Science.gov

Sample records for cell generator development

  1. Development of first generation aerospace NiMH cells

    NASA Technical Reports Server (NTRS)

    Tinker, Lawrence; Dell, Dan; Wu, Tony; Rampel, Guy

    1993-01-01

    Gates Aerospace Batteries in conjunction with Gates Energy Products (GEP) has been developing NiMH technology for aerospace use since 1990. GEP undertook the development of NiMH technology for commercial cell applications in 1987. This program focused on wound cell technology for replacement of current NiCd technology. As an off shoot of this program small, wound cells were used to evaluate initial design options for aerospace prismatic cell designs. Early in 1991, the first aerospace prismatic cell designs were built in a 6 Ah cell configuration. These cells were used to initially characterize performance in prismatic configurations and begin early life cycle testing. Soon after the 6 Ah cells were on test, several 22 Ah cells were built to test other options. The results of testing of these cells were used to identify potential problem areas for long lived cells and develop solutions to those problems. Following these two cell builds, a set of 7 Ah cells was built to evaluate improvements to the technology. To date results from these tests are very promising. Cycle lives in excess of 2,200 LEO cycles at 50 percent DoD were achieved with cells continuing on test. Results from these cell tests are discussed and data presented to demonstrate feasibility of this technology for aerospace programs.

  2. High Temperature Solid Oxide Fuel Cell Generator Development

    SciTech Connect

    Joseph Pierre

    2007-09-30

    This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

  3. High Temperature Solid Oxide Fuel Cell Generator Development

    SciTech Connect

    Joseph F. Pierre

    2006-08-21

    Work performed during the period February 21, 2006 through August 21, 2006 is summarized herein. During this period, efforts were focused on 5 kWe bundle testing, development of on-cell reformation, the conceptual design of an advanced module, and the development of a manufacturing roadmap for cells and bundles. A 5 kWe SOFC system was built and delivered to the Pennsylvania State University; fabrication of a second 5 kWe SOFC for delivery to Montana State University was initiated. Cell testing and microstructural analysis in support of these efforts was also conducted.

  4. Generation of Functional Thymic Epithelium from Human Embryonic Stem Cells that Supports Host T Cell Development

    PubMed Central

    Parent, Audrey V.; Russ, Holger A.; Khan, Imran S.; LaFlam, Taylor N.; Metzger, Todd C.; Anderson, Mark S.; Hebrok, Matthias

    2013-01-01

    SUMMARY Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited. Here, we describe a robust in vitro method to direct differentiation of human embryonic stem cells (hESCs) into thymic epithelial progenitors (TEPs) by precise regulation of TGFβ, BMP4, RA, Wnt, Shh, and FGF signaling. The hESC-derived TEPs further mature into functional TECs that support T cell development upon transplantation into thymus-deficient mice. Importantly, the engrafted TEPs produce T cells capable of in vitro proliferation as well as in vivo immune responses. Thus, hESC-derived TEP grafts may have broad applications for enhancing engraftment in cell-based therapies as well as restoring age-and stress-related thymic decline. PMID:23684540

  5. HIGH-TEMPERATURE TUBULAR SOLID OXIDE FUEL CELL GENERATOR DEVELOPMENT

    SciTech Connect

    S.E. Veyo

    1998-09-01

    During the Westinghouse/USDOE Cooperative Agreement period of November 1, 1990 through November 30, 1997, the Westinghouse solid oxide fuel cell has evolved from a 16 mm diameter, 50 cm length cell with a peak power of 1.27 watts/cm to the 22 mm diameter, 150 cm length dimensions of today's commercial prototype cell with a peak power of 1.40 watts/cm. Accompanying the increase in size and power density was the elimination of an expensive EVD step in the manufacturing process. Demonstrated performance of Westinghouse's tubular SOFC includes a lifetime cell test which ran for a period in excess of 69,000 hours, and a fully integrated 25 kWe-class system field test which operated for over 13,000 hours at 90% availability with less than 2% performance degradation over the entire period. Concluding the agreement period, a 100 kW SOFC system successfully passed its factory acceptance test in October 1997 and was delivered in November to its demonstration site in Westervoort, The Netherlands.

  6. Development of planar solid oxide fuel cells for power generation applications

    SciTech Connect

    Minh, N.Q.

    1996-04-01

    Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress, improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.

  7. Generation of Recombinant Arenavirus for Vaccine Development in FDA-Approved Vero Cells

    PubMed Central

    de la Torre, Juan Carlos; Martínez-Sobrido, Luis

    2013-01-01

    The development and implementation of arenavirus reverse genetics represents a significant breakthrough in the arenavirus field 4. The use of cell-based arenavirus minigenome systems together with the ability to generate recombinant infectious arenaviruses with predetermined mutations in their genomes has facilitated the investigation of the contribution of viral determinants to the different steps of the arenavirus life cycle, as well as virus-host interactions and mechanisms of arenavirus pathogenesis 1, 3, 11 . In addition, the development of trisegmented arenaviruses has permitted the use of the arenavirus genome to express additional foreign genes of interest, thus opening the possibility of arenavirus-based vaccine vector applications 5 . Likewise, the development of single-cycle infectious arenaviruses capable of expressing reporter genes provides a new experimental tool to improve the safety of research involving highly pathogenic human arenaviruses 16 . The generation of recombinant arenaviruses using plasmid-based reverse genetics techniques has so far relied on the use of rodent cell lines 7,19 , which poses some barriers for the development of Food and Drug Administration (FDA)-licensed vaccine or vaccine vectors. To overcome this obstacle, we describe here the efficient generation of recombinant arenaviruses in FDA-approved Vero cells. PMID:23928556

  8. A Mathematical Model of Granule Cell Generation During Mouse Cerebellum Development.

    PubMed

    Leffler, Shoshana R; Legué, Emilie; Aristizábal, Orlando; Joyner, Alexandra L; Peskin, Charles S; Turnbull, Daniel H

    2016-05-01

    Determining the cellular basis of brain growth is an important problem in developmental neurobiology. In the mammalian brain, the cerebellum is particularly amenable to studies of growth because it contains only a few cell types, including the granule cells, which are the most numerous neuronal subtype. Furthermore, in the mouse cerebellum granule cells are generated from granule cell precursors (gcps) in the external granule layer (EGL), from 1 day before birth until about 2 weeks of age. The complexity of the underlying cellular processes (multiple cell behaviors, three spatial dimensions, time-dependent changes) requires a quantitative framework to be fully understood. In this paper, a differential equation-based model is presented, which can be used to estimate temporal changes in granule cell numbers in the EGL. The model includes the proliferation of gcps and their differentiation into granule cells, as well as the process by which granule cells leave the EGL. Parameters describing these biological processes were derived from fitting the model to histological data. This mathematical model should be useful for understanding altered gcp and granule cell behaviors in mouse mutants with abnormal cerebellar development and cerebellar cancers. PMID:27125657

  9. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    PubMed

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development. PMID:27195532

  10. High-temperature solid oxide fuel cell (SOFC) generator development project: Environmental Assessment

    SciTech Connect

    Not Available

    1991-08-01

    The proposed project involves research, development, fabrication, and testing of solid oxide fuel cells/generators. All of the work, with the exception of various SOFC generator tests, would be conducted at two existing permitted Westinghouse facilities in the greater metropolitan Pittsburgh, Pennsylvania area. The DOE has prepared this Environmental Assessment (EA). This site-specific analysis addresses the two existing permitted Westinghouse facilities. The sources of information for this EA include the following: the technical proposal submitted as part of the assistance application by the Westinghouse Electric Corporation; discussions with the Westinghouse staff and information provided on the sites to be utilized; and site visits during work conducted under the prior Westinghouse effort with DOE.

  11. Neural commitment of human pluripotent stem cells under defined conditions recapitulates neural development and generates patient-specific neural cells.

    PubMed

    Fernandes, Tiago G; Duarte, Sofia T; Ghazvini, Mehrnaz; Gaspar, Cláudia; Santos, Diana C; Porteira, Ana R; Rodrigues, Gonçalo M C; Haupt, Simone; Rombo, Diogo M; Armstrong, Judith; Sebastião, Ana M; Gribnau, Joost; Garcia-Cazorla, Àngels; Brüstle, Oliver; Henrique, Domingos; Cabral, Joaquim M S; Diogo, Maria Margarida

    2015-10-01

    Standardization of culture methods for human pluripotent stem cell (PSC) neural differentiation can greatly contribute to the development of novel clinical advancements through the comprehension of neurodevelopmental diseases. Here, we report an approach that reproduces neural commitment from human induced pluripotent stem cells using dual-SMAD inhibition under defined conditions in a vitronectin-based monolayer system. By employing this method it was possible to obtain neurons derived from both control and Rett syndrome patients' pluripotent cells. During differentiation mutated cells displayed alterations in the number of neuronal projections, and production of Tuj1 and MAP2-positive neurons. Although investigation of a broader number of patients would be required, these observations are in accordance with previous studies showing impaired differentiation of these cells. Consequently, our experimental methodology was proved useful not only for the generation of neural cells, but also made possible to compare neural differentiation behavior of different cell lines under defined culture conditions. This study thus expects to contribute with an optimized approach to study the neural commitment of human PSCs, and to produce patient-specific neural cells that can be used to gain a better understanding of disease mechanisms. PMID:26123315

  12. Generation model of positional values as cell operation during the development of multicellular organisms.

    PubMed

    Ogawa, Ken-ichiro; Miyake, Yoshihiro

    2011-03-01

    Many conventional models have used the positional information hypothesis to explain each elementary process of morphogenesis during the development of multicellular organisms. Their models assume that the steady concentration patterns of morphogens formed in an extracellular environment have an important property of positional information, so-called "robustness". However, recent experiments reported that a steady morphogen pattern, the concentration gradient of the Bicoid protein, during early Drosophila embryonic development is not robust for embryo-to-embryo variability. These reports encourage a reconsideration of a long-standing problem in systematic cell differentiation: what is the entity of positional information for cells? And, what is the origin of the robust boundary of gene expression? To address these problems at a cellular level, in this article we pay attention to the re-generative phenomena that show another important property of positional information, "size invariance". In view of regenerative phenomena, we propose a new mathematical model to describe the generation mechanism of a spatial pattern of positional values. In this model, the positional values are defined as the values into which differentiable cells transform a spatial pattern providing positional information. The model is mathematically described as an associative algebra composed of various terms, each of which is the multiplication of some fundamental operators under the assumption that the operators are derived from the remarkable properties of cell differentiation on an amputation surface in regenerative phenomena. We apply this model to the concentration pattern of the Bicoid protein during the anterior-posterior axis formation in Drosophila, and consider the conditions needed to establish the robust boundary of the expression of the hunchback gene. PMID:21167904

  13. Development of a hydrogen generator for fuel cells based on the partial oxidation of methane

    SciTech Connect

    Recupero, V.; Torre, T.; Saija, G.; Fiordano, N.

    1996-12-31

    As well known, the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas (SRM). The reaction is endothermic ({Delta}H{sub 298}= 206 kJ/mole) and high H{sub 2}O/CH{sub 4} ratios are required in order to limit coke formation at T higher than 1000 K. Moreover, it is a common practice that the process`s fuel economy is highly sensitive to proper heat fluxes and reactor design (tubular type) and to operational conditions. Efficient heat recovery can be accomplished only on large scale units (> 40,000 Nm{sup 3}/h), far from the range of interest of {open_quotes}on-site{close_quotes} fuel cells. Even if, to fit the needs of the fuel cell technology, medium sized external reforming units (50-200 Nm{sup 3} H{sub 2}/h) have been developed and/or planned for integration with both the first and the second generation fuel cells, amelioration in their heat recovery and efficiency is at the expense of an increased sophistication and therefore at higher per unit costs. In all cases, SRM requires an extra {open_quotes}fuel{close_quotes} supply (to substain the endothermicity of the reaction) in addition to stoichiometric requirements ({open_quotes}feed{close_quotes} gas). A valid alternative could be a process based on catalytic partial oxidation of CH{sub 4} (CSPOM), since the process is mildly exothermic ({Delta}H{sub 298}= -35.6 kJ/mole) and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed.

  14. Laboratory development TPV generator

    SciTech Connect

    Holmquist, G.A.; Wong, E.M.; Waldman, C.H.

    1996-02-01

    A laboratory model of a TPV generator in the kilowatt range was developed and tested. It was based on methane/oxygen combustion and a spectrally matched selective emitter/collector pair (ytterbia emitter-silicon PV cell). The system demonstrated a power output of 2.4 kilowatts at an overall efficiency of 4.5{percent} without recuperation of heat from the exhaust gases. Key aspects of the effort include: (1) process development and fabrication of mechanically strong selective emitter ceramic textile materials; (2) design of a stirred reactor emitter/burner capable of handling up to 175,000 Btu/hr fuel flows; (3) support to the developer of the production silicon concentrator cells capable of withstanding TPV environments; (4) assessing the apparent temperature exponent of selective emitters; and (5) determining that the remaining generator efficiency improvements are readily defined combustion engineering problems that do not necessitate breakthrough technology. The fiber matrix selective emitter ceramic textile (felt) was fabricated by a relic process with the final heat-treatment controlling the grain growth in the porous ceramic fiber matrix. This textile formed a cylindrical cavity for a stirred reactor. The ideal stirred reactor is characterized by constant temperature combustion resulting in a uniform reactor temperature. This results in a uniform radiant emission from the emitter. As a result of significant developments in the porous emitter matrix technology, a TPV generator burner/emitter was developed that produced kilowatts of radiant energy. {copyright} {ital 1996 American Institute of Physics.}

  15. Genetic mutation analysis at early stages of cell line development using next generation sequencing.

    PubMed

    Wright, Chapman; Groot, Joost; Swahn, Samantha; McLaughlin, Helen; Liu, Mei; Xu, Chongfeng; Sun, Chao; Zheng, Eric; Estes, Scott

    2016-05-01

    A central goal for most biopharmaceutical companies is to reduce the development timeline to reach clinical proof of concept. This objective requires the development of tools that ensure the quality of biotherapeutic material destined for the clinic. Recent advances in high throughput protein analytics provide confidence in our ability to assess productivity and product quality attributes at early stages of cell line development. However, one quality attribute has, until recently, been absent from the standard battery of analytical tests facilitating informed choices early in cell line selection: genetic sequence confirmation. Techniques historically used for mutation analysis, such as detailed mass spectrometry, have limitations on the sample number and turnaround times making it less attractive at early stages. Thus, we explored the utility of Next-Generation Sequencing (NGS) as a solution to address these limitations. Amplicon sequencing is one such NGS technique that is robust, rapid, sensitive, and amenable to multiplexing, all of which are essential attributes for our purposes. Here we report a NGS method based upon amplicon sequencing that has been successfully incorporated into our cell line development workflow alongside other high-throughput protein analytical assays. The NGS method has demonstrated its value by identifying at least one Chinese hamster ovary (CHO) clone expressing a variant form of the biotherapeutic in each of the four clinical programs in which it has been utilized. We believe this sequence confirmation method is essential to safely accelerating the time to clinical proof of concept of biotherapeutics, and guard against delays related to sequence mutations. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:813-817, 2016. PMID:27004436

  16. Olig2 regulates Purkinje cell generation in the early developing mouse cerebellum

    PubMed Central

    Ju, Jun; Liu, Qian; Zhang, Yang; Liu, Yuanxiu; Jiang, Mei; Zhang, Liguo; He, Xuelian; Peng, Chenchen; Zheng, Tao; Lu, Q. Richard; Li, Hedong

    2016-01-01

    The oligodendrocyte transcription factor Olig2 plays a crucial role in the neurogenesis of both spinal cord and brain. In the cerebellum, deletion of both Olig2 and Olig1 results in impaired genesis of Purkinje cells (PCs) and Pax2+ interneurons. Here, we perform an independent study to show that Olig2 protein is transiently expressed in the cerebellar ventricular zone (VZ) during a period when PCs are specified. Further analyses demonstrate that Olig2 is expressed in both cerebellar VZ progenitors and early-born neurons. In addition, unlike in the ganglionic eminence of the embryonic forebrain where Olig2 is mostly expressed in proliferating progenitors, Olig2+ cells in the cerebellar VZ are in the process of leaving the cell cycle and differentiating into postmitotic neurons. Functionally, deletion of Olig2 alone results in a preferential reduction of PCs in the cerebellum, which is likely mediated by decreased neuronal generation from their cerebellar VZ progenitors. Furthermore, our long-term lineage tracing experiments show that cerebellar Olig gene-expressing progenitors produce PCs but rarely Pax2+ interneurons in the developing cerebellum, which opposes the “temporal identity transition” model of the cerebellar VZ progenitors stating that majority of Pax2+ interneuron progenitors are transitioned from Olig2+ PC progenitors. PMID:27469598

  17. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences

    PubMed Central

    Dean, Afshan; van den Driesche, Sander; Wang, Yili; McKinnell, Chris; Macpherson, Sheila; Eddie, Sharon L.; Kinnell, Hazel; Hurtado-Gonzalez, Pablo; Chambers, Tom J.; Stevenson, Kerrie; Wolfinger, Elke; Hrabalkova, Lenka; Calarrao, Ana; Bayne, Rosey AL; Hagen, Casper P.; Mitchell, Rod T.; Anderson, Richard A.; Sharpe, Richard M.

    2016-01-01

    Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters. PMID:26813099

  18. Development of Novel Nanocrystal-based Solar Cell to Exploit Multiple Exciton Generation: Cooperative Research and Development Final Report, CRADA Number CRD-07-00227

    SciTech Connect

    Ellingson, R.

    2010-08-01

    The purpose of the project was to develop new design and fabrication techniques for NC solar cells with the goal of demonstrating enhanced photocurrent and efficiency by exploiting multiple exciton generation and to investigate multiple exciton generation and charge carrier dynamics in semiconductor NC films used in NC-based solar cells.

  19. Fuel from plant cell walls: recent developments in second generation bioethanol research.

    PubMed

    Cook, Charis; Devoto, Alessandra

    2011-08-15

    As bioethanol from sugarcane and wheat falls out of favour due to concerns about food security, research is ongoing into genetically engineering model plants and microorganisms to find the optimum cell wall structure for the ultimate second generation bioethanol crop. Charis Cook and Alessandra Devoto highlight here the progress made to tailor the plant cell wall to improve the accessibility of cellulose by acting on the regulation, the structure or the relative composition of other cell wall components to ultimately improve saccharification efficiency. They also consider possible side effects of cell wall modification and focus on the latest advances made to improve the efficiency of digestion of lignocellulosic materials by cell wall degrading microorganisms. PMID:21681755

  20. Evolutionary process development towards next generation crystalline silicon solar cells : a semiconductor process toolbox application

    NASA Astrophysics Data System (ADS)

    John, J.; Prajapati, V.; Vermang, B.; Lorenz, A.; Allebe, C.; Rothschild, A.; Tous, L.; Uruena, A.; Baert, K.; Poortmans, J.

    2012-08-01

    Bulk crystalline Silicon solar cells are covering more than 85% of the world's roof top module installation in 2010. With a growth rate of over 30% in the last 10 years this technology remains the working horse of solar cell industry. The full Aluminum back-side field (Al BSF) technology has been developed in the 90's and provides a production learning curve on module price of constant 20% in average. The main reason for the decrease of module prices with increasing production capacity is due to the effect of up scaling industrial production. For further decreasing of the price per wattpeak silicon consumption has to be reduced and efficiency has to be improved. In this paper we describe a successive efficiency improving process development starting from the existing full Al BSF cell concept. We propose an evolutionary development includes all parts of the solar cell process: optical enhancement (texturing, polishing, anti-reflection coating), junction formation and contacting. Novel processes are benchmarked on industrial like baseline flows using high-efficiency cell concepts like i-PERC (Passivated Emitter and Rear Cell). While the full Al BSF crystalline silicon solar cell technology provides efficiencies of up to 18% (on cz-Si) in production, we are achieving up to 19.4% conversion efficiency for industrial fabricated, large area solar cells with copper based front side metallization and local Al BSF applying the semiconductor toolbox.

  1. Fuel cell generator

    DOEpatents

    Makiel, Joseph M.

    1985-01-01

    A high temperature solid electrolyte fuel cell generator comprising a housing means defining a plurality of chambers including a generator chamber and a combustion products chamber, a porous barrier separating the generator and combustion product chambers, a plurality of elongated annular fuel cells each having a closed end and an open end with the open ends disposed within the combustion product chamber, the cells extending from the open end through the porous barrier and into the generator chamber, a conduit for each cell, each conduit extending into a portion of each cell disposed within the generator chamber, each conduit having means for discharging a first gaseous reactant within each fuel cell, exhaust means for exhausting the combustion product chamber, manifolding means for supplying the first gaseous reactant to the conduits with the manifolding means disposed within the combustion product chamber between the porous barrier and the exhaust means and the manifolding means further comprising support and bypass means for providing support of the manifolding means within the housing while allowing combustion products from the first and a second gaseous reactant to flow past the manifolding means to the exhaust means, and means for flowing the second gaseous reactant into the generator chamber.

  2. Development of reversible solid oxide fuel cell for power generation and hydrogen production

    NASA Astrophysics Data System (ADS)

    Jung, G. B.; Chen, J. Y.; Lin, C. Y.; Chan, S. H.

    2011-06-01

    A reversible solid oxide fuel cell (RSOFC) provides the dual function of performing energy storage and power generation, all in one unit. When functioning as an energy storage device, the RSOFC acts like an electrolyzer in water electrolysis mode; whereby the electric energy is stored as (electrolyzed) hydrogen and oxygen gases. While hydrogen is useful as a transportation fuel and in other industrial applications, the RSOFC also acts as a fuel cell in power generation mode to produce electricity when needed. The RSOFC would be a competitive technology in the upcoming hydrogen economy on the basis of its low cost, simple structure, and high efficiency. This paper reports on the design and manufacturing of its membrane electrode assembly using commercially available materials. Also reported are the resulting performance, both in electrolysis and fuel cell modes, as a function of its operating parameters such as temperature and current density. We found that the RSOFC performance improved with increasing temperature and its fuel cell mode had a better performance than its electrolysis mode due to a limited humidity inlet causing concentration polarization.

  3. FGF/FGFR2 Signaling Regulates the Generation and Correct Positioning of Bergmann Glia Cells in the Developing Mouse Cerebellum

    PubMed Central

    Faus-Kessler, Theresa; Matheus, Friederike; Simeone, Antonio; Hölter, Sabine M.; Kühn, Ralf; Weisenhorn, Daniela M. Vogt.; Wurst, Wolfgang; Prakash, Nilima

    2014-01-01

    The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9) or antagonist (SU5402), we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse. PMID:24983448

  4. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  5. Fuel cell generator

    DOEpatents

    Isenberg, Arnold O.

    1983-01-01

    High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

  6. Effects of spaced learning in the water maze on development of dentate granule cells generated in adult mice.

    PubMed

    Trinchero, Mariela F; Koehl, Muriel; Bechakra, Malik; Delage, Pauline; Charrier, Vanessa; Grosjean, Noelle; Ladeveze, Elodie; Schinder, Alejandro F; Abrous, D Nora

    2015-11-01

    New dentate granule cells (GCs) are generated in the hippocampus throughout life. These adult-born neurons are required for spatial learning in the Morris water maze (MWM). In rats, spatial learning shapes the network by regulating their number and dendritic development. Here, we explored whether such modulatory effects exist in mice. New GCs were tagged using thymidine analogs or a GFP-expressing retrovirus. Animals were exposed to a reference memory protocol for 10-14 days (spaced training) at different times after newborn cells labeling. Cell proliferation, cell survival, cell death, neuronal phenotype, and dendritic and spine development were examined using immunohistochemistry. Surprisingly, spatial learning did not modify any of the parameters under scrutiny including cell number and dendritic morphology. These results suggest that although new GCs are required in mice for spatial learning in the MWM, they are, at least for the developmental intervals analyzed here, refractory to behavioral stimuli generated in the course of learning in the MWM. PMID:25740272

  7. Generating human intestinal tissues from pluripotent stem cells to study development and disease

    PubMed Central

    Sinagoga, Katie L; Wells, James M

    2015-01-01

    As one of the largest and most functionally complex organs of the human body, the intestines are primarily responsible for the breakdown and uptake of macromolecules from the lumen and the subsequent excretion of waste from the body. However, the intestine is also an endocrine organ, regulating digestion, metabolism, and feeding behavior. Intricate neuronal, lymphatic, immune, and vascular systems are integrated into the intestine and are required for its digestive and endocrine functions. In addition, the gut houses an extensive population of microbes that play roles in digestion, global metabolism, barrier function, and host–parasite interactions. With such an extensive array of cell types working and performing in one essential organ, derivation of functional intestinal tissues from human pluripotent stem cells (PSCs) represents a significant challenge. Here we will discuss the intricate developmental processes and cell types that are required for assembly of this highly complex organ and how embryonic processes, particularly morphogenesis, have been harnessed to direct differentiation of PSCs into 3-dimensional human intestinal organoids (HIOs) in vitro. We will further describe current uses of HIOs in development and disease research and how additional tissue complexity might be engineered into HIOs for better functionality and disease modeling. PMID:25792515

  8. Fuel cell generator energy dissipator

    DOEpatents

    Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  9. Multiple Exciton Generation Solar Cells

    SciTech Connect

    Luther, J. M.; Semonin, O. E.; Beard, M. C.; Gao, J.; Nozik, A. J.

    2012-01-01

    Heat loss is the major factor limiting traditional single junction solar cells to a theoretical efficiency of 32%. Multiple Exciton Generation (MEG) enables efficient use of the solar spectrum yielding a theoretical power conversion efficiency of 44% in solar cells under 1-sun conditions. Quantum-confined semiconductors have demonstrated the ability to generate multiple carriers but present-day materials deliver efficiencies far below the SQ limit of 32%. Semiconductor quantum dots of PbSe and PbS provide an active testbed for developing high-efficiency, inexpensive solar cells benefitting from quantum confinement effects. Here, we will present recent work of solar cells employing MEG to yield external quantum efficiencies exceeding 100%.

  10. Development of a UBFC biocatalyst fuel cell to generate power and treat industrial wastewaters.

    PubMed

    Sukkasem, Chontisa; Laehlah, Sunee

    2013-10-01

    Agro-industry wastewaters normally contain high levels of organic matter and require suitable treatment before discharge. The use of Microbial fuel cells, a novel wastewater treatment, can provide advantages over existing treatment methods. In this study, an up-flow bio-filter circuit (UBFC) for treating wastewaters without chemical treatment or nutrient supplement, was developed to solve a clogging problem. The optimal conditions included an organic loading rate of 30.0 g COD/L-d, hydraulic retention time of 1.04 day, pH level of 5.6-6.5 and aeration at 2.0 L/min. External resistance of the circuit was tested. COD removal levels of 8.08, 20.1 and 26.67 g COD/L-d were obtained, while fed with sea food, biodiesel and palm oil mill wastewater, respectively. These rates are higher than for conventional technologies. The carbon fiber brush immobilized base increased the performance of the new UBFC by 17.54% over that obtained in a previous study, while the cost was slightly decreased about 4.48%. PMID:23932287

  11. Innate lymphoid cell development requires TOX-dependent generation of a common ILC progenitor

    PubMed Central

    Seehus, Corey R.; Aliahmad, Parinaz; de la Torre, Brian; Iliev, Iliyan D.; Spurka, Lindsay; Funari, Vincent A.; Kaye, Jonathan

    2015-01-01

    Diverse innate lymphoid cell (ILC) subtypes have been defined, based on effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways leading to ILC lineage specification remain poorly characterized. Here we demonstrate that transcriptional regulator TOX is required for the in vivo differentiation of common lymphoid progenitors to ILC lineage-restricted cells. In vitro modeling demonstrates that TOX deficiency results in early defects in progenitor cell survival or expansion as well as later stage ILC differentiation. In addition, comparative transcriptome analysis of bone marrow progenitors reveals that TOX-deficient cells fail to upregulate many aspects of the ILC gene program, including Notch gene targets, implicating TOX as a key determinant of early ILC lineage specification. PMID:25915732

  12. Spectroscopic Analysis of Red Fluorescent Proteins and Development of a Microfluidic Cell Sorter for the Generation of Improved Variants

    NASA Astrophysics Data System (ADS)

    Lubbeck, Jennifer L.

    The discovery of the green fluorescent protein (GFP) launched the development of a wide variety of fluorescent protein (FP) mutants whose spectral and photophysical diversity revolutionized in vivo imaging. The excitation and emission spectra of red fluorescent proteins (RFPs), in particular, have been ideally tuned to a window optically favorable for in vivo work. However, their quantum yields, photostabilities and fluorescence intermittency properties require improvement if they are to be broadly employed for low-copy or single-molecule measurements. Attempts to engineer improved RFPs often result in optimization of one photophysical property at the expense of others. We developed a microfluidic-based cytometer for screening HeLa cell-based genetic RFP-libraries simultaneously on the basis of fluorescence lifetime (a proxy for quantum yield), photostability, and brightness. Ten 532 nm excitation beams interrogate each cell in flow. The first is electro-optically modulated (30 MHz) to enable lifetime measurement with phase fluorimetry. The remaining beams act as a pulse sequence for isolating the irreversible photobleaching time constant. Optical-force switching is employed to sort cells based on any combination of the photophysical parameters. Screening with this instrument enables identification of regions of the structure that synergistically affect quantum yield and photostability and the sorting capability provides a new tool for accelerating the development of next generation RFPs.

  13. Fuel cell generator energy dissipator

    SciTech Connect

    Veyo, S.E.; Dederer, J.T.; Gordon, J.T.; Shockling, L.A.

    2000-02-15

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel inventory in the generator. The invention provides a safety function in eliminating the fuel energy, and also provides protection to the fuel cell stack by eliminating overheating.

  14. Solid oxide fuel cell generator

    DOEpatents

    Draper, Robert; George, Raymond A.; Shockling, Larry A.

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  15. Solid oxide fuel cell generator

    DOEpatents

    Draper, R.; George, R.A.; Shockling, L.A.

    1993-04-06

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  16. Solar Power Generation Development

    SciTech Connect

    Robert L. Johnson Jr.; Gary E. Carver

    2011-10-28

    This project centered on creating a solar cell prototype enabling significant reductions in module cost and increases in module efficiency. Low cost was addressed by using plentiful organic materials that only comprise 16% of the total module cost, and by leveraging building integrated PV concepts that reduce the cost of key module components to zero. High efficiency was addressed by implementing multiband organic PV, low cost spectral splitting, and possibly integrating photovoltaic and photothermal mechanisms. This research has contributed to the design of multiband organic PV, and the sealing of organic PV cells. If one assumes that the aggregate multiband efficiency can reach 12%, projected cost would be $0.97/W. If the sealing technology enables 10 to 20 year lifetimes, the LCOE will match that of domestic coal. The final report describes progress towards these goals.

  17. Microfluidic fuel cells for energy generation.

    PubMed

    Safdar, M; Jänis, J; Sánchez, S

    2016-08-01

    Sustainable energy generation is of recent interest due to a growing energy demand across the globe and increasing environmental issues caused by conventional non-renewable means of power generation. In the context of microsystems, portable electronics and lab-on-a-chip based (bio)chemical sensors would essentially require fully integrated, reliable means of power generation. Microfluidic-based fuel cells can offer unique advantages compared to conventional fuel cells such as high surface area-to-volume ratio, ease of integration, cost effectiveness and portability. Here, we summarize recent developments which utilize the potential of microfluidic devices for energy generation. PMID:27367869

  18. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    SciTech Connect

    Agrawal, Rakesh

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical

  19. Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations.

    PubMed

    Zhao, Guang; Ma, Fang; Wei, Li; Chua, Hong; Chang, Chein-Chi; Zhang, Xiao-Jun

    2012-09-01

    A microbial fuel cell (MFC) was constructed to investigate the possible generation of electricity using cattle dung as a substrate. After 30 days of operation, stable electricity was generated, and the maximum volumetric power density was 0.220 W/m(3). The total chemical oxygen demand (TCOD) removal and coulombic efficiency (CE) of the MFC reached 73.9±1.8% and 2.79±0.6%, respectively, after 120 days of operation. Acetate was the main metabolite in the anolyte, and other volatile fatty acids (VFAs) (propionate and butyrate) were present in minor amounts. The PCR-DGGE analysis indicated that the following five groups of microbes were present: Proteobacteria, Bacteroides, Chloroflexi, Actinobacteria and Firmicutes. Proteobacteria and Firmicutes were the dominant phyla in the sample; specifically, 36.3% and 24.2% of the sequences obtained were Proteobacteria and Firmicutes, respectively. Clostridium sp., Pseudomonas luteola and Ochrobactrum pseudogrignonense were the most dominant groups during the electricity generation process. The diversity of archaea dramatically decreased after 20 days of operation. The detected archaea were hydrogenotrophic methanogens, and the Methanobacterium genus disappeared during the periods of stable electricity generation via acidogenesis. PMID:22595839

  20. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  1. Generating kidney tissue from pluripotent stem cells

    PubMed Central

    Little, MH

    2016-01-01

    With the isolation of human pluripotent stem cells came the possibility of generating specific cell types for regenerative medicine. This has required the development of protocols for directed differentiation into many distinct cell types. One of the more complicated tissue types to recreate is the kidney. Here we review recent progress towards the recreation of not only specific kidney cell types but complex kidney organoids, models of the developing human organ, in vitro. We will also discuss potential short and long term applications of these approaches. PMID:27551541

  2. Generation and Purification of Tetraploid Cells.

    PubMed

    Shenk, Elizabeth M; Ganem, Neil J

    2016-01-01

    Tetraploid cells are genetically unstable and have the capacity to promote the development and/or progression of human malignancies. It is now estimated that ~40 % of all solid tumors have passed through a tetraploid intermediate stage at some point during their development. Understanding the biological characteristics of tetraploid cells that impart oncogenic properties is therefore a highly relevant and fundamentally important aspect of cancer biology. Here, we describe strategies to efficiently generate and purify tetraploid cells for use in cell biological studies. PMID:27193862

  3. Developing a New Two-Step Protocol to Generate Functional Hepatocytes from Wharton's Jelly-Derived Mesenchymal Stem Cells under Hypoxic Condition

    PubMed Central

    Prasajak, Patcharee

    2013-01-01

    The shortage of donor livers and hepatocytes is a major limitation of liver transplantation. Thus, generation of hepatocyte-like cells may provide alternative choice for therapeutic applications. In this study, we developed a new method to establish hepatocytes from Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) cell lines named WJMSCs-SUT1 and WJMSCs-SUT2 under hypoxic condition. This new method could rapidly drive both WJ-MSCs cell lines into hepatic lineage within 18 days. The achievement of hepatogenic differentiation was confirmed by the characterization of both phenotypes and functions. More than 80% MSCs-derived hepatocyte-like cells (MSCDHCs) achieved functional hepatocytes including hepatic marker expressions both at gene and protein levels, glycogen storage, low-density lipoprotein uptake, urea production, and albumin secretion. This study highlights the establishment of new hepatogenic induction protocol under hypoxic condition in order to mimic hypoxic microenvironment in typical cell physiology. In conclusion, we present a simple, high-efficiency, and time saving protocol for the generation of functional hepatocyte-like cells from WJ-MSCs in hypoxic condition. The achievement of this method may overcome the limitation of donor hepatocytes and provides a new avenue for therapeutic value in cell-based therapy for life-threatening liver diseases, regenerative medicine, toxicity testing for pharmacological drug screening, and other medical related applications. PMID:23818908

  4. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect

    Howell, Thomas Russell

    2013-04-30

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  5. Generation of Mouse Lung Epithelial Cells

    PubMed Central

    Kasinski, Andrea L.; Slack, Frank J.

    2016-01-01

    Although in vivo models are excellent for assessing various facets of whole organism physiology, pathology, and overall response to treatments, evaluating basic cellular functions, and molecular events in mammalian model systems is challenging. It is therefore advantageous to perform these studies in a refined and less costly setting. One approach involves utilizing cells derived from the model under evaluation. The approach to generate such cells varies based on the cell of origin and often the genetics of the cell. Here we describe the steps involved in generating epithelial cells from the lungs of KrasLSL-G12D/+; p53LSL-R172/+ mice (Kasinski and Slack, 2012). These mice develop aggressive lung adenocarcinoma following cre-recombinase dependent removal of a stop cassette in the transgenes and subsequent expression of Kra-G12D and p53R172. While this protocol may be useful for the generation of epithelial lines from other genetic backgrounds, it should be noted that the Kras; p53 cell line generated here is capable of proliferating in culture without any additional genetic manipulation that is often needed for less aggressive backgrounds.

  6. Discharge cell for ozone generator

    SciTech Connect

    Nakatsuka, Suguru

    2000-01-01

    A discharge cell for use in an ozone generator is provided which can suppress a time-related reduction in ozone concentration without adding a catalytic gas such as nitrogen gas to oxygen gas as a raw material gas. The discharge cell includes a pair of electrodes disposed in an opposed spaced relation with a discharge space therebetween, and a dielectric layer of a three-layer structure consisting of three ceramic dielectric layers successively stacked on at least one of the electrodes, wherein a first dielectric layer of the dielectric layer contacting the one electrode contains no titanium dioxide, wherein a second dielectric layer of the dielectric layer exposed to the discharge space contains titanium dioxide in a metal element ratio of not lower than 10 wt %.

  7. mTORC1 in Thymic Epithelial Cells Is Critical for Thymopoiesis, T-Cell Generation, and Temporal Control of γδT17 Development and TCRγ/δ Recombination.

    PubMed

    Wang, Hong-Xia; Shin, Jinwook; Wang, Shang; Gorentla, Balachandra; Lin, Xingguang; Gao, Jimin; Qiu, Yu-Rong; Zhong, Xiao-Ping

    2016-02-01

    Thymus is crucial for generation of a diverse repertoire of T cells essential for adaptive immunity. Although thymic epithelial cells (TECs) are crucial for thymopoiesis and T cell generation, how TEC development and function are controlled is poorly understood. We report here that mTOR complex 1 (mTORC1) in TECs plays critical roles in thymopoiesis and thymus function. Acute deletion of mTORC1 in adult mice caused severe thymic involution. TEC-specific deficiency of mTORC1 (mTORC1KO) impaired TEC maturation and function such as decreased expression of thymotropic chemokines, decreased medullary TEC to cortical TEC ratios, and altered thymic architecture, leading to severe thymic atrophy, reduced recruitment of early thymic progenitors, and impaired development of virtually all T-cell lineages. Strikingly, temporal control of IL-17-producing γδT (γδT17) cell differentiation and TCRVγ/δ recombination in fetal thymus is lost in mTORC1KO thymus, leading to elevated γδT17 differentiation and rearranging of fetal specific TCRVγ/δ in adulthood. Thus, mTORC1 is central for TEC development/function and establishment of thymic environment for proper T cell development, and modulating mTORC1 activity can be a strategy for preventing thymic involution/atrophy. PMID:26889835

  8. mTORC1 in Thymic Epithelial Cells Is Critical for Thymopoiesis, T-Cell Generation, and Temporal Control of γδT17 Development and TCRγ/δ Recombination

    PubMed Central

    Wang, Hong-Xia; Shin, Jinwook; Wang, Shang; Gorentla, Balachandra; Lin, Xingguang; Gao, Jimin; Qiu, Yu-Rong; Zhong, Xiao-Ping

    2016-01-01

    Thymus is crucial for generation of a diverse repertoire of T cells essential for adaptive immunity. Although thymic epithelial cells (TECs) are crucial for thymopoiesis and T cell generation, how TEC development and function are controlled is poorly understood. We report here that mTOR complex 1 (mTORC1) in TECs plays critical roles in thymopoiesis and thymus function. Acute deletion of mTORC1 in adult mice caused severe thymic involution. TEC-specific deficiency of mTORC1 (mTORC1KO) impaired TEC maturation and function such as decreased expression of thymotropic chemokines, decreased medullary TEC to cortical TEC ratios, and altered thymic architecture, leading to severe thymic atrophy, reduced recruitment of early thymic progenitors, and impaired development of virtually all T-cell lineages. Strikingly, temporal control of IL-17-producing γδT (γδT17) cell differentiation and TCRVγ/δ recombination in fetal thymus is lost in mTORC1KO thymus, leading to elevated γδT17 differentiation and rearranging of fetal specific TCRVγ/δ in adulthood. Thus, mTORC1 is central for TEC development/function and establishment of thymic environment for proper T cell development, and modulating mTORC1 activity can be a strategy for preventing thymic involution/atrophy. PMID:26889835

  9. Generator configuration for solid oxide fuel cells

    DOEpatents

    Reichner, Philip

    1989-01-01

    Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

  10. Development of feeder-free culture systems for generation of ckit+sca1+ progenitors from mouse iPS cells.

    PubMed

    Lin, Jian; Fernandez, Irina; Roy, Krishnendu

    2011-09-01

    Patient-specific therapeutic cells derived from induced pluripotent stem (iPS) cells may bypass the ethical issues associated with embryonic stem (ES) cells and avoid potential immunological reactions associated with allogenic transplantation. It is critical, for the ultimate clinical applicability of iPS cell-derived therapies, to establish feeder-free cultures that ensure efficient differentiation of iPS cells into therapeutic progenitors. It is also necessary to understand if iPS cell-derived progenitors differ from those derived from ES cells. In this study, we compared the efficiency of three different feeder-free cultures for differentiating mouse iPS cells into ckit+sca1+ hematopoietic progenitor cells (HPCs) and compared how differentiation and functionality varies between ES and iPS cells. Our results indicated that both iPS and ES cells can be efficiently differentiated into HPCs in suspension cultures supplemented with secretion factors from mouse bone marrow stromal cells (OP9-DL1 conditioned medium). The functionality of these cells was demonstrated by differentiation into CD11c+ dendritic cells (DCs). Both ES and iPS-derived DCs expressed activation molecules (CD86, CD80) in response to LPS stimulation and stimulated T cell proliferation in a mixed lymphocyte reaction (MLR). Extensive quantitative RT-PCR studies were used to study the differences in gene expression profiles of ckit+sca1+ cells generated from the various culture systems as well as differences between ES-derived and iPS-derived cells. We conclude that a feeder-free system using stromal conditioned medium can efficiently generate HPCs as well as functional DCs from iPS cells and the generated cells have similar gene expression profile as those from ES cells. PMID:21188655

  11. Generation of induced pluripotent stem cells.

    PubMed

    Deyle, David R

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are generated from somatic cells that have been reprogrammed by the ectopic expression of defined embryonic transcription factors. This technology has provided investigators with a powerful tool for modelling disease and developing treatments for human disorders. This chapter provides the researcher with some background on iPSCs and details on how to produce MEF-conditioned medium, prepare mitotically arrested mouse embryonic fibroblasts (MEFs), create iPSCs using viral vectors, passage iPSCs, and cryopreserve iPSCs. The methods offered here have been used in many laboratories around the world and the reader can initially follow these methods. However, not all cell types are easily transduced using viral vectors and other methods of delivering the reprogramming transcription factors may need to be tested. PMID:25331042

  12. Force Generation upon T Cell Receptor Engagement

    PubMed Central

    Husson, Julien; Chemin, Karine; Bohineust, Armelle; Hivroz, Claire; Henry, Nelly

    2011-01-01

    T cells are major players of adaptive immune response in mammals. Recognition of an antigenic peptide in association with the major histocompatibility complex at the surface of an antigen presenting cell (APC) is a specific and sensitive process whose mechanism is not fully understood. The potential contribution of mechanical forces in the T cell activation process is increasingly debated, although these forces are scarcely defined and hold only limited experimental evidence. In this work, we have implemented a biomembrane force probe (BFP) setup and a model APC to explore the nature and the characteristics of the mechanical forces potentially generated upon engagement of the T cell receptor (TCR) and/or lymphocyte function-associated antigen-1 (LFA-1). We show that upon contact with a model APC coated with antibodies towards TCR-CD3, after a short latency, the T cell developed a timed sequence of pushing and pulling forces against its target. These processes were defined by their initial constant growth velocity and loading rate (force increase per unit of time). LFA-1 engagement together with TCR-CD3 reduced the growing speed during the pushing phase without triggering the same mechanical behavior when engaged alone. Intracellular Ca2+ concentration ([Ca2+]i) was monitored simultaneously to verify the cell commitment in the activation process. [Ca2+]i increased a few tens of seconds after the beginning of the pushing phase although no strong correlation appeared between the two events. The pushing phase was driven by actin polymerization. Tuning the BFP mechanical properties, we could show that the loading rate during the pulling phase increased with the target stiffness. This indicated that a mechanosensing mechanism is implemented in the early steps of the activation process. We provide here the first quantified description of force generation sequence upon local bidimensional engagement of TCR-CD3 and discuss its potential role in a T cell mechanically

  13. Fuel dissipater for pressurized fuel cell generators

    DOEpatents

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  14. Next generation vertical electrode cells

    NASA Astrophysics Data System (ADS)

    Brown, Craig

    2001-05-01

    The concept of the vertical electrode cell (VEC) for aluminum electrowinning is presented with reference to current research. Low-temperature electrolysis allows nonconsumable metal-alloy anodes to show ongoing promise in laboratory tests. The economic and environmental advantages of the VEC are surveyed. The unique challenges of bringing VEC technology into practice are discussed. The current status of laboratory research is summarized. New results presented show that commercial purity aluminum can be produced with promisingly high current efficiency.

  15. National Development Generates National Identities

    PubMed Central

    2016-01-01

    The purpose of the article is to test the relationship between national identities and modernisation. We test the hypotheses that not all forms of identity are equally compatible with modernisation as measured by Human Development Index. The less developed societies are characterised by strong ascribed national identities based on birth, territory and religion, but also by strong voluntarist identities based on civic features selected and/or achieved by an individual. While the former decreases with further modernisation, the latter may either decrease or remain at high levels and coexist with instrumental supranational identifications, typical for the most developed countries. The results, which are also confirmed by multilevel regression models, thus demonstrate that increasing modernisation in terms of development contributes to the shifts from classical, especially ascribed, identities towards instrumental identifications. These findings are particularly relevant in the turbulent times increasingly dominated by the hardly predictable effects of the recent mass migrations. PMID:26841050

  16. Spontaneous generation of germline characteristics in mouse fibrosarcoma cells

    NASA Astrophysics Data System (ADS)

    Ma, Zhan; Hu, Yao; Jiang, Guoying; Hou, Jun; Liu, Ruilai; Lu, Yuan; Liu, Chunfang

    2012-10-01

    Germline/embryonic-specific genes have been found to be activated in somatic tumors. In this study, we further showed that cells functioning as germline could be present in mouse fibrosarcoma cells (L929 cell line). Early germline-like cells spontaneously appeared in L929 cells and further differentiated into oocyte-like cells. These germline-like cells can, in turn, develop into blastocyst-like structures in vitro and cause teratocarcinomas in vivo, which is consistent with natural germ cells in function. Generation of germline-like cells from somatic tumors might provide a novel way to understand why somatic cancer cells have strong features of embryonic/germline development. It is thought that the germline traits of tumors are associated with the central characteristics of malignancy, such as immortalization, invasion, migration and immune evasion. Therefore, germline-like cells in tumors might provide potential targets to tumor biology, diagnosis and therapy.

  17. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  18. Efficient Generation of Nonhuman Primate Induced Pluripotent Stem Cells

    PubMed Central

    Zhong, Bonan; Trobridge, Grant D.; Zhang, Xiaobing; Watts, Korashon L.; Ramakrishnan, Aravind; Wohlfahrt, Martin; Adair, Jennifer E.

    2011-01-01

    Induced pluripotent stem (iPS) cells have great potential for regenerative medicine and gene therapy. Thus far, iPS cells have typically been generated using integrating viral vectors expressing various reprogramming transcription factors; nonintegrating methods have been less effective and efficient. Because there is a significant risk of malignant transformation and cancer involved with the use of iPS cells, careful evaluation of transplanted iPS cells will be necessary in small and large animal studies before clinical application. Here, we have generated and characterized nonhuman primate iPS cells with the goal of evaluating iPS cell transplantation in a clinically relevant large animal model. We developed stable Phoenix-RD114-based packaging cell lines that produce OCT4, SOX2, c-MYC, and KLF4 (OSCK) expressing gammaretroviral vectors. Using these vectors in combination with small molecules, we were able to efficiently and reproducibly generate nonhuman primate iPS cells from pigtailed macaques (Macaca nemestrina). The established nonhuman primate iPS cells exhibited pluripotency and extensive self-renewal capacity. The facile and reproducible generation of nonhuman primate iPS cells using defined producer cells as a source of individual reprogramming factors should provide an important resource to optimize and evaluate iPS cell technology for studies involving stem cell biology and regenerative medicine. PMID:21058905

  19. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  20. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  1. Quantitative methods for analyzing cell-cell adhesion in development.

    PubMed

    Kashef, Jubin; Franz, Clemens M

    2015-05-01

    During development cell-cell adhesion is not only crucial to maintain tissue morphogenesis and homeostasis, it also activates signalling pathways important for the regulation of different cellular processes including cell survival, gene expression, collective cell migration and differentiation. Importantly, gene mutations of adhesion receptors can cause developmental disorders and different diseases. Quantitative methods to measure cell adhesion are therefore necessary to understand how cells regulate cell-cell adhesion during development and how aberrations in cell-cell adhesion contribute to disease. Different in vitro adhesion assays have been developed in the past, but not all of them are suitable to study developmentally-related cell-cell adhesion processes, which usually requires working with low numbers of primary cells. In this review, we provide an overview of different in vitro techniques to study cell-cell adhesion during development, including a semi-quantitative cell flipping assay, and quantitative single-cell methods based on atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS) or dual micropipette aspiration (DPA). Furthermore, we review applications of Förster resonance energy transfer (FRET)-based molecular tension sensors to visualize intracellular mechanical forces acting on cell adhesion sites. Finally, we describe a recently introduced method to quantitate cell-generated forces directly in living tissues based on the deformation of oil microdroplets functionalized with adhesion receptor ligands. Together, these techniques provide a comprehensive toolbox to characterize different cell-cell adhesion phenomena during development. PMID:25448695

  2. Fuel cell using a hydrogen generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  3. Advanced fuel cell development

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.; Baumert, B.; Claar, T. D.; Fousek, R. J.; Huang, H. S.; Kaun, T. D.; Krumpelt, M.; Minh, N.; Mrazek, F. C.; Poeppel, R. B.

    1985-01-01

    Fuel cell research and development activities at Argonne National Laboratory (ANL) during the period January through March 1984 are described. These efforts have been directed principally toward seeking alternative cathode materials to NiO for molten carbonate fuel cells. Based on an investigation of the thermodynamically stable phases formed under cathode conditions, a number of prospective alternative cathode materials have been identified. From the list of candidates, LiFeO2, Li2MnO3, and ZnO were selected for further investigation. During this quarter, they were doped to promote conductivity and tested for solubility and ion migration in the cell environment. An investigation directed to understanding in cell densification of anode materials was initiated. In addition, calculations were made to evaluate the practicality of controlling sulfur accumulation in molten carbonate fuel cells by bleed off of a portion of the anode gas that could be recycled to the cathode. In addition, a model is being developed to predict the performance of solid oxide fuel cells as a function of cell design and operation.

  4. Generation of new islets from stem cells.

    PubMed

    Roche, Enrique; Soria, Bernat

    2004-01-01

    Spain ranks number one in organ donors (35 per million per yr). Although the prevalence of diabetes is low (100,000 type 1 diabetic patients and 2 million type 2 diabetic patients), the expected number of patients receiving islet transplants should be estimated at 200 per year. Islet replacement represents a promising cure for diabetes and has been successfully applied in a limited number of type 1 diabetic patients, resulting in insulin independence for periods longer than 3 yr. However, it has been difficult to obtain sufficient numbers of islets from cadaveric donors. Interesting alternatives include acquiring renewable sources of cells using either embryonic or adult stem cells to overcome the islet scarcity problem. Stem cells are capable of extensive proliferation rates and are capable of differentiating into other cell types of the body. In particular, totipotent stem cells are capable of differentiating into all cell types in the body, whereas pluripotent stem cells are limited to the development of a certain number of differentiated cell types. Insulin-producing cells have been obtained from both embryonic and adult stem cells using several approaches. In animal models of diabetes, the therapeutic application of bioengineered insulin-secreting cells derived from stem cells has delivered promising results. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells and highlights the key points that will allow in vitro differentiation and subsequent transplantation in the future. PMID:15289648

  5. Power generation properties of Direct Flame Fuel Cell (DFFC)

    NASA Astrophysics Data System (ADS)

    Endo, S.; Nakamura, Y.

    2014-11-01

    This paper investigated the effect of cell temperature and product species concentration induced by small-jet flame on the power generation performance of Direct Flame Fuel Cell (DFFC). The cell is placed above the small flame and heated product gas is impinged toward it and this system is the simplest and smallest unit of the power generation device to be developed. Equivalence ratio (phi) and the distance between the cell and the burner surface (d) are considered as main experimental parameters. It turns out that open circuit voltage (OCV) increases linearly with the increase of temperature in wide range of equivalence ratios. However, it increases drastically at which the equivalence ratio became small (phi <= 2.0) showing inner flame clearly. This result suggests that OCV depends on not only cell temperature but also the species concentration exposed to the cell. It is suggested that Nernst equation might work satisfactory to predict OCV of DFFC.

  6. CML Mouse Model Generated from Leukemia Stem Cells.

    PubMed

    Hu, Yiguo

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder with a high number of well-differentiated neutrophils in peripheral blood and myeloid cells in bone marrow (BM). CML is derived from the hematopoietic stem cells (HSCs) with the Philadelphia chromosome (Ph(+), t(9;22)-(q34;q11)), resulting in generating a fusion oncogene, BCR/ABL1. HSCs with Ph(+) are defined as leukemia stem cells (LSCs), a subpopulation cell at the apex of hierarchies in leukemia cells and responsible for the disease continuous propagation. Several kinds of CML models have been developed to reveal the mechanism of CML pathogenesis and evaluate therapeutic drugs in the past three decades. Here, we describe the procedures to generate a CML mouse model by introducing BCR/ABL1 into Lin(-)Sca1(+) cKit(+) population cells purified from mouse bone marrow. In CML retroviral transduction/transplantation mouse models, this modified model can mimic CML pathogenesis on high fidelity. PMID:27581136

  7. High Efficiency Cell Development

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1979-01-01

    The specific activity was to improve the tandem junction Cell (TJC) as a high efficiency solar cell. The TJC development was to be consistent with module assembly and should contribute to the overall goals of the Low-Cost Solar Array Project. During 1978, TJC efficiency improved from approximately 11 percent to approximately 16 percent (AMI). Photogenerated current densities in excess of 42 mA/sq cm were observed at AMO. Open circuit voltages as high as 0.615 V were measured at AMO. Fill factor was only 0.68 - 0.75 due to a nonoptimum metal contact design. A device model was conceived in which the solar cell is modelled as a transitor. There are virtually no interconnect or packaging factor systems and the TJC is compatible with all conventional module fabrication systems. A modification of the TJC, the Front Surface Field (FSF) cell, was also explored.

  8. Compact neutron generator development at LBNL

    SciTech Connect

    Reijonen, J.; English, G.; Firestone, R.; Giquel, F.; King, M.; Leung, K-N.; Sun, M.

    2003-12-31

    A wide variety of applications ranging from medical (BNCT, Boron Neutron Capture Therapy) and basic science (neutron imaging, material studies) to homeland security (explosive detection and nuclear material non-proliferation) are in need of compact, high flux neutron generators. The Plasma and Ion Source Technology Group in the Lawrence Berkeley National Laboratory is developing various neutron generators for these applications. These neutron generators employed either the D-D or the D-T fusion reaction for the neutron production. The deuterium or deuterium-tritium gas mixture is ionized in an RF-driven plasma source. The ions are then accelerated to {approx}100 keV energy using high current, high voltage DC-power supply to a target where the 2.45 MeV (for D-D reaction) or 14 MeV (for the D-T reaction) neutrons are generated. The development of two different types of neutron tubes are being discussed in this presentation, namely compact, pulsed operation neutron generators and cw, high yield neutron generators. These generators are currently operating at D-D neutron yields of 108 n/s and 109 n/s respectively. A facility, incorporating the larger neutron generator, has been constructed for Prompt Gamma Activation Analysis (PGAA) and Neutron Activation Analysis (NAA) measurements.

  9. Generation of enteroendocrine cell diversity in midgut stem cell lineages

    PubMed Central

    Beehler-Evans, Ryan; Micchelli, Craig A.

    2015-01-01

    The endocrine system mediates long-range peptide hormone signaling to broadcast changes in metabolic status to distant target tissues via the circulatory system. In many animals, the diffuse endocrine system of the gut is the largest endocrine tissue, with the full spectrum of endocrine cell subtypes not yet fully characterized. Here, we combine molecular mapping, lineage tracing and genetic analysis in the adult fruit fly to gain new insight into the cellular and molecular mechanisms governing enteroendocrine cell diversity. Neuropeptide hormone distribution was used as a basis to generate a high-resolution cellular map of the diffuse endocrine system. Our studies show that cell diversity is seen at two distinct levels: regional and local. We find that class I and class II enteroendocrine cells can be distinguished locally by combinatorial expression of secreted neuropeptide hormones. Cell lineage tracing studies demonstrate that class I and class II cells arise from a common stem cell lineage and that peptide profiles are a stable feature of enteroendocrine cell identity during homeostasis and following challenge with the enteric pathogen Pseudomonas entomophila. Genetic analysis shows that Notch signaling controls the establishment of class II cells in the lineage, but is insufficient to reprogram extant class I cells into class II enteroendocrine cells. Thus, one mechanism by which secretory cell diversity is achieved in the diffuse endocrine system is through cell-cell signaling interactions within individual adult stem cell lineages. PMID:25670792

  10. Development of Fuel Cell Co-generation System with Heat-pump System in Consideration of Transient Response of Electric Power

    NASA Astrophysics Data System (ADS)

    Obara, Shinya; Kudo, Kazuhiko

    The transient response characteristics of electric power output of the fuel cell system for individual houses were investigated, and relation between system control parameters and transient response characteristics were clarified. Furthermore, the transient response characteristics of coefficient of performance (COP) and electric power output of the system which makes heat pump an auxiliary heat source were investigated. Moreover, the relation between COP of heat pump and the transient response characteristics of the system were considered. Analysis of operation cost of system components and annual operation cost balance was performed supposing introducing a fuel cell co-generation system installs to individual house in Sapporo and Tokyo. Relation between COP of heat pump and operation cost, relation of reformer time-constant and operation cost, operation cost of the system with town gas boiler instead of heat pump, were investigated. The fuel cell cogeneration system introduced into Tokyo does not have the necessity of using heat pump and boiler, and it is thought that energy demand is filled with installing a thermal storage tank of small capacity. Moreover, it is more advantageous for operation cost to introduce a town gas boiler rather than introduces about COP=2. 0 heat pump into Sapporo.

  11. Force propagation and force generation in cells.

    PubMed

    Jonas, Oliver; Duschl, Claus

    2010-09-01

    Determining how forces are produced by and propagated through the cytoskeleton (CSK) of the cell is of great interest as dynamic processes of the CSK are intimately correlated with many molecular signaling pathways. We are presenting a novel approach for integrating measurements on cell elasticity, transcellular force propagation, and cellular force generation to obtain a comprehensive description of dynamic and mechanical properties of the CSK under force loading. This approach uses a combination of scanning force microscopy (SFM) and Total Internal Reflection Fluorescence (TIRF) microscopy. We apply well-defined loading schemes onto the apical cell membrane of fibroblasts using the SFM and simultaneously use TIRF microscopy to image the topography of the basal cell membrane. The locally distinct changes of shape and depth of the cytoskeletal imprints onto the basal membrane are interpreted as results of force propagation through the cytoplasm. This observation provides evidence for the tensegrity model and demonstrates the usefulness of our approach that does not depend on potentially disturbing marker compounds. We confirm that the actin network greatly determines cell stiffness and represents the substrate that mediates force transduction through the cytoplasm of the cell. The latter is an essential feature of tensegrity. Most importantly, our new finding that, both intact actin and microtubule networks are required for enabling the cell to produce work, can only be understood within the framework of the tensegrity model. We also provide, for the first time, a direct measurement of the cell's mechanical power output under compression at two femtowatts. PMID:20607861

  12. Microbial fuel cell (MFC) for bioelectricity generation from organic wastes.

    PubMed

    Moqsud, M Azizul; Omine, Kiyoshi; Yasufuku, Noriyuki; Hyodo, Masayuki; Nakata, Yukio

    2013-11-01

    Microbial fuel cells (MFCs) have gained a lot of attention recently as a mode of converting organic matter into electricity. In this study, a compost-based microbial fuel cell that generates bioelectricity by biodegradation of organic matter is developed. Grass cuttings, along with leaf mold, rice bran, oil cake (from mustard plants) and chicken droppings (waste from chickens) were used as organic waste. The electric properties of the MFC under anaerobic fermentation condition were investigated along with the influence of different types of membranes, the mixing of fly ash, and different types of electrode materials. It is observed that the maximum voltage was increased by mixing fly ash. Cellophane showed the highest value of voltage (around 350mV). Bamboo charcoal is good for anode material; however carbon fiber is better for the cathode material in terms of optimization of power generated. This developed MFC is a simple cell to generate electricity from organic waste. PMID:23962448

  13. Internal and ancestral controls of cell-generation times

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1969-01-01

    Lateral and longitudinal correlations between related cells reveal associations between the generation times of cells for an intermediate period /three generations in bacteral cultures/. Generation times of progeny are influenced by nongenetic factors transmitted from their ancestors.

  14. Vortex Generator Model Developed for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2002-01-01

    A computational model was developed at the NASA Glenn Research Center to investigate possible uses of vortex generators (VG's) for improving the performance of turbomachinery. A vortex generator is a small, winglike device that generates vortices at its tip. The vortices mix high-speed core flow with low-speed boundary layer flow and, thus, can be used to delay flow separation. VG's also turn the flow near the walls and, thus, can be used to control flow incidence into a turbomachinery blade row or to control secondary flows.

  15. Fourth-generation photovoltaic concentrator system development

    SciTech Connect

    O`Neill, M.J.; McDanal, A.J.

    1995-10-01

    In 1991, under a contract with Sandia for the Concentrator Initiative, the ENTECH team initiated the design and development of a fourth-generation concentrator module. In 1992, Sandia also contracted with ENTECH to develop a new control and drive system for the ENTECH array. This report documents the design and development work performed under both contracts. Manufacturing processes for the new module were developed at the same time under a complementary PVMaT contract with the National Renewable Energy Laboratory. Two 100-kW power plants were deployed in 1995 in Texas using the newly developed fourth-generation concentrator technology, one at the CSW Solar Park near Ft. Davis and one at TUE Energy Park in Dallas. Technology developed under the Sandia contracts has made a successful transition from the laboratory to the production line to the field.

  16. The role of the low-density lipoprotein receptor-related protein (LRP1) in Alzheimer's A beta generation: development of a cell-based model system.

    PubMed

    Goto, Joy J; Tanzi, Rudolph E

    2002-01-01

    The clearance and degradation of extracellular A beta is critical for regulating beta-amyloid deposition, a major hallmark of brains of patients with A beta in Alzheimer's Disease. The low-density lipoprotein receptor-related protein, LRP1, is a large endocytic receptor that significantly contributes to the balance between degradation and production of A beta. An extracellular portion of the LRP, known as the cluster II region can bind to the secreted form of APP (sAPP-KPI). We show here that a GST fusion protein containing the cluster II region of LRP can be used as a 'mini-receptor' that specifically binds to sAPP-KPI from conditioned cultured medium. The binding between the GST-LRP-cluster II fusion protein and sAPP-KPI can be inhibited with the strong binding ligand of LRP1, called receptor-associated protein (RAP). Furthermore, a cell-based in vitro assay system has been developed to monitor the production of total A beta and A beta(1-42) in the presence and absence of RAP in Chinese hamster ovary (CHO) cell lines both deficient in LRP and expressing LRP. A 3-day treatment of the L2 (CHO cells deficient in LRP and overexpressing APP751) and L3 (CHO cells expressing LRP and overexpressing APP751) cell lines with RAP showed a decrease in total A beta and, interestingly, also a decrease in the ratio of A beta42/A beta(total). This cell-based model system and LRP-cluster II mini-receptor will be very useful for screening novel compounds that can reduce A beta accumulation by inhibiting binding of APP-KPI to LRP1. PMID:12212791

  17. Generation of avian cells resembling osteoclasts from mononuclear phagocytes

    NASA Technical Reports Server (NTRS)

    Alvarez, J. I.; Teitelbaum, S. L.; Blair, H. C.; Greenfield, E. M.; Athanasou, N. A.; Ross, F. P.

    1991-01-01

    Several lines of indirect evidence suggest that a monocyte family precursor gives rise to the osteoclast, although this hypothesis is controversial. Starting with a uniform population of nonspecific esterase positive, tartrate-sensitive, acid phosphatase-producing, mannose receptor-bearing mononuclear cells, prepared from dispersed marrow of calcium-deprived laying hens by cell density separation and selective cellular adherence, we generated multinucleated cells in vitro. When cultured with devitalized bone, these cells show, by electron microscopy, the characteristic osteoclast morphology in that they are mitochondria-rich, multinucleated, and, most importantly, develop characteristic ruffled membranes at the matrix attachment site. Moreover, as documented by scanning electron microscopy, these cells pit bone slices in a manner identical to freshly isolated osteoclasts. In addition, isoenzymes of acid phosphatase from generated osteoclasts, separated by 7.5% polyacrylamide gel electrophoresis at pH 4, are identical to those of mature osteoclasts in migration pattern and tartrate resistance, although the precursor cells from which the osteoclasts are generated produce an entirely different isoenzyme, which is tartrate-sensitive and migrates less rapidly at pH 4. The fused cells also exhibit a cAMP response to prostaglandin E2. Therefore, osteoclast-like cells can be derived by in vitro culture of a marrow-derived monocyte cell population.

  18. [Generation of functional organs from pluripotent stem cells].

    PubMed

    Miyamoto, Tatsuyuki; Nakauchi, Hiromitsu

    2015-10-01

    Hematopoietic stem cells (HSCs) have played a major role in stem cell biology, providing many conceptual ideas and models. Among them is the concept of the "niche", a special bone-marrow microenvironment that by exchanging cues regulates stem-cell fate. The HSC niche also plays an important role in HSC transplantation. Successful engraftment of donor HSCs depends on myeloablative pretreatment to empty the niche. The concept of the stem-cell niche has now been extended to the generation of organs. We postulated that an empty "organ niche" exists in a developing animal when development of an organ is genetically disabled. This organ niche should be developmentally compensated by blastocyst complementation using wild-type primary stem cells (PSCs). We proved the principle of organogenesis from xenogeneic PSCs in an embryo unable to form a specific organ, demonstrating the generation of functionally normal rat pancreas by injecting rat PSCs into pancreatogenesis-disabled mouse embryos. This principle has held in pigs. When pancreatogenesis-disabled pig embryos underwent complementation with blastomeres from wild-type pig embryos to produce chimeric pigs, the chimeras had normal pancreata and survived to adulthood. Demonstration of the generation of a functional organ from PSCs in pigs is a very important step toward generation of human cells, tissues, and organs from individual patients' own PSCs in large animals. PMID:26458462

  19. Quantifying cell-generated mechanical forces within living embryonic tissues

    PubMed Central

    Campàs, Otger; Mammoto, Tadanori; Hasso, Sean; Sperling, Ralph A; O’Connell, Daniel; Bischof, Ashley G; Maas, Richard; Weitz, David A; Mahadevan, Lakshminarayanan; Ingber, Donald E

    2014-01-01

    Cell-generated mechanical forces play a critical role during tissue morphogenesis and organ formation in the embryo. However, little is known about how these forces shape embryonic organs, mainly because it has not been possible to measure cellular forces within developing three-dimensional (3D) tissues in vivo. Here we present a method to quantify cell-generated mechanical stresses that are exerted locally within living embryonic tissues using fluorescent, cell-sized, oil microdroplets with defined mechanical properties and coated with surface integrin or cadherin receptor ligands. After introducing a droplet between cells in a tissue, local stresses are determined from the droplet shape deformations, which are obtained via fluorescence microscopy and computerized image analysis. Using this method, we quantify the anisotropic stresses generated by mammary epithelial cells cultured within 3D aggregates and confirm that these stresses (3.4 nN/µm2) are dependent on myosin II activity and more than two-fold larger than the stresses generated by cells of embryonic tooth mesenchyme when analyzed within similar cultured aggregates or in developing whole mouse mandibles. PMID:24317254

  20. Unequal distribution of plastids during generative cell formation in Impatiens.

    PubMed

    van Went, J L

    1984-07-01

    This paper describes the unequal distribution of plastids in the developing microspores of Impatiens walleriana and Impatiens glandulifera which leads to the exclusion of plastids from the generative cell. During the development from young microspore to the onset of mitosis a change in the organization of the cytoplasm and distribution of organelles is gradually established. This includes the formation of vacuoles at the poles of the elongate-shaped microspores, the movement of the nucleus to a position near the microspore wall in the central part of the cell, and the accumulation of the plastids to a position near the wall at the opposite side of the cell. In Impatiens walleriana, the accumulated plastids are separated from each other by ER cisterns, and some mitochondria are also accumulated. In both Impatiens species, the portion of the microspore in which the generative cell will be formed is completely devoid of plastids at the time mitosis starts. PMID:24257638

  1. Methods for generating hydroelectric power development alternatives

    SciTech Connect

    Chang, Shoou-yuh; Liaw, Shu-liang; Sale, M.J.; Railsback, S.F.

    1989-01-01

    Hydropower development on large rivers can result in a number of environmental impacts, including potential reductions in dissolved oxygen (DO) concentrations. This study presents a methodology for generating different hydropower development alternatives for evaluation. This methodology employs a Streeter-Phelps model to simulate DO, and the Bounded Implicit Enumeration algorithm to solve an optimization model formulated to maximize hydroelectric energy production subject to acceptable DO limits. The upper Ohio River basin was used to illustrate the use and characteristics of the methodology. The results indicate that several alternatives which meet the specified DO constraints can be generated efficiently, meeting both power and environmental objectives. 17 refs., 2 figs., 1 tab.

  2. Compact neutron generator developement and applications

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Gicquel, Frederic; Hahto, Sami; Lou, Tak-Pui

    2004-01-18

    The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory has been engaging in the development of high yield compact neutron generators for the last ten years. Because neutrons in these generators are formed by using either D-D, T-T or D-T fusion reaction, one can produce either mono-energetic (2.4 MeV or 14 MeV) or white neutrons. All the neutron generators being developed by our group utilize 13.5 MHz RF induction discharge to produce a pure deuterium or a mixture of deuterium-tritium plasma. As a result, ion beams with high current density and almost pure atomic ions can be extracted from the plasma source. The ion beams are accelerated to {approx}100 keV and neutrons are produced when the beams impinge on a titanium target. Neutron generators with different configurations and sizes have been designed and tested at LBNL. Their applications include neutron activation analysis, oil-well logging, boron neutron capture therapy, brachytherapy, cargo and luggage screening. A novel small point neutron source has recently been developed for radiography application. The source size can be 2 mm or less, making it possible to examine objects with sharper images. The performance of these neutron generators will be described in this paper.

  3. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  4. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2004-07-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  5. U.S. Distributed Generation Fuel Cell Program

    SciTech Connect

    Williams, Mark C.; Strakey, Joseph P.; Singhal, Subhash C.

    2004-05-14

    The Department of Energy (DOE) is the largest funder of fuel cell technology in the U.S. The DOE Office of Fossil Energy (FE) is developing high temperature fuel cells for distributed generation. It has funded the development of tubular solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) power systems operating at up to 60% efficiency on natural gas. The remarkable environmental performance of these fuel cells makes them likely candidates to help mitigate pollution. DOE is now pursuing more widely applicable solid oxide fuel cells for 2010 and beyond. DOE estimates that a 5 kW solid oxide fuel cell system can reach $400/kW at reasonable manufacturing volumes. SECA - the Solid State Energy Conversion Alliance - was formed by the National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) to accelerate the commercial readiness of planar and other solid oxide fuel cell systems utilizing 3-10 kW size modules by taking advantage of the projected economies of production from a mass customization approach. In addition, if the modular 3-10 kW size units can be ganged or scaled up to larger sizes with no increase in cost, then commercial, microgrid and other distributed generation markets will become attainable. Further scale-up and hybridization of SECA SOFCs with gas turbines could result in penetration of the bulk power market. This paper reviews the current status of the solid oxide and molten carbonate fuel cells in the U.S.

  6. Stabilization of apoptotic cells: generation of zombie cells.

    PubMed

    Oropesa-Ávila, M; Andrade-Talavera, Y; Garrido-Maraver, J; Cordero, M D; de la Mata, M; Cotán, D; Paz, M V; Pavón, A D; Alcocer-Gómez, E; de Lavera, I; Lema, R; Zaderenko, A P; Rodríguez-Moreno, A; Sánchez-Alcázar, J A

    2014-01-01

    Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn(2+) (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy. PMID:25118929

  7. Stabilization of apoptotic cells: generation of zombie cells

    PubMed Central

    Oropesa-Ávila, M; Andrade-Talavera, Y; Garrido-Maraver, J; Cordero, M D; de la Mata, M; Cotán, D; Paz, M V; Pavón, A D; Alcocer-Gómez, E; de Lavera, I; Lema, R; Zaderenko, A P; Rodríguez-Moreno, A; Sánchez-Alcázar, J A

    2014-01-01

    Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy. PMID:25118929

  8. Next Generation Drivetrain Development and Test Program

    SciTech Connect

    Keller, Jonathan; Erdman, Bill; Blodgett, Doug; Halse, Chris; Grider, Dave

    2015-11-03

    This presentation was given at the Wind Energy IQ conference in Bremen, Germany, November 30 through December 2, 2105. It focused on the next-generation drivetrain architecture and drivetrain technology development and testing (including gearbox and inverter software and medium-voltage inverter modules.

  9. The new generation of vehicles: market opportunities for fuel cells

    NASA Astrophysics Data System (ADS)

    Chalk, Steven G.; Patil, Pandit G.; Venkateswaran, S. R.

    The Partnership for a New Generation of Vehicles (PNGV), a historic US Government-auto industry partnership initiated in 1993, is pursuing three specific, interrelated goals, including the development of the next generation of vehicles capable of achieving up to three times the fuel efficiency of today's comparable vehicles. Fuel cells have been identified as one of three primary propulsion system candidates to meet this triple fuel efficiency goal, since they can dramatically increase automotive propulsion efficiency combined with very low to zero emissions. The US Government is working closely with industry and research institutions in pursuing a strategy of aggressive research and development (R&D) to accelerate the commercialization of fuel cell vehicles. The US Department of Energy has a major role in this fuel cell technology development effort. R&D activities are focused on overcoming the major technical, economic, and infrastructure-related hurdles. The high efficiency, very low emissions, and other favorable characteristics of fuel cells (such as fuel flexibility, low noise, and vibration) create significant market opportunities for fuel cells over the entire spectrum of transportation applications. While the focus of near-term markets for fuel cell vehicles will be urban areas having severe air-quality problems, long-term market prospects are encouraging since fuel cell vehicles can compete on an even ground with conventional vehicles in all key aspects, including vehicle range and refueling. This paper will discuss near- and long-term market opportunities for fuel cells in transportation and provide an update on driving regulatory developments in the USA at the federal and state level. The paper also provides an introduction to the PNGV (focusing on the role and prospects for fuel cells) and discusses the status of fuel cell vehicle development projects.

  10. Pancreatic Islet Cell Development and Regeneration

    PubMed Central

    Romer, Anthony I.; Sussel, Lori

    2015-01-01

    Purpose This review will discuss recent advances in understanding mouse and human pancreatic islet cell development, novel concepts related to β cell dysfunction and improved approaches for replenishing β cells to treat diabetes. Recent Findings Considerable knowledge about pancreatic islet development and function has been gained using model systems with subsequent validation in human tissues. Recently, several rodent studies have revealed that differentiated adult islet cells retain remarkable plasticity and can be converted to other islet cell types by perturbing their transcription factor profiles. Furthermore, significant advances have been made in the generation of β-like cells from stem cell populations. Therefore, the generation of functionally mature β cells by the in situ conversion of non-β cell populations or by the directed differentiation of human pluripotent stem cells could represent novel mechanisms for replenishing β cells in diabetic patients. Summary The overall conservation between mouse and human pancreatic development, islet physiology and etiology of diabetes encourages the translation of novel β cell replacement therapies to humans. Further deciphering the molecular mechanisms that direct islet cell regeneration, plasticity and function could improve and expand the β cell replacement strategies for treating diabetes. PMID:26087337

  11. Multiple Exciton Generation in Quantum Dot Solar Cells

    NASA Astrophysics Data System (ADS)

    Semonin, O. E.

    Photovoltaics are limited in their power conversion efficiency (PCE) by very rapid relaxation of energetic carriers to the band edge. Therefore, photons from the visible and ultraviolet parts of the spectrum typically are not efficiently converted into electrical energy. One approach that can address this is multiple exciton generation (MEG), where a single photon of sufficient energy can generate multiple excited electron-hole pairs. This process has been shown to be more efficient in quantum dots than bulk semiconductors, but it has never been demonstrated in the photocurrent of a solar cell. In order to demonstrate that multiple exciton generation can address fundamental limits for conventional photovoltaics, I have developed prototype devices from colloidal PbS and PbSe quantum dot inks. I have characterized both the colloidal suspensions and films of quantum dots with the goal of understanding what properties determine the efficiency of the solar cell and of the MEG process. I have found surface chemistry effects on solar cells, photoluminescence, and MEG, and I have found some chemical treatments that lead to solar cells showing MEG. These devices show external quantum efficiency (EQE) greater than 100% for certain parts of the solar spectrum, and I extract internal quantum efficiency (IQE) consistent with previous measurements of colloidal suspensions of quantum dots. These findings are a small first step toward breaking the single junction Shockley-Queisser limit of present-day first and second generation solar cells, thus moving photovoltaic cells toward a new regime of efficiency.

  12. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  13. Development of W-Ta generator

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This research program was used to further develop the existing W-Ta generator and to evaluate alternative adsorbents, preferably inorganic materials, as supports for the generator. During the first half year, combinations of non-complexing eluents and a variety of adsorbents, both inorganic and organic, were evaluated. Some of these adsorbents were synthetic, such as chelate resins that could be specific for tungsten. In the second half of the year, the stress was mainly on the use of complexing eluents because of the high affinity of hydrous oxides for tantalum, on the synthesis of chelate resins and on the use novel techniques (electrolytic) to solve the tantalum-adsorption problem.

  14. Development of a nitrogen generation system

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Marshall, R. D.; Powell, J. D., III; Schubert, F. H.

    1980-01-01

    An eight-stage nitrogen generation module was developed. The design integrated a hydrazine catalytic dissociator, three ammonia dissociation stages and four palladium/silver hydrogen separator stages. Alternating ammonia dissociation and hydrogen separation stages are used to remove hydrogen and ammonia formed in the dissociation of hydrazine which results in negligible ammonia and hydrogen concentrations in the product nitrogen stream. An engineering breadboard nitrogen supply subsystem was also developed. It was developed as an integratable subsystem for a central spacecraft air revitalization system. The subsystem consists of the hydrazine storage and feed mechanism, the nitrogen generation module, the peripheral mechanical and electrical components required to control and monitor subsystem performance, and the instrumentation required to interface with other subsystems of an air revitalization system. The breadboard nitrogen supply subsystem was integrated and tested with a one-person capacity experimental air revitalization system. The integration, checkout and testing was successfully accomplished.

  15. High-temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Merritt, Danielle; Raffaelle, Ryne P.; Scheiman, David

    2005-01-01

    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures.

  16. Development of portable fuel cells

    SciTech Connect

    Nakatou, K.; Sumi, S.; Nishizawa, N.

    1996-12-31

    Sanyo Electric has been concentrating on developing a marketable portable fuel cell using phosphoric acid fuel cells (PAFC). Due to the fact that this power source uses PAFC that operate at low temperature around 100{degrees} C, they are easier to handle compared to conventional fuel cells that operate at around 200{degrees} C , they can also be expected to provide extended reliable operation because corrosion of the electrode material and deterioration of the electrode catalyst are almost completely nonexistent. This power source is meant to be used independently and stored at room temperature. When it is started up, it generates electricity itself using its internal load to raise the temperature. As a result, the phosphoric acid (the electolyte) absorbs the reaction water when the temperature starts to be raised (around room temperature). At the same time the concentration and volume of the phosphoric acid changes, which may adversely affect the life time of the cell. We have studied means for starting, operating PAFC stack using methods that can simply evaluate changes in the concentration of the electrolyte in the stack with the aim of improving and extending cell life and report on them in this paper.

  17. Generating Cell Targeting Aptamers for Nanotheranostics Using Cell-SELEX

    PubMed Central

    Lyu, Yifan; Chen, Guang; Shangguan, Dihua; Zhang, Liqin; Wan, Shuo; Wu, Yuan; Zhang, Hui; Duan, Lian; Liu, Chao; You, Mingxu; Wang, Jie; Tan, Weihong

    2016-01-01

    Detecting and understanding changes in cell conditions on the molecular level is of great importance for the accurate diagnosis and timely therapy of diseases. Cell-based SELEX (Systematic Evolution of Ligands by EXponential enrichment), a foundational technology used to generate highly-specific, cell-targeting aptamers, has been increasingly employed in studies of molecular medicine, including biomarker discovery and early diagnosis/targeting therapy of cancer. In this review, we begin with a mechanical description of the cell-SELEX process, covering aptamer selection, identification and identification, and aptamer characterization; following this introduction is a comprehensive discussion of the potential for aptamers as targeting moieties in the construction of various nanotheranostics. Challenges and prospects for cell-SELEX and aptamer-based nanotheranostic are also discussed. PMID:27375791

  18. Generation and In Vitro Expansion of Hepatic Progenitor Cells from Human iPS Cells.

    PubMed

    Yanagida, Ayaka; Nakauchi, Hiromitsu; Kamiya, Akihide

    2016-01-01

    Stem cells have the unique properties of self-renewal and multipotency (producing progeny belonging to two or more lineages). Induced pluripotent stem (iPS) cells can be generated from somatic cells by simultaneous expression of pluripotent factors (Oct3/4, Klf4, Sox2, and c-Myc). They share the same properties as embryonic stem (ES) cells and can differentiate into several tissue cells, i.e., neurons, hematopoietic cells, and liver cells. Therefore, iPS cells are suitable candidate cells for regenerative medicine and analyses of disease mechanisms.The liver is the major organ that regulates a multitude of metabolic functions. Hepatocytes are the major cell type populating the liver parenchyma and express several metabolic enzymes that are necessary for liver functions. Although hepatocytes are essential for maintaining homeostasis, it is difficult to alter artificial and transplanted cells because of their multifunctionality, donor shortage, and immunorejection risk. During liver development, hepatic progenitor cells in the fetal liver differentiate into both mature hepatocytes and cholangiocytes. As hepatic progenitor cells have bipotency and high proliferation ability, they could present a potential source for generating transplantable cells or as a liver study model. Here we describe the induction and purification of hepatic progenitor cells derived from human iPS cells. These cells can proliferate for a long term under suitable culture conditions. PMID:25697415

  19. Cross-Generational Reproductive Fitness Enforced by Microchimeric Maternal Cells.

    PubMed

    Kinder, Jeremy M; Jiang, Tony T; Ertelt, James M; Xin, Lijun; Strong, Beverly S; Shaaban, Aimen F; Way, Sing Sing

    2015-07-30

    Exposure to maternal tissue during in utero development imprints tolerance to immunologically foreign non-inherited maternal antigens (NIMA) that persists into adulthood. The biological advantage of this tolerance, conserved across mammalian species, remains unclear. Here, we show maternal cells that establish microchimerism in female offspring during development promote systemic accumulation of immune suppressive regulatory T cells (Tregs) with NIMA specificity. NIMA-specific Tregs expand during pregnancies sired by males expressing alloantigens with overlapping NIMA specificity, thereby averting fetal wastage triggered by prenatal infection and non-infectious disruptions of fetal tolerance. Therefore, exposure to NIMA selectively enhances reproductive success in second-generation females carrying embryos with overlapping paternally inherited antigens. These findings demonstrate that genetic fitness, canonically thought to be restricted to Mendelian inheritance, is enhanced in female placental mammals through vertically transferred maternal cells that promote conservation of NIMA and enforce cross-generational reproductive benefits. PMID:26213383

  20. Requirement for CD4 T Cell Help in Generating Functional CD8 T Cell Memory

    NASA Astrophysics Data System (ADS)

    Shedlock, Devon J.; Shen, Hao

    2003-04-01

    Although primary CD8 responses to acute infections are independent of CD4 help, it is unknown whether a similar situation applies to secondary responses. We show that depletion of CD4 cells during the recall response has minimal effect, whereas depletion during the priming phase leads to reduced responses by memory CD8 cells to reinfection. Memory CD8 cells generated in CD4+/+ mice responded normally when transferred into CD4-/- hosts, whereas memory CD8 cells generated in CD4-/- mice mounted defective recall responses in CD4+/+ adoptive hosts. These results demonstrate a previously undescribed role for CD4 help in the development of functional CD8 memory.

  1. Molecular Culprits Generating Brain Tumor Stem Cells

    PubMed Central

    Oh, Se-Yeong

    2013-01-01

    Despite current advances in multimodality therapies, such as surgery, radiotherapy, and chemotherapy, the outcome for patients with high-grade glioma remains fatal. Understanding how glioma cells resist various therapies may provide opportunities for developing new therapies. Accumulating evidence suggests that the main obstacle for successfully treating high-grade glioma is the existence of brain tumor stem cells (BTSCs), which share a number of cellular properties with adult stem cells, such as self-renewal and multipotent differentiation capabilities. Owing to their resistance to standard therapy coupled with their infiltrative nature, BTSCs are a primary cause of tumor recurrence post-therapy. Therefore, BTSCs are thought to be the main glioma cells representing a novel therapeutic target and should be eliminated to obtain successful treatment outcomes. PMID:24904883

  2. Cell cycle control and seed development

    PubMed Central

    Dante, Ricardo A.; Larkins, Brian A.; Sabelli, Paolo A.

    2014-01-01

    Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed. PMID:25295050

  3. Generation of Neuronal Progenitor Cells and Neurons from Mouse Sleeping Beauty Transposon–Generated Induced Pluripotent Stem Cells

    PubMed Central

    Klincumhom, Nuttha; Pirity, Melinda K.; Berzsenyi, Sara; Ujhelly, Olga; Muenthaisong, Suchitra; Rungarunlert, Sasitorn; Tharasanit, Theerawat; Techakumphu, Mongkol

    2012-01-01

    Abstract Mouse embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells can be used as models of neuronal differentiation for the investigation of mammalian neurogenesis, pharmacological testing, and development of cell-based therapies. Recently, mouse iPS cell lines have been generated by Sleeping Beauty (SB) transposon-mediated transgenesis (SB-iPS). In this study, we determined for the first time the differentiation potential of mouse SB-iPS cells to form neuronal progenitor cells (NPCs) and neurons. Undifferentiated SB-iPS and ES cells were aggregated into embryoid bodies (EBs) and cultured in neuronal differentiation medium supplemented with 5 μM all-trans retinoic acid. Thereafter, EBs were dissociated and plated to observe further neuronal differentiation. Samples were fixed on days 10 and 14 for immunocytochemistry staining using the NPC markers Pax6 and Nestin and the neuron marker βIII-tubulin/Tuj1. Nestin-labeled cells were analyzed further by flow cytometry. Our results demonstrated that SB-iPS cells can generate NPCs and differentiate further into neurons in culture, although SB-iPS cells produced less nestin-positive cells than ESCs (6.12±1.61 vs. 74.36±1.65, respectively). In conclusion, the efficiency of generating SB-iPS cells–derived NPCs needs to be improved. However, given the considerable potential of SB-iPS cells for drug testing and as therapeutic models in neurological disorders, continuing investigation of their neuronal differentiation ability is required. PMID:22917491

  4. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  5. Development of a novel protocol for generating flavivirus reporter particles.

    PubMed

    Fernández, Igor Velado; Okamoto, Natsumi; Ito, Aki; Fukuda, Miki; Someya, Azusa; Nishino, Yosii; Sasaki, Nobuya; Maeda, Akihiko

    2014-11-01

    Infection with West Nile virus (WNV), a mosquito-borne flavivirus, is a growing public and animal health concern worldwide. Prevention, diagnosis and treatment strategies for the infection are urgently required. Recently, viral reverse genetic systems have been developed and applied to clinical WNV virology. We developed a protocol for generating reporter virus particles (RVPs) of WNV with the aim of overcoming two major problems associated with conventional protocols, the difficulty in generating RVPs due to the specific skills required for handling RNAs, and the potential for environmental contamination by antibiotic-resistant genes encoded within the genome RNA of the RVPs. By using the proposed protocol, cells were established in which the RVP genome RNA is replicated constitutively and does not encode any antibiotic-resistant genes, and used as the cell supply for RVP genome RNA. Generation of the WNV RVPs requires only the simple transfection of the expression vectors for the viral structural proteins into the cells. Therefore, no RNA handling is required in this protocol. The WNV RVP yield obtained using this protocol was similar that obtained using the conventional protocol. According to these results, the newly developed protocol appears to be a good alternative for the generation of WNV RVPs, particularly for clinical applications. PMID:25116200

  6. Circulation control lift generation experiment: Hardware development

    NASA Technical Reports Server (NTRS)

    Panontin, T. L.

    1985-01-01

    A circulation control airfoil and its accompanying hardware were developed to allow the investigation of lift generation that is independent of airfoil angle of attack and relative flow velocity. The test equipment, designed for use in a water tunnel, includes the blown airfoil, the support systems for both flow visualization and airfoil load measurement, and the fluid control system, which utilizes hydraulic technology. The primary design tasks, the selected solutions, and the unforseen problems involved in the development of these individual components of hardware are described.

  7. Dust devil vortex generation from convective cells

    NASA Astrophysics Data System (ADS)

    Onishchenko, O.; Pokhotelov, O.; Horton, W.; Fedun, V.

    2015-11-01

    We have developed a hydrodynamic theory of the nonlinear stage of dust devil generation in a convectively unstable atmosphere with large-scale seed vertical vorticity. It is shown that convective motion in such an atmosphere transforms into dust devils extremely fast. The strong vortical structure of the dust devils can be formed in a few minutes or even in a fraction of a minute. The formation process strongly depends on the convective instability growth rate and horizontal vorticity.

  8. Generation and characterization of regulatory dendritic cells derived from murine induced pluripotent stem cells

    PubMed Central

    Zhang, Qi; Fujino, Masayuki; Iwasaki, Shizue; Hirano, Hiroshi; Cai, Songjie; Kitajima, Yuya; Xu, Jinhua; Li, Xiao-Kang

    2014-01-01

    Regulatory dendritic cells (DCregs) represent a potential therapeutic tool for assessing a variety of immune overreaction conditions; however, current approaches for generating DCregs for therapeutic purposes are limited. We attempted to generate and characterize DCregs from murine induced pluripotent stem (iPS) cells. The iPS cells co-cultured with OP9 cells displayed mesodermally differentiated flat colonies. GM-CSF drove most of the colonies exhibiting a differentiated morphology. Thereafter, cells became morphologically heterologous under the effects of TGF-β and IL-10. Most of the floating cells developed an irregular shape with areas of protrusion. The generated iPS-DCregs demonstrated high CD11b/c and low CD40, CD80, CD86 and MHC-II expressions with a high antigen uptake ability and poor T-cell stimulatory function. Importantly, iPS-DCregs showed immune responsiveness regulation effects both in vitro and in vivo and the ability to generate regulatory T-cells in vitro. Our result illustrates a feasible approach for generating functional DCregs from murine iPS cells. PMID:24496181

  9. Urine excretion strategy for stem cell-generated embryonic kidneys

    PubMed Central

    Yokote, Shinya; Matsunari, Hitomi; Iwai, Satomi; Yamanaka, Shuichiro; Uchikura, Ayuko; Fujimoto, Eisuke; Matsumoto, Kei; Nagashima, Hiroshi; Kobayashi, Eiji; Yokoo, Takashi

    2015-01-01

    There have been several recent attempts to generate, de novo, a functional whole kidney from stem cells using the organogenic niche or blastocyst complementation methods. However, none of these attempts succeeded in constructing a urinary excretion pathway for the stem cell-generated embryonic kidney. First, we transplanted metanephroi from cloned pig fetuses into gilts; the metanephroi grew to about 3 cm and produced urine, although hydronephrosis eventually was observed because of the lack of an excretion pathway. Second, we demonstrated the construction of urine excretion pathways in rats. Rat metanephroi or metanephroi with bladders (developed from cloacas) were transplanted into host rats. Histopathologic analysis showed that tubular lumina dilation and interstitial fibrosis were reduced in kidneys developed from cloacal transplants compared with metanephroi transplantation. Then we connected the host animal’s ureter to the cloacal-developed bladder, a technique we called the “stepwise peristaltic ureter” (SWPU) system. The application of the SWPU system avoided hydronephrosis and permitted the cloacas to differentiate well, with cloacal urine being excreted persistently through the recipient ureter. Finally, we demonstrated a viable preclinical application of the SWPU system in cloned pigs. The SWPU system also inhibited hydronephrosis in the pig study. To our knowledge, this is the first report showing that the SWPU system may resolve two important problems in the generation of kidneys from stem cells: construction of a urine excretion pathway and continued growth of the newly generated kidney. PMID:26392557

  10. Urine excretion strategy for stem cell-generated embryonic kidneys.

    PubMed

    Yokote, Shinya; Matsunari, Hitomi; Iwai, Satomi; Yamanaka, Shuichiro; Uchikura, Ayuko; Fujimoto, Eisuke; Matsumoto, Kei; Nagashima, Hiroshi; Kobayashi, Eiji; Yokoo, Takashi

    2015-10-20

    There have been several recent attempts to generate, de novo, a functional whole kidney from stem cells using the organogenic niche or blastocyst complementation methods. However, none of these attempts succeeded in constructing a urinary excretion pathway for the stem cell-generated embryonic kidney. First, we transplanted metanephroi from cloned pig fetuses into gilts; the metanephroi grew to about 3 cm and produced urine, although hydronephrosis eventually was observed because of the lack of an excretion pathway. Second, we demonstrated the construction of urine excretion pathways in rats. Rat metanephroi or metanephroi with bladders (developed from cloacas) were transplanted into host rats. Histopathologic analysis showed that tubular lumina dilation and interstitial fibrosis were reduced in kidneys developed from cloacal transplants compared with metanephroi transplantation. Then we connected the host animal's ureter to the cloacal-developed bladder, a technique we called the "stepwise peristaltic ureter" (SWPU) system. The application of the SWPU system avoided hydronephrosis and permitted the cloacas to differentiate well, with cloacal urine being excreted persistently through the recipient ureter. Finally, we demonstrated a viable preclinical application of the SWPU system in cloned pigs. The SWPU system also inhibited hydronephrosis in the pig study. To our knowledge, this is the first report showing that the SWPU system may resolve two important problems in the generation of kidneys from stem cells: construction of a urine excretion pathway and continued growth of the newly generated kidney. PMID:26392557

  11. An Entirely Cell-based System to Generate Single-Chain Antibodies Against Cell Surface Receptors

    PubMed Central

    Lipes, Barbara D.; Chen, Yu-Hsun; Ma, HongZheng; Staats, Herman F.; Kenan, Daniel J.; Gunn, Michael Dee

    2008-01-01

    Summary The generation of recombinant antibodies (Abs) using phage display is a proven method to obtain a large variety of Abs that bind with high affinity to a given antigen (Ag). Traditionally, the generation of single chain Abs depends on the use of recombinant proteins in several stages of the procedure. This can be a problem, especially in the case of cell surface receptors, because Abs generated and selected against recombinant proteins may not bind the same protein expressed on a cell surface in its native form and because the expression of some receptors as recombinant proteins is problematic. To overcome these difficulties, we developed a strategy to generate single chain Abs that does not require the use of recombinant protein at any stage of the procedure. In this strategy, stably transfected cells are used for the immunization of mice, measuring Ab responses to immunization, panning the phage library, high throughput screening of arrayed phage clones, and characterization of recombinant single chain variable regions (scFvs). This strategy was used to generate a panel of single chain Abs specific for the innate immunity receptor Toll-like receptor 2 (TLR2). Once generated, individual scFvs were subcloned into an expression vector allowing the production of recombinant Abs in insect cells, thus avoiding the contamination of recombinant Abs with microbial products. This cell-based system efficiently generates Abs that bind to native molecules on the cell surface, bypasses the requirement of recombinant protein production, and avoids risks of microbial component contamination. PMID:18455737

  12. Adaptation of core mechanisms to generate cell polarity

    PubMed Central

    Nelson, W. James

    2012-01-01

    Cell polarity is defined as asymmetry in cell shape, protein distributions and cell functions. It is characteristic of single-cell organisms, including yeast and bacteria, and cells in tissues of multi-cell organisms such as epithelia in worms, flies and mammals. This diversity raises several questions: do different cell types use different mechanisms to generate polarity, how is polarity signalled, how do cells react to that signal, and how is structural polarity translated into specialized functions? Analysis of evolutionarily diverse cell types reveals that cell-surface landmarks adapt core pathways for cytoskeleton assembly and protein transport to generate cell polarity. PMID:12700771

  13. Expression Profiling of Developing Zebrafish Retinal Cells.

    PubMed

    Mullally, Madelyn; Albrecht, Caitlin; Horton, Mary; Laboissonniere, Lauren A; Goetz, Jillian J; Chowdhury, Rebecca; Manning, Alicia; Wester, Andrea K; Bose, Quinton; Trimarchi, Jeffrey M

    2016-08-01

    During retinal development, a variety of different types of neurons are produced. Understanding how each of these types of retinal nerve cells is generated is important from a developmental biology perspective. It is equally important if one is interested in how to regenerate cells after an injury or a disease. To gain more insight into how retinal neurons develop in the zebrafish, we performed single-cell mRNA profiling and in situ hybridizations (ISHs) on retinal sections and whole-mount zebrafish. Through the series of ISHs, designed and performed solely by undergraduate students in the laboratory, we were able to retrospectively identify our single-cell mRNA profiles as most likely coming from developing amacrine cells. Further analysis of these profiles will reveal genes that can be mutated using genome editing techniques. Together these studies increase our knowledge of the genes driving development of different cell types in the zebrafish retina. PMID:26982811

  14. Future development of large superconducting generators

    SciTech Connect

    Singh, S.K.; Mole, C.J.

    1989-03-01

    Large superconducting generators are being developed worldwide. The use of superconductors to reduce the electrical power dissipation in power equipment has been a technological possibility ever since the discovery of superconductivity, even though their use in power equipment remained an impractical dream for a long time. However, scientific and technological progress in superconductivity and cryogenics has brought this dream much closer to reality. Results obtained so far establish the technical feasibility of these machines. Analytical developments have been providing a sound basis for the design of superconducting machines and results of these design studies have shown improvements in power density of up to a factor of 10 higher than the power density for conventional machines. This paper describes the recently completed USA programs, the current foreign and USA programs, and then proposes a USA development program to maintain leadership in the field.

  15. SNAP-8 electrical generating system development program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology was demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.

  16. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  17. U.S. distributed generation fuel cell program

    NASA Astrophysics Data System (ADS)

    Williams, M. C.; Strakey, J. P.; Singhal, Subhash C.

    The Department of Energy (DOE) is the largest funder of fuel cell technology in the U.S. The Department of Energy—Office of Fossil Energy (FE) is developing high temperature fuel cells for distributed generation. It has funded the development of tubular solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) power systems operating at up to 60% efficiency on natural gas. The remarkable environmental performance of these fuel cells makes them likely candidates to help mitigate pollution. DOE is now pursuing more widely applicable solid oxide fuel cells for 2010 and beyond. DOE estimates that a 5 kW solid oxide fuel cell system can reach $400 per kW at reasonable manufacturing volumes. SECA—the Solid State Energy Conversion Alliance—was formed by the National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) to accelerate the commercial readiness of planar and other solid oxide fuel cell systems utilizing 3-10 kW size modules by taking advantage of the projected economies of production from a "mass customization" approach. In addition, if the modular 3-10 kW size units can be "ganged" or "scaled-up" to larger sizes with no increase in cost, then commercial, microgrid, and other distributed generation markets will become attainable. Further scale-up and hybridization of SECA SOFCs with gas turbines could result in penetration of the bulk power market. This paper reviews the current status of the solid oxide and molten carbonate fuel cells in the U.S.

  18. Development of a downhole steam generator system

    SciTech Connect

    Not Available

    1984-04-01

    This report describes the development of a downhole steam generator system for use in enhanced oil recovery. The system is composed of four major components: A state-of-the-art review indicated that advances in technology would be necessary in two areas (high pressure combustion and high temperature packer seals) in order to fabricate a field-worthy system. As a result, two tasks were undertaken which resulted in the development of a novel ceramic-lined combustor and a unique all-metal packer. These elements were incorporated into an overall system design. Key system components were built and tested in the laboratory. The program culminated in a successful simulated downhole test of the entire system, less tube string, at Sandia National Laboratories. 5 references, 41 figures, 9 tables.

  19. Local biofuels power plants with fuel cell generators

    SciTech Connect

    Lindstroem, O.

    1996-12-31

    The fuel cell should be a most important option for Asian countries now building up their electricity networks. The fuel cell is ideal for the schemes for distributed generation which are more reliable and efficient than the centralized schemes so far favoured by the industrialized countries in the West. Not yet developed small combined cycle power plants with advanced radial gas turbines and compact steam turbines will be the competition. Hot combustion is favoured today but cold combustion may win in the long run thanks to its environmental advantages. Emission standards are in general determined by what is feasible with available technology. The simple conclusion is that the fuel cell has to prove that it is competitive to the turbines in cost engineering terms. A second most important requirement is that the fuel cell option has to be superior with respect to electrical efficiency.

  20. Regenerative medicine in Parkinson's disease: generation of mesencephalic dopaminergic cells from embryonic stem cells.

    PubMed

    Taylor, Hannah; Minger, Stephen L

    2005-10-01

    Cell replacement therapy has been proposed as a means of replacing specific populations of cells lost through trauma, disease or ageing. Parkinson's disease is a progressive neurodegenerative disorder caused by the loss of midbrain dopaminergic neurons. Intrastriatal transplants of human foetal mesencephalic tissue in Parkinson's patients have demonstrated clinical efficacy, but the limited availability of tissue precludes systematic use of this treatment. Human embryonic stem cells are capable of unlimited self-renewal and can differentiate into cells representative of all three germ layers, including cells of the central nervous system. These cells may thus provide a relatively unlimited source of cells for transplantation, if appropriate differentiation protocols to generate highly enriched and specific populations of neural cells can be developed. PMID:16143504

  1. Advanced-fuel-cell development

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.; Arons, R. M.; Dusek, J. T.; Fraioli, A. V.; Kucera, G. H.; Sim, J. W.; Smith, J. L.

    1982-08-01

    Fuel cell research and development activities are described. The efforts are directed toward: (1) understanding of component behavior in molten carbonate fuel cells, and (2) developing alternative concepts for components. The principal focus was on the development of sintered gamma LiAlO2 electrolyte supports, stable NiO cathodes, and hydrogen diffusion barriers. Cell tests were performed to assess diffusion barriers and to study cathode voltage relaxation following current interruption.

  2. Asymmetric cell division in plant development.

    PubMed

    Heidstra, Renze

    2007-01-01

    Plant embryogenesis creates a seedling with a basic body plan. Post-embryonically the seedling elaborates with a lifelong ability to develop new tissues and organs. As a result asymmetric cell divisions serve essential roles during embryonic and postembryonic development to generate cell diversity. This review highlights selective cases of asymmetric division in the model plant Arabidopsis thaliana and describes the current knowledge on fate determinants and mechanisms involved. Common themes that emerge are: 1. role of the plant hormone auxin and its polar transport machinery; 2. a MAP kinase signaling cascade and; 3. asymmetric segregating transcription factors that are involved in several asymmetric cell divisions. PMID:17585494

  3. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  4. A Progenitor Cell Expressing Transcription Factor RORγt Generates All Human Innate Lymphoid Cell Subsets.

    PubMed

    Scoville, Steven D; Mundy-Bosse, Bethany L; Zhang, Michael H; Chen, Li; Zhang, Xiaoli; Keller, Karen A; Hughes, Tiffany; Chen, Luxi; Cheng, Stephanie; Bergin, Stephen M; Mao, Hsiaoyin C; McClory, Susan; Yu, Jianhua; Carson, William E; Caligiuri, Michael A; Freud, Aharon G

    2016-05-17

    The current model of murine innate lymphoid cell (ILC) development holds that mouse ILCs are derived downstream of the common lymphoid progenitor through lineage-restricted progenitors. However, corresponding lineage-restricted progenitors in humans have yet to be discovered. Here we identified a progenitor population in human secondary lymphoid tissues (SLTs) that expressed the transcription factor RORγt and was unique in its ability to generate all known ILC subsets, including natural killer (NK) cells, but not other leukocyte populations. In contrast to murine fate-mapping data, which indicate that only ILC3s express Rorγt, these human progenitor cells as well as human peripheral blood NK cells and all mature ILC populations expressed RORγt. Thus, all human ILCs can be generated through an RORγt(+) developmental pathway from a common progenitor in SLTs. These findings help establish the developmental signals and pathways involved in human ILC development. PMID:27178467

  5. Entropy and heat generation of lithium cells/batteries

    NASA Astrophysics Data System (ADS)

    Songrui, Wang

    2016-01-01

    The methods and techniques commonly used in investigating the change of entropy and heat generation in Li cells/batteries are introduced, as are the measurements, calculations and purposes. The changes of entropy and heat generation are concomitant with the use of Li cells/batteries. In order to improve the management and the application of Li cells/batteries, especially for large scale power batteries, the quantitative investigations of the change of entropy and heat generating are necessary.

  6. Next-Generation Ion Propulsion Being Developed

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Soulas, George C.; Foster, John E.; Haag, Thomas W.; Pinero, Luis R.; Rawlin, Vincent K.; Doehne, S. Michelle

    2001-01-01

    The NASA Glenn Research Center ion-propulsion program addresses the need for high specific-impulse systems and technology across a broad range of mission applications and power levels. One activity is the development of the next-generation ion-propulsion system as a follow-on to the successful Deep Space 1 system. The system is envisioned to incorporate a lightweight ion engine that can operate over 1 to 10 kW, with a 550-kg propellant throughput capacity. The engine concept under development has a 40-cm beam diameter, twice the effective area of the Deep Space 1 engine. It incorporates mechanical features and operating conditions to maximize the design heritage established by the Deep Space 1 engine, while incorporating new technology where warranted to extend the power and throughput capability. Prototype versions of the engine have been fabricated and are under test at NASA, with an engineering model version in manufacturing. Preliminary performance data for the prototype engine have been documented over 1.1- to 7.3-kW input power. At 7.3 kW, the engine efficiency is 0.68, at 3615-sec specific impulse. Critical component temperatures, including those of the discharge cathode assembly and magnets, have been documented and are within established limits, with significant margins relative to the Deep Space 1 engine. The 1- to 10-kW ion thruster approach described here was found to provide the needed power and performance improvement to enable important NASA missions. The Integrated In-Space Transportation Planning (IISTP) studies compared many potential technologies for various NASA, Government, and commercial missions. These studies indicated that a high-power ion propulsion system is the most important technology for development because of its outstanding performance versus perceived development and recurring costs for interplanetary solar electric propulsion missions. One of the best applications of a highpower electric propulsion system was as an integral part

  7. Developing instrumentation to characterize thermoelectric generator modules

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Li, Qiming; Peng, Wenbo; Zhu, Lianjun; Gao, Hu; Meng, Qingsen; Jin, A. J.

    2015-03-01

    Based on the law of physics, known as "Seebeck effect," a thermoelectric generator (TEG) produces electricity when the temperature differential is applied across the TEG. This article reports a precision method in characterizing TEG modules. A precision instrument is constructed to study thermoelectric conversion in terms of output power and efficiency of TEG modules. The maximum allowable TEG module size is 150 mm, and the preferred size is from 30 mm to 60 mm. During measurements, the highest hot side temperature is 500 °C and the cold side temperature can be adjusted from room temperature to 100 °C. A mechanical structure is developed to control the pressure and parallelism of the clamping force of the TEG on both its hot and cold sides. A heat flux measurement module is installed at its cold side, and the heat flux through TEGs can be measured in position. Finally, the energy conversion efficiency of TEGs is calculated from experimental data of both an output power and a heat flux.

  8. Developing instrumentation to characterize thermoelectric generator modules.

    PubMed

    Liu, Dawei; Li, Qiming; Peng, Wenbo; Zhu, Lianjun; Gao, Hu; Meng, Qingsen; Jin, A J

    2015-03-01

    Based on the law of physics, known as "Seebeck effect," a thermoelectric generator (TEG) produces electricity when the temperature differential is applied across the TEG. This article reports a precision method in characterizing TEG modules. A precision instrument is constructed to study thermoelectric conversion in terms of output power and efficiency of TEG modules. The maximum allowable TEG module size is 150 mm, and the preferred size is from 30 mm to 60 mm. During measurements, the highest hot side temperature is 500 °C and the cold side temperature can be adjusted from room temperature to 100 °C. A mechanical structure is developed to control the pressure and parallelism of the clamping force of the TEG on both its hot and cold sides. A heat flux measurement module is installed at its cold side, and the heat flux through TEGs can be measured in position. Finally, the energy conversion efficiency of TEGs is calculated from experimental data of both an output power and a heat flux. PMID:25832254

  9. Development of tungsten-tantalum generator

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Babich, J.; Jhingran, S. G.

    1985-01-01

    The purpose of this project was to develop a useable tungsten (W)/tantalum (Ta) generator. Ta-178 is formed following the decay of its parent, W-178 (half-life: 21.7d) and has a half life of 9.3 minutes in turn yielding stable Hf-178. The decay of the parent isotope (W-178) occurs entirely by electron capture to the 9.3 minute Ta-178 state, without feeding the high spin Ta-178 isomer (half life 2.2 hours). In Ta-178 decay, 99.2% of the disintegrations proceed by electron capture and 0.18% by positron emission. Electron capture results in a 61.2% branch to the ground state of Hf-178 and 33.7% to the first excited state at 93 1KeV. The most prominent features of the radionuclide's energy spectrum are the hafnium characteristic radiation peaks with energies between 54.6 and 65.0 KeV. The radiation exposure dose of Ta-118 was calculated to be approximately one-twentieth that of Tc-99m on a per millicurie basis. A twenty-fold reduction in radiation exposure from Ta-178 compared with Tc-99m means that the usual administered dose can be increased three or four times, greatly increasing statistical accuracy while reducing radiation exposure by a factor of five.

  10. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2002-03-31

    This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

  11. Collective cell migration in development

    PubMed Central

    Scarpa, Elena

    2016-01-01

    During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective. PMID:26783298

  12. Retinoic Acid Promotes the Generation of Pancreatic Endocrine Progenitor Cells and Their Further Differentiation into β-Cells

    PubMed Central

    Öström, Maria; Loffler, Kelly A.; Edfalk, Sara; Selander, Lars; Dahl, Ulf; Ricordi, Camillo; Jeon, Jongmin; Correa-Medina, Mayrin; Diez, Juan; Edlund, Helena

    2008-01-01

    The identification of secreted factors that can selectively stimulate the generation of insulin producing β-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based β-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of β-cells during normal pancreatic development such putative factors may be identified. In the mouse, β-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of β-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when β-cells are generated. We also provide evidence that RA induces the generation of Ngn3+ endocrine progenitor cells and stimulates their further differentiation into β-cells by activating a program of cell differentiation that recapitulates the normal temporal program of β-cell differentiation. PMID:18665267

  13. Development of a generator stator insulation system

    NASA Astrophysics Data System (ADS)

    Buritz, R. S.

    1983-04-01

    The insulation of stator windings in generators is an old technology, dating to the turn of the century with kraft paper insulated, oil filled cables. Recently, two new classes of machines requiring much more advanced techniques of insulation have emerged. These generators are designed for relatively short duty in situations where light weight and small size are crucial to the overall mission, and mobility is a must. One class of machines uses superconducting windings to achieve small size. The other class consists of conventional generators designed to have extremely high power densities and specific powers. These machines represent a considerable engineering achievement, being significantly smaller than any previous generator. In one of these generators, manufactured by Bendix, substantial problems have been encountered in the stator winding insulation, because of the high fields dictated by the extremely high power density. This report presents the Hughes Aircraft Company approach and solution to these problems.

  14. Induced pluripotent stem cells generated without viral integration.

    PubMed

    Stadtfeld, Matthias; Nagaya, Masaki; Utikal, Jochen; Weir, Gordon; Hochedlinger, Konrad

    2008-11-01

    Pluripotent stem cells have been generated from mouse and human somatic cells by viral expression of the transcription factors Oct4, Sox2, Klf4, and c-Myc. A major limitation of this technology is the use of potentially harmful genome-integrating viruses. We generated mouse induced pluripotent stem (iPS) cells from fibroblasts and liver cells by using nonintegrating adenoviruses transiently expressing Oct4, Sox2, Klf4, and c-Myc. These adenoviral iPS (adeno-iPS) cells show DNA demethylation characteristic of reprogrammed cells, express endogenous pluripotency genes, form teratomas, and contribute to multiple tissues, including the germ line, in chimeric mice. Our results provide strong evidence that insertional mutagenesis is not required for in vitro reprogramming. Adenoviral reprogramming may provide an improved method for generating and studying patient-specific stem cells and for comparing embryonic stem cells and iPS cells. PMID:18818365

  15. Development of an Influenza A Master Virus for Generating High-Growth Reassortants for A/Anhui/1/2013(H7N9) Vaccine Production in Qualified MDCK Cells

    PubMed Central

    Suzuki, Yasushi; Odagiri, Takato; Tashiro, Masato; Nobusawa, Eri

    2016-01-01

    In 2013, the first case of human infection with an avian influenza A virus (H7N9) was reported in China, and the human infection with this virus has continued as of 2016. At the request of the WHO, we have successfully developed candidate reassortant vaccine virus using A/Anhui/1/2013 and the high egg-growth master virus A/PR/8/1934. Recent plans regarding influenza vaccine production include using cell-cultured systems in Japan and several other countries. However, egg-based vaccine viruses are not always suitable for cell-cultured vaccine production due to potential issues with growth, protein yield and antigenic stability. Therefore, in this study, we have developed a high-growth master virus (hg-PR8) adapted to qualified NIID-MDCK cells that are competent for vaccine production. The virus hg-PR8 was obtained after 20 serial passages of A/Puerto Rico/8/1934 (PR8) in NIID-MDCK cells. The viral titer of hg-PR8 was 108.6 plaque-forming units per milliliter (PFU/mL). Seven amino acid substitutions were identified in the amino acid sequences of PB2, PB1, PA, NA, M and NS of hg-PR8 compared to the sequence of the original PR8 (org-PR8) strain. The growth capacities of the reassortant viruses, which possess heterologous internal genes from hg-PR8 or org-PR8, indicated that the amino acid changes in PB2 and NS2 similarly affected growth capacity in NIID-MDCK cells. To assess the suitability of hg-PR8 as a master virus, we generated 6:2 reassortant viruses possessing the HA and NA segments from A/Anhui/1/2013 (H7N9) and the remaining segments from hg-PR8. The virus titers of the reassortant strains were 107−108 PFU/mL. The antigenicity of the viruses was stable during ten passages of the viruses in NIID-MDCK cells. In comparison with the egg-based reassortant vaccine viruses with identical HA and NA segments, the hg-PR8-based viruses showed 1.5- to 2-fold higher protein yields in NIID-MDCK cells. PMID:27454606

  16. Development of an Influenza A Master Virus for Generating High-Growth Reassortants for A/Anhui/1/2013(H7N9) Vaccine Production in Qualified MDCK Cells.

    PubMed

    Suzuki, Yasushi; Odagiri, Takato; Tashiro, Masato; Nobusawa, Eri

    2016-01-01

    In 2013, the first case of human infection with an avian influenza A virus (H7N9) was reported in China, and the human infection with this virus has continued as of 2016. At the request of the WHO, we have successfully developed candidate reassortant vaccine virus using A/Anhui/1/2013 and the high egg-growth master virus A/PR/8/1934. Recent plans regarding influenza vaccine production include using cell-cultured systems in Japan and several other countries. However, egg-based vaccine viruses are not always suitable for cell-cultured vaccine production due to potential issues with growth, protein yield and antigenic stability. Therefore, in this study, we have developed a high-growth master virus (hg-PR8) adapted to qualified NIID-MDCK cells that are competent for vaccine production. The virus hg-PR8 was obtained after 20 serial passages of A/Puerto Rico/8/1934 (PR8) in NIID-MDCK cells. The viral titer of hg-PR8 was 108.6 plaque-forming units per milliliter (PFU/mL). Seven amino acid substitutions were identified in the amino acid sequences of PB2, PB1, PA, NA, M and NS of hg-PR8 compared to the sequence of the original PR8 (org-PR8) strain. The growth capacities of the reassortant viruses, which possess heterologous internal genes from hg-PR8 or org-PR8, indicated that the amino acid changes in PB2 and NS2 similarly affected growth capacity in NIID-MDCK cells. To assess the suitability of hg-PR8 as a master virus, we generated 6:2 reassortant viruses possessing the HA and NA segments from A/Anhui/1/2013 (H7N9) and the remaining segments from hg-PR8. The virus titers of the reassortant strains were 107-108 PFU/mL. The antigenicity of the viruses was stable during ten passages of the viruses in NIID-MDCK cells. In comparison with the egg-based reassortant vaccine viruses with identical HA and NA segments, the hg-PR8-based viruses showed 1.5- to 2-fold higher protein yields in NIID-MDCK cells. PMID:27454606

  17. A simple and versatile microfluidic cell density gradient generator for quantum dot cytotoxicity assay.

    PubMed

    Wu, Jing; Chen, Qiushui; Liu, Wu; Lin, Jin-Ming

    2013-05-21

    In this work, a simple and versatile microfluidic cell density gradient generator was successfully developed for cytotoxicity of quantum dots (QDs) assay. The microfluidic cell density gradient generator is composed of eight parallel channels which are respectively surrounded by 1-8 microwells with optimized length and width. The cells fall into microwells by gravity and the cell densities are obviously dependent of microwell number. In a case study, HepG2 and MCF-7 cells were successfully utilized for generating cell density gradients on the microfluidic chip. The microfluidic cell density gradient generator was proved to be easily handled, cell-friendly and could be used to conduct the subsequent cell-based assay. As a proof-of-concept, QD cytotoxicity was evaluated and the results exhibited obvious cell density-dependence. For comparison, QD cytotoxicity was also investigated with a series of cell densities infused by pipette tips. Higher reproducibility was observed on the microfluidic cell density gradient generator and cell density was demonstrated to be a vital factor in cytotoxic study. With higher efficiency, controllability and reproducibility, the microfluidic cell density gradient generator could be integrated into microfluidic analysis systems to promote chip-based biological assay. PMID:23538998

  18. Generation of induced pluripotent stem cells from domestic goats.

    PubMed

    Sandmaier, Shelley E S; Nandal, Anjali; Powell, Anne; Garrett, Wesley; Blomberg, Leann; Donovan, David M; Talbot, Neil; Telugu, Bhanu P

    2015-09-01

    The creation of genetically modified goats provides a powerful approach for improving animal health, enhancing production traits, animal pharming, and for ensuring food safety all of which are high-priority goals for animal agriculture. The availability of goat embryonic stem cells (ESCs) that are characteristically immortal in culture would be of enormous benefit for developing genetically modified animals. As an alternative to long-sought goat ESCs, we generated induced pluripotent stem cells (iPSC) by forced expression of bovine POU5F1, SOX2, MYC, KLF4, LIN-28, and NANOG reprogramming factors in combination with a MIR302/367 cluster, delivered by lentiviral vectors. In order to minimize integrations, the reprogramming factor coding sequences were assembled with porcine teschovirus-1 2A (P2A) self-cleaving peptides that allowed for tri-cistronic expression from each vector. The lentiviral-transduced cells were cultured on irradiated mouse feeder cells in a semi-defined, serum-free medium containing fibroblast growth factor (FGF) and/or leukemia inhibitory factor (LIF). The resulting goat iPSC exhibit cell and colony morphology typical of human and mouse ESCs-that is, well-defined borders, a high nuclear-to-cytoplasmic ratio, a short cell-cycle interval, alkaline phosphatase expression, and the ability to generate teratomas in vivo. Additionally, these goat iPSC demonstrated the ability to differentiate into directed lineages in vitro. These results constitute the first steps in establishing integration and footprint-free iPSC from ruminants. Mol. Reprod. Dev. 82: 709-721, 2015. © 2015 Wiley Periodicals, Inc. PMID:26118622

  19. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells.

    PubMed

    Korytnikov, Roman; Nostro, Maria Cristina

    2016-05-15

    Generation of pancreatic β-cells from human pluripotent stem cells (hPSCs) has enormous importance in type 1 diabetes (T1D), as it is fundamental to a treatment strategy based on cellular therapeutics. Being able to generate β-cells, as well as other mature pancreatic cells, from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) will also enable the development of platforms that can be used for disease modeling and drug testing for a variety of pancreas-associated diseases, including cystic fibrosis. For this to occur, it is crucial to develop differentiation strategies that are robust and reproducible across cell lines and laboratories. In this article we describe two serum-free differentiation protocols designed to generate specific pancreatic lineages from hPSCs. Our approach employs a variety of cytokines and small molecules to mimic developmental pathways active during pancreatic organogenesis and allows for the in vitro generation of distinct pancreatic populations. The first protocol is designed to give rise to polyhormonal cells that have the potential to differentiate into glucagon-producing cells. The second protocol is geared to generate multipotent pancreatic progenitor cells, which harbor the potential to generate all pancreatic lineages including: monohormonal endocrine cells, acinar, and ductal cells. PMID:26515645

  20. EIDA Next Generation: ongoing and future developments

    NASA Astrophysics Data System (ADS)

    Strollo, Angelo; Quinteros, Javier; Sleeman, Reinoud; Trani, Luca; Clinton, John; Stammler, Klaus; Danecek, Peter; Pedersen, Helle; Ionescu, Constantin

    2015-04-01

    The European Integrated Data Archive (EIDA; http://www.orfeus-eu.org/eida/eida.html) is the distributed Data Centre system within ORFEUS, providing transparent access and services to high quality, seismic data across (currently) 9 large data archives in Europe. EIDA is growing, in terms of the number of participating data centres, the size of the archives, the variability of the data in the archives, the number of users, and the volume of downloads. The on-going success of EIDA is thus providing challenges that are the driving force behind the design of the next generation (NG) of EIDA, which is expected to be implemented within EPOS IP. EIDA ORFEUS must cope with further expansion of the system and more complex user requirements by developing new techniques and extended services. The EIDA NG is being designed to work on standard FDSN web services and two additional new web services: Routing Service and QC (quality controlled) service. This presentation highlights the challenges EIDA needs to address during the EPOS IP and focuses on these 2 new services. The Routing Service can be considered as the core of EIDA NG. It was designed to assist users and clients to locate data within a federated, decentralized data centre (e.g. EIDA). A detailed, FDSN-compliant specification of the service has been developed. Our implementation of this service will run at every EIDA node, but is also capable of running on a user's computer, allowing anyone to define virtual or integrate existing data centres. This (meta)service needs to be queried in order to locate the data. Some smart clients (in a beta status) have been also provided to offer the user an integrated view of the whole EIDA, hiding the complexity of its internal structure. The service is open and able to be queried by anyone without the need of credentials or authentication. The QC Service is developed to cope with user requirements to query for relevant data only. The web service provides detailed information on the

  1. Advanced-fuel-cell development

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.; Arons, R. M.; Dusek, J. T.; Fraioli, A. V.; Kucera, G. H.; Sim, J. W.; Smith, J. L.

    1982-06-01

    The fuel cell research and development activities at Argonne National Laboratory (ANL) for the period October through December 1980. These efforts have been directed toward (1) developing alternative concepts for components of molten carbonate fuel cells, and (2) improving understanding of component behavior. The principal focus has been on development of gamma-LiAlO2 sinters as electrolyte structures. Green bodies were prepared by tape casting and then sintering beta-LiAlO2; this has produced gamma-LiAlO2 sinters of 69% porosity. In addition, a cathode prepared by sintering lithiated nickel oxide was tested in a 10-cm square cell.

  2. 2nd Generation ELT Performance Specification Development

    NASA Technical Reports Server (NTRS)

    Stimson, Chad M.

    2015-01-01

    NASA Search And Rescue is supporting RTCA SC-229 with research and recommendations for performance specifications for the 2nd generation of emergency locator transmitters. Areas for improvement and methods for collecting data will be presented.

  3. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells

    PubMed Central

    Huang, Sarah X L; Green, Michael D; de Carvalho, Ana Toste; Mumau, Melanie; Chen, Ya-Wen; D’Souza, Sunita L.; Snoeck, Hans-Willem

    2015-01-01

    Lung and airway epithelial cells generated in vitro from human pluripotent stem cells have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of human pluripotent stem cells into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development and takes approximately 50 days. First, definitive endoderm is induced in the presence of high concentrations of Activin A. Subsequently, lung-biased anterior foregut endoderm is specified by sequential inhibition of BMP, TGF-β and Wnt signaling. Anterior foregut endoderm is then ventralized by applying Wnt, BMP, FGF and RA signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, c-AMP and glucocorticoid agonism. This protocol is conducted in defined conditions, does not involve genetic manipulation of the cells, and results in cultures where the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells. PMID:25654758

  4. Fuel cells: a survey of current developments

    NASA Astrophysics Data System (ADS)

    Cropper, Mark A. J.; Geiger, Stefan; Jollie, David M.

    Since the first practical uses of fuel cells were developed, it has become clear that they could find use in many products over a wide power range of milliwatts to tens of megawatts. Throughout the 1990s, and later, there has been significant work carried out on adapting the various different fuel cell technologies for use in targetted consumer and industrial applications. This paper discusses these developments and gives details on the specific market segments for providing power to vehicles, portable devices and large- and small-scale stationary power generation.

  5. Generation of Glycosylphosphatidylinositol Anchor Protein-Deficient Blood Cells From Human Induced Pluripotent Stem Cells

    PubMed Central

    Yuan, Xuan; Braunstein, Evan M.; Ye, Zhaohui; Liu, Cyndi F.; Chen, Guibin; Zou, Jizhong; Cheng, Linzhao

    2013-01-01

    PIG-A is an X-linked gene required for the biosynthesis of glycosylphosphatidylinositol (GPI) anchors; thus, PIG-A mutant cells have a deficiency or absence of all GPI-anchored proteins (GPI-APs). Acquired mutations in hematopoietic stem cells result in the disease paroxysmal nocturnal hemoglobinuria, and hypomorphic germline PIG-A mutations lead to severe developmental abnormalities, seizures, and early death. Human induced pluripotent stem cells (iPSCs) can differentiate into cell types derived from all three germ layers, providing a novel developmental system for modeling human diseases. Using PIG-A gene targeting and an inducible PIG-A expression system, we have established, for the first time, a conditional PIG-A knockout model in human iPSCs that allows for the production of GPI-AP-deficient blood cells. PIG-A-null iPSCs were unable to generate hematopoietic cells or any cells expressing the CD34 marker and were defective in generating mesodermal cells expressing KDR/VEGFR2 (kinase insert domain receptor) and CD56 markers. In addition, PIG-A-null iPSCs had a block in embryonic development prior to mesoderm differentiation that appears to be due to defective signaling through bone morphogenetic protein 4. However, early inducible PIG-A transgene expression allowed for the generation of GPI-AP-deficient blood cells. This conditional PIG-A knockout model should be a valuable tool for studying the importance of GPI-APs in hematopoiesis and human development. PMID:24113066

  6. Cell death in mammalian development.

    PubMed

    Penaloza, C; Orlanski, S; Ye, Y; Entezari-Zaher, T; Javdan, M; Zakeri, Z

    2008-01-01

    During embryogenesis there is an exquisite orchestration of cellular division, movement, differentiation, and death. Cell death is one of the most important aspects of organization of the developing embryo, as alteration in timing, level, or pattern of cell death can lead to developmental anomalies. Cell death shapes the embryo and defines the eventual functions of the organs. Cells die using different paths; understanding which path a dying cell takes helps us define the signals that regulate the fate of the cell. Our understanding of cell death in development stems from a number of observations indicating genetic regulation of the death process. With today's increased knowledge of the pathways of cell death and the identification of the genes whose products regulate the pathways we know that, although elimination of some of these gene products has no developmental phenotype, alteration of several others has profound effects. In this review we discuss the types and distributions of cell death seen in developing mammalian embryos as well as the gene products that may regulate the process. PMID:18220829

  7. Fuel cell development for transportation: Catalyst development

    SciTech Connect

    Doddapaneni, N.; Ingersoll, D.

    1996-12-31

    Fuel cells are being considered as alternative power sources for transportation and stationary applications. The degradation of commonly used electrode catalysts (e.g. Pt, Ag, and others) and corrosion of carbon substrates are making commercialization of fuel cells incorporating present day technologies economically problematic. Furthermore, due to the instability of the Pt catalyst, the performance of fuel cells declines on long-term operation. When methanol is used as the fuel, a voltage drop, as well as significant thermal management problems can be encountered, the later being due to chemical oxidation of methanol at the platinized carbon at the cathode. Though extensive work was conducted on platinized electrodes for both the oxidation and reduction reactions, due to the problems mentioned above, fuel cells have not been fully developed for widespread commercial use. Several investigators have previously evaluated metal macrocyclic complexes as alternative catalysts to Pt and Pt/Ru in fuel cells. Unfortunately, though they have demonstrated catalytic activity, these materials were found to be unstable on long term use in the fuel cell environment. In order to improve the long-term stability of metal macrocyclic complexes, we have chemically bonded these complexes to the carbon substrate, thereby enhancing their catalytic activity as well as their chemical stability in the fuel cell environment. We have designed, synthesized, and evaluated these catalysts for O{sub 2} reduction, H{sub 2} oxidation, and direct methanol oxidation in Proton Exchange Membrane (PEM) and aqueous carbonate fuel cells. These catalysts exhibited good catalytic activity and long-term stability. In this paper we confine our discussion to the initial performance results of some of these catalysts in H{sub 2}/O{sub 2} PEM fuel cells, including their long-term performance characteristics as well as CO poisoning effects on these catalysts.

  8. Generation of Viable Cell and Biomaterial Patterns by Laser Transfer

    NASA Astrophysics Data System (ADS)

    Ringeisen, Bradley

    2001-03-01

    In order to fabricate and interface biological systems for next generation applications such as biosensors, protein recognition microarrays, and engineered tissues, it is imperative to have a method of accurately and rapidly depositing different active biomaterials in patterns or layered structures. Ideally, the biomaterial structures would also be compatible with many different substrates including technologically relevant platforms such as electronic circuits or various detection devices. We have developed a novel laser-based technique, termed matrix assisted pulsed laser evaporation direct write (MAPLE DW), that is able to direct write patterns and three-dimensional structures of numerous biologically active species ranging from proteins and antibodies to living cells. Specifically, we have shown that MAPLE DW is capable of forming mesoscopic patterns of living prokaryotic cells (E. coli bacteria), living mammalian cells (Chinese hamster ovaries), active proteins (biotinylated bovine serum albumin, horse radish peroxidase), and antibodies specific to a variety of classes of cancer related proteins including intracellular and extracellular matrix proteins, signaling proteins, cell cycle proteins, growth factors, and growth factor receptors. In addition, patterns of viable cells and active biomolecules were deposited on different substrates including metals, semiconductors, nutrient agar, and functionalized glass slides. We will present an explanation of the laser-based transfer mechanism as well as results from our recent efforts to fabricate protein recognition microarrays and tissue-based microfluidic networks.

  9. Generating pancreatic beta-cells from embryonic stem cells by manipulating signaling pathways.

    PubMed

    Champeris Tsaniras, Spyridon; Jones, Peter M

    2010-07-01

    Type 1 diabetes results from an insufficiency of insulin production as a result of autoimmune destruction of the insulin-secreting pancreatic beta-cells. It can be treated by transplantation of islets of Langerhans from human donors, but widespread application of this therapy is restricted by the scarcity of donor tissue. Generation of functional beta-cells from embryonic stem (ES) cells in vitro could provide a source of an alternative graft material. Several ES cell differentiation protocols have reported the production of insulin-producing cells by mimicking the in vivo developmental stages of pancreatic organogenesis in which cells are transitioned through mesendoderm, definitive endoderm, foregut endoderm, pancreatic endoderm, and the endocrine precursor stage, until mature beta-cells are obtained. These studies provide proof of concept that recapitulating pancreatic development in vitro offers a useful strategy for generating beta-cells, but current differentiation protocols employ a bewildering variety of growth factors, mitogens, and pharmacological agents. In this review, we will attempt to clarify the functions of these agents in in vitro differentiation strategies by focusing on the intracellular signaling pathways through which they operate - phosphatidylinositol 3-kinase, transforming growth factor beta, Wnt/beta-catenin, Hedgehog, and Notch. PMID:20385725

  10. Endocrine Cell Clustering During Human Pancreas Development

    PubMed Central

    Jeon, Jongmin; Correa-Medina, Mayrin; Ricordi, Camillo; Edlund, Helena; Diez, Juan A.

    2009-01-01

    The development of efficient, reproducible protocols for directed in vitro differentiation of human embryonic stem (hES) cells into insulin-producing β cells will benefit greatly from increased knowledge regarding the spatiotemporal expression profile of key instructive factors involved in human endocrine cell generation. Human fetal pancreases 7 to 21 weeks of gestational age, were collected following consent immediately after pregnancy termination and processed for immunostaining, in situ hybridization, and real-time RT-PCR expression analyses. Islet-like structures appear from approximately week 12 and, unlike the mixed architecture observed in adult islets, fetal islets are initially formed predominantly by aggregated insulin- or glucagon-expressing cells. The period studied (7–22 weeks) coincides with a decrease in the proliferation and an increase in the differentiation of the progenitor cells, the initiation of NGN3 expression, and the appearance of differentiated endocrine cells. The present study provides a detailed characterization of islet formation and expression profiles of key intrinsic and extrinsic factors during human pancreas development. This information is beneficial for the development of efficient protocols that will allow guided in vitro differentiation of hES cells into insulin-producing cells. (J Histochem Cytochem 57:811–824, 2009) PMID:19365093

  11. Successful differentiation to T cells, but unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells.

    PubMed

    Wada, Haruka; Kojo, Satoshi; Kusama, Chie; Okamoto, Naoki; Sato, Yorino; Ishizuka, Bunpei; Seino, Ken-ichiro

    2011-01-01

    Forced expression of certain transcription factors in somatic cells results in generation of induced pluripotent stem (iPS) cells, which differentiate into various cell types. We investigated T-cell and B-cell lineage differentiation from iPS cells in vitro. To evaluate the impact of iPS cell source, murine splenic B-cell-derived iPS (B-iPS) cells were generated after retroviral transduction of four transcription factors (Oct4, Sox2, Klf4 and c-Myc). B-iPS cells were identical to embryonic stem (ES) cells and mouse embryonic fibroblast (MEF)-derived iPS cells in morphology, ES cell marker expression as well as teratoma and chimera mouse formation. Both B-iPS and MEF-derived iPS cells differentiated into lymphocytes in OP9 co-culture systems. Both efficiently differentiated into T-cell lineage that produced IFN-γ on T-cell receptor stimulation. However, iPS cells including B-iPS cells were relatively resistant to B-cell lineage differentiation. One of the reasons of the failure of B-cell lineage differentiation seemed due to a defect of Pax5 expression in the differentiated cells. Therefore, current in vitro differentiation systems using iPS cells are sufficient for inducing T-cell but not B-cell lineage. PMID:21135032

  12. Distributed generation system using wind/photovoltaic/fuel cell

    NASA Astrophysics Data System (ADS)

    Buasri, Panhathai

    This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.

  13. Generation of Murine Sympathoadrenergic Progenitor-Like Cells from Embryonic Stem Cells and Postnatal Adrenal Glands

    PubMed Central

    Saxena, Shobhit; Wahl, Joachim; Huber-Lang, Markus S.; Stadel, Dominic; Braubach, Peter; Debatin, Klaus-Michael; Beltinger, Christian

    2013-01-01

    Sympathoadrenergic progenitor cells (SAPs) of the peripheral nervous system (PNS) are important for normal development of the sympathetic PNS and for the genesis of neuroblastoma, the most common and often lethal extracranial solid tumor in childhood. However, it remains difficult to isolate sufficient numbers of SAPs for investigations. We therefore set out to improve generation of SAPs by using two complementary approaches, differentiation from murine embryonic stem cells (ESCs) and isolation from postnatal murine adrenal glands. We provide evidence that selecting for GD2 expression enriches for ESC-derived SAP-like cells and that proliferating SAP-like cells can be isolated from postnatal adrenal glands of mice. These advances may facilitate investigations about the development and malignant transformation of the sympathetic PNS. PMID:23675538

  14. Corner heating in rectangular solid oxide electrochemical cell generators

    DOEpatents

    Reichner, Philip

    1989-01-01

    Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.

  15. Microscale Strategies for Generating Cell-Encapsulating Hydrogels

    PubMed Central

    Selimović, Šeila; Oh, Jonghyun; Bae, Hojae; Dokmeci, Mehmet; Khademhosseini, Ali

    2013-01-01

    Hydrogels in which cells are encapsulated are of great potential interest for tissue engineering applications. These gels provide a structure inside which cells can spread and proliferate. Such structures benefit from controlled microarchitectures that can affect the behavior of the enclosed cells. Microfabrication-based techniques are emerging as powerful approaches to generate such cell-encapsulating hydrogel structures. In this paper we introduce common hydrogels and their crosslinking methods and review the latest microscale approaches for generation of cell containing gel particles. We specifically focus on microfluidics-based methods and on techniques such as micromolding and electrospinning. PMID:23626908

  16. Single module pressurized fuel cell turbine generator system

    DOEpatents

    George, Raymond A.; Veyo, Stephen E.; Dederer, Jeffrey T.

    2001-01-01

    A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

  17. ARPA advanced fuel cell development

    SciTech Connect

    Dubois, L.H.

    1995-08-01

    Fuel cell technology is currently being developed at the Advanced Research Projects Agency (ARPA) for several Department of Defense applications where its inherent advantages such as environmental compatibility, high efficiency, and low noise and vibration are overwhelmingly important. These applications range from man-portable power systems of only a few watts output (e.g., for microclimate cooling and as direct battery replacements) to multimegawatt fixed base systems. The ultimate goal of the ARPA program is to develop an efficient, low-temperature fuel cell power system that operates directly on a military logistics fuel (e.g., DF-2 or JP-8). The absence of a fuel reformer will reduce the size, weight, cost, and complexity of such a unit as well as increase its reliability. In order to reach this goal, ARPA is taking a two-fold, intermediate time-frame approach to: (1) develop a viable, low-temperature proton exchange membrane (PEM) fuel cell that operates directly on a simple hydrocarbon fuel (e.g., methanol or trimethoxymethane) and (2) demonstrate a thermally integrated fuel processor/fuel cell power system operating on a military logistics fuel. This latter program involves solid oxide (SOFC), molten carbonate (MCFC), and phosphoric acid (PAFC) fuel cell technologies and concentrates on the development of efficient fuel processors, impurity scrubbers, and systems integration. A complementary program to develop high performance, light weight H{sub 2}/air PEM and SOFC fuel cell stacks is also underway. Several recent successes of these programs will be highlighted.

  18. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells

    PubMed Central

    Dianat, Noushin; Dubois-Pot-Schneider, Hélène; Steichen, Clara; Desterke, Christophe; Leclerc, Philippe; Raveux, Aurélien; Combettes, Laurent; Weber, Anne; Corlu, Anne; Dubart-Kupperschmitt, Anne

    2014-01-01

    Cholangiocytes are biliary epithelial cells, which, like hepatocytes, originate from hepatoblasts during embryonic development. In this study we investigated the potential of human embryonic stem cells (hESCs) to differentiate into cholangiocytes and we report a new approach, which drives differentiation of hESCs toward the cholangiocytic lineage using feeder-free and defined culture conditions. After differentiation into hepatic progenitors, hESCs were differentiated further into cholangiocytes using growth hormone, epidermal growth factor, interleukin-6, and then sodium taurocholate. These conditions also allowed us to generate cholangiocytes from HepaRG-derived hepatoblasts. hESC- and HepaRG-derived cholangiocyte-like cells expressed markers of cholangiocytes including cytokeratin 7 and osteopontin, and the transcription factors SOX9 and hepatocyte nuclear factor 6. The cells also displayed specific proteins important for cholangiocyte functions including cystic fibrosis transmembrane conductance regulator, secretin receptor, and nuclear receptors. They formed primary cilia and also responded to hormonal stimulation by increase of intracellular Ca2+. We demonstrated by integrative genomics that the expression of genes, which signed hESC- or HepaRG-cholangiocytes, separates hepatocytic lineage from cholangiocyte lineage. When grown in a 3D matrix, cholangiocytes developed epithelial/apicobasal polarity and formed functional cysts and biliary ducts. In addition, we showed that cholangiocyte-like cells could also be generated from human induced pluripotent stem cells, demonstrating the efficacy of our approach with stem/progenitor cells of diverse origins. Conclusion: We have developed a robust and efficient method for differentiating pluripotent stem cells into cholangiocyte-like cells, which display structural and functional similarities to bile duct cells in normal liver. These cells will be useful for the in vitro study of the molecular mechanisms of bile duct

  19. Next generation limb development and evolution: old questions, new perspectives.

    PubMed

    Zuniga, Aimée

    2015-11-15

    The molecular analysis of limb bud development in vertebrates continues to fuel our understanding of the gene regulatory networks that orchestrate the patterning, proliferation and differentiation of embryonic progenitor cells. In recent years, systems biology approaches have moved our understanding of the molecular control of limb organogenesis to the next level by incorporating next generation 'omics' approaches, analyses of chromatin architecture, enhancer-promoter interactions and gene network simulations based on quantitative datasets into experimental analyses. This Review focuses on the insights these studies have given into the gene regulatory networks that govern limb development and into the fin-to-limb transition and digit reductions that occurred during the evolutionary diversification of tetrapod limbs. PMID:26577204

  20. High-Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.

  1. Lithium-Air Cell Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Dobley, Arthur; Seymour, Frasier W.

    2014-01-01

    Lithium-air (Li-air) primary batteries have a theoretical specific capacity of 11,400 Wh/kg, the highest of any common metal-air system. NASA is developing Li-air technology for a Mobile Oxygen Concentrator for Spacecraft Emergencies, an application which requires an extremely lightweight primary battery that can discharge over 24 hours continuously. Several vendors were funded through the NASA SBIR program to develop Li-air technology to fulfill the requirements of this application. New catalysts and carbon cathode structures were developed to enhance the oxygen reduction reaction and increase surface area to improve cell performance. Techniques to stabilize the lithium metal anode surface were explored. Experimental results for prototype laboratory cells are given. Projections are made for the performance of hypothetical cells constructed from the materials that were developed.

  2. Advance crew procedures development techniques: Procedures generation program requirements document

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Hawk, M. L.

    1974-01-01

    The Procedures Generation Program (PGP) is described as an automated crew procedures generation and performance monitoring system. Computer software requirements to be implemented in PGP for the Advanced Crew Procedures Development Techniques are outlined.

  3. Nanostructured photovoltaic devices for next generation solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin

    2008-10-01

    As the search for alternative sources of energy other than petroleum continues to expand, solar energy conversion has already been identified as one of the most promising technologies. In the past few years there has been extensive research focused on the next generation solar cells that can exceed the Shockley-Queisser limit (a model that predicts the maximum achievable efficiency for a given material with a given bandgap). Moreover, nanoengineering approaches to enhance solar power conversion efficiency have started to receive considerable interest. Even in the most efficient commercially available solar devices utilizing crystalline silicon, a major portion of the absorbed ultraviolet photon energy is wasted as heat. Furthermore, this heat is detrimental to device reliability. Colloidal nanocrystal quantum dots (NQDs) offer the exciting prospect of simultaneously manipulating device and material structures and processes to enable more efficient solar energy conversion. Most importantly, these colloidal nanocrystal quantum dots are amenable to inexpensive fabrication techniques such as dip coating or spray coating of the constituent nanoscale materials onto various substrates. This dissertation focuses on the development of nanostructured photovoltaic devices, that exhibit multiple exciton generation, and that exploit the wide absorption spectra enabled by the quantum dots for next generation highly efficient, low cost, solar cells. Firstly, multiple exciton generation and subsequent electrical extraction from a thin film photoconductive device constructed from PbSe NQDs is demonstrated. As an extension of this work, this PbSe NQD photoconductor was used in a tandem structure with a polymer solar cell to demonstrate multiple carrier extraction the application of an external electric field. This structure exhibited improved device durability from UV irradiation due to the self-passivating effect provided by the PbSe layer. In order to achieve better exciton

  4. Design and development of thermoelectric generator

    SciTech Connect

    Prem Kumar, D. S. Mahajan, Ishan Vardhan Anbalagan, R. Mallik, Ramesh Chandra

    2014-04-24

    In this paper we discuss the fabrication, working and characteristics of a thermoelectric generator made up of p and n type semiconductor materials. The device consists of Fe{sub 0.2}Co{sub 3.8}Sb{sub 11.5}Te{sub 0.5} (zT = 1.04 at 818 K) as the n-type and Zn4Sb3 (zT=0.8 at 550 K) as the p-type material synthesized by vacuum hot press method. Carbon paste has been used to join the semiconductor legs to metal (Molybdenum) electrodes to reduce the contact resistance. The multi-couple (4 legs) generator results a maximum output power of 1.083 mW at a temperature difference of 240 K between the hot and cold sides. In this investigation, an I-V characteristic, maximum output power of the thermoelectric module is presented. The efficiency of thermoelectric module is obtained as η = 0.273 %.

  5. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells

    SciTech Connect

    Machiguchi, Toshihiko Nakamura, Tatsuo

    2013-06-07

    Highlights: •We have attempted in vivo nephron generation using conditioned media. •Vascular and tubular cells do cross-talks on cell proliferation and tubular changes. •Tubular cells suppress these changes in mesenchymal stem cells. •Tubular cells differentiate mesenchymal stem cells into tubular cells. •Nephrons can be created from implanted tubular cells or mesenchymal stem cells. -- Abstract: There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues.

  6. Generation of Avian Induced Pluripotent Stem Cells.

    PubMed

    Lu, Yangqing; West, Franklin D; Jordan, Brian J; Beckstead, Robert B; Jordan, Erin T; Stice, Steven L

    2015-01-01

    Avian species are among the most diverse vertebrates on our planet and significantly contribute to the balance of the ecology. They are also important food source and serve as a central animal model to decipher developmental biology and disease principles. Derivation of induced pluripotent stem cells (iPSCs) from avian species would enable conservation of genetic diversity as well as offer a valuable cell source that facilitates the use of avian models in many areas of basic and applied research. In this chapter, we describe methods used to successfully reprogram quail fibroblasts into iPSCs by using human transcription factors and the techniques critical to the characterization of their pluripotency. PMID:26621592

  7. Generating AC With Rotating Solar Cells

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.

    1993-01-01

    Rotating solar photovoltaic cells or batteries connected to suitable mechanical and/or electronic commutators produce nearly sinusoidal alternating current. Eliminates need for inverter circuitry and its attendant power-consumption and heat-dissipation problems, but imposes need for low-power-consumption rotary mechanism. Intended for use aboard spacecraft, also useful in special terrestrial situations where solar electric power must be transmitted over powerlines from one remote location to another.

  8. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell

    NASA Astrophysics Data System (ADS)

    Kumai, Kazuma; Miyashiro, Hajime; Kobayashi, Yo; Takei, Katsuhito; Ishikawa, Rikio

    To elucidate the gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cells after long cycling, we developed a device which can accurately determine the volume of generated gas in the cell. Experiments on Li xC 6/Li 1- xCoO 2 cells using electrolytes such as 1 M LiPF 6 in propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) are presented and discussed. In the nominal voltage range (4.2-2.5 V), compositional change due mainly to ester exchange reaction occurs, and gaseous products in the cell are little. Generated gas volume and compositional change in the electrolyte are detected largely in overcharged cells, and we discussed that gas generation due to electrolyte decomposition involves different decomposition reactions in overcharged and overdischarged cells.

  9. Generation of induced pluripotent stem cells from the prairie vole.

    PubMed

    Manoli, Devanand S; Subramanyam, Deepa; Carey, Catriona; Sudin, Erik; Van Westerhuyzen, Julie A; Bales, Karen L; Blelloch, Robert; Shah, Nirao M

    2012-01-01

    The vast majority of animals mate more or less promiscuously. A few mammals, including humans, utilize more restrained mating strategies that entail a longer term affiliation with a single mating partner. Such pair bonding mating strategies have been resistant to genetic analysis because of a lack of suitable model organisms. Prairie voles are small mouse-like rodents that form enduring pair bonds in the wild as well as in the laboratory, and consequently they have been used widely to study social bonding behavior. The lack of targeted genetic approaches in this species however has restricted the study of the molecular and neural circuit basis of pair bonds. As a first step in rendering the prairie vole amenable to reverse genetics, we have generated induced pluripotent stem cell (IPSC) lines from prairie vole fibroblasts using retroviral transduction of reprogramming factors. These IPSC lines display the cellular and molecular hallmarks of IPSC cells from other organisms, including mice and humans. Moreover, the prairie vole IPSC lines have pluripotent differentiation potential since they can give rise to all three germ layers in tissue culture and in vivo. These IPSC lines can now be used to develop conditions that facilitate homologous recombination and eventually the generation of prairie voles bearing targeted genetic modifications to study the molecular and neural basis of pair bond formation. PMID:22675440

  10. Hamiltonian Description of Convective-cell Generation

    SciTech Connect

    J.A. Krommes and R.A. Kolesnikov

    2004-03-11

    The nonlinear statistical growth rate eq for convective cells driven by drift-wave (DW) interactions is studied with the aid of a covariant Hamiltonian formalism for the gyrofluid nonlinearities. A statistical energy theorem is proven that relates eq to a second functional tensor derivative of the DW energy. This generalizes to a wide class of systems of coupled partial differential equations a previous result for scalar dynamics. Applications to (i) electrostatic ion-temperature-gradient-driven modes at small ion temperature, and (ii) weakly electromagnetic collisional DW's are noted.

  11. Generation of diverse neural cell types through direct conversion

    PubMed Central

    Petersen, Gayle F; Strappe, Padraig M

    2016-01-01

    A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace, thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost. The process of neural direct conversion, in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency, shows great potential, with evidence of the generation of a range of functional neural cell types both in vitro and in vivo, through viral and non-viral delivery of exogenous factors, as well as chemical induction methods. Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells, with prospective roles in the investigation of neurological disorders, including neurodegenerative disease modelling, drug screening, and cellular replacement for regenerative medicine applications, however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option. In this review, we describe the generation of diverse neural cell types via direct conversion of somatic cells, with comparison against stem cell-based approaches, as well as discussion of their potential research and clinical applications. PMID:26981169

  12. Generation of ESC-derived Mouse Airway Epithelial Cells Using Decellularized Lung Scaffolds.

    PubMed

    Shojaie, Sharareh; Lee, Joyce; Wang, Jinxia; Ackerley, Cameron; Post, Martin

    2016-01-01

    Lung lineage differentiation requires integration of complex environmental cues that include growth factor signaling, cell-cell interactions and cell-matrix interactions. Due to this complexity, recapitulation of lung development in vitro to promote differentiation of stem cells to lung epithelial cells has been challenging. In this protocol, decellularized lung scaffolds are used to mimic the 3-dimensional environment of the lung and generate stem cell-derived airway epithelial cells. Mouse embryonic stem cell are first differentiated to the endoderm lineage using an embryoid body (EB) culture method with activin A. Endoderm cells are then seeded onto decellularized scaffolds and cultured at air-liquid interface for up to 21 days. This technique promotes differentiation of seeded cells to functional airway epithelial cells (ciliated cells, club cells, and basal cells) without additional growth factor supplementation. This culture setup is defined, serum-free, inexpensive, and reproducible. Although there is limited contamination from non-lung endoderm lineages in culture, this protocol only generates airway epithelial populations and does not give rise to alveolar epithelial cells. Airway epithelia generated with this protocol can be used to study cell-matrix interactions during lung organogenesis and for disease modeling or drug-discovery platforms of airway-related pathologies such as cystic fibrosis. PMID:27214388

  13. Generation of Human iNKT Cell Lines

    PubMed Central

    Li, Xiangming; Tsuji, Moriya; Schneck, Jonathan; Webb, Tonya J.

    2016-01-01

    Natural killer T (NKT) cells comprise an important immunoregulatory T cell subset and express cell surface proteins characteristic of both natural killer cells and T cells. Invariant NKT (iNKT) cells are activated by lipid antigen presented in the context of CD1d molecules, in contrast to classic T cell subsets, which recognize peptide antigens presented by MHC molecules. Following activation, iNKT cells rapidly secrete large amounts of cytokines and can lyse tumor cells and virally infected cells; however, iNKT cells are reduced in patients with autoimmune disease and cancer. The potential to characterize and investigate the prospective use of iNKT cells for therapeutic purposes has significantly increased with the ability to stimulate and expand human iNKT cells. In this protocol, we describe a method to generate and propagate primary human iNKT cells. Specifically, primary iNKT cells were isolated from human peripheral blood mononuclear cells (PBMC), and then expanded periodically with irradiated α-GalCer loaded autologous immature dendritic cells (DC) in the presence of human IL-2.

  14. Generation of cardiac pacemaker cells by programming and differentiation.

    PubMed

    Husse, Britta; Franz, Wolfgang-Michael

    2016-07-01

    A number of diseases are caused by faulty function of the cardiac pacemaker and described as "sick sinus syndrome". The medical treatment of sick sinus syndrome with electrical pacemaker implants in the diseased heart includes risks. These problems may be overcome via "biological pacemaker" derived from different adult cardiac cells or pluripotent stem cells. The generation of cardiac pacemaker cells requires the understanding of the pacing automaticity. Two characteristic phenomena the "membrane-clock" and the "Ca(2+)-clock" are responsible for the modulation of the pacemaker activity. Processes in the "membrane-clock" generating the spontaneous pacemaker firing are based on the voltage-sensitive membrane ion channel activity starting with slow diastolic depolarization and discharging in the action potential. The influence of the intracellular Ca(2+) modulating the pacemaker activity is characterized by the "Ca(2+)-clock". The generation of pacemaker cells started with the reprogramming of adult cardiac cells by targeted induction of one pacemaker function like HCN1-4 overexpression and enclosed in an activation of single pacemaker specific transcription factors. Reprogramming of adult cardiac cells with the transcription factor Tbx18 created cardiac cells with characteristic features of cardiac pacemaker cells. Another key transcription factor is Tbx3 specifically expressed in the cardiac conduction system including the sinoatrial node and sufficient for the induction of the cardiac pacemaker gene program. For a successful cell therapeutic practice, the generated cells should have all regulating mechanisms of cardiac pacemaker cells. Otherwise, the generated pacemaker cells serve only as investigating model for the fundamental research or as drug testing model for new antiarrhythmics. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel

  15. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    NASA Technical Reports Server (NTRS)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  16. Developing the next generation of nurse scientists.

    PubMed

    Burkhart, Patricia V; Hall, Lynne A

    2015-01-01

    This article describes an undergraduate nursing research internship program in which students are engaged in research with a faculty mentor. Since 2002, more than 130 undergraduate nursing students have participated. Interns coauthored publications, presented papers and posters at conferences, and received awards. This highly successful program provides a model that can be easily replicated to foster the development of future nurse scientists. PMID:25581434

  17. Generation of Gene Knockout Mice by ES Cell Microinjection

    PubMed Central

    Longenecker, Glenn; Kulkarni, Ashok B

    2009-01-01

    This unit lists and describes protocols used in the production of chimeric mice leading to the generation of gene knockout mice. These protocols include the collection of blastocyst embryos, ES cell injection, and uterine transfer of injected blastocysts. Support protocols in the superovulation of blastocyst donor mice, generation of pseudopregnant recipients, fabrication of glass pipettes, and generation of germline mice are also included. Practical tips and solutions are mentioned to help troubleshoot problems that may occur. PMID:19731226

  18. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  19. D-D neutron generator development at LBNL.

    PubMed

    Reijonen, J; Gicquel, F; Hahto, S K; King, M; Lou, T-P; Leung, K-N

    2005-01-01

    The plasma and ion source technology group in Lawrence Berkeley National Laboratory is developing advanced, next generation D-D neutron generators. There are three distinctive developments, which are discussed in this presentation, namely, multi-stage, accelerator-based axial neutron generator, high-output co-axial neutron generator and point source neutron generator. These generators employ RF-induction discharge to produce deuterium ions. The distinctive feature of RF-discharge is its capability to generate high atomic hydrogen species, high current densities and stable and long-life operation. The axial neutron generator is designed for applications that require fast pulsing together with medium to high D-D neutron output. The co-axial neutron generator is aimed for high neutron output with cw or pulsed operation, using either the D-D or D-T fusion reaction. The point source neutron generator is a new concept, utilizing a toroidal-shaped plasma generator. The beam is extracted from multiple apertures and focus to the target tube, which is located at the middle of the generator. This will generate a point source of D-D, T-T or D-T neutrons with high output flux. The latest development together with measured data will be discussed in this article. PMID:15975804

  20. Career Development in Generation X. Myths and Realities.

    ERIC Educational Resources Information Center

    Lankard, Bettina A.

    Several myths relate to the question of whether Generation X, the population cohort following the Baby Boomers, has different values, work ethics, and attitudes toward work and career development. The first myth is that individuals in Generation X are slackers, lacking career drive and ambition. The reality is that Generation X may just view the…

  1. Solution processing of next-generation nanocrystal solar cells

    NASA Astrophysics Data System (ADS)

    van Embden, J.; Chesman, A. S. R.; Duffy, N. W.; Della Gaspera, E.; Jasieniak, J. J.

    2013-12-01

    Next-generation solar cells will be fabricated from low-cost and earth abundant elements, using processes that are amenable to printing on a variety of light-weight substrates. The utilization of compositionally and structurally controlled colloidal nanocrystals as building blocks for such devices fulfills these criteria. Our recent efforts in developing kesterite Cu2ZnSnS4 (CZTS) nanocrystals, one of the most promising materials to emerge in this area, enable the deposition of CZTS thin-films directly from a variety of solution-processed methods. Nanocrystalline thin films possess poor electronic properties, which precludes their use in solar cell devices. In order to overcome this, thermal treatment steps under an atmosphere of vaporous selenium are applied to induce large scale crystallite growth and the production of selenized CZTSSe films. This process results in a highly photoactive p-type layer. The n-type cadmium sulfide layer is also deposited from solution using chemical bath deposition. We will discuss each of these accomplishments in detail, highlighting the significant challenges that need to be overcome in order to fabricate working CZTSSe thin film solar cells.

  2. Germline Competent Pluripotent Mouse Stem Cells Generated by Plasmid Vectors.

    PubMed

    Chen, Chien-Hong; Su, Yu-Hsiu; Lee, Kun-Hsiung; Chuang, Chin-Kai

    2016-07-01

    We developed nonintegrated methods to reprogram mouse embryonic fibroblast (MEF) cells into induced pluripotent stem cells (iPSCs) using pig pOct4, pSox2, and pc-Myc as well as human hKLF4, hAID, and hTDG that were carried by plasmid vectors. The 4F method employed pOct4, pSox2, pc-Myc, and hKLF4 to derive iPSC clones with naive embryonic stem cell (ESC)-like morphology. These 4F clones expressed endogenous mouse Nanog protein and could generate chimeras. In addition to the four conventional reprogramming factors used in the 4F method, hAID and hTDG were utilized in a 6F method to increase the conversion efficiency of reprogramming by approximately five-fold. One of the 6F plasmid derived iPSC (piPSC) clones was shown to be germline transmission competent. PMID:26980563

  3. Generation of kidney organoids from human pluripotent stem cells.

    PubMed

    Takasato, Minoru; Er, Pei X; Chiu, Han S; Little, Melissa H

    2016-09-01

    The human kidney develops from four progenitor populations-nephron progenitors, ureteric epithelial progenitors, renal interstitial progenitors and endothelial progenitors-resulting in the formation of maximally 2 million nephrons. Until recently, the reported methods differentiated human pluripotent stem cells (hPSCs) into either nephron progenitor or ureteric epithelial progenitor cells, consequently forming only nephrons or collecting ducts, respectively. Here we detail a protocol that simultaneously induces all four progenitors to generate kidney organoids within which segmented nephrons are connected to collecting ducts and surrounded by renal interstitial cells and an endothelial network. As evidence of functional maturity, proximal tubules within organoids display megalin-mediated and cubilin-mediated endocytosis, and they respond to a nephrotoxicant to undergo apoptosis. This protocol consists of 7 d of monolayer culture for intermediate mesoderm induction, followed by 18 d of 3D culture to facilitate self-organizing renogenic events leading to organoid formation. Personnel experienced in culturing hPSCs are required to conduct this protocol. PMID:27560173

  4. Generation of Induced Pluripotent Stem (iPS) Cells by Nuclear Reprogramming

    PubMed Central

    Dey, Dilip; Evans, Gregory R. D.

    2011-01-01

    During embryonic development pluripotency is progressively lost irreversibly by cell division, differentiation, migration and organ formation. Terminally differentiated cells do not generate other kinds of cells. Pluripotent stem cells are a great source of varying cell types that are used for tissue regeneration or repair of damaged tissue. The pluripotent stem cells can be derived from inner cell mass of blastocyte but its application is limited due to ethical concerns. The recent discovery of iPS with defined reprogramming factors has initiated a flurry of works on stem cell in various laboratories. The pluripotent cells can be derived from various differentiated adult cells as well as from adult stem cells by nuclear reprogramming, somatic cell nuclear transfer etc. In this review article, different aspects of nuclear reprogramming are discussed. PMID:22007240

  5. Spiral actin-polymerization waves can generate amoeboidal cell crawling

    NASA Astrophysics Data System (ADS)

    Dreher, A.; Aranson, I. S.; Kruse, K.

    2014-05-01

    Amoeboidal cell crawling on solid substrates is characterized by protrusions that seemingly appear randomly along the cell periphery and drive the cell forward. For many cell types, it is known that the protrusions result from polymerization of the actin cytoskeleton. However, little is known about how the formation of protrusions is triggered and whether the appearance of subsequent protrusions is coordinated. Recently, the spontaneous formation of actin-polymerization waves was observed. These waves have been proposed to orchestrate the cytoskeletal dynamics during cell crawling. Here, we study the impact of cytoskeletal polymerization waves on cell migration using a phase-field approach. In addition to directionally moving cells, we find states reminiscent of amoeboidal cell crawling. In this framework, new protrusions are seen to emerge from a nucleation process, generating spiral actin waves in the cell interior. Nucleation of new spirals does not require noise, but occurs in a state that is apparently displaying spatio-temporal chaos.

  6. Microbes and B cell development.

    PubMed

    Wesemann, Duane R

    2015-01-01

    Animals and many of their chronic microbial inhabitants form relationships of symbiotic mutualism, which occurs when coexisting life-forms derive mutual benefit from stable associations. While microorganisms receive a secure habitat and constant food source from vertebrate hosts, they are required for optimal immune system development and occupy niches otherwise abused by pathogens. Microbes have also been shown to provide vertebrate hosts with metabolic capabilities that enhance energy and nutrient uptake from the diet. The immune system plays a central role in the establishment and maintenance of host-microbe homeostasis, and B lineage cells play a key role in this regulation. Here, I reviewed the structure and function of the microbiota and the known mechanisms of how nonpathogenic microbes influence B cell biology and immunoglobulin repertoire development early in life. I also discuss what is known about how B lineage cells contribute to the process of shaping the composition of commensal/mutualistic microbe membership. PMID:25591467

  7. Generation of Human Melanocytes from Induced Pluripotent Stem Cells

    PubMed Central

    Okada, Yohei; Akamatsu, Wado; Kuwahara, Reiko; Ohyama, Manabu; Amagai, Masayuki; Matsuzaki, Yumi; Yamanaka, Shinya; Okano, Hideyuki; Kawakami, Yutaka

    2011-01-01

    Epidermal melanocytes play an important role in protecting the skin from UV rays, and their functional impairment results in pigment disorders. Additionally, melanomas are considered to arise from mutations that accumulate in melanocyte stem cells. The mechanisms underlying melanocyte differentiation and the defining characteristics of melanocyte stem cells in humans are, however, largely unknown. In the present study, we set out to generate melanocytes from human iPS cells in vitro, leading to a preliminary investigation of the mechanisms of human melanocyte differentiation. We generated iPS cell lines from human dermal fibroblasts using the Yamanaka factors (SOX2, OCT3/4, and KLF4, with or without c-MYC). These iPS cell lines were subsequently used to form embryoid bodies (EBs) and then differentiated into melanocytes via culture supplementation with Wnt3a, SCF, and ET-3. Seven weeks after inducing differentiation, pigmented cells expressing melanocyte markers such as MITF, tyrosinase, SILV, and TYRP1, were detected. Melanosomes were identified in these pigmented cells by electron microscopy, and global gene expression profiling of the pigmented cells showed a high similarity to that of human primary foreskin-derived melanocytes, suggesting the successful generation of melanocytes from iPS cells. This in vitro differentiation system should prove useful for understanding human melanocyte biology and revealing the mechanism of various pigment cell disorders, including melanoma. PMID:21249204

  8. Extrathymic development of murine T cells after bone marrow transplantation

    PubMed Central

    Holland, Amanda M.; Zakrzewski, Johannes L.; Tsai, Jennifer J.; Hanash, Alan M.; Dudakov, Jarrod A.; Smith, Odette M.; West, Mallory L.; Singer, Natalie V.; Brill, Jessie; Sun, Joseph C.; van den Brink, Marcel R.M.

    2012-01-01

    Restoring T cell competence is a significant clinical challenge in patients whose thymic function is severely compromised due to age or cytoreductive conditioning. Here, we demonstrate in mice that mesenteric LNs (MLNs) support extrathymic T cell development in euthymic and athymic recipients of bone marrow transplantation (BMT). Furthermore, in aged murine BMT recipients, the contribution of the MLNs to the generation of T cells was maintained, while the contribution of the thymus was significantly impaired. Thymic impairment resulted in a proportional increase in extrathymic-derived T cell progenitors. Extrathymic development in athymic recipients generated conventional naive TCRαβ T cells with a broad Vβ repertoire and intact functional and proliferative potential. Moreover, in the absence of a functional thymus, immunity against known pathogens could be augmented using engineered precursor T cells with viral specificity. These findings demonstrate the potential of extrathymic T cell development for T cell reconstitution in patients with limited thymic function. PMID:23160195

  9. Method for generating hydrogen for fuel cells

    DOEpatents

    Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael

    2004-03-30

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  10. Teaching Generation Text: Using Cell Phones to Enhance Learning

    ERIC Educational Resources Information Center

    Nielsen, Lisa; Webb, Willyn

    2011-01-01

    "Teaching Generation Text" shows how teachers can turn cell phones into an educational opportunity instead of an annoying distraction. With a host of innovative ideas, activities, lessons, and strategies, Nielsen and Webb offer a unique way to use students' preferred method of communication in the classroom. Cell phones can remind students to…

  11. Induced Pluripotent Stem Cells: Generation Strategy and Epigenetic Mystery behind Reprogramming

    PubMed Central

    Ji, Pengfei; Manupipatpong, Sasicha; Xie, Nina; Li, Yujing

    2016-01-01

    Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC), have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (de)differentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs), generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety. PMID:26880993

  12. Compost in plant microbial fuel cell for bioelectricity generation.

    PubMed

    Moqsud, M A; Yoshitake, J; Bushra, Q S; Hyodo, M; Omine, K; Strik, David

    2015-02-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells (PMFCs) in soil mixed with compost. A total of six buckets filled with the same soil were used with carbon fiber as the electrodes for the test. Rice plants were planted in five of the buckets, with the sixth bucket containing only soil and an external resistance of 100 ohm was used for all cases. It was observed that the cells with rice plants and compost showed higher values of voltage and power density with time. The highest value of voltage showed around 700 mV when a rice plant with 1% compost mixed soil was used, however it was more than 95% less in the case of no rice plant and without compost. Comparing cases with and without compost but with the same number of rice plants, cases with compost depicted higher voltage to as much as 2 times. The power density was also 3 times higher when the compost was used in the paddy PMFCs which indicated the influence of compost on bio-electricity generation. PMID:25443096

  13. Advanced Cell Development and Degradation Studies

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; R. C. O'Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  14. Generation of iPS Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors.

    PubMed

    Su, Ruijun Jeanna; Neises, Amanda; Zhang, Xiao-Bing

    2016-01-01

    Peripheral blood is the easy-to-access, minimally invasive, and the most abundant cell source to use for cell reprogramming. The episomal vector is among the best approaches for generating integration-free induced pluripotent stem (iPS) cells due to its simplicity and affordability. Here we describe the detailed protocol for the efficient generation of integration-free iPS cells from peripheral blood mononuclear cells. With this optimized protocol, one can readily generate hundreds of iPS cell colonies from 1 ml of peripheral blood. PMID:25403468

  15. Developing the Next Generation of Geoscientists

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Kopplin, M. R.

    2012-12-01

    The Monitoring Seasons Through Global Learning Communities (Seasons and Biomes), an inquiry- and project- based program, works with K-12 teachers and their students worldwide to increase awareness and understanding of the Earth as a system, and the science process. Seasons and Biomes is one of four GLOBE (Global learning and Observations to Benefit the Environment, www.globe.gov) earth system science projects. Seasons and Biomes engage students in ongoing research investigations as way of learning science. We do this by conducting for teachers, professional development workshops that incorporate science content, best teaching practices (that include inquiry, integrating science with math, language and art, authentic assessments, concept mapping), a model for student scientific research, and an earth system science approach. Teachers learn and practice standardized measurement protocols developed by GLOBE in the following areas of investigations: atmosphere, hydrology, soils, phenology and land cover/biology, as well as those developed by Seasons and Biomes on ice seasonality (freeze-up and break-up of rivers and lakes), active layer/depth of soil freezing (frost tube), mosquitoes (larvae abundance and identification of mosquito vectors for malaria and dengue fever) and plant invasive species. They also learn how to enter data as well as access data on the GLOBE website. Teachers in turn teach and work with their students in doing authentic science, contribute data to ongoing research as well as conduct their own studies. During the workshops we also provide guidance and opportunity for early career scientists to share their research, work with teachers and mentor them as well as to develop measurement protocols pertinent to their research. Similarly we work with GLOBE Alumni, students who were in the GLOBE program when they were in primary and/or secondary schools and have graduated from college, yet are still very much inspired and dedicated to working with

  16. Cell adhesion molecules involved in intrathymic T cell development.

    PubMed

    Patel, D D; Haynes, B F

    1993-08-01

    During stem cell migration to the thymus, intrathymic maturation of T cells, and emigration of mature T cells out of the thymus, intercellular interactions of developing T cells with a myriad of cell types are required for normal T cell development. Intercellular interactions of T cell precursors with endothelial cells, thymic epithelial cells, fibroblasts, thymic macrophages and dendritic cells are all mediated by adhesion molecules on immature T cells binding to ligands on thymic microenvironment cells. While many receptor-ligand interactions that are important in intrathymic T cell development are known, the adhesion molecules that are important for migration of T cell precursors to the thymus and for emigration of mature thymocytes from the thymus are poorly understood. An emerging concept is that select adhesion molecules at discrete stages of T cell maturation participate in and regulate the complex processes of T cell development. PMID:7693023

  17. Next Generation Bipolar Plates for Automotive PEM Fuel Cells

    SciTech Connect

    Adrianowycz, Orest; Norley, Julian; Stuart, David J; Flaherty, David; Wayne, Ryan; Williams, Warren; Tietze, Roger; Nguyen, Yen-Loan H; Zawodzinski, Tom; Pietrasz, Patrick

    2010-04-15

    The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into bipolar plates by GrafTech. Stack testing was done on a 10-cell full-sized stack under a simulated drive cycle protocol by Ballard Power Systems. Freeze-thaw performance was conducted by Ballard on a separate 5-cell stack and shown to be within specification. A third stack was assembled and shipped to Argonne National Laboratory for independent performance verification. Manufacturing cost estimate for the production of the new bipolar plate composite at current and high volume production scenarios was performed by Directed Technologies Inc. (DTI). The production cost estimates were consistent with previous DoE cost estimates performed by DTI for the

  18. Generation of induced pluripotent stem cells from human blood.

    PubMed

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage. PMID:19299331

  19. Status of the development of solid polymer electrolyte water electrolysis for large scale hydrogen generation

    NASA Astrophysics Data System (ADS)

    Russell, J. H.

    1982-02-01

    Solid polymer electrolyte water electrolysis for large scale hydrogen generation is reported. The program was aimed at performance improvement. Reductions in cell impedance were demonstrated which improve cell performance by over 100 mV. A prototype 500 SCFH system for field evaluation was developed.

  20. Indomethacin augments lymphokine-activated killer cell generation by patients with malignant mesothelioma

    SciTech Connect

    Manning, L.S.; Bowman, R.V.; Davis, M.R.; Musk, A.W.; Robinson, B.W. )

    1989-10-01

    Human malignant mesothelioma (MM) cells are resistant to natural killer (NK) cell lysis but susceptible to lysis by lymphokine-activated killer (LAK) cells from control individuals. The present study was performed to determine the capacity of patients with MM (n = 22) and individuals occupationally exposed to asbestos (the major population at risk of developing this disease, n = 52) to generate LAK cells capable of effectively lysing human mesothelioma cells. Compared to controls (n = 20), both patient groups demonstrated significantly depressed LAK cell activity against mesothelioma tumor cell targets (55 +/- 3% lysis by controls vs 34 +/- 3% lysis by patients with MM, P less than 0.005; and 45 +/- 3% lysis by asbestos-exposed individuals, P less than 0.025). Addition of 10 micrograms/ml indomethacin during LAK cell generation restored normal LAK cell activity for patients with MM (52 +/- 6% lysis of cultured human MM cells, P = NS compared to controls), suggesting that the defective cytolytic cell function observed in some patients with MM is a result of prostaglandin-induced immunosuppression. The ability of indomethacin to restore suppressed LAK cell activity in patients with MM suggests that the concomitant use of this agent in ex vivo LAK cell generation and in patients undergoing interleukin/LAK cell therapy may be beneficial.

  1. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  2. Development of concentrator solar cells

    SciTech Connect

    Not Available

    1994-08-01

    A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

  3. Generating patterns from fields of cells. Examples from Drosophila segmentation.

    PubMed

    Sanson, B

    2001-12-01

    In Drosophila, a cascade of maternal, gap, pair-rule and segment polarity genes subdivides the antero/posterior axis of the embryo into repeating segmental stripes. This review summarizes what happens next, i.e. how an intrasegmental pattern is generated and controls the differentiation of specific cell types in the epidermis. Within each segment, cells secreting the signalling molecules Wingless (the homologue of vertebrate Wnt-1) and Hedgehog are found in narrow stripes on both sides of the parasegmental boundary. The Wingless and Hedgehog organizing activities help to establish two more stripes per segment that localize ligands for the Epidermal Growth Factor and the Notch signalling pathways, respectively. These four signals then act at short range and in concert to control epidermal differentiation at the single cell level across the segment. This example from Drosophila provides a paradigm for how organizers generate precise patterns, and ultimately different cell types, in a naïve field of cells. PMID:11743020

  4. Dynamics of Cell Generation and Turnover in the Human Heart.

    PubMed

    Bergmann, Olaf; Zdunek, Sofia; Felker, Anastasia; Salehpour, Mehran; Alkass, Kanar; Bernard, Samuel; Sjostrom, Staffan L; Szewczykowska, Mirosława; Jackowska, Teresa; Dos Remedios, Cris; Malm, Torsten; Andrä, Michaela; Jashari, Ramadan; Nyengaard, Jens R; Possnert, Göran; Jovinge, Stefan; Druid, Henrik; Frisén, Jonas

    2015-06-18

    The contribution of cell generation to physiological heart growth and maintenance in humans has been difficult to establish and has remained controversial. We report that the full complement of cardiomyocytes is established perinataly and remains stable over the human lifespan, whereas the numbers of both endothelial and mesenchymal cells increase substantially from birth to early adulthood. Analysis of the integration of nuclear bomb test-derived (14)C revealed a high turnover rate of endothelial cells throughout life (>15% per year) and more limited renewal of mesenchymal cells (<4% per year in adulthood). Cardiomyocyte exchange is highest in early childhood and decreases gradually throughout life to <1% per year in adulthood, with similar turnover rates in the major subdivisions of the myocardium. We provide an integrated model of cell generation and turnover in the human heart. PMID:26073943

  5. IL-10-producing regulatory B10 cells ameliorate collagen-induced arthritis via suppressing Th17 cell generation.

    PubMed

    Yang, Min; Deng, Jun; Liu, Yang; Ko, King-Hung; Wang, Xiaohui; Jiao, Zhijun; Wang, Shengjun; Hua, Zichun; Sun, Lingyun; Srivastava, Gopesh; Lau, Chak-Sing; Cao, Xuetao; Lu, Liwei

    2012-06-01

    IL-10-producing CD1d(hi)CD5(+) B cells, also known as B10 cells, have been shown to possess a regulatory function in the inhibition of immune responses, but whether and how B10 cells suppress the development of autoimmune arthritis remain largely unclear. In this study, we detected significantly decreased numbers of IL-10-producing B cells, but increased IL-17-producing CD4(+) T (Th17) cells in both spleen and draining lymph nodes of mice during the acute stage of collagen-induced arthritis (CIA) when compared with adjuvant-treated control mice. On adoptive transfer of in vitro expanded B10 cells, collagen-immunized mice showed a marked delay of arthritis onset with reduced severity of both clinical symptoms and joint damage, accompanied by a substantial reduction in the number of Th17 cells. To determine whether B10 cells directly inhibit the generation of Th17 cells in culture, naive CD4(+) T cells labeled with carboxyfluorescein succinimidyl ester (CFSE) were co-cultured with B10 cells. These B10 cells suppressed Th17 cell differentiation via the reduction of STAT3 phosphorylation and retinoid-related orphan receptor γt (RORγt) expression. Moreover, Th17 cells showed significantly decreased proliferation when co-cultured with B10 cells. Although adoptive transfer of Th17 cells triggered the development of collagen-induced arthritis in IL-17(-/-)DBA/1J mice, co-transfer of B10 cells with Th17 cells profoundly delayed the onset of arthritis. Thus, our findings suggest a novel regulatory role of B10 cells in arthritic progression via the suppression of Th17 cell generation. PMID:22538089

  6. Generating a Non-Integrating Human Induced Pluripotent Stem Cell Bank from Urine-Derived Cells

    PubMed Central

    Xue, Yanting; Cai, Xiujuan; Wang, Linli; Liao, Baojian; Zhang, Hui; Shan, Yongli; Chen, Qianyu; Zhou, Tiancheng; Li, Xirui; Hou, Jundi; Chen, Shubin; Luo, Rongping; Qin, Dajiang; Pei, Duanqing; Pan, Guangjin

    2013-01-01

    Induced pluripotent stem cell (iPS cell) holds great potential for applications in regenerative medicine, drug discovery, and disease modeling. We describe here a practical method to generate human iPS cells from urine-derived cells (UCs) under feeder-free, virus-free, serum-free condition and without oncogene c-MYC. We showed that this approach could be applied in a large population with different genetic backgrounds. UCs are easily accessible and exhibit high reprogramming efficiency, offering advantages over other cell types used for the purpose of iPS generation. Using the approach described in this study, we have generated 93 iPS cell lines from 20 donors with diverse genetic backgrounds. The non-viral iPS cell bank with these cell lines provides a valuable resource for iPS cells research, facilitating future applications of human iPS cells. PMID:23940595

  7. mTORC2 in Thymic Epithelial Cells Controls Thymopoiesis and T Cell Development.

    PubMed

    Wang, Hong-Xia; Cheng, Joyce S; Chu, Shuai; Qiu, Yu-Rong; Zhong, Xiao-Ping

    2016-07-01

    Thymic epithelial cells (TECs) play important roles in T cell generation. Mechanisms that control TEC development and function are still not well defined. The mammalian or mechanistic target of rapamycin complex (mTORC)2 signals to regulate cell survival, nutrient uptake, and metabolism. We report in the present study that mice with TEC-specific ablation of Rictor, a critical and unique adaptor molecule in mTORC2, display thymic atrophy, which accompanies decreased TEC numbers in the medulla. Moreover, generation of multiple T cell lineages, including conventional TCRαβ T cells, regulatory T cells, invariant NKT cells, and TCRγδ T cells, was reduced in TEC-specific Rictor-deficient mice. Our data demonstrate that mTORC2 in TECs is important for normal thymopoiesis and efficient T cell generation. PMID:27233961

  8. Development of endosperm transfer cells in barley

    PubMed Central

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC

  9. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells

    PubMed Central

    Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders. PMID:24468981

  10. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair-specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders.

  11. Generation of Induced Pluripotent Stem Cells from Conjunctiva

    PubMed Central

    Yang, Jin; Li, Yao; Erol, Deniz; Wu, Wen-Hsuan; Tsai, Yi-Ting; Li, Xiao-Rong; Davis, Richard J.; Tsang, Stephen H.

    2014-01-01

    Purpose The objective of this study was to determine whether cells from the conjunctiva could be reprogrammed into induced pluripotent stem (iPS) cells, providing an alternative source of stem cells. Methods We employed a doxycycline induced reprogrammable mouse strain to generate iPS cells from conjunctiva. The identity of the stem cells was confirmed by Reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence assays. Immunocytochemistry and teratoma assays are established means for scoring stem cell pluripotency. The reprogramming efficiencies of conjunctiva cells and ear fibroblasts were compared. Results We confirmed the identity of the stem cells and demonstrated expression of pluripotency markers (OCT4, SOX2, NANOG, and SSEA1), as tested by RT-PCR and immunofluorescence assays. In addition, derived iPS cells differentiated successfully into embryoid bodies and showed teratoma formation when injected into immunodeficient mice. Reprogramming conjunctival tissue is as efficient as reprogramming ear fibroblasts. Conjunctiva-iPS exhibited classic features of embryonic stem (ES) cells with respect to morphology, expression of surface antigens and pluripotency-associated transcription factors, capacity to differentiate in vitro, and the ability to form all three germ layers in vivo. Conclusion The present study demonstrated that conjunctival cells, which are readily obtained during the course of many routine conjunctival biopsies and ophthalmic procedures, can be another reliable source of iPS cells. PMID:24492934

  12. Development status of solid polymer electrolyte water electrolysis for large scale hydrogen generation

    NASA Astrophysics Data System (ADS)

    Russell, J. H.

    1981-03-01

    Solid polymer water electrolysis technology for large scale hydrogen generation is reviewed. A hydrogen generator module, capable of producing 2000 SCFH, was operated successfully for over 700 hours in the 200 kW system. Test results and further information are presented. Technology development was continued in support of improving both capital cost and conversion efficiency. Progress made in the development of the 10 sq ft active area cell included completion of the initial design, the beginning of fabrication development, and installation of new facilities for cell manufacture.

  13. Inactivation of Geminin in neural crest cells affects the generation and maintenance of enteric progenitor cells, leading to enteric aganglionosis.

    PubMed

    Stathopoulou, Athanasia; Natarajan, Dipa; Nikolopoulou, Pinelopi; Patmanidi, Alexandra L; Lygerou, Zoi; Pachnis, Vassilis; Taraviras, Stavros

    2016-01-15

    Neural crest cells comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types, during vertebrate development. Enteric Nervous System controls the function of the gastrointestinal tract and is mainly derived from the vagal and sacral neural crest cells. Deregulation on self-renewal and differentiation of the enteric neural crest cells is evident in enteric nervous system disorders, such as Hirschsprung disease, characterized by the absence of ganglia in a variable length of the distal bowel. Here we show that Geminin is essential for Enteric Nervous System generation as mice that lacked Geminin expression specifically in neural crest cells revealed decreased generation of vagal neural crest cells, and enteric neural crest cells (ENCCs). Geminin-deficient ENCCs showed increased apoptosis and decreased cell proliferation during the early stages of gut colonization. Furthermore, decreased number of committed ENCCs in vivo and the decreased self-renewal capacity of enteric progenitor cells in vitro, resulted in almost total aganglionosis resembling a severe case of Hirschsprung disease. Our results suggest that Geminin is an important regulator of self-renewal and survival of enteric nervous system progenitor cells. PMID:26658318

  14. Development and Test of a Prototype 100MVA Superconducting Generator

    SciTech Connect

    Fogarty, James M.; Bray, James W.

    2007-05-25

    In 2002, General Electric and the US Department of Energy (DOE) entered into a cooperative agreement for the development of a commercialized 100 MVA generator using high temperature superconductors (HTS) in the field winding. The intent of the program was to: • Identify and develop technologies that would be needed for such a generator. • Develop conceptual designs for generators with ratings of 100 MVA and higher using HTS technology. • Perform proof of concept tests at the 1.5 MW level for GE’s proprietary warm iron rotor HTS generator concept. • Design, build, and test a prototype of a commercially viable 100 MVA generator that could be placed on the power grid. This report summarizes work performed during the program and is provided as one of the final program deliverables.

  15. Exo70 Generates Membrane Curvature for Morphogenesis and Cell Migration

    PubMed Central

    Zhao, Yuting; Liu, Jianglan; Yang, Changsong; Capraro, Benjamin R.; Baumgart, Tobias; Bradley, Ryan P.; Ramakrishnan, N.; Xu, Xiaowei; Radhakrishnan, Ravi; Svitkina, Tatyana; Guo, Wei

    2013-01-01

    Dynamic shape changes of the plasma membrane are fundamental to many processes ranging from morphogenesis and cell migration to phagocytosis and viral propagation. Here we demonstrate that Exo70, a component of the exocyst complex, induces tubular membrane invaginations towards the lumen of synthetic vesicles in vitro and generates protrusions on the surface of cells. Biochemical analyses using Exo70 mutants and independent molecular dynamics simulations based on Exo70 structure demonstrate that Exo70 generates negative membrane curvature through an oligomerization-based mechanism. In cells, the membrane-deformation function of Exo70 is required for protrusion formation and directional cell migration. Exo70 thus represents a membrane-bending protein that may couple actin dynamics and plasma membrane remodeling for morphogenesis. PMID:23948253

  16. Generation of Megakaryocytes and Platelets from Human Pluripotent Stem Cells.

    PubMed

    Pick, Marjorie

    2016-01-01

    Human pluripotent stem cells (hPSC) have the potential to produce any tissue type in the body and thus represent a source of cells for regenerative medicine. Here we have shown that human platelets can be produced from embryonic or induced pluripotent stem cells in a defined culture system. We describe a serum- and feeder-free culture system that enabled the generation of megakaryocyte (Mk) progenitors and functional platelets from hPSCs. After 13 days the differentiated population included precursor cells that formed colonies containing differentiated Mks, and after 20 days these Mks were able to fragment into platelet-like particles that were functional. This protocol represents an important step towards the generation of human platelets for therapeutic use. PMID:24297316

  17. Neoplastic development in plasma cells.

    PubMed

    Potter, Michael

    2003-08-01

    An increasing number of model systems of plasma cell tumor (PCT) formation have been and are being developed. Discussed here are six models in mice and multiple myeloma (MM) in humans. Each model illustrates a unique set of biological factors. There are two general types of model systems: those that depend upon naturally arising mutagenic changes (pristane-induced PCTs, 5TMM, and MM) and those that are associated with oncogenes (Emu-v-abl), growth factors [interleukin-6 (IL-6)], and anti-apoptotic factors (Bcl-xL/Bcl-2). PCTs develop in several special tissue microenvironments that provide essential cytokines (IL-6) and cell-cell interactions. In mice, the activation and deregulation of c-myc by chromosomal translocations is a major feature in many of the models. This mechanism is much less a factor in MM and the 5T model in mice. Genetically determined susceptibility is involved in many of the mouse models, but only a few genes have been implicated thus far. PMID:12846815

  18. Developments and trends in three-dimensional mesh generation

    NASA Technical Reports Server (NTRS)

    Baker, Timothy J.

    1989-01-01

    An intense research effort over the last few years has produced several competing and apparently diverse methods for generating meshes. Recent progress is reviewed and the central themes are emphasized which form a solid foundation for future developments in mesh generation.

  19. INTERFERON REGULATORY FACTOR 4 AND 8 IN B CELL DEVELOPMENT

    PubMed Central

    Lu, Runqing

    2010-01-01

    IRF4 and 8 are members of the interferon regulatory factor family of transcription factors and have been shown to be essential for the development and function of T cells, macrophages and dendritic cells. A series of recent studies have further demonstrated critical functions for IRF4 and 8 at several stages of B cell development including pre-B cell development, receptor editing, germinal center reaction and plasma cell generation. Collectively, these new studies provide molecular insights into the function of IRF4 and 8 and underscore a requirement for IRF4 and 8 throughout B cell development. This review focuses on the recent advances on roles of IRF4 and 8 in B cell development. PMID:18775669

  20. Efficient Generation of Cardiac Purkinje Cells from ESCs by Activating cAMP Signaling

    PubMed Central

    Tsai, Su-Yi; Maass, Karen; Lu, Jia; Fishman, Glenn I.; Chen, Shuibing; Evans, Todd

    2015-01-01

    Summary Dysfunction of the specialized cardiac conduction system (CCS) is associated with life-threatening arrhythmias. Strategies to derive CCS cells, including rare Purkinje cells (PCs), would facilitate models for mechanistic studies and drug discovery and also provide new cellular materials for regenerative therapies. A high-throughput chemical screen using CCS:lacz and Contactin2:egfp (Cntn2:egfp) reporter embryonic stem cell (ESC) lines was used to discover a small molecule, sodium nitroprusside (SN), that efficiently promotes the generation of cardiac cells that express gene profiles and generate action potentials of PC-like cells. Imaging and mechanistic studies suggest that SN promotes the generation of PCs from cardiac progenitors initially expressing cardiac myosin heavy chain and that it does so by activating cyclic AMP signaling. These findings provide a strategy to derive scalable PCs, along with insight into the ontogeny of CCS development. PMID:26028533

  1. Electrochemical machining development for turbine generator rotor slots. Final report

    SciTech Connect

    Not Available

    1984-03-01

    The Electrochemical Machining Development for Turbine Generator Rotor Slots was initiated to provide a viable alternative to conventional machining of slots in conventional rotor forging materials and in advanced metallurgical alloys. ECM was selected because it is a stress-free machining process and is insensitive to material hardness. ECM concepts were developed and reviewed with ECM consultants prior to development work.

  2. Cell fate control in the developing central nervous system

    SciTech Connect

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  3. Fuel cell development for transportation: Catalyst development

    SciTech Connect

    Doddapaneni, N.

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  4. Cyclic AMP Signaling through Epac Axis Modulates Human Hemogenic Endothelium and Enhances Hematopoietic Cell Generation.

    PubMed

    Saxena, Shobhit; Rönn, Roger E; Guibentif, Carolina; Moraghebi, Roksana; Woods, Niels-Bjarne

    2016-05-10

    Hematopoietic cells emerge from hemogenic endothelium in the developing embryo. Mechanisms behind human hematopoietic stem and progenitor cell development remain unclear. Using a human pluripotent stem cell differentiation model, we report that cyclic AMP (cAMP) induction dramatically increases HSC-like cell frequencies. We show that hematopoietic cell generation requires cAMP signaling through the Exchange proteins activated by cAMP (cAMP-Epac) axis; Epac signaling inhibition decreased both hemogenic and non-hemogenic endothelium, and abrogated hematopoietic cell generation. Furthermore, in hematopoietic progenitor and stem-like cells, cAMP induction mitigated oxidative stress, created a redox-state balance, and enhanced C-X-C chemokine receptor type 4 (CXCR4) expression, benefiting the maintenance of these primitive cells. Collectively, our study provides insights and mechanistic details on the previously unrecognized role of cAMP signaling in regulating human hematopoietic development. These findings advance the mechanistic understanding of hematopoietic development toward the development of transplantable human hematopoietic cells for therapeutic needs. PMID:27117782

  5. Dynamic ordering of early generated striatal cells destined to form the striosomal compartment of the striatum.

    PubMed

    Newman, Helen; Liu, Fu-Chin; Graybiel, Ann M

    2015-04-15

    The mature striatum is divided into a labyrinthine system of striosomes embedded in a surrounding matrix compartment. We pulse-labeled striosomal cells (S cells) and matrix cells (M cells) in cats with (3) H-thymidine and followed their distributions during fetal and postnatal development. We identified three maturational phases in S-cell distributions. The early phase (sampled at embryonic day [E]27-E35 following E24-E28 (3) H-thymidine) was characterized by a transient medial accumulation of synchronously generated S cells within the caudate nucleus adjoining the ganglionic eminence, potentially a waiting compartment. Band-like arrangements of synchronously generated S cells then formed beyond this medial band. During the second phase (sampled at E38-E45), the loosely banded S-cell distributions were transformed into clustered arrangements typical of developing striosomes. In the third phase (sampled from E52 into the postnatal period), these developed into the typical mature striosomal architecture. At adulthood, gentle mediolateral birthdate-gradients in S cells were still evident, but M cells, produced over mid to late prenatal ages, became broadly distributed, without apparent gradients or banding arrangements. These findings suggest that the maturational histories of the striosomal and matrix neurons are influenced by their generation times and local environments, and that future S cells have transient, nonstriosomal distributions prior to their aggregation into striosomal clusters, including a putative waiting compartment. Further, the eventual patterning of the striosomal compartment reflects outside-in, band-like gradient patterns of settling of synchronously generated S cells, patterns that could be related both to neural processing in the mature striatum and to patterns of vulnerability of striatal neurons. PMID:25521072

  6. Generation of BAC reporter cell lines for drug discovery.

    PubMed

    Kao, Betty R; McColl, Bradley; Vadolas, Jim

    2015-01-01

    Bacterial artificial chromosome (BAC) reporter cell lines are generated through stable transfection of a BAC reporter construct wherein the gene of interest is tagged with a reporter gene such as eGFP. The large capacity of BACs (up to 350 kb of genomic sequence) enables the inclusion of all regulatory elements that ensure appropriate regulation of the gene of interest. Furthermore, the reporter gene allows the expression of the gene of interest to be readily detected by flow cytometry. Cell lines can also be easily cultured for extended periods with minimal cost. These features of BAC reporter cell lines make them highly amenable for use in high-throughput screening of large drug libraries for compounds that induce the expression of the gene of interest. This chapter describes a method for generation of BAC reporter cell lines that are suitable as cellular assay systems in high-throughput screening. Briefly, this method involves (A) generation of cell clones stably transfected with a BAC reporter construct, (B) selection of "candidate" cell clones based on the responsiveness to known inducers, (C) confirmation of the integrity of the BAC reporter construct integrated within the candidate clones, and (D) assessment of the developmental regulation of the BAC reporter construct. As an example, we describe the generation of a BAC reporter cell line containing the human β-globin locus modified to express γ-globin as eGFP for use as a cellular reporter assay for screening of drugs that can reactivate expression of developmentally silenced γ-globin for the treatment of β-hemoglobin disorders. PMID:25239756

  7. Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells

    PubMed Central

    Liu, Xiao-Ping; Koehler, Karl R.; Mikosz, Andrew M.; Hashino, Eri; Holt, Jeffrey R.

    2016-01-01

    Inner ear sensory epithelia contain mechanosensitive hair cells that transmit information to the brain through innervation with bipolar neurons. Mammalian hair cells do not regenerate and are limited in number. Here we investigate the potential to generate mechanosensitive hair cells from mouse embryonic stem cells in a three-dimensional (3D) culture system. The system faithfully recapitulates mouse inner ear induction followed by self-guided development into organoids that morphologically resemble inner ear vestibular organs. We find that organoid hair cells acquire mechanosensitivity equivalent to functionally mature hair cells in postnatal mice. The organoid hair cells also progress through a similar dynamic developmental pattern of ion channel expression, reminiscent of two subtypes of native vestibular hair cells. We conclude that our 3D culture system can generate large numbers of fully functional sensory cells which could be used to investigate mechanisms of inner ear development and disease as well as regenerative mechanisms for inner ear repair. PMID:27215798

  8. Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells.

    PubMed

    Liu, Xiao-Ping; Koehler, Karl R; Mikosz, Andrew M; Hashino, Eri; Holt, Jeffrey R

    2016-01-01

    Inner ear sensory epithelia contain mechanosensitive hair cells that transmit information to the brain through innervation with bipolar neurons. Mammalian hair cells do not regenerate and are limited in number. Here we investigate the potential to generate mechanosensitive hair cells from mouse embryonic stem cells in a three-dimensional (3D) culture system. The system faithfully recapitulates mouse inner ear induction followed by self-guided development into organoids that morphologically resemble inner ear vestibular organs. We find that organoid hair cells acquire mechanosensitivity equivalent to functionally mature hair cells in postnatal mice. The organoid hair cells also progress through a similar dynamic developmental pattern of ion channel expression, reminiscent of two subtypes of native vestibular hair cells. We conclude that our 3D culture system can generate large numbers of fully functional sensory cells which could be used to investigate mechanisms of inner ear development and disease as well as regenerative mechanisms for inner ear repair. PMID:27215798

  9. Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling.

    PubMed

    Matsumoto, Takuya; Fujimori, Koki; Andoh-Noda, Tomoko; Ando, Takayuki; Kuzumaki, Naoko; Toyoshima, Manabu; Tada, Hirobumi; Imaizumi, Kent; Ishikawa, Mitsuru; Yamaguchi, Ryo; Isoda, Miho; Zhou, Zhi; Sato, Shigeto; Kobayashi, Tetsuro; Ohtaka, Manami; Nishimura, Ken; Kurosawa, Hiroshi; Yoshikawa, Takeo; Takahashi, Takuya; Nakanishi, Mahito; Ohyama, Manabu; Hattori, Nobutaka; Akamatsu, Wado; Okano, Hideyuki

    2016-03-01

    Modeling of neurological diseases using induced pluripotent stem cells (iPSCs) derived from the somatic cells of patients has provided a means of elucidating pathogenic mechanisms and performing drug screening. T cells are an ideal source of patient-specific iPSCs because they can be easily obtained from samples. Recent studies indicated that iPSCs retain an epigenetic memory relating to their cell of origin that restricts their differentiation potential. The classical method of differentiation via embryoid body formation was not suitable for T cell-derived iPSCs (TiPSCs). We developed a neurosphere-based robust differentiation protocol, which enabled TiPSCs to differentiate into functional neurons, despite differences in global gene expression between TiPSCs and adult human dermal fibroblast-derived iPSCs. Furthermore, neurons derived from TiPSCs generated from a juvenile patient with Parkinson's disease exhibited several Parkinson's disease phenotypes. Therefore, we conclude that TiPSCs are a useful tool for modeling neurological diseases. PMID:26905201

  10. Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling

    PubMed Central

    Matsumoto, Takuya; Fujimori, Koki; Andoh-Noda, Tomoko; Ando, Takayuki; Kuzumaki, Naoko; Toyoshima, Manabu; Tada, Hirobumi; Imaizumi, Kent; Ishikawa, Mitsuru; Yamaguchi, Ryo; Isoda, Miho; Zhou, Zhi; Sato, Shigeto; Kobayashi, Tetsuro; Ohtaka, Manami; Nishimura, Ken; Kurosawa, Hiroshi; Yoshikawa, Takeo; Takahashi, Takuya; Nakanishi, Mahito; Ohyama, Manabu; Hattori, Nobutaka; Akamatsu, Wado; Okano, Hideyuki

    2016-01-01

    Summary Modeling of neurological diseases using induced pluripotent stem cells (iPSCs) derived from the somatic cells of patients has provided a means of elucidating pathogenic mechanisms and performing drug screening. T cells are an ideal source of patient-specific iPSCs because they can be easily obtained from samples. Recent studies indicated that iPSCs retain an epigenetic memory relating to their cell of origin that restricts their differentiation potential. The classical method of differentiation via embryoid body formation was not suitable for T cell-derived iPSCs (TiPSCs). We developed a neurosphere-based robust differentiation protocol, which enabled TiPSCs to differentiate into functional neurons, despite differences in global gene expression between TiPSCs and adult human dermal fibroblast-derived iPSCs. Furthermore, neurons derived from TiPSCs generated from a juvenile patient with Parkinson's disease exhibited several Parkinson's disease phenotypes. Therefore, we conclude that TiPSCs are a useful tool for modeling neurological diseases. PMID:26905201

  11. Generation of leukotrienes by purified human lung mast cells.

    PubMed Central

    MacGlashan, D W; Schleimer, R P; Peters, S P; Schulman, E S; Adams, G K; Newball, H H; Lichtenstein, L M

    1982-01-01

    Although mediator release from mast cells and basophils plays a central role in the pathogenesis of human allergic disease, biochemical studies have been restricted to rat peritoneal mast cells and basophilic leukemia cells because they could be easily purified. We have used two new techniques of cell separation to purify human lung mast cells to 98% homogeneity. Lung cell suspensions were obtained by dispersion of chopped lung tissue with proteolytic enzymes. Mast cells were then purified from the suspensions by countercurrent centrifugal elutriation and affinity chromatography. The purified mast cells released both histamine and slow-reacting substance of anaphylaxis (SRS-A) (leukotriene C and D) during stimulation with goat anti-human IgE antibody. Moreover, these preparations were able to generate significant quantities of SRS-A (32 +/- 7 x 10(-17) LTD mole-equivalents/mast cell) at all stages of purification, indicating that a secondary cell is not necessary for the antigen-induced release of SRS. Images PMID:7119113

  12. Generation of Mouse Induced Pluripotent Stem Cells by Protein Transduction

    PubMed Central

    Nemes, Csilla; Varga, Eszter; Polgar, Zsuzsanna; Klincumhom, Nuttha; Pirity, Melinda K.

    2014-01-01

    Somatic cell reprogramming has generated enormous interest after the first report by Yamanaka and his coworkers in 2006 on the generation of induced pluripotent stem cells (iPSCs) from mouse fibroblasts. Here we report the generation of stable iPSCs from mouse fibroblasts by recombinant protein transduction (Klf4, Oct4, Sox2, and c-Myc), a procedure designed to circumvent the risks caused by integration of exogenous sequences in the target cell genome associated with gene delivery systems. The recombinant proteins were fused in the frame to the glutathione-S-transferase tag for affinity purification and to the transactivator transcription-nuclear localization signal polypeptide to facilitate membrane penetration and nuclear localization. We performed the reprogramming procedure on embryonic fibroblasts from inbred (C57BL6) and outbred (ICR) mouse strains. The cells were treated with purified proteins four times, at 48-h intervals, and cultured on mitomycin C treated mouse embryonic fibroblast (MEF) cells in complete embryonic stem cell (ESC) medium until colonies formed. The iPSCs generated from the outbred fibroblasts exhibited similar morphology and growth properties to ESCs and were sustained in an undifferentiated state for more than 20 passages. The cells were checked for pluripotency-related markers (Oct4, Sox2, Klf4, cMyc, Nanog) by immunocytochemistry and by reverse transcription–polymerase chain reaction. The protein iPSCs (piPSCs) formed embryoid bodies and subsequently differentiated towards all three germ layer lineages. Importantly, the piPSCs could incorporate into the blastocyst and led to variable degrees of chimerism in newborn mice. These data show that recombinant purified cell-penetrating proteins are capable of reprogramming MEFs to iPSCs. We also demonstrated that the cells of the generated cell line satisfied all the requirements of bona fide mouse ESCs: form round colonies with defined boundaries; have a tendency to attach together with

  13. Generation of functional hepatocytes from human spermatogonial stem cells

    PubMed Central

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-01-01

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458

  14. Generation of functional hepatocytes from human spermatogonial stem cells.

    PubMed

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-02-23

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458

  15. Modelling Action Potential Generation and Propagation in Fibroblastic Cells

    NASA Astrophysics Data System (ADS)

    Torres, J. J.; Cornelisse, L. N.; Harks, E. G. A.; Theuvenet, A. P. R.; Ypey, D. L.

    2003-04-01

    Using a standard Hodgkin-Huxley (HH) formalism, we present a mathematical model for action potential (AP) generation and intercellular AP propagation in quiescent (serum-deprived) normal rat kidney (NRK) fibroblasts [1], based on the recent experimental identification of the ion channels involved [2]. The principal ion channels described are those of an inwardly rectifying K+ conductance (GKIR), an L-type calcium conductance (GCaL), an intracellular calcium activated Cl- conductance (GCl(Ca)), a residual leak conductance Gleak, and gap junctional channels between the cells (Ggj). The role of each one of these components in the particular shape of the AP wave-form has been analyzed and compared with experimental observations. In addition, we have studied the role of subcellular processes like intracellular calcium dynamics and calcium buffering in AP generation. AP propagation between cells was reconstructed in a hexagonal model of cells coupled by Ggj with physiological conductance values. The model revealed an excitability mechanism of quiescent NRK cells with a particular role of intracellular calcium dynamics. It allows further explorations of the mechanism of signal generation and transmission in NRK cell cultures and its dependence on growth conditions.

  16. Large-scale generation of cell-derived nanovesicles

    NASA Astrophysics Data System (ADS)

    Jo, W.; Kim, J.; Yoon, J.; Jeong, D.; Cho, S.; Jeong, H.; Yoon, Y. J.; Kim, S. C.; Gho, Y. S.; Park, J.

    2014-09-01

    Exosomes are enclosed compartments that are released from cells and that can transport biological contents for the purpose of intercellular communications. Research into exosomes is hindered by their rarity. In this article, we introduce a device that uses centrifugal force and a filter with micro-sized pores to generate a large quantity of cell-derived nanovesicles. The device has a simple polycarbonate structure to hold the filter, and operates in a common centrifuge. Nanovesicles are similar in size and membrane structure to exosomes. Nanovesicles contain intracellular RNAs ranging from microRNA to mRNA, intracellular proteins, and plasma membrane proteins. The quantity of nanovesicles produced using the device is 250 times the quantity of naturally secreted exosomes. Also, the quantity of intracellular contents in nanovesicles is twice that in exosomes. Nanovesicles generated from murine embryonic stem cells can transfer RNAs to target cells. Therefore, this novel device and the nanovesicles that it generates are expected to be used in exosome-related research, and can be applied in various applications such as drug delivery and cell-based therapy.

  17. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines.

    PubMed

    Kowarz, Eric; Löscher, Denise; Marschalek, Rolf

    2015-04-01

    Stable gene expression in mammalian cells is a prerequisite for many in vitro and in vivo experiments. However, either the integration of plasmids into mammalian genomes or the use of retro-/lentiviral systems have intrinsic limitations. The use of transposable elements, e.g. the Sleeping Beauty system (SB), circumvents most of these drawbacks (integration sites, size limitations) and allows the quick generation of stable cell lines. The integration process of SB is catalyzed by a transposase and the handling of this gene transfer system is easy, fast and safe. Here, we report our improvements made to the existing SB vector system and present two new vector types for robust constitutive or inducible expression of any gene of interest. Both types are available in 16 variants with different selection marker (puromycin, hygromycin, blasticidin, neomycin) and fluorescent protein expression (GFP, RFP, BFP) to fit most experimental requirements. With this system it is possible to generate cell lines from stable transfected cells quickly and reliably in a medium-throughput setting (three to five days). Cell lines robustly express any gene-of-interest, either constitutively or tightly regulated by doxycycline. This allows many laboratory experiments to speed up generation of data in a rapid and robust manner. PMID:25650551

  18. Quantum Dot Solar Cells with Multiple Exciton Generation

    SciTech Connect

    Hanna, M. C.; Beard, M. C.; Johnson, J. C.; Murphy, J.; Ellingson, R. J.; Nozik, A. J.

    2005-11-01

    We have measured the quantum yield of the multiple exciton generation (MEG) process in quantum dots (QDs) of the lead-salt semiconductor family (PbSe, PbTe, and PbS) using fs pump-probe transient absorption measurements. Very high quantum yields (up to 300%) for charge carrier generation from MEG have been measured in all of the Pb-VI QDs. We have calculated the potential maximum performance of various MEG QD solar cells in the detailed balance limit. We examined a two-cell tandem PV device with singlet fission (SF), QD, and normal dye (N) absorbers in the nine possible series-connected combinations to compare the tandem combinations and identify the combinations with the highest theoretical efficiency. We also calculated the maximum efficiency of an idealized single-gap MEG QD solar cell with M multiplications and its performance under solar concentration.

  19. 3D molecular models of whole HIV-1 virions generated with cellPACK

    PubMed Central

    Goodsell, David S.; Autin, Ludovic; Forli, Stefano; Sanner, Michel F.; Olson, Arthur J.

    2014-01-01

    As knowledge of individual biological processes grows, it becomes increasingly useful to frame new findings within their larger biological contexts in order to generate new systems-scale hypotheses. This report highlights two major iterations of a whole virus model of HIV-1, generated with the cellPACK software. cellPACK integrates structural and systems biology data with packing algorithms to assemble comprehensive 3D models of cell-scale structures in molecular detail. This report describes the biological data, modeling parameters and cellPACK methods used to specify and construct editable models for HIV-1. Anticipating that cellPACK interfaces under development will enable researchers from diverse backgrounds to critique and improve the biological models, we discuss how cellPACK can be used as a framework to unify different types of data across all scales of biology. PMID:25253262

  20. Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus.

    PubMed

    Lin, Jiqiang; Yang, Lu; Silva, Hernandez Moura; Trzeciak, Alissa; Choi, Yongwon; Schwab, Susan R; Dustin, Michael L; Lafaille, Juan J

    2016-01-01

    Regulatory T-cell (Treg) selection in the thymus is essential to prevent autoimmune diseases. Although important rules for Treg selection have been established, there is controversy regarding the degree of self-reactivity displayed by T-cell receptors expressed by Treg cells. In this study we have developed a model of autoimmune skin inflammation, to determine key parameters in the generation of skin-reactive Treg cells in the thymus (tTreg). tTreg development is predominantly AIRE dependent, with an AIRE-independent component. Without the knowledge of antigen recognized by skin-reactive Treg cells, we are able to enhance skin-specific tTreg cell generation using three approaches. First, we increase medullary thymic epithelial cells by using mice lacking osteoprotegerin or by adding TRANCE (RANKL, Tnfsf11). Second, we inject intrathymically peripheral dendritic cells from skin-draining sites. Finally, we inject skin tissue lysates intrathymically. These findings have implications for enhancing the generation of organ-specific Treg cells in autoimmune diseases. PMID:26923114

  1. Increased generation of Foxp3+ regulatory T cells by manipulating antigen presentation in the thymus

    PubMed Central

    Lin, Jiqiang; Yang, Lu; Silva, Hernandez Moura; Trzeciak, Alissa; Choi, Yongwon; Schwab, Susan R.; Dustin, Michael L.; Lafaille, Juan J.

    2016-01-01

    Regulatory T-cell (Treg) selection in the thymus is essential to prevent autoimmune diseases. Although important rules for Treg selection have been established, there is controversy regarding the degree of self-reactivity displayed by T-cell receptors expressed by Treg cells. In this study we have developed a model of autoimmune skin inflammation, to determine key parameters in the generation of skin-reactive Treg cells in the thymus (tTreg). tTreg development is predominantly AIRE dependent, with an AIRE-independent component. Without the knowledge of antigen recognized by skin-reactive Treg cells, we are able to enhance skin-specific tTreg cell generation using three approaches. First, we increase medullary thymic epithelial cells by using mice lacking osteoprotegerin or by adding TRANCE (RANKL, Tnfsf11). Second, we inject intrathymically peripheral dendritic cells from skin-draining sites. Finally, we inject skin tissue lysates intrathymically. These findings have implications for enhancing the generation of organ-specific Treg cells in autoimmune diseases. PMID:26923114

  2. Generation and characterization of human insulin-releasing cell lines

    PubMed Central

    Labriola, Leticia; Peters, Maria G; Krogh, Karin; Stigliano, Iván; Terra, Letícia F; Buchanan, Cecilia; Machado, Marcel CC; Joffé, Elisa Bal de Kier; Puricelli, Lydia; Sogayar, Mari C

    2009-01-01

    Background The in vitro culture of insulinomas provides an attractive tool to study cell proliferation and insulin synthesis and secretion. However, only a few human beta cell lines have been described, with long-term passage resulting in loss of insulin secretion. Therefore, we set out to establish and characterize human insulin-releasing cell lines. Results We generated ex-vivo primary cultures from two independent human insulinomas and from a human nesidioblastosis, all of which were cultured up to passage number 20. All cell lines secreted human insulin and C-peptide. These cell lines expressed neuroendocrine and islets markers, confirming the expression profile found in the biopsies. Although all beta cell lineages survived an anchorage independent culture, none of them were able to invade an extracellular matrix substrate. Conclusion We have established three human insulin-releasing cell lines which maintain antigenic characteristics and insulin secretion profiles of the original tumors. These cell lines represent valuable tools for the study of molecular events underlying beta cell function and dysfunction. PMID:19545371

  3. Thymus medulla fosters generation of natural Treg cells, invariant γδ T cells, and invariant NKT cells: What we learn from intrathymic migration

    PubMed Central

    Cowan, Jennifer E; Jenkinson, William E; Anderson, Graham

    2015-01-01

    The organization of the thymus into distinct cortical and medullary regions enables it to control the step-wise migration and development of immature T-cell precursors. Such a process provides access to specialized cortical and medullary thymic epithelial cells at defined stages of maturation, ensuring the generation of self-tolerant and MHC-restricted conventional CD4+ and CD8+ αβ T cells. The migratory cues and stromal cell requirements that regulate the development of conventional αβ T cells have been well studied. However, the thymus also fosters the generation of several immunoregulatory T-cell populations that form key components of both innate and adaptive immune responses. These include Foxp3+ natural regulatory T cells, invariant γδ T cells, and CD1d-restricted invariant natural killer T cells (iNKT cells). While less is known about the intrathymic requirements of these nonconventional T cells, recent studies have highlighted the importance of the thymus medulla in their development. Here, we review recent findings on the mechanisms controlling the intrathymic migration of distinct T-cell subsets, and relate this to knowledge of the microenvironmental requirements of these cells. PMID:25615828

  4. Generation of L-cells in mouse and human small intestine organoids

    PubMed Central

    Petersen, Natalia; Reimann, Frank; Bartfeld, Sina; Farin, Henner F.; Ringnalda, Femke C.; Vries, Robert G. J.; van den Brink, Stieneke; Clevers, Hans; Gribble, Fiona M.; de Koning, Eelco J. P.

    2015-01-01

    Upon a nutrient challenge, L-cells produce glucagon-like peptide 1 (GLP-1), a powerful stimulant of insulin release. Strategies to augment endogenous GLP-1 production include promoting L-cell differentiation and increasing L-cell number. Here we present a novel in vitro platform to generate functional L-cells from 3D cultures of mouse and human intestinal crypts. We show that short-chain fatty acids (SCFAs) selectively increase the number of L-cells resulting in an elevation of GLP-1 release. This is accompanied by up-regulation of transcription factors, associated with the endocrine lineage of intestinal stem cell development. Thus, our platform allows us to study and modulate the development of L-cells in mouse and human crypts as a potential basis for novel therapeutic strategies in type 2 diabetes. PMID:24130334

  5. Human purified CD8+ T cells: Ex vivo expansion model to generate a maximum yield of functional cytotoxic cells.

    PubMed

    Al-Shanti, Nasser; Aldahoudi, Ziyad

    2007-01-01

    CD8+ T cells are a critical component of the cellular immune response. They play an important role in the control of viral infection and eliminating cells with malignant potential. However, attempts to generate and expand human CD8+ T cells in vitro for an adoptive immunotherapy have been conducted with limitation of the very low frequency of CD8+ T cells in blood. Therefore, several expansion protocols have been developed to obtain large and efficient numbers of human CD8+ T cells for use in adoptive immunotherapies. In this study various common culture conditions using different cytokines IL-2, IL-4, IL-7, IL-10, IL-12 and IL-15 and autologous feeders and sera were investigated to expand human purified CD8+ T cells. The importance and the influence of these factors on the growth and phenotype of CD8+ T cell were assessed by serially sampling cultures using flow cytometry. We demonstrated that combination of IL-2 (50 U/ml) and autologous feeders induced maximal CD8+ T cell proliferation (40-50 folds) compared to other cytokines. Immunophenotypic analysis of cultured cells showed that expanded CD8+ T cells were activated and differentiated. Furthermore our expansion model also demonstrated that expanded CD8+ T cells are functionally cytotoxic active by killing Allogeneic LCLs cells. In conclusion, we have developed a reliable, simple method that uses minimal cell numbers to generate a high yield of functional cytotoxic CD8+ T cells, which can be used for the development of cellular immunotherapies. PMID:17190652

  6. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    PubMed Central

    Webb, Carol F.; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-01-01

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. PMID:26111446

  7. Developing Assessments for the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Pellegrino, James W., Ed.; Wilson, Mark R., Ed.; Koenig, Judith A., Ed.; Beatty, Alexandra S., Ed.

    2014-01-01

    Assessments, understood as tools for tracking what and how well students have learned, play a critical role in the classroom. "Developing Assessments for the Next Generation Science Standards" develops an approach to science assessment to meet the vision of science education for the future as it has been elaborated in "A Framework…

  8. Monolithic fuel cell based power source for burst power generation

    SciTech Connect

    Fee, D.C.; Blackburn, P.E.; Busch, D.E.; Dees, D.W.; Dusek, J.; Easler, T.E.; Ellingson, W.A.; Flandermeyer, B.K.; Fousek, R.J.; Heiberger, J.J.; Majumdar, S.; McPheeters, C.C.; Mrazek, F.C.; Picciolo, J.J.; Singh, J.P.; Poeppel, R.B.

    1988-01-01

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The requisite high power, long-duration bursts appear achievable with appropriate development of the concept. A monolithic fuel cell/nuclear reactor system clearly possesses several advantages. Fabrication methods, performance advantages, and applications are discussed in this report.

  9. Generating realistic environments for cyber operations development, testing, and training

    NASA Astrophysics Data System (ADS)

    Berk, Vincent H.; Gregorio-de Souza, Ian; Murphy, John P.

    2012-06-01

    Training eective cyber operatives requires realistic network environments that incorporate the structural and social complexities representative of the real world. Network trac generators facilitate repeatable experiments for the development, training and testing of cyber operations. However, current network trac generators, ranging from simple load testers to complex frameworks, fail to capture the realism inherent in actual environments. In order to improve the realism of network trac generated by these systems, it is necessary to quantitatively measure the level of realism in generated trac with respect to the environment being mimicked. We categorize realism measures into statistical, content, and behavioral measurements, and propose various metrics that can be applied at each level to indicate how eectively the generated trac mimics the real world.

  10. The Molecular Control of Blood Cell Development

    NASA Astrophysics Data System (ADS)

    Sachs, Leo

    1987-12-01

    The establishment of a cell culture system for the clonal development of blood cells has made it possible to identify the proteins that regulate the growth and differentiation of different blood cell lineages and to discover the molecular basis of normal and abnormal cell development in blood forming tissues. A model system with myeloid blood cells has shown that (i) normal blood cells require different proteins to induce cell multiplication (growth inducers) and cell differentiation (differentiation inducers), (ii) there is a hierarchy of growth inducers as cells become more restricted in their developmental program, and (iii) a cascade of interactions between proteins determines the correct balance between immature and mature cells in normal blood cell development. Gene cloning has shown that there is a family of different genes for these proteins. Normal protein regulators of blood cell development can control the abnormal growth of certain types of leukemic cells and suppress malignancy by incuding differentiation to mature nondividing cells. Chromosome abnormalities that give rise to malignancy in these leukemic cells can be bypassed and their effects nullified by inducing differentiation, which stops cells from multiplying. These blood cell regulatory proteins are active in culture and in the body, and they can be used clinically to correct defects in blood cell development.

  11. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOEpatents

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  12. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOEpatents

    Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.

    1998-01-01

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

  13. Generation of MCF-7 cells with aggressive metastatic potential in vitro and in vivo.

    PubMed

    Ziegler, Elke; Hansen, Marie-Therese; Haase, Maike; Emons, Günter; Gründker, Carsten

    2014-11-01

    Epithelial-mesenchymal transition (EMT) is a cellular development program characterized by loss of cell adhesion and increased cell mobility. It is essential for numerous processes including metastasis. In this study we have generated "aggressive" MCF-7 breast cancer cells (MCF-7-EMT), which show significantly increased invasion in contrast to wild type MCF-7 (MCF-7 WT) cells. In addition, we have analyzed, whether these cell lines differ in their metastatic behavior in vivo and in expression of invasion and/or EMT-relevant genes. Invasive behavior of different human breast cancer cell lines was tested. "Aggressive" MCF-7 cells (MCF-7-EMT) were generated using coculture and mammosphere culture techniques. To analyze whether or not MCF-7-EMT cells in contrast to MCF-7 WT cells form metastases in vivo, we assessed metastases in a nude mouse model. mRNA expression profiles of MCF-7 WT cells and MCF-7-EMT cells were compared using the Affymetrix micro array technique. Expression of selected genes was validated using real-time PCR. In addition, protein expression of epithelial marker E-cadherin (CDH1) and mesenchymal markers N-cadherin (CDH2), Vimentin (VIM), and TWIST was compared. The breast cancer cell lines showed different invasive behavior from hardly any invasion to a stronger cell movement. Coculture with osteoblast-like MG63 cells led to significantly increased cell invasion rates. The highest increase was shown using MCF-7 WT cells. Generated MCF-7-EMT cells showed significantly increased invasion as compared to MCF-7 WT cells. In 8 of 10 mice bearing orthotopically growing MCF-7-EMT tumors, we could detect metastases in liver and lung. In mice bearing MCF-7 WT tumors (n = 10), no metastases were found. MCF-7 WT cells and MCF-7-EMT cells were different in expression of 325 genes. Forty-four of the most regulated 50 invasion and/or EMT-related genes were upregulated and 6 genes were downregulated in MCF-7-EMT cells. Protein expression of mesenchymal markers

  14. 2nd Generation Reusable Launch Vehicle Potential Commercial Development Scenarios

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Rogacki, John R. (Technical Monitor)

    2001-01-01

    The presentation will discuss potential commercial development scenarios for a Second Generation Reusable Launch Vehicle. The analysis of potential scenarios will include commercial rates of return, government return on investment, and market considerations. The presentation will include policy considerations in addition to analysis of Second Generation Reusable Launch Vehicle economics. The data discussed is being developed as a part of NASA's Second Generation Reusable Launch Vehicle Program, for consideration as potential scenarios for enabling a next generation system. Material will include potential scenarios not previously considered by NASA or presented at other conferences. Candidate paper has not been presented at a previous meeting, and conference attendance of the author has been approved by NASA.

  15. Generation and application of mammalian haploid embryonic stem cells.

    PubMed

    Bai, M; Wu, Y; Li, J

    2016-09-01

    Haploid cells contain one set of chromosomes and are amenable for genetic analyses. In mammals, haploidy exists only in gametes. An intriguing question is whether haploid cells can be derived from gametes. Recently, by application of haploid cell enrichment using fluorescence-activated cell sorting, stable haploid embryonic stem cells (haESCs) have been successfully derived from oocyte-derived parthenogenetic and sperm-derived androgenetic embryos from several species. Whilst both parthenogenetic and androgenetic (AG)-haESCs enable whole-genome genetic screening at the cellular level, such as screening of drug resistance or disease-related genes, AG-haESCs, after intracytoplasmic injection into oocytes, can also be used to produce alive semi-cloned mice. Nevertheless, one major drawback associated with wild-type AG-haESCs is the very low birth rate of healthy semi-cloned mice. Of interest, after inhibiting the expression of two paternally imprinted genes (H19 and Gtl2) in AG-haESCs by removal of their differentially DNA methylated regions, double-knockout AG-haESCs can efficiently and stably support the generation of healthy semi-cloned pups. Importantly, double-knockout AG-haESCs are feasible for multiple genetic manipulations, followed by efficient generation of semi-cloned mice carrying multiple genetic traits; thus they could be used to validate candidate loci that have been identified in genome-wide association studies of multigenic diseases by generation of mouse models carrying multiple alterations. Of note, by combining a CRISPR-Cas9 library and double-knockout AG-haESCs, semi-cloned mice carrying different mutant genes can be efficiently generated in one step, enabling functional mutagenic screening in mice. HaESCs, therefore, provide a powerful tool for genetic analyses in mammals at both the cellular and organismal levels. PMID:27138065

  16. Efficient Generation of Hypothalamic Neurons from Human Pluripotent Stem Cells.

    PubMed

    Wang, Liheng; Egli, Dieter; Leibel, Rudolph L

    2016-01-01

    The hypothalamus comprises neuronal clusters that are essential for body weight regulation and other physiological functions. Insights into the complex cellular physiology of this region of the brain are critical to understanding the pathogenesis of obesity, but human hypothalamic cells are largely inaccessible for direct study. Here we describe a technique for generation of arcuate-like hypothalamic neurons from human pluripotent stem (hPS) cells. Early activation of SHH signaling and inhibition of BMP and TGFβ signaling, followed by timed inhibition of NOTCH, can efficiently differentiate hPS cells into NKX2.1+ hypothalamic progenitors. Subsequent incubation with BDNF induces the differentiation and maturation of pro-opiomelanocortin and neuropeptide Y neurons, which are major cell types in the arcuate hypothalamus. These neurons have molecular and cellular characteristics consistent with arcuate neurons. © 2016 by John Wiley & Sons, Inc. PMID:27367166

  17. Generation and identification of tumor-evoked regulatory B cells

    PubMed Central

    Biragyn, Arya; Lee-Chang, Catalina; Bodogai, Monica

    2014-01-01

    The involvement of Bregs in cancer remains poorly understood despite their well-documented regulation of responses to the self and protection from harmful autoimmunity. We recently discovered a unique regulatory B cell subset evoked by breast cancer to mediate protection of metastasizing cancer cells. These results together with the wealth of findings of the last 40 years on B cells in tumorigenesis suggest the existence of additional cancer Bregs modulating anticancer responses. To facilitate the search for them, here we provide our detailed protocol for the characterization and generation of tumor-evoked regulatory B cells. Wherever applicable, we also discuss nuances and uniqueness of a Breg study in cancer to warn potential pitfalls. PMID:25015287

  18. Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova-Hleb, Ekaterina; Zhdanok, Sergei; Rostro, Betty; Simonette, Rebecca; Hafner, Jason; Konopleva, Marina; Andreeff, Michael; Conjusteau, Andre; Oraevsky, Alexander

    2008-02-01

    In an effort of developing clinical LANTCET (laser-activated nano-thermolysis as cell elimination technology) we achieved selective destruction of individual tumor cells through laser generation of vapor microbubbles around clusters of light absorbing gold nanorods (GNR) selectively formed in target tumor cells. Among all gold nanoparticles, nanorods offer the highest optical absorption in the near-infrared. We applied covalent conjugates of gold nanorods with targeting vectors such as monoclonal antibodies CD33 (specific for Acute Myeloid Leukemia), while GNR conjugates with polyethylene-glycol (PEG) were used as nonspecific targeting control. GNR clusters were formed inside the tumor cells at 37 °C due to endocytosis of large concentration of nanorods accumulated on the surface of tumor cells targeted at 4 °C. Formation of GNR clusters significantly reduces the threshold of tumor cell damage making LANTCET safe for normal cells. Appearance of GNR clusters was verified directly with optical resonance scattering microscopy. LANTCET was performed in vitro with living cells of (1) model myeloid K562 cells (CD33 positive), (2) primary human bone marrow CD33-positive blast cells from patients diagnosed with acute myeloid leukemia. Laser-induced microbubbles were generated and detected with a photothermal microscope equipped with a tunable Ti-Sa pulsed laser. GNT cluster formation caused a 100-fold decrease in the threshold optical fluence for laser microbubble generation in tumor cells compared with that in normal cells under the same targeting and irradiation conditions. Combining imaging based on resonance optical scattering with photothermal imaging of microbubbles, we developed a method for detection, image-guided treatment and monitoring of LANTCET. Pilot experiments were performed in flow mode bringing LANTCET closer to reality of clinical procedure of purging tumor cells from bone marrow grafts.

  19. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance.

    PubMed

    Soroosh, Pejman; Doherty, Taylor A; Duan, Wei; Mehta, Amit Kumar; Choi, Heonsik; Adams, Yan Fei; Mikulski, Zbigniew; Khorram, Naseem; Rosenthal, Peter; Broide, David H; Croft, Michael

    2013-04-01

    Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, but whether these possess the attributes required to directly promote the development of Foxp3(+) iTreg cells is unclear. Here, we show that lung-resident tissue MØs coexpress TGF-β and retinal dehydrogenases (RALDH1 and RALDH 2) under steady-state conditions and that their sampling of harmless airborne antigen and presentation to antigen-specific CD4 T cells resulted in the generation of Foxp3(+) Treg cells. Treg cell induction in this model depended on both TGF-β and retinoic acid. Transfer of the antigen-pulsed tissue MØs into the airways correspondingly prevented the development of asthmatic lung inflammation upon subsequent challenge with antigen. Moreover, exposure of lung tissue MØs to allergens suppressed their ability to generate iTreg cells coincident with blocking airway tolerance. Suppression of Treg cell generation required proteases and TLR-mediated signals. Therefore, lung-resident tissue MØs have regulatory functions, and strategies to target these cells might hold promise for prevention or treatment of allergic asthma. PMID:23547101

  20. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    PubMed

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc. PMID:25687300

  1. PLZF+ Innate T Cells Support the TGF-β-Dependent Generation of Activated/Memory-Like Regulatory T Cells

    PubMed Central

    Kang, Byung Hyun; Park, Hyo Jin; Park, Hi Jung; Lee, Jae-II; Park, Seong Hoe; Jung, Kyeong Cheon

    2016-01-01

    PLZF-expressing invariant natural killer T cells and CD4 T cells are unique subsets of innate T cells. Both are selected via thymocyte-thymocyte interaction, and they contribute to the generation of activated/memory-like CD4 and CD8 T cells in the thymus via the production of IL-4. Here, we investigated whether PLZF+ innate T cells also affect the development and function of Foxp3+ regulatory CD4 T cells. Flow cytometry analysis of the thymus and spleen from both CIITA transgenic C57BL/6 and wild-type BALB/c mice, which have abundant PLZF+ CD4 T cells and invariant natural killer T cells, respectively, revealed that Foxp3+ T cells in these mice exhibited a CD103+ activated/memory-like phenotype. The frequency of CD103+ regulatory T cells was considerably decreased in PLZF+ cell-deficient CIITATgPlzflu/lu and BALB/c.CD1d−/− mice as well as in an IL-4-deficient background, such as in CIITATgIL-4−/− and BALB/c.lL-4−/− mice, indicating that the acquisition of an activated/memory-like phenotype was dependent on PLZF+ innate T cells and IL-4. Using fetal thymic organ culture, we further demonstrated that IL-4 in concert with TGF-β enhanced the acquisition of the activated/memory-like phenotype of regulatory T cells. In functional aspects, the activated/memory-like phenotype of Treg cells was directly related to their suppressive function; regulatory T cells of CIITATgPIV−/− mice more efficiently suppressed ovalbumin-induced allergic airway inflammation compared with their counterparts from wild-type mice. All of these findings suggest that PLZF+ innate T cells also augmented the generation of activated/memory-like regulation via IL-4 production. PMID:27101876

  2. PLZF(+) Innate T Cells Support the TGF-β-Dependent Generation of Activated/Memory-Like Regulatory T Cells.

    PubMed

    Kang, Byung Hyun; Park, Hyo Jin; Park, Hi Jung; Lee, Jae-Ii; Park, Seong Hoe; Jung, Kyeong Cheon

    2016-06-30

    PLZF-expressing invariant natural killer T cells and CD4 T cells are unique subsets of innate T cells. Both are selected via thymocyte-thymocyte interaction, and they contribute to the generation of activated/memory-like CD4 and CD8 T cells in the thymus via the production of IL-4. Here, we investigated whether PLZF(+) innate T cells also affect the development and function of Foxp3(+) regulatory CD4 T cells. Flow cytometry analysis of the thymus and spleen from both CIITA transgenic C57BL/6 and wild-type BALB/c mice, which have abundant PLZF(+) CD4 T cells and invariant natural killer T cells, respectively, revealed that Foxp3(+) T cells in these mice exhibited a CD103(+) activated/memory-like phenotype. The frequency of CD103(+) regulatory T cells was considerably decreased in PLZF(+) cell-deficient CIITA(Tg)Plzf(lu/lu) and BALB/c.CD1d(-/-) mice as well as in an IL-4-deficient background, such as in CIITA(Tg)IL-4(-/-) and BALB/c.lL-4(-/-) mice, indicating that the acquisition of an activated/memory-like phenotype was dependent on PLZF(+) innate T cells and IL-4. Using fetal thymic organ culture, we further demonstrated that IL-4 in concert with TGF-β enhanced the acquisition of the activated/memory-like phenotype of regulatory T cells. In functional aspects, the activated/memory-like phenotype of Treg cells was directly related to their suppressive function; regulatory T cells of CIITA(Tg)PIV(-/-) mice more efficiently suppressed ovalbumin-induced allergic airway inflammation compared with their counterparts from wild-type mice. All of these findings suggest that PLZF(+) innate T cells also augmented the generation of activated/memory-like regulation via IL-4 production. PMID:27101876

  3. Monolithic solid oxide fuel cell technology advancement for coal- based power generation. Quarterly report, December 1991

    SciTech Connect

    Not Available

    1992-01-15

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  4. Monolithic solid oxide fuel cell technology advancement for coal- based power generation

    SciTech Connect

    Not Available

    1992-01-15

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  5. Generation and properties of a new human ventral mesencephalic neural stem cell line

    SciTech Connect

    Villa, Ana; Liste, Isabel; Courtois, Elise T.; Seiz, Emma G.; Ramos, Milagros; Meyer, Morten; Juliusson, Bengt; Kusk, Philip

    2009-07-01

    Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH{sup +}) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity. Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.

  6. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling

    PubMed Central

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  7. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling.

    PubMed

    Genovese, Luca; Brendolan, Andrea

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  8. Serum- and Stromal Cell-Free Hypoxic Generation of Embryonic Stem Cell-Derived Hematopoietic Cells In Vitro, Capable of Multilineage Repopulation of Immunocompetent Mice

    PubMed Central

    Lesinski, Dietrich Armin; Heinz, Niels; Pilat-Carotta, Sandra; Rudolph, Cornelia; Jacobs, Roland; Schlegelberger, Brigitte

    2012-01-01

    Induced pluripotent stem cells (iPSCs) may become a promising source for the generation of patient-specific hematopoietic stem cells (HSCs) in vitro. A crucial prerequisite will be the availability of reliable protocols for the directed and efficient differentiation toward HSCs. So far, the most robust strategy for generating HSCs from pluripotent cells in vitro has been established in the mouse model involving ectopic expression of the human transcription factor HOXB4. However, most differentiation protocols include coculture on a xenogenic stroma cell line and the use of animal serum. Involvement of any of both would pose a major barrier to the translation of those protocols to human autologous iPSCs intended for clinical use. Therefore, we asked whether long-term repopulating HSCs can, in principle, be generated from embryonic stem cells without stroma cells or serum. Here, we showed that long-term multilineage engraftment could be accomplished in immunocompetent mice when HSCs were generated in serum-free medium without stroma cell support and when hypoxic conditions were used. Under those conditions, HOXB4+ embryonic stem cell-derived hematopoietic stem and progenitor cells were immunophenotypically similar to definitive bone marrow resident E-SLAM+ (CD150+CD48−CD45+CD201+) HSCs. Thus, our findings may ease the development of definitive, adult-type HSCs from pluripotent stem cells, entirely in vitro. PMID:23197864

  9. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  10. Materials development for a fast breeder reactor steam generator concept

    SciTech Connect

    Sessions, C.E.; Reynolds, S.D. Jr.; Hebbar, M.A.; Lewis, J.F.; Kiefer, J.H.

    1981-11-01

    The progress achieved since 1977 in the important area of materials and processes development of fast reactor steam generator development is summarized. The two distinguishing features of the proposed Westinghouse-Tampa steam generator concept are the convoluted shell expansion joint (CSEJ) and the double-wall tubing with a third fluid leak detection capability. A 2/one quarter/ Cr-1 Mo low alloy steel will be used for all important parts of the generator including the CSEJ and the tubes. Other areas in which progress was made include tube-to-tubesheet (T/TS) welding, post-weld heat treatment (PWHT), tube expansion, and development of materials specifications for prototype and future plant materials. 8 refs.

  11. Designer Nuclease-Mediated Generation of Knockout THP1 Cells.

    PubMed

    Schmidt, Tobias; Schmid-Burgk, Jonathan L; Ebert, Thomas S; Gaidt, Moritz M; Hornung, Veit

    2016-01-01

    Recent developments in the field of designer nucleases allow the efficient and specific manipulation of genomic architectures in eukaryotic cell lines. To this end, it has become possible to introduce DNA double strand breaks (DSBs) at user-defined genomic loci. If located in critical coding regions of genes, thus induced DSBs can lead to insertions or deletions (indels) that result in frameshift mutations and thereby the knockout of the target gene. In this chapter, we describe a step-by-step workflow for establishing knockout cell clones of the difficult-to-transfect suspension cell line THP1. The here described protocol encompasses electroporation, cell cloning, and a deep sequencing-based genotyping step that allows the in-parallel analysis of 96 cell clones per gene of interest. Furthermore, we describe the use of the analysis tool OutKnocker that allows rapid identification of cell clones with all-allelic frameshift mutations. PMID:26443227

  12. TCR ITAM multiplicity is required for the generation of follicular helper T-cells

    PubMed Central

    Hwang, SuJin; Palin, Amy C.; Li, LiQi; Song, Ki-Duk; Lee, Jan; Herz, Jasmin; Tubo, Noah; Chu, Hamlet; Pepper, Marion; Lesourne, Renaud; Zvezdova, Ekaterina; Pinkhasov, Julia; Jenkins, Marc K.; McGavern, Dorian; Love, Paul E.

    2015-01-01

    The T-cell antigen receptor (TCR) complex contains 10 copies of a di-tyrosine Immunoreceptor-Tyrosine-based-Activation-Motif (ITAM) that initiates TCR signalling by recruiting protein tyrosine kinases. ITAM multiplicity amplifies TCR signals, but the importance of this capability for T-cell responses remains undefined. Most TCR ITAMs (6 of 10) are contributed by the CD3ζ subunits. We generated ‘knock-in' mice that express non-signalling CD3ζ chains in lieu of wild-type CD3ζ. Here we demonstrate that ITAM multiplicity is important for the development of innate-like T-cells and follicular helper T-cells, events that are known to require strong/sustained TCR–ligand interactions, but is not essential for ‘general' T-cell responses including proliferation and cytokine production or for the generation of a diverse antigen-reactive TCR repertoire. PMID:25959494

  13. TCR ITAM multiplicity is required for the generation of follicular helper T-cells.

    PubMed

    Hwang, SuJin; Palin, Amy C; Li, LiQi; Song, Ki-Duk; Lee, Jan; Herz, Jasmin; Tubo, Noah; Chu, Hamlet; Pepper, Marion; Lesourne, Renaud; Zvezdova, Ekaterina; Pinkhasov, Julia; Jenkins, Marc K; McGavern, Dorian; Love, Paul E

    2015-01-01

    The T-cell antigen receptor (TCR) complex contains 10 copies of a di-tyrosine Immunoreceptor-Tyrosine-based-Activation-Motif (ITAM) that initiates TCR signalling by recruiting protein tyrosine kinases. ITAM multiplicity amplifies TCR signals, but the importance of this capability for T-cell responses remains undefined. Most TCR ITAMs (6 of 10) are contributed by the CD3ζ subunits. We generated 'knock-in' mice that express non-signalling CD3ζ chains in lieu of wild-type CD3ζ. Here we demonstrate that ITAM multiplicity is important for the development of innate-like T-cells and follicular helper T-cells, events that are known to require strong/sustained TCR-ligand interactions, but is not essential for 'general' T-cell responses including proliferation and cytokine production or for the generation of a diverse antigen-reactive TCR repertoire. PMID:25959494

  14. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    PubMed

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. PMID:26826277

  15. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones

    PubMed Central

    Theaker, Sarah M.; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J.; Cole, David K.; Peakman, Mark; Sewell, Andrew K.; Dolton, Garry

    2016-01-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8+ or CD4+ polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein–Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. PMID:26826277

  16. A Bio-Based Fuel Cell for Distributed Energy Generation

    SciTech Connect

    Anthony Terrinoni; Sean Gifford

    2008-06-30

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  17. Two-step oligoclonal development of male germ cells.

    PubMed

    Ueno, Hiroo; Turnbull, Brit B; Weissman, Irving L

    2009-01-01

    During mouse development, primordial germ cells (PGCs) that give rise to the entire germ line are first identified within the proximal epiblast. However, long-term tracing of the fate of the cells has not been done wherein all cells in and around the germ-cell lineage are identified. Also, quantitative estimates of the number of founder PGCs using different models have come up with various numbers. Here, we use tetrachimeric mice to show that the progenitor numbers for the entire germ line in adult testis, and for the initiating embryonic PGCs, are both 4 cells. Although they proliferate to form polyclonal germ-cell populations in fetal and neonatal testes, germ cells that actually contribute to adult spermatogenesis originate from a small number of secondary founder cells that originate in the fetal period. The rest of the "deciduous" germ cells are lost, most likely by apoptosis, before the reproductive period. The second "actual" founder germ cells generally form small numbers of large monoclonal areas in testes by the reproductive period. Our results also demonstrate that there is no contribution of somatic cells to the male germ cell pool during development or in adulthood. These results suggest a model of 2-step oligoclonal development of male germ cells in mice, the second step distinguishing the heritable germ line from cells selected not to participate in forming the next generation. PMID:19098099

  18. IVHM for the 3rd Generation RLV Program: Technology Development

    NASA Technical Reports Server (NTRS)

    Kahle, Bill

    2000-01-01

    The objective behind the Integrated Vehicle Health Management (IVHM) project is to develop and integrate the technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Technological areas discussed include: developing, validating, and transfering next generation IVHM technologies to near term industry and government reusable launch systems; focus NASA on the next generation and highly advanced sensor and software technologies; and validating IVHM systems engineering design process for future programs.

  19. Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.

    PubMed

    Merkl, Claudia; Saalfrank, Anja; Riesen, Nathalie; Kühn, Ralf; Pertek, Anna; Eser, Stefan; Hardt, Markus Sebastian; Kind, Alexander; Saur, Dieter; Wurst, Wolfgang; Iglesias, Antonio; Schnieke, Angelika

    2013-01-01

    Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4) into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications. PMID:23383095

  20. Generation of immunogenic and tolerogenic clinical-grade dendritic cells.

    PubMed

    Kalantari, Tahereh; Kamali-Sarvestani, Eskandar; Ciric, Bogoljub; Karimi, Mohamad H; Kalantari, Mohsen; Faridar, Alireza; Xu, Hui; Rostami, Abdolmohamad

    2011-12-01

    Immunotherapy with dendritic cells (DCs), which have been manipulated ex vivo to become immunogenic or tolerogenic, has been tested in clinical trials for disease therapy. DCs are sentinels of the immune system, which after exposure to antigenic or inflammatory signals and crosstalk with effector CD4(+) T cells express high levels of costimulatory molecules and cytokines. Upregulation of either costimulatory molecules or cytokines promotes immunologic DCs, whereas their downregulation generates tolerogenic DCs (TDCs), which induce T regulatory cells (Tregs) and a state of tolerance. Immunogenic DCs are used for the therapy of infectious diseases such as HIV-1 and cancer, whereas tolerogenic DCs are used in treating various autoimmune diseases and in transplantation. DC vaccination is still at an early stage, and improvements are mainly needed in quality control of monitoring assays to generate clinical-grade DC products and to assess the effect of DC vaccination in future clinical trials. Here, we review the recent work in DC generation and monitoring approaches for DC-based trials with immunogenic or tolerogenic DCs. PMID:22105838

  1. Sustained Arc expression in adult-generated granule cells.

    PubMed

    Meconi, Alicia; Lui, Erika; Marrone, Diano F

    2015-08-31

    The dentate gyrus (DG) plays a critical role in memory formation and maintenance. Fitting this specialized role, the DG has many unique characteristics. In addition to being one of the few places in which new neurons are continually added in adulthood, the region also shows a unique long-term sustained transcriptional response of the immediate-early gene Arc to sensory input. Although we know that adult-generated granule cells are reliably recruited into behaviorally-driven neuronal network, it remains unknown whether they display robust late-phase sustained transcription in response to activity like their developmentally-generated counterparts. Since this late-phase of transcription is required for enduring plasticity, knowing if sustained transcription appears as soon as these cells are incorporated provides information on their potential for plasticity. To address this question, adult F344 rats were injected with BrdU (50mg/kg/day for 5 days) and 4 weeks later explored a novel environment. Arc expression in both BrdU- and BrdU+ neurons was determined 0.5h, 1h, 2h, 6h, 8h, 12h, or 24h following this behavior. Recently-generated granule cells showed a robust sustained Arc expression following a discrete behavioral experience. These data provide information on a potential mechanism to sculpt the representations of events occurring within hours of each other to create uncorrelated representations of episodes despite a highly excitable population of neurons. PMID:26219984

  2. Flow development and analysis of MHD generators and seawater thrusters

    SciTech Connect

    Doss, E.D. ); Roy, G.D. )

    1992-03-01

    In this paper, the flow characteristics inside magnetohydrodynamic (MHD) plasma generators and seawater thrusters are analyzed and are compared using a three-dimensional computer model that solves the governing partial differential equations for fluid flow and electrical fields. Calculations have been performed for a Faraday plasma generator and for a continuous electrode seawater thruster. The results of the calculations show that the effects caused by the interaction of the MHD forces with the fluid flow are strongly manifested in the case of the MHD generator as compared to the flow development in the MHD thruster. The existence of velocity overshoots over the sidewalls confirm previously published results for MHD generators with strong MHD interaction. For MHD thrusters, the velocity profile is found to be slightly flatter over the sidewall as compared to that over the electrode wall. As a result, distinct enhancement of the skin friction exists over the sidewalls of MHD generators in comparison to that of MHD thrusters. Plots of velocity profiles and skin friction distributions are presented to illustrate and compare the flow development in MHD generators and thrusters.

  3. A Simple Hanging Drop Cell Culture Protocol for Generation of 3D Spheroids

    PubMed Central

    Foty, Ramsey

    2011-01-01

    Studies of cell-cell cohesion and cell-substratum adhesion have historically been performed on monolayer cultures adherent to rigid substrates. Cells within a tissue, however, are typically encased within a closely packed tissue mass in which cells establish intimate connections with many near-neighbors and with extracellular matrix components. Accordingly, the chemical milieu and physical forces experienced by cells within a 3D tissue are fundamentally different than those experienced by cells grown in monolayer culture. This has been shown to markedly impact cellular morphology and signaling. Several methods have been devised to generate 3D cell cultures including encapsulation of cells in collagen gels1or in biomaterial scaffolds2. Such methods, while useful, do not recapitulate the intimate direct cell-cell adhesion architecture found in normal tissues. Rather, they more closely approximate culture systems in which single cells are loosely dispersed within a 3D meshwork of ECM products. Here, we describe a simple method in which cells are placed in hanging drop culture and incubated under physiological conditions until they form true 3D spheroids in which cells are in direct contact with each other and with extracellular matrix components. The method requires no specialized equipment and can be adapted to include addition of any biological agent in very small quantities that may be of interest in elucidating effects on cell-cell or cell-ECM interaction. The method can also be used to co-culture two (or more) different cell populations so as to elucidate the role of cell-cell or cell-ECM interactions in specifying spatial relationships between cells. Cell-cell cohesion and cell-ECM adhesion are the cornerstones of studies of embryonic development, tumor-stromal cell interaction in malignant invasion, wound healing, and for applications to tissue engineering. This simple method will provide a means of generating tissue-like cellular aggregates for measurement of

  4. Induced Pluripotent Stem Cells Generated from P0-Cre;Z/EG Transgenic Mice

    PubMed Central

    Ogawa, Yasuhiro; Eto, Akira; Miyake, Chisato; Tsuchida, Nana; Miyake, Haruka; Takaku, Yasuhiro; Hagiwara, Hiroaki; Oishi, Kazuhiko

    2015-01-01

    Neural crest (NC) cells are a migratory, multipotent cell population that arises at the neural plate border, and migrate from the dorsal neural tube to their target tissues, where they differentiate into various cell types. Abnormal development of NC cells can result in severe congenital birth defects. Because only a limited number of cells can be obtained from an embryo, mechanistic studies are difficult to perform with directly isolated NC cells. Protein zero (P0) is expressed by migrating NC cells during the early embryonic period. In the P0-Cre;Z/EG transgenic mouse, transient activation of the P0 promoter induces Cre-mediated recombination, indelibly tagging NC-derived cells with enhanced green fluorescent protein (EGFP). Induced pluripotent stem cell (iPSC) technology offers new opportunities for both mechanistic studies and development of stem cell-based therapies. Here, we report the generation of iPSCs from the P0-Cre;Z/EG mouse. P0-Cre;Z/EG mouse-derived iPSCs (P/G-iPSCs) exhibited pluripotent stem cell properties. In lineage-directed differentiation studies, P/G-iPSCs were efficiently differentiated along the neural lineage while expressing EGFP. These results suggest that P/G-iPSCs are useful to study NC development and NC-associated diseases. PMID:26382630

  5. Induced Pluripotent Stem Cells Generated from P0-Cre;Z/EG Transgenic Mice.

    PubMed

    Ogawa, Yasuhiro; Eto, Akira; Miyake, Chisato; Tsuchida, Nana; Miyake, Haruka; Takaku, Yasuhiro; Hagiwara, Hiroaki; Oishi, Kazuhiko

    2015-01-01

    Neural crest (NC) cells are a migratory, multipotent cell population that arises at the neural plate border, and migrate from the dorsal neural tube to their target tissues, where they differentiate into various cell types. Abnormal development of NC cells can result in severe congenital birth defects. Because only a limited number of cells can be obtained from an embryo, mechanistic studies are difficult to perform with directly isolated NC cells. Protein zero (P0) is expressed by migrating NC cells during the early embryonic period. In the P0-Cre;Z/EG transgenic mouse, transient activation of the P0 promoter induces Cre-mediated recombination, indelibly tagging NC-derived cells with enhanced green fluorescent protein (EGFP). Induced pluripotent stem cell (iPSC) technology offers new opportunities for both mechanistic studies and development of stem cell-based therapies. Here, we report the generation of iPSCs from the P0-Cre;Z/EG mouse. P0-Cre;Z/EG mouse-derived iPSCs (P/G-iPSCs) exhibited pluripotent stem cell properties. In lineage-directed differentiation studies, P/G-iPSCs were efficiently differentiated along the neural lineage while expressing EGFP. These results suggest that P/G-iPSCs are useful to study NC development and NC-associated diseases. PMID:26382630

  6. Ablation of Coactivator Med1 Switches the Cell Fate of Dental Epithelia to That Generating Hair

    PubMed Central

    Nguyen, Thai; Sakai, Kiyoshi; He, Bing; Fong, Chak; Oda, Yuko

    2014-01-01

    Cell fates are determined by specific transcriptional programs. Here we provide evidence that the transcriptional coactivator, Mediator 1 (Med1), is essential for the cell fate determination of ectodermal epithelia. Conditional deletion of Med1 in vivo converted dental epithelia into epidermal epithelia, causing defects in enamel organ development while promoting hair formation in the incisors. We identified multiple processes by which hairs are generated in Med1 deficient incisors: 1) dental epithelial stem cells lacking Med 1 fail to commit to the dental lineage, 2) Sox2-expressing stem cells extend into the differentiation zone and remain multi-potent due to reduced Notch1 signaling, and 3) epidermal fate is induced by calcium as demonstrated in dental epithelial cell cultures. These results demonstrate that Med1 is a master regulator in adult stem cells to govern epithelial cell fate. PMID:24949995

  7. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells.

    PubMed

    Yoshie, Susumu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Ikeda, Masakazu; Nomoto, Yukio; Wada, Ikuo; Omori, Koichi

    2016-05-01

    Airway epithelial cells derived from induced pluripotent stem (iPS) cells are expected to be a useful source for the regeneration of airway epithelium. Our preliminary study of embryoid body (EB) formation and the air-liquid interface (ALI) method suggested that mouse iPS cells can differentiate into airway epithelial cells. However, whether the cells generated from mouse iPS cells had the character and phenotype of native airway epithelial cells remained uninvestigated. In this study, we generated airway epithelial cells from EBs by culturing them under serum-free conditions supplemented with Activin and bFGF and by the ALI method and characterized the iPS cell-derived airway epithelial cells in terms of their gene expression, immunoreactivity, morphology, and function. Analysis by quantitative real-time reverse transcription-polymerase chain reaction(RT-PCR) revealed that the expression of the undifferentiated cell marker Nanog decreased time-dependently after the induction of differentiation, whereas definitive endoderm markers Foxa2 and Cxcr4 were transiently up-regulated. Thereafter, the expression of airway epithelium markers such as Tubb4a, Muc5ac, and Krt5 was detected by RT-PCR and immunostaining. The formation of tight junctions was also confirmed by immunostaining and permeability assay. Analysis by hematoxylin and eosin staining and scanning electron microscopy indicated that the cells generated from mouse iPS cells formed airway-epithelium-like tissue and had cilia, the movement of which was visualized and observed to be synchronized. These results demonstrate that the airway epithelial cells generated by our method have native characteristics and open new perspectives for the regeneration of injured airway epithelium. PMID:26590823

  8. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells

    PubMed Central

    Merkle, Florian T.; Maroof, Asif; Wataya, Takafumi; Sasai, Yoshiki; Studer, Lorenz; Eggan, Kevin; Schier, Alexander F.

    2015-01-01

    Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a ‘self-patterning’ strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases. PMID:25670790

  9. Colloidal dual-band gap cell for photocatalytic hydrogen generation.

    PubMed

    Li, Wei; O'Dowd, Graeme; Whittles, Thomas J; Hesp, David; Gründer, Yvonne; Dhanak, Vinod R; Jäckel, Frank

    2015-10-28

    We report that the internal quantum efficiency for hydrogen generation in spherical, Pt-decorated CdS nanocrystals can be tuned by quantum confinement, resulting in higher efficiencies for smaller than for larger nanocrystals (17.3% for 2.8 nm and 11.4% for 4.6 nm diameter nanocrystals). We attribute this to a larger driving force for electron and hole transfer in the smaller nanocrystals. The larger internal quantum efficiency in smaller nanocrystals enables a novel colloidal dual-band gap cell utilising differently sized nanocrystals and showing larger external quantum efficiencies than cells with only one size of nanocrystals (9.4% for 2.8 nm particles only and 14.7% for 2.8 nm and 4.6 nm nanocrystals). This represents a proof-of-principle for future colloidal tandem cell. PMID:26415524

  10. Generating trunk neural crest from human pluripotent stem cells

    PubMed Central

    Huang, Miller; Miller, Matthew L.; McHenry, Lauren K.; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages. PMID:26812940

  11. Development and Interaction of Artificially Generated Hairpin Vortices

    NASA Astrophysics Data System (ADS)

    Sabatino, Daniel; McKenna, Christopher

    2012-11-01

    The development and interaction of hairpin vortices are examined and categorized to better understand their role in fully turbulent boundary layers. Hairpin vortices are generated within an otherwise laminar boundary layer using a free surface water channel. Direct injection is the primary generation method and the behavior of the vortices is first examined using flow visualization. Hydrogen bubble wire is combined with dye injection to help clarify the role of the vorticity in the fluid immediately surrounding the hairpin vortex. PIV data is also used to classify the development and maturity of the vortices for a range of free stream and injection conditions. The interactions of two hairpin vortices of varying maturity are characterized to investigate the potential mechanisms for the formation of hairpin packets beyond autogeneration. Finally, the behavior of hairpin vortices generated with a new technique that uses a transient hemispherical protrusion is also examined. Supported by the National Science Foundation under Grant CBET-1040236.

  12. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    PubMed

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy. PMID:22683799

  13. Colloidal dual-band gap cell for photocatalytic hydrogen generation

    NASA Astrophysics Data System (ADS)

    Li, Wei; O'Dowd, Graeme; Whittles, Thomas J.; Hesp, David; Gründer, Yvonne; Dhanak, Vinod R.; Jäckel, Frank

    2015-10-01

    We report that the internal quantum efficiency for hydrogen generation in spherical, Pt-decorated CdS nanocrystals can be tuned by quantum confinement, resulting in higher efficiencies for smaller than for larger nanocrystals (17.3% for 2.8 nm and 11.4% for 4.6 nm diameter nanocrystals). We attribute this to a larger driving force for electron and hole transfer in the smaller nanocrystals. The larger internal quantum efficiency in smaller nanocrystals enables a novel colloidal dual-band gap cell utilising differently sized nanocrystals and showing larger external quantum efficiencies than cells with only one size of nanocrystals (9.4% for 2.8 nm particles only and 14.7% for 2.8 nm and 4.6 nm nanocrystals). This represents a proof-of-principle for future colloidal tandem cell.We report that the internal quantum efficiency for hydrogen generation in spherical, Pt-decorated CdS nanocrystals can be tuned by quantum confinement, resulting in higher efficiencies for smaller than for larger nanocrystals (17.3% for 2.8 nm and 11.4% for 4.6 nm diameter nanocrystals). We attribute this to a larger driving force for electron and hole transfer in the smaller nanocrystals. The larger internal quantum efficiency in smaller nanocrystals enables a novel colloidal dual-band gap cell utilising differently sized nanocrystals and showing larger external quantum efficiencies than cells with only one size of nanocrystals (9.4% for 2.8 nm particles only and 14.7% for 2.8 nm and 4.6 nm nanocrystals). This represents a proof-of-principle for future colloidal tandem cell. Electronic supplementary information (ESI) available: Full experimental details and additional experimental results. See DOI: 10.1039/c5nr04950d

  14. Approaches to Study Human T Cell Development.

    PubMed

    Dolens, Anne-Catherine; Van de Walle, Inge; Taghon, Tom

    2016-01-01

    Not only is human T cell development characterized by unique changes in surface marker expression, but it also requires specific growth factors and conditions to mimic and study T cell development in vitro. In this chapter, we provide an overview of the specific aspects that need attention when performing T cell differentiation cultures with human progenitors. PMID:26294413

  15. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors

    PubMed Central

    Kalekar, Lokesh A.; Schmiel, Shirdi E.; Nandiwada, Sarada L.; Lam, Wing Y.; Barsness, Laura O.; Zhang, Na; Stritesky, Gretta L.; Malhotra, Deepali; Pauken, Kristen E.; Linehan, Jonathan L.; O’Sullivan, M. Gerard; Fife, Brian T.; Hogquist, Kristin A.; Jenkins, Marc K.; Mueller, Daniel L.

    2015-01-01

    The role that anergy, an acquired state of T cell functional unresponsiveness, plays in natural peripheral tolerance remains unclear. In this study, we demonstrate that anergy is selectively induced in fetal antigen-specific maternal CD4+ T cells during pregnancy. A naturally occurring subpopulation of anergic polyclonal CD4+ T cells, enriched in self antigen-specific T cell receptors, is also observed in healthy hosts. Neuropilin-1 expression in anergic conventional CD4+ T cells is associated with thymic regulatory T cell (Treg cell)-related gene hypomethylation, and this correlates with their capacity to differentiate into Foxp3+ Treg cells that suppress immunopathology. Thus, our data suggest that not only is anergy induction important in preventing autoimmunity, but it also generates the precursors for peripheral Treg cell differentiation. PMID:26829766

  16. Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells.

    PubMed

    Xinaris, Christodoulos; Benedetti, Valentina; Novelli, Rubina; Abbate, Mauro; Rizzo, Paola; Conti, Sara; Tomasoni, Susanna; Corna, Daniela; Pozzobon, Michela; Cavallotti, Daniela; Yokoo, Takashi; Morigi, Marina; Benigni, Ariela; Remuzzi, Giuseppe

    2016-05-01

    Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research. PMID:26516208

  17. Tripple Junction Solar Cells With 30.0% Efficiency And Next Generation Cell Concepts

    NASA Astrophysics Data System (ADS)

    Kostler, W.; Meusel, M.; Kubera, T.; Torunski, T.

    2011-10-01

    This paper presents the data of the AZUR SPACE 3G30 cell. With its 30% BOL efficiency for AM0, it marks the final stage of lattice-matched space triple-junction cells. Furthermore, a summary is given on the roadmap for the development of future cell concept in terms of higher efficiency and increase of cell size.

  18. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  19. RICOR development of the next generation highly reliable rotary cryocooler

    NASA Astrophysics Data System (ADS)

    Regev, Itai; Nachman, Ilan; Livni, Dorit; Riabzev, Sergey; Filis, Avishai; Segal, Victor

    2016-05-01

    Early rotary cryocoolers were designed for the lifetime of a few thousands operating hours. Ricor K506 model's life expectancy was only 5,000 hours, then the next generation K508 model was designed to achieve 10,000 operating hours in basic conditions, while the modern K508N was designed for 20,000 operating hours. Nowadays, the new challenges in the field of rotary cryocoolers require development of a new generation cooler that could compete with the linear cryocooler reliability, achieving the lifetime goal of 30,000 operating hours, and even more. Such new advanced cryocooler can be used for upgrade existing systems, or to serve the new generation of high-temperature detectors that are currently under development, enabling the cryocooler to work more efficiently in the field. The improvement of the rotary cryocooler reliability is based on a deep analysis and understating of the root failure causes, finding solutions to reduce bearings wear, using modern materials and lubricants. All of those were taken into consideration during the development of the new generation rotary coolers. As a part of reliability challenges, new digital controller was also developed, which allows new options, such as discrete control of the operating frequency, and can extend the cooler operating hours due to new controlling technique. In addition, the digital controller will be able to collect data during cryocooler operation, aiming end of life prediction.

  20. Generativity-Stagnation: Development of a Status Model.

    ERIC Educational Resources Information Center

    Bradley, Cheryl L.

    1997-01-01

    Reviews theoretical and empirical developments in Erik Erikson's construct of generativity-stagnation. Presents a five-category model describing styles of resolving the issue using combinations of level of involvement or active concern for the growth of self and others; and level of inclusivity or scope of caregiving concern. Discusses model in…

  1. Development and Design of a Dynamic Multimedia Item Generation Mechanism

    ERIC Educational Resources Information Center

    Weng, Ting-Sheng

    2012-01-01

    This research applies multimedia technology to design a dynamic item generation method that can adaptively adjust the difficulty level of items according to the level of the testee. The method is based on interactive testing software developed by Flash Actionscript, and provides a testing solution for users by automatically distributing items of…

  2. Recent developments in Monte-Carlo Event Generators

    NASA Astrophysics Data System (ADS)

    Schönherr, Marek

    2016-07-01

    With Run II of the LHC having started, the need for high precision theory predictions whose uncertainty matches that of the data to be taken necessitated a range of new developments in Monte-Carlo Event Generators. This talk will give an overview of the progress in recent years in the field and what can and cannot be expected from these newly written tools.

  3. Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells

    NASA Astrophysics Data System (ADS)

    Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu

    2016-08-01

    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.

  4. Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells.

    PubMed

    Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu

    2016-08-01

    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases. PMID:27379400

  5. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies

    SciTech Connect

    Shaoan Cheng; Brian A. Dempsey; Bruce E. Logan

    2007-12-15

    Acid-mine drainage (AMD) is difficult and costly to treat. We investigated a new approach to AMD treatment using fuel cell technologies to generate electricity while removing iron from the water. Utilizing a recently developed microbial fuel cell architecture, we developed an acid-mine drainage fuel cell (AMD-FC) capable of abiotic electricity generation. The AMD-FC operated in fed-batch mode generated a maximum power density of 290 mW/m{sup 2} at a Coulombic efficiency greater than 97%. Ferrous iron was completely removed through oxidation to insoluble Fe(III), forming a precipitate in the bottom of the anode chamber and on the anode electrode. Several factors were examined to determine their effect on operation, including pH, ferrous iron concentration, and solution chemistry. Optimum conditions were a pH of 6.3 and a ferrous iron concentration above about 0.0036 M. These results suggest that fuel cell technologies can be used not only for treating AMD through removal of metals from solution, but also for producing useful products such as electricity and recoverable metals. Advances being made in wastewater fuel cells will enable more efficient power generation and systems suitable for scale-up. 35 refs., 8 figs.

  6. Targeted organ generation using Mixl1-inducible mouse pluripotent stem cells in blastocyst complementation.

    PubMed

    Kobayashi, Toshihiro; Kato-Itoh, Megumi; Nakauchi, Hiromitsu

    2015-01-15

    Generation of functional organs from patients' own cells is one of the ultimate goals of regenerative medicine. As a novel approach to creation of organs from pluripotent stem cells (PSCs), we employed blastocyst complementation in organogenesis-disabled animals and successfully generated PSC-derived pancreas and kidneys. Blastocyst complementation, which exploits the capacity of PSCs to participate in forming chimeras, does not, however, exclude contribution of PSCs to the development of tissues-including neural cells or germ cells-other than those specifically targeted by disabling of organogenesis. This fact provokes ethical controversy if human PSCs are to be used. In this study, we demonstrated that forced expression of Mix-like protein 1 (encoded by Mixl1) can be used to guide contribution of mouse embryonic stem cells to endodermal organs after blastocyst injection. We then succeeded in applying this method to generate functional pancreas in pancreatogenesis-disabled Pdx1 knockout mice using a newly developed tetraploid-based organ-complementation method. These findings hold promise for targeted organ generation from patients' own PSCs in livestock animals. PMID:25192056

  7. Development of PEM fuel cell technology at international fuel cells

    SciTech Connect

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  8. Spatial and Age-Dependent Hair Cell Generation in the Postnatal Mammalian Utricle.

    PubMed

    Gao, Zhen; Kelly, Michael C; Yu, Dehong; Wu, Hao; Lin, Xi; Chi, Fang-Lu; Chen, Ping

    2016-04-01

    Loss of vestibular hair cells is a common cause of balance disorders. Current treatment options for bilateral vestibular dysfunction are limited. During development, atonal homolog 1 (Atoh1) is sufficient and necessary for the formation of hair cells and provides a promising gene target to induce hair cell generation in the mammals. In this study, we used a transgenic mouse line to test the age and cell type specificity of hair cell induction in the postnatal utricle in mice. We found that forced Atoh1 expression in vivo can induce hair cell formation in the utricle from postnatal days 1 to 21, while the efficacy of hair cell induction is progressively reduced as the animals become older. In the utricle, the induction of hair cells occurs both within the sensory region and in cells in the transitional epithelium next to the sensory region. Within the sensory epithelium, the central region, known as the striola, is most subjective to the induction of hair cell formation. Furthermore, forced Atoh1 expression can promote proliferation in an age-dependent manner that mirrors the progressively reduced efficacy of hair cell induction in the postnatal utricle. These results suggest that targeting both cell proliferation and Atoh1 in the utricle striolar region may be explored to induce hair cell regeneration in mammals. The study also demonstrates the usefulness of the animal model that provides an in vivo Atoh1 induction model for vestibular regeneration studies. PMID:25666161

  9. Development of a circuit breaker for large generators. Final report

    SciTech Connect

    Garzon, R.D.; Wu, J.L.

    1982-01-01

    This report deals with the evaluation of design concepts for the development of Circuit Breakers for large generators and attempts to define a rating structure for a generator circuit breaker. It includes studies on the influence of the system upon the performance of the circuit breaker. This study covers: The harmonic content in the fault current, the absence of current zeros, the influence of the dynamics of the generator shaft upon the current, and the magnitude and characteristics of the inherent transient recovery voltage produced by the system. Design requirements such as storage volumes, operating pressures and size of nozzle's orifice are identified for SF/sub 6/ synchronous and non synchronous interrupters of the axial flow type. The concept of a current limiting generator circuit breaker is introduced and two variations of a current limiting element are evaluated. One of the concepts uses liquid metal (NaK 78) as the current limiting element, and the other considers the use of a frangible conductor. The preliminary results obtained with an experimental model of a NaK device shows that a magnetic pinching effect reduces the time required for the initiation of the liquid metal vaporization which determines the onset of current limitation and shows that the NaK device appears to offer promise for the development of a current limiting generator breaker.

  10. Generation of induced pluripotent stem cells from human mesenchymal stem cells of parotid gland origin

    PubMed Central

    Yan, Xing; Xu, Nuo; Meng, Cen; Wang, Bianhong; Yuan, Jinghong; Wang, Caiyun; Li, Yang

    2016-01-01

    The technology to reprogram human somatic cells to pluripotent state allows the generation of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine and autologous transplantation. Here we, for the first time, identified mesenchymal stem cells isolated from parotid gland (hPMSCs) as a suitable candidate for iPSC production. In the present study, hPMSCs were isolated from parotid gland specimens in patients with squamous cell carcinoma of the oral cavity. The mesenchymal stem cell properties of cultured hPMSCs were confirmed by expression of surface markers and induced differentiation into osteogenic, chondrogenic and adipogenic cell lineages. hPMSCs were then reprogrammed to pluripotent cells by episomal vector-mediated transduction of reprogramming factors (OCT3/4, SOX2, KLF4, c-MYC, LIN28 and TP53 shRNA). The resulting hPMSC-iPSCs showed similar characteristics as human embryonic stem cells (ESCs) with regard to morphology, pluripotent markers, global gene expression, and methylation status of pluripotent cell-specific genes OCT4 and NANOG. These hPMSC-iPSCs were able to differentiate into cells of all three germ layers both in vitro and in vivo. Our results indicate that hPMSCs could be an alternative cell source for generation of iPSCs and have the potential to be used in cell-based regenerative medicine. PMID:27158336

  11. Development and characterization of a new human hepatic cell line.

    PubMed

    Ramboer, Eva; De Craene, Bram; De Kock, Joey; Berx, Geert; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The increasing demand and hampered use of primary human hepatocytes for research purposes have urged scientists to search for alternative cell sources, such as immortalized hepatic cell lines. The aim of this study was to develop a human hepatic cell line using the combined overexpression of TERT and the cell cycle regulators cyclin D1 and mutant isoform CDK4R24C. Following transduction of adult human primary hepatocytes with the selected immortalization genes, cell growth was triggered and a cell line was established. When cultured under appropriate conditions, the cell line expressed several hepatocytic markers and liver-enriched transcription factors at the transcriptional and/or translational level, secreted liver-specific proteins and showed glycogen deposition. These results suggest that the immortalization strategy applied to primary human hepatocytes could generate a novel hepatic cell line that seems to retain some key hepatic characteristics. PMID:26869867

  12. Development and characterization of a new human hepatic cell line

    PubMed Central

    Ramboer, Eva; De Craene, Bram; De Kock, Joey; Berx, Geert; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The increasing demand and hampered use of primary human hepatocytes for research purposes have urged scientists to search for alternative cell sources, such as immortalized hepatic cell lines. The aim of this study was to develop a human hepatic cell line using the combined overexpression of TERT and the cell cycle regulators cyclin D1 and mutant isoform CDK4R24C. Following transduction of adult human primary hepatocytes with the selected immortalization genes, cell growth was triggered and a cell line was established. When cultured under appropriate conditions, the cell line expressed several hepatocytic markers and liver-enriched transcription factors at the transcriptional and/or translational level, secreted liver-specific proteins and showed glycogen deposition. These results suggest that the immortalization strategy applied to primary human hepatocytes could generate a novel hepatic cell line that seems to retain some key hepatic characteristics. PMID:26869867

  13. Do β-Cells Generate Peroxynitrite in Response to Cytokine Treatment?*

    PubMed Central

    Broniowska, Katarzyna A.; Mathews, Clayton E.; Corbett, John A.

    2013-01-01

    The purpose of this study was to determine the reactive species that is responsible for cytokine-mediated β-cell death. Inhibitors of inducible nitric oxide synthase prevent this death, and addition of exogenous nitric oxide using donors induces β-cell death. The reaction of nitric oxide with superoxide results in the generation of peroxynitrite, and this powerful oxidant has been suggested to be the mediator of β-cell death in response to cytokine treatment. Recently, coumarin-7-boronate has been developed as a probe for the selective detection of peroxynitrite. Using this reagent, we show that addition of the NADPH oxidase activator phorbol 12-myristate 13-acetate to nitric oxide-producing macrophages results in peroxynitrite generation. Using a similar approach, we demonstrate that cytokines fail to stimulate peroxynitrite generation by rat islets and insulinoma cells, either with or without phorbol 12-myristate 13-acetate treatment. When forced to produce superoxide using redox cyclers, this generation is associated with protection from nitric oxide toxicity. These findings indicate that: (i) nitric oxide is the likely mediator of the toxic effects of cytokines, (ii) β-cells do not produce peroxynitrite in response to cytokines, and (iii) when forced to produce superoxide, the scavenging of nitric oxide by superoxide is associated with protection of β-cells from nitric oxide-mediated toxicity. PMID:24194521

  14. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  15. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    SciTech Connect

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  16. Rapid and robust generation of long-term self-renewing human neural stem cells with the ability to generate mature astroglia

    PubMed Central

    Palm, Thomas; Bolognin, Silvia; Meiser, Johannes; Nickels, Sarah; Träger, Claudia; Meilenbrock, Ralf-Leslie; Brockhaus, Johannes; Schreitmüller, Miriam; Missler, Markus; Schwamborn, Jens Christian

    2015-01-01

    Induced pluripotent stem cell bear the potential to differentiate into any desired cell type and hold large promise for disease-in-a-dish cell-modeling approaches. With the latest advances in the field of reprogramming technology, the generation of patient-specific cells has become a standard technology. However, directed and homogenous differentiation of human pluripotent stem cells into desired specific cell types remains an experimental challenge. Here, we report the development of a novel hiPSCs-based protocol enabling the generation of expandable homogenous human neural stem cells (hNSCs) that can be maintained under self-renewing conditions over high passage numbers. Our newly generated hNSCs retained differentiation potential as evidenced by the reliable generation of mature astrocytes that display typical properties as glutamate up-take and expression of aquaporin-4. The hNSC-derived astrocytes showed high activity of pyruvate carboxylase as assessed by stable isotope assisted metabolic profiling. Moreover, using a cell transplantation approach, we showed that grafted hNSCs were not only able to survive but also to differentiate into astroglial in vivo. Engraftments of pluripotent stem cells derived from somatic cells carry an inherent tumor formation potential. Our results demonstrate that hNSCs with self-renewing and differentiation potential may provide a safer alternative strategy, with promising applications especially for neurodegenerative disorders. PMID:26541394

  17. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.

    1978-01-01

    An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.

  18. Generation of Functional Insulin-Producing Cells From Mouse Embryonic Stem Cells Through 804G Cell-Derived Extracellular Matrix and Protein Transduction of Transcription Factors

    PubMed Central

    Kaitsuka, Taku; Noguchi, Hirofumi; Shiraki, Nobuaki; Kubo, Takuya; Wei, Fan-Yan; Hakim, Farzana; Kume, Shoen

    2014-01-01

    Embryonic stem (ES) and induced pluripotent stem (iPS) cells have potential applications to regenerative medicine for diabetes; however, a useful and safe way to generate pancreatic β cells has not been developed. In this study, we tried to establish an effective method of differentiation through the protein transduction of three transcription factors (Pdx1, NeuroD, and MafA) important to pancreatic β cell development. The method poses no risk of unexpected genetic modifications in target cells. Transduction of the three proteins induced the differentiation of mouse ES and mouse iPS cells into insulin-producing cells. Furthermore, a laminin-5-rich extracellular matrix efficiently induced differentiation under feeder-free conditions. Cell differentiation was confirmed with the expression of the insulin 1 gene in addition to marker genes in pancreatic β cells, the differentiated cells secreted glucose-responsive C-peptide, and their transplantation restored normoglycemia in diabetic mice. Moreover, Pdx1 protein transduction had facilitative effects on differentiation into pancreatic endocrine progenitors from human iPS cells. These results suggest the direct delivery of recombinant proteins and treatment with laminin-5-rich extracellular matrix to be useful for the generation of insulin-producing cells. PMID:24292793

  19. Extended Temperature Solar Cell Technology Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  20. Thin film cell development workshop report

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1991-01-01

    The Thin Film Development Workshop provided an opportunity for those interested in space applications of thin film cells to debate several topics. The unique characteristics of thin film cells as well as a number of other issues were covered during the discussions. The potential of thin film cells, key research and development issues, manufacturing issues, radiation damage, substrates, and space qualification of thin film cells were discussed.

  1. Steam generator tubing development for commercial fast breeder reactors

    SciTech Connect

    Sessions, C.E.; Uber, C.F.

    1981-11-01

    The development work to design, manufacture, and evaluate pre-stressed double-wall 2/one quarter/ Cr-1 Mo steel tubing for commercial fast breeder reactor steam generator application is discussed. The Westinghouse plan for qualifying tubing vendors to produce this tubing is described. The results achieved to date show that a long length pre-stressed double-wall tube is both feasible and commercially available. The evaluation included structural analysis and experimental measurement of the pre-stress within tubes, as well as dimensional, metallurgical, and interface wear tests of tube samples produced. This work is summarized and found to meet the steam generator design requirements. 10 refs.

  2. Electrothermal gas generator: Development and qualification of the control electronics

    NASA Astrophysics Data System (ADS)

    Matthaeus, G.; Schmitz, H. D.

    1986-07-01

    The development and qualification of an electronic control circuitry for an electrothermal or catalytic hydrazine gas generator system is described. The circuitry, named manual override, controls the gas pressure in a tank using a pressure transducer and the gas generator to keep the pressure constant within narrow tolerances. The present pressure can be varied by ground command, enabling a variable thrust of the gas fed cold gas thrusters. The automatic loop can be switched off and the tank pressure be controlled by ground command. Two manual overrides SN01 and SN02 were qualified.

  3. Electropolishing process development for PWR steam generator channel heads

    SciTech Connect

    Asay, R.H.; Graves, P.; Guastaferro, C.T.; Spalaris, C.N. )

    1991-04-01

    A broad range of process parameters was established to smoothen the surface of 309 L weld clad overlay, prototypic of surfaces common is channel heads of replacement PWR (pressurized water reactor) steam generators. Mechanical and electropolishing steps were studied to explore process boundaries, which result in acceptable degree of surface smoothness, without compromising metallurgical properties. Recommended processes and acceptance criteria established in this work, can be applied to electropolish steam generator channel heads. Smooth surfaces are less likely to retain radioactive species, and potentially develop lower radiation fields when these components are placed into service. 7 refs., 11 figs., 12 tabs.

  4. Development of a new generation of optical slope measuring profiler

    SciTech Connect

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen

    2010-07-09

    We overview the results of a broad US collaboration, including all DOE synchrotron labs (ALS, APS, BNL, NSLS-II, LLNL, LCLS), major industrial vendors of x-ray optics (InSync, Inc., SSG Precision Optronics-Tinsley, Inc., Optimax Systems, Inc.), and with active participation of HBZ-BESSY-II optics group, on development of a new generation slope measuring profiler -- the optical slope measuring system (OSMS). The desired surface slope measurement accuracy of the instrument is<50 nrad (absolute) that is adequate to the current and foreseeable future needs for metrology of x-ray optics for the next generation of light sources.

  5. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1982-01-01

    The phosphoric acid fuel cell module (stack) development which culminated in an 80 cell air-cooled stack with separated gas cooling and treed cooling plates is described. The performance of the 80 cell stack was approx. 100 mV per cell higher than that attained during phase 1. The components and materials performed stably for over 8000 hours in a 5 cell stack. The conceptual design of a fuel conditioning system is described.

  6. Interactions between zebrafish pigment cells responsible for the generation of Turing patterns.

    PubMed

    Nakamasu, Akiko; Takahashi, Go; Kanbe, Akio; Kondo, Shigeru

    2009-05-26

    The reaction-diffusion system is one of the most studied nonlinear mechanisms that generate spatially periodic structures autonomous. On the basis of many mathematical studies using computer simulations, it is assumed that animal skin patterns are the most typical examples of the Turing pattern (stationary periodic pattern produced by the reaction-diffusion system). However, the mechanism underlying pattern formation remains unknown because the molecular or cellular basis of the phenomenon has yet to be identified. In this study, we identified the interaction network between the pigment cells of zebrafish, and showed that this interaction network possesses the properties necessary to form the Turing pattern. When the pigment cells in a restricted region were killed with laser treatment, new pigment cells developed to regenerate the striped pattern. We also found that the development and survival of the cells were influenced by the positioning of the surrounding cells. When melanophores and xanthophores were located at adjacent positions, these cells excluded one another. However, melanophores required a mass of xanthophores distributed in a more distant region for both differentiation and survival. Interestingly, the local effect of these cells is opposite to that of their effects long range. This relationship satisfies the necessary conditions required for stable pattern formation in the reaction-diffusion model. Simulation calculations for the deduced network generated wild-type pigment patterns as well as other mutant patterns. Our findings here allow further investigation of Turing pattern formation within the context of cell biology. PMID:19433782

  7. Development of innate lymphoid cells.

    PubMed

    Zook, Erin C; Kee, Barbara L

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of immune effector cells that have important roles in host defense, metabolic homeostasis and tissue repair but can also contribute to inflammatory diseases such as asthma and colitis. These cells can be categorized into three groups on the basis of the transcription factors that direct their function and the cytokines they produce, which parallel the effector functions of T lymphocytes. The hierarchy of cell-fate-restriction events that occur as common lymphoid progenitors become committed to each of the ILC lineages further underscores the relationship between these innate immune cells and T lymphocytes. In this Review we discuss the developmental program of ILCs and transcription factors that guide ILC lineage specification and commitment. PMID:27328007

  8. Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy

    PubMed Central

    Luevano, Martha; Madrigal, Alejandro; Saudemont, Aurore

    2012-01-01

    Natural killer (NK) cells are part of the innate immune system and are an alluring option for immunotherapy due to their ability to kill infected cells or cancer cells without prior sensitization. Throughout the past 20 years, different groups have been able to reproduce NK cell development in vitro, and NK cell ontogeny studies have provided the basis for the establishment of protocols to produce NK cells in vitro for immunotherapy. Here, we briefly discuss NK cell development and NK cell immunotherapy approaches. We review the factors needed for NK cell differentiation in vitro, which stem cell sources have been used, published protocols, challenges and future directions for Good Manufacturing Practice protocols. PMID:22705914

  9. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells.

    PubMed

    Kumar, Nathan; Richter, Jenna; Cutts, Josh; Bush, Kevin T; Trujillo, Cleber; Nigam, Sanjay K; Gaasterland, Terry; Brafman, David; Willert, Karl

    2015-01-01

    The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate. PMID:26554899

  10. Heat generation during overcharge of Ni/H2 cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Kelly, W. H.; Earl, M. W.

    1992-01-01

    Information is given in viewgraph form on the heat generation during overcharge of nickel hydrogen cells. The heat dissipated during various rates of charge and overcharge was measured, using a radiative type calorimeter. Measurements made during the charging of the cell indicated that the total heat was greatest for C/10 charge, compared with C/2 or C/4. The endothermic to exothermic transition occurred at 1.43 V for C/10 charge, and increased to 1.467 V at C/2 charge. The magnitude of the endothermic heat was only 3.7 percent of the total heat generated during charging. Experimentally measured values were compared against those calculated using a thermoneutral potential of 1.51 V. Although there was general agreement between the calculated and measured values, a significant difference existed in the instantaneous heat values for the initial stages of cell discharge. Heat dissipated during self-discharge appears to depend on the charge rate preceding open circuit stand.

  11. Cell Cycle Regulation in the Developing Lens

    PubMed Central

    Griep, Anne E.

    2007-01-01

    Regulation of cell proliferation is a critical aspect of the development of multicellular organisms. The ocular lens is an excellent model system in which to unravel the mechanisms controlling cell proliferation during development. In recent years, several cell cycle regulators have been shown to be essential for maintaining normal patterns of lens cell proliferation. Additionally, many growth factor signaling pathways and cell adhesion factors have been shown to have the capacity to regulate lens cell proliferation. Given this complexity, understanding the cross talk between these many signaling pathways and how they are coordinated are important directions for the future. PMID:17218126

  12. Thymic stromal cell subsets for T cell development.

    PubMed

    Nitta, Takeshi; Suzuki, Harumi

    2016-03-01

    The thymus provides a specialized microenvironment in which a variety of stromal cells of both hematopoietic and non-hematopoietic origin regulate development and repertoire selection of T cells. Recent studies have been unraveling the inter- and intracellular signals and transcriptional networks for spatiotemporal regulation of development of thymic stromal cells, mainly thymic epithelial cells (TECs), and the molecular mechanisms of how different TEC subsets control T cell development and selection. TECs are classified into two functionally different subsets: cortical TECs (cTECs) and medullary TECs (mTECs). cTECs induce positive selection of diverse and functionally distinct T cells by virtue of unique antigen-processing systems, while mTECs are essential for establishing T cell tolerance via ectopic expression of peripheral tissue-restricted antigens and cooperation with dendritic cells. In addition to reviewing the role of the thymic stroma in conventional T cell development, we will discuss recently discovered novel functions of TECs in the development of unconventional T cells, such as natural killer T cells and γδT cells. PMID:26825337

  13. Development of nickel-metal hydride cell

    NASA Technical Reports Server (NTRS)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  14. Development and Buildup of a Stirling Radioisotope Generator Electrical Simulator

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.; Krasowski, Michael J.; Greer, Lawrence C.; Flatico, Joseph M.; Spina, Dan C.

    2008-01-01

    This paper describes the development of a Stirling Radioisotope Generator (SRG) Simulator for use in a prototype lunar robotic rover. The SRG developed at NASA Glenn Research Center (GRC) is a promising power source for the robotic exploration of the sunless areas of the moon. The simulator designed provides a power output similar to the SRG output of 5.7 A at 28 Vdc, while using ac wall power as the input power source. The designed electrical simulator provides rover developers the physical and electrical constraints of the SRG supporting parallel development of the SRG and rover. Parallel development allows the rover design team to embrace the SRG s unique constraints while development of the SRG is continued to a flight qualified version.

  15. International Space Station United States Oxygen Generator Development Testing

    NASA Technical Reports Server (NTRS)

    Erickson, Robert J.; Mason, Richard K.

    2000-01-01

    A life test of a liquid anode feed oxygen generator assembly (OGA) using SPE(R) (United Technologies Corporation, Hamilton Sundstrand Division) membrane technology was terminated in June of 1999. In the total 15,658 hours of operation at MSFC since delivery in 1995, the OGA has produced 2,103 kilograms (kg) (4,632 pounds mass (lbm)) of oxygen, and 263 kg (579 lbm) of hydrogen. Evaluation of cell stack characteristics and oxygen and hydrogen hydrophilic/hydrophobic membrane separators will be discussed.

  16. SHARPIN controls the development of regulatory T cells.

    PubMed

    Redecke, Vanessa; Chaturvedi, Vandana; Kuriakose, Jeeba; Häcker, Hans

    2016-06-01

    SHARPIN is an essential component of the linear ubiquitin chain assembly complex (LUBAC) complex that controls signalling pathways of various receptors, including the tumour necrosis factor receptor (TNFR), Toll-like receptor (TLR) and antigen receptor, in part by synthesis of linear, non-degrading ubiquitin chains. Consistent with SHARPIN's function in different receptor pathways, the phenotype of SHARPIN-deficient mice is complex, including the development of inflammatory systemic and skin diseases, the latter of which depend on TNFR signal transduction. Given the established function of SHARPIN in primary and malignant B cells, we hypothesized that SHARPIN might also regulate T-cell receptor (TCR) signalling and thereby control T-cell biology. Here, we focus primarily on the role of SHARPIN in T cells, specifically regulatory T (Treg) cells. We found that SHARPIN-deficient (Sharpin(cpdm/cpdm) ) mice have significantly reduced numbers of FOXP3(+) Treg cells in lymphoid organs and the peripheral blood. Competitive reconstitution of irradiated mice with mixed bone marrow from wild-type and SHARPIN-deficient mice revealed an overall reduced thymus population with SHARPIN-deficient cells with almost complete loss of thymic Treg development. Consistent with this cell-intrinsic function of SHARPIN in Treg development, TCR stimulation of SHARPIN-deficient thymocytes revealed reduced activation of nuclear factor-κB and c-Jun N-terminal kinase, establishing a function of SHARPIN in TCR signalling, which may explain the defective Treg development. In turn, in vitro generation and suppressive activity of mature SHARPIN-deficient Treg cells were comparable to wild-type cells, suggesting that maturation, but not function, of SHARPIN-deficient Treg cells is impaired. Taken together, these findings show that SHARPIN controls TCR signalling and is required for efficient generation of Treg cells in vivo, whereas the inhibitory function of mature Treg cells appears to be

  17. Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells

    PubMed Central

    Ozone, Chikafumi; Suga, Hidetaka; Eiraku, Mototsugu; Kadoshima, Taisuke; Yonemura, Shigenobu; Takata, Nozomu; Oiso, Yutaka; Tsuji, Takashi; Sasai, Yoshiki

    2016-01-01

    Anterior pituitary is critical for endocrine systems. Its hormonal responses to positive and negative regulators are indispensable for homeostasis. For this reason, generating human anterior pituitary tissue that retains regulatory hormonal control in vitro is an important step for the development of cell transplantation therapy for pituitary diseases. Here we achieve this by recapitulating mouse pituitary development using human embryonic stem cells. We find that anterior pituitary self-forms in vitro following the co-induction of hypothalamic and oral ectoderm. The juxtaposition of these tissues facilitated the formation of pituitary placode, which subsequently differentiated into pituitary hormone-producing cells. They responded normally to both releasing and feedback signals. In addition, after transplantation into hypopituitary mice, the in vitro-generated corticotrophs rescued physical activity levels and survival of the hosts. Thus, we report a useful methodology for the production of regulator-responsive human pituitary tissue that may benefit future studies in regenerative medicine. PMID:26762480

  18. Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells.

    PubMed

    Ozone, Chikafumi; Suga, Hidetaka; Eiraku, Mototsugu; Kadoshima, Taisuke; Yonemura, Shigenobu; Takata, Nozomu; Oiso, Yutaka; Tsuji, Takashi; Sasai, Yoshiki

    2016-01-01

    Anterior pituitary is critical for endocrine systems. Its hormonal responses to positive and negative regulators are indispensable for homeostasis. For this reason, generating human anterior pituitary tissue that retains regulatory hormonal control in vitro is an important step for the development of cell transplantation therapy for pituitary diseases. Here we achieve this by recapitulating mouse pituitary development using human embryonic stem cells. We find that anterior pituitary self-forms in vitro following the co-induction of hypothalamic and oral ectoderm. The juxtaposition of these tissues facilitated the formation of pituitary placode, which subsequently differentiated into pituitary hormone-producing cells. They responded normally to both releasing and feedback signals. In addition, after transplantation into hypopituitary mice, the in vitro-generated corticotrophs rescued physical activity levels and survival of the hosts. Thus, we report a useful methodology for the production of regulator-responsive human pituitary tissue that may benefit future studies in regenerative medicine. PMID:26762480

  19. The design and development of a third generation OSEE instrument

    NASA Technical Reports Server (NTRS)

    Perey, D. F.; Yost, W. T.; Stone, F. D.; Welch, C. S.; Scales, E.; Gasser, E. S.; Joe, E.; Goodman, T.; Pascual, X.; Hefner, B.

    1995-01-01

    Optically Stimulated Electron Emission (OSEE) has been used to quantify surface contamination in the aerospace community. As advances are made towards the understanding of OSEE, it is desirable to incorporate technological advances with succeeding generations of instrumentation, so that improvements in the practical application of OSEE may be disseminated among the user community. Several studies undertaken by Yost, Welch, Abedin and others have expanded the knowledge base related to the underlying principles of OSEE. The conclusions of these studies, together with inputs from the user community were the foundation upon which the development of a third generation OSEE instrument was based. This manuscript describes the significant improvements incorporated into a third generation OSEE instrument as well as the elements unique to its design.

  20. The design and development of a third generation OSEE instrument

    NASA Astrophysics Data System (ADS)

    Perey, D. F.; Yost, W. T.; Stone, F. D.; Welch, C. S.; Scales, E.; Gasser, E. S.; Joe, E.; Goodman, T.; Pascual, X.; Hefner, B.

    1995-03-01

    Optically Stimulated Electron Emission (OSEE) has been used to quantify surface contamination in the aerospace community. As advances are made towards the understanding of OSEE, it is desirable to incorporate technological advances with succeeding generations of instrumentation, so that improvements in the practical application of OSEE may be disseminated among the user community. Several studies undertaken by Yost, Welch, Abedin and others have expanded the knowledge base related to the underlying principles of OSEE. The conclusions of these studies, together with inputs from the user community were the foundation upon which the development of a third generation OSEE instrument was based. This manuscript describes the significant improvements incorporated into a third generation OSEE instrument as well as the elements unique to its design.

  1. Development of 30 kVA class fully superconducting generator

    SciTech Connect

    Tsukamoto, O.; Amemiya, N.; Takao, T. . Faculty of Engineering); Akita, S. ); Ohishi, K.; Shimuzu, H.; Tanaka, Y. ); Uchikawa, Y. )

    1992-01-01

    This paper reports that the authors are developing a 4 poles 30 kVA class fully superconducting generator to investigate the characteristics of superconducting armature winding subject to the rotating magnetic field produced by the superconducting rotor and behavior of a superconducting generator connected to an electric power utility grid. A static test of the armature winding have been performed by applying 50 Hz AC current. AC quench currents of the armature windings have reached to 200 Arms after several quenches which was well over the rated current. A static test of the field windings have been also performed to verify its rated performance. In the paper, detailed configurations and electrical test results of the generator are shown.

  2. Generation of Highly Enriched Populations of Optic Vesicle-Like Retinal Cells from Human Pluripotent Stem Cells

    PubMed Central

    Ohlemacher, Sarah K.; Iglesias, Clara L.; Sridhar, Akshayalakshmi; Gamm, David M.; Meyer, Jason S.

    2015-01-01

    The procedure to efficiently and reproducibly differentiate retinal cells from human pluripotent stem cells (hPSCs) is described below. Cells are taken through a stepwise protocol to direct them toward a neural fate by treatment with neural induction medium (NIM), then to a retinal fate by exposure to retinal differentiation medium (RDM). Undifferentiated hPSCs are enzymatically lifted from matrigel-coated plates and exposed to NIM in suspension. Differentiation in suspension allows the cells to form 3 dimensional aggregates. At 7 days of differentiation, aggregates are plated and attach to 6 well plates, where a neuroepithelial fate begins to be established. Upon 16 days of differentiation, neurospheres are lifted and maintained in RDM to create a three-dimensional optic vesicle-like structure. This procedure allows for the efficient and timely generation of a variety of retinal cell types, including ganglion cells, retinal pigment epithelium, as well as cone and rod photoreceptors. The use of this protocol to generate a myriad of retinal cell types facilitates in vitro studies of human retinogenesis, and will enable retinal dysfunction to be more easily studied in vitro, as well as providing a large population of cells with which to aid in drug development and patient specific therapies. PMID:25640818

  3. Germ line development: lessons learned from pluripotent stem cells.

    PubMed

    Martínez-Arroyo, Ana M; Medrano, Jose V; Remohí, José; Simón, Carlos

    2014-10-01

    Current knowledge about mammalian germ line development is mainly based on the mouse model and little is known about how this fundamental process occurs in humans. This review summarizes our current knowledge of genetic and epigenetic germ line development in mammals, mainly focusing on primordial germ cell (PGC) specification events, comparing the differences between mouse and human models. We also emphasize the knowledge derived from the most successful strategies used to generate germ cell-like cells in vitro in both models and major obstacles to obtaining bona fide in vitro-derived gametes are considered. PMID:25461452

  4. Models of charge pair generation in organic solar cells.

    PubMed

    Few, Sheridan; Frost, Jarvist M; Nelson, Jenny

    2015-01-28

    Efficient charge pair generation is observed in many organic photovoltaic (OPV) heterojunctions, despite nominal electron-hole binding energies which greatly exceed the average thermal energy. Empirically, the efficiency of this process appears to be related to the choice of donor and acceptor materials, the resulting sequence of excited state energy levels and the structure of the interface. In order to establish a suitable physical model for the process, a range of different theoretical studies have addressed the nature and energies of the interfacial states, the energetic profile close to the heterojunction and the dynamics of excited state transitions. In this paper, we review recent developments underpinning the theory of charge pair generation and phenomena, focussing on electronic structure calculations, electrostatic models and approaches to excited state dynamics. We discuss the remaining challenges in achieving a predictive approach to charge generation efficiency. PMID:25462189

  5. Apoptosis Process in Mouse Leydig Cells during Postnatal Development

    NASA Astrophysics Data System (ADS)

    Salles Faria, Maria José; Simões, Zilá Paulino; Luz; Orive Lunardi, Laurelucia; Hartfelder, Klaus

    2003-02-01

    The development of Leydig cells in mammals has been widely described as a biphasic pattern with two temporally mature Leydig cell populations, fetal stage followed by the adult generation beginning at puberty. In the present study, mouse Leydig cells were examined for apoptosis during postnatal testis development using electron microscopy and in situ DNA fragmentation by terminal deoxynucleotidyl transferase staining (TdT). Both the morphological study and the DNA fragmentation analysis showed that cellular death by apoptosis did not occur in Leydig cells during the neonatal, prepubertal, puberty, and adult periods. From these results, we suggest that the remaining fetal Leydig cells in the neonatal testis are associated with the involution or degeneration processes. In contrast, in the prepubertal and puberty stages, fragmentation of apoptotic DNA was detected in germ cells present in some seminiferous tubules.

  6. Diaphragm Pressure Wave Generator Developments at Industrial Research Ltd

    NASA Astrophysics Data System (ADS)

    Caughley, A. J.; Emery, N.; Glasson, N. D.

    2010-04-01

    Industrial Research Ltd (IRL) have been developing a unique diaphragm based pressure wave generator technology for pulse tube and Stirling cryocoolers. Our system uses a metal diaphragm to separate the clean cryocooler gas circuit from a conventionally lubricated mechanical driver, thus producing a clean pressure wave with a long life drive that does not require the precision manufacture and associated costs of large linear motors. The first successful diaphragm pressure wave generator produced 3.2 kW of acoustic power at an electro-acoustic efficiency of 72% with a swept volume of 200 ml and a prototype has now accumulated over 2500 hours running. This paper describes recent developments in the technology. To explore scaling, a small diaphragm pressure wave generator with a swept volume of 20 ml has been constructed and has delivered 454 W of acoustic power at an electro-acoustic efficiency of 60%. Improvements have been made to the hydraulic force amplifier mechanism for driving the diaphragms resulting in a cheaper and lighter mechanism than the mechanical linkage originally used. To meet a customer's specific requirements, the 200 ml pressure wave generator's stroke was extended to achieve 240 ml of swept volume thereby increasing its acoustic power delivery to 4.1 kW without compromising efficiency.

  7. Development and optimization of a stove-powered thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Mastbergen, Dan

    Almost a third of the world's population still lacks access to electricity. Most of these people use biomass stoves for cooking which produce significant amounts of wasted thermal energy, but no electricity. Less than 1% of this energy in the form of electricity would be adequate for basic tasks such as lighting and communications. However, an affordable and reliable means of accomplishing this is currently nonexistent. The goal of this work is to develop a thermoelectric generator to convert a small amount of wasted heat into electricity. Although this concept has been around for decades, previous attempts have failed due to insufficient analysis of the system as a whole, leading to ineffective and costly designs. In this work, a complete design process is undertaken including concept generation, prototype testing, field testing, and redesign/optimization. Detailed component models are constructed and integrated to create a full system model. The model encompasses the stove operation, thermoelectric module, heat sinks, charging system and battery. A 3000 cycle endurance test was also conducted to evaluate the effects of operating temperature, module quality, and thermal interface quality on the generator's reliability, lifetime and cost effectiveness. The results from this testing are integrated into the system model to determine the lowest system cost in $/Watt over a five year period. Through this work the concept of a stove-based thermoelectric generator is shown to be technologically and economically feasible. In addition, a methodology is developed for optimizing the system for specific regional stove usage habits.

  8. Generating hepatic cell lineages from pluripotent stem cells for drug toxicity screening

    PubMed Central

    Baxter, Melissa A.; Rowe, Cliff; Alder, Jane; Harrison, Sean; Hanley, Karen Piper; Park, B. Kevin; Kitteringham, Neil R.; Goldring, Chris E.; Hanley, Neil A.

    2012-01-01

    Hepatotoxicity is an enormous and increasing problem for the pharmaceutical industry. Early detection of problems during the drug discovery pathway is advantageous to minimize costs and improve patient safety. However, current cellular models are sub-optimal. This review addresses the potential use of pluripotent stem cells in the generation of hepatic cell lineages. It begins by highlighting the scale of the problem faced by the pharmaceutical industry, the precise nature of drug-induced liver injury and where in the drug discovery pathway the need for additional cell models arises. Current research is discussed, mainly for generating hepatocyte-like cells rather than other liver cell-types. In addition, an effort is made to identify where some of the major barriers remain in translating what is currently hypothesis-driven laboratory research into meaningful platform technologies for the pharmaceutical industry. PMID:20483202

  9. Perspectives of germ cell development in vitro in mammals

    PubMed Central

    Hayashi, Katsuhiko; Saitou, Mitinori

    2014-01-01

    Pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are able to differentiate into all cell lineages of the embryo proper, including germ cells. This pluripotent property has a huge impact on the fields of regenerative medicine, developmental biology and reproductive engineering. Establishing the germ cell lineage from ESCs/iPSCs is the key biological subject, since it would contribute not only to dissection of the biological processes of germ cell development but also to production of unlimited numbers of functional gametes in vitro. Toward this goal, we recently established a culture system that induces functional mouse primordial germ cells (PGCs), precursors of all germ cells, from mouse ESCs/iPSCs. The successful in vitro production of PGCs arose from the study of pluripotent cell state, the signals inducing PGCs and the technology of transplantation. However, there are many obstacles to be overcome for the robust generation of mature gametes or for application of the culture system to other species, including humans and livestock. In this review, we discuss the requirements for a culture system to generate the germ cell lineage from ESCs/iPSCs. PMID:24725251

  10. Solar cell utilizing photochemical generation of electricity. Semiannual research report

    SciTech Connect

    Stevenson, K. L.

    1980-01-01

    Research on the design and development of a photogalvanic cell using a transparent electrode of indium oxide-tin oxide coated on plate glass, an electrolytic containing iodine, and an inert electrode is described. Preliminary spectral response and efficiency data are given. (WHK)

  11. Development and bottlenecks of renewable electricity generation in China: a critical review.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2013-04-01

    This review provides an overview on the development and status of electricity generation from renewable energy sources, namely hydropower, wind power, solar power, biomass energy, and geothermal energy, and discusses the technology, policy, and finance bottlenecks limiting growth of the renewable energy industry in China. Renewable energy, dominated by hydropower, currently accounts for more than 25% of the total electricity generation capacity. China is the world's largest generator of both hydropower and wind power, and also the largest manufacturer and exporter of photovoltaic cells. Electricity production from solar and biomass energy is at the early stages of development in China, while geothermal power generation has received little attention recently. The spatial mismatch in renewable energy supply and electricity demand requires construction of long-distance transmission networks, while the intermittence of renewable energy poses significant technical problems for feeding the generated electricity into the power grid. Besides greater investment in research and technology development, effective policies and financial measures should also be developed and improved to better support the healthy and sustained growth of renewable electricity generation. Meanwhile, attention should be paid to the potential impacts on the local environment from renewable energy development, despite the wider benefits for climate change. PMID:23445126

  12. ATP release, generation and hydrolysis in exocrine pancreatic duct cells.

    PubMed

    Kowal, J M; Yegutkin, G G; Novak, I

    2015-12-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels, and corresponding transcripts were expressed in duct cells. Direct stimulation of intracellular Ca(2+) and cAMP signalling and ethanol application had negligible effects on ATP release. The released ATP was sequentially dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting adenylate kinase (AK1) and nucleoside diphosphate kinase (NDPK) enzymes (NME1, 2), which contribute to metabolism and regeneration of extracellular ATP and other nucleotides (ADP, uridine diphosphate (UDP) and uridine triphosphate (UTP)). In conclusion, we illustrate a complex regulation of extracellular purine homeostasis in a pancreatic duct cell model involving: ATP release by several mechanisms and subsequent nucleotide breakdown and ATP regeneration via counteracting nucleotide

  13. Rapid and Highly Efficient Generation of Induced Pluripotent Stem Cells from Human Umbilical Vein Endothelial Cells

    PubMed Central

    Yi, Fei; Herrerías, Aída; Batchelder, Erika M.; Belmonte, Juan Carlos Izpisua

    2011-01-01

    The ability to induce somatic cells to pluripotency by ectopic expression of defined transcription factors (e.g. KLF-4, OCT4, SOX2, c-MYC, or KOSM) has transformed the future of regenerative medicine. Here we report somatic cell reprogramming of human umbilical vein endothelial cells (HUVECs), yielding induced pluripotent stem (iPS) cells with the fastest kinetics, and one of the highest reprogramming efficiencies for a human somatic cell to date. HUVEC-derived iPS (Huv-iPS) cell colonies appeared as early as 6 days after a single KOSM infection, and were generated with a 2.5–3% reprogramming efficiency. Furthermore, when HUVEC reprogramming was performed under hypoxic conditions in the presence of a TGF-beta family signaling inhibitor, colony formation increased an additional ∼2.5-fold over standard conditions. Huv-iPS cells were indistinguishable from human embryonic stem (ES) cells with regards to morphology, pluripotent marker expression, and their ability to generate all embryonic germ layers in vitro and in vivo. The high efficiency and rapid kinetics of Huv-iPS cell formation, coupled with the ease by which HUVECs can be collected, expanded and stored, make these cells an attractive somatic source for therapeutic application, and for studying the reprogramming process. PMID:21603572

  14. Mechanisms regulating dendritic cell specification and development

    PubMed Central

    Watowich, Stephanie S.; Liu, Yong-Jun

    2010-01-01

    Summary Understanding the diversification of dendritic cell (DC) lineages is one of the last frontiers in mapping the developmental hierarchy of the hematopoietic system. DCs are a vital link between the innate and adaptive immune responses, thus elucidating their developmental pathways is crucial for insight into the generation of natural immunity and for learning how to regulate DCs in clinical settings. DCs arise from hematopoietic stem cells through specialized progenitor subsets under the direction of FMS-like tyrosine kinase 3 ligand (Flt3L) and Flt3L receptor (Flt3) signaling. Recent studies have revealed important contributions from granulocyte-macrophage colony-stimulating factor (GM-CSF) and type I interferons (IFNs) in vivo. Furthermore, DC development is guided by lineage-restricted transcription factors such as IRF8, E2-2, and Batf3. A critical question centers on how cytokines and lineage-restricted transcription factors operate molecularly to direct DC diversification. Here we review recent findings that provide new insight into the DC developmental process. PMID:20969586

  15. Progress in Development of Kharkov X-Ray Generator Nestor

    SciTech Connect

    Androsov, V.; Bulyak, V.; Dovbnya, A.; Drebot, I.; Gladkikh, P.; Grevtsev, V.; Grigorev, Yu.; Gvozd, A.; Ivashchenko, V.; Karnaukhov, I.; Kovalyova, N.; Kozin, V.; Lapshin, V.; Lyashchenko, V.; Markov, V.; Mocheshnikov, N.; Mytsykov, A.; Neklyudov, I.; Peev, F.; Rezaev, A.; Shcherbakov, A.; /Kharkov, KIPT /SLAC, SSRL /Eindhoven, Tech. U. /Lebedev Inst. /Kurdyumova Inst. Metalophysics

    2005-09-14

    The sources of the X-rays based on Compton scattering of intense Nd:YAG laser beam on electron beam circulating in a storage ring with beam energy 43-225 MeV is under construction in NSC KIPT. In the paper the progress in development and construction of Kharkov X-ray generator NESTOR is presented. The current status of the main facility system design and development are described. New scheme and main parameters of injection system are presented. The status of power supply system and control system is described. The facility is going to be in operation in the middle of 2007 and generated X-rays flux is expected to be of about 10{sup 13} phot/s.

  16. Development of a fourth generation predictive capability maturity model.

    SciTech Connect

    Hills, Richard Guy; Witkowski, Walter R.; Urbina, Angel; Rider, William J.; Trucano, Timothy Guy

    2013-09-01

    The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated for an intended application. The primary application of this tool at Sandia National Laboratories (SNL) has been for physics-based computational simulations in support of nuclear weapons applications. The two main goals of a PCMM evaluation are 1) the communication of computational simulation capability, accurately and transparently, and 2) the development of input for effective planning. As a result of the increasing importance of computational simulation to SNL's mission, the PCMM has evolved through multiple generations with the goal to provide more clarity, rigor, and completeness in its application. This report describes the approach used to develop the fourth generation of the PCMM.

  17. Development of second-generation PFB combustion plants

    SciTech Connect

    Robertson, A.; Domeracki, W.; Horazak, D.

    1995-12-31

    Research is being conducted under United States Department of Energy (USDOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fueled plant for electric power generation. This new type of plant--called an Advanced or Second-generation Pressurized Fluidized Bed Combustion (APFBC) plant--offers the promise of efficiencies greater than 45 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot-plant R&D work being conducted to develop this new type of plant and discusses a proposed design that should reduce demonstration-plant risks and costs.

  18. Generation of stem cell-derived β-cells from patients with type 1 diabetes.

    PubMed

    Millman, Jeffrey R; Xie, Chunhui; Van Dervort, Alana; Gürtler, Mads; Pagliuca, Felicia W; Melton, Douglas A

    2016-01-01

    We recently reported the scalable in vitro production of functional stem cell-derived β-cells (SC-β cells). Here we extend this approach to generate the first SC-β cells from type 1 diabetic patients (T1D). β-cells are destroyed during T1D disease progression, making it difficult to extensively study them in the past. These T1D SC-β cells express β-cell markers, respond to glucose both in vitro and in vivo, prevent alloxan-induced diabetes in mice and respond to anti-diabetic drugs. Furthermore, we use an in vitro disease model to demonstrate the cells respond to different forms of β-cell stress. Using these assays, we find no major differences in T1D SC-β cells compared with SC-β cells derived from non-diabetic patients. These results show that T1D SC-β cells could potentially be used for the treatment of diabetes, drug screening and the study of β-cell biology. PMID:27163171

  19. Generation of stem cell-derived β-cells from patients with type 1 diabetes

    PubMed Central

    Millman, Jeffrey R.; Xie, Chunhui; Van Dervort, Alana; Gürtler, Mads; Pagliuca, Felicia W.; Melton, Douglas A.

    2016-01-01

    We recently reported the scalable in vitro production of functional stem cell-derived β-cells (SC-β cells). Here we extend this approach to generate the first SC-β cells from type 1 diabetic patients (T1D). β-cells are destroyed during T1D disease progression, making it difficult to extensively study them in the past. These T1D SC-β cells express β-cell markers, respond to glucose both in vitro and in vivo, prevent alloxan-induced diabetes in mice and respond to anti-diabetic drugs. Furthermore, we use an in vitro disease model to demonstrate the cells respond to different forms of β-cell stress. Using these assays, we find no major differences in T1D SC-β cells compared with SC-β cells derived from non-diabetic patients. These results show that T1D SC-β cells could potentially be used for the treatment of diabetes, drug screening and the study of β-cell biology. PMID:27163171

  20. Concise review: alchemy of biology: generating desired cell types from abundant and accessible cells.

    PubMed

    Pournasr, Behshad; Khaloughi, Keynoush; Salekdeh, Ghasem Hosseini; Totonchi, Mehdi; Shahbazi, Ebrahim; Baharvand, Hossein

    2011-12-01

    A major goal of regenerative medicine is to produce cells to participate in the generation, maintenance, and repair of tissues that are damaged by disease, aging, or trauma, such that function is restored. The establishment of induced pluripotent stem cells, followed by directed differentiation, offers a powerful strategy for producing patient-specific therapies. Given how laborious and lengthy this process can be, the conversion of somatic cells into lineage-specific stem/progenitor cells in one step, without going back to, or through, a pluripotent stage, has opened up tremendous opportunities for regenerative medicine. However, there are a number of obstacles to overcome before these cells can be widely considered for clinical applications. Here, we focus on induced transdifferentiation strategies to convert mature somatic cells to other mature cell types or progenitors, and we summarize the challenges that need to be met if the potential applications of transdifferentiation technology are to be achieved. PMID:21997905

  1. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  2. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    NASA Astrophysics Data System (ADS)

    King, D. A.

    1994-11-01

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  3. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect

    King, D.A.

    1994-11-10

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  4. NNSA Program Develops the Next Generation of Nuclear Security Experts

    SciTech Connect

    Brim, Cornelia P.; Disney, Maren V.

    2015-09-02

    NNSA is fostering the next generation of nuclear security experts is through its successful NNSA Graduate Fellowship Program (NGFP). NGFP offers its Fellows an exceptional career development opportunity through hands-on experience supporting NNSA mission areas across policy and technology disciplines. The one-year assignments give tomorrow’s leaders in global nuclear security and nonproliferation unparalleled exposure through assignments to Program Offices across NNSA.

  5. Very Rapid and Efficient Generation of Induced Pluripotent Stem Cells from Mouse Pre-B Cells.

    PubMed

    Di Stefano, Bruno; Graf, Thomas

    2016-01-01

    One of the major obstacles in generating induced pluripotent stem (iPS) cells suitable for therapeutic application is the low efficiency of the process and the long time required, with many iPS lines acquiring genomic aberrations. In this chapter we describe a highly efficient iPS reprogramming system based on the transient expression in pre-B cells of the transcription factor C/EBPα, followed by the induction of the four Yamanaka factors (OSKM). In addition, the process is very rapid, yielding Oct4 positive cells within 2 days and Nanog-positive iPS cell colonies within a week. PMID:25410286

  6. Development of Next Generation Segmented Thermoelectric Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Fleurial, J.; Caillat, T.; Ewell, R. C.

    2005-12-01

    Radioisotope thermoelectric generators have been used for space-based applications since 1961 with a total of 22 space missions that have successfully used RTGs for electrical power production. The key advantages of radioisotope thermoelectric generators (RTGs) are their long life, robustness, compact size, and high reliability. Thermoelectric converters are easily scalable, and possess a linear current-voltage curve, making power generation easy to control via a shunt regulator and shunt radiator. They produce no noise, vibration or torque during operation. These properties have made RTGs ideally suitable for autonomous missions in the extreme environments of outer space and on planetary surfaces. More advanced radioisotope power systems (RPS) with higher specific power (W/kg) and/or power output are desirable for future NASA missions, including the Europa Geophysical Orbiter mission. For the past few years, the Jet Propulsion Laboratory (JPL) has been developing more efficient thermoelectric materials and has demonstrated significant increases in the conversion efficiency of high temperature thermocouples, up to 14% when operated across a 975K to 300K temperature differential. In collaboration with NASA Glenn Research Center, universities (USC and UNM), Ceramic and Metal Composites Corporation and industrial partners, JPL is now planning to lead the research and development of advanced thermoelectric technology for integration into the next generations of RPS. Preliminary studies indicate that this technology has the potential for improving the RPS specific power by more than 50% over the current state-of-the-art multi-mission RTG being built for the Mars Science Laboratory mission. A second generation advanced RPS is projected at more than doubling the specific power.

  7. Strategic planning for molten carbonate fuel cell development and commercialization

    SciTech Connect

    Williams, M.C.; Mayfield, M.J.

    1993-01-01

    The molten carbonate fuel cell (MCFC), a high-temperature fuel cell, is a promising energy conversion product for generating electricity. Natural gas availability appears to play a key role in MCFC commercialization; natural gas MCFC and Integrated gasification MCFC (IGMCFC) are emerging power generation options that are responsive to requirements of Clean Air Act amendments and to guidance in National Energy Strategy. Goal of DOE IGMCFC program is to demonstrate the commercial readiness of this technology by the year 2010. DOE MCFC development objectives and planned activities are outlined.

  8. Strategic planning for molten carbonate fuel cell development and commercialization

    SciTech Connect

    Williams, M.C.; Mayfield, M.J.

    1993-03-01

    The molten carbonate fuel cell (MCFC), a high-temperature fuel cell, is a promising energy conversion product for generating electricity. Natural gas availability appears to play a key role in MCFC commercialization; natural gas MCFC and Integrated gasification MCFC (IGMCFC) are emerging power generation options that are responsive to requirements of Clean Air Act amendments and to guidance in National Energy Strategy. Goal of DOE IGMCFC program is to demonstrate the commercial readiness of this technology by the year 2010. DOE MCFC development objectives and planned activities are outlined.

  9. SOX2+ Cell Population from Normal Human Brain White Matter Is Able to Generate Mature Oligodendrocytes

    PubMed Central

    Oliver-De La Cruz, Jorge; Carrión-Navarro, Josefa; García-Romero, Noemí; Gutiérrez-Martín, Antonio; Lázaro-Ibáñez, Elisa; Escobedo-Lucea, Carmen; Perona, Rosario; Belda-Iniesta, Cristobal; Ayuso-Sacido, Angel

    2014-01-01

    Objectives A number of neurodegenerative diseases progress with a loss of myelin, which makes them candidate diseases for the development of cell-replacement therapies based on mobilisation or isolation of the endogenous neural/glial progenitor cells, in vitro expansion, and further implantation. Cells expressing A2B5 or PDGFRA/CNP have been isolated within the pool of glial progenitor cells in the subcortical white matter of the normal adult human brain, all of which demonstrate glial progenitor features. However, the heterogeneity and differentiation potential of this pool of cells is not yet well established. Methods We used diffusion tensor images, histopathology, and immunostaining analysis to demonstrate normal cytoarchitecture and the absence of abnormalities in human temporal lobe samples from patients with mesial temporal sclerosis. These samples were used to isolate and enrich glial progenitor cells in vitro, and later to detect such cells in vivo. Results We have identified a subpopulation of SOX2+ cells, most of them co-localising with OLIG2, in the white matter of the normal adult human brain in vivo. These cells can be isolated and enriched in vitro, where they proliferate and generate immature (O4+) and mature (MBP+) oligodendrocytes and, to a lesser extent, astrocytes (GFAP+). Conclusion Our results demonstrate the existence of a new glial progenitor cell subpopulation that expresses SOX2 in the white matter of the normal adult human brain. These cells might be of use for tissue regeneration procedures. PMID:24901457

  10. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.

    PubMed

    Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic

    2015-07-15

    Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development. PMID:25758640

  11. Modeling and control of fuel cell based distributed generation systems

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space

  12. Development and maturation of natural killer cells.

    PubMed

    Geiger, Theresa L; Sun, Joseph C

    2016-04-01

    Natural killer (NK) cells are innate lymphocytes that are critical for host protection against pathogens and cancer due to their ability to rapidly release inflammatory cytokines and kill infected or transformed cells. In the 40 years since their initial discovery, much has been learned about how this important cellular lineage develops and functions. We now know that NK cells are the founding members of an expanded family of lymphocyte known as innate lymphoid cells (ILC). Furthermore, we have recently discovered that NK cells can possess features of adaptive immunity such as antigen specificity and long-lived memory responses. Here we will review our current understanding of the molecular mechanisms driving development of NK cells from the common lymphoid progenitor (CLP) to mature NK cells, and from activated effectors to long-lived memory NK cells. PMID:26845614

  13. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  14. Ex vivo generation of interstitial and Langerhans cell-like dendritic cell subset-based vaccines for hematological malignancies.

    PubMed

    Hutten, Tim; Thordardottir, Soley; Hobo, Willemijn; Hübel, Jessica; van der Waart, Anniek B; Cany, Jeannette; Dolstra, Harry; Hangalapura, Basav N

    2014-06-01

    Autologous, patient-specific, monocyte-derived dendritic cell (MoDC) vaccines have been successfully applied in the clinical studies so far. However, the routine application of this strategy has been hampered by the difficulties in generating sufficient numbers of DC and the poor DC vaccine quality because of pathology or prior treatment received by the patients. The immunotherapeutic potential of other subsets of DC has not been thoroughly investigated because of their rarity in tissues and difficulties associated with their ex vivo generation. The high expansion and differentiation potential of CD34 hematopoietic progenitor cells (HPC), isolated from umbilical cord blood (UCB), into different DC subsets make them an attractive alternative DC source for cancer immunotherapy. Therefore, the aim of this study was to generate a large number of different DC subsets from CD34 HPC and evaluate their functionality in comparison with MoDC. Our culture protocol generated a clinically relevant number of mature CD1a myeloid DC and CD207 Langerhans cells (LC)-like DC subsets from CD34 HPC with >95% purity. Both DC subsets exhibited a cytokine profile that favors cytotoxic T-cell responses. Furthermore, UCB-DC and UCB-LC demonstrated superior induction of proliferation of both allogeneic as well as viral antigen-specific CD8 T cells, both in vitro and in vivo. Additional studies revealed that UCC-DC and UCB-LC can efficiently expand minor histocompatibility antigen (MiHA) HA-1-specific cytotoxic T cells in the peripheral blood of leukemia patients and prime MiHA HA-1-specific and HA-2-specific cytotoxic T cells in vitro. These preclinical findings support the pharmaceutical development of the described culture protocol for clinical evaluation. PMID:24810638

  15. Development of second-generation pressurized fluidized bed combustion process

    SciTech Connect

    Wolowodiuk, W.; Robertson, A.; Bonk, D.

    1995-12-01

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages-namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects-brief descriptions of these are also included.

  16. Human NK cell development requires CD56-mediated motility and formation of the developmental synapse

    PubMed Central

    Mace, Emily M.; Gunesch, Justin T.; Dixon, Amera; Orange, Jordan S.

    2016-01-01

    While distinct stages of natural killer (NK) cell development have been defined, the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which, through contact-dependent mechanisms, promote the generation of mature, functional human NK cells from CD34+ precursors. We show that developing NK cells undergo unique, developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells, and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells, which we term the developmental synapse. Finally, we identify a role for CD56 in developmental synapse structure, NK cell motility and NK cell development. Thus, we define the developmental synapse leading to human NK cell functional maturation. PMID:27435370

  17. Human NK cell development requires CD56-mediated motility and formation of the developmental synapse.

    PubMed

    Mace, Emily M; Gunesch, Justin T; Dixon, Amera; Orange, Jordan S

    2016-01-01

    While distinct stages of natural killer (NK) cell development have been defined, the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which, through contact-dependent mechanisms, promote the generation of mature, functional human NK cells from CD34(+) precursors. We show that developing NK cells undergo unique, developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells, and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells, which we term the developmental synapse. Finally, we identify a role for CD56 in developmental synapse structure, NK cell motility and NK cell development. Thus, we define the developmental synapse leading to human NK cell functional maturation. PMID:27435370

  18. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Astrophysics Data System (ADS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 We/kg to 7 We/kg, along with a 25% reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  19. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  20. Developing Next Generation Natural Fracture Detection and Prediction Technology

    SciTech Connect

    R.L. Billingsley

    2005-05-01

    The purpose of the ''Next Generation'' project was to develop technology that will provide a quantitative description of natural fracture properties and locations in low-permeability reservoirs. The development of this technology has consistently been ranked as one of the highest priority needs by industry. Numerous researchers and resource assessment groups have stated that the ability to identify area where intense clusters of natural fractures co-exist with gas-charged sands, the so called ''sweet spots'', will be the key to unlocking the vast quantities of gas in-place contained in these low-permeability gas basins. To meet this technology need, the ''Next Generation'' project was undertaken with three performance criteria in mind: (1) provide an integrated assessment of the burial and tectonic stresses in a basin responsible for natural fracture genesis (using seismic data, a significantly modified application of geomechanics, and a discrete natural fracture generation model); (2) link the assessment of natural fracture properties and locations to the reservoir's fluid, storage and flow properties; and, (3) provide a reservoir simulation-based calculation of the gas (and water) production capacity of a naturally fractured reservoir system. Phase III of the ''Next Generation'' project entailed the performance of a field demonstration of the software in an ''exploration'' setting. The search for an Industry Partner willing to host an exploratory field demonstration was unsuccessful and Phase III was canceled effective May, 31, 2005. The failure to find an Industry Partner can be attributed to severe changes in the petroleum industry competitive environment between 1999 when the project was initiated and 2005 when further demonstration efforts were halted. The software was employed in portions of other, non-exploratory, projects underway during the development time period, and insights gained will be summarized here in lieu of a full field demonstration.

  1. Ex vivo generated natural killer cells acquire typical natural killer receptors and display a cytotoxic gene expression profile similar to peripheral blood natural killer cells.

    PubMed

    Lehmann, Dorit; Spanholtz, Jan; Osl, Markus; Tordoir, Marleen; Lipnik, Karoline; Bilban, Martin; Schlechta, Bernhard; Dolstra, Harry; Hofer, Erhard

    2012-11-01

    Ex vivo differentiation systems of natural killer (NK) cells from CD34+ hematopoietic stem cells are of potential importance for adjuvant immunotherapy of cancer. Here, we analyzed ex vivo differentiation of NK cells from cord blood-derived CD34+ stem cells by gene expression profiling, real-time RT-PCR, flow cytometry, and functional analysis. Additionally, we compared the identified characteristics to peripheral blood (PB) CD56(bright) and CD56(dim) NK cells. The data show sequential expression of CD56 and the CD94 and NKG2 receptor chains during ex vivo NK cell development, resulting finally in the expression of a range of genes with partial characteristics of CD56(bright) and CD56(dim) NK cells from PB. Expression of characteristic NK cell receptors and cytotoxic genes was mainly found within the predominant ex vivo generated population of NKG2A+ NK cells, indicating the importance of NKG2A expression during NK cell differentiation and maturation. Furthermore, despite distinct phenotypic characteristics, the detailed analysis of cytolytic genes expressed within the ex vivo differentiated NK cells revealed a pattern close to CD56(dim) NK cells. In line with this finding, ex vivo generated NK cells displayed potent cytotoxicity. This supports that the ex vivo differentiation system faithfully reproduces major steps of the differentiation of NK cells from their progenitors, constitutes an excellent model to study NK cell differentiation, and is valuable to generate large-scale NK cells appropriate for immunotherapy. PMID:22571679

  2. High temperature tubular solid oxide fuel cell development

    SciTech Connect

    Ray, E.R.

    1992-01-01

    Important to the development commercialization of any new technology is a field test program. This is a mutually beneficial program for both the developer and the prospective user. The developer is able to acquire valuable field operating experience that is not available in a laboratory while the user has the opportunity to become familiar with the new technology and gains a working knowledge of it through hands-on experience. Westinghouse, recognizing these benefits, initiated a program in 1986 by supplying a 400 W SOFC generator to Tennessee Valley Authority. This generator operated for approximately 1,760 hours and was constructed of twenty-four 30 cm thick-wall PST cells. In 1987, three, 3 kW SOFC generators were installed and operated at the facilities of the Tokyo Gas Company and the Osaka Gas Company. At Osaka Gas, two generators were used. First a training generator, operated for 2900 hours before it was replaced on a preplanned schedule with the second generator. The second generator operated for 3,600 hours. Tokyo Gas generator was operated for 4,900 hours. These generators had a 98% availability and measured NO{sub x} levels of less than 1.3 ppM. The 3 kW SOFC generators were constructed of 144 36 cm thick-wall PST cells. The 3 kW generators, as was the TVA generator, were fueled with hydrogen and carbon monoxide. The next major milestone in the field unit program was reached in early 1992 with the delivery to The UTILITIES, a consortium of the Kansai Electric Power company, the Tokyo Gas Company, and the Osaka Gas Company, of a natural gas fueled all electric SOFC system. This system is rated at a nominal 25 kW dc with a peak capacity of 40 kW dc. The NO{sub x} was measured at <0.3 ppM (corrected to 15% oxygen). The system consists of 1152 cells (thin-wall PST) of 50 cm active length, manufactured at the PPMF. Cells are contained in two independently controlled and operated generators. 2,300 hours of stable operation has been obtained on the first unit.

  3. High temperature tubular solid oxide fuel cell development

    SciTech Connect

    Ray, E.R.

    1992-09-01

    Important to the development commercialization of any new technology is a field test program. This is a mutually beneficial program for both the developer and the prospective user. The developer is able to acquire valuable field operating experience that is not available in a laboratory while the user has the opportunity to become familiar with the new technology and gains a working knowledge of it through hands-on experience. Westinghouse, recognizing these benefits, initiated a program in 1986 by supplying a 400 W SOFC generator to Tennessee Valley Authority. This generator operated for approximately 1,760 hours and was constructed of twenty-four 30 cm thick-wall PST cells. In 1987, three, 3 kW SOFC generators were installed and operated at the facilities of the Tokyo Gas Company and the Osaka Gas Company. At Osaka Gas, two generators were used. First a training generator, operated for 2900 hours before it was replaced on a preplanned schedule with the second generator. The second generator operated for 3,600 hours. Tokyo Gas generator was operated for 4,900 hours. These generators had a 98% availability and measured NO{sub x} levels of less than 1.3 ppM. The 3 kW SOFC generators were constructed of 144 36 cm thick-wall PST cells. The 3 kW generators, as was the TVA generator, were fueled with hydrogen and carbon monoxide. The next major milestone in the field unit program was reached in early 1992 with the delivery to The UTILITIES, a consortium of the Kansai Electric Power company, the Tokyo Gas Company, and the Osaka Gas Company, of a natural gas fueled all electric SOFC system. This system is rated at a nominal 25 kW dc with a peak capacity of 40 kW dc. The NO{sub x} was measured at <0.3 ppM (corrected to 15% oxygen). The system consists of 1152 cells (thin-wall PST) of 50 cm active length, manufactured at the PPMF. Cells are contained in two independently controlled and operated generators. 2,300 hours of stable operation has been obtained on the first unit.

  4. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells.

    PubMed

    Li, Jun; Song, Wei; Pan, Guangjin; Zhou, Jun

    2014-01-01

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed. PMID:25037625

  5. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells

    PubMed Central

    2014-01-01

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed. PMID:25037625

  6. Signaling hierarchy regulating human endothelial cell development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  7. Generation of serotonin neurons from human pluripotent stem cells

    PubMed Central

    Lu, Jianfeng; Zhong, Xuefei; Liu, Huisheng; Hao, Ling; Huang, Cindy Tzu-Ling; Sherafat, Mohammad Amin; Jones, Jeffrey; Ayala, Melvin; Li, Lingjun; Zhang, Su-Chun

    2016-01-01

    Serotonin neurons located in the raphe nucleus of the hindbrain have crucial roles in regulating brain functions and have been implicated in various psychiatric disorders. Yet functional human serotonin neurons are not available for in vitro studies. Through manipulation of the WNT pathway, we demonstrate efficient differentiation of human pluripotent stem cells (hPSCs) to cells resembling central serotonin neurons, primarily those located in the rhombomeric segments 2–3 of the rostral raphe, which participate in high-order brain functions. The serotonin neurons express a series of molecules essential for serotonergic development, including tryptophan hydroxylase 2, exhibit typical electrophysiological properties and release serotonin in an activity-dependent manner. When treated with the FDA-approved drugs tramadol and escitalopram oxalate, they release or uptake serotonin in a dose- and time-dependent manner, suggesting the utility of these cells for the evaluation of drug candidates. PMID:26655496

  8. Development and function of CD94-deficient natural killer cells.

    PubMed

    Orr, Mark T; Wu, Jun; Fang, Min; Sigal, Luis J; Spee, Pieter; Egebjerg, Thomas; Dissen, Erik; Fossum, Sigbjørn; Phillips, Joseph H; Lanier, Lewis L

    2010-01-01

    The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions. PMID:21151939

  9. The first IEC fusion industrial neutron generator and developments

    SciTech Connect

    Sved, John

    1999-06-10

    Inertial Electrostatic Confinement fusion grade plasma containment has been sporadically researched since the early 1960's. In the 1990's the work of G. H. Miley and his team at the University of Illinios, Fusion Studies Laboratory, Champaign-Urbana has stimulated a collaboration with industry. The development and test program for the first industrial IEC neutron generator has progressed to the point where an endurance test is under way to demonstrate at least 10,000 hours of operational life of the sealed chamber device without servicing. The market entry goals of steady 10{sup 7} D-D n/s CW output with an air-cooled system have been achieved. DASA has invested in the development of the industrial product and the continuing basic research at the UI-FSL. The complete DASA FusionStar IEC-PS1 point source neutron generator set is described with emphasis on the interfaces to user NAA systems. The next product developments are pulsed neutron operations and higher fusion reaction rates of up to 10{sup 10} by means of affordable add-ons to the basic IEC-PS system. The production engineering experience gained will next be applied to a more challenging line source variant of the IEC. Beyond neutron and proton sources, several other IEC applications are being developed.

  10. Thymic B cells promote thymus-derived regulatory T cell development and proliferation.

    PubMed

    Lu, Fang-Ting; Yang, Wei; Wang, Yin-Hu; Ma, Hong-Di; Tang, Wei; Yang, Jing-Bo; Li, Liang; Ansari, Aftab A; Lian, Zhe-Xiong

    2015-07-01

    Thymic CD4(+) FoxP3(+) regulatory T (Treg) cells are critical for the development of immunological tolerance and immune homeostasis and requires contributions of both thymic dendritic and epithelial cells. Although B cells have been reported to be present within the thymus, there has not hitherto been a definition of their role in immune cell development and, in particular, whether or how they contribute to the Treg cellular thymic compartment. Herein, using both phenotypic and functional approaches, we demonstrate that thymic B cells contribute to the maintenance of thymic Treg cells and, using an in vitro culture system, demonstrate that thymic B cells contribute to the size of the thymic Treg compartment via cell-cell MHC II contact and the involvement of two independent co-stimulatory pathways that include interactions between the CD40/CD80/CD86 co-stimulatory molecules. Our data also suggest that thymic B cells promote the generation of thymic Treg cell precursors (pre-Treg cells), but not the conversion of FoxP3(+) Treg cells from pre-Treg cells. In addition, thymic B cells directly promote the proliferation of thymic Treg cells that is MHC II contact dependent with a minimal if any role for co-stimulatory molecules including CD40/CD80/CD86. Both pathways are independent of TGFβ. In conclusion, we rigorously define the critical role of thymic B cells in the development of thymic Treg cells from non-Treg to precursor stage and in the proliferation of mature thymic Treg cells. PMID:26071985

  11. Generating intestinal tissue from stem cells: potential for research and therapy

    PubMed Central

    Howell, Jonathan C; Wells, James M

    2011-01-01

    Intestinal resection and malformations in adult and pediatric patients result in devastating consequences. Unfortunately, allogeneic transplantation of intestinal tissue into patients has not been met with the same measure of success as the transplantation of other organs. Attempts to engineer intestinal tissue in vitro include disaggregation of adult rat intestine into subunits called organoids, harvesting native adult stem cells from mouse intestine and spontaneous generation of intestinal tissue from embryoid bodies. Recently, by utilizing principles gained from the study of developmental biology, human pluripotent stem cells have been demonstrated to be capable of directed differentiation into intestinal tissue in vitro. Pluripotent stem cells offer a unique and promising means to generate intestinal tissue for the purposes of modeling intestinal disease, understanding embryonic development and providing a source of material for therapeutic transplantation. PMID:22050526

  12. Major design issues of molten carbonate fuel cell power generation unit

    SciTech Connect

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  13. Transformed MDCK cells secrete elevated MMP1 that generates LAMA5 fragments promoting endothelial cell angiogenesis.

    PubMed

    Gopal, Shashi K; Greening, David W; Zhu, Hong-Jian; Simpson, Richard J; Mathias, Rommel A

    2016-01-01

    Epithelial-mesenchymal transition (EMT) enhances the migration and invasion of cancer cells, and is regulated by various molecular mechanisms including extracellular matrix metalloproteinase (MMP) activity. Previously, we reported transformation of epithelial Madin-Darby canine kidney (MDCK) cells with oncogenic H-Ras (21D1 cells) induces EMT, and significantly elevates MMP1 expression. To explore the biological significance, in this study we characterized 21D1 cells with knocked-down MMP1 expression (21D1(-MMP1)). MMP1 silencing diminished 21D1 cell migration, invasion and anchorage-independent growth in vitro. Additionally, 21D1(-MMP1) cells displayed reduced tumour volume when grown as in vivo subcutaneous xenografts in mice. Depletion of MMP1 lowered the ability of the cellular secretome (extracellular culture medium) to influence recipient cell behaviour. For example, supplementation with 21D1 secretome elevated cell migration of recipient fibroblasts, and enhanced endothelial cell angiogenesis (vessel length and branching). By contrast, 21D1(-MMP1) secretome was less potent in both functional assays. We reveal laminin subunit alpha-5 (LAMA5) as a novel biological substrate of MMP1, that generates internal and C-terminal proteolytic fragments in 21D1 secretome. Furthermore, antibody-based inhibition of integrin αvβ3 on endothelial cells nullified the angiogenic capability of 21D1 secretome. Therefore, we report this as a new VEGF-independent mechanism that oncogenic cells may employ to promote tumour angiogenesis. PMID:27324842

  14. Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer

    PubMed Central

    Qin, Yiren; Qin, Jilong; Zhou, Chikai; Li, Jinsong; Gao, Wei-Qiang

    2015-01-01

    Somatic cells can be reprogrammed into embryonic stem cells (ESCs) by nuclear transfer (NT-ESCs), or into induced pluripotent stem cells (iPSCs) by the “Yamanaka method.” However, recent studies have indicated that mouse and human iPSCs are prone to epigenetic and transcriptional aberrations, and that NT-ESCs correspond more closely to ESCs derived from in vitro fertilized embryos than iPSCs. In addition, the procedure of NT-ESCs does not involve gene modification. Demonstration of generation of NT-ESCs using an easily-accessible source of adult cell types would be very important. Adipose tissue is a source of readily accessible donor cells and can be isolated from both males and females at different ages. Here we report that NT-ESCs can be generated from adipose tissue-derived cells (ADCs). At morphological, mRNA and protein levels, these NT-ESCs show classic ESC colonies, exhibit alkaline phosphatase (AP) activity, and display normal diploid karyotypes. Importantly, these cells express pluripotent markers including Oct4, Sox2, Nanog and SSEA-1. Furthermore, they can differentiate in vivo into various types of cells from 3 germinal layers by teratoma formation assays. This study demonstrates for the first time that ESCs can be generated from the adipose tissue by somatic cell nuclear transfer (SCNT) and suggests that ADCs can be a new donor-cell type for potential therapeutic cloning. PMID:25692793

  15. Generation of MHC class I-restricted cytotoxic T cell lines and clones against colonic epithelial cells from ulcerative colitis.

    PubMed

    Yonamine, Y; Watanabe, M; Kinjo, F; Hibi, T

    1999-01-01

    We established CTL lines and clones against colonic epithelial cells from PBLs of patients with ulcerative colitis by continuous stimulation with HLA-A locus-matched colonic epithelial cell lines. We developed a nonradioactive europium release cytotoxicity assay to detect CTLs. PBLs from 3 of 12 patients but not from any of 14 normal controls who shared at least one haplotype of HLA-A locus with two colonic epithelial cell lines, CW2 and ACM, showed increased cytotoxicity against these lines. Three CTL lines established from the PBLs of patients showed increased cytotoxicity against HLA-A locus-matched CW2 or ACM but not against matched lung or esophagus cell lines. The phenotypes of CTL lines were alpha beta-TCR+ CD3+ CD8+ CD16-. The CTL line MS showed increased cytotoxicity against freshly isolated colonic epithelial cells but not against cells with a different HLA-A locus. Two CTL clones were generated from MS and clone 3-2, expressing CD3+ CD8+ CD4- CD56-, showed high MHC class I-restricted cytotoxicity against the colonic epithelial cells. These results indicated that CTLs against colonic epithelial cells may contribute to epithelial cell damage in ulcerative colitis. PMID:10080107

  16. Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves.

    PubMed

    Gadalla, Atef; Dehoux, Thomas; Audoin, Bertrand

    2014-05-01

    Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE's ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics. PMID:24615232

  17. What cell death does in development.

    PubMed

    Zakeri, Zahra; Penaloza, Carlos G; Smith, Kyle; Ye, Yixia; Lockshin, Richard A

    2015-01-01

    Cell death is prominent in gametogenesis and shapes and sculpts embryos. In non-mammalian embryos one sees little or no cell death prior to the maternal-zygotic transition, but, in mammalian embryos, characteristic deaths of one or two cells occur at the end of compaction and are apparently necessary for the separation of the trophoblast from the inner cell mass. Considerable sculpting of the embryo occurs by cell deaths during organogenesis, and appropriate cell numbers, especially in the CNS and in the immune system, are generated by massive overproduction of cells and selection of a few, with death of the rest. The timing, identity, and genetic control of specific cells that die have been well documented in Caenorhabditis, but in other embryos the stochastic nature of the deaths limit our ability to do more than identify the regions in which cells will die. Complete disruption of the cell death machinery can be lethal, but many mutations of the regulatory machinery yield only modest or no phenotypes, indicating substantial redundancy and compensation of regulatory mechanisms. Most of the deaths are apoptotic and are identified by techniques used to recognize apoptosis, but techniques identifying lysosomes (whether in dying or involuting cells or in the phagocytes that invade the tissue) also reveal patterns of cell death. Aberrant cell deaths that produce known phenotypes are typically localized, indicating that the mechanism of activating a programmed death in a specific region, rather than the mechanism of death, is aberrant. These results lead us to conclude that we need to know much more about the conversations among cells that lead cells to commit suicide. PMID:26374521

  18. Continuous Non-cell Autonomous Reprogramming to Generate Retinal Ganglion Cells for Glaucomatous Neuropathy

    PubMed Central

    Parameswaran, Sowmya; Dravid, Shashank Manohar; Teotia, Pooja; Krishnamoorthy, Raghu R.; Qiu, Fang; Toris, Carol; Morrison, John; Ahmad, Iqbal

    2015-01-01

    Glaucoma, where the retinal ganglion cells (RGCs) carrying the visual signals from the retina to the visual centers in the brain are progressively lost, is the most common cause of irreversible blindness. The management approaches, whether surgical, pharmacological, or neuroprotective do not reverse the degenerative changes. The stem cell approach to replace dead RGCs is a viable option but currently faces several barriers, such as the lack of a renewable, safe, and ethical source of RGCs that are functional and could establish contacts with bona fide targets. To address these barriers, we have derived RGCs from the easily accessible adult limbal cells, re-programmed to pluripotency by a non nucleic acid approach, thus circumventing the risk of insertional mutagenesis. The generation of RGCs from the induced pluripotent stem (iPS) cells, also accomplished non-cell autonomously, recapitulated the developmental mechanism, ensuring the predictability and stability of the acquired phenotype, comparable to that of native RGCs at biochemical, molecular and functional levels. More importantly, the induced RGCs expressed axonal guidance molecules and demonstrated the potential to establish contacts with specific targets. Furthermore, when transplanted in the rat model of ocular hypertension, these cells incorporated into the host RGC layer and expressed RGC-specific markers. Transplantation of these cells in immune-deficient mice did not produce tumors. Together, our results posit retinal progenitors generated from non-nucleic acid-derived iPS cells as a safe and robust source of RGCs for replacing dead RGCs in glaucoma. PMID:25753398

  19. Ex vivo generation of functional immune cells by mitochondria-targeted photosensitization of cancer cells.

    PubMed

    Marrache, Sean; Tundup, Smanla; Harn, Donald A; Dhar, Shanta

    2015-01-01

    Stimulating the immune system for potent immune therapy against cancer is potentially a revolutionary method to eradicate cancer. Tumors stimulated with photosensitizers (PSs) not only kill cancer cells but also help to boost the immune system. We recently reported that tumor-associated antigens (TAAs) generated by delivery of a mitochondria-acting PS zinc phthalocyanine (ZnPc) to MCF-7 breast cancer cells followed by laser irradiation can lead to ex vivo stimulation of mouse bone marrow-derived dendritic cells (BMDCs). The antigens generated from the breast cancer cells were also found to cause significant DC maturation and the activated DCs were able to stimulate T cells to cytotoxic CD8(+) T cells. In this protocol, we describe methods to engineer a mitochondria-targeted biodegradable nanoparticle (NP) formulation, T-ZnPc-NPs for delivery of ZnPc to the mitochondria of MCF-7 cells, subsequent photodynamic therapy (PDT) using a long wavelength laser irradiation to produce TAAs, DC stimulation by the TAAs to secrete interferon-gamma (IFN-γ), and matured DC-driven T-cell activation. PMID:25634271

  20. Continuous non-cell autonomous reprogramming to generate retinal ganglion cells for glaucomatous neuropathy.

    PubMed

    Parameswaran, Sowmya; Dravid, Shashank Manohar; Teotia, Pooja; Krishnamoorthy, Raghu R; Qiu, Fang; Toris, Carol; Morrison, John; Ahmad, Iqbal

    2015-06-01

    Glaucoma, where the retinal ganglion cells (RGCs) carrying the visual signals from the retina to the visual centers in the brain are progressively lost, is the most common cause of irreversible blindness. The management approaches, whether surgical, pharmacological, or neuroprotective do not reverse the degenerative changes. The stem cell approach to replace dead RGCs is a viable option but currently faces several barriers, such as the lack of a renewable, safe, and ethical source of RGCs that are functional and could establish contacts with bona fide targets. To address these barriers, we have derived RGCs from the easily accessible adult limbal cells, reprogrammed to pluripotency by a non-nucleic acid approach, thus circumventing the risk of insertional mutagenesis. The generation of RGCs from the induced pluripotent stem (iPS) cells, also accomplished non-cell autonomously, recapitulated the developmental mechanism, ensuring the predictability and stability of the acquired phenotype, comparable to that of native RGCs at biochemical, molecular, and functional levels. More importantly, the induced RGCs expressed axonal guidance molecules and demonstrated the potential to establish contacts with specific targets. Furthermore, when transplanted in the rat model of ocular hypertension, these cells incorporated into the host RGC layer and expressed RGC-specific markers. Transplantation of these cells in immune-deficient mice did not produce tumors. Together, our results posit retinal progenitors generated from non-nucleic acid-derived iPS cells as a safe and robust source of RGCs for replacing dead RGCs in glaucoma. PMID:25753398

  1. Generation of Human Lens Epithelial-Like Cells From Patient-Specific Induced Pluripotent Stem Cells.

    PubMed

    Li, Dan; Qiu, Xiaodi; Yang, Jin; Liu, Tianjin; Luo, Yi; Lu, Yi

    2016-12-01

    Cataractogenesis begins from the dynamic lens epithelial cells (LECs) and adjacent fiber cells. LECs derived from cell lines cannot maintain the crystalline expression as the primary LECs. The current study aimed to efficiently generate large numbers of human LECs from patient-specific induced pluripotent stem cells (iPSCs). Anterior lens capsules were collected from cataract surgery and were used to culture primary hLECs. iPSCs were induced from these primary hLECs by lentiviral transduction of Oct4, Sox2, Klf4, and c-Myc. Then, the generated iPSCs were re-differentiated into hLECs by the 3-step addition of defined factor combinations (Noggin, BMP4/7, bFGF, and EGF) modified from an established method. During the re-differentiation process, colonies of interest were isolated using a glass picking tool and cloning cylinders based on the colony morphology. After two steps of isolation, populations of LEC-like cells (LLCs) were generated and identified by the expression of lens marker genes by qPCR, western blot and immunofluorescence staining. The study introduced a modified protocol to isolate LLCs from iPSCs by defined factors in a short time frame. This technique could be useful for mechanistic studies of lens-related diseases. J. Cell. Physiol. 231: 2555-2562, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991066

  2. Photovoltaic power conditioners: Development, evolution, and the next generation

    SciTech Connect

    Bulawka, A.; Krauthamer, S.; Das, R.; Bower, W.

    1994-07-01

    Market-place acceptance of utility-connected photovoltaic (PV) power generation systems and their accelerated installation into residential and commercial applications are heavily dependent upon the ability of their power conditioning subsystems (PCS) to meet high reliability, low cost, and high performance goals. Many PCS development efforts have taken place over the last 15 years, and those efforts have resulted in substantial PCS hardware improvements. These improvements, however, have generally fallen short of meeting many reliability, cost and performance goals. Continuously evolving semiconductor technology developments, coupled with expanded market opportunities for power processing, offer a significant promise of improving PCS reliability, cost and performance, as they are integrated into future PCS designs. This paper revisits past and present development efforts in PCS design, identifies the evolutionary improvements and describes the new opportunities for PCS designs. The new opportunities are arising from the increased availability and capability of semiconductor switching components, smart power devices, and power integrated circuits (PICS).

  3. Scientific and Technical Development of the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Burg, Richard

    2003-01-01

    The Next Generation Space Telescope (NGST) is part of the Origins program and is the key mission to discover the origins of galaxies in the Universe. It is essential that scientific requirements be translated into technical specifications at the beginning of the program and that there is technical participation by astronomers in the design and modeling of the observatory. During the active time period of this grant, the PI participated in the NGST program at GSFC by participating in the development of the Design Reference Mission, the development of the full end-to-end model of the observatory, the design trade-off based on the modeling, the Science Instrument Module definition and modeling, the study of proto-mission and test-bed development, and by participating in meetings including quarterly reviews and support of the NGST SWG. This work was documented in a series of NGST Monographs that are available on the NGST web site.

  4. Development of an Automatic Grid Generator for Multi-Element High-Lift Wings

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Wibowo, Pratomo; Tu, Eugene

    1996-01-01

    The procedure to generate the grid around a complex wing configuration is presented in this report. The automatic grid generation utilizes the Modified Advancing Front Method as a predictor and an elliptic scheme as a corrector. The scheme will advance the surface grid one cell outward and the newly obtained grid is corrected using the Laplace equation. The predictor-corrector step ensures that the grid produced will be smooth for every configuration. The predictor-corrector scheme is extended for a complex wing configuration. A new technique is developed to deal with the grid generation in the wing-gaps and on the flaps. It will create the grids that fill the gap on the wing surface and the gap created by the flaps. The scheme recognizes these configurations automatically so that minimal user input is required. By utilizing an appropriate sequence in advancing the grid points on a wing surface, the automatic grid generation for complex wing configurations is achieved.

  5. Photovoltaic concentrator initiative: Concentrator cell development

    SciTech Connect

    Wohlgemuth, J.H.; Narayanan, S.

    1993-05-01

    This project involves the development of a large-area, low-cost, high-efficiency concentrator solar cell for use in the Entech 22-sun linear-focus Fresnel lens concentrator system. The buried contact solar cell developed at the University of New South Wales was selected for this project. Both Entech and the University of New South Wales are subcontractors. This annual report presents the program efforts from November 1990 through December 1991, including the design of the cell, development of a baseline cell process, and presentation of the results of preliminary cell processing. Important results include a cell designed for operation in a real concentrator system and substitution of mechanical grooving for the previously utilized laser scribing.

  6. Jefferson Lab injector development for next generation parity violation experiments

    NASA Astrophysics Data System (ADS)

    Grames, J.; Hansknect, J.; Poelker, M.; Suleiman, R.

    2011-11-01

    To meet the challenging requirements of next generation parity violation experiments at Jefferson Lab, the Center for Injectors and Sources is working on improving the parity-quality of the electron beam. These improvements include new electron photogun design and fast helicity reversal of the Pockels Cell. We proposed and designed a new scheme for slow helicity reversal using a Wien Filter and two Solenoids. This slow reversal complements the insertable half-wave plate reversal of the laser-light polarization by reversing the electron beam polarization at the injector while maintaining a constant accelerator configuration. For position feedback, fast air-core magnets located in the injector were commissioned and a new scheme for charge feedback is planned.

  7. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    SciTech Connect

    Zawodzinski, C.; Wilson, M.; Gottesfeld, S.

    1996-10-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. A central objective of a LANL/Industry collaborative effort supported by the Hydrogen Program is to integrate PEM fuel cell and novel stack designs at LANL with stack technology of H-Power Corporation (H-Power) in order to develop a manufacturable, low-cost/high-performance hydrogen/air fuel cell stack for stationary generation of electric power. A LANL/H-Power CRADA includes Tasks ranging from exchange, testing and optimization of membrane-electrode assemblies of large areas, development and demonstration of manufacturable flow field, backing and bipolar plate components, and testing of stacks at the 3-5 cell level and, finally, at the 4-5 kW level. The stack should demonstrate the basic features of manufacturability, overall low cost and high energy conversion efficiency. Plans for future work are to continue the CRADA work along the time line defined in a two-year program, to continue the LANL activities of developing and testing stainless steel hardware for longer term stability including testing in a stack, and to further enhance air cathode performance to achieve higher energy conversion efficiencies as required for stationary power application.

  8. Generation of Human Cardiomyocytes: A Differentiation Protocol from Feeder-free Human Induced Pluripotent Stem Cells

    PubMed Central

    Di Pasquale, Elisa; Song, Belle; Condorelli, Gianluigi

    2013-01-01

    In order to investigate the events driving heart development and to determine the molecular mechanisms leading to myocardial diseases in humans, it is essential first to generate functional human cardiomyocytes (CMs). The use of these cells in drug discovery and toxicology studies would also be highly beneficial, allowing new pharmacological molecules for the treatment of cardiac disorders to be validated pre-clinically on cells of human origin. Of the possible sources of CMs, induced pluripotent stem (iPS) cells are among the most promising, as they can be derived directly from readily accessible patient tissue and possess an intrinsic capacity to give rise to all cell types of the body 1. Several methods have been proposed for differentiating iPS cells into CMs, ranging from the classical embryoid bodies (EBs) aggregation approach to chemically defined protocols 2,3. In this article we propose an EBs-based protocol and show how this method can be employed to efficiently generate functional CM-like cells from feeder-free iPS cells. PMID:23851455

  9. Generation of iPSCs as a Pooled Culture Using Magnetic Activated Cell Sorting of Newly Reprogrammed Cells

    PubMed Central

    Yang, Wenli; Liu, Ying; Slovik, Katherine J.; Wu, Joseph C.; Duncan, Stephen A.; Rader, Daniel J.; Morrisey, Edward E.

    2015-01-01

    Although significant advancement has been made in the induced pluripotent stem cell (iPSC) field, current methods for iPSC derivation are labor intensive and costly. These methods involve manual selection, expansion, and characterization of multiple clones for each reprogrammed cell sample and therefore significantly hampers the feasibility of studies where a large number of iPSCs need to be derived. To develop higher throughput iPSC reprogramming methods, we generated iPSCs as a pooled culture using rigorous cell surface pluripotent marker selection with TRA-1-60 or SSEA4 antibodies followed by Magnetic Activated Cell Sorting (MACS). We observed that pool-selected cells are similar or identical to clonally derived iPSC lines from the same donor by all criteria examined, including stable expression of endogenous pluripotency genes, normal karyotype, loss of exogenous reprogramming factors, and in vitro spontaneous and lineage directed differentiation potential. This strategy can be generalized for iPSC generation using both integrating and non-integrating reprogramming methods. Our studies provide an attractive alternative to clonal derivation of iPSCs using rigorously selected cell pools and is amenable to automation. PMID:26281015

  10. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair

    PubMed Central

    Lee, Shin-Jeong; Park, Changwon; Lee, Ji Yoon; Kim, Sangsung; Kwon, Pil Jae; Kim, Woansang; Jeon, Yong Heui; Lee, Eugine; Yoon, Young-sup

    2015-01-01

    Human pluripotent stem cells (hPSCs) have emerged as an important source for cell therapy. However, to date, no studies demonstrated generation of purified hPSC-derived lymphatic endothelial cells (LECs) and tested their therapeutic potential in disease models. Here we sought to differentiate hPSCs into the LEC lineage, purify them with LEC markers, and evaluate their therapeutic effects. We found that an OP9-assisted culture system reinforced by addition of VEGF-A, VEGF-C, and EGF most efficiently generated LECs, which were then isolated via FACS-sorting with LYVE-1 and PODOPLANIN. These hPSC-derived LYVE-1+PODOPLANIN+cells showed a pure committed LEC phenotype, formed new lymphatic vessels, and expressed lymphangiogenic factors at high levels. These hPSC-derived LECs enhanced wound healing through lymphangiogenesis and lymphvasculogenesis. Here we report, for the first time, that LECs can be selectively isolated from differentiating hPSCs, and that these cells are potent for lymphatic vessel formation in vivo and wound healing. This system and the purified hPSC-derived LECs can serve as a new platform for studying LEC development as well as for cell therapy. PMID:26066093

  11. Development of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Mcnally, P. J.

    1972-01-01

    Calculations of GaAs solar cell output parameters were refined and a computer model was developed for parameter optimization. The results were analyzed to determine the material characteristics required for a high efficiency solar cell. Calculated efficiencies for a P/N cell polarity are higher than an N/P cell. Both cell polarities show efficiency to have a larger dependence on short circuit current than an open circuit voltage under nearly all conditions considered. The tolerances and requirements of a cell fabrication process are more critical for an N/P type than for a P/N type cell. Several solar cell fabrication considerations relative to junction formation using ion implantation are also discussed.

  12. Generation of functional endothelial-like cells from adult mouse germline-derived pluripotent stem cells.

    PubMed

    Kim, Julee; Eligehausen, Sarah; Stehling, Martin; Nikol, Sigrid; Ko, Kinarm; Waltenberger, Johannes; Klocke, Rainer

    2014-01-10

    Functional endothelial cells and their progenitors are required for vascular development, adequate vascular function, vascular repair and for cell-based therapies of ischemic diseases. Currently, cell therapy is limited by the low abundance of patient-derived cells and by the functional impairment of autologous endothelial progenitor cells (EPCs). In the present study, murine germline-derived pluripotent stem (gPS) cells were evaluated as a potential source for functional endothelial-like cells. Cells displaying an endothelial cell-like morphology were obtained from gPS cell-derived embryoid bodies using a combination of fluorescence-activated cell sorting (FACS)-based selection of CD31-positive cells and their subsequent cultivation on OP9 stromal cells in the presence of VEGF-A. Real-time reverse transcriptase polymerase chain reaction, FACS analysis and immunofluorescence staining showed that the gPS cell-derived endothelial-like cells (gPS-ECs) expressed endothelial cell-specific markers including von Willebrand Factor, Tie2, VEGFR2/Flk1, intercellular adhesion molecule 2 and vascular endothelial-cadherin. The high expression of ephrin B2, as compared to Eph B4 and VEGFR3, suggests an arterial rather than a venous or lymphatic differentiation. Their capability to take up Dil-conjugated acetylated low-density lipoprotein and to form capillary-like networks on matrigel confirmed their functionality. We conclude that gPS cells could be a novel source of endothelial cells potentially suitable for regenerative cell-based therapies for ischemic diseases. PMID:24333870

  13. Combustion Stability Analyses for J-2X Gas Generator Development

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in injection-coupled combustion instability of the gas generator assembly at the first longitudinal mode of the combustion chamber. In this paper, the longitudinal mode combustion instabilities observed on the workhorse test stand are discussed in detail. Aspects of this combustion instability have been modeled at the NASA Marshall Space Flight Center with several codes, including the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a new lumped-parameter MatLab model. To accurately predict the instability characteristics of all the chamber and injector geometries and test conditions, several features of the submodels in the ROCCID suite of calculations required modification. Finite-element analyses were conducted of several complicated combustion chamber geometries to determine how to model and anchor the chamber response in ROCCID. A large suite of sensitivity calculations were conducted to determine how to model and anchor the injector response in ROCCID. These modifications and their ramification for future stability analyses of this type are discussed in detail. The lumped-parameter MatLab model of the gas generator assembly was created as an alternative calculation to the ROCCID methodology. This paper also describes this model and the stability calculations.

  14. Cell death in the developing vertebrate retina.

    PubMed

    Vecino, Elena; Hernández, María; García, Mónica

    2004-01-01

    Programmed cell death occurs naturally, as a physiological process, during the embryonic development of multicellular organisms. In the retina, which belongs to the central nervous system, at least two phases of cell death have been reported to occur during development. An early phase takes place concomitant with the processes of neurogenesis, cell migration and cell differentiation. A later phase affecting mainly neurons occurs when connections are established and synapses are formed, resulting in selective elimination of inappropriate connections. This pattern of cell death in the developing retina is common among different vertebrates. However, the timing and magnitude of retinal cell death varies among species. In addition, a precise regulation of apoptosis during retinal development has been described. Factors such as neurotrophins, among many others, and electrical activity influence the survival of retinal cells during the course of development. In this paper, we present a summary of these different aspects of programmed cell death during retinal development, and examine how these differ among different species. PMID:15558487

  15. Hierarchical organization of noise generates spontaneous signal in Paramecium cell.

    PubMed

    Ooyama, Shunsuke; Shibata, Tatsuo

    2011-08-21

    In many cellular processes, spontaneous activities are often the basis for their functioning. Paramecium cells change their swimming direction under a homogeneous environment, which is induced by a spontaneous signal generation in the membrane electric potential. For such a spontaneous activity, a theoretical model has been proposed by Oosawa (2007) [Biosystems 88, 191-201.], in which intracellular noise is hierarchically organized from thermal fluctuations to spike-like large fluctuations, which induces a signal to change spontaneously the swimming direction. Our analysis of the model shows that the system is a kind of excitable media, in which a spike is induced by a stochastic fluctuation. We show conditions of channels properties to have a spike train. PMID:21620864

  16. Silicon switch development for optical pulse generation in fusion lasers at Lawrence Livermore National Laboratory

    SciTech Connect

    Wilcox, R.B.

    1983-07-12

    We have been developing a silicon photoconductive switch for use as a Pockels cell driver in the pulse generation systems of the fusion lasers Nova and Novette. The objective has been to make 10 kV switches repeatably and which are reliable on an operating system. We found that nonlinear phenomena in nearly intrinsic silicon caused excessive conduction at high voltage resulting in breakdown. Our experiments with doped material show that this problem can be eliminated, resulting in useful devices.

  17. Airframe Technology Development for Next Generation Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2004-01-01

    The Airframe subproject within NASA's Next Generation Launch Technology (NGLT) program has the responsibility to develop airframe technology for both rocket and airbreathing vehicles for access to space. The Airframe sub-project pushes the state-of-the-art in airframe technology for low-cost, reliable, and safe space transportation. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas being addressed include design and integration, hot and integrated structures, cryogenic tanks, and thermal protection systems. Each of the technologies in these areas are discussed in this paper.

  18. Generation and Characterization of the First Immortalized Alpaca Cell Line Suitable for Diagnostic and Immunization Studies

    PubMed Central

    Franceschi, Valentina; Jacca, Sarah; Sassu, Elena L.; Stellari, Fabio F.; van Santen, Vicky L.; Donofrio, Gaetano

    2014-01-01

    Raising of alpacas as exotic livestock for wool and meat production and as companion animals is growing in importance in the United States, Europe and Australia. Furthermore the alpaca, as well as the rest of the camelids, possesses the peculiarity of producing single-chain antibodies from which nanobodies can be generated. Nanobodies, due to their structural simplicity and reduced size, are very versatile in terms of manipulation and bio-therapeutic exploitation. In fact the biotech companies involved in nanobody production and application continue to grow in number and size. Hence, the development of reagents and tools to assist in the further growth of this new scientific and entrepreneurial reality is becoming a necessity. These are needed mainly to address alpaca disease diagnosis and prophylaxis, and to develop alpaca immunization strategies for nanobody generation. For instance an immortalized alpaca cell line would be extremely valuable. In the present work the first stabilized alpaca cell line from alpaca skin stromal cells (ASSCs) was generated and characterized. This cell line was shown to be suitable for replication of viruses bovine herpesvirus-1, bovine viral diarrhea virus and caprine herpesvirus-1 and the endocellular parasite Neospora caninum. Moreover ASSCs were easy to transfect and transduce by several methods. These two latter characteristics are extremely useful when recombinant antigens need to be produced in a host homologous system. This work could be considered as a starting point for the expansion of the biotechnologies linked to alpaca farming and industry. PMID:25140515

  19. Si concentrator solar cell development. [Final report

    SciTech Connect

    Krut, D.D.

    1994-10-01

    This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

  20. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.

  1. Generation of functional CD8+ T Cells by human dendritic cells expressing glypican-3 epitopes

    PubMed Central

    2010-01-01

    Background Glypican 3 (GPC-3) is an oncofoetal protein that is expressed in most hepatocellular carcinomas (HCC). Since it is a potential target for T cell immunotherapy, we investigated the generation of functional, GPC-3 specific T cells from peripheral blood mononuclear cells (PBMC). Methods Dendritic cells (DC) were derived from adherent PBMC cultured at 37°C for 7 days in X-Vivo, 1% autologous plasma, and 800 u/ml GM-CSF plus 500 u/ml IL-4. Immature DC were transfected with 20 μg of in vitro synthesised GPC-3 mRNA by electroporation using the Easy-ject plus system (Equibio, UK) (300 V, 150 μF and 4 ms pulse time), or pulsed with peptide, and subsequently matured with lipopolysaccharide (LPS). Six predicted GPC-3 peptide epitopes were synthesized using standard f-moc technology and tested for their binding affinity to HLA-A2.1 molecules using the cell line T2. Results DC transfected with GPC-3 mRNA but not control DC demonstrated strong intracellular staining for GPC-3 and in vitro generated interferon-gamma expressing T cells from autologous PBMC harvested from normal subjects. One peptide, GPC-3522-530 FLAELAYDL, fulfilled our criteria as a naturally processed, HLA-A2-restricted cytotoxic T lymphocyte (CTL) epitope: i) it showed high affinity binding to HLA-A2, in T2 cell binding assay; ii) it was generated by the MHC class I processing pathway in DC transfected with GPC-3 mRNA, and iii) HLA-A2 positive DC loaded with the peptide stimulated proliferation in autologous T cells and generated CTL that lysed HLA-A2 and GPC-3 positive target cells. Conclusions These findings demonstrate that electroporation of GPC-3 mRNA is an efficient method to load human monocyte-derived DC with antigen because in vitro they generated GPC-3-reactive T cells that were functional, as shown by interferon-gamma production. Furthermore, this study identified a novel naturally processed, HLA-A2-restricted CTL epitope, GPC-3522-530 FLAELAYDL, which can be used to monitor HLA-A2

  2. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems.

    PubMed

    Jin, Li-Fang; Li, Jin-Song

    2016-07-18

    With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches. PMID:27469251

  3. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems

    PubMed Central

    JIN, Li-Fang; LI, Jin-Song

    2016-01-01

    With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches. PMID:27469251

  4. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    PubMed

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. PMID:26404920

  5. Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Narayan, Sri R.

    2009-01-01

    Two hydrogen generators based on reactions involving magnesium and steam have been proposed as means for generating the fuel (hydrogen gas) for such fuel-cell power systems as those to be used in the drive systems of advanced motor vehicles. The hydrogen generators would make it unnecessary to rely on any of the hydrogen storage systems developed thus far that are, variously, too expensive, too heavy, too bulky, and/or too unsafe to be practical. The two proposed hydrogen generators are denoted basic and advanced, respectively. In the basic hydrogen generator (see figure), steam at a temperature greater than or equals 330 C would be fed into a reactor charged with magnesium, wherein hydrogen would be released in the exothermic reaction Mg + H2O yields MgO + H2. The steam would be made in a flash boiler. To initiate the reaction, the boiler could be heated electrically by energy borrowed from a storage battery that would be recharged during normal operation of the associated fuel-cell subsystem. Once the reaction was underway, heat from the reaction would be fed to the boiler. If the boiler were made an integral part of the hydrogen-generator reactor vessel, then the problem of transfer of heat from the reactor to the boiler would be greatly simplified. A pump would be used to feed water from a storage tank to the boiler.

  6. Development of a sealed-accelerator-tube neutron generator

    PubMed

    Verbeke; Leung; Vujic

    2000-10-01

    Sealed-accelerator-tube neutron generators are being developed in Lawrence Berkeley National Laboratory (LBNL) for applications ranging from neutron radiography to boron neutron capture therapy and neutron activation analysis. The new generation of high-output neutron generators is based on the D-T fusion reaction, producing 14.1-MeV neutrons. The main components of the neutron tube--the ion source, the accelerator and the target--are all housed in a sealed metal container without external pumping. Thick-target neutron yield computations are performed in this paper to estimate the neutron yield of titanium and scandium targets. With an average deuteron beam current of 1 A and an energy of 120 keV, a time-averaged neutron production of approximately 10(14) n/s can be estimated for a tritiated target, for both pulsed and cw operations. In mixed deuteron/triton beam operation, a beam current of 2 A at 150 keV is required for the same neutron output. Recent experimental results on ion sources and accelerator columns are presented and discussed. PMID:11003523

  7. A microfluidic manifold with a single pump system to generate highly mono-disperse alginate beads for cell encapsulation

    PubMed Central

    Kim, Choong; Park, Juyoung

    2014-01-01

    Cell encapsulation technology is a promising strategy applicable to tissue engineering and cell therapy. Many advanced microencapsulation chips that function via multiple syringe pumps have been developed to generate mono-disperse hydrogel beads encapsulating cells. However, their operation is difficult and only trained microfluidic engineers can use them with dexterity. Hence, we propose a microfluidic manifold system, driven by a single syringe pump, which can enable the setup of automated flow sequences and generate highly mono-disperse alginate beads by minimizing disturbances to the pump pressure. The encapsulation of P19 mouse embryonic carcinoma cells and embryonic body formation are demonstrated to prove the efficiency of the proposed system. PMID:25587376

  8. Programmed Cell Death During Caenorhabditis elegans Development.

    PubMed

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-08-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. PMID:27516615

  9. Power generation from furfural using the microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Liu, Guangli; Zhang, Renduo; Zhang, Cuiping

    Furfural is a typical inhibitor in the ethanol fermentation process using lignocellulosic hydrolysates as raw materials. In the literature, no report has shown that furfural can be utilized as the fuel to produce electricity in the microbial fuel cell (MFC), a device that uses microbes to convert organic compounds to generate electricity. In this study, we demonstrated that electricity was successfully generated using furfural as the sole fuel in both the ferricyanide-cathode MFC and the air-cathode MFC. In the ferricyanide-cathode MFC, the maximum power densities reached 45.4, 81.4, and 103 W m -3, respectively, when 1000 mg L -1 glucose, a mixture of 200 mg L -1 glucose and 5 mM furfural, and 6.68 mM furfural were used as the fuels in the anode solution. The corresponding Coulombic efficiencies (CE) were 4.0, 7.1, and 10.2% for the three treatments, respectively. For pure furfural as the fuel, the removal efficiency of furfural reached up to 95% within 12 h. In the air-cathode MFC using 6.68 mM furfural as the fuel, the maximum values of power density and CE were 361 mW m -2 (18 W m -3) and 30.3%, respectively, and the COD removal was about 68% at the end of the experiment (about 30 h). Increase in furfural concentrations from 6.68 to 20 mM resulted in increase in the maximum power densities from 361 to 368 mW m -2, and decrease in CEs from 30.3 to 20.6%. These results indicated that some toxic and biorefractory organics such as furfural might still be suitable resources for electricity generation using the MFC technology.

  10. Regulation of c-Myc Expression by Ahnak Promotes Induced Pluripotent Stem Cell Generation.

    PubMed

    Lim, Hee Jung; Kim, Jusong; Park, Chang-Hwan; Lee, Sang A; Lee, Man Ryul; Kim, Kye-Seong; Kim, Jaesang; Bae, Yun Soo

    2016-01-01

    We have previously reported that Ahnak-mediated TGFβ signaling leads to down-regulation of c-Myc expression. Here, we show that inhibition of Ahnak can promote generation of induced pluripotent stem cells (iPSC) via up-regulation of endogenous c-Myc. Consistent with the c-Myc inhibitory role of Ahnak, mouse embryonic fibroblasts from Ahnak-deficient mouse (Ahnak(-/-) MEF) show an increased level of c-Myc expression compared with wild type MEF. Generation of iPSC with just three of the four Yamanaka factors, Oct4, Sox2, and Klf4 (hereafter 3F), was significantly enhanced in Ahnak(-/-) MEF. Similar results were obtained when Ahnak-specific shRNA was applied to wild type MEF. Of note, expressionof Ahnak was significantly induced during the formation of embryoid bodies from embryonic stem cells, suggesting that Ahnak-mediated c-Myc inhibition is involved in embryoid body formation and the initial differentiation of pluripotent stem cells. The iPSC from 3F-infected Ahnak(-/-) MEF cells (Ahnak(-/-)-iPSC-3F) showed expression of all stem cell markers examined and the capability to form three primary germ layers. Moreover, injection of Ahnak(-/-)-iPSC-3F into athymic nude mice led to development of teratoma containing tissues from all three primary germ layers, indicating that iPSC from Ahnak(-/-) MEF are bona fide pluripotent stem cells. Taken together, these data provide evidence for a new role for Ahnak in cell fate determination during development and suggest that manipulation of Ahnak and the associated signaling pathway may provide a means to regulate iPSC generation. PMID:26598518

  11. Stirling Convertor Technologies Being Developed for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    2003-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and the NASA Glenn Research Center are developing a high-efficiency Stirling Radioisotope Generator (SRG) for NASA space science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. On Mars, rovers with SRGs would be used for missions that might not be able to use photovoltaic power systems, such as exploration at high Martian latitudes and missions of long duration. The projected SRG system efficiency of 23 percent will reduce the required amount of radioisotope by a factor of 4 or more in comparison to currently used Radioisotope Thermoelectric Generators. The Department of Energy recently named Lockheed Martin as the system integration contractor. Lockheed Martin has begun to develop the SRG engineering unit under contract to the Department of Energy, and has contract options to develop the qualification unit and the first flight units. The developers expect the SRG to produce about 114 Wdc at the beginning of mission, using two opposed Stirling convertors and two General Purpose Heat Source modules. STC previously developed the Stirling convertor under contract to the Department of Energy and is now providing further development as a subcontractor to Lockheed Martin. Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. A key milestone was recently reached with the accumulation of 12 000 hr of long-term aging on two types of neodymium-iron boron permanent magnets. These tests are characterizing any possible aging in the strength or demagnetization resistance of the magnets used in the linear alternator. Preparations are underway for a thermal/vacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. In addition, Glenn is developing a

  12. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    SciTech Connect

    M. S. Sohal; J. E. O'Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  13. Development of second- and third-generation bovine immunodeficiency virus-based gene transfer systems.

    PubMed

    Matukonis, Meghan; Li, Mengtao; Molina, Rene P; Paszkiet, Brian; Kaleko, Michael; Luo, Tianci

    2002-07-20

    Lentivirus-based gene transfer systems have demonstrated their utility in mediating gene transfer to dividing and nondividing cells both in vitro and in vivo. An early-generation gene transfer system developed from bovine immunodeficiency virus (BIV) has been described (Berkowitz et al., J. Virol. 2001;75:3371-3382). In this paper, we describe the development of second-generation (three-plasmid) and third-generation (four-plasmid) BIV-based systems. All accessory genes (vif, vpw, vpy, and tmx) and the regulatory gene tat were deleted or largely truncated from the packaging construct. Furthermore, we split the packaging function into two constructs by expressing Rev in a separate plasmid. Together with our minimal BIV transfer vector construct and a vesicular stomatitis virus G glycoprotein-expressing plasmid, the BIV vectors were generated. The vectors produced by the three- and four-plasmid systems had titers greater than 1 x 10(6) transducing units per milliliter and were fully functional as indicated by their ability to efficiently transduce both dividing and nondividing cells. These results suggest that the accessory genes vif, vpw, vpy, and tmx are dispensable for functional BIV vector development. The modifications made to the packaging constructs improve the safety profile of the vector system. Finally, BIV vectors provide an alternative to human immunodeficiency virus-based gene transfer systems. PMID:12162812

  14. Development of ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Shen, D. H.; Dawson, S.; Deligiannis, F.; Taraszkiewicz, J.; Halpert, Gerald

    1987-01-01

    JPL is developing ambient temperature secondary lithium cells for future spacecraft applications. Prior studies on experimental laboratory type Li-TiS2 cells yielded promising results in terms of cycle life and rate capability. To further assess the performance of this cell, 5 Ah engineering model cells were developed. Initially baseline cells were designed and fabricated. Each cell had 15 cathodes and 16 anodes and the ratio of anode to cathode capacity is 6:1. A solution of 1.5 molar LiAsF6 in 2Me-THF was used as the electrolyte. Cells were evaluated for their cycle life at C/1 and C/5 discharge rates and 100 percent depth of discharge. The cells were cycled between voltage limits 1.7 and 2.8 volts. The rate of charge in all cases is C/10. The results obtained indicate that cells can operate at C/10 to C/2 discharge rates and have an initial energy density of 70 Wh/kg. Cells delivered more than 100 cycles at C/2 discharge rate. The details of cell design, the test program, and the results obtained are described.

  15. Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development

    PubMed Central

    Chen, Liang-Yu; Willis, William D.; Eddy, Edward M.

    2016-01-01

    Spermatogonial stem cells (SSCs) are a subpopulation of undifferentiated spermatogonia located in a niche at the base of the seminiferous epithelium delimited by Sertoli cells and peritubular myoid (PM) cells. SSCs self-renew or differentiate into spermatogonia that proliferate to give rise to spermatocytes and maintain spermatogenesis. Glial cell line-derived neurotrophic factor (GDNF) is essential for this process. Sertoli cells produce GDNF and other growth factors and are commonly thought to be responsible for regulating SSC development, but limited attention has been paid to the role of PM cells in this process. A conditional knockout (cKO) of the androgen receptor gene in PM cells resulted in male infertility. We found that testosterone (T) induces GDNF expression in mouse PM cells in vitro and neonatal spermatogonia (including SSCs) co-cultured with T-treated PM cells were able to colonize testes of germ cell-depleted mice after transplantation. This strongly suggested that T-regulated production of GDNF by PM cells is required for spermatogonial development, but PM cells might produce other factors in vitro that are responsible. In this study, we tested the hypothesis that production of GDNF by PM cells is essential for spermatogonial development by generating mice with a cKO of the Gdnf gene in PM cells. The cKO males sired up to two litters but became infertile due to collapse of spermatogenesis and loss of undifferentiated spermatogonia. These studies show for the first time, to our knowledge, that the production of GDNF by PM cells is essential for undifferentiated spermatogonial cell development in vivo. PMID:26831079

  16. Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development.

    PubMed

    Chen, Liang-Yu; Willis, William D; Eddy, Edward M

    2016-02-16

    Spermatogonial stem cells (SSCs) are a subpopulation of undifferentiated spermatogonia located in a niche at the base of the seminiferous epithelium delimited by Sertoli cells and peritubular myoid (PM) cells. SSCs self-renew or differentiate into spermatogonia that proliferate to give rise to spermatocytes and maintain spermatogenesis. Glial cell line-derived neurotrophic factor (GDNF) is essential for this process. Sertoli cells produce GDNF and other growth factors and are commonly thought to be responsible for regulating SSC development, but limited attention has been paid to the role of PM cells in this process. A conditional knockout (cKO) of the androgen receptor gene in PM cells resulted in male infertility. We found that testosterone (T) induces GDNF expression in mouse PM cells in vitro and neonatal spermatogonia (including SSCs) co-cultured with T-treated PM cells were able to colonize testes of germ cell-depleted mice after transplantation. This strongly suggested that T-regulated production of GDNF by PM cells is required for spermatogonial development, but PM cells might produce other factors in vitro that are responsible. In this study, we tested the hypothesis that production of GDNF by PM cells is essential for spermatogonial development by generating mice with a cKO of the Gdnf gene in PM cells. The cKO males sired up to two litters but became infertile due to collapse of spermatogenesis and loss of undifferentiated spermatogonia. These studies show for the first time, to our knowledge, that the production of GDNF by PM cells is essential for undifferentiated spermatogonial cell development in vivo. PMID:26831079

  17. Low-frequency sea waves generated by atmospheric convection cells

    NASA Astrophysics Data System (ADS)

    de Jong, M. P. C.; Battjes, J. A.

    2004-01-01

    The atmospheric origin of low-frequency sea waves that cause seiches in the Port of Rotterdam is investigated using hydrological and meteorological observations. These observations, combined with weather charts, show that all significant seiche events coincide with the passage of a low-pressure area and a cold front. Following these front passages, increased wind speed fluctuations occur with periods on the order of 1 hour. The records show that enhanced low-frequency wave energy at sea and the seiche events in the harbor occur more or less simultaneously with these strong wind speed fluctuations. These oscillatory wind speed changes are due to convection cells that arise in an unstable lower atmosphere in the area behind a cold front, where cold air moves over the relatively warm sea surface. It is shown that the moving system of a cold front and trailing convection cells generates forced low-frequency waves at sea that can cause seiche events inside the harbor. The occurrence of such events may be predictable operationally on the basis of a criterion for the difference in temperature between the air in the upper atmosphere and the water at the sea surface.

  18. Direct fuel cell - A high proficiency power generator for biofuels

    SciTech Connect

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-12-31

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products.

  19. Development of second generation peptides modulating cellular adiponectin receptor responses

    NASA Astrophysics Data System (ADS)

    Otvos, Laszlo; Knappe, Daniel; Hoffmann, Ralf; Kovalszky, Ilona; Olah, Julia; Hewitson, Tim; Stawikowska, Roma; Stawikowski, Maciej; Cudic, Predrag; Lin, Feng; Wade, John; Surmacz, Eva; Lovas, Sandor

    2014-10-01

    The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions.

  20. Development of second generation peptides modulating cellular adiponectin receptor responses

    PubMed Central

    Otvos, Laszlo; Knappe, Daniel; Hoffmann, Ralf; Kovalszky, Ilona; Olah, Julia; Hewitson, Tim D.; Stawikowska, Roma; Stawikowski, Maciej; Cudic, Predrag; Lin, Feng; Wade, John D.; Surmacz, Eva; Lovas, Sandor

    2014-01-01

    The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM—low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10–1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions. PMID:25368867

  1. Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice

    SciTech Connect

    Bhagavati, Satyakam . E-mail: satyakamb@hotmail.com; Xu Weimin

    2005-07-29

    Embryonic stem (ES) cells have great therapeutic potential because of their capacity to proliferate extensively and to form any fully differentiated cell of the body, including skeletal muscle cells. Successful generation of skeletal muscle in vivo, however, requires selective induction of the skeletal muscle lineage in cultures of ES cells and following transplantation, integration of appropriately differentiated skeletal muscle cells with recipient muscle. Duchenne muscular dystrophy (DMD), a severe progressive muscle wasting disease due to a mutation in the dystrophin gene and the mdx mouse, an animal model for DMD, are characterized by the absence of the muscle membrane associated protein, dystrophin. Here, we show that co-culturing mouse ES cells with a preparation from mouse muscle enriched for myogenic stem and precursor cells, followed by injection into mdx mice, results occasionally in the formation of normal, vascularized skeletal muscle derived from the transplanted ES cells. Study of this phenomenon should provide valuable insights into skeletal muscle development in vivo from transplanted ES cells.

  2. Tubular solid oxide fuel cell development program

    SciTech Connect

    1995-08-01

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  3. Advances in the development of next-generation anthrax vaccines.

    PubMed

    Friedlander, Arthur M; Little, Stephen F

    2009-11-01

    Anthrax, a disease of herbivores, only rarely infects humans. However, the threat of using Bacillus anthracis, the causative agent, to intentionally produce disease has been the impetus for development of next-generation vaccines. Two licensed vaccines have been available for human use for several decades. These are composed of acellular culture supernatants containing the protective antigen (PA) component of the anthrax toxins. In this review we summarize the various approaches used to develop improved vaccines. These efforts have included the use of PA with newer adjuvants and delivery systems, including bacterial and viral vectors and DNA vaccines. Attempts to broaden the protection afforded by PA-based vaccines have focused on adding other B. anthracis components, including spore and capsule antigens. PMID:19837282

  4. Cross flow filter development for advanced fossil power generation

    SciTech Connect

    Lippert, T.E.; Alvin, M.A.; Bachovchin, D.M.; Haldipur, G.B.; Newby, R.A.; Smeltzer, E.E. )

    1990-01-01

    The porous ceramic cross flow filter has been under development at Westinghouse in conjunction with the U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) for advanced fossil power generation. The ceramic cross flow filter is capable of high temperature operation, and is basically an absolute filter on ash. The cross flow filter can be operated at high flow capacity, while simultaneously exhibiting relatively low pressure drop flow characteristics. This paper describes the cross flow filter development at Westinghouse, and reviews the results of many in-house and field test programs. Testing has included operation of the filter in subpilot pressurized fluidized-bed combustion and coal gasification applications. Testing is also being conducted at Westinghouse to evaluate filter characteristics over long-term operation (3,000 hours) utilizing dedicated test facilities.

  5. Compact homopolar generator developed at CEM-UT

    NASA Astrophysics Data System (ADS)

    Gully, J. H.; Estes, E. G.; Walls, W. A.; Weldon, W. F.

    1984-03-01

    Attention is given to a project concerned with the development of a field-portable electromagnetic launcher (EML) system. The initial step in this project involved the design, the fabrication, and test of a prototype homopolar generator (HPG). One of these machines will drive an 85-g projectile to 3 km/s in a 4-m gun, or a 10-g projectile to 10 km/s in a 5.5-m gun. The prototype compact HPG is considered along with auxiliary systems, the HPG systems tester, and experiments. The HPG system tester has been built and used to develop components needed to further improve the HPG's performance and energy density. Faster spinning of the HPG rotor is the most direct method of improving energy density.

  6. Linking development with generation of novelty in mammalian teeth

    PubMed Central

    Jernvall, Jukka

    2000-01-01

    The evolution of mammalian teeth is characterized by the frequent and convergent evolution of new cusps. The evolution of new cusps can be linked to tooth development via population-level variation. This allows testing whether development increases the capacity to evolve, or evolvability, by facilitating and even directing morphological change. In a population sample of living seals, variation in cusp number of individual teeth is from three to five cusps, the variably present cusps being the shortest ones that also develop last. By factoring in recent evidence on development, I show that the variation in cusp number can be explained by a patterning cascade mode of cusp development that cumulatively increases and directs height variation in short cusps. The biased variation in seal tooth cusps supports the recognition of teeth as highly evolvable because only small developmental changes are needed to produce large changes in size and number of small cusps. This evolvability of tooth cusps may have facilitated the fast and independent acquisition of new cusps in mammalian evolution. In phylogenetic studies, small cusps may be unreliable as phylogenetic signals. Population level variation can be a powerful tool in testing and generating hypotheses in developmental evolution studies. PMID:10706636

  7. Recent development of nonlinear optical borate crystals for UV generation

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Yap, Y. K.; Kamimura, T.; Yoshimura, M.; Sasaki, T.

    2002-02-01

    Recent development of high-power solid-state UV radiation by nonlinear optical (NLO) borate crystals is reviewed. The performance of such UV light sources has rapidly improved in the past five years because of the superior NLO properties of CsLiB 6O 10 (CLBO) crystals. The performance of such UV light sources also depends on the reliability of the NLO crystals. The relation between the bulk laser-induced damage threshold (LIDT), dislocation density and UV absorption of CsLiB 6O 10 (CLBO) was investigated. A newly developed synthesis process allows the growth of CLBO crystals with LIDT 2.5-fold higher than those grown by the conventional top-seeded solution growth (TSSG) technique. High-quality CLBO possesses lower dislocation density and smaller absorption of UV light ( λ=266 nm) than conventional CLBO. Reduction of the dislocation density can suppress absorption of UV light that helps to enhance the resistance of CLBO to laser-induced damages, to alleviate thermal dephasing during high-power generation of UV light and thus strengthen the reliability of CLBO for UV light generation.

  8. Maize transformation technology development for commercial event generation

    PubMed Central

    Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.

    2014-01-01

    Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170

  9. Joint Development of a Fourth Generation Single Crystal Superalloy

    NASA Technical Reports Server (NTRS)

    Walston, S.; Cetel, A.; MacKay, R.; OHara, K.; Duhl, D.; Dreshfield, R.

    2004-01-01

    A new, fourth generation, single crystal superalloy has been jointly developed by GE Aircraft Engines, Pratt & Whitney, and NASA. The focus of the effort was to develop a turbine airfoil alloy with long-term durability for use in the High Speed Civil Transport. In order to achieve adequate long-time strength improvements at moderate temperatures and retain good microstructural stability, it was necessary to make significant composition changes from 2nd and 3rd generation single crystal superalloys. These included lower chromium levels, higher cobalt and rhenium levels and the inclusion of a new alloying element, ruthenium. It was found that higher Co levels were beneficial to reducing both TCP precipitation and SRZ formation. Ruthenium caused the refractory elements to partition more strongly to the ' phase, which resulted in better overall alloy stability. The final alloy, EPM 102, had significant creep rupture and fatigue improvements over the baseline production alloys and had acceptable microstructural stability. The alloy is currently being engine tested and evaluated for advanced engine applications.

  10. [Generation and application of pluripotent stem cells from spermatogonial stem cells].

    PubMed

    Zhang, Yan; Wu, Yingji

    2011-02-01

    Recent studies have confirmed that diverse adult tissue cells can be reprogrammed and induced to pluripotency, that is so-called induced pluripotent stem cells (iPS cells). But most of these dedifferentiated processes are induced by gene delivery with retroviral vectors. Some of the delivered genes are cancer causing. So, in current situation, these adult-derived embryonic stem-like cells cannot be used in clinical therapy to cure human diseases. Recently some articles that were published in the authoritative journals are receiving attentions. They show that, in mice and human, spermatogonial stem cells (SSCs) can be used for generating pluripotent stem cells without the exogenous genes and retroviruses, and they can also be used for autologous transplantation without ethical problems. These findings suggest that human SSCs may have considerable potential for cell-based, autologous organ regeneration therapy for various diseases. In this review, we describe and compare the methods that have been used to isolate, purificate and culture SSCs. We also describe the recent results in which SSCs can be transformed into pluripotent stem cells, and the pluripotent stem cells have potential applications in regenerative medicine and genetic medicine. PMID:21485215

  11. Development of gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The potential of ion implantation as a means of developing gallium arsenide solar cells with high efficiency performance was investigated. Computer calculations on gallium arsenide cell characteristics are presented to show the effects of surface recombination, junction space-charge recombination, and built-in fields produced by nonuniform doping of the surface region. The fabrication technology is summarized. Electrical and optical measurements on samples of solar cells are included.

  12. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    PubMed

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes. PMID:19134546

  13. Space solar cell technology development - A perspective

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  14. Efficient Generation of Viral and Integration-Free Human Induced Pluripotent Stem Cell-Derived Oligodendrocytes.

    PubMed

    Espinosa-Jeffrey, Araceli; Blanchi, Bruno; Biancotti, Juan Carlos; Kumar, Shalini; Hirose, Megumi; Mandefro, Berhan; Talavera-Adame, Dodanim; Benvenisty, Nissim; de Vellis, Jean

    2016-01-01

    Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs. Our unique culture systems rely on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of OL as they advance from OL progenitors to mature, myelinating cells. We are confident that these protocols bring our field a step closer to efficient autologous cell replacement therapies and disease modeling. © 2016 by John Wiley & Sons, Inc. PMID:27532816

  15. Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development

    PubMed Central

    Chen, Jinmiao; Schlitzer, Andreas; Chakarov, Svetoslav; Ginhoux, Florent; Poidinger, Michael

    2016-01-01

    Single-cell RNA-sequencing offers unprecedented resolution of the continuum of state transition during cell differentiation and development. However, tools for constructing multi-branching cell lineages from single-cell data are limited. Here we present Mpath, an algorithm that derives multi-branching developmental trajectories using neighborhood-based cell state transitions. Applied to mouse conventional dendritic cell (cDC) progenitors, Mpath constructs multi-branching trajectories spanning from macrophage/DC progenitors through common DC progenitor to pre-dendritic cells (preDC). The Mpath-generated trajectories detect a branching event at the preDC stage revealing preDC subsets that are exclusively committed to cDC1 or cDC2 lineages. Reordering cells along cDC development reveals sequential waves of gene regulation and temporal coupling between cell cycle and cDC differentiation. Applied to human myoblasts, Mpath recapitulates the time course of myoblast differentiation and isolates a branch of non-muscle cells involved in the differentiation. Our study shows that Mpath is a useful tool for constructing cell lineages from single-cell data. PMID:27356503

  16. Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development.

    PubMed

    Chen, Jinmiao; Schlitzer, Andreas; Chakarov, Svetoslav; Ginhoux, Florent; Poidinger, Michael

    2016-01-01

    Single-cell RNA-sequencing offers unprecedented resolution of the continuum of state transition during cell differentiation and development. However, tools for constructing multi-branching cell lineages from single-cell data are limited. Here we present Mpath, an algorithm that derives multi-branching developmental trajectories using neighborhood-based cell state transitions. Applied to mouse conventional dendritic cell (cDC) progenitors, Mpath constructs multi-branching trajectories spanning from macrophage/DC progenitors through common DC progenitor to pre-dendritic cells (preDC). The Mpath-generated trajectories detect a branching event at the preDC stage revealing preDC subsets that are exclusively committed to cDC1 or cDC2 lineages. Reordering cells along cDC development reveals sequential waves of gene regulation and temporal coupling between cell cycle and cDC differentiation. Applied to human myoblasts, Mpath recapitulates the time course of myoblast differentiation and isolates a branch of non-muscle cells involved in the differentiation. Our study shows that Mpath is a useful tool for constructing cell lineages from single-cell data. PMID:27356503

  17. RNA-Seq Library Generation from Rare Human Cells Isolated by FACS

    PubMed Central

    Gkountela, Sofia; Clark, Amander T.

    2016-01-01

    High throughput RNA Sequencing has revolutionized transcriptome analyses. However, most available protocols require micrograms of RNA rendering this technique not feasible for analyzing small numbers of cells, including precious rare cell types isolated from human tissues or organs. Here, we used an RNA Amplification System and describe a method for preparing RNA sense-strand cDNA libraries compatible with an Illumina sequencing platform starting from limited numbers of human fetal germ cells as well as human embryonic stem cells (hESCs) isolated using Fluorescence Activated Cell Sorting (FACS). With this protocol we generated seven RNA-Seq libraries starting from 4,000 germ cells sorted from fetal ovaries (n = 2) and fetal testes (n = 2) at 16–16.5 weeks of development and 4,000 sorted hESCs (n = 3). We predict that multiplexed libraries can also be generated by replacing the single-plex 3′ adapter used here with a multiplexing compatible 3′ adapter and indexed PCR primers.

  18. Miniaturization Technologies for Efficient Single-Cell Library Preparation for Next-Generation Sequencing

    PubMed Central

    Mora-Castilla, Sergio; To, Cuong; Vaezeslami, Soheila; Morey, Robert; Srinivasan, Srimeenakshi; Dumdie, Jennifer N.; Cook-Andersen, Heidi; Jenkins, Joby; Laurent, Louise C.

    2016-01-01

    As the cost of next-generation sequencing has decreased, library preparation costs have become a more significant proportion of the total cost, especially for high-throughput applications such as single-cell RNA profiling. Here, we have applied novel technologies to scale down reaction volumes for library preparation. Our system consisted of in vitro differentiated human embryonic stem cells representing two stages of pancreatic differentiation, for which we prepared multiple biological and technical replicates. We used the Fluidigm (San Francisco, CA) C1 single-cell Autoprep System for single-cell complementary DNA (cDNA) generation and an enzyme-based tagmentation system (Nextera XT; Illumina, San Diego, CA) with a nanoliter liquid handler (mosquito HTS; TTP Labtech, Royston, UK) for library preparation, reducing the reaction volume down to 2 µL and using as little as 20 pg of input cDNA. The resulting sequencing data were bioinformatically analyzed and correlated among the different library reaction volumes. Our results showed that decreasing the reaction volume did not interfere with the quality or the reproducibility of the sequencing data, and the transcriptional data from the scaled-down libraries allowed us to distinguish between single cells. Thus, we have developed a process to enable efficient and cost-effective high-throughput single-cell transcriptome sequencing. PMID:26891732

  19. Miniaturization Technologies for Efficient Single-Cell Library Preparation for Next-Generation Sequencing.

    PubMed

    Mora-Castilla, Sergio; To, Cuong; Vaezeslami, Soheila; Morey, Robert; Srinivasan, Srimeenakshi; Dumdie, Jennifer N; Cook-Andersen, Heidi; Jenkins, Joby; Laurent, Louise C

    2016-08-01

    As the cost of next-generation sequencing has decreased, library preparation costs have become a more significant proportion of the total cost, especially for high-throughput applications such as single-cell RNA profiling. Here, we have applied novel technologies to scale down reaction volumes for library preparation. Our system consisted of in vitro differentiated human embryonic stem cells representing two stages of pancreatic differentiation, for which we prepared multiple biological and technical replicates. We used the Fluidigm (San Francisco, CA) C1 single-cell Autoprep System for single-cell complementary DNA (cDNA) generation and an enzyme-based tagmentation system (Nextera XT; Illumina, San Diego, CA) with a nanoliter liquid handler (mosquito HTS; TTP Labtech, Royston, UK) for library preparation, reducing the reaction volume down to 2 µL and using as little as 20 pg of input cDNA. The resulting sequencing data were bioinformatically analyzed and correlated among the different library reaction volumes. Our results showed that decreasing the reaction volume did not interfere with the quality or the reproducibility of the sequencing data, and the transcriptional data from the scaled-down libraries allowed us to distinguish between single cells. Thus, we have developed a process to enable efficient and cost-effective high-throughput single-cell transcriptome sequencing. PMID:26891732

  20. Strategic Partnerships in Fuel Cell Development

    ERIC Educational Resources Information Center

    Diab, Dorey

    2006-01-01

    This article describes how forming strategic alliances with universities, emerging technology companies, the state of Ohio, the federal government, and the National Science Foundation, has enabled Stark State College to develop a $5.5 million Fuel Cell Prototyping Center and establish a Fuel Cell Technology program to promote economic development…

  1. Forces generated by cell intercalation tow epidermal sheets in mammalian tissue morphogenesis.

    PubMed

    Heller, Evan; Kumar, K Vijay; Grill, Stephan W; Fuchs, Elaine

    2014-03-31

    While gastrulation movements offer mechanistic paradigms for how collective cellular movements shape developing embryos, far less is known about coordinated cellular movements that occur later in development. Studying eyelid closure, we explore a case where an epithelium locally reshapes, expands, and moves over another epithelium. Live imaging, gene targeting, and cell-cycle inhibitors reveal that closure does not require overlying periderm, proliferation, or supracellular actin cable assembly. Laser ablation and quantitative analyses of tissue deformations further distinguish the mechanism from wound repair and dorsal closure. Rather, cell intercalations parallel to the tissue front locally compress it perpendicularly, pulling the surrounding epidermis along the closure axis. Functional analyses in vivo show that the mechanism requires localized myosin-IIA- and α5β1 integrin/fibronectin-mediated migration and E-cadherin downregulation likely stimulated by Wnt signaling. These studies uncover a mode of epithelial closure in which forces generated by cell intercalation are leveraged to tow the surrounding tissue. PMID:24697897

  2. Forces Generated by Cell Intercalation Tow Epidermal Sheets in Mammalian Tissue Morphogenesis

    PubMed Central

    Heller, Evan; Kumar, K. Vijay; Grill, Stephan W.; Fuchs, Elaine

    2014-01-01

    Summary While gastrulation movements offer mechanistic paradigms for how collective cellular movements shape developing embryos, far less is known about coordinated cellular movements that occur later in development. Studying eyelid closure, we explore a case where an epithelium locally reshapes, expands, and moves over another epithelium. Live imaging, gene targeting and cell cycle inhibitors reveal that closure does not require overlying periderm, proliferation or supracellular actin cable assembly. Laser ablation and quantitative analyses of tissue deformations further distinguish the mechanism from wound-repair and dorsal closure. Rather, cell intercalations parallel to the tissue front locally compress it perpendicularly, pulling the surrounding epidermis along the closure axis. Functional analyses in vivo show that the mechanism requires localized myosin-IIA and α5β1-fibronectin-mediated migration, and E-cadherin downregulation likely stimulated by Wnt signaling. These studies uncover a mode of epithelial closure in which forces generated by cell intercalation are leveraged to tow the surrounding tissue. PMID:24697897

  3. Cell fate regulation in early mammalian development

    NASA Astrophysics Data System (ADS)

    Oron, Efrat; Ivanova, Natalia

    2012-08-01

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.

  4. Functional canine dendritic cells can be generated in vitro from peripheral blood mononuclear cells and contain a cytoplasmic ultrastructural marker.

    PubMed

    Ibisch, C; Pradal, G; Bach, J M; Lieubeau, B

    2005-03-01

    For physiological and practical reasons the dog is a large animal model used increasingly to study the pathogenesis of human diseases and new therapeutic approaches, in particular for immune disorders. However, some immunological resources are lacking in this model, especially concerning dendritic cells. The aim of our study was to develop an efficient method to generate dendritic cells (DC) in vitro from dog peripheral blood mononuclear cells (PBMC) and to characterize their functional, structural and ultrastructural properties. PBMC were cultured in vitro with IL-4 and GM-CSF. After 1 week of culture, a great proportion of non-adherent cells displayed typical cytoplasmic processes, as evidenced both by optical and electron microscopy. Cytometric analysis revealed the presence of 41.7+/-24.6% CD14+ cells expressing both CD11c and MHC class II molecules. Allogeneic mixed lymphocyte reactions confirmed the ability of these cultures to stimulate the proliferation of allogeneic lymphocytes as already reported as a characteristic of DC in other species. In addition, we describe for the first time the presence in canine DC of cytoplasmic periodic microstructures (PMS) that could represent ultrastructural markers of canine DC. In conclusion, our study provides an easy method to generate DC from PBMC in sufficient numbers for immunological in vitro investigations in dogs, a pre-clinical model for many human diseases. PMID:15847807

  5. Utilization of site-specific recombination for generating therapeutic protein producing cell lines.

    PubMed

    Campbell, Margie; Corisdeo, Susanne; McGee, Clair; Kraichely, Denny

    2010-07-01

    The AttSite Recombinase Technology from Intrexon, Blacksburg, VA, utilizes specific DNA sequences and proprietary recombinase enzymes to catalyze the insertion of a gene of interest at a specific location in the host cell genome. Using this technology, we have developed Chinese Hamster Ovary (CHO) cell lines that have incorporated attB recombination sites at highly transcriptionally active loci or 'hot spots' within the cell genome. Subsequently, these attB site containing host cell lines could then be used for the expression of future Centocor products. Candidate production cell lines would be generated by a simple recombination event. Since the therapeutic gene of interest would preferentially integrate into the pre-selected high-expressing attB site, candidate cell lines would consistently express high levels of the gene of interest. We have been able to demonstrate that the AttSite Recombinase Technology could be a valid approach for the development of high-expressing production cell lines. PMID:20300883

  6. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells

    PubMed Central

    Kumar, Nathan; Richter, Jenna; Cutts, Josh; Bush, Kevin T; Trujillo, Cleber; Nigam, Sanjay K; Gaasterland, Terry; Brafman, David; Willert, Karl

    2015-01-01

    The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate. DOI: http://dx.doi.org/10.7554/eLife.08413.001 PMID:26554899

  7. Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting.

    PubMed

    Flege, Christian; Vogt, Felix; Höges, Simon; Jauer, Lucas; Borinski, Mauricio; Schulte, Vera A; Hoffmann, Rainer; Poprawe, Reinhart; Meiners, Wilhelm; Jobmann, Monika; Wissenbach, Konrad; Blindt, Rüdiger

    2013-01-01

    In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications. Here, SLM process parameters were adapted for poly-L-lactid acid (PLLA) and PLLA-co-poly-ε-caprolactone (PCL) powders to generate degradable coronary stent prototypes. Biocompatibility of both polymers was evidenced by assessment of cell morphology and of metabolic and adhesive activity at direct and indirect contact with human coronary artery smooth muscle cells, umbilical vein endothelial cells, and endothelial progenitor cells. γ-sterilization was demonstrated to guarantee safety of SLM-processed parts. From PLLA and PCL, stent prototypes were successfully generated and post-processing by spray- and dip-coating proved to thoroughly smoothen stent surfaces. In conclusion, for the first time, biodegradable polymers and the SLM technique were combined for the manufacturing of customized biodegradable coronary artery stent prototypes. SLM is advocated for the development of biodegradable coronary PLLA and PCL stents, potentially optimized for future bifurcation applications. PMID:23053808

  8. Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity

    PubMed Central

    Hester, Michael S.; Danzer, Steve C.

    2013-01-01

    Accumulation of abnormally integrated, adult-born, hippocampal dentate granule cells (DGC) is hypothesized to contribute to the development of temporal lobe epilepsy (TLE). DGCs have long been implicated in TLE, as they regulate excitatory signaling through the hippocampus and exhibit neuroplastic changes during epileptogenesis. Furthermore, DGCs are unusual in that they are continually generated throughout life, with aberrant integration of new cells underlying the majority of restructuring in the dentate during epileptogenesis. While it is known that these abnormal networks promote abnormal neuronal firing and hyperexcitability, it has yet to be established whether they directly contribute to seizure generation. If abnormal DGCs do contribute, a reasonable prediction would be that the severity of epilepsy will be correlated with the number or load of abnormal DGCs. To test this prediction, we utilized a conditional, inducible transgenic mouse model to fate-map adult-generated DGCs. Mossy cell loss, also implicated in epileptogenesis, was assessed as well. Transgenic mice rendered epileptic using the pilocarpine-status epilepticus model of epilepsy were monitored 24/7 by video/EEG for four weeks to determine seizure frequency and severity. Positive correlations were found between seizure frequency and: 1) the percentage of hilar ectopic DGCs, 2) the amount of mossy fiber sprouting and 3) the extent of mossy cell death. In addition, mossy fiber sprouting and mossy cell death were correlated with seizure severity. These studies provide correlative evidence in support of the hypothesis that abnormal DGCs contribute to the development of TLE, and also support a role for mossy cell loss. PMID:23699504

  9. RA induces the neural-like cells generated from epigenetic modified NIH/3T3 cells.

    PubMed

    Zhang, Xi-Mei; Li, Qiu-Ming; Su, Dong-Ju; Wang, Ning; Shan, Zhi-Yan; Jin, Lian-Hong; Lei, Lei

    2010-03-01

    Recently, differentiated somatic cells had been reprogrammed to pluripotential state in vitro, and various tissue cells had been elicited from those cells. Epigenetic modifications allow differentiated cells to perpetuate the molecular memory needed for the cells to retain their identity. DNA methylation and histone deacetylation are important patterns involved in epigenetic modification, which take critical roles in regulating DNA expression. In this study, we dedifferentiated NIH/3T3 fibroblasts by 5-aza-2-deoxycytidine (5-aza-dC) and Trichstatin A (TSA) combination, and detected gene expression pattern, DNA methylation level, and differentiation potential of reprogrammed cells. As the results, embryonic marker Sox2, klf4, c-Myc and Oct4 were expressed in reprogrammed NIH/3T3 fibroblasts. Total DNA methylation level was significant decreased after the treatment. Moreover, exposure of the reprogrammed cells to all trans-retinoic acid (RA) medium elicited the generation of neuronal class IIIbeta-tubulin-positive, neuron-specific enolase (NSE)-positive, nestin-positive, and neurofilament light chain (NF-L)-positive neural-like cells. PMID:19263240

  10. Generation of Human Induced Pluripotent Stem Cells from Umbilical Cord Matrix and Amniotic Membrane Mesenchymal Cells*

    PubMed Central

    Cai, Jinglei; Li, Wen; Su, Huanxing; Qin, Dajiang; Yang, Jiayin; Zhu, Fan; Xu, Jianyong; He, Wenzhi; Guo, Xiangpeng; Labuda, Krystyna; Peterbauer, Anja; Wolbank, Susanne; Zhong, Mei; Li, Zhiyuan; Wu, Wutian; So, Kwok-Fai; Redl, Heinz; Zeng, Lingwen; Esteban, Miguel Angel; Pei, Duanqing

    2010-01-01

    The umbilical cord and placenta are extra-embryonic tissues of particular interest for regenerative medicine. They share an early developmental origin and are a source of vast amounts of cells with multilineage differentiation potential that are poorly immunogenic and without controversy. Moreover, these cells are likely exempt from incorporated mutations when compared with juvenile or adult donor cells such as skin fibroblasts or keratinocytes. Here we report the efficient generation of induced pluripotent stem cells (iPSCs) from mesenchymal cells of the umbilical cord matrix (up to 0.4% of the cells became reprogrammed) and the placental amniotic membrane (up to 0.1%) using exogenous factors and a chemical mixture. iPSCs from these 2 tissues homogeneously showed human embryonic stem cell (hESC)-like characteristics including morphology, positive staining for alkaline phosphatase, normal karyotype, and expression of hESC-like markers including Nanog, Rex1, Oct4, TRA-1–60, TRA-1–80, SSEA-3, and SSEA-4. Selected clones also formed embryonic bodies and teratomas containing derivatives of the 3 germ layers, and could as well be readily differentiated into functional motor neurons. Among other things, our cell lines may prove useful for comparisons between iPSCs derived from multiple tissues regarding the extent of the epigenetic reprogramming, differentiation ability, stability of the resulting lineages, and the risk of associated abnormalities. PMID:20139068

  11. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells.

    PubMed

    Cho, Myung Soo; Lee, Young-Eun; Kim, Ji Young; Chung, Seungsoo; Cho, Yoon Hee; Kim, Dae-Sung; Kang, Sang-Moon; Lee, Haksup; Kim, Myung-Hwa; Kim, Jeong-Hoon; Leem, Joong Woo; Oh, Sun Kyung; Choi, Young Min; Hwang, Dong-Youn; Chang, Jin Woo; Kim, Dong-Wook

    2008-03-01

    We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These SNMs provide several advantages: (i) they can be passaged for a long time without losing their differentiation capability into DA neurons; (ii) they can be coaxed into DA neurons at much higher efficiency than that from previous reports (86% tyrosine hydroxylase-positive neurons/total neurons); (iii) the induction of DA neurons from SNMs only takes 14 days; and (iv) no feeder cells are required during differentiation. These advantages allowed us to obtain a large number of DA neurons within a short time period and minimized potential contamination of unwanted cells or pathogens coming from the feeder layer. The highly efficient differentiation may not only enhance the efficacy of the cell therapy but also reduce the potential tumor formation from the undifferentiated residual hESCs. In line with this effect, we have never observed any tumor formation from the transplanted animals used in our study. When grafted into a parkinsonian rat model, the hESC-derived DA neurons elicited clear behavioral recovery in three behavioral tests. In summary, our study paves the way for the large-scale generation of purer and functional DA neurons for future clinical applications. PMID:18305158

  12. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells

    PubMed Central

    Cho, Myung Soo; Lee, Young-Eun; Kim, Ji Young; Chung, Seungsoo; Cho, Yoon Hee; Kim, Dae-Sung; Kang, Sang-Moon; Lee, Haksup; Kim, Myung-Hwa; Kim, Jeong-Hoon; Leem, Joong Woo; Oh, Sun Kyung; Choi, Young Min; Hwang, Dong-Youn; Chang, Jin Woo; Kim, Dong-Wook

    2008-01-01

    We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These SNMs provide several advantages: (i) they can be passaged for a long time without losing their differentiation capability into DA neurons; (ii) they can be coaxed into DA neurons at much higher efficiency than that from previous reports (86% tyrosine hydroxylase-positive neurons/total neurons); (iii) the induction of DA neurons from SNMs only takes 14 days; and (iv) no feeder cells are required during differentiation. These advantages allowed us to obtain a large number of DA neurons within a short time period and minimized potential contamination of unwanted cells or pathogens coming from the feeder layer. The highly efficient differentiation may not only enhance the efficacy of the cell therapy but also reduce the potential tumor formation from the undifferentiated residual hESCs. In line with this effect, we have never observed any tumor formation from the transplanted animals used in our study. When grafted into a parkinsonian rat model, the hESC-derived DA neurons elicited clear behavioral recovery in three behavioral tests. In summary, our study paves the way for the large-scale generation of purer and functional DA neurons for future clinical applications. PMID:18305158

  13. Sip1 regulates the generation of the inner nuclear layer retinal cell lineages in mammals.

    PubMed

    Menuchin-Lasowski, Yotam; Oren-Giladi, Pazit; Xie, Qing; Ezra-Elia, Raaya; Ofri, Ron; Peled-Hajaj, Shany; Farhy, Chen; Higashi, Yujiro; Van de Putte, Tom; Kondoh, Hisato; Huylebroeck, Danny; Cvekl, Ales; Ashery-Padan, Ruth

    2016-08-01

    The transcription factor Sip1 (Zeb2) plays multiple roles during CNS development from early acquisition of neural fate to cortical neurogenesis and gliogenesis. In humans, SIP1 (ZEB2) haploinsufficiency leads to Mowat-Wilson syndrome, a complex congenital anomaly including intellectual disability, epilepsy and Hirschsprung disease. Here we uncover the role of Sip1 in retinogenesis. Somatic deletion of Sip1 from mouse retinal progenitors primarily affects the generation of inner nuclear layer cell types, resulting in complete loss of horizontal cells and reduced numbers of amacrine and bipolar cells, while the number of Muller glia is increased. Molecular analysis places Sip1 downstream of the eye field transcription factor Pax6 and upstream of Ptf1a in the gene network required for generating the horizontal and amacrine lineages. Intriguingly, characterization of differentiation dynamics reveals that Sip1 has a role in promoting the timely differentiation of retinal interneurons, assuring generation of the proper number of the diverse neuronal and glial cell subtypes that constitute the functional retina in mammals. PMID:27385012

  14. Survival and differentiation of adenovirus-generated induced pluripotent stem cells transplanted into the rat striatum.

    PubMed

    Fink, Kyle D; Rossignol, Julien; Lu, Ming; Lévêque, Xavier; Hulse, Travis D; Crane, Andrew T; Nerriere-Daguin, Veronique; Wyse, Robert D; Starski, Phillip A; Schloop, Matthew T; Dues, Dylan J; Witte, Steve J; Song, Cheng; Vallier, Ludovic; Nguyen, Tuan H; Naveilhan, Philippe; Anegon, Ignacio; Lescaudron, Laurent; Dunbar, Gary L

    2014-01-01

    Induced pluripotent stem cells (iPSCs) offer certain advantages over embryonic stem cells in cell replacement therapy for a variety of neurological disorders. However, reliable procedures, whereby transplanted iPSCs can survive and differentiate into functional neurons, without forming tumors, have yet to be devised. Currently, retroviral or lentiviral reprogramming methods are often used to reprogram somatic cells. Although the use of these viruses has proven to be effective, formation of tumors often results following in vivo transplantation, possibly due to the integration of the reprogramming genes. The goal of the current study was to develop a new approach, using an adenovirus for reprogramming cells, characterize the iPSCs in vitro, and test their safety, survivability, and ability to differentiate into region-appropriate neurons following transplantation into the rat brain. To this end, iPSCs were derived from bone marrow-derived mesenchymal stem cells and tail-tip fibroblasts using a single cassette lentivirus or a combination of adenoviruses. The reprogramming efficiency and levels of pluripotency were compared using immunocytochemistry, flow cytometry, and real-time polymerase chain reaction. Our data indicate that adenovirus-generated iPSCs from tail-tip fibroblasts are as efficient as the method we used for lentiviral reprogramming. All generated iPSCs were also capable of differentiating into neuronal-like cells in vitro. To test the in vivo survivability and the ability to differentiate into region-specific neurons in the absence of tumor formation, 400,000 of the iPSCs derived from tail-tip fibroblasts that were transfected with the adenovirus pair were transplanted into the striatum of adult, immune-competent rats. We observed that these iPSCs produced region-specific neuronal phenotypes, in the absence of tumor formation, at 90 days posttransplantation. These results suggest that adenovirus-generated iPSCs may provide a safe and viable means for

  15. Transformed MDCK cells secrete elevated MMP1 that generates LAMA5 fragments promoting endothelial cell angiogenesis

    PubMed Central

    Gopal, Shashi K.; Greening, David W.; Zhu, Hong-Jian; Simpson, Richard J.; Mathias, Rommel A.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) enhances the migration and invasion of cancer cells, and is regulated by various molecular mechanisms including extracellular matrix metalloproteinase (MMP) activity. Previously, we reported transformation of epithelial Madin-Darby canine kidney (MDCK) cells with oncogenic H-Ras (21D1 cells) induces EMT, and significantly elevates MMP1 expression. To explore the biological significance, in this study we characterized 21D1 cells with knocked-down MMP1 expression (21D1−MMP1). MMP1 silencing diminished 21D1 cell migration, invasion and anchorage-independent growth in vitro. Additionally, 21D1−MMP1 cells displayed reduced tumour volume when grown as in vivo subcutaneous xenografts in mice. Depletion of MMP1 lowered the ability of the cellular secretome (extracellular culture medium) to influence recipient cell behaviour. For example, supplementation with 21D1 secretome elevated cell migration of recipient fibroblasts, and enhanced endothelial cell angiogenesis (vessel length and branching). By contrast, 21D1−MMP1 secretome was less potent in both functional assays. We reveal laminin subunit alpha-5 (LAMA5) as a novel biological substrate of MMP1, that generates internal and C-terminal proteolytic fragments in 21D1 secretome. Furthermore, antibody-based inhibition of integrin αvβ3 on endothelial cells nullified the angiogenic capability of 21D1 secretome. Therefore, we report this as a new VEGF-independent mechanism that oncogenic cells may employ to promote tumour angiogenesis. PMID:27324842

  16. Cell module and fuel conditioner development

    NASA Astrophysics Data System (ADS)

    Hoover, D. Q., Jr.

    1980-01-01

    Components for the first 5 cell stack (no cooling plates) of the MK-2 design were fabricated. Preliminary specfications and designs for the components of a 23 cell MK-1 stack with four DIGAS cooling plates were developed. The MK-2 was selected as a bench mark design and a preliminary design of the facilities required for high rate manufacture of fuel cell modules was developed. Two stands for testing 5 cell stacks were built and design work for modifying existing stands and building new stands for 23 and 80 cell stacks was initiated. Design and procurement of components and materials for the catalyst test stand were completed and construction initiated. Work on the specifications of pipeline gas, tap water and recovered water and definition of equipment required for treatment was initiated. An innovative geometry for the reformer was conceived and modifications of the computer program to be used in its design were stated.

  17. Development of second generation EP2 antagonists with high selectivity

    PubMed Central

    Ganesh, Thota; Jiang, Jianxiong; Dingledine, Ray

    2014-01-01

    EP2 receptor has emerged as an important biological target for therapeutic intervention. In particular, it has been shown to exacerbate disease progression of a variety of CNS and peripheral diseases. Deletion of the EP2 receptor in mouse models recapitulates several features of the COX-2 inhibition, thus presenting a new avenue for anti-inflammatory therapy which could bypass some of the adverse side effects observed by the COX-2 inhibition therapy. We have recently reported a cinnamic amide class of EP2 antagonists with high potency, but these compounds exhibited a moderate selectivity against prostanoid receptor DP1. Moreover they possess acrylamide moiety in the structure, which may result in liver toxicity over longer period of use in a chronic disease model. Thus, we now developed a second generation compounds that devoid of the acrylamide functionality and possess high potency and improved (>1000-fold) selectivity to EP2 over other prostanoid receptors. PMID:24937185

  18. Development of rf plasma generators for neutral beams

    SciTech Connect

    Vella, M.C.; Ehlers, K.W.; Kippenhan, D.; Pincosy, P.A.; Pyle, R.V.; DiVergilio, W.F.; Fosnight, V.V.

    1984-10-01

    The development of low frequency (1-2 MHz) rf plasma generators for high power neutral beam applications is summarized. Immersed couplers from one to three turns were used. Acceptable plasma profiles, less than or equal to 15% max/min, were obtained in a variety of field-free magnetic bucket and magnetic filter-bucket sources, with 10 x 10 cm or 10 x 40 cm extraction areas. Hydrogen beam properties were measured with a 7 x 10 cm accelerator operated at 80 kV. Atomic fraction and power efficiency were at least as high as with arc plasmas in similar chambers. The potential advantages of an rf plasma source are: ease of operation; reliability; and extended service lifetime.

  19. Some aspects of materials development for sodium heated steam generators

    SciTech Connect

    Roy, P.; Spalaris, C.N.

    1980-10-01

    A development program was undertaken to support the materials selection for steam generator piping and IHX which are to be used in Liquid Metal Fast Breeder Reactors (LMFBR). Four major topics were reviewed, describing the results obtained as well as the direction of future tests. These topics are: carbon transport in sodium, effect of carbon loss/gain upon materials in the reactor Intermediate Heat Transport System (IHTS), corrosion fatigue and aqueous corrosion. The results support the initial assumptions made in specifying the use of 2-1/4Cr-1Mo as the construction material for the evaporator and superheater and Type 316 piping of the IHT system. Future direction of the experimental programs is to further verify the materials choice and to also obtain information which will be essential during the plant installation, operation and reliability of the components.

  20. Further developments in generating type-safe messaging

    SciTech Connect

    Neswold, R.; King, C.; /Fermilab

    2011-11-01

    At ICALEPCS 09, we introduced a source code generator that allows processes to communicate safely using data types native to each host language. In this paper, we discuss further development that has occurred since the conference in Kobe, Japan, including the addition of three more client languages, an optimization in network packet size and the addition of a new protocol data type. The protocol compiler is continuing to prove itself as an easy and robust way to get applications written in different languages hosted on different computer architectures to communicate. We have two active Erlang projects that are using the protocol compiler to access ACNET data at high data rates. We also used the protocol compiler output to deliver ACNET data to an iPhone/iPad application. Since it takes an average of two weeks to support a new language, we're willing to expand the protocol compiler to support new languages that our community uses.

  1. Development of living cell force sensors for the interrogation of cell surface interactions

    NASA Astrophysics Data System (ADS)

    Brown, Scott Chang

    The measurement of cell surface interactions, or cell interaction forces, are critical for the early diagnosis and prevention of disease, the design of targeted drug and gene delivery vehicles, the development of next-generation implant materials, and much more. However, the technologies and devices that are currently available are highly limited with respect to the dynamic force range over which they can measure cell-cell or cell-substratum interactions, and with their ability to adequately mimic biologically relevant systems. Consequently, research efforts that involve cell surface interactions have been limited. In this dissertation, existing tools for research at the nanoscale (i.e., atomic force microscopy microcantilevers) are modified to develop living cell force sensors that allow for the highly sensitive measurement of cell-mediated interactions over the entire range of forces expected in biotechnology (and nano-biotechnology) research (from a single to millions of receptor-ligand bonds). Several force sensor motifs have been developed that can be used to measure interactions using single adherent cells, single suspension culture cell, and cell monolayers (tissues) over a wide range of interaction conditions (e.g., approach velocity, shear rate, contact time) using a conventional atomic force microscope. This new tool has been applied to study the pathogenesis of spontaneous pneumothorax and the interaction of cells with 14 man-made interfaces. Consequently, a new hypothesis of the interactions that manifest spontaneous pneumothorax has been developed. Additionally, these findings have the potential to lead to the development of tools for data mining materials and surfaces for unique cell interactions that could have an immense societal impact.

  2. Efficient Generation of Corticofugal Projection Neurons from Human Embryonic Stem Cells

    PubMed Central

    Zhu, Xiaoqing; Ai, Zongyong; Hu, Xintian; Li, Tianqing

    2016-01-01

    Efforts to study development and function of corticofugal projection neurons (CfuPNs) in the human cerebral cortex for health and disease have been limited by the unavailability of highly enriched CfuPNs. Here, we develop a robust, two-step process for generating CfuPNs from human embryonic stem cells (hESCs): directed induction of neuroepithelial stem cells (NESCs) from hESCs and efficient differentiation of NESCs to about 80% of CfuPNs. NESCs or a NESC faithfully maintain unlimitedly self-renewal and self-organized abilities to develop into miniature neural tube-like structures. NESCs retain a stable propensity toward neuronal differentiation over culture as fate-restricted progenitors of CfuPNs and interneurons. When grafted into mouse brains, NESCs successfully integrate into the host brains, differentiate into CfuPNs and effectively reestablish specific patterns of subcortical projections and synapse structures. Efficient generation of CfuPNs in vitro and in vivo will facilitate human cortex development and offer sufficient CfuPNs for cell therapy. PMID:27346302

  3. Third Generation RLV Structural Seal Development Programs at NASA GRC

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2003-01-01

    NASA is currently developing technologies for the 3rd Generation Reusable Launch Vehicle (RLV) that is being designed to enter service around the year 2025. In particular, NASA's Glenn Research Center (GRC) is working on advanced high temperature structural seal designs including propulsion system and control surface seals. Propulsion system seals are required along the edges of movable panels in advanced engines, while control surface seals seal the edges and hinge lines of movables flaps and elevons on the vehicle. The overall goal is to develop reusable, resilient seals capable of operating at temperatures up to 2000 F. High temperature seal preloading devices (e.g., springs) are also being evaluated as a means of improving seal resiliency. In order to evaluate existing and potential new seal designs, GRC has designed and is installing several new test rigs capable of simulating the types of conditions that the seals would endure during service including temperatures, pressures, and scrubbing. Two new rigs, the hot compression test rig and the hot scrub test rig, will be used to perform seal compression and scrub tests for many cycles at temperatures up to 3000 F. Another new test rig allows simultaneous flow and scrub tests to be performed on the seals at room temperature to evaluate how the flow blocking performance of the seals varies as they accumulate damage during scrubbing. This presentation will give an overview of these advanced seal development efforts.

  4. Developing the Next Generation Shell Buckling Design Factors and Technologies

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2012-01-01

    NASA s Shell Buckling Knockdown Factor (SBKF) Project was established in the spring of 2007 by the NASA Engineering and Safety Center (NESC) in collaboration with the Constellation Program and Exploration Systems Mission Directorate. The SBKF project has the current goal of developing less-conservative, robust shell buckling design factors (a.k.a. knockdown factors) and design and analysis technologies for light-weight stiffened metallic launch vehicle (LV) structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s LV development and performance risks. In particular, it is expected that the results from this project will help reduce the reliance on testing, provide high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. The SBKF project objectives and approach used to develop and validate new design technologies are presented, and provide a glimpse into the future of design of the next generation of buckling-critical launch vehicle structures.

  5. Developing a cloud mask climatology covering two Meteosat satellite generations

    NASA Astrophysics Data System (ADS)

    Posselt, Rebekka; Stöckli, Reto; Liniger, Mark A.

    2013-04-01

    Long term cloud cover observations from satellites are fundamental for climate model validation and climate monitoring. Further, they support ground-based observations in regions with sparse coverage. Additionally, information on cloud cover is needed to derive other physical parameters such as surface radiation fluxes or clear sky and cloudy atmospheric states and is of high relevance for the solar energy sector. Within the current project phase of the Satellite Application Facility on Climate Monitoring (CM SAF) an algorithm to calculate a climatological cloud mask (or cloud cover probability) from Meteosat satellites is developed. The algorithm shall be applicable for both Meteosat first generation (1983-2005) and Meteosat second generation (2004-present) which significantly differ in their spectral properties. The algorithm linearly aggregates a set of continuous scores instead of the commonly used decision tree approach. The scores are calculated for different channels as well as different spatial and temporal settings. Each score yields a probability for the pixel's cloud cover. The final result, the cloud cover probability, is obtained by combining all available scores taking into account the varying performance of the scores during day and night and over snow. The uncertainty of the final cloud cover estimate is an inherent part of the probability. The algorithm is calibrated using cloud cover measurements from SYNOP stations located on the Meteosat disc. The subsequent validation is done at an independent set of collocated SYNOP/ARSA (Automated Radiosonde Archive) stations. The presentation introduces the applied cloud mask algorithm and presents the results of the validation for both satellite generations. The comparison of the two satellite generations addresses the climatological homogeneity of the future cloud mask climate data record which will be distributed by CM SAF after 2016. Special attention is also drawn to issues like the day-night-bias of

  6. Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation

    PubMed Central

    McCabe, Kathryn L.; Kunzevitzky, Noelia J.; Chiswell, Brian P.; Xia, Xin; Goldberg, Jeffrey L.; Lanza, Robert

    2015-01-01

    Aim To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs) for transplantation in patients with corneal endothelial dystrophies. Materials and Methods Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology, expression of corneal endothelial markers, and microarray analysis of gene expression. Results hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells, expressed Zona Occludens 1 (ZO-1) and Na+/K+ATPaseα1 (ATPA1) on the apical surface in monolayer culture, and produced the key proteins of Descemet’s membrane, Collagen VIIIα1 and VIIIα2 (COL8A1 and 8A2). Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis. Conclusion hESC-CECs are morphologically similar, express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium. PMID:26689688

  7. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; Garrett, Michelle

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  8. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    SciTech Connect

    Gottesfeld, S.

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  9. Gas cooled fuel cell systems technology development

    NASA Astrophysics Data System (ADS)

    1992-03-01

    This report documents in detail the work performed by Westinghouse Electric Corporation and the Energy Research Corporation during the fourth phase of a planned multiphase program to develop a Phosphoric Acid Fuel Cell (PAFC) for electric utility or industrial power plant applications. The results of this effort include (1) development of a baseline rolled electrode technology; (2) advancement of fuel cell technology through innovative improvements in the areas of acid management, catalyst selection, electrode and plate materials and processes, component designs, and quality assurance programs; (3) demonstration of improved fuel cell and stack performance and endurance; (4) successful scaleup of cell and stack design features into full height 100 kW stacks; and (5) demonstration of combining stacks into a 400 kW module that will be the building block for power plants, including the development of testing facilities and operating procedures applicable to plant operations.

  10. Prospects of Graphene as a Potential Carrier-Transport Material in Third-Generation Solar Cells.

    PubMed

    Chowdhury, Towhid H; Islam, Ashraful; Mahmud Hasan, A K; Terdi, M Asri Mat; Arunakumari, M; Prakash Singh, Surya; Alam, Md Khorshed; Bedja, Idriss M; Hafidz Ruslan, Mohd; Sopian, Kamaruzzaman; Amin, Nowshad; Akhtaruzzaman, Md

    2016-04-01

    Third-generation solar cells are understood to be the pathway to overcoming the issues and drawbacks of the existing solar cell technologies. Since the introduction of graphene in solar cells, it has been providing attractive properties for the next generation of solar cells. Currently, there are more theoretical predictions rather than practical recognitions in third-generation solar cells. Some of the potential of graphene has been explored in organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs), but it has yet to be fully comprehended in the recent third-generation inorganic-organic hybrid perovskite solar cells. In this review, the diverse role of graphene in third-generation OPVs and DSSCs will be deliberated to provide an insight on the prospects and challenges of graphene in inorganic-organic hybrid perovskite solar cells. PMID:26816190

  11. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor

  12. Development of novel microfluidic platforms for neural stem cell research

    NASA Astrophysics Data System (ADS)

    Chung, Bonggeun

    This dissertation describes the development and characterization of novel microfluidic platforms to study proliferation, differentiation, migration, and apoptosis of neural stem cells (NSCs). NSCs hold tremendous promise for fundamental biological studies and cell-based therapies in human disorders. NSCs are defined as cells that can self-renew yet maintain the ability to generate the three principal cell types of the central nervous system such as neurons, astrocytes, and oligodendrocytes. NSCs therefore have therapeutic possibilities in multiple neurodevelopmental and neurodegenerative diseases. Despite their promise, cell-based therapies are limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms can provide much greater control over cell microenvironments and optimize proliferation and differentiation conditions of cells exposed to combinatorial mixtures of growth factors. Human NSCs were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor mixture. NSCs proliferated and differentiated in a graded and proportional fashion that varied directly with growth factor concentration. In parallel to the study of growth and differentiation of NSCs, we are interested in proliferation and apoptosis of mouse NSCs exposed to morphogen gradients. Morphogen gradients are fundamental to animal brain development. Nonetheless, much controversy remains about the mechanisms by which morphogen gradients act on the developing brain. To overcome limitations of in-vitro models of gradients, we have developed a hybrid microfluidic platform that can mimic morphogen gradient profiles. Bone morphogenetic protein (BMP) activity in the developing cortex is graded and cortical NSC responses to BMPs are highly dependent on concentration and gradient slope of BMPs. To make novel microfluidic devices integrated with multiple functions, we have

  13. Generation of a Drug-inducible Reporter System to Study Cell Reprogramming in Human Cells*

    PubMed Central

    Ruiz, Sergio; Panopoulos, Athanasia D.; Montserrat, Nuria; Multon, Marie-Christine; Daury, Aurélie; Rocher, Corinne; Spanakis, Emmanuel; Batchelder, Erika M.; Orsini, Cécile; Deleuze, Jean-François; Izpisua Belmonte, Juan Carlos

    2012-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells is achieved by the expression of defined transcription factors. In the last few years, reprogramming strategies on the basis of doxycycline-inducible lentiviruses in mouse cells became highly powerful for screening purposes when the expression of a GFP gene, driven by the reactivation of endogenous stem cell specific promoters, was used as a reprogramming reporter signal. However, similar reporter systems in human cells have not been generated. Here, we describe the derivation of drug-inducible human fibroblast-like cell lines that express different subsets of reprogramming factors containing a GFP gene under the expression of the endogenous OCT4 promoter. These cell lines can be used to screen functional substitutes for reprogramming factors or modifiers of reprogramming efficiency. As a proof of principle of this system, we performed a screening of a library of pluripotent-enriched microRNAs and identified hsa-miR-519a as a novel inducer of reprogramming efficiency. PMID:23019325

  14. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells.

    PubMed

    Gotoh, Shimpei; Ito, Isao; Nagasaki, Tadao; Yamamoto, Yuki; Konishi, Satoshi; Korogi, Yohei; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Funato, Michinori; Mae, Shin-Ichi; Toyoda, Taro; Sato-Otsubo, Aiko; Ogawa, Seishi; Osafune, Kenji; Mishima, Michiaki

    2014-09-01

    No methods for isolating induced alveolar epithelial progenitor cells (AEPCs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs), we identified carboxypeptidase M (CPM) as a surface marker of NKX2-1(+) "ventralized" anterior foregut endoderm cells (VAFECs) in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM(+) cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM(+) cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine. PMID:25241738

  15. Effect of bacterial cell size on electricity generation in a single-compartmented microbial fuel cell.

    PubMed

    Lee, Seung Won; Jeon, Bo Young; Park, Doo Hyun

    2010-04-01

    A single-compartmented microbial fuel cell composed of a graphite felt anode modified with Neutral Red (NR-anode) and a porous Fe(II)-carbon cathode (FeC-cathode) were compared for electricity generation from Microbacterium sp. and Pseudomonas sp. under identical conditions. Pseudomonas sp. was more than four times the size of Microbacterium sp. based on SEM images. In cyclic voltammetry, the redox reaction between Microbacterium sp and electrode was three times the rate observed between Pseudomonas sp. and the electrode based on the Y-axis (current) variation of cyclic voltammogram. The electric power generated by Microbacterium sp. was approx 3-4 times higher than that with Pseudomonas sp. during incubation for more than 150 days in the fuel cell. PMID:20013300

  16. Electricity generation from tetrathionate in microbial fuel cells by acidophiles.

    PubMed

    Sulonen, Mira L K; Kokko, Marika E; Lakaniemi, Aino-Maija; Puhakka, Jaakko A

    2015-03-01

    Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5. PMID:25463232

  17. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation. PMID:27162144

  18. Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation

    SciTech Connect

    Hanna, M. C.; Ellingson, R. J.; Beard, M.; Yu, P.; Micic, O. I.; Nozik, A. J.; c.

    2005-01-01

    Impact ionization is a process in which absorbed photons in semiconductors that are at least twice the bandgap can produce multiple electron-hole pairs. For single-bandgap photovoltaic devices, this effect produces greatly enhanced theoretical thermodynamic conversion efficiencies that range from 45-85%, depending upon solar concentration, the cell temperature, and the number of electron-hole pairs produced per photon. For quantum dots (QDs), electron-hole pairs exist as excitons. We have observed astoundingly efficient multiple exciton generation (MEG) in QDs of PbSe (bulk Eg = 0.28 eV), ranging in diameter from 3.9 to 5.7nm (Eg = 0.73, 0.82, and 0.91 eV, respectively). The effective masses of electron and holes are about equal in PbSe, and the onset for efficient MEG occurs at about three times the QD HOMO-LUMO transition (its ''bandgap''). The quantum yield rises quickly after the onset and reaches 300% at 4 x Eg (3.64 eV) for the smallest QD; this means that every QD in the sample produces three electron-hole pairs/photon.

  19. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells.

    PubMed

    Jablonska, Milena A; Rybarczyk, Maria K; Lieder, Marek

    2016-05-01

    Rapeseed straw is an attractive fuel material for microbial fuel cells (MFCs) due to its high content of carbohydrates (more than 60% carbohydrates). This study has demonstrated that reducing sugars can be efficiently extracted from raw rapeseed straw by combination of hydrothermal pretreatment and enzymatic hydrolysis followed by utilization as a fuel in two-chamber MFCs for electrical power generation. The most efficient method of saccharification of this lignocellulosic biomass (17%) turned out hydrothermal pretreatment followed by enzymatic hydrolysis. Electricity was produced using hydrolysate concentrations up to 150mg/dm(3). The power density reached 54mW/m(2), while CEs ranged from 60% to 10%, corresponding to the initial reducing sugar concentrations of 10-150mg/dm(3). The COD degradation rates based on charge calculation increased from 0.445gCOD/m(2)/d for the hydrolysate obtained with the microwave treatment to 0.602gCOD/m(2)/d for the most efficient combination of hydrothermal treatment followed by enzymatic hydrolysis. PMID:26930033

  20. Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors.

    PubMed

    Swetha, G; Chandra, Vikash; Phadnis, Smruti; Bhonde, Ramesh

    2011-02-01

    Glomerular parietal epithelial cells (GPECs) are known to revert to embryonic phenotype in response to renal injury. However, the mechanism of de-differentiation in GPECs and the underlying cellular processes are not fully understood. In the present study, we show that cultured GPECs of adult murine kidney undergo epithelial-mesenchymal transition (EMT) to generate cells, which express CD24, CD44 and CD29 surface antigens. Characterization by qRT-PCR and immunostaining of these clonogenic cells demonstrate that they exhibit metastable phenotype with co-expression of both epithelial (cytokeratin-18) and mesenchymal (vimentin) markers. Transcript analysis by qRT-PCR revealed high expression of metanephric mesenchymal (Pax-2, WT-1, Six-1, Eya-1, GDNF) and uteric bud (Hoxb-7, C-Ret) genes in these cells, indicating their bipotent progenitor status. Incubation of GPECs with EMT blocker Prostaglandin E2, resulted in low expression of renal progenitor markers reflecting the correlation between EMT and acquired stemness in these cells. Additional in vitro renal commitment assays confirmed their functional staminality. When injected into E13.5 kidney rudiments, the cells incorporated into the developing kidney primordia and co-culture with E13.5 spinal cord resulted in branching and tubulogenesis in these cells. When implanted under renal capsule of unilaterally nephrectomized mice, these cells differentiated into immature glomeruli and vascular ducts. Our study demonstrates that EMT plays a major role in imparting plasticity to terminally differentiated GPECs by producing metastable cells with traits of kidney progenitors. The present study would improve our understanding on epithelial cell plasticity, furthering our knowledge of its role in renal repair and regeneration. PMID:19840197