. The high motility of the spermatozoa and the unpredictable location of sperm/egg fusion dramatically hinder the use of real time imaging optical techniques that should directly provide the dynamics of cell events. Using an approach based on microfluidics technology, the sperm/egg interaction zone was imaged with the best front view, and the timeline of the fertilization events was established with an unparalleled temporal accuracy from the onset of gamete contact to full sperm DNA decondensation. It reveals that a key element of the adhesion phase to initiate fusion is the oscillatory motion of the sperm head on the oocyte plasma membrane generated by a specific flagellum-beating mode. It also shows that the incorporation of the spermatozoon head is a two steps process that includes simultaneous diving, tilt, and plasma membrane degradation of the sperm head into the oocyte and subsequent DNA decondensation. PMID:27539564

  19. A specific flagellum beating mode for inducing fusion in mammalian fertilization and kinetics of sperm internalization

    PubMed Central

    Ravaux, Benjamin; Garroum, Nabil; Perez, Eric; Willaime, Hervé; Gourier, Christine

    2016-01-01

    The salient phases of fertilization are gamete adhesion, membrane fusion, and internalization of the spermatozoon into the oocyte but the precise timeline and the molecular, membrane and cell mechanisms underlying these highly dynamical events are far from being established. The high motility of the spermatozoa and the unpredictable location of sperm/egg fusion dramatically hinder the use of real time imaging optical techniques that should directly provide the dynamics of cell events. Using an approach based on microfluidics technology, the sperm/egg interaction zone was imaged with the best front view, and the timeline of the fertilization events was established with an unparalleled temporal accuracy from the onset of gamete contact to full sperm DNA decondensation. It reveals that a key element of the adhesion phase to initiate fusion is the oscillatory motion of the sperm head on the oocyte plasma membrane generated by a specific flagellum-beating mode. It also shows that the incorporation of the spermatozoon head is a two steps process that includes simultaneous diving, tilt, and plasma membrane degradation of the sperm head into the oocyte and subsequent DNA decondensation. PMID:27539564

  20. SNARE and regulatory proteins induce local membrane protrusions to prime docked vesicles for fast calcium-triggered fusion

    PubMed Central

    Bharat, Tanmay A M; Malsam, Jörg; Hagen, Wim J H; Scheutzow, Andrea; Söllner, Thomas H; Briggs, John A G

    2014-01-01

    Synaptic vesicles fuse with the plasma membrane in response to Ca2+ influx, thereby releasing neurotransmitters into the synaptic cleft. The protein machinery that mediates this process, consisting of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and regulatory proteins, is well known, but the mechanisms by which these proteins prime synaptic membranes for fusion are debated. In this study, we applied large-scale, automated cryo-electron tomography to image an in vitro system that reconstitutes synaptic fusion. Our findings suggest that upon docking and priming of vesicles for fast Ca2+-triggered fusion, SNARE proteins act in concert with regulatory proteins to induce a local protrusion in the plasma membrane, directed towards the primed vesicle. The SNAREs and regulatory proteins thereby stabilize the membrane in a high-energy state from which the activation energy for fusion is profoundly reduced, allowing synchronous and instantaneous fusion upon release of the complexin clamp. PMID:24493260

  1. Promotion of chondrogenesis of marrow stromal stem cells by TGF-β3 fusion protein in vivo. [corrected].

    PubMed

    Wu, Wei; Dan, Yang; Yang, Shu-hua; Yang, Cao; Shao, Zeng-wu; Xu, Wei-hua; Li, Jin; Liu, Xian-zhe; Zheng, Dong

    2013-10-01

    The purpose of this study was to investigate the repair of the osteoarthritis(OA)-induced cartilage injury by transfecting the new TGF-β3 fusion protein (LAP-MMP-mTGF-β3) with targeted therapy function into the bone marrow-derived mesenchymal stem cells (MSCs) in rats. The recombinant of pIRES-EGFP-MMP was constructed by combination of DNA encoding MMP enzyme cutting site and eukaryotic expression vector pIRES-EGFP. LAP and mTGF-β3 fragments were obtained from rat embryos by RT-PCR and inserted into the upstream and downstream of MMP from pIRES-EGFP-MMP respectively, so as to construct the recombinant plasmid of pIRES-EGFP-LAP-MMP-mTGF-β3. pIRES-EGFP-LAP-MMP-mTGF-β3 was transfected into rat MSCs. The genetically modified MSCs were cultured in medium with MMP-1 or not. The transfected MSCs were transplanted in the rat OA models. The OA animal models were surgically induced by anterior cruciate ligament transaction (ACLT). The pathological changes were observed under a microscope by HE staining, Alcian blue, Safranin-fast Green and graded by Mankin's scale. pIRES-EGFP-LAP-MMP-mTGF-β3 was successfully constructed by means of enzyme cutting and sequencing, and the mTGF-β3 fusion protein (39 kD) was certified by Western blotting. Those genetically modified MSCs could differentiate into chondrocytes induced by MMP and secrete the relevant-matrix. The transfected MSCs could promote chondrogenesis and matrix production in rat OA models in vivo. It was concluded that a new fusion protein LAP-MMP-mTGF-β3 was constructed successfully by gene engineering, and could be used to repair the OA-induced cartilage injury. PMID:24142722

  2. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    SciTech Connect

    Maric, Martina; Haugo, Alison C.; Dauer, William; Johnson, David; Roller, Richard J.

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  3. Phosphorylation of Nonmuscle myosin II-A regulatory light chain resists Sendai virus fusion with host cells

    PubMed Central

    Das, Provas; Saha, Shekhar; Chandra, Sunandini; Das, Alakesh; Dey, Sumit K.; Das, Mahua R.; Sen, Shamik; Sarkar, Debi P.; Jana, Siddhartha S.

    2015-01-01

    Enveloped viruses enter host cells through membrane fusion and the cells in turn alter their shape to accommodate components of the virus. However, the role of nonmuscle myosin II of the actomyosin complex of host cells in membrane fusion is yet to be understood. Herein, we show that both (−) blebbistatin, a specific inhibitor of nonmuscle myosin II (NMII) and small interfering RNA markedly augment fusion of Sendai virus (SeV), with chinese hamster ovary cells and human hepatocarcinoma cells. Inhibition of RLC phosphorylation using inhibitors against ROCK, but not PKC and MRCK, or overexpression of phospho-dead mutant of RLC enhances membrane fusion. SeV infection increases cellular stiffness and myosin light chain phosphorylation at two hour post infection. Taken together, the present investigation strongly indicates that Rho-ROCK-NMII contractility signaling pathway may provide a physical barrier to host cells against viral fusion. PMID:25993465

  4. Phosphorylation of Nonmuscle myosin II-A regulatory light chain resists Sendai virus fusion with host cells.

    PubMed

    Das, Provas; Saha, Shekhar; Chandra, Sunandini; Das, Alakesh; Dey, Sumit K; Das, Mahua R; Sen, Shamik; Sarkar, Debi P; Jana, Siddhartha S

    2015-01-01

    Enveloped viruses enter host cells through membrane fusion and the cells in turn alter their shape to accommodate components of the virus. However, the role of nonmuscle myosin II of the actomyosin complex of host cells in membrane fusion is yet to be understood. Herein, we show that both (-) blebbistatin, a specific inhibitor of nonmuscle myosin II (NMII) and small interfering RNA markedly augment fusion of Sendai virus (SeV), with chinese hamster ovary cells and human hepatocarcinoma cells. Inhibition of RLC phosphorylation using inhibitors against ROCK, but not PKC and MRCK, or overexpression of phospho-dead mutant of RLC enhances membrane fusion. SeV infection increases cellular stiffness and myosin light chain phosphorylation at two hour post infection. Taken together, the present investigation strongly indicates that Rho-ROCK-NMII contractility signaling pathway may provide a physical barrier to host cells against viral fusion. PMID:25993465

  5. Bax-induced cell death in Candida albicans.

    PubMed

    De Smet, Kris; Eberhardt, Ines; Reekmans, Rieka; Contreras, Roland

    2004-12-01

    Bax is a pro-apoptotic member of the Bcl-2 family of proteins involved in the regulation of genetically programmed cell death in mammalian cells. It has been shown that heterologous expression of Bax in several yeast species, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe and Pichia pastoris, also induces cell death. In this study we investigated the effects of Bax expression in the pathogenic yeast Candida albicans. Cell death inducing expression of Bax required a synthetic BAX gene that was codon-optimized for expression in Candida albicans. Expression of this BAX gene resulted in growth inhibition and cell death. By fusing Bax with the yeast enhanced green fluorescent protein of Aequoria victoria, the cell death-inducing effect of Bax was increased due to reduced proteolytic degradation of Bax. Using this fusion protein we showed that, upon expression in C. albicans, Bax co-localizes with the mitochondria. Furthermore, we showed for the first time that expression of Bax in yeast causes the mitochondria, which are normally distributed throughout the cell, to cluster in the perinuclear region. PMID:15565645

  6. Leukemic HRX Fusion Proteins Inhibit GADD34-Induced Apoptosis and Associate with the GADD34 and hSNF5/INI1 Proteins

    PubMed Central

    Adler, Haskell T.; Chinery, Rebecca; Wu, Daniel Y.; Kussick, Steven J.; Payne, John M.; Fornace, Albert J.; Tkachuk, Douglas C.

    1999-01-01

    One of the most common chromosomal abnormalities in acute leukemia is a reciprocal translocation involving the HRX gene (also called MLL, ALL-1, or HTRX) at chromosomal locus 11q23, resulting in the formation of HRX fusion proteins. Using the yeast two-hybrid system and human cell culture coimmunoprecipitation experiments, we show here that HRX proteins interact directly with the GADD34 protein. We have found that transfected cells overexpressing GADD34 display a significant increase in apoptosis after treatment with ionizing radiation, indicating that GADD34 expression not only correlates with apoptosis but also can enhance apoptosis. The amino-terminal third of the GADD34 protein was necessary for this observed increase in apoptosis. Furthermore, coexpression of three different HRX fusion proteins (HRX-ENL, HRX-AF9, and HRX-ELL) had an anti-apoptotic effect, abrogating GADD34-induced apoptosis. In contrast, expression of wild-type HRX gave rise to an increase in apoptosis. The difference observed here between wild-type HRX and the leukemic HRX fusion proteins suggests that inhibition of GADD34-mediated apoptosis may be important to leukemogenesis. We also show here that GADD34 binds the human SNF5/INI1 protein, a member of the SNF/SWI complex that can remodel chromatin and activate transcription. These studies demonstrate, for the first time, a gain of function for leukemic HRX fusion proteins compared to wild-type protein. We propose that the role of HRX fusion proteins as negative regulators of post-DNA-damage-induced apoptosis is important to leukemia progression. PMID:10490642

  7. Parameterization of fusion barriers for light-projectiles-induced reactions using the proximity approach

    NASA Astrophysics Data System (ADS)

    Gharaei, R.; Sheibani, J.

    2016-05-01

    In this article we propose a pocket formula for fusion barriers calculated by three versions of the proximity formalism, namely AW 95, Bass 80 and Prox. 2010 potentials, for fusion reactions involving the collisions of the proton and helium projectiles with different targets in mass ranges 51≤ AT ≤ 130 and 40≤ AT ≤ 233 , respectively. For the first type of the colliding systems, it is shown that the proposed pocket formulas are able to predict the actual values of RB and VB within accuracies of ±0.4% and ±0.45% , respectively. Moreover, for the second type of the selected reactions, these accuracies are obtained ±0.24% and ±0.36% , respectively. In this study, the ability of the present pocket formulas is also demonstrated to predict the exact values of the fusion cross sections for our selected mass ranges. A comparison with the results of the previous pocket formulas reveals that our parameterized forms are more successful to reproduce the empirical data of the barrier height and position in the proton- and helium-induced reactions.

  8. Synesthetes show normal sound-induced flash fission and fusion illusions.

    PubMed

    Whittingham, Karen M; McDonald, J Scott; Clifford, Colin W G

    2014-12-01

    Idiopathic synesthesia, a neurological condition in which a stimulus in one sense generates a concurrent experience in a different sense, is often considered an example of multisensory integration. Consequently it has been suggested that synesthetes should experience multisensory illusions more consistently and compellingly than typical participants. To test this we measured the sound induced flash fission and fusion illusions in 22 coloured hearing synesthetes and 31 control participants. Analysis of the data using signal detection analysis, however, indicated no difference between the groups, either in perception or response bias, but a secondary analysis of the data did show evidence of a decline in the illusions for synesthetes with increasing age. PMID:25173429

  9. TGFβ and BMP Dependent Cell Fate Changes Due to Loss of Filamin B Produces Disc Degeneration and Progressive Vertebral Fusions.

    PubMed

    Zieba, Jennifer; Forlenza, Kimberly Nicole; Khatra, Jagteshwar Singh; Sarukhanov, Anna; Duran, Ivan; Rigueur, Diana; Lyons, Karen M; Cohn, Daniel H; Merrill, Amy E; Krakow, Deborah

    2016-03-01

    Spondylocarpotarsal synostosis (SCT) is an autosomal recessive disorder characterized by progressive vertebral fusions and caused by loss of function mutations in Filamin B (FLNB). FLNB acts as a signaling scaffold by linking the actin cytoskleteon to signal transduction systems, yet the disease mechanisms for SCT remain unclear. Employing a Flnb knockout mouse, we found morphologic and molecular evidence that the intervertebral discs (IVDs) of Flnb-/-mice undergo rapid and progressive degeneration during postnatal development as a result of abnormal cell fate changes in the IVD, particularly the annulus fibrosus (AF). In Flnb-/-mice, the AF cells lose their typical fibroblast-like characteristics and acquire the molecular and phenotypic signature of hypertrophic chondrocytes. This change is characterized by hallmarks of endochondral-like ossification including alterations in collagen matrix, expression of Collagen X, increased apoptosis, and inappropriate ossification of the disc tissue. We show that conversion of the AF cells into chondrocytes is coincident with upregulated TGFβ signaling via Smad2/3 and BMP induced p38 signaling as well as sustained activation of canonical and noncanonical target genes p21 and Ctgf. These findings indicate that FLNB is involved in attenuation of TGFβ/BMP signaling and influences AF cell fate. Furthermore, we demonstrate that the IVD disruptions in Flnb-/-mice resemble aging degenerative discs and reveal new insights into the molecular causes of vertebral fusions and disc degeneration. PMID:27019229

  10. TGFβ and BMP Dependent Cell Fate Changes Due to Loss of Filamin B Produces Disc Degeneration and Progressive Vertebral Fusions

    PubMed Central

    Zieba, Jennifer; Forlenza, Kimberly Nicole; Khatra, Jagteshwar Singh; Sarukhanov, Anna; Duran, Ivan; Rigueur, Diana; Lyons, Karen M.; Cohn, Daniel H.; Merrill, Amy E.; Krakow, Deborah

    2016-01-01

    Spondylocarpotarsal synostosis (SCT) is an autosomal recessive disorder characterized by progressive vertebral fusions and caused by loss of function mutations in Filamin B (FLNB). FLNB acts as a signaling scaffold by linking the actin cytoskleteon to signal transduction systems, yet the disease mechanisms for SCT remain unclear. Employing a Flnb knockout mouse, we found morphologic and molecular evidence that the intervertebral discs (IVDs) of Flnb–/–mice undergo rapid and progressive degeneration during postnatal development as a result of abnormal cell fate changes in the IVD, particularly the annulus fibrosus (AF). In Flnb–/–mice, the AF cells lose their typical fibroblast-like characteristics and acquire the molecular and phenotypic signature of hypertrophic chondrocytes. This change is characterized by hallmarks of endochondral-like ossification including alterations in collagen matrix, expression of Collagen X, increased apoptosis, and inappropriate ossification of the disc tissue. We show that conversion of the AF cells into chondrocytes is coincident with upregulated TGFβ signaling via Smad2/3 and BMP induced p38 signaling as well as sustained activation of canonical and noncanonical target genes p21 and Ctgf. These findings indicate that FLNB is involved in attenuation of TGFβ/BMP signaling and influences AF cell fate. Furthermore, we demonstrate that the IVD disruptions in Flnb–/–mice resemble aging degenerative discs and reveal new insights into the molecular causes of vertebral fusions and disc degeneration. PMID:27019229

  11. Measuring T Cell-to-T Cell HIV-1 Transfer, Viral Fusion, and Infection Using Flow Cytometry.

    PubMed

    Durham, Natasha D; Chen, Benjamin K

    2016-01-01

    Direct T cell-to-T cell HIV-1 infection is a distinct mode of HIV-1 infection that requires physical contact between an HIV-1-infected "donor" cell and an uninfected, CD4-expressing "target" cell. In vitro studies indicate that HIV-1 cell-to-cell infection is much more efficient than infection by cell-free viral particles; however, the exact mechanisms of the enhanced efficiency of this infection pathway are still unclear. Several assays have been developed to study the mechanism of direct cell-to-cell HIV-1 transmission and to assess sensitivity to neutralizing antibodies and pharmacologic inhibitors. These assays are based on the coculture of donor and target cells. Here, we describe methods that utilize flow cytometry, which can discriminate donor and target cells and can assess different stages of entry and infection following cell-to-cell contact. HIV Gag-iGFP, a clone that makes fluorescent virus particles, can be used to measure cell-to-cell transfer of virus particles. HIV NL-GI, a clone that expresses GFP as an early gene, facilitates the measure of productive infection after cell-to-cell contact. Lastly, a variation of the β-lactamase (BlaM)-Vpr fusion assay can be used to measure the viral membrane fusion process after coculture of donor and target cells in a manner that is independent of cell-cell fusion. These assays can be performed in the presence of neutralizing antibodies/inhibitors to determine the 50 % inhibitory concentration (IC50) required to block infection specifically in the target cells. PMID:26714702

  12. Activation of human telomerase reverse transcriptase through gene fusion in clear cell sarcoma of the kidney.

    PubMed

    Karlsson, Jenny; Lilljebjörn, Henrik; Holmquist Mengelbier, Linda; Valind, Anders; Rissler, Marianne; Øra, Ingrid; Fioretos, Thoas; Gisselsson, David

    2015-02-28

    Clear cell sarcoma of the kidney (CCSK) is a rare tumor type affecting infants and young children. Most CCSKs display few genomic aberrations, and no general underlying mechanism for tumor initiation has yet been identified, although a YWHAE-NUTM2B/NUTM2E fusion gene has been observed in a minority of cases. We performed RNA-sequencing of 22 CCSKs to investigate the presence of additional fusion transcripts. The presence of the YWHAE-NUTM2B/NUTM2E fusion was confirmed in two cases. In addition, a novel IRX2-TERT fusion transcript was identified in one case. SNP-array analyses revealed the underlying event to be an interstitial deletion in the short arm of chromosome 5 (5p15.33). TERT was dramatically upregulated under the influence of the IRX2 promoter. In line with TERT expression being driven by active IRX2 regulatory elements, we found a high expression of IRX2 in CCSKs irrespective of fusion gene status. IRX2 was also expressed in human fetal kidney - the presumed tissue of origin for CCSK. We conclude that in addition to promoter mutations and epigenetic events, TERT can also be activated in tumors via formation of fusion transcripts. PMID:25481751

  13. Directed Myogenic Differentiation of Human Induced Pluripotent Stem Cells.

    PubMed

    Shoji, Emi; Woltjen, Knut; Sakurai, Hidetoshi

    2016-01-01

    Patient-derived induced pluripotent stem cells (iPSCs) have opened the door to recreating pathological conditions in vitro using differentiation into diseased cells corresponding to each target tissue. Yet for muscular diseases, a method for reproducible and efficient myogenic differentiation from human iPSCs is required for in vitro modeling. Here, we introduce a myogenic differentiation protocol mediated by inducible transcription factor expression that reproducibly and efficiently drives human iPSCs into myocytes. Delivering a tetracycline-inducible, myogenic differentiation 1 (MYOD1) piggyBac (PB) vector to human iPSCs enables the derivation of iPSCs that undergo uniform myogenic differentiation in a short period of time. This differentiation protocol yields a homogenous skeletal muscle cell population, reproducibly reaching efficiencies as high as 70-90 %. MYOD1-induced myocytes demonstrate characteristics of mature myocytes such as cell fusion and cell twitching in response to electric stimulation within 14 days of differentiation. This differentiation protocol can be applied widely in various types of patient-derived human iPSCs and has great prospects in disease modeling particularly with inherited diseases that require studies of early pathogenesis and drug screening. PMID:25971915

  14. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion.

    PubMed

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish

    2015-04-21

    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes. PMID:25845029

  15. Analysis of Induced Gamma Activation by D-T Neutrons in Selected Fusion Reactor Relevant Materials with EAF-2010

    NASA Astrophysics Data System (ADS)

    Klix, Axel; Fischer, Ulrich; Gehre, Daniel

    2016-02-01

    Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors the calculation deviated up to 50%.

  16. Syndapin 3 modulates fusion pore expansion in mouse neuroendocrine chromaffin cells

    PubMed Central

    Samasilp, Prattana; Lopin, Kyle; Chan, Shyue-An; Ramachandran, Rajesh

    2014-01-01

    Adrenal neuroendocrine chromaffin cells receive excitatory synaptic input from the sympathetic nervous system and secrete hormones into the peripheral circulation. Under basal sympathetic tone, modest amounts of freely soluble catecholamine are selectively released through a restricted fusion pore formed between the secretory granule and the plasma membrane. Upon activation of the sympathoadrenal stress reflex, elevated stimulation drives fusion pore expansion, resulting in increased catecholamine secretion and facilitating release of copackaged peptide hormones. Thus regulated expansion of the secretory fusion pore is a control point for differential hormone release of the sympathoadrenal stress response. Previous work has shown that syndapin 1 deletion alters transmitter release and that the dynamin 1-syndapin 1 interaction is necessary for coupled endocytosis in neurons. Dynamin has also been shown to be involved in regulation of fusion pore expansion in neuroendocrine chromaffin cells through an activity-dependent association with syndapin. However, it is not known which syndapin isoform(s) contributes to pore dynamics in neuroendocrine cells. Nor is it known at what stage of the secretion process dynamin and syndapin associate to modulate pore expansion. Here we investigate the expression and localization of syndapin isoforms and determine which are involved in mediating fusion pore expansion. We show that all syndapin isoforms are expressed in the adrenal medulla. Mutation of the SH3 dynamin-binding domain of all syndapin isoforms shows that fusion pore expansion and catecholamine release are limited specifically by mutation of syndapin 3. The mutation also disrupts targeting of syndapin 3 to the cell periphery. Syndapin 3 exists in a persistent colocalized state with dynamin 1. PMID:24500282

  17. Intersubunit disulfide isomerization controls membrane fusion of human T-cell leukemia virus Env.

    PubMed

    Li, Kejun; Zhang, Shujing; Kronqvist, Malin; Wallin, Michael; Ekström, Maria; Derse, David; Garoff, Henrik

    2008-07-01

    Human T-cell leukemia virus (HTLV-1) Env carries a typical disulfide isomerization motif, C(225)XXC, in the C-terminal domain SU. Here we have tested whether this motif is used for isomerization of the intersubunit disulfide of Env and whether this rearrangement is required for membrane fusion. We introduced the C225A and C228A mutations into Env and found that the former but not the latter mutant matured into covalently linked SU-TM complexes in transfected cells. Next, we constructed a secreted Env ectodomain and showed that it underwent incubation-dependent intersubunit disulfide isomerization on target cells. However, the rearrangement was blocked by the C225A mutation, suggesting that C(225) carried the isomerization-active thiol. Still, it was possible to reduce the intersubunit disulfide of the native C225A ectodomain mutant with dithiothreitol (DTT). The importance of the CXXC-mediated disulfide isomerization for infection was studied using murine leukemia virus vectors pseudotyped with wild-type or C225A HTLV-1 Env. We found that the mutant Env blocked infection, but this could be rescued with DTT. The fusion activity was tested in a fusion-from-within assay using a coculture of rat XC target and transfected BHK-21 effector cells. We found that the mutation blocked polykaryon formation, but this could be reversed with DTT. Similar DTT-reversible inhibition of infection and fusion was observed when a membrane-impermeable alkylator was present during the infection/fusion incubation. We conclude that the fusion activity of HTLV-1 Env is controlled by an SU CXXC-mediated isomerization of the intersubunit disulfide. Thus, this extends the applicability of the isomerization model from gammaretroviruses to deltaretroviruses. PMID:18480461

  18. PAX7 is a required target for microRNA-206-induced differentiation of fusion-negative rhabdomyosarcoma.

    PubMed

    Hanna, J A; Garcia, M R; Go, J C; Finkelstein, D; Kodali, K; Pagala, V; Wang, X; Peng, J; Hatley, M E

    2016-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. RMS can be parsed based on clinical outcome into two subtypes, fusion-positive RMS (FP-RMS) or fusion-negative RMS (FN-RMS) based on the presence or absence of either PAX3-FOXO1 or PAX7-FOXO1 gene fusions. In both RMS subtypes, tumor cells show histology and a gene expression pattern resembling that of developmentally arrested skeletal muscle. Differentiation therapy is an attractive approach to embryonal tumors of childhood including RMS; however, agents to drive RMS differentiation have not entered the clinic and their mechanisms remain unclear. MicroRNA-206 (miR-206) expression increases through normal muscle development and has decreased levels in RMS compared with normal skeletal muscle. Increasing miR-206 expression drives differentiation of RMS, but the target genes responsible for the relief of the development arrest are largely unknown. Using a combinatorial approach with gene and proteomic profiling coupled with genetic rescue, we identified key miR-206 targets responsible for the FN-RMS differentiation blockade, PAX7, PAX3, NOTCH3, and CCND2. Specifically, we determined that PAX7 downregulation is necessary for miR-206-induced cell cycle exit and myogenic differentiation in FN-RMS but not in FP-RMS. Gene knockdown of targets necessary for miR-206-induced differentiation alone or in combination was not sufficient to phenocopy the differentiation phenotype from miR-206, thus illustrating that miR-206 replacement offers the ability to modulate a complex network of genes responsible for the developmental arrest in FN-RMS. Genetic deletion of miR-206 in a mouse model of FN-RMS accelerated and exacerbated tumor development, indicating that both in vitro and in vivo miR-206 acts as a tumor suppressor in FN-RMS at least partially through downregulation of PAX7. Collectively, our results illustrate that miR-206 relieves the differentiation arrest in FN-RMS and suggests that miR-206

  19. Evaluation of recombinant SEA-TSST fusion toxoid for protection against superantigen induced toxicity in mouse model.

    PubMed

    Reddy, Prakash Narayana; Paul, Soumya; Sripathy, Murali H; Batra, Harsh Vardhan

    2015-09-01

    Treatment of Staphylococcus aureus infections has become complicated owing to growing antibiotic resistance mechanisms and due to the multitude of virulence factors secreted by this organism. Failures with traditional monovalent vaccines or toxoids have brought a shift towards the use of multivalent formulas and neutralizing antibodies to combat and prevent range of staphylococcal infections. In this study, we evaluated the efficacy of a fusion protein (r-ET) comprising truncated regions of staphylococcal enterotoxin A (SEA) and toxic shock syndrome toxin (TSST-1) in generating neutralizing antibodies against superantigen induced toxicity in murine model. Serum antibodies showed specific reactivity to both SEA and TSST-1 native toxins. Hyperimmune serum from immunized animals protected cultured splenocytes from non-specific superantigen induced proliferation completely. Passive antibody administration prevented tissue damage from acute inflammation associated with superantigen challenge from S. aureus cell free culture supernatants. Approximately 80% and 50% of actively and passively immunized mice respectively were protected from lethal dose against S. aureus toxin challenge. This study revealed that r-ET protein is non-toxic and a strong immunogen which generated neutralizing antibodies and memory immune response against superantigen induced toxic effects in mice model. PMID:26091873

  20. Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer.

    PubMed

    Wong, Carmen M; Poulin, Kathy L; Tong, Grace; Christou, Carin; Kennedy, Michael A; Falls, Theresa; Bell, John C; Parks, Robin J

    2016-01-01

    Adenoviruses (Ads) are used in numerous preclinical and clinical studies for delivery of anti-cancer therapeutic genes. Unfortunately, Ad has a poor ability to distribute throughout a tumor mass after intratumoral injection, and infects cells primarily within the immediate area of the injection tract. Thus, Ad-encoded transgene expression is typically limited to only a small percentage of cells within the tumor. One method to increase the proportion of the tumor impacted by Ad is through expression of fusogenic proteins. Infection of a single cell with an Ad vector encoding a fusogenic protein should lead to syncytium formation with adjacent cells, effectively spreading the effect of Ad and Ad-encoded therapeutic transgenes to a greater percentage of the tumor mass. Moreover, syncytium formation can be cytotoxic, suggesting that such proteins may be effective sole therapeutics. We show that an early region 1 (E1)-deleted Ad expressing reptilian reovirus p14 fusion-associated small transmembrane (FAST) protein caused extensive cell fusion in the replication-permissive 293 cell line and at high multiplicity of infection in non-permissive human lung adenocarcinoma A549 cells in vitro. FAST protein expression in the A549 cancer cell line led to a loss of cellular metabolic activity and membrane integrity, which correlated with induction of apoptosis. However, in an A549 xenograft CD-1 nude mouse cancer model, Ad-mediated FAST gene delivery did not induce detectable cell fusion, reduce tumor burden nor enhance mouse survival compared to controls. Taken together, our results show that, although AdFAST can enhance cancer cell killing in vitro, it is not effective as a sole therapeutic in the A549 tumor model in vivo. PMID:26986751

  1. Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer

    PubMed Central

    Wong, Carmen M.; Poulin, Kathy L.; Tong, Grace; Christou, Carin; Kennedy, Michael A.; Falls, Theresa; Bell, John C.; Parks, Robin J.

    2016-01-01

    Adenoviruses (Ads) are used in numerous preclinical and clinical studies for delivery of anti-cancer therapeutic genes. Unfortunately, Ad has a poor ability to distribute throughout a tumor mass after intratumoral injection, and infects cells primarily within the immediate area of the injection tract. Thus, Ad-encoded transgene expression is typically limited to only a small percentage of cells within the tumor. One method to increase the proportion of the tumor impacted by Ad is through expression of fusogenic proteins. Infection of a single cell with an Ad vector encoding a fusogenic protein should lead to syncytium formation with adjacent cells, effectively spreading the effect of Ad and Ad-encoded therapeutic transgenes to a greater percentage of the tumor mass. Moreover, syncytium formation can be cytotoxic, suggesting that such proteins may be effective sole therapeutics. We show that an early region 1 (E1)-deleted Ad expressing reptilian reovirus p14 fusion-associated small transmembrane (FAST) protein caused extensive cell fusion in the replication-permissive 293 cell line and at high multiplicity of infection in non-permissive human lung adenocarcinoma A549 cells in vitro. FAST protein expression in the A549 cancer cell line led to a loss of cellular metabolic activity and membrane integrity, which correlated with induction of apoptosis. However, in an A549 xenograft CD-1 nude mouse cancer model, Ad-mediated FAST gene delivery did not induce detectable cell fusion, reduce tumor burden nor enhance mouse survival compared to controls. Taken together, our results show that, although AdFAST can enhance cancer cell killing in vitro, it is not effective as a sole therapeutic in the A549 tumor model in vivo. PMID:26986751

  2. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  3. Neutron Induced D Breakup in Inertial Confinement Fusion at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Glebov, V. Yu.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schroder, W. U.; Frenje, J. A.; Gatu Johnson, M.

    2015-11-01

    High-resolution neutron spectroscopy is used to study the deuteron breakup reaction D(n,n ') np in the thermonuclear environment created in inertial confinement fusion experiments at the Omega Laser Facility. Neutrons with an energy of 14.1 MeV generated in the primary D-T fusion reactions scatter elastically and inelastically off the dense (cryogenic) D-T fuel assembly surrounding the central hot spot at peak fuel compression. These neutrons also induce a breakup of the fuel deuterons. The corresponding breakup cross section is measured relative to elastic n -D and n -T scattering, i.e., simultaneously in the same environment. Apart from astrophysical and technological interest, the neutron-induced deuteron breakup reaction is of interest to the physics of nucleon -nucleon forces. For example, theoretical calculations predict a noticeable influence of nucleonic three-body forces on the magnitude of the breakup cross section. Preliminary results from measurements of the neutron contribution in the 2- to 6-MeV range show reasonable agreement with the published ENDL 2008.2 semi-empirical cross-section. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. Identification of traffic-induced nodal excitations of truss bridges through heterogeneous data fusion

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Büyüköztürk, Oral

    2015-07-01

    We propose a time domain Bayesian inference-based regularization approach for the identification of traffic-induced nodal excitations of truss bridges through heterogeneous data fusion. The measurements (e.g., accelerations, strains and displacements) are fused via a state space realization and rescaled for force identification. The unknown excitation time histories are inverted by solving an ill-posed least squares problem using the proposed Bayesian regularization approach. A smoothing operator is used in the regularization process for the purpose of de-noising. Uncertainties due to measurement noise are considered in the process of force identification. Finally, the proposed algorithm is numerically illustrated by a 27 bar truss bridge. Results demonstrate the robustness and effectiveness of the proposed algorithm for traffic-induced excitation identification with high accuracy.

  5. Role of sequence and structure of the Hendra fusion protein fusion peptide in membrane fusion.

    PubMed

    Smith, Everett Clinton; Gregory, Sonia M; Tamm, Lukas K; Creamer, Trevor P; Dutch, Rebecca Ellis

    2012-08-24

    Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion. PMID:22761418

  6. Chlorotoxin-Fc fusion inhibits release of MMP-2 from pancreatic cancer cells.

    PubMed

    El-Ghlban, Samah; Kasai, Tomonari; Shigehiro, Tsukasa; Yin, Hong Xia; Sekhar, Sreeja; Ida, Mikiko; Sanchez, Anna; Mizutani, Akifumi; Kudoh, Takayuki; Murakami, Hiroshi; Seno, Masaharu

    2014-01-01

    Chlorotoxin (CTX) is a 36-amino acid peptide derived from Leiurus quinquestriatus (scorpion) venom, which inhibits low-conductance chloride channels in colonic epithelial cells. It has been reported that CTX also binds to matrix metalloproteinase-2 (MMP-2), membrane type-1 MMP, and tissue inhibitor of metalloproteinase-2, as well as CLC-3 chloride ion channels and other proteins. Pancreatic cancer cells require the activation of MMP-2 during invasion and migration. In this study, the fusion protein was generated by joining the CTX peptide to the amino terminus of the human IgG-Fc domain without a hinge domain, the monomeric form of chlorotoxin (M-CTX-Fc). The resulting fusion protein was then used to target pancreatic cancer cells (PANC-1) in vitro. M-CTX-Fc decreased MMP-2 release into the media of PANC-1 cells in a dose-dependent manner. M-CTX-Fc internalization into PANC-1 cells was observed. When the cells were treated with chlorpromazine (CPZ), the internalization of the fusion protein was reduced, implicating a clathrin-dependent internalization mechanism of M-CTX-Fc in PANC-1 cells. Furthermore, M-CTX-Fc clearly exhibited the inhibition of the migration depending on the concentration, but human IgG, as negative control of Fc, was not affected. The M-CTX-Fc may be an effective instrument for targeting pancreatic cancer. PMID:24511528

  7. Molecular alterations in tumorigenic human bronchial and breast epithelial cells induced by high let radiation

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Zhao, Y. L.; Roy, D.; Piao, C. Q.; Calaf, G.; Hall, E. J.

    Carcinogenesis is a multi-stage process with sequence of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer. In the present study, immortalized human bronchial (BEP2D) and breast (MCF-10F) cells were irradiated with graded doses of either 150 keV/μm alpha particles or 1 GeV/nucleon 56Fe ions. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Cell fusion studies indicated that radiation-induced tumorigenic phenotype in BEP2D cells could be completely suppressed by fusion with non-tumorigenic BEP2D cells. The differential expressions of known genes between tumorigenic bronchial and breast cells induced by alpha particles and their respective control cultures were compared using cDNA expression array. Among the 11 genes identified to be differentially expressed in BEP2D cells, three ( DCC, DNA-PK and p21 CIPI) were shown to be consistently down-regulated by 2 to 4 fold in all the 5 tumor cell lines examined. In contrast, their expressions in the fusion cell lines were comparable to control BEP2D cells. Similarly, expression levels of a series of genes were found to be altered in a step-wise manner among tumorigenic MCF-10F cells. The results are highly suggestive that functional alterations of these genes may be causally related to the carcinogenic process.

  8. An experimental system for determining the influence of microgravity on B lymphocyte activation and cell fusion

    NASA Technical Reports Server (NTRS)

    Sammons, D. W.; Humphreys, R. C.; Emmons, S. P.; Zimmermann, U.; Gessner, P.; Klinman, N. R.; Neil, G. A.

    1992-01-01

    The influence of microgravity on lymphocyte activation is central to the understanding of immunological function in space. Moreover, the adaptation of ground-based technologies to microgravity conditions presents opportunities for biotechnological applications including high efficiency production of antibody forming hybridomas. Because the emerging technology of microgravity hybridoma generation is dependent upon activation and cultivation of B lymphocytes during flight, mitogen-driven B lymphocyte stimulation and culture were adapted that allow for the in vitro generation of large numbers of antibody forming cells suitable for cell fusion over a period of 1-2 weeks. It is believed that this activation and cultivation system can be flown on near-term space flights to test fundamental hypotheses about mammalian cell activation, cell fusion, metabolism, secretion, growth, and bioseparation.

  9. Nef Does Not Affect the Efficiency of Human Immunodeficiency Virus Type 1 Fusion with Target Cells

    PubMed Central

    Tobiume, Minoru; Lineberger, Janet E.; Lundquist, Christopher A.; Miller, Michael D.; Aiken, Christopher

    2003-01-01

    The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef stimulates viral infectivity by an unknown mechanism. Recent studies have suggested that Nef may act by regulating the efficiency of virus entry into cells. Here we provide evidence to the contrary. Using a quantitative assay of HIV-1 virus-cell fusion, we observed equivalent rates and extents of fusion of wild-type and Nef-defective HIV-1 particles with MT-4 cells and CD4-expressing HeLa cells. In studies using soluble CD4 (sCD4) to inhibit infection, wild-type and Nef-defective HIV-1 escaped the sCD4 block with similar kinetics. We conclude that Nef acts at a postentry step in infection, probably by facilitating intracellular transport of the HIV-1 ribonucleoprotein complex. PMID:12970449

  10. Transurethral instillation with fusion protein MrpH.FimH induces protective innate immune responses against uropathogenic Escherichia coli and Proteus mirabilis.

    PubMed

    Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid

    2016-06-01

    Urinary tract infections (UTIs) are among the most common infections in human. Innate immunity recognizes pathogen-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs) to activate responses against pathogens. Recently, we demonstrated that MrpH.FimH fusion protein consisting of MrpH from Proteus mirabilis and FimH from Uropathogenic Escherichia coli (UPEC) results in the higher immunogenicity and protection, as compared with FimH and MrpH alone. In this study, we evaluated the innate immunity and adjuvant properties induced by fusion MrpH.FimH through in vitro and in vivo methods. FimH and MrpH.FimH were able to induce significantly higher IL-8 and IL-6 responses than untreated or MrpH alone in cell lines tested. The neutrophil count was significantly higher in the fusion group than other groups. After 6 h, IL-8 and IL-6 production reached a peak, with a significant decline at 24 h post-instillation in both bladder and kidney tissues. Mice instilled with the fusion and challenged with UPEC or P. mirabilis showed a significant decrease in the number of bacteria in bladder and kidney compared to control mice. The results of these studies demonstrate that the use of recombinant fusion protein encoding TLR-4 ligand represents an effective vaccination strategy that does not require the use of a commercial adjuvant. Furthermore, MrpH.FimH was presented as a promising vaccine candidate against UTIs caused by UPEC and P. mirabilis. PMID:26918627

  11. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein

    PubMed Central

    Bachanova, Veronika; Cooley, Sarah; Defor, Todd E.; Verneris, Michael R.; Zhang, Bin; McKenna, David H.; Curtsinger, Julie; Panoskaltsis-Mortari, Angela; Lewis, Dixie; Hippen, Keli; McGlave, Philip; Weisdorf, Daniel J.; Blazar, Bruce R.

    2014-01-01

    Haploidentical natural killer (NK) cell infusions can induce remissions in some patients with acute myeloid leukemia (AML) but regulatory T-cell (Treg) suppression may reduce efficacy. We treated 57 refractory AML patients with lymphodepleting cyclophosphamide and fludarabine followed by NK cell infusion and interleukin (IL)-2 administration. In 42 patients, donor NK cell expansion was detected in 10%, whereas in 15 patients receiving host Treg depletion with the IL-2-diphtheria fusion protein (IL2DT), the rate was 27%, with a median absolute count of 1000 NK cells/μL blood. IL2DT was associated with improved complete remission rates at day 28 (53% vs 21%; P = .02) and disease-free survival at 6 months (33% vs 5%; P < .01). In the IL2DT cohort, NK cell expansion correlated with higher postchemotherapy serum IL-15 levels (P = .002), effective peripheral blood Treg depletion (<5%) at day 7 (P < .01), and decreased IL-35 levels at day 14 (P = .02). In vitro assays demonstrated that Tregs cocultured with NK cells inhibit their proliferation by competition for IL-2 but not for IL-15. Together with our clinical observations, this supports the need to optimize the in vivo cytokine milieu where adoptively transferred NK cells compete with other lymphocytes to improve clinical efficacy in patients with refractory AML. This study is registered at clinicaltrials.gov, identifiers: NCT00274846 and NCT01106950. PMID:24719405

  12. A 45,000-M(r) glycoprotein in the Sendai virus envelope triggers virus-cell fusion.

    PubMed Central

    Kumar, M; Hassan, M Q; Tyagi, S K; Sarkar, D P

    1997-01-01

    Sendai virus envelopes devoid of hemagglutinin-neuraminidase but containing the fusion protein (F-virosomes) were prepared. F-virosomes exhibited discernible serine protease activity at neutral pH. Electrophoretic analysis of the protein profile of the F-virosomes under nonreducing conditions, by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing, led to the identification of a previously unknown glycoprotein with a relative molecular weight of 45,000 (45K protein) associated with the F protein. The identity of the 45K protein, as distinct from F protein, was established by Western blot analysis with F- and 45K-specific antibodies. This 45K protein forms a nexus with the F protein through noncovalent hydrophobic interactions, as proved by its sensitivity to urea treatment, and it is essential for the proteolytic activity of the F-virosomes as well as for the fusion of the viral envelope with host cell membrane. N-terminal sequence analysis (first 11 amino acids) of this protein showed strong homology (> 90%) to flavivirus NS3 serine proteases but no similarity to any of the Sendai viral proteins. On the basis of the N-terminal sequence, oligonucleotides were designed corresponding to the sense and antisense DNA sequences. Dot blot hybridization and primer extension with these oligonucleotides with the viral and the host genome confirmed the host origin of this protein. Further, the limited proteolytic digestion of the target membrane resulted in significant inhibition of viral fusion with it. On the basis of these results, we postulate a model for the molecular mechanism of F protein-induced membrane fusion, which may provide a rationale for other paramyxoviruses. PMID:9261357

  13. A cell penetrating peptide-integrated and enediyne-energized fusion protein shows potent antitumor activity.

    PubMed

    Ru, Qin; Shang, Bo-Yang; Miao, Qing-Fang; Li, Liang; Wu, Shu-Ying; Gao, Rui-Juan; Zhen, Yong-Su

    2012-11-20

    Arginine-rich peptides belong to a subclass of cell penetrating peptides that are taken up by living cells and can be detected freely diffusing inside the cytoplasm and nucleoplasm. This phenomenon has been attributed to either an endocytotic mode of uptake and a subsequent release from vesicles or a direct membrane penetration. Lidamycin is an antitumor antibiotic, which consists of an active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). In the present study, a fusion protein (Arg)(9)-LDP composed of cell penetrating peptide (Arg)(9) and LDP was prepared by DNA recombination, and the enediyne-energized fusion protein (Arg)(9)-LDP-AE was prepared by molecular reconstitution. The data in fixed cells demonstrated that (Arg)(9)-LDP could rapidly enter cells, and the results based on fluorescence activated cell sorting indicated that the major route for (Arg)(9)-mediated cellular uptake of protein molecules was endocytosis. (Arg)(9)-LDP-AE demonstrated more potent cytotoxicity against different carcinoma cell lines than lidamycin in vitro. In the mouse hepatoma 22 model, (Arg)(9)-LDP-AE (0.3mg/kg) suppressed the tumor growth by 89.2%, whereas lidamycin (0.05 mg/kg) by 74.6%. Furthermore, in the glioma U87 xenograft model in nude mice, (Arg)(9)-LDP-AE at 0.2mg/kg suppressed tumor growth by 88.8%, compared with that of lidamycin by 62.9% at 0.05 mg/kg. No obvious toxic effects were observed in all groups during treatments. The results showed that energized fusion protein (Arg)(9)-LDP-AE was more effective than lidamycin and would be a promising candidate for glioma therapy. In addition, this approach to manufacturing fusion proteins might serve as a technology platform for the development of new cell penetrating peptides-based drugs. PMID:22982402

  14. Fusion of bacterial spheroplasts by electric fields.

    PubMed

    Ruthe, H J; Adler, J

    1985-09-25

    Spheroplasts of Escherichia coli or Salmonella typhimurium were found to fuse in an electric field. We employed the fusion method developed by Zimmermann and Scheurich (1981): Close membrane contact between cells is established by dielectrophoresis (formation of chains of cells by an a.c. field), then membrane fusion is induced by the application of short pulses of direct current. Under optimum conditions the fusion yield was routinely 90%. Fusable spheroplasts were obtained by first growing filamentous bacteria in the presence of cephalexin, then converting these to spheroplasts by the use of lysozyme. The fusion products were viable and regenerated to the regular bacterial form. Fusion of genetically different spheroplasts resulted in strains of bacteria possessing a combination of genetic markers. Fusion could not be achieved with spheroplasts obtained by growing the cells in the presence of penicillin or by using lysozyme on bacteria of usual size. PMID:3899175

  15. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro

    PubMed Central

    Fu, Ting; Wang, Ling; Jin, Xiang-nan; Sui, Hai-juan; Liu, Zhou; Jin, Ying

    2016-01-01

    Aim: Hyperoside (quercetin-3-O-β-D-galactopyranoside) is a flavonol glycoside found in plants of the genera Hypericum and Crataegus, which exhibits anticancer, anti-oxidant, and anti-inflammatory activities. In this study we investigated whether autophagy was involved in the anticancer mechanisms of hyperoside in human non-small cell lung cancer cells in vitro. Methods: Human non-small cell lung cancer cell line A549 was tested, and human bronchial epithelial cell line BEAS-2B was used for comparison. The expression of LC3-II, apoptotic and signaling proteins was measured using Western blotting. Autophagosomes were observed with MDC staining, LC3 immunocytochemistry, and GFP-LC3 fusion protein techniques. Cell viability was assessed using MTT assay. Results: Hyperoside (0.5, 1, 2 mmol/L) dose-dependently increased the expression of LC3-II and autophagosome numbers in A549 cells, but had no such effects in BEAS-2B cells. Moreover, hyperoside dose-dependently inhibited the phosphorylation of Akt, mTOR, p70S6K and 4E-BP1, but increased the phosphorylation of ERK1/2 in A549 cells. Insulin (200 nmol/L) markedly enhanced the phosphorylation of Akt and decreased LC3-II expression in A549 cells, which were reversed by pretreatment with hyperoside, whereas the MEK1/2 inhibitor U0126 (20 μmol/L) did not blocked hyperoside-induced LC3-II expression. Finally, hyperoside dose-dependently suppressed the cell viability and induced apoptosis in A549 cells, which were significantly attenuated by pretreatment with the autophagy inhibitor 3-methyladenine (2.5 mmol/L). Conclusion: Hyperoside induces both autophagy and apoptosis in human non-small cell lung cancer cells in vitro. The autophagy is induced through inhibiting the Akt/mTOR/p70S6K signal pathways, which contributes to anticancer actions of hyperoside. PMID:26948085

  16. A human cytokine/single-chain antibody fusion protein for simultaneous delivery of GM-CSF and IL-2 to Ep-CAM overexpressing tumor cells.

    PubMed

    Schanzer, Juergen M; Baeuerle, Patrick A; Dreier, Torsten; Kufer, Peter

    2006-01-01

    Pro-inflammatory cytokines regulate the growth, differentiation, and activation of immune cells and can play a role in antitumor responses. GM-CSF and IL-2 induce tumor rejection in animal models when expressed by tumor cells, and IL-2 is used for the treatment of melanoma and renal cell cancer. However, high doses of GM-CSF and IL-2 are associated with severe side effects in cancer patients. We generated a dual cytokine fusion protein for simultaneous targeted delivery of human GM-CSF and IL-2 to human tumors. The fusion protein is based on a heterodimeric core structure formed by human CH1 and C kappa domains (heterominibody) with C-terminally fused human cytokines and N-terminally fused human single-chain Ab fragments (scFv) specific for the tumor-associated surface antigen epithelial cell adhesion molecule (Ep-CAM). The dual cytokine heterominibody (DCH) was well expressed and secreted by CHO cells, preserved the specific proliferative activities of the two cytokines, and showed Ep-CAM-specific binding to tumor cells. DCH induced potent tumor cell lysis in vitro by two distinct mechanisms. One was activating PBMCs to lyse tumor cells, which was superior to cytotoxicity induced by equimolar ratios of free recombinant human IL-2 and GM-CSF. The other mechanism was redirected lysis, as seen with isolated human T cells, which was solely dependent on the IL-2 fusion part. The therapeutic principle of dual cytokine targeting may warrant in vivo testing of murine-specific analogues in appropriate mouse models and further preclinical development of the less immunogenic, human cytokine- and human Ep-CAM-specific DCH molecule described here. PMID:16483188

  17. Vicenistatin induces early endosome-derived vacuole formation in mammalian cells.

    PubMed

    Nishiyama, Yuko; Ohmichi, Tomohiro; Kazami, Sayaka; Iwasaki, Hiroki; Mano, Kousuke; Nagumo, Yoko; Kudo, Fumitaka; Ichikawa, Sosaku; Iwabuchi, Yoshiharu; Kanoh, Naoki; Eguchi, Tadashi; Osada, Hiroyuki; Usui, Takeo

    2016-05-01

    Homotypic fusion of early endosomes is important for efficient protein trafficking and sorting. The key controller of this process is Rab5 which regulates several effectors and PtdInsPs levels, but whose mechanisms are largely unknown. Here, we report that vicenistatin, a natural product, enhanced homotypic fusion of early endosomes and induced the formation of large vacuole-like structures in mammalian cells. Unlike YM201636, another early endosome vacuolating compound, vicenistatin did not inhibit PIKfyve activity in vitro but activated Rab5-PAS pathway in cells. Furthermore, vicenistatin increased the membrane surface fluidity of cholesterol-containing liposomes in vitro, and cholesterol deprivation from the plasma membrane stimulated vicenistatin-induced vacuolation in cells. These results suggest that vicenistatin is a novel compound that induces the formation of vacuole-like structures by activating Rab5-PAS pathway and increasing membrane fluidity. PMID:27104762

  18. Continuous Flow Separation of Hydrophobin Fusion Proteins from Plant Cell Culture Extract.

    PubMed

    Reuter, Lauri J; Conley, Andrew J; Joensuu, Jussi J

    2016-01-01

    Fusion to fungal hydrophobins has proven to be a useful tool to enhance accumulation and recovery of recombinant proteins in plants. Aqueous two-phase separation (ATPS) is an attractive system to capture hydrophobin fusion proteins from plant extracts. The process can simultaneously purify and concentrate target protein with minimal background. ATPS avoids the use of chromatographic column steps, can be carried out in a short time frame, and is amenable to industrial-scale protein purification. A drawback of performing ATPS in large volumes is the lengthy time required for phase separation; however, this can be avoided by incorporating continuous systems, which are often preferred by the processing industry. This method chapter illustrates the capture of GFP-HFBI hydrophobin fusion protein from BY-2 plant cell suspension extract using a semi-continuous ATPS method. PMID:26614291

  19. Fibrinogen induces endothelial cell permeability

    PubMed Central

    Tyagi, Neetu; Roberts, Andrew M.; Dean, William L.; Tyagi, Suresh C.

    2010-01-01

    Many cardiovascular and cerebrovascular disorders are accompanied by an increased blood content of fibrinogen (Fg), a high molecular weight plasma adhesion protein. Fg is a biomarker of inflammation and its degradation products have been associated with microvascular leakage. We tested the hypothesis that at pathologically high levels, Fg increases endothelial cell (EC) permeability through extracellular signal regulated kinase (ERK) signaling and by inducing F-actin formation. In cultured ECs, Fg binding to intercellular adhesion molecule-1 and to α5β1 integrin, caused phosphorylation of ERK. Subsequently, F-actin formation increased and coincided with formation of gaps between ECs, which corresponded with increased permeability of ECs to albumin. Our data suggest that formation of F-actin and gaps may be the mechanism for increased albumin leakage through the EC monolayer. The present study indicates that elevated un-degraded Fg may be a factor causing microvascular permeability that typically accompanies cardiovascular and cerebrovascular disorders. PMID:17849175

  20. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |; Panozzo, J.; Libertin, C.R.

    1996-02-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. Doses which caused over 99% cell killing induced HIV-LTR transcription maximally, demonstrating that cells that will go on to die by 14 days are the cells expressing HIV-LTR-CAT.

  1. Melanoma-Derived BRAFV600E Mutation in Peritumoral Stromal Cells: Implications for in Vivo Cell Fusion

    PubMed Central

    Kurgyis, Zsuzsanna; Kemény, Lajos V.; Buknicz, Tünde; Groma, Gergely; Oláh, Judit; Jakab, Ádám; Polyánka, Hilda; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell’s phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAFV600E melanoma, melanoma antigen recognized by T-cells (MART1)-negative peritumoral stromal cells express BRAFV600E protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAFV600E with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAFV600E mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAFV600E mutation or protein in the peritumoral stroma of BRAFWT melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome. PMID:27338362

  2. Membrane organization and cell fusion during mating in fission yeast requires multipass membrane protein Prm1.

    PubMed

    Curto, M-Ángeles; Sharifmoghadam, Mohammad Reza; Calpena, Eduardo; De León, Nagore; Hoya, Marta; Doncel, Cristina; Leatherwood, Janet; Valdivieso, M-Henar

    2014-04-01

    The involvement of Schizosaccharomyces pombe prm1(+) in cell fusion during mating and its relationship with other genes required for this process have been addressed. S. pombe prm1Δ mutant exhibits an almost complete blockade in cell fusion and an abnormal distribution of the plasma membrane and cell wall in the area of cell-cell interaction. The distribution of cellular envelopes is similar to that described for mutants devoid of the Fig1-related claudin-like Dni proteins; however, prm1(+) and the dni(+) genes act in different subpathways. Time-lapse analyses show that in the wild-type S. pombe strain, the distribution of phosphatidylserine in the cytoplasmic leaflet of the plasma membrane undergoes some modification before an opening is observed in the cross wall at the cell-cell contact region. In the prm1Δ mutant, this membrane modification does not take place, and the cross wall between the mating partners is not extensively degraded; plasma membrane forms invaginations and fingers that sometimes collapse/retract and that are sometimes strengthened by the synthesis of cell-wall material. Neither prm1Δ nor prm1Δ dniΔ zygotes lyse after cell-cell contact in medium containing and lacking calcium. Response to drugs that inhibit lipid synthesis or interfere with lipids is different in wild-type, prm1Δ, and dni1Δ strains, suggesting that membrane structure/organization/dynamics is different in all these strains and that Prm1p and the Dni proteins exert some functions required to guarantee correct membrane organization that are critical for cell fusion. PMID:24514900

  3. Identification and characterization of LFD1, a novel protein involved in membrane merger during cell fusion in Neurospora crassa.

    PubMed

    Palma-Guerrero, Javier; Leeder, Abigail C; Welch, Juliet; Glass, N Louise

    2014-04-01

    Despite its essential role in development, molecular mechanisms of membrane merger during cell-cell fusion in most eukaryotic organisms remain elusive. In the filamentous fungus Neurospora crassa, cell fusion occurs during asexual spore germination, where genetically identical germlings show chemotropic interactions and cell-cell fusion. Fusion of germlings and hyphae is required for the formation of the interconnected mycelial network characteristic of filamentous fungi. Previously, a multipass membrane protein, PRM1, was characterized and acts at the step of bilayer fusion in N. crassa. Here we describe the identification and characterization of lfd-1, encoding a single pass transmembrane protein, which is also involved in membrane merger. lfd-1 was identified by a targeted analysis of a transcriptional profile of a transcription factor mutant (Δpp-1) defective in germling fusion. The Δlfd-1 mutant shows a similar, but less severe, membrane merger defect as a ΔPrm1 mutant. By genetic analyses, we show that LFD1 and PRM1 act independently, but share a redundant function. The cell fusion frequency of both Δlfd-1 and ΔPrm1 mutants was sensitive to extracellular calcium concentration and was associated with an increase in cell lysis, which was suppressed by a calcium-dependent mechanism involving a homologue to synaptotagmin. PMID:24673848

  4. Cell-targeting fusion constructs containing recombinant gelonin.

    PubMed

    Lyu, Mi-Ae; Cao, Yu Joshua; Mohamedali, Khalid A; Rosenblum, Michael G

    2012-01-01

    Therapeutic agents capable of targeting tumor cells present as established tumors and micrometastases have already demonstrated their potential in clinical trials. Immunotoxins targeting hematological malignancies and solid tumors have additionally demonstrated excellent clinical activity. This review focuses on our design and characterization studies of constructs composed of recombinant gelonin toxin fused to either growth factors or single-chain antibodies targeting solid tumor cells, tumor vasculature or hematological malignancies. These agents demonstrate cytotoxicity at nanomolar or sub-nanomolar levels. All of these constructs display impressive selectivity and specificity for antigen-bearing target cells in vitro and in vivo and are excellent clinical trial candidates. PMID:22208986

  5. DNA Triplex-Based Complexes Display Anti-HIV-1-Cell Fusion Activity.

    PubMed

    Xu, Liang; Zhang, Tao; Xu, Xiaoyu; Chong, Huihui; Lai, Wenqing; Jiang, Xifeng; Wang, Chao; He, Yuxian; Liu, Keliang

    2015-08-01

    DNA triplexes with hydrophobic modifications were designed and evaluated for their activity as inhibitors of the cell fusion of human immunodeficiency virus type 1 (HIV-1). Triplex inhibitors displayed low micromolar activities in the cell-cell fusion assay and nanomolar activities in the anti-HIV-1 pseudovirus test. Helix structure and the presence of sufficient numbers of hydrophobic regions were essential for the antifusion activity. Results from native polyacrylamide gel electrophoresis and a fluorescent resonance energy transfer-based inhibitory assay indicated that these triplexes may interact with the primary pocket at the glycoprotein 41 (gp41) N-heptad repeat, thereby inhibiting formation of the HIV-1 gp41 6-helical bundle. Triplex-based complexes may represent a novel category of HIV-1 inhibitors in anti-HIV-1 drug discovery. PMID:26192705

  6. Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture

    PubMed Central

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J.; Wubbolts, Richard W.; van Kuppeveld, Frank J. M.; Rottier, Peter J. M.

    2014-01-01

    ABSTRACT Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing. IMPORTANCE Recurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV. PMID:24807723

  7. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture.

    PubMed

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J; Wubbolts, Richard W; van Kuppeveld, Frank J M; Rottier, Peter J M; Bosch, Berend Jan

    2014-07-01

    Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing. Importance: Recurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV. PMID:24807723

  8. Tributyltin induces mitochondrial fission through Mfn1 degradation in human induced pluripotent stem cells.

    PubMed

    Yamada, Shigeru; Asanagi, Miki; Hirata, Naoya; Itagaki, Hiroshi; Sekino, Yuko; Kanda, Yasunari

    2016-08-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT is also known to cause various forms of cytotoxicity, including neurotoxicity and immunotoxicity. However, TBT toxicity has not been identified in normal stem cells. In the present study, we examined the effects of TBT on cell growth in human induced pluripotent stem cells (iPSCs). We found that exposure to nanomolar concentrations of TBT decreased intracellular ATP levels and inhibited cell viability in iPSCs. Because TBT suppressed energy production, which is a critical function of the mitochondria, we further assessed the effects of TBT on mitochondrial dynamics. Staining with MitoTracker revealed that nanomolar concentrations of TBT induced mitochondrial fragmentation. TBT also reduced the expression of mitochondrial fusion protein mitofusin 1 (Mfn1), and this effect was abolished by knockdown of the E3 ubiquitin ligase membrane-associated RING-CH 5 (MARCH5), suggesting that nanomolar concentrations of TBT could induce mitochondrial dysfunction via MARCH5-mediated Mfn1 degradation in iPSCs. Thus, mitochondrial function in normal stem cells could be used to assess cytotoxicity associated with metal exposure. PMID:27133438

  9. Capsaicin induces immunogenic cell death in human osteosarcoma cells

    PubMed Central

    Jin, Tao; Wu, Hongyan; Wang, Yanlin; Peng, Hao

    2016-01-01

    Immunogenic cell death (ICD) is characterized by the early surface exposure of calreticulin (CRT). As a specific signaling molecule, CRT on the surface of apoptotic tumor cells mediates the recognition and phagocytosis of tumor cells by antigen presenting cells. To date, only a small quantity of anti-cancer chemicals have been found to induce ICD, therefore it is clinically important to identify novel chemicals that may induce ICD. The purpose of the present study is to explore the function of capsaicin in inducing ICD. In the current study, MTT assays were used to examine the growth inhibiting effects of MG-63 cells when they were treated with capsaicin or cisplatin. Mitochondrial membrane potential and western blot analysis were used to investigate capsaicin- and cisplatin-induced apoptosis. In addition, the effects of capsaicin and cisplatin were evaluated for their abilities in inducing calreticulin membrane translocation and mediating ICD in human osteosarcoma cells (MG-63). The results demonstrated that capsaicin and cisplatin can induce the apoptosis of MG-63 cells. However, only capsaicin induced a rapid translocation of CRT from the intracellular space to the cell surface. Treatment with capsaicin increased phagocytosis of MG-63 cells by dendritic cells (DCs), and these MG-63-loaded DCs could efficiently stimulate the secretion of IFN-γ by lymphocytes. These results identify capsaicin as an anti-cancer agent capable of inducing ICD in human osteosarcoma cells in vitro. PMID:27446273

  10. Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions.

    PubMed

    Liu, Li; Spurrier, Joshua; Butt, Tauseef R; Strickler, James E

    2008-11-01

    Recombinant protein expression in insect cells varies greatly from protein to protein. A fusion tag that is not only a tool for detection and purification, but also enhances expression and/or solubility would greatly facilitate both structure/function studies and therapeutic protein production. We have shown that fusion of SUMO (small ubiquitin-related modifier) to several test proteins leads to enhanced expression levels in Escherichia coli. In eukaryotic expression systems, however, the SUMO tag could be cleaved by endogenous desumoylase. In order to adapt SUMO-fusion technology to these systems, we have developed an alternative SUMO-derived tag, designated SUMOstar, which is not processed by native SUMO proteases. In the present study, we tested the SUMOstar tag in a baculovirus/insect cell system with several proteins, i.e. mouse UBP43, human tryptase beta II, USP4, USP15, and GFP. Our results demonstrate that fusion to SUMOstar enhanced protein expression levels at least 4-fold compared to either the native or His(6)-tagged proteins. We isolated active SUMOstar tagged UBP43, USP4, USP15, and GFP. Tryptase was active following cleavage with a SUMOstar specific protease. The SUMOstar system will make significant impact in difficult-to-express proteins and especially to those proteins that require the native N-terminal residue for function. PMID:18713650

  11. Chromatin-prebound Crm1 recruits Nup98-HoxA9 fusion to induce aberrant expression of Hox cluster genes

    PubMed Central

    Oka, Masahiro; Mura, Sonoko; Yamada, Kohji; Sangel, Percival; Hirata, Saki; Maehara, Kazumitsu; Kawakami, Koichi; Tachibana, Taro; Ohkawa, Yasuyuki; Kimura, Hiroshi; Yoneda, Yoshihiro

    2016-01-01

    The nucleoporin Nup98 is frequently rearranged to form leukemogenic Nup98-fusion proteins with various partners. However, their function remains largely elusive. Here, we show that Nup98-HoxA9, a fusion between Nup98 and the homeobox transcription factor HoxA9, forms nuclear aggregates that frequently associate with facultative heterochromatin. We demonstrate that stable expression of Nup98-HoxA9 in mouse embryonic stem cells selectively induces the expression of Hox cluster genes. Genome-wide binding site analysis revealed that Nup98-HoxA9 is preferentially targeted and accumulated at Hox cluster regions where the export factor Crm1 is originally prebound. In addition, leptomycin B, an inhibitor of Crm1, disassembled nuclear Nup98-HoxA9 dots, resulting in the loss of chromatin binding of Nup98-HoxA9 and Nup98-HoxA9-mediated activation of Hox genes. Collectively, our results indicate that highly selective targeting of Nup98-fusion proteins to Hox cluster regions via prebound Crm1 induces the formation of higher order chromatin structures that causes aberrant Hox gene regulation. DOI: http://dx.doi.org/10.7554/eLife.09540.001 PMID:26740045

  12. Fusion protein Isl1–Lhx3 specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs

    PubMed Central

    Lee, Seunghee; Cuvillier, James M.; Lee, Bora; Shen, Rongkun; Lee, Jae W.; Lee, Soo-Kyung

    2012-01-01

    Combinatorial transcription codes generate the myriad of cell types during development and thus likely provide crucial insights into directed differentiation of stem cells to a specific cell type. The LIM complex composed of Isl1 and Lhx3 directs the specification of spinal motor neurons (MNs) in embryos. Here, we report that Isl1–Lhx3, a LIM-complex mimicking fusion, induces a signature of MN transcriptome and concomitantly suppresses interneuron differentiation programs, thereby serving as a potent and specific inducer of MNs in stem cells. We show that an equimolar ratio of Isl1 and Lhx3 and the LIM domain of Lhx3 are crucial for generating MNs without up-regulating interneuron genes. These led us to design Isl1–Lhx3, which maintains the desirable 1:1 ratio of Isl1 and Lhx3 and the LIM domain of Lhx3. Isl1–Lhx3 drives MN differentiation with high specificity and efficiency in the spinal cord and embryonic stem cells, bypassing the need for sonic hedgehog (Shh). RNA-seq analysis revealed that Isl1–Lhx3 induces the expression of a battery of MN genes that control various functional aspects of MNs, while suppressing key interneuron genes. Our studies uncover a highly efficient method for directed MN generation and MN gene networks. Our results also demonstrate a general strategy of using embryonic transcription complexes for producing specific cell types from stem cells. PMID:22343290

  13. Fusion protein Isl1-Lhx3 specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs.

    PubMed

    Lee, Seunghee; Cuvillier, James M; Lee, Bora; Shen, Rongkun; Lee, Jae W; Lee, Soo-Kyung

    2012-02-28

    Combinatorial transcription codes generate the myriad of cell types during development and thus likely provide crucial insights into directed differentiation of stem cells to a specific cell type. The LIM complex composed of Isl1 and Lhx3 directs the specification of spinal motor neurons (MNs) in embryos. Here, we report that Isl1-Lhx3, a LIM-complex mimicking fusion, induces a signature of MN transcriptome and concomitantly suppresses interneuron differentiation programs, thereby serving as a potent and specific inducer of MNs in stem cells. We show that an equimolar ratio of Isl1 and Lhx3 and the LIM domain of Lhx3 are crucial for generating MNs without up-regulating interneuron genes. These led us to design Isl1-Lhx3, which maintains the desirable 1:1 ratio of Isl1 and Lhx3 and the LIM domain of Lhx3. Isl1-Lhx3 drives MN differentiation with high specificity and efficiency in the spinal cord and embryonic stem cells, bypassing the need for sonic hedgehog (Shh). RNA-seq analysis revealed that Isl1-Lhx3 induces the expression of a battery of MN genes that control various functional aspects of MNs, while suppressing key interneuron genes. Our studies uncover a highly efficient method for directed MN generation and MN gene networks. Our results also demonstrate a general strategy of using embryonic transcription complexes for producing specific cell types from stem cells. PMID:22343290

  14. Modulation of myoblast fusion by caveolin-3 in dystrophic skeletal muscle cells: implications for Duchenne muscular dystrophy and limb-girdle muscular dystrophy-1C.

    PubMed

    Volonte, Daniela; Peoples, Aaron J; Galbiati, Ferruccio

    2003-10-01

    Caveolae are vesicular invaginations of the plasma membrane. Caveolin-3 is the principal structural component of caveolae in skeletal muscle cells in vivo. We have recently generated caveolin-3 transgenic mice and demonstrated that overexpression of wild-type caveolin-3 in skeletal muscle fibers is sufficient to induce a Duchenne-like muscular dystrophy phenotype. In addition, we have shown that caveolin-3 null mice display mild muscle fiber degeneration and T-tubule system abnormalities. These data are consistent with the mild phenotype observed in Limb-girdle muscular dystrophy-1C (LGMD-1C) in humans, characterized by a approximately 95% reduction of caveolin-3 expression. Thus, caveolin-3 transgenic and null mice represent valid mouse models to study Duchenne muscular dystrophy (DMD) and LGMD-1C, respectively, in humans. Here, we derived conditionally immortalized precursor skeletal muscle cells from caveolin-3 transgenic and null mice. We show that overexpression of caveolin-3 inhibits myoblast fusion to multinucleated myotubes and lack of caveolin-3 enhances the fusion process. M-cadherin and microtubules have been proposed to mediate the fusion of myoblasts to myotubes. Interestingly, we show that M-cadherin is downregulated in caveolin-3 transgenic cells and upregulated in caveolin-3 null cells. For the first time, variations of M-cadherin expression have been linked to a muscular dystrophy phenotype. In addition, we demonstrate that microtubules are disorganized in caveolin-3 null myotubes, indicating the importance of the cytoskeleton network in mediating the phenotype observed in these cells. Taken together, these results propose caveolin-3 as a key player in myoblast fusion and suggest that defects of the fusion process may represent additional molecular mechanisms underlying the pathogenesis of DMD and LGMD-1C in humans. PMID:14517320

  15. Development of a diphtheria toxin-based recombinant porcine IL-2 fusion toxin for depleting porcine CD25+ cells.

    PubMed

    Peraino, Jaclyn Stromp; Schenk, Marian; Li, Guoying; Zhang, Huiping; Farkash, Evan A; Sachs, David H; Huang, Christene A; Duran-Struuck, Raimon; Wang, Zhirui

    2013-12-15

    Regulatory T cells (Tregs) have been widely recognized as crucial players in controlling immune responses. Because their major role is to ensure that the immune system is not over reactive, Tregs have been the focus of multiple research studies including those investigating transplantation tolerance, autoimmunity and cancer treatment. On their surface Tregs constitutively express CD25, a high affinity receptor for the cytokine interleukin-2 (IL-2). The reagents constructed in this study were generated by genetically linking porcine IL-2 to the truncated diphtheria toxin (DT390). This reagent functions by first binding to the cell surface via the porcine IL-2/porcine CD25 interaction then the DT390 domain facilitates internalization followed by inhibition of protein synthesis resulting in cell death. Four versions of the porcine IL-2 fusion toxin were designed in an interest to find the most effective isoform: 1) monovalent glycosylated porcine IL-2 fusion toxin (Gly); 2) monovalent non-N-glycosylated porcine IL-2 fusion toxin (NonGly); 3) bivalent glycosylated porcine IL-2 fusion toxin (Bi-Gly); 4) bivalent non-N-glycosylated porcine IL-2 fusion toxin (Bi-NonGly). Using a porcine CD25(+) B cell lymphoma cell line (LCL13271) in vitro analysis of the fusion toxins' ability to inhibit protein synthesis demonstrated that the Bi-NonGly fusion toxin is the most efficient reagent. These in vitro results are consistent with binding affinity as the Bi-NonGly fusion toxin binds strongest to CD25 on the same LCL13271 cells. The Bi-Gly fusion toxin significantly prolonged the survival (p=0.028) of tumor-bearing NOD/SCID IL-2 receptor γ(-/-) (NSG) mice injected with LCL13271 cells compared with untreated controls. This recombinant protein has great potential to function as a useful tool for in vivo depletion of porcine CD25(+) cells for studying immune regulation. PMID:24055128

  16. Development of a Diphtheria Toxin-Based Recombinant Porcine IL-2 Fusion Toxin for Depleting Porcine CD25+ Cells

    PubMed Central

    Peraino, Jaclyn Stromp; Schenk, Marian; Li, Guoying; Zhang, Huiping; Farkash, Evan A.; Sachs, David H.; Huang, Christene A.; Duran-Struuck, Raimon; Wang, Zhirui

    2013-01-01

    Regulatory T cells (Tregs) have been widely recognized as crucial players in controlling immune responses. Because their major role is to ensure that the immune system is not over reactive, Tregs have been the focus of multiple research studies including those investigating transplantation tolerance, autoimmunity and cancer treatment. On their surface Tregs constitutively express CD25, a high affinity receptor for the cytokine interleukin-2 (IL-2). The reagents constructed in this study were generated by genetically linking porcine IL-2 to the truncated diphtheria toxin (DT390). This reagent functions by first binding to the cell surface via the porcine IL-2/porcine CD25 interaction then the DT390 domain facilitates internalization followed by inhibition of protein synthesis resulting in cell death. Four versions of the porcine IL-2 fusion toxin were designed in an interest to find the most effective isoform: 1) monovalent glycosylated porcine IL-2 fusion toxin (Gly); 2) monovalent non-N-glycosylated porcine IL-2 fusion toxin (NonGly); 3) bivalent glycosylated porcine IL-2 fusion toxin (Bi-Gly); 4) bivalent non-N-glycosylated porcine IL-2 fusion toxin (Bi-NonGly). Using a porcine CD25+ B cell lymphoma cell line (LCL13271) in vitro analysis of the fusion toxins’ ability to inhibit protein synthesis demonstrated that the Bi-NonGly fusion toxin is the most efficient reagent. These in vitro results are consistent with binding affinity as the Bi-NonGly fusion toxin binds strongest to CD25 on the same LCL13271 cells. The Bi-Gly fusion toxin significantly prolonged the survival (p=0.028) of tumor-bearing NOD/SCID IL-2 receptor γ−/− (NSG) mice injected with LCL13271 cells compared with untreated controls. This recombinant protein has great potential to function as a useful tool for in vivo depletion of porcine CD25+ cells for studying immune regulation. PMID:24055128

  17. Characterisation of Weibel–Palade body fusion by amperometry in endothelial cells reveals fusion pore dynamics and the effect of cholesterol on exocytosis

    PubMed Central

    Cookson, Emma A.; Conte, Ianina L.; Dempster, John; Hannah, Matthew J.; Carter, Tom

    2013-01-01

    Summary Regulated secretion from endothelial cells is mediated by Weibel–Palade body (WPB) exocytosis. Plasma membrane cholesterol is implicated in regulating secretory granule exocytosis and fusion pore dynamics; however, its role in modulating WPB exocytosis is not clear. To address this we combined high-resolution electrochemical analysis of WPB fusion pore dynamics, by amperometry, with high-speed optical imaging of WPB exocytosis following cholesterol depletion or supplementation in human umbilical vein endothelial cells. We identified serotonin (5-HT) immunoreactivity in WPBs, and VMAT1 expression allowing detection of secreted 5-HT as discrete current spikes during exocytosis. A high proportion of spikes (∼75%) had pre-spike foot signals, indicating that WPB fusion proceeds via an initial narrow pore. Cholesterol depletion significantly reduced pre-spike foot signal duration and increased the rate of fusion pore expansion, whereas cholesterol supplementation had broadly the reverse effect. Cholesterol depletion slowed the onset of hormone-evoked WPB exocytosis, whereas its supplementation increased the rate of WPB exocytosis and hormone-evoked proregion secretion. Our results provide the first analysis of WPB fusion pore dynamics and highlight an important role for cholesterol in the regulation of WPB exocytosis. PMID:24127569

  18. Platelet adhesion and fusion to endothelial cell facilitate the metastasis of tumor cell in hypoxia-reoxygenation condition.

    PubMed

    Zhang, Na; Zhang, Wen-Jian; Cai, Han-Qing; Liu, Hong-Lin; Peng, Liang; Li, Cheng-Hui; Ye, Li-Ya; Xu, Shi-Qing; Yang, Zhi-Hua; Lou, Jin-Ning

    2011-01-01

    To investigate the relevant molecular mechanisms of platelet in promoting metastasis of tumor cell. The adhesion of fluorescence dye labeled-platelet to human liver sinusoidal endothelial cell (LSEC) line and tumor cell lines were detected by fluorescence microscope and fluorescence plate reader or laser scanning confocal microscope. The relevant adhesion molecules were analyzed by the antibody blockage experiment. The immune colloidal gold transmission electron microscope (TEM), flow cytometry and dye transfer were used to decipher the adhesion and fusion of platelet and LSEC. The tumor cells adhesion to vessels in ischemia condition was analyzed on mouse mesenteric vessels and the metastasis and neovascularization of metastatic foci in pulmonary tissue were also detected after tumor cells injected into nude mice via tail veil. After hypoxia-reoxygenation, tumor cell or LSEC markedly increased its adhesion with platelet, which could be blocked by different antibodies to platelet adhesion molecules. Platelet increased adhesion of tumor cell to LSEC in dose-dependent manner. The fusion of platelet and LSEC was demonstrated by translocation of fluorescent dye from platelet into the adherent LSEC; gpIIb emerged on the LSEC; and confirmed by TEM. The morphological examination found platelet presented between tumor cell and LSEC. Animal experiment indicated that the tumor adhesion to vessels was seldom in normal condition, but increased in ischemia-reperfusion condition, and further significantly enhanced by platelets. The number of tumor metastatic foci and the density of blood vessels within metastatic foci in lung were markedly increased by tumor cell pre-adhered with platelet. The adhesion or fusion of platelet to endothelial cell mediated by platelet surface adhesion molecules, which could promote the adhesion of tumor cell with endothelial cells and the tumor metastasis. PMID:21061145

  19. Analysis of Yersinia enterocolitica Effector Translocation into Host Cells Using Beta-lactamase Effector Fusions.

    PubMed

    Wolters, Manuel; Zobiak, Bernd; Nauth, Theresa; Aepfelbacher, Martin

    2015-01-01

    Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain. PMID:26484613

  20. Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles

    PubMed Central

    Reisen, Daniel; Hanson, Maureen R

    2007-01-01

    Background Myosins are molecular motors that carry cargo on actin filaments in eukaryotic cells. Seventeen myosin genes have been identified in the nuclear genome of Arabidopsis. The myosin genes can be divided into two plant-specific subfamilies, class VIII with four members and class XI with 13 members. Class XI myosins are related to animal and fungal myosin class V that are responsible for movement of particular vesicles and organelles. Organelle localization of only one of the 13 Arabidopsis myosin XI (myosin XI-6; At MYA2), which is found on peroxisomes, has so far been reported. Little information is available concerning the remaining 12 class XI myosins. Results We investigated 6 of the 13 class XI Arabidopsis myosins. cDNAs corresponding to the tail region of 6 myosin genes were generated and incorporated into a vector to encode YFP-myosin tail fusion proteins lacking the motor domain. Chimeric genes incorporating tail regions of myosin XI-5 (At MYA1), myosin XI-6 (At MYA2), myosin XI-8 (At XI-B), myosin XI-15 (At XI-I), myosin XI-16 (At XI-J) and myosin XI-17 (At XI-K) were expressed transiently. All YFP-myosin-tail fusion proteins were targeted to small organelles ranging in size from 0.5 to 3.0 μm. Despite the absence of a motor domain, the fluorescently-labeled organelles were motile in most cells. Tail cropping experiments demonstrated that the coiled-coil region was required for specific localization and shorter tail regions were inadequate for targeting. Myosin XI-6 (At MYA2), previously reported to localize to peroxisomes by immunofluorescence, labeled both peroxisomes and vesicles when expressed as a YFP-tail fusion. None of the 6 YFP-myosin tail fusions interacted with chloroplasts, and only one YFP-tail fusion appeared to sometimes co-localize with fluorescent proteins targeted to Golgi and mitochondria. Conclusion 6 myosin XI tails, extending from the coiled-coil region to the C-terminus, label specific vesicles and/or organelles when

  1. Interleukin 2-diphtheria toxin fusion protein can abolish cell-mediated immunity in vivo.

    PubMed Central

    Kelley, V E; Bacha, P; Pankewycz, O; Nichols, J C; Murphy, J R; Strom, T B

    1988-01-01

    De novo expression of the interleukin 2 receptor (IL-2R) is a critical and pivotal event in initiation of an immune response. Targeting the low-affinity IL-2-binding p55 subunit of the high-affinity IL-2R with the rat anti-mouse IgM monoclonal antibody M7/20 suppresses a variety of T-cell-mediated reactions, including transplant rejection, autoimmunity, and delayed-type hypersensitivity (DTH). A hybrid IL-2-toxin gene was constructed from the diphtheria toxin gene by replacing the DNA encoding the diphtheria toxin receptor-binding domain with the DNA encoding the receptor-binding domain of IL-2, and the fusion protein encoded by the hybrid gene was expressed in Escherichia coli [Williams, D.P., Parker, K., Bacha, P., Bishai, W., Borowski, M., Genbauffe, F., Strom, T.B. & Murphy, J.R. (1987) Protein Eng. 1, 493-498]. We examined the action of the chimeric IL-2-toxin fusion protein on an in vivo T-cell mediated response, DTH. The IL-2-toxin fusion protein was found to be a potent immunosuppressive agent. Treatment of mice with the IL-2-toxin blocks DTH and prevents expansion of IL-2R+ T cells. Indeed, IL-2-toxin treatment targets IL-2R+ T cells in vivo and is shown to selectively eliminate their appearance in draining lymph nodes. DTH suppression was observed even in mice possessing high titers of antibodies to diphtheria toxoid. PMID:3131768

  2. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell

    PubMed Central

    Armenti, Stephen T.; Chan, Emily; Nance, Jeremy

    2015-01-01

    Lumenogenesis of small seamless tubes occurs through intracellular membrane growth and directed vesicle fusion events. Within the C. elegans excretory cell, which forms seamless intracellular tubes (canals) that mediate osmoregulation, lumens grow in length and diameter when vesicles fuse with the expanding lumenal surface. Here, we show that lumenal vesicle fusion depends on the small GTPase RAL-1, which localizes to vesicles and acts through the exocyst vesicle-tethering complex. Loss of either the exocyst or RAL-1 prevents excretory canal lumen extension. Within the excretory canal and other polarized cells, the exocyst co-localizes with the PAR polarity proteins PAR-3, PAR-6 and PKC-3. Using early embryonic cells to determine the functional relationships between the exocyst and PAR proteins, we show that RAL-1 recruits the exocyst to the membrane, while PAR proteins concentrate membrane-localized exocyst proteins to a polarized domain. These findings reveal that RAL-1 and the exocyst direct the polarized vesicle fusion events required for intracellular lumenogenesis of the excretory cell, suggesting mechanistic similarities in the formation of topologically distinct multicellular and intracellular lumens. PMID:25102190

  3. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell.

    PubMed

    Armenti, Stephen T; Chan, Emily; Nance, Jeremy

    2014-10-01

    Lumenogenesis of small seamless tubes occurs through intracellular membrane growth and directed vesicle fusion events. Within the Caenorhabditis elegans excretory cell, which forms seamless intracellular tubes (canals) that mediate osmoregulation, lumens grow in length and diameter when vesicles fuse with the expanding lumenal surface. Here, we show that lumenal vesicle fusion depends on the small GTPase RAL-1, which localizes to vesicles and acts through the exocyst vesicle-tethering complex. Loss of either the exocyst or RAL-1 prevents excretory canal lumen extension. Within the excretory canal and other polarized cells, the exocyst co-localizes with the PAR polarity proteins PAR-3, PAR-6 and PKC-3. Using early embryonic cells to determine the functional relationships between the exocyst and PAR proteins, we show that RAL-1 recruits the exocyst to the membrane, while PAR proteins concentrate membrane-localized exocyst proteins to a polarized domain. These findings reveal that RAL-1 and the exocyst direct the polarized vesicle fusion events required for intracellular lumenogenesis of the excretory cell, suggesting mechanistic similarities in the formation of topologically distinct multicellular and intracellular lumens. PMID:25102190

  4. TRAIL-Death Receptor 4 Signaling via Lysosome Fusion and Membrane Raft Clustering In Coronary Arterial Endothelial Cells: Evidence from ASM Knockout Mice

    PubMed Central

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M.; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2012-01-01

    Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) and its receptor death receptor 4 (DR4) have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation and leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MRs) clustering and formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and its co-localization with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1+/+) mice. Further, TRAIL triggered ASM translocation, ceramide production and NADPH oxidase aggregation in MR clusters in Smpd1+/+ CAECs, whereas these observations were not found in Smpd1−/− CAECs. Moreover, ASM deficiency reduced TRAIL-induced O2−· production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer (FRET), we found that Lamp-1 (lysosome membrane marker protein) and ganglioside GM1 (MR marker) were trafficking together in Smpd1+/+ CAECs, which was absent in Smpd1−/− CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1−/− CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking and fusion with membrane and formation of MR redox signaling platforms, which may

  5. Expression of the TEL-Syk Fusion Protein in Hematopoietic Stem Cells Leads to Rapidly Fatal Myelofibrosis in Mice

    PubMed Central

    Graham, Michelle T.; Abram, Clare L.; Hu, Yongmei; Lowell, Clifford A.

    2013-01-01

    The TEL-Syk fusion protein was isolated from a patient with myelodysplasia with megakaryocyte blasts. Expression of TEL-Syk transforms interleukin-3 (IL-3)-dependent Ba/F3 cells in vitro by deregulating STAT5-mediated signal transduction pathways. In vivo, TEL-Syk expression in pre-B cells blocks B cell differentiation, leading to lymphoid leukemia. Here, we demonstrate that TEL-Syk introduced into fetal liver hematopoietic cells, which are then adoptively transferred into lethally irradiated recipients, leads to an aggressive myelodysplasia with myelofibrosis that is lethal in mice by 60–75 days. Expression of TEL-Syk induces a short-lived myeloexpansion that is rapidly followed by bone marrow failure and extreme splenic/hepatic fibrosis accompanied by extensive apoptosis. The disease is dependent on Syk kinase activity. Analysis of serum from TEL-Syk mice reveals an inflammatory cytokine signature reminiscent of that found in the sera from patients and mouse models of myeloproliferative neoplasms. TEL-Syk expressing cells showed constitutive STAT5 phosphorylation, which was resistant to JAK inhibition, consistent with deregulated cytokine signaling. These data indicate that expression of TEL-Syk in fetal liver hematopoietic cells results in JAK-independent STAT5 phosphorylation ultimately leading to a uniquely aggressive and lethal form of myelofibrosis. PMID:24116232

  6. Tumorigenic potential is restored during differentiation in fusion-reprogrammed cancer cells

    PubMed Central

    Yao, J; Zhang, L; Hu, L; Guo, B; Hu, X; Borjigin, U; Wei, Z; Chen, Y; Lv, M; Lau, J T Y; Wang, X; Li, G; Hu, Y-P

    2016-01-01

    Detailed understanding of the mechanistic steps underlying tumor initiation and malignant progression is critical for insights of potentially novel therapeutic modalities. Cellular reprogramming is an approach of particular interest because it can provide a means to reset the differentiation state of the cancer cells and to revert these cells to a state of non-malignancy. Here, we investigated the relationship between cellular differentiation and malignant progression by the fusion of four independent mouse cancer cell lines from different tissues, each with differing developmental potentials, to pluripotent mouse embryonic stem (ES) cells. Fusion was accompanied by loss of differentiated properties of the four parental cancer cell lines and concomitant emergence of pluripotency, demonstrating the feasibility to reprogram the malignant and differentiative properties of cancer cells. However, the original malignant and differentiative phenotypes re-emerge upon withdrawal of the fused cells from the embryonic environment in which they were maintained. cDNA array analysis of the malignant hepatoma progression implicated a role for Foxa1, and silencing Foxa1 prevented the re-emergence of malignant and differentiation-associated gene expression. Our findings support the hypothesis that tumor progression results from deregulation of stem cells, and our approach provides a strategy to analyze possible mechanisms in the cancer initiation. PMID:27468690

  7. Oncogenic Fusion Gene CD74-NRG1 Confers Cancer Stem Cell-like Properties in Lung Cancer through a IGF2 Autocrine/Paracrine Circuit.

    PubMed

    Murayama, Takahiko; Nakaoku, Takashi; Enari, Masato; Nishimura, Tatsunori; Tominaga, Kana; Nakata, Asuka; Tojo, Arinobu; Sugano, Sumio; Kohno, Takashi; Gotoh, Noriko

    2016-02-15

    The CD74-Neuregulin1 (NRG1) fusion gene was recently identified as novel driver of invasive mucinous adenocarcinoma, a malignant form of lung cancer. However, the function of the CD74-NRG1 fusion gene in adenocarcinoma pathogenesis and the mechanisms by which it may impart protumorigenic characteristics to cancer stem cells (CSC) is still unclear. In this study, we found that the expression of the CD74-NRG1 fusion gene increased the population of lung cancer cells with CSC-like properties. CD74-NRG1 expression facilitated sphere formation not only of cancer cells, but also of nonmalignant lung epithelial cells. Using a limiting dilution assay in a xenograft model, we further show that the CD74-NRG1 fusion gene enhanced tumor initiation. Mechanistically, we found that CD74-NRG1 expression promoted the phosphorylation of ErbB2/3 and activated the PI3K/Akt/NF-κB signaling pathway. Furthermore, the expression of the secreted insulin-like growth factor 2 (IGF2) and phosphorylation of its receptor, IGF1R, were enhanced in an NF-κB-dependent manner in cells expressing CD74-NRG1. These findings suggest that CD74-NRG1-induced NF-κB activity promotes the IGF2 autocrine/paracrine circuit. Moreover, inhibition of ErbB2, PI3K, NF-κB, or IGF2 suppressed CD74-NRG1-induced tumor sphere formation. Therefore, our study provides a preclinical rationale for developing treatment approaches based on these identified pathways to suppress CSC properties that promote tumor progression and recurrence. PMID:26837769

  8. Inducible regulation of GDNF expression in human neural stem cells.

    PubMed

    Wang, ShuYan; Ren, Ping; Guan, YunQian; Zou, ChunLin; Fu, LinLin; Zhang, Yu

    2013-01-01

    Glial cell derived neurotrophic factor (GDNF) holds promises for treating neurodegenerative diseases such as Parkinson's disease. Human neural stem cells (hNSCs) have proved to be a suitable cell delivery vehicle for the safe and efficient introduction of GDNF into the brain. In this study, we used hNSCs-infected with a lentivirus encoding GDNF and the hygromycin resistance gene as such vehicles. A modified tetracycline operator 7 (tetO7) was inserted into a region upstream of the EF1-α promoter to drive GDNF expression. After hygromycin selection, hNSCs were infected with a lentivirus encoding a KRAB-tetracycline repressor fusion protein (TTS). TTS bound to tetO7 and suppressed the expression of GDNF in hNSCs. Upon administration of doxycycline (Dox) the TTS-tetO7 complex separated and the expression of GDNF resumed. The hNSCs infected with GDNF expressed the neural stem cell specific markers, nestin and sox2, and exhibited no significant change in proliferation rate. However, the rate of apoptosis in hNSCs expressing GDNF was lower compared with normal NSCs in response to actinomycin treatment. Furthermore, a higher percentage of Tuj-1 positive cells were obtained from GDNF-producing NSCs under conditions that induced differentiation compared to control NSCs. The inducible expression of GDNF in hNSCs may provide a system for the controllable delivery of GDNF in patients with neurodegenerative diseases. PMID:23269553

  9. Membrane Organization and Cell Fusion During Mating in Fission Yeast Requires Multipass Membrane Protein Prm1

    PubMed Central

    Curto, M.-Ángeles; Sharifmoghadam, Mohammad Reza; Calpena, Eduardo; De León, Nagore; Hoya, Marta; Doncel, Cristina; Leatherwood, Janet; Valdivieso, M.-Henar

    2014-01-01

    The involvement of Schizosaccharomyces pombe prm1+ in cell fusion during mating and its relationship with other genes required for this process have been addressed. S. pombe prm1Δ mutant exhibits an almost complete blockade in cell fusion and an abnormal distribution of the plasma membrane and cell wall in the area of cell–cell interaction. The distribution of cellular envelopes is similar to that described for mutants devoid of the Fig1-related claudin-like Dni proteins; however, prm1+ and the dni+ genes act in different subpathways. Time-lapse analyses show that in the wild-type S. pombe strain, the distribution of phosphatidylserine in the cytoplasmic leaflet of the plasma membrane undergoes some modification before an opening is observed in the cross wall at the cell–cell contact region. In the prm1Δ mutant, this membrane modification does not take place, and the cross wall between the mating partners is not extensively degraded; plasma membrane forms invaginations and fingers that sometimes collapse/retract and that are sometimes strengthened by the synthesis of cell-wall material. Neither prm1Δ nor prm1Δ dniΔ zygotes lyse after cell–cell contact in medium containing and lacking calcium. Response to drugs that inhibit lipid synthesis or interfere with lipids is different in wild-type, prm1Δ, and dni1Δ strains, suggesting that membrane structure/organization/dynamics is different in all these strains and that Prm1p and the Dni proteins exert some functions required to guarantee correct membrane organization that are critical for cell fusion. PMID:24514900

  10. Fusion hindrance and quasi-fission in heavy-ion induced reactions: disentangling the effect of different parameters

    SciTech Connect

    Fioretto, E.; Stefanini, A. M.; Behera, B. R.; Corradi, L.; Gadea, A.; Latina, A.; Trotta, M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Chizhov, A. Yu.; Itkis, I. M.; Itkis, M. G.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Pokrovsky, I. V.; Sagaidak, R. N.; Voskressensky, V. M.; Courtin, S.

    2006-04-26

    Experimental results on the fusion inhibition effect near the Coulomb barrier due to the onset of the quasi-fission mechanism are presented. The investigation was focused on reactions induced by 48Ca projectiles on different heavy targets and comparing them to reactions induced by light ions such as 12C and 16O leading to the same compound nuclei. Cross sections and angular distributions of evaporation residues and fission fragments have been measured.

  11. Construction of the HBV S-ecdCD40L fusion gene and effects of HBV S-ecdCD40L modification on function of dendritic cells.

    PubMed

    Wu, J-M; Lin, X-F; Huang, Z-M; Wu, J S

    2011-10-01

    We examined the effect of dendritic cells engineered to express an HBV S antigen CD40L fusion gene (HBV S-ecdCD40L). The DNA of HBV S gene and the cDNA of the extracellular domain of human CD40 ligand were linked by cloning. Peripheral blood mononuclear cells (PBMC) from healthy adults were incubated and induced into dendritic cells (DC) in presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4(IL-4). The DCs were transfected the novel construct, and the impact of the expressed clone assessed. We find that, compared with control groups, modification of DCs with HBV S-ecdCD40L fusion gene resulted in the activation of DCs with upregulated expression of immunologically important cell surface molecules (CD80, CD86 and HLA-DR) and proinflammatory cytokines (IL-12). The DCs modified with HBV S-ecdCD40L are able to stimulate enhanced allogeneic T-cell proliferation in vitro. Thus, the fusion gene HBV S-ecdCD40L can promote DC's activation and enhance its function and may prove to be the foundation for a new type of hepatitis B vaccine. PMID:21914064

  12. The human leukocyte antigen G promotes trophoblast fusion and β-hCG production through the Erk1/2 pathway in human choriocarcinoma cell lines

    SciTech Connect

    Wang, Ji-meng; Zhao, Hong-xi; Wang, Li; Gao, Zhi-ying; Yao, Yuan-qing

    2013-05-10

    Highlights: •HLA-G expression promotes BeWo cells fusion and fusogenic gene expression. •HLA-G is capable of inducing β-hCG production in human choriocarcinoma cell lines. •Up-regulation of β-hCG production by HLA-G is mediated via the Erk1/2 pathway. -- Abstract: The human leukocyte antigen G (HLA-G) is expressed on the fetal–maternal interface and plays a role in protecting fetal-derived trophoblasts from the maternal immune response, allowing trophoblasts to invade the uterus. However, HLA-G also possesses immune suppressing-independent functions. We found that HLA-G expressing BeWo choriocarcinoma cells increased cell–cell fusion compared to control BeWo cells under forskolin treatment. Regardless of forskolin treatment, the expression of fusogenic gene mRNAs, including syncytin-1, the transcription factor glial cell missing 1 (Gcm1), and beta human chorionic gonadotropin (β-hCG) were elevated. HLA-G up-regulates β-hCG production in human choriocarcinoma cells because HLA-G knockdown in JEG-3 cells induces a dramatic decrease in β-hCG compared with control cells. The defect in β-hCG production in HLA-G knocked-down cells could not be completely overcome by stimulating hCG production through increasing intracellular cAMP levels. HLA-G expressing cells have increased phosphorylation levels for extracellular signal-regulated kinase1/2 (Erk1/2) in BeWo cells. The Erk1/2 pathway is inactivated after the inhibition of HLA-G expression in JEG-3 cells. Finally, Erk1/2 inhibition was able to suppress the increased hCG production induced by HLA-G expression. Together, these data suggest novel roles for HLA-G in regulating β-hCG production via the modulation of the Erk1/2 pathway and by inducing trophoblast cell fusion.

  13. Reconstitution of vesicle fusions occurring in endocytosis with a cell-free system.

    PubMed Central

    Gruenberg, J E; Howell, K E

    1986-01-01

    We have used defined subcellular fractions to reconstitute in a cell-free system vesicle fusions occurring in the endocytic pathway. The endosomal fractions were prepared by immuno-isolation using as antigen an epitope located on a foreign protein, the transmembrane glycoprotein G (G-protein) of vesicular stomatitis virus. The G-protein was first implanted in the cell plasma membrane and subsequently endocytosed for 15 to 30 min at 37 degrees C. The endosomal fractions were immuno-isolated on a solid support using as antigen the cytoplasmic domain of the G-protein in combination with a specific monoclonal antibody. For comparative studies the plasma membrane was immuno-isolated from cells in the absence of G internalization with a monoclonal antibody against the exoplasmic domain of the G-protein. The immuno-isolated endosomal vesicles contained 70% of horseradish peroxidase internalized in the endosome fluid phase, exhibited an acidic luminal pH as shown by acridine orange fluorescence and differed in their protein composition from the immuno-isolated plasma membrane fraction. The fusion of endocytic vesicles originating from different stages of the pathway was studied in a cell-free assay using both a bio-chemical and a morphological detection system. These well defined endosomal vesicles were immuno-isolated with the G-protein on the solid support and provided the recipient compartment of the fusion (acceptor). They were mixed with a post-nuclear supernatant containing endosomes loaded with exogenous lactoperoxidase (donor) at 37 degrees C. Fusion delivered the donor peroxidase to the lumen of acceptor vesicles permitting fusion-specific iodination of the G-protein itself. The fusion of vesicles required ATP and was detected only with an endosomal fraction prepared after internalization of the G-protein for 15 min at 37 degrees C but not with a plasma membrane or with an endosomal fraction prepared after 30 min G-protein internalization. Images Fig. 1. Fig. 2

  14. PARP Inhibition Sensitizes to Low Dose-Rate Radiation TMPRSS2-ERG Fusion Gene-Expressing and PTEN-Deficient Prostate Cancer Cells

    PubMed Central

    Chatterjee, Payel; Choudhary, Gaurav S.; Sharma, Arishya; Singh, Kamini; Heston, Warren D.; Ciezki, Jay; Klein, Eric A.; Almasan, Alexandru

    2013-01-01

    Exposure to genotoxic agents, such as irradiation produces DNA damage, the toxicity of which is augmented when the DNA repair is impaired. Poly (ADP-ribose) polymerase (PARP) inhibitors were found to be “synthetic lethal” in cells deficient in BRCA1 and BRCA2 that impair homologous recombination. However, since many tumors, including prostate cancer (PCa) rarely have on such mutations, there is considerable interest in finding alternative determinants of PARP inhibitor sensitivity. We evaluated the effectiveness of radiation in combination with the PARP inhibitor, rucaparib in PCa cells. The combination index for clonogenic survival following radiation and rucaparib treatments revealed synergistic interactions in a panel of PCa cell lines, being strongest for LNCaP and VCaP cells that express ETS gene fusion proteins. These findings correlated with synergistic interactions for senescence activation, as indicated by β--galactosidase staining. Absence of PTEN and presence of ETS gene fusion thus facilitated activation of senescence, which contributed to decreased clonogenic survival. Increased radiosensitivity in the presence of rucaparib was associated with persistent DNA breaks, as determined by χ-H2AX, p53BP1, and Rad51 foci. VCaP cells, which harbor the TMPRSS2-ERG gene fusion and PC3 cells that stably express a similar construct (fusion III) showed enhanced sensitivity towards rucaparib, which, in turn, increased the radiation response to a similar extent as the DNA-PKcs inhibitor NU7441. Rucaparib radiosensitized PCa cells, with a clear benefit of low dose-rate radiation (LDR) administered over a longer period of time that caused enhanced DNA damage. LDR mimicking brachytherapy, which is used successfully in the clinic, was most effective when combined with rucaparib by inducing persistent DNA damage and senescence, leading to decreased clonogenic survival. This combination was most effective in the presence of the TMPRSS2-ERG and in the absence of PTEN

  15. Downregulation of RUNX1/CBFβ by MLL fusion proteins enhances hematopoietic stem cell self-renewal

    PubMed Central

    Zhao, Xinghui; Chen, Aili; Yan, Xiaomei; Zhang, Yue; He, Fuhong; Hayashi, Yoshihiro; Dong, Yunzhu; Rao, Yalan; Li, Bo; Conway, Rajeana M.; Maiques-Diaz, Alba; Elf, Shannon E.; Huang, Nuomin; Zuber, Johannes; Xiao, Zhijian; Tse, William; Tenen, Daniel G.; Wang, Qianfei; Chen, Wei; Mulloy, James C.; Nimer, Stephen D.

    2014-01-01

    RUNX1/CBFβ (core binding factor [CBF]) is a heterodimeric transcription factor complex that is frequently involved in chromosomal translocations, point mutations, or deletions in acute leukemia. The mixed lineage leukemia (MLL) gene is also frequently involved in chromosomal translocations or partial tandem duplication in acute leukemia. The MLL protein interacts with RUNX1 and prevents RUNX1 from ubiquitin-mediated degradation. RUNX1/CBFβ recruits MLL to regulate downstream target genes. However, the functional consequence of MLL fusions on RUNX1/CBFβ activity has not been fully understood. In this report, we show that MLL fusion proteins and the N-terminal MLL portion of MLL fusions downregulate RUNX1 and CBFβ protein expression via the MLL CXXC domain and flanking regions. We confirmed this finding in Mll-Af9 knock-in mice and human M4/M5 acute myeloid leukemia (AML) cell lines, with or without MLL translocations, showing that MLL translocations cause a hypomorph phenotype of RUNX1/CBFβ. Overexpression of RUNX1 inhibits the development of AML in Mll-Af9 knock-in mice; conversely, further reducing Runx1/Cbfβ levels accelerates MLL-AF9–mediated AML in bone marrow transplantation assays. These data reveal a newly defined negative regulation of RUNX1/CBFβ by MLL fusion proteins and suggest that targeting RUNX1/CBFβ levels may be a potential therapy for MLLs. PMID:24449215

  16. Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells.

    PubMed

    Cui, Yong; Gao, Caiji; Zhao, Qiong; Jiang, Liwen

    2016-01-01

    Studies of protein subcellular localization and dynamics are helpful in understanding the cellular functions of proteins in an organism. In the past decade, the use of green fluorescent protein (GFP) as a fusion tag has dramatically extended our knowledge in this field. Transient expression and stable transformation of GFP-tagged proteins have been wildly used to study protein localization in vivo in different systems. Although GFP-based tags provide a fast and convenient way to characterize protein properties in living cells, several reports have demonstrated that GFP fusions might not accurately reflect the localization of the native protein as GFP tags may alter the protein properties. To facilitate proper usage of GFP tags in plant cell biology study, we describe detailed protocols to identify possible inhibitory effects of fluorescent tags on protein subcellular localization and to determine if a fluorescently tagged protein is localized to the correct subcellular compartment. Using Arabidopsis Endomembrane protein 12 (EMP12) as an example, we first show the possible inhibitory effect of GFP tags on proper protein localization and then describe the immunofluorescence labeling method to verify the correct localization of GFP fusion proteins. Next, a method is presented using the ImageJ program with the Pearson-Spearman correlation (PSC) colocalization plug-in for statistical quantification of colocalization ratios of two fluorophores. Finally we provide a detailed method for protein dynamics studies using spinning disk confocal microscopy in Arabidopsis cells. PMID:27515077

  17. Big Animal Cloning Using Transgenic Induced Pluripotent Stem Cells: A Case Study of Goat Transgenic Induced Pluripotent Stem Cells.

    PubMed

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Wang, Ziyu; Wang, Feng

    2016-02-01

    Using of embryonic stem cells (ESCs) could improve production traits and disease resistance by improving the efficiency of somatic cell nuclear transfer (SCNT) technology. However, robust ESCs have not been established from domestic ungulates. In the present study, we generated goat induced pluripotent stem cells (giPSCs) and transgenic cloned dairy goat induced pluripotent stem cells (tgiPSCs) from dairy goat fibroblasts (gFs) and transgenic cloned dairy goat fibroblasts (tgFs), respectively, using lentiviruses that contained hOCT4, hSOX2, hMYC, and hKLF4 without chemical compounds. The giPSCs and tgiPSCs expressed endogenous pluripotent markers, including OCT4, SOX2, MYC, KLF4, and NANOG. Moreover, they were able to maintain a normal karyotype and differentiate into derivatives from all three germ layers in vitro and in vivo. Using SCNT, tgFs and tgiPSCs were used as donor cells to produce embryos, which were named tgF-Embryos and tgiPSC-Embryos. The fusion rates and cleavage rates had no significant differences between tgF-Embryos and tgiPSC-Embryos. However, the expression of IGF-2, which is an important gene associated with embryonic development, was significantly lower in tgiPSC-Embryos than in tgF-Embryos and was not significantly different from vivo-Embryos. PMID:26836033

  18. Fusion Toxin BLyS-Gelonin Inhibits Growth of Malignant Human B Cell Lines In Vitro and In Vivo

    PubMed Central

    Luster, Troy A.; Mukherjee, Ipsita; Carrell, Jeffrey A.; Cho, Yun Hee; Gill, Jeffrey; Kelly, Lizbeth; Garcia, Andy; Ward, Christopher; Oh, Luke; Ullrich, Stephen J.; Migone, Thi-Sau; Humphreys, Robin

    2012-01-01

    B lymphocyte stimulator (BLyS) is a member of the TNF superfamily of cytokines. The biological activity of BLyS is mediated by three cell surface receptors: BR3/BAFF-R, TACI and BCMA. The expression of these receptors is highly restricted to B cells, both normal and malignant. A BLyS-gelonin fusion toxin (BLyS-gel) was generated consisting of the recombinant plant-derived toxin gelonin fused to the N-terminus of BLyS and tested against a large and diverse panel of B-NHL cell lines. Interestingly, B-NHL subtypes mantle cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL) and B cell precursor-acute lymphocytic leukemia (BCP-ALL) were preferentially sensitive to BLyS-gel mediated cytotoxicity, with low picomolar EC50 values. BLyS receptor expression did not guarantee sensitivity to BLyS-gel, even though the construct was internalized by both sensitive and resistant cells. Resistance to BLyS-gel could be overcome by treatment with the endosomotropic drug chloroquine, suggesting BLyS-gel may become trapped within endosomal/lysosomal compartments in resistant cells. BLyS-gel induced cell death was caspase-independent and shown to be at least partially mediated by the “ribotoxic stress response.” This response involves activation of p38 MAPK and JNK/SAPK, and BLyS-gel mediated cytotoxicity was inhibited by the p38/JNK inhibitor SB203580. Finally, BLyS-gel treatment was shown to localize to sites of disease, rapidly reduce tumor burden, and significantly prolong survival in xenograft mouse models of disseminated BCP-ALL, DLBCL, and MCL. Together, these findings suggest BLyS has significant potential as a targeting ligand for the delivery of cytotoxic “payloads” to malignant B cells. PMID:23056634

  19. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells.

    PubMed

    Yoon, Mi Jin; Kim, Eun Hee; Lim, Jun Hee; Kwon, Taeg Kyu; Choi, Kyeong Sook

    2010-03-01

    Curcumin is considered a pharmacologically safe agent that may be useful in cancer chemoprevention and therapy. Here, we show for the first time that curcumin effectively induces paraptosis in malignant breast cancer cell lines, including MDA-MB-435S, MDA-MB-231, and Hs578T cells, by promoting vacuolation that results from swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). Inhibition of protein synthesis by cycloheximide blocked curcumin-induced vacuolation and subsequent cell death, indicating that protein synthesis is required for this process. The levels of AIP-1/Alix protein, a known inhibitor protein of paraptosis, were progressively downregulated in curcumin-treated malignant breast cancer cells, and AIP-1/Alix overexpression attenuated curcumin-induced death in these cells. ERK2 and JNK activation were positively associated with curcumin-induced cell death. Mitochondrial superoxide was shown to act as a critical early signal in curcumin-induced paraptosis, whereas proteasomal dysfunction was mainly responsible for the paraptotic changes associated with ER dilation. Notably, curcumin-induced paraptotic events were not observed in normal breast cells, including mammary epithelial cells and MCF-10A cells. Taken together, our findings on curcumin-induced paraptosis may provide novel insights into the mechanisms underlying the selective anti-cancer effects of curcumin against malignant cancer cells. PMID:20036734

  20. Diphtheria toxin-based bivalent human IL-2 fusion toxin with improved efficacy for targeting human CD25(+) cells.

    PubMed

    Peraino, Jaclyn Stromp; Zhang, Huiping; Rajasekera, Priyani V; Wei, Min; Madsen, Joren C; Sachs, David H; Huang, Christene A; Wang, Zhirui

    2014-03-01

    Regulatory T cells (Treg) constitute a major inhibitory cell population which suppresses immune responses. Thus, Treg have proven to be key players in the induction of transplantation tolerance, protection from autoimmune disease and prevention of the development of effective anti-tumor immune reactions. Treg express high levels of the high affinity interleukin-2 receptor (IL-2R) consisting of IL-2Rα (CD25) together with IL-2Rβ (CD122) and the common γ-chain (CD132). An effective reagent capable of depleting Treg in vivo would facilitate better cancer treatment and allow mechanistic studies of the role of Treg in transplantation tolerance and the development of autoimmune disease. In this study, we have developed a novel bivalent human IL-2 fusion toxin along with an Ontak®-like monovalent human IL-2 fusion toxin and compared the functional ability of these reagents in vitro. Here we show that genetically linking two human IL-2 domains in tandem, thereby generating a bivalent fusion toxin, results in significantly improved capacity in targeting human CD25(+) cells in vitro. Binding analysis by flow cytometry showed that the bivalent human IL-2 fusion toxin has notably increased affinity for human CD25(+) cells. In vitro functional analysis demonstrated that the bivalent isoform has an increased potency of approximately 2 logs in inhibiting cellular proliferation and protein synthesis in human CD25(+) cells compared to the monovalent human IL-2 fusion toxin. Additionally, we performed two inhibition assays in order to verify that the fusion toxins target the cells specifically through binding of the human IL-2 domain of the fusion toxin to the human IL-2 receptor on the cell surface. These results demonstrated that 1) both monovalent and bivalent human IL-2 fusion toxins are capable of blocking the binding of biotinylated human IL-2 to human CD25 by flow cytometry; and 2) human IL-2 blocked the fusion toxins from inhibiting protein synthesis and cellular

  1. Ezrin Is a Component of the HIV-1 Virological Presynapse and Contributes to the Inhibition of Cell-Cell Fusion

    PubMed Central

    Roy, Nathan H.; Lambelé, Marie; Chan, Jany; Symeonides, Menelaos

    2014-01-01

    ABSTRACT During cell-to-cell transmission of HIV-1, viral and cellular proteins transiently accumulate at the contact zone between infected (producer) and uninfected (target) cells, forming the virological synapse. Rearrangements of the cytoskeleton in producer and target cells are required for proper targeting of viral and cellular components during synapse formation, yet little is known about how these processes are regulated, particularly within the producer cell. Since ezrin-radixin-moesin (ERM) proteins connect F-actin with integral and peripheral membrane proteins, are incorporated into virions, and interact with cellular components of the virological presynapse, we hypothesized that they play roles during the late stage of HIV-1 replication. Here we document that phosphorylated (i.e., active) ezrin specifically accumulates at the HIV-1 presynapse in T cell lines and primary CD4+ lymphocytes. To investigate whether ezrin supports virus transmission, we sought to ablate ezrin expression in producer cells. While cells did not tolerate a complete knockdown of ezrin, even a modest reduction of ezrin expression (∼50%) in HIV-1-producing cells led to the release of particles with impaired infectivity. Further, when cocultured with uninfected target cells, ezrin-knockdown producer cells displayed reduced accumulation of the tetraspanin CD81 at the synapse and fused more readily with target cells, thus forming syncytia. Such an outcome likely is not optimal for virus dissemination, as evidenced by the fact that, in vivo, only relatively few infected cells form syncytia. Thus, ezrin likely helps secure efficient virus spread not only by enhancing virion infectivity but also by preventing excessive membrane fusion at the virological synapse. IMPORTANCE While viruses, in principal, can propagate through successions of syncytia, HIV-1-infected cells in the majority of cases do not fuse with potential target cells during viral transmission. This mode of spread is

  2. Temperatures of shock-induced shear instabilities and their relationship to fusion curves. [emission from glass

    NASA Technical Reports Server (NTRS)

    Schmitt, D. R.; Ahrens, T. J.

    1983-01-01

    New emission spectra for MgO and CaAl2Si2O8 (glass) are observed from 430 to 820 nm. Taken with previous data, it is suggested that transparent solids display three regimes of light emission upon shock compression to successively higher pressures: (1) characteristic radiation such as observed in MgO and previously in other minerals, (2) heterogeneous hot spot (greybody) radiation observed in CaAl2Si2O8 and previously in all transparent solids undergoing shock-induced phase transformations, and (3) blackbody emission observed in the high pressure phase regime in NaCl, SiO2, CaO, CaAl2Si2O8, and Mg2SiO4. The onset of the second regime may delineate the onset of shock-induced polymorphism whereas the onset of the third regime delineates the Hugoniot pressure required to achieve local thermal equilibrium in the shocked solid. It is also proposed that the hot spot temperatures and corresponding shock pressures determined in the second regime delineate points on the fusion curves of the high pressure phase.

  3. A Particle-in-Cell Simulation for the Traveling Wave Direct Energy Converter (TWDEC) for Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.

    2013-01-01

    A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.

  4. The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function.

    PubMed

    Wilson, Kirilee A; Bär, Séverine; Maerz, Anne L; Alizon, Marc; Poumbourios, Pantelis

    2005-04-01

    Retroviral transmembrane proteins (TMs) contain an N-terminal fusion peptide that initiates virus-cell membrane fusion. The fusion peptide is linked to the coiled-coil core through a conserved sequence that is often rich in glycines. We investigated the functional role of the glycine-rich segment, Met-326 to Ser-337, of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, by alanine and proline scanning mutagenesis. Alanine substitution for the hydrophobic residue Ile-334 caused an approximately 90% reduction in cell-cell fusion activity without detectable effects on the lipid-mixing and pore formation phases of fusion. Alanine substitutions at other positions had smaller effects (Gly-329, Val-330, and Gly-332) or no effect on fusion function. Proline substitution for glycine residues inhibited cell-cell fusion function with position-dependent effects on the three phases of fusion. Retroviral glycoprotein fusion function thus appears to require flexibility within the glycine-rich segment and hydrophobic contacts mediated by this segment. PMID:15767455

  5. The Conserved Glycine-Rich Segment Linking the N-Terminal Fusion Peptide to the Coiled Coil of Human T-Cell Leukemia Virus Type 1 Transmembrane Glycoprotein gp21 Is a Determinant of Membrane Fusion Function

    PubMed Central

    Wilson, Kirilee A.; Bär, Séverine; Maerz, Anne L.; Alizon, Marc; Poumbourios, Pantelis

    2005-01-01

    Retroviral transmembrane proteins (TMs) contain an N-terminal fusion peptide that initiates virus-cell membrane fusion. The fusion peptide is linked to the coiled-coil core through a conserved sequence that is often rich in glycines. We investigated the functional role of the glycine-rich segment, Met-326 to Ser-337, of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, by alanine and proline scanning mutagenesis. Alanine substitution for the hydrophobic residue Ile-334 caused an ∼90% reduction in cell-cell fusion activity without detectable effects on the lipid-mixing and pore formation phases of fusion. Alanine substitutions at other positions had smaller effects (Gly-329, Val-330, and Gly-332) or no effect on fusion function. Proline substitution for glycine residues inhibited cell-cell fusion function with position-dependent effects on the three phases of fusion. Retroviral glycoprotein fusion function thus appears to require flexibility within the glycine-rich segment and hydrophobic contacts mediated by this segment. PMID:15767455

  6. How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells.

    PubMed

    Cárdenas, Ana María; Marengo, Fernando D

    2016-06-01

    The pattern of stimulation defines important characteristics of the secretory process in neurons and neuroendocrine cells, including the pool of secretory vesicles being recruited, the type and amount of transmitters released, the mode of membrane retrieval, and the mechanisms associated with vesicle replenishment. This review analyzes the mechanisms that regulate these processes in chromaffin cells, as well as in other neuroendocrine and neuronal models. A common factor in these mechanisms is the spatial and temporal distribution of the Ca(2+) signal generated during cell stimulation. For instance, neurosecretory cells and neurons have pools of vesicles with different locations with respect to Ca(2+) channels, and those pools are therefore differentially recruited following different patterns of stimulation. In this regard, a brief stimulus will induce the exocytosis of a small pool of vesicles that is highly coupled to voltage-dependent Ca(2+) channels, whereas longer or more intense stimulation will provoke a global Ca(2+) increase, promoting exocytosis irrespective of vesicle location. The pattern of stimulation, and therefore the characteristics of the Ca(2+) signal generated by the stimulus also influence the mode of exocytosis and the type of endocytosis. Indeed, low-frequency stimulation favors kiss-and-run exocytosis and clathrin-independent fast endocytosis, whereas higher frequencies promote full fusion and clathrin-dependent endocytosis. This latter type of endocytosis is accelerated at high-frequency stimulation. Synaptotagmins, calcineurin, dynamin, complexin, and actin remodeling, appear to be involved in the mechanisms that determine the response of these processes to Ca(2+) . In chromaffin cells, a brief stimulus induces the exocytosis of a small pool of vesicles that is highly coupled to voltage-dependent Ca(2+) channels (A), whereas longer or high-frequency stimulation provokes a global Ca(2+) increase, promoting exocytosis irrespective of

  7. A CRE/AP-1-Like Motif Is Essential for Induced Syncytin-2 Expression and Fusion in Human Trophoblast-Like Model

    PubMed Central

    Vargas, Amandine; Rassart, Éric; Barbeau, Benoit

    2015-01-01

    Syncytin-2 is encoded by the envelope gene of Endogenous Retrovirus-FRD (ERVFRD-1) and plays a critical role in fusion of placental trophoblasts leading to the formation of the multinucleated syncytiotrophoblast. Its expression is consequently regulated in a strict manner. In the present study, we have identified a forskolin-responsive region located between positions -300 to -150 in the Syncytin-2 promoter region. This 150 bp region in the context of a minimal promoter mediated an 80-fold induction of promoter activity following forskolin stimulation. EMSA analyses with competition experiments with nuclear extracts from forskolin-stimulated BeWo cells demonstrated that the -211 to -177 region specifically bound two forskolin-induced complexes, one of them containing a CRE/AP-1-like motif. Site-directed mutagenesis of the CRE/AP-1 binding site in the context of the Syncytin-2 promoter or a heterologous promoter showed that this motif was mostly essential for forskolin-induced promoter activity. Transfection experiments with dominant negative mutants and constitutively activated CREB expression vectors in addition to Chromatin Immunoprecipitation suggested that a CREB family member, CREB2 was binding and acting through the CRE/AP-1 motif. We further demonstrated the binding of JunD to this same motif. Similar to forskolin and soluble cAMP, CREB2 and JunD overexpression induced Syncytin-2 promoter activity in a CRE/AP-1-dependent manner and Syncytin-2 expression. In addition, BeWo cell fusion was induced by both CREB2 and JunD overexpression, while being repressed following silencing of either gene. These results thereby demonstrate that induced expression of Syncytin-2 is highly dependent on the interaction of bZIP-containing transcription factors to a CRE/AP-1 motif and that this element is important for the regulation of Syncytin-2 expression, which results in the formation of the peripheral syncytiotrophoblast layer. PMID:25781974

  8. SARS Coronavirus Fusion Peptide-Derived Sequence Suppresses Collagen-Induced Arthritis in DBA/1J Mice.

    PubMed

    Shen, Zu T; Sigalov, Alexander B

    2016-01-01

    During the co-evolution of viruses and their hosts, the viruses have evolved numerous strategies to counter and evade host antiviral immune responses in order to establish a successful infection, replicate and persist in the host. Recently, based on our model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, we suggested specific molecular mechanisms used by different viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) to modulate the host immune response mediated by members of the family of multichain immune recognition receptors (MIRRs). This family includes T cell receptor (TCR) that is critically involved in immune diseases such as autoimmune arthritis. In the present study, we provide compelling experimental in vivo evidence in support of our hypothesis. Using the SCHOOL approach and the SARS-CoV fusion peptide sequence, we rationally designed a novel immunomodulatory peptide that targets TCR. We showed that this peptide ameliorates collagen-induced arthritis in DBA/1J mice and protects against bone and cartilage damage. Incorporation of the peptide into self-assembling lipopeptide nanoparticles that mimic native human high density lipoproteins significantly increases peptide dosage efficacy. Together, our data further confirm that viral immune evasion strategies that target MIRRs can be transferred to therapeutic strategies that require similar functionalities. PMID:27349522

  9. SARS Coronavirus Fusion Peptide-Derived Sequence Suppresses Collagen-Induced Arthritis in DBA/1J Mice

    PubMed Central

    Shen, Zu T.; Sigalov, Alexander B.

    2016-01-01

    During the co-evolution of viruses and their hosts, the viruses have evolved numerous strategies to counter and evade host antiviral immune responses in order to establish a successful infection, replicate and persist in the host. Recently, based on our model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, we suggested specific molecular mechanisms used by different viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) to modulate the host immune response mediated by members of the family of multichain immune recognition receptors (MIRRs). This family includes T cell receptor (TCR) that is critically involved in immune diseases such as autoimmune arthritis. In the present study, we provide compelling experimental in vivo evidence in support of our hypothesis. Using the SCHOOL approach and the SARS-CoV fusion peptide sequence, we rationally designed a novel immunomodulatory peptide that targets TCR. We showed that this peptide ameliorates collagen-induced arthritis in DBA/1J mice and protects against bone and cartilage damage. Incorporation of the peptide into self-assembling lipopeptide nanoparticles that mimic native human high density lipoproteins significantly increases peptide dosage efficacy. Together, our data further confirm that viral immune evasion strategies that target MIRRs can be transferred to therapeutic strategies that require similar functionalities. PMID:27349522

  10. Regulation of cell protrusions by small GTPases during fusion of the neural folds

    PubMed Central

    Rolo, Ana; Savery, Dawn; Escuin, Sarah; de Castro, Sandra C; Armer, Hannah EJ; Munro, Peter MG; Molè, Matteo A; Greene, Nicholas DE; Copp, Andrew J

    2016-01-01

    Epithelial fusion is a crucial process in embryonic development, and its failure underlies several clinically important birth defects. For example, failure of neural fold fusion during neurulation leads to open neural tube defects including spina bifida. Using mouse embryos, we show that cell protrusions emanating from the apposed neural fold tips, at the interface between the neuroepithelium and the surface ectoderm, are required for completion of neural tube closure. By genetically ablating the cytoskeletal regulators Rac1 or Cdc42 in the dorsal neuroepithelium, or in the surface ectoderm, we show that these protrusions originate from surface ectodermal cells and that Rac1 is necessary for the formation of membrane ruffles which typify late closure stages, whereas Cdc42 is required for the predominance of filopodia in early neurulation. This study provides evidence for the essential role and molecular regulation of membrane protrusions prior to fusion of a key organ primordium in mammalian development. DOI: http://dx.doi.org/10.7554/eLife.13273.001 PMID:27114066

  11. Small Mismatches in Fatty Acyl Tail Lengths Can Effect Non Steroidal Anti-Inflammatory Drug Induced Membrane Fusion.

    PubMed

    Majumdar, Anupa; Sarkar, Munna

    2016-06-01

    Biological membranes are made up of a variety of lipids with diverse physicochemical properties. The lipid composition modulates different lipidic parameters, such as hydration, dynamics, lipid packing, curvature strain, etc. Changes in these parameters affect various membrane-mediated processes, such as membrane fusion which is an integral step in many biological processes. Packing defects, which originate either from mismatch in the headgroup region or in the hydrophobic acyl tail region, play a major role in modulating membrane dynamics. In this study, we demonstrate how even a small mismatch in the fatty acyl chain length, achieved by incorporation of low concentrations (up to 30 mol %) of dipalmitoylphosphatidylcholine (DPPC) into dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles (SUVs), alters several lipidic parameters like packing, dynamics, and headgroup hydration. This in turn affects non steroidal anti-inflammatory drug (NSAID) induced membrane fusion. Dynamic light scattering, differential scanning calorimetry, second-derivative absorption spectrophotometry, and steady-state and time-resolved fluorescence have been used to elucidate the effect of small mismatch in the tails in DMPC/DPPC mixed vesicles and how it modulates membrane fusion induced by the oxicam NSAIDs, meloxicam (Mx), piroxicam (Px), and tenoxicam (Tx). Fusion kinetics was monitored using fluorescence based fusion assays. At low DPPC concentration of 10 mol %, additional fluidization promotes lipid mixing to some extent for Mx, but at higher mol % of DPPC, subsequent increase in rigidity of membrane interior along with increase in headgroup hydration, synergistically inhibits fusion to various extents for the three different drugs, Mx, Px, and Tx. PMID:27153337

  12. Permeabilization and fusion of uncharged lipid vesicles induced by the HIV-1 fusion peptide adopting an extended conformation: dose and sequence effects.

    PubMed Central

    Pereira, F B; Goñi, F M; Muga, A; Nieva, J L

    1997-01-01

    The peptide HIV(arg), corresponding to a sequence of 23 amino acid residues at the N-terminus of HIV-1 gp41 (LAV1a strain), has the capacity to destabilize negatively charged large unilamellar vesicles. As revealed by infrared spectroscopy, the peptide associated with those vesicles showed conformational polymorphism: in the absence of cations the main structure was a pore-forming alpha-helix, whereas in the presence of Ca2+ the conformation switched to a fusogenic, predominantly extended beta-type structure. Here we show that an extended structure can also be involved in electrically neutral vesicle destabilization induced by the HIV-1 fusion peptide when it binds the vesicle from the aqueous phase. In the absence of cations, neutral liposomes composed of phosphatidylcholine, phosphatidylethanolamine, and cholesterol (molar ratio 1:1:1) selected for an extended structure that became fusogenic in a dose-dependent fashion. At subfusogenic doses this structure caused the release of trapped 8-aminonaphtalene-1,3,6-trisulfonic acid sodium salt/p-xylenebis(pyridinium)bromide from liposomes, indicating the existence of a peptide-mediated membrane destabilizing process before and independent of the development of fusion. When compared to HIV(arg), the fusion activity of HIV(ala) (bearing the R22 --> A substitution) was reduced by 70%. Fusogenicity was completely abolished when a second substitution (V2 --> E) was included to generate HIV(ala-E2), a sequence representing the N-terminus of an inactive gp41. However, the three sequences associated with vesicles to the same extent, and the three adopted a similar extended structure in the membrane. Whereas 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene emission anisotropy was unaffected by the three peptides, DPH emission anisotropy in membranes was increased only by the fusogenic sequences. Taken together, our observations strongly argue that it is not an alpha-helical but an extended structure adopted by the HIV-1

  13. A lab-on-a-chip device for investigating the fusion process of olfactory ensheathing cell spheroids.

    PubMed

    Munaz, Ahmed; Vadivelu, Raja K; John, James A St; Nguyen, Nam-Trung

    2016-08-01

    Understanding the process of fusion of olfactory ensheathing cell spheroids will lead to improvement of cell transplantation therapies to repair spinal cord injuries. The successful fusion of transplanted spheroids will enable alternative transplantation strategies to be developed for in vivo applications. This paper describes the use of a microfluidic device to trap and fuse olfactory ensheathing cell spheroids. The velocity, the pressure distribution in the device were simulated numerically to predict the trapping location. The simulation predicted the optimum flow rates for trapping the spheroids in the later experiments. Simulated particle trajectories were verified experimentally with tracing of fluorescent micro particles. The fusion process of the spheroids was investigated over a period of 48 hours. The microfluidic platform presented here can be used for testing potential drugs that can promote the fusion process and improve the transplantation therapy. PMID:27387270

  14. Fusion pore expansion is a slow, discontinuous, and Ca2+-dependent process regulating secretion from alveolar type II cells.

    PubMed

    Haller, T; Dietl, P; Pfaller, K; Frick, M; Mair, N; Paulmichl, M; Hess, M W; Furst, J; Maly, K

    2001-10-15

    In alveolar type II cells, the release of surfactant is considerably delayed after the formation of exocytotic fusion pores, suggesting that content dispersal may be limited by fusion pore diameter and subject to regulation at a postfusion level. To address this issue, we used confocal FRAP and N-(3-triethylammoniumpropyl)-4-(4-[dibutylamino]styryl) pyridinium dibromide (FM 1-43), a dye yielding intense localized fluorescence of surfactant when entering the vesicle lumen through the fusion pore (Haller, T., J. Ortmayr, F. Friedrich, H. Volkl, and P. Dietl. 1998. Proc. Natl. Acad. Sci. USA. 95:1579-1584). Thus, we have been able to monitor the dynamics of individual fusion pores up to hours in intact cells, and to calculate pore diameters using a diffusion model derived from Fick's law. After formation, fusion pores were arrested in a state impeding the release of vesicle contents, and expanded at irregular times thereafter. The expansion rate of initial pores and the probability of late expansions were increased by elevation of the cytoplasmic Ca2+ concentration. Consistently, content release correlated with the occurrence of Ca2+ oscillations in ATP-treated cells, and expanded fusion pores were detectable by EM. This study supports a new concept in exocytosis, implicating fusion pores in the regulation of content release for extended periods after initial formation. PMID:11604423

  15. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    SciTech Connect

    Hu, Dong; Wu, Jing; Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan; Xiao, Jian; Hu, Fengyu; Yang, Yabo; Zhang, Rongbo

    2015-05-29

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy.

  16. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    SciTech Connect

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2014-02-15

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  17. Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity

    SciTech Connect

    Iwasaki, Ryotaro; Ninomiya, Ken; Miyamoto, Kana; Suzuki, Toru; Sato, Yuiko

    2008-12-19

    The balance between osteoclast and osteoblast activity is central for maintaining the integrity of bone homeostasis. Here we show that mice lacking dendritic cell specific transmembrane protein (DC-STAMP), an essential molecule for osteoclast cell-cell fusion, exhibited impaired bone resorption and upregulation of bone formation by osteoblasts, which do not express DC-STAMP, which led to increased bone mass. On the contrary, DC-STAMP over-expressing transgenic (DC-STAMP-Tg) mice under the control of an actin promoter showed significantly accelerated cell-cell fusion of osteoclasts and bone resorption, with decreased osteoblastic activity and bone mass. Bone resorption and formation are known to be regulated in a coupled manner, whereas DC-STAMP regulates bone homeostasis in an un-coupled manner. Thus our results indicate that inhibition of a single molecule provides both decreased osteoclast activity and increased bone formation by osteoblasts, thereby increasing bone mass in an un-coupled and a tissue specific manner.

  18. Dendritic-Tumor Fusion Cells Derived Heat Shock Protein70-Peptide Complex Has Enhanced Immunogenicity

    PubMed Central

    Chen, Jun; Liu, Yunyan; Luo, Wen

    2015-01-01

    Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use. PMID:25961716

  19. DELIVERY OF siRNA INTO BREAST CANCER CELLS VIA PHAGE FUSION PROTEIN-TARGETED LIPOSOMES

    PubMed Central

    Bedi, Deepa; Musacchio, Tiziana; Fagbohun, Olusegun A.; Gillespie, James W.; Deinnocentes, Patricia; Bird, R. Curtis; Bookbinder, Lonnie; Torchilin, Vladimir P.; Petrenko, Valery A.

    2011-01-01

    Efficacy of siRNAs as potential anticancer therapeutics can be increased by their targeted delivery into cancer cells via tumor-specific ligands. Phage display offers an unique approach to identify highly specific and selective ligands that can deliver nanocarriers to the site of disease. In this study, we proved a novel approach for intracellular delivery of siRNAs into breast cancer cells through their encapsulation into liposomes targeted to the tumor cells with preselected intact phage proteins. The targeted siRNA liposomes were obtained by a fusion of two parental liposomes containing spontaneously inserted siRNA and fusion phage proteins. The presence of pVIII coat protein fused to a MCF-7 cell-targeting peptide DMPGTVLP in the liposomes was confirmed by Western blotting. The novel phage-targeted siRNA-nanopharmaceuticals demonstrate significant down-regulation of PRDM14 gene expression and PRDM14 protein synthesis in the target MCF- 7 cells. This approach offers the potential for development of new anticancer siRNA-based targeted nanomedicines. PMID:21050894

  20. Identification and Characterization of LFD-2, a Predicted Fringe Protein Required for Membrane Integrity during Cell Fusion in Neurospora crassa

    PubMed Central

    Palma-Guerrero, Javier; Zhao, Jiuhai; Gonçalves, A. Pedro; Starr, Trevor L.

    2015-01-01

    The molecular mechanisms of membrane merger during somatic cell fusion in eukaryotic species are poorly understood. In the filamentous fungus Neurospora crassa, somatic cell fusion occurs between genetically identical germinated asexual spores (germlings) and between hyphae to form the interconnected network characteristic of a filamentous fungal colony. In N. crassa, two proteins have been identified to function at the step of membrane fusion during somatic cell fusion: PRM1 and LFD-1. The absence of either one of these two proteins results in an increase of germling pairs arrested during cell fusion with tightly appressed plasma membranes and an increase in the frequency of cell lysis of adhered germlings. The level of cell lysis in ΔPrm1 or Δlfd-1 germlings is dependent on the extracellular calcium concentration. An available transcriptional profile data set was used to identify genes encoding predicted transmembrane proteins that showed reduced expression levels in germlings cultured in the absence of extracellular calcium. From these analyses, we identified a mutant (lfd-2, for late fusion defect-2) that showed a calcium-dependent cell lysis phenotype. lfd-2 encodes a protein with a Fringe domain and showed endoplasmic reticulum and Golgi membrane localization. The deletion of an additional gene predicted to encode a low-affinity calcium transporter, fig1, also resulted in a strain that showed a calcium-dependent cell lysis phenotype. Genetic analyses showed that LFD-2 and FIG1 likely function in separate pathways to regulate aspects of membrane merger and repair during cell fusion. PMID:25595444

  1. Identification and characterization of LFD-2, a predicted fringe protein required for membrane integrity during cell fusion in neurospora crassa.

    PubMed

    Palma-Guerrero, Javier; Zhao, Jiuhai; Gonçalves, A Pedro; Starr, Trevor L; Glass, N Louise

    2015-03-01

    The molecular mechanisms of membrane merger during somatic cell fusion in eukaryotic species are poorly understood. In the filamentous fungus Neurospora crassa, somatic cell fusion occurs between genetically identical germinated asexual spores (germlings) and between hyphae to form the interconnected network characteristic of a filamentous fungal colony. In N. crassa, two proteins have been identified to function at the step of membrane fusion during somatic cell fusion: PRM1 and LFD-1. The absence of either one of these two proteins results in an increase of germling pairs arrested during cell fusion with tightly appressed plasma membranes and an increase in the frequency of cell lysis of adhered germlings. The level of cell lysis in ΔPrm1 or Δlfd-1 germlings is dependent on the extracellular calcium concentration. An available transcriptional profile data set was used to identify genes encoding predicted transmembrane proteins that showed reduced expression levels in germlings cultured in the absence of extracellular calcium. From these analyses, we identified a mutant (lfd-2, for late fusion defect-2) that showed a calcium-dependent cell lysis phenotype. lfd-2 encodes a protein with a Fringe domain and showed endoplasmic reticulum and Golgi membrane localization. The deletion of an additional gene predicted to encode a low-affinity calcium transporter, fig1, also resulted in a strain that showed a calcium-dependent cell lysis phenotype. Genetic analyses showed that LFD-2 and FIG1 likely function in separate pathways to regulate aspects of membrane merger and repair during cell fusion. PMID:25595444

  2. Susceptibility to virus-cell fusion at the plasma membrane is reduced through expression of HIV gp41 cytoplasmic domains

    SciTech Connect

    Malinowsky, Katharina; Luksza, Julia; Dittmar, Matthias T.

    2008-06-20

    The cytoplasmic tail of the HIV transmembrane protein plays an important role in viral infection. In this study we analyzed the role of retroviral cytoplasmic tails in modulating the cytoskeleton and interfering with virus-cell fusion. HeLaP4 cells expressing different HIV cytoplasmic tail constructs showed reduced acetylated tubulin levels whereas the cytoplasmic tail of MLV did not alter microtubule stability indicating a unique function for the lentiviral cytoplasmic tail. The effect on tubulin is mediated through the membrane proximal region of the HIV cytoplasmic tail and was independent of membrane localization. Site-directed mutagenesis identified three motifs in the HIV-2 cytoplasmic tail required to effect the reduction in acetylated tubulin. Both the Yxx{phi} domain and amino acids 21 to 45 of the HIV-2 cytoplasmic tail need to be present to change the level of acetylated tubulin in transfected cells. T-cells stably expressing one HIV-2 cytoplasmic tail derived construct showed also a reduction in acetylated tubulin thus confirming the importance of this effect not only for HeLaP4 and 293T cells. Challenge experiments using transiently transfected HeLaP4 cells and T cells stably expressing an HIV cytoplasmic tail construct revealed both reduced virus-cell fusion and replication of HIV-1{sub NL4.3} compared to control cells. In the virus-cell fusion assay only virions pseudotyped with either HIV or MLV envelopes showed reduced fusion efficiency, whereas VSV-G pseudotyped virions where not affected by the expression of HIV derived cytoplasmic tail constructs, indicating that fusion at the plasma but not endosomal membrane is affected. Overexpression of human histone-deacetylase 6 (HDAC6) and constitutively active RhoA resulted in a reduction of acetylated tubulin and reduced virus-cell fusion as significant as that observed following expression of HIV cytoplasmic tail constructs. Inhibition of HDAC6 showed a strong increase in acetylated tubulin and

  3. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    SciTech Connect

    Lyu, Qing; Tou, Fangfang; Su, Hong; Wu, Xiaoyong; Chen, Xinyi; Zheng, Zhi

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  4. Hormone-regulated v-rel estrogen receptor fusion protein: reversible induction of cell transformation and cellular gene expression.

    PubMed

    Boehmelt, G; Walker, A; Kabrun, N; Mellitzer, G; Beug, H; Zenke, M; Enrietto, P J

    1992-12-01

    We describe the construction of a v-rel estrogen receptor fusion protein (v-relER) which allows the regulation of v-rel oncoprotein activity by hormone. In the presence of estrogen, v-relER readily transformed primary chicken fibroblasts and bone marrow cells in vitro. In both cell types, v-rel-specific transformation was critically dependent on the presence of estrogen or the estrogen agonist 4-hydroxytamoxifen (OHT). Withdrawal of estrogen or application of an estrogen antagonist, ICI164,384 (ICI) caused a reversal of the transformed phenotype. We also demonstrate that the v-relER protein binds to NF-kappa B sites in an estrogen-dependent manner, thereby showing that sequence-specific DNA binding of v-relER is critical for the activation of its transforming capacity. In transient transfection experiments, we failed to demonstrate a clear repressor or activator function of the v-rel moiety in v-relER. However, in v-relER-transformed bone marrow cells, estrogen and OHT induced elevated mRNA levels of two cellular genes whose expression is constitutive and high in v-rel-transformed cells. These results suggest that v-rel might exert part of its activity as an activator of rel-responsive genes. PMID:1425595

  5. Lipopolysaccharide induces multinuclear cell from RAW264.7 line with increased phagocytosis activity

    SciTech Connect

    Nakanishi-Matsui, Mayumi; Yano, Shio; Matsumoto, Naomi; Futai, Masamitsu

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer LPS induces multinuclear cells from murine macrophage-derived RAW264.7 cells. Black-Right-Pointing-Pointer The multinuclear cells are formed through cell-cell fusion in the presence of Ca{sup 2+}. Black-Right-Pointing-Pointer The multinuclear cells do not express osteoclast-specific enzymes. Black-Right-Pointing-Pointer They internalized more and larger beads than mononuclear cells and osteoclasts. -- Abstract: Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, induces strong proinflammatory responses, including the release of cytokines and nitric oxide from macrophage. In this study, we found that a murine macrophage-derived line, RAW264.7, became multinuclear through cell-cell fusion after incubation with highly purified LPS or synthetic lipid A in the presence of Ca{sup 2+}. The same cell line is known to differentiate into multinuclear osteoclast, which expresses a specific proton pumping ATPase together with osteoclast markers on stimulation by the extracellular domain of receptor activator of nuclear factor {kappa}B ligand (Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G.-H., Wada, Y. and Futai, M., 2003). The LPS-induced multinuclear cells did not express osteoclast-specific enzymes including tartrate-resistant acid phosphatase and cathepsin K. During multinuclear cell formation, the cells internalized more and larger polystyrene beads (diameter 6-15 {mu}m) than mononuclear cells and osteoclasts. The internalized beads were located in lysosome-marker positive organelles, which were probably phagolysosomes. The LPS-induced multinuclear cell could be a good model system to study phagocytosis of large foreign bodies.

  6. Hot fusion-evaporation cross sections of 45Sc -induced reactions with lanthanide targets

    NASA Astrophysics Data System (ADS)

    Werke, T. A.; Mayorov, D. A.; Alfonso, M. C.; Bennett, M. E.; DeVanzo, M. J.; Frey, M. M.; Tereshatov, E. E.; Folden, C. M.

    2015-09-01

    Background: 45Sc has rarely been studied as a projectile in fusion-evaporation reactions. The synthesis of new superheavy elements with Z >118 will require projectiles with Z >20 , and 45Sc could potentially be used for this purpose. Purpose: Cross sections were measured for the x n and p x n exit channels in the reactions of 45Sc with lanthanide targets for comparison to previous measurements of 48Ca reacting with similar targets. These data provide insight on the survival of spherical, shell-stabilized nuclei against fission, and could have implications for the discovery of new superheavy elements. Methods: Beams of 45Sc6 + were delivered from the K500 superconducting cyclotron at Texas A&M University with an energy of ≈5 MeV /nucleon . Products were purified using the Momentum Achromat Recoil Spectrometer, and excitation functions were measured for reactions of 45Sc+156-158,160Gd, 159Tb , and 162Dy at five or more energies each. Evaporation residues were identified by their characteristic α -decay energies. Experimental data were compared to a simple theoretical model to study each step in the fusion-evaporation process. Results: The maximum measured 4 n cross sections for the reactions 45Sc+156-158,160Gd, 159Tb , and 162Dy are 5.8 ±1.7 , 25 ±5 , 39 ±7 , 150 ±20 , 2 .4-1.4+2.3 , and 1.8 ±0.6 μ b , respectively. Proton emission competes effectively with neutron emission from the excited compound nucleus in most cases. The α ,α n , and α 2 n products were also observed in the 45Sc+162Dy reaction. Conclusions: Excitation functions were reported for 45Sc -induced reactions on lanthanide targets for the first time, and these cross sections are much smaller than for 48Ca -induced reactions on the same targets. The relative neutron-deficiency of the compound nuclei leads to significantly increased fissility and large reductions in the survival probability. Little evidence for improved production cross sections due to shell-stabilization was observed.

  7. Specific Targeting of Tumor Endothelial Cells by a Shiga-like Toxin-Vascular Endothelial Growth Factor Fusion Protein as a Novel Treatment Strategy for Pancreatic Cancer1

    PubMed Central

    Hotz, Birgit; Backer, Marina V; Backer, Joseph M; Buhr, Heinz-J; Hotz, Hubert G

    2010-01-01

    Purpose Tumor endothelial cells express vascular endothelial growth factor receptor 2 (VEGFR-2). VEGF can direct toxins to tumor vessels through VEGFR-2 for antiangiogenic therapy. This study aimed to selectively damage the VEGFR-2-overexpressing vasculature of pancreatic cancer by SLT-VEGF fusion protein comprising VEGF and the A subunit of Shiga-like toxin which inhibits protein synthesis of cells with high VEGFR-2 expression. Experimental Design Expression of VEGF and VEGF receptors was evaluated in human pancreatic cancer cells (AsPC-1, HPAF-2) and in normal human endothelial cells (HUVEC) by reverse transcription-polymerase chain reaction. Cells were treated with SLT-VEGF (0.1–10 nM), and cell viability, proliferation, and endothelial tube formation were assessed. Orthotopic pancreatic cancer (AsPC-1, HPAF-2) was induced in nude mice. Animals were treated with SLT-VEGF fusion protein alone or in combination with gemcitabine. Treatment began 3 days or 6 weeks after tumor induction. Primary tumor volume and dissemination were determined after 14 weeks. Microvessel density and expression of VEGF and VEGF receptors were analyzed by immunohistochemistry. Results SLT-VEGF did not influence proliferation of pancreatic cancer cells; HUVECs (low-level VEGFR-2) reduced their proliferation rate and tube formation but not their viability. SLT-VEGF fusion protein reduced tumor growth and dissemination, increasing 14-week survival (AsPC-1, up to 75%; HPAF-2, up to 83%). Results of gemcitabine were comparable with SLT-VEGF monotherapy. Combination partly increased the therapeutic effects in comparison to the respective monotherapies. Microvessel density was reduced in all groups. Intratumoral VEGFR-2 expression was found in endothelial but not in tumor cells. Conclusions SLT-VEGF is toxic for tumor vasculature rather than for normal endothelial or pancreatic cancer cells. SLT-VEGF treatment in combination with gemcitabine may provide a novel approach for pancreatic cancer

  8. Human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation mediated by vascular cell adhesion molecule-1: evidence for involvement of cell adhesion molecules in HTLV-1 biology.

    PubMed Central

    Hildreth, J E; Subramanium, A; Hampton, R A

    1997-01-01

    While studying the potential role of vascular cell adhesion molecule-1 (VCAM-1) in infection of endothelial cells by human immunodeficiency virus (HIV), we found that VCAM-1 can mediate human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation. Both expression-vector-encoded and endogenously expressed VCAM-1 supported fusion of uninfected cells with HTLV-1-infected cells. Fusion was obtained with cell lines carrying the HTLV-1 genome and expressing viral proteins but not with an HTLV-1-transformed cell line that does not express viral proteins. In clones of VCAM-1-transfected cells, the degree of syncytium formation observed directly reflected the level of VCAM-1 expression. Syncytium formation between HTLV-1-expressing cells and VCAM-1+ cells could be blocked with antiserum against HTLV-1 gp46 and with a monoclonal antibody (MAb) against VCAM-1. Fusion was not blocked by antiserum against HIV or a MAb against VLA-4, the physiological counter-receptor for VCAM-1. The results indicate that VCAM-1 can serve as an accessory molecule or potential coreceptor for HTLV-1-induced cell fusion and provide direct evidence of a role for cell adhesion molecules in the biology of HTLV-1. PMID:8995639

  9. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin-Mei; Panozzo, J.; Libertin, C.R.

    1993-11-01

    In this report, we demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evident in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture.

  10. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |

    1995-06-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. 14 refs., 4 figs., 1 tab.

  11. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins.

    PubMed

    Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina

    2015-11-15

    Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion. PMID:26022509

  12. Early Events in Chikungunya Virus Infection—From Virus Cell Binding to Membrane Fusion

    PubMed Central

    van Duijl-Richter, Mareike K. S.; Hoornweg, Tabitha E.; Rodenhuis-Zybert, Izabela A.; Smit, Jolanda M.

    2015-01-01

    Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research. PMID:26198242

  13. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  14. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  15. Blocking p55PIK signaling inhibits proliferation and induces differentiation of leukemia cells.

    PubMed

    Wang, G; Deng, Y; Cao, X; Lai, S; Tong, Y; Luo, X; Feng, Y; Xia, X; Gong, J; Hu, J

    2012-11-01

    p55PIK, a regulatory subunit of phosphatidylinositol 3-kinases, promotes cell cycle progression by interacting with cell cycle modulators such as retinoblastoma protein (Rb) via its unique amino-terminal 24 amino-acid residue (N24). Overexpression of N24 specifically inhibits these interactions and leads to cell cycle arrest. Herein, we describe the generation of a fusion protein (Tat transactivator protein (TAT)-N24) that contains the protein transduction domain and N24, and examined its effects on the proliferation and differentiation of leukemia cells. TAT-N24 not only blocks cell proliferation but remarkably induces differentiation of leukemia cells in vitro and in vivo. Systemically administered TAT-N24 also significantly decreases growth of leukemia cell tumors in animal models. Furthermore, overexpression of p55PIK in leukemia cells leads to increased proliferation; however, TAT-N24 blocks this effect and concomitantly induces differentiation. There is significant upregulation of p55PIK mRNA and protein expression in leukemia cells from patients. TAT-N24 inhibits cell cycle progression and induces differentiation of bone marrow cells derived from patients with several different types of leukemia. These results show that cell-permeable N24 peptide induces leukemia cell differentiation and suggest that p55PIK may be a novel drug target for the treatment of hematopoetic malignancies. PMID:22722333

  16. Fuel cells: Hydrogen induced insulation

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Shao, Zongping

    2016-06-01

    Coupling high ionic and low electronic conductivity in the electrolyte of low-temperature solid-oxide fuel cells remains a challenge. Now, the electronic conductivity of a perovskite electrolyte, which has high proton conductivity, is shown to be heavily suppressed when exposed to hydrogen, leading to high fuel cell performance.

  17. Near-field nonuniformities in angularly multiplexed KrF fusion lasers with induced spatial incoherence

    NASA Astrophysics Data System (ADS)

    Lehmberg, Robert H.; Chan, Yung

    2005-05-01

    Induced spatial incoherence (ISI) has been proposed for KrF laser drivers to achieve the high degree of spatial beam uniformity required for direct-drive inertial confinement fusion. Although ISI provides ultrasmooth illumination at the far field of the laser, where the target is located, it can still allow the beams in the quasi-near field to develop a time-averaged spatial structure. This speckle, which arises primarily from random-phase aberration, builds up as the laser beams propagate away from the pupil plane located at the final amplifier stage; it is distinct from any structure imposed by gain nonuniformities in the amplifiers. Because of the spatial incoherence, the speckle is significantly smaller than that experienced by coherent beams. Nevertheless, it remains a damage issue, especially for the long beam delay paths required in angularly multiplexed KrF lasers. We develop a novel algorithm for calculating the time-integrated intensities; compare simulations and measurements of the near-field speckle in the Nike KrF laser; and explore options, such as aberration reduction and optical relaying, for controlling the problem in future angularly multiplexed KrF drivers. © Optical Society of America

  18. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry

    SciTech Connect

    Follis, Kathryn E.; York, Joanne; Nunberg, Jack H. . E-mail: jack.nunberg@umontana.edu

    2006-07-05

    The fusogenic potential of Class I viral envelope glycoproteins is activated by proteloytic cleavage of the precursor glycoprotein to generate the mature receptor-binding and transmembrane fusion subunits. Although the coronavirus (CoV) S glycoproteins share membership in this class of envelope glycoproteins, cleavage to generate the respective S1 and S2 subunits appears absent in a subset of CoV species, including that responsible for the severe acute respiratory syndrome (SARS). To determine whether proteolytic cleavage of the S glycoprotein might be important for the newly emerged SARS-CoV, we introduced a furin recognition site at single basic residues within the putative S1-S2 junctional region. We show that furin cleavage at the modified R667 position generates discrete S1 and S2 subunits and potentiates membrane fusion activity. This effect on the cell-cell fusion activity by the S glycoprotein is not, however, reflected in the infectivity of pseudotyped lentiviruses bearing the cleaved glycoprotein. The lack of effect of furin cleavage on virion infectivity mirrors that observed in the normally cleaved S glycoprotein of the murine coronavirus and highlights an additional level of complexity in coronavirus entry.

  19. Induced pluripotency of human prostatic epithelial cells.

    PubMed

    Zhao, Hongjuan; Sun, Ning; Young, Sarah R; Nolley, Rosalie; Santos, Jennifer; Wu, Joseph C; Peehl, Donna M

    2013-01-01

    Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that

  20. Select forms of tumor cell apoptosis induce dendritic cell maturation.

    PubMed

    Demaria, Sandra; Santori, Fabio R; Ng, Bruce; Liebes, Leonard; Formenti, Silvia C; Vukmanovic, Stanislav

    2005-03-01

    Dendritic cells (DC) play a crucial role in initiating immune responses to tumors. DC can efficiently present antigens from apoptotic tumor cells, but apoptotic cells are thought to lack the inflammatory signals required to induce DC maturation. Here, we show that apoptosis of 67NR mouse carcinoma cells via the Fas (CD95) pathway or induced by the anticancer drug bortezomib (PS-341) but not by ultraviolet irradiation is associated with the production of maturation signals for DC. These data have important implications for the effects of chemotherapy on antitumor immunity in solid and hematologic malignancies. PMID:15569694

  1. Radiation induced surface modification and contamination for EUV lithography and fusion applications

    NASA Astrophysics Data System (ADS)

    Al-Ajlony, Al-Montaser Bellah

    Al-Montaser Bellah Al-Ajlony. Ph.D., Purdue University, May 2014. Radiation Induced Surface Modification and Contamination for EUV Lithography and Fusion Applications. Major Professor: Ahmed Hassanein. The effect of ionizing radiation on materials surfaces is of major interest for many engineering applications. The importance of this topic rises from the severity of the implications that a surface at a certain application might suffer due its interaction with some sort of ionizing radiation. The severity of implication is not always related to the severity of the radiation, in many applications the concern comes from the over-sensitivity of the surface to a low doses of radiations. One example of these sensitive applications is the extreme ultraviolet (EUV) induced surface contaminations of the optics in EUV lithography devices. In this application, a small dose of ionizing radiation (EUV at 13.5 nm wavelength) can cause slight change in the chemical composition of the irradiated surface. This change in chemical composition can cause large change in the surface optical properties of the irradiated surface (EUV optics). This degradation in reflectivity is an issue that needs to be avoided. On the other extreme where intense radiation is implemented, the main concern of the radiation-surface interaction comes from the severity of the irradiation process. The plasma-facing component (PFC) in future thermonuclear devices represent the ultimate example where the materials might be exposed to severe irradiation processes. Under such extreme irradiation processes, some candidate PFC materials exhibit the formation of very fine and fragile nanostructure (Fuzz) that can be washed out into the fusion device plasma and stop the fusion reaction. These two extreme examples of the radiation-surface interaction were selected to be my PhD research topic. The change in chemical properties of Ru surface during exposure to a 13.5 nm wavelength of EUV light radiation was investigated

  2. The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices

    PubMed Central

    Choi, Yu Suk; Vincent, Ludovic G.; Lee, Andrew R.; Kretchmer, Kyle C.; Chirasatitsin, Somyot; Dobke, Marek K.

    2012-01-01

    Cell patterning is typically accomplished by selectively depositing proteins for cell adhesion only on patterned regions; however in tissues, cells are also influenced by mechanical stimuli, which can also result in patterned arrangements of cells. We developed a mechanically-patterned hydrogel to observe and compare it to extracellular matrix (ECM) ligand patterns to determine how to best regulate and improve cell type-specific behaviors. Ligand-based patterning on hydrogels was not robust over prolonged culture, but cells on mechanically-patterned hydrogels differentially sorted based on stiffness preference: myocytes and adipose-derived stem cells (ASCs) underwent stiffness-mediated migration, i.e. durotaxis, and remained on myogenic hydrogel regions. Myocytes developed aligned striations and fused on myogenic stripes of the mechanically-patterned hydrogel. ASCs aligned and underwent myogenesis, but their fusion rate increased, as did the number of cells fusing into a myotube as a result of their alignment. Conversely, neuronal cells did not exhibit durotaxis and could be seen on soft regions of the hydrogel for prolonged culture time. These results suggest that mechanically-patterned hydrogels could provide a platform to create tissue engineered, innervated micro-muscles of neural and muscle phenotypes juxtaposed next to each other in order better recreate a muscle niche. PMID:22800539

  3. Complete and Incomplete Fusion Competition in 11B-INDUCED Fission Reactions on 197Au at the Intermediate Energy

    NASA Astrophysics Data System (ADS)

    Demekhina, N. A.; Karapetyan, G. S.; Balabekyan, A. R.

    2015-06-01

    Above Coulomb barrier cross sections of fission fragment production were measured in reactions of 11B with 197Au target. Induced-activity method was used for measurement the fission decay channel of the composite nuclei. Systematic of the fission fragment charge and mass distributions was used for fission cross section calculation. Fission fraction of the composite nuclei decay was compared with PACE-4 mode calculations. Estimated suppression for fission fraction followed the complete fusion have been obtained 35%.

  4. Two Cases of Renal Cell Carcinoma Harboring a Novel STRN-ALK Fusion Gene.

    PubMed

    Kusano, Hironori; Togashi, Yuki; Akiba, Jun; Moriya, Fukuko; Baba, Katsuyoshi; Matsuzaki, Naomi; Yuba, Yoshiaki; Shiraishi, Yusuke; Kanamaru, Hiroshi; Kuroda, Naoto; Sakata, Seiji; Takeuchi, Kengo; Yano, Hirohisa

    2016-06-01

    Anaplastic lymphoma kinase (ALK) translocation renal cell carcinomas (RCCs) have been reported by several independent groups in recent times. The clinical behavior and histopathologic characteristics of these carcinomas are not fully understood because of the paucity of cases reported. Here, we describe 2 cases of RCC harboring a novel striatin (STRN)-ALK fusion. The first case was a 33-year-old woman with no sickle cell trait who underwent nephrectomy for right renal mass and had late recurrence in para-aortic lymph nodes twice 10 and 12 years after initial surgery. After the second recurrence, she was carefully observed without any treatment. Twenty-six years after the initial nephrectomy, the second para-aortic lymphadenectomy was performed, and gastrectomy was performed for newly developed primary gastric cancer. The resected para-aortic lymph nodes were largely replaced by metastatic carcinoma. The second case was a 38-year-old man with no sickle cell trait who underwent cytoreductive nephrectomy followed by sunitinib therapy for metastatic RCC. In both cases, the tumor showed solid, papillary, tubular, and mucinous cribriform structures. Psammoma bodies were occasionally seen in the stroma. Tumor cells had a large nucleus and prominent nucleoli with predominantly eosinophilic cytoplasm. Rhabdoid cells and signet-ring cells were also observed. Intracytoplasmic mucin deposition and background mucinous stroma were confirmed. In the second case, tumor necrosis was seen in some areas. Tumor cells exhibited diffuse positive staining for ALK in both cases. ALK translocation was confirmed by fluorescent in situ hybridization, and further gene analysis revealed a STRN-ALK fusion. These cases provide great insights into ALK translocation RCCs. PMID:26848800

  5. On the use of particle-in-cell methods for the study of magnetically-confined fusion plasmas

    SciTech Connect

    Procassini, R.J. California Univ., Berkeley, CA . Electronics Research Lab.)

    1991-06-12

    The applicability of electrostatic particle-in-cell (PIC) methods for the simulation of magnetically-confined fusion plasmas is investigated. The aspects of the PIC methodology which allow one to accurately model the representative charge separations found in hot fusion plasmas with far fewer simulation particles are discussed. The number of simulation particles required to resolve the collective effects of interest (such as the ambipolar potential) above the statistical fluctuations is also analyzed. 8 refs., 1 fig.

  6. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice.

    PubMed

    Quilis, Jordi; López-García, Belén; Meynard, Donaldo; Guiderdoni, Emmanuel; San Segundo, Blanca

    2014-04-01

    Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot-and-mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound- and pathogen-inducible mpi promoter. The mpi-pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi-pci rice, compared with larvae fed on wild-type plants, was observed. Expression of the mpi-pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi-pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi-pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi-pci fusion gene for dual resistance against insects and pathogens in rice plants. PMID:24237606

  7. Nonviral Methods for Inducing Pluripotency to Cells

    PubMed Central

    O'Doherty, Ryan; Wang, Wenxin

    2013-01-01

    The concept of inducing pluripotency to adult somatic cells by introducing reprogramming factors to them is one that has recently emerged, gained widespread acclaim and garnered much attention among the scientific community. The idea that cells can be reprogrammed, and are not unidirectionally defined opens many avenues for study. With their clear potential for use in the clinic, these reprogrammed cells stand to have a huge impact in regenerative medicine. This realization did not occur overnight but is, however, the product of many decades worth of advancements in researching this area. It was a combination of such research that led to the development of induced pluripotent stem cells as we know it today. This review delivers a brief insight in to the roots of iPS research and focuses on succinctly describing current nonviral methods of inducing pluripotency using plasmid vectors, small molecules and chemicals, and RNAs. PMID:23841088

  8. Nonviral methods for inducing pluripotency to cells.

    PubMed

    O'Doherty, Ryan; Greiser, Udo; Wang, Wenxin

    2013-01-01

    The concept of inducing pluripotency to adult somatic cells by introducing reprogramming factors to them is one that has recently emerged, gained widespread acclaim and garnered much attention among the scientific community. The idea that cells can be reprogrammed, and are not unidirectionally defined opens many avenues for study. With their clear potential for use in the clinic, these reprogrammed cells stand to have a huge impact in regenerative medicine. This realization did not occur overnight but is, however, the product of many decades worth of advancements in researching this area. It was a combination of such research that led to the development of induced pluripotent stem cells as we know it today. This review delivers a brief insight in to the roots of iPS research and focuses on succinctly describing current nonviral methods of inducing pluripotency using plasmid vectors, small molecules and chemicals, and RNAs. PMID:23841088

  9. Low-dose ionizing radiation induces mitochondrial fusion and increases expression of mitochondrial complexes I and III in hippocampal neurons

    PubMed Central

    Chang, Chuang-Rung; Kao, Mou-Chieh; Chen, Kuan-Wei; Chiu, Shih-Che; Hsu, Ming-Ling; Hsiang, I-Chou; Chen, Yu-Jen; Chen, Linyi

    2015-01-01

    High energy ionizing radiation can cause DNA damage and cell death. During clinical radiation therapy, the radiation dose could range from 15 to 60 Gy depending on targets. While 2 Gy radiation has been shown to cause cancer cell death, studies also suggest a protective potential by low dose radiation. In this study, we examined the effect of 0.2-2 Gy radiation on hippocampal neurons. Low dose 0.2 Gy radiation treatment increased the levels of MTT. Since hippocampal neurons are post-mitotic, this result reveals a possibility that 0.2 Gy irradiation may increase mitochondrial activity to cope with stimuli. Maintaining neural plasticity is an energy-demanding process that requires high efficient mitochondrial function. We thus hypothesized that low dose radiation may regulate mitochondrial dynamics and function to ensure survival of neurons. Our results showed that five days after 0.2 Gy irradiation, no obvious changes on neuronal survival, neuronal synapses, membrane potential of mitochondria, reactive oxygen species levels, and mitochondrial DNA copy numbers. Interestingly, 0.2 Gy irradiation promoted the mitochondria fusion, resulting in part from the increased level of a mitochondrial fusion protein, Mfn2, and inhibition of Drp1 fission protein trafficking to the mitochondria. Accompanying with the increased mitochondrial fusion, the expressions of complexes I and III of the electron transport chain were also increased. These findings suggest that, hippocampal neurons undergo increased mitochondrial fusion to modulate cellular activity as an adaptive mechanism in response to low dose radiation. PMID:26415228

  10. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion.

    PubMed

    Delong, Thomas; Wiles, Timothy A; Baker, Rocky L; Bradley, Brenda; Barbour, Gene; Reisdorph, Richard; Armstrong, Michael; Powell, Roger L; Reisdorph, Nichole; Kumar, Nitesh; Elso, Colleen M; DeNicola, Megan; Bottino, Rita; Powers, Alvin C; Harlan, David M; Kent, Sally C; Mannering, Stuart I; Haskins, Kathryn

    2016-02-12

    T cell-mediated destruction of insulin-producing β cells in the pancreas causes type 1 diabetes (T1D). CD4 T cell responses play a central role in β cell destruction, but the identity of the epitopes recognized by pathogenic CD4 T cells remains unknown. We found that diabetes-inducing CD4 T cell clones isolated from nonobese diabetic mice recognize epitopes formed by covalent cross-linking of proinsulin peptides to other peptides present in β cell secretory granules. These hybrid insulin peptides (HIPs) are antigenic for CD4 T cells and can be detected by mass spectrometry in β cells. CD4 T cells from the residual pancreatic islets of two organ donors who had T1D also recognize HIPs. Autoreactive T cells targeting hybrid peptides may explain how immune tolerance is broken in T1D. PMID:26912858

  11. Transcriptomic and epigenomic landscapes during cell fusion in BeWo trophoblast cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Syncytialization is a process essential to the genesis and vitality of the decisive maternal-fetal interface, the syncytiotrophoblast. While the role of specific genes important in syncytial fusion is appreciated, an integrated global analysis of syncytialization is absent. We leveraged a variety of...

  12. Incorporation of phosphatidylglycerol into murein lipoprotein in intact cells of Salmonella typhimurium by phospholipid vesicle fusion.

    PubMed Central

    Chattopadhyay, P K; Lai, J S; Wu, H C

    1979-01-01

    The biosynthesis of the diglyceride moiety of murein lipoprotein was studied by fusion of labeled phospholipid vesicles with intact cells of Salmonella typhimurium. Phosphatidylglycerol was found to be an excellent donor for the glyceryl moiety in lipoprotein, whereas phosphatidylethanolamine and cardiolipin were not. The incorporation of radioactivity from monoacyl-phosphatidylglycerol into lipoprotein can be attributed to its conversion to phosphatidylglycerol. The results strongly support our hypothesis that the glyceryl residue covalently linked to murein lipoprotein is derived from the nonacylated glycerol moiety of phosphatidylglycerol. PMID:368018

  13. Cell Chirality Induces Collective Cell Migration in Epithelial Sheets

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Shibata, Tatsuo

    2015-10-01

    During early development, epithelial cells form a monolayer sheet and migrate in a uniform direction. Here, we address how this collective migration can occur without breaking the cell-to-cell attachments. Repeated contraction and expansion of the cell-to-cell interfaces enables the cells to rearrange their positions autonomously within the sheet. We show that when the interface tension is strengthened in a direction that is tilted from the body axis, cell rearrangements occur in such a way that unidirectional movement is induced. We use a vertex model to demonstrate that such anisotropic tension can generate the unidirectional motion of cell sheets. Our results suggest that cell chirality facilitates collective cell migration during tissue morphogenesis.

  14. Recombinant GDNF: Tetanus toxin fragment C fusion protein produced from insect cells

    SciTech Connect

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Celia, Samuel A.; Kashi, Brenda B.; Tamrazian, Eric; Matthews, Jonathan C.; Remington, Mary P.; Pepinsky, R. Blake; Fishman, Paul S.; Brown, Robert H.; Francis, Jonathan W.

    2009-07-31

    Glial cell line-derived neurotrophic factor (GDNF) has potent survival-promoting effects on CNS motor neurons in experimental animals. Its therapeutic efficacy in humans, however, may have been limited by poor bioavailability to the brain and spinal cord. With a view toward improving delivery of GDNF to CNS motor neurons in vivo, we generated a recombinant fusion protein comprised of rat GDNF linked to the non-toxic, neuron-binding fragment of tetanus toxin. Recombinant GDNF:TTC produced from insect cells was a soluble homodimer like wild-type GDNF and was bi-functional with respect to GDNF and TTC activity. Like recombinant rat GDNF, the fusion protein increased levels of immunoreactive phosphoAkt in treated NB41A3-hGFR{alpha}-1 neuroblastoma cells. Like TTC, GDNF:TTC bound to immobilized ganglioside GT1b in vitro with high affinity and selectivity. These results support further testing of recombinant GDNF:TTC as a non-viral vector to improve delivery of GDNF to brain and spinal cord in vivo.

  15. Gemcitabine induces cell senescence in human pancreatic cancer cell lines.

    PubMed

    Song, Yao; Baba, Tomohisa; Mukaida, Naofumi

    2016-08-26

    Patients with pancreatic ductal adenocarcinoma (PDAC) commonly require chemotherapy because they frequently develop metastatic disease or locally advanced tumors. Gemcitabine, an analogue of cytosine arabinoside, is commonly used for PDAC treatment. We observed that gemcitabine induced senescence phenotypes characterized by enhanced senescence-associated β-galactosidase (SA β-Gal) staining and increased expression of senescence-associated molecules in two human pancreatic cancer cell lines, Miapaca-2 and Panc-1, which exhibit resistance to gemcitabine but not L3.pl cells with a high sensitivity to gemcitabine. Gemcitabine-induced cell senescence can be inhibited by reactive oxygen species inhibitor, N-acetyl cysteine. Although gemcitabine also enhanced CXCL8 expression, anti-CXCL8 antibody failed to reduce gemcitabine-induced increases in SA β-Gal-positive cell numbers. These observations would indicate that cell senescence can proceed independently of CXCL8 expression, a characteristic feature of senescence-associated secretion phenotype. PMID:27311854

  16. RESOLFT Nanoscopy of Fixed Cells Using a Z-Domain Based Fusion Protein for Labelling

    PubMed Central

    Kilisch, Markus; Hell, Stefan W.; Jakobs, Stefan

    2015-01-01

    RESOLFT super-resolution microscopy allows subdiffraction resolution imaging of living cells using low intensities of light. It relies on the light-driven switching of reversible switchable fluorescent proteins (RSFPs). So far, RESOLFT imaging was restricted to living cells, because chemical fixation typically affects the switching characteristics of RSFPs. In this study we created a fusion construct (FLASR) consisting of the RSFP rsEGFP2 and the divalent form of the antibody binding Z domain from protein A. FLASR can be used analogous to secondary antibodies in conventional immunochemistry, facilitating simple and robust sample preparation. We demonstrate RESOLFT super-resolution microscopy on chemically fixed mammalian cells. The approach may be extended to other super-resolution approaches requiring fluorescent proteins in an aqueous environment. PMID:26375606

  17. RESOLFT Nanoscopy of Fixed Cells Using a Z-Domain Based Fusion Protein for Labelling.

    PubMed

    Ilgen, Peter; Grotjohann, Tim; Jans, Daniel C; Kilisch, Markus; Hell, Stefan W; Jakobs, Stefan

    2015-01-01

    RESOLFT super-resolution microscopy allows subdiffraction resolution imaging of living cells using low intensities of light. It relies on the light-driven switching of reversible switchable fluorescent proteins (RSFPs). So far, RESOLFT imaging was restricted to living cells, because chemical fixation typically affects the switching characteristics of RSFPs. In this study we created a fusion construct (FLASR) consisting of the RSFP rsEGFP2 and the divalent form of the antibody binding Z domain from protein A. FLASR can be used analogous to secondary antibodies in conventional immunochemistry, facilitating simple and robust sample preparation. We demonstrate RESOLFT super-resolution microscopy on chemically fixed mammalian cells. The approach may be extended to other super-resolution approaches requiring fluorescent proteins in an aqueous environment. PMID:26375606

  18. Transfer of an expression YAC into goat fetal fibroblasts by cell fusion for mammary gland bioreactor

    SciTech Connect

    Zhang Xufeng; Wu Guoxiang; Chen, Jian-Quan; Zhang Aimin; Liu Siguo; Jiao Binghua . E-mail: jiaobh@uninet.com.cn; Cheng Guoxiang . E-mail: Chenggx@cngenon.com

    2005-07-22

    Yeast artificial chromosomes (YACs) as transgenes in transgenic animals are likely to ensure optimal expression levels. Microinjection of YACs is the exclusive technique used to produce YACs transgenic livestock so far. However, low efficiency and high cost are its critical restrictive factors. In this study, we presented a novel procedure to produce YACs transgenic livestock as mammary gland bioreactor. A targeting vector, containing the gene of interest-a human serum albumin minigene (intron 1, 2), yeast selectable marker (G418R), and mammalian cell resistance marker (neo{sup r}), replaced the {alpha}-lactalbumin gene in a 210 kb human {alpha}-lactalbumin YAC by homogeneous recombination in yeasts. The chimeric YAC was introduced into goat fetal fibroblasts using polyethylene glycol-mediated spheroplast fusion. PCR and Southern analysis showed that intact YAC was integrated in the genome of resistant cells. Perhaps, it may offer a cell-based route by nuclear transfer to produce YACs transgenic livestock.

  19. Viral-mediated fusion of mesenchymal stem cells with cells of the infarcted heart hinders healing via decreased vascularization and immune modulation

    PubMed Central

    Freeman, Brian T.; Ogle, Brenda M.

    2016-01-01

    Cell fusion can occur between mesenchymal stem cells (MSCs) transplanted to improve cardiac function and cells of the recipient. The therapeutic benefit or detriment of resultant cell hybrids is unknown. Here we augment fusion of transplanted MSCs with recipient cardiac cell types via viral fusogens to determine how cardiac function is impacted. Using a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging and echocardiography, we found that augmenting fusion with the vesicular stomatitis virus glycoprotein (VSVG) increased the amount of fusion in the recipient mouse heart, but led to diminished cardiac function. Specifically, MSCs transfected with VSVG (MSC-VSVG) had the lowest mean fold increase in fractional area change (FAC) and cardiac output (CO). Although the amount of fusion detected had a strong positive correlation (Pearson) with fractional area change and cardiac output at day 7, this effect was lost by day 28. The decrease in cardiac function seen with MSC-VSVG treatment versus MSC alone or sham treatment was associated with decreased MSC retention, altered immune cell responsiveness and reduced vascularization in the heart. This outcome garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion. PMID:26846200

  20. Viral-mediated fusion of mesenchymal stem cells with cells of the infarcted heart hinders healing via decreased vascularization and immune modulation.

    PubMed

    Freeman, Brian T; Ogle, Brenda M

    2016-01-01

    Cell fusion can occur between mesenchymal stem cells (MSCs) transplanted to improve cardiac function and cells of the recipient. The therapeutic benefit or detriment of resultant cell hybrids is unknown. Here we augment fusion of transplanted MSCs with recipient cardiac cell types via viral fusogens to determine how cardiac function is impacted. Using a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging and echocardiography, we found that augmenting fusion with the vesicular stomatitis virus glycoprotein (VSVG) increased the amount of fusion in the recipient mouse heart, but led to diminished cardiac function. Specifically, MSCs transfected with VSVG (MSC-VSVG) had the lowest mean fold increase in fractional area change (FAC) and cardiac output (CO). Although the amount of fusion detected had a strong positive correlation (Pearson) with fractional area change and cardiac output at day 7, this effect was lost by day 28. The decrease in cardiac function seen with MSC-VSVG treatment versus MSC alone or sham treatment was associated with decreased MSC retention, altered immune cell responsiveness and reduced vascularization in the heart. This outcome garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion. PMID:26846200

  1. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    PubMed

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions. PMID:26200842

  2. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    SciTech Connect

    Eom, Young Woo; Lee, Jong Eun; Yang, Mal Sook; Jang, In Keun; Kim, Hyo Eun; Lee, Doo Hoon; Kim, Young Jin; Park, Won Jin; Kong, Jee Hyun; Shim, Kwang Yong; Lee, Jong In; Kim, Hyun Soo

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  3. Fusion and regenerative therapies: is immortality really recessive?

    PubMed

    Stolzing, Alexandra; Hescheler, Jürgen; Sethe, Sebastian

    2007-12-01

    Harnessing cellular fusion as a potential tool for regenerative therapy has been under tentative investigation for decades. A look back the history of fusion experiments in gerontology reveals that whereas some studies indicate that aging-related changes are conserved in fused cells, others have demonstrated that fusion can be used as a tool to revoke cellular senescence and induce tissue regeneration. Recent findings about the role of fusion processes in tissue homeostasis, replenishment, and repair link insights from fusion studies of previous decades with modern developments in stem cell biology and regenerative medicine. We suggest that age-associated loss of regenerative capacity is associated with a decline of effectiveness in stem cell fusion. We project how studies into the fusion of stem cells with tissue cells, or the fusion between activator stem cells and patient cells might help in the development of applications that "rejuvenate" certain target cells, thereby strategically reinstating a regeneration cascade. The outlook is concluded with a discussion of the next research milestones and the potential hazards of fusion therapies. PMID:18072882

  4. The Drosophila Dead end Arf-like3 GTPase controls vesicle trafficking during tracheal fusion cell morphogenesis

    PubMed Central

    Jiang, Lan; Rogers, Stephen L.; Crews, Stephen T.

    2007-01-01

    The Drosophila larval tracheal system consists of a highly branched tubular organ that becomes interconnected by migration-fusion events during embryonic development. Fusion cells at the tip of each branch guide migration, adhere, and then undergo extensive remodeling as the tracheal lumen extends between the two branches. The Drosophila dead end gene is expressed in fusion cells, and encodes an Arf-like3 GTPase. Analyses of dead end RNAi and mutant embryos reveals that the lumen fails to connect between the two branches. Expression of a constitutively active form of Dead end in S2 cells reveal that it influences the state of actin polymerization, and is present on particles that traffic along actin/microtubule-containing processes. Imaging experiments in vivo reveal that Dead end-containing vesicles are associated with recycling endosomes and the exocyst, and control exocyst localization in fusion cells. These results indicate that the Dead end GTPase plays an important role in trafficking membrane components involved in tracheal fusion cell morphogenesis and lumenal development. PMID:17919535

  5. Proteinase-resistant factors in human erythrocyte membranes mediate CD4-dependent fusion with cells expressing human immunodeficiency virus type 1 envelope glycoproteins.

    PubMed Central

    Dragic, T; Picard, L; Alizon, M

    1995-01-01

    Murine CD4+ cells are resistant to human immunodeficiency virus type 1 (HIV-1) entry and to fusion with cells expressing HIV-1 envelope glycoproteins (Env). The role of human-specific factors in Env/CD4-mediated fusion is shown by the ability of transient cell hybrids formed between CD4+ murine cells and human HeLa cells to fuse with Env+ cells. Fusion events were observed when other human cells, including erythrocytes, were substituted for HeLa cells in the hybrids. Experiments with erythrocyte ghosts showed that the factors allowing Env/CD4-mediated fusion are located in the plasma membrane. These factors were fully active after extensive digestion of erythrocytes with proteinase K or pronase. Nonprotein components of human plasma membranes, possibly glycolipids, could therefore be required for Env/CD4-mediated fusion and virus entry. PMID:7815477

  6. Single-cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion.

    PubMed

    Freeman, Brian T; Jung, Jangwook P; Ogle, Brenda M

    2016-01-01

    Fusion of donor mesenchymal stem cells with parenchymal cells of the recipient can occur in the brain, liver, intestine and heart following transplantation. The therapeutic benefit or detriment of resultant hybrids is unknown. Here we sought a global view of phenotypic diversification of mesenchymal stem cell-cardiomyocyte hybrids and associated time course. Using single-cell RNA-seq, we found hybrids consistently increase ribosome components and decrease genes associated with the cell cycle suggesting an increase in protein production and decrease in proliferation to accommodate the fused state. But in the case of most other gene groups, hybrids were individually distinct. In fact, though hybrids can express a transcriptome similar to individual fusion partners, approximately one-third acquired distinct expression profiles in a single day. Some hybrids underwent reprogramming, expressing pluripotency and cardiac precursor genes latent in parental cells and associated with developmental and morphogenic gene groups. Other hybrids expressed genes associated with ontologic cancer sets and two hybrids of separate experimental replicates clustered with breast cancer cells, expressing critical oncogenes and lacking tumor suppressor genes. Rapid transcriptional diversification of this type garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion. PMID:26997336

  7. Single-cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion

    PubMed Central

    Freeman, Brian T.; Jung, Jangwook P.; Ogle, Brenda M.

    2016-01-01

    Fusion of donor mesenchymal stem cells with parenchymal cells of the recipient can occur in the brain, liver, intestine and heart following transplantation. The therapeutic benefit or detriment of resultant hybrids is unknown. Here we sought a global view of phenotypic diversification of mesenchymal stem cell-cardiomyocyte hybrids and associated time course. Using single-cell RNA-seq, we found hybrids consistently increase ribosome components and decrease genes associated with the cell cycle suggesting an increase in protein production and decrease in proliferation to accommodate the fused state. But in the case of most other gene groups, hybrids were individually distinct. In fact, though hybrids can express a transcriptome similar to individual fusion partners, approximately one-third acquired distinct expression profiles in a single day. Some hybrids underwent reprogramming, expressing pluripotency and cardiac precursor genes latent in parental cells and associated with developmental and morphogenic gene groups. Other hybrids expressed genes associated with ontologic cancer sets and two hybrids of separate experimental replicates clustered with breast cancer cells, expressing critical oncogenes and lacking tumor suppressor genes. Rapid transcriptional diversification of this type garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion. PMID:26997336

  8. Transfer of herpes simplex virus thymidine kinase synthesized in bacteria by a high-expression plasmid to tissue culture cells by protoplast fusion

    SciTech Connect

    Waldman, A.S.; Milman, G.

    1984-08-01

    The introduction of a protein into living tissue culture cells may permit the in vivo study of functions of the protein. The authors have previously described a high-efficiency-expression plasmid, pHETK2, containing the herpes simplex virus type 1 thymidine kinase (TK) gene which, upon temperature induction, causes TK to be synthesized as greater than 4% of the bacterial protein. In this report it is shown that enzymatically active TK was transferred to mouse Ltk- cells by polyethylene glycol-mediated fusion with protoplasts prepared from bacteria containing induced levels of TK. The presence of TK in the Ltk- cells was detected by the incorporation of (/sup 3/H)thymidine into cell nuclei as measured by autoradiography.

  9. Stochastic Fusion Simulations and Experiments Suggest Passive and Active Roles of Hemagglutinin during Membrane Fusion

    PubMed Central

    Lee, Donald W.; Thapar, Vikram; Clancy, Paulette; Daniel, Susan

    2014-01-01

    Influenza enters the host cell cytoplasm by fusing the viral and host membrane together. Fusion is mediated by hemagglutinin (HA) trimers that undergo conformational change when acidified in the endosome. It is currently debated how many HA trimers, w, and how many conformationally changed HA trimers, q, are minimally required for fusion. Conclusions vary because there are three common approaches for determining w and q from fusion data. One approach correlates the fusion rate with the fraction of fusogenic HA trimers and leads to the conclusion that one HA trimer is required for fusion. A second approach correlates the fusion rate with the total concentration of fusogenic HA trimers and indicates that more than one HA trimer is required. A third approach applies statistical models to fusion rate data obtained at a single HA density to establish w or q and suggests that more than one HA trimer is required. In this work, all three approaches are investigated through stochastic fusion simulations and experiments to elucidate the roles of HA and its ability to bend the target membrane during fusion. We find that the apparent discrepancies among the results from the various approaches may be resolved if nonfusogenic HA participates in fusion through interactions with a fusogenic HA. Our results, based on H3 and H1 serotypes, suggest that three adjacent HA trimers and one conformationally changed HA trimer are minimally required to induce membrane fusion (w = 3 and q = 1). PMID:24559987

  10. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin Mei; Panozzo, J.; Libertin, C.R.

    1994-01-01

    Previous work has shown that HeLa cells stably transfected with an HIV-LTR-CAT construct are induced to express chloramphenicol acetyl transferase (CAT) following exposure to DNA-damaging agents such as ultraviolet radiation, {gamma} rays, neutrons, and others. In this report, the authors demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evidence in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture. Other agents which caused no cell killing (such as heat-shock for up to 2 h, treatment with metronidazole, exposure to sunlight, vitamin C treatment, and others) had no effect on HIV-LTR induction. These results suggest that HIV transcription is induced as a consequence of the turn on of a cellular death or apoptotic pathway.

  11. Molecular Process Producing Oncogene Fusion in Lung Cancer Cells by Illegitimate Repair of DNA Double-Strand Breaks

    PubMed Central

    Seki, Yoshitaka; Mizukami, Tatsuji; Kohno, Takashi

    2015-01-01

    Constitutive activation of oncogenes by fusion to partner genes, caused by chromosome translocation and inversion, is a critical genetic event driving lung carcinogenesis. Fusions of the tyrosine kinase genes ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during transfection) occur in 1%–5% of lung adenocarcinomas (LADCs) and their products constitute therapeutic targets for kinase inhibitory drugs. Interestingly, ALK, RET, and ROS1 fusions occur preferentially in LADCs of never- and light-smokers, suggesting that the molecular mechanisms that cause these rearrangements are smoking-independent. In this study, using previously reported next generation LADC genome sequencing data of the breakpoint junction structures of chromosome rearrangements that cause oncogenic fusions in human cancer cells, we employed the structures of breakpoint junctions of ALK, RET, and ROS1 fusions in 41 LADC cases as “traces” to deduce the molecular processes of chromosome rearrangements caused by DNA double-strand breaks (DSBs) and illegitimate joining. We found that gene fusion was produced by illegitimate repair of DSBs at unspecified sites in genomic regions of a few kb through DNA synthesis-dependent or -independent end-joining pathways, according to DSB type. This information will assist in the understanding of how oncogene fusions are generated and which etiological factors trigger them. PMID:26437441

  12. Umbelliprenin Induces Apoptosis in CLL Cell Lines

    PubMed Central

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V–FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate. PMID:24250490

  13. TWEAK induces liver progenitor cell proliferation.

    PubMed

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M; Wang, Monica Z; Zheng, Timothy S; Browning, Beth; Michaelson, Jennifer S; Baetscher, Manfred; Baestcher, Manfred; Wang, Bruce; Bissell, D Montgomery; Burkly, Linda C

    2005-09-01

    Progenitor ("oval") cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  14. Schwann cells induce cancer cell dispersion and invasion

    PubMed Central

    Deborde, Sylvie; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F.; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L.; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J.

    2016-01-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression. PMID:26999607

  15. Discovery of CTCF-Sensitive Cis-Spliced Fusion RNAs between Adjacent Genes in Human Prostate Cells

    PubMed Central

    Qin, Fujun; Song, Zhenguo; Babiceanu, Mihaela; Song, Yansu; Facemire, Loryn; Singh, Ritambhara; Adli, Mazhar; Li, Hui

    2015-01-01

    Genes or their encoded products are not expected to mingle with each other unless in some disease situations. In cancer, a frequent mechanism that can produce gene fusions is chromosomal rearrangement. However, recent discoveries of RNA trans-splicing and cis-splicing between adjacent genes (cis-SAGe) support for other mechanisms in generating fusion RNAs. In our transcriptome analyses of 28 prostate normal and cancer samples, 30% fusion RNAs on average are the transcripts that contain exons belonging to same-strand neighboring genes. These fusion RNAs may be the products of cis-SAGe, which was previously thought to be rare. To validate this finding and to better understand the phenomenon, we used LNCaP, a prostate cell line as a model, and identified 16 additional cis-SAGe events by silencing transcription factor CTCF and paired-end RNA sequencing. About half of the fusions are expressed at a significant level compared to their parental genes. Silencing one of the in-frame fusions resulted in reduced cell motility. Most out-of-frame fusions are likely to function as non-coding RNAs. The majority of the 16 fusions are also detected in other prostate cell lines, as well as in the 14 clinical prostate normal and cancer pairs. By studying the features associated with these fusions, we developed a set of rules: 1) the parental genes are same-strand-neighboring genes; 2) the distance between the genes is within 30kb; 3) the 5′ genes are actively transcribing; and 4) the chimeras tend to have the second-to-last exon in the 5′ genes joined to the second exon in the 3′ genes. We then randomly selected 20 neighboring genes in the genome, and detected four fusion events using these rules in prostate cancer and non-cancerous cells. These results suggest that splicing between neighboring gene transcripts is a rather frequent phenomenon, and it is not a feature unique to cancer cells. PMID:25658338

  16. OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells

    PubMed Central

    Parenti, Anthony; Halbisen, Michael A.; Wang, Kai; Latham, Keith; Ralston, Amy

    2016-01-01

    Summary The reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, but also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established in parallel to the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. We show that OSKM induce expression of endodermal genes, leading to formation of induced XEN (iXEN) cells, which possess key properties of blastocyst-derived XEN cells, including morphology, transcription profile, self-renewal, and multipotency. Our data show that