Science.gov

Sample records for cell groups reveal

  1. Focus groups reveal consumer ambivalence.

    PubMed

    1983-01-01

    According to qualitative research, Salvadoreans are ambivalent about the use of contraceptives. Since complete responsibility for management of the CSM project was accepted by the Association Demografica Salvadorena (ADS), the agency which operates the contraceptive social marketing project in El Salvador, in November 1980, the need for decisions in such areas as product price increases, introduction of new condom brands, promotion of the vaginal foaming tablet, and assessment of product sales performance had arisen. The ICSMP funded market research, completed during 1983, was intended to provide the data on which such decisions by ADS could be based. The qualitative research involved 8 focus groups, comprised of men and women, aged 18-45, contraceptive users and nonusers, from the middle and lower socioeconomic strata of the city of San Salvador and other suburban areas. In each group a moderator led discussion of family planning and probed respondents for specific attitudes, knowledge, and behavior regarding the use of contraceptives. To assess attitudes at a more emotional level, moderators asked respondents to "draw" their ideas on certain issues. A marked discrepancy was revealed between respondents' intellectual responses to the issues raised in group discussion, as opposed to their feelings expressed in the drawings. Intellectually, participants responded very positively to family planning practice, but when they were asked to draw their perceptions, ambivalent feelings emerged. Drawings of both the user and the nonuser convey primarily negative aspects for either choice. The user is tense and moody toward her children; the nonuser loses her attractiveness and "dies." Figures also show drawings of some of the attitudes of single and married male participants. 1 drawing shows an incomplete and a complete circle, symbolizing a sterilized man (incomplete) and a nonsterilized man (complete). Another picture depicts a chained man who has lost his freedom

  2. Single-cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion.

    PubMed

    Freeman, Brian T; Jung, Jangwook P; Ogle, Brenda M

    2016-01-01

    Fusion of donor mesenchymal stem cells with parenchymal cells of the recipient can occur in the brain, liver, intestine and heart following transplantation. The therapeutic benefit or detriment of resultant hybrids is unknown. Here we sought a global view of phenotypic diversification of mesenchymal stem cell-cardiomyocyte hybrids and associated time course. Using single-cell RNA-seq, we found hybrids consistently increase ribosome components and decrease genes associated with the cell cycle suggesting an increase in protein production and decrease in proliferation to accommodate the fused state. But in the case of most other gene groups, hybrids were individually distinct. In fact, though hybrids can express a transcriptome similar to individual fusion partners, approximately one-third acquired distinct expression profiles in a single day. Some hybrids underwent reprogramming, expressing pluripotency and cardiac precursor genes latent in parental cells and associated with developmental and morphogenic gene groups. Other hybrids expressed genes associated with ontologic cancer sets and two hybrids of separate experimental replicates clustered with breast cancer cells, expressing critical oncogenes and lacking tumor suppressor genes. Rapid transcriptional diversification of this type garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion. PMID:26997336

  3. Single-cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion

    PubMed Central

    Freeman, Brian T.; Jung, Jangwook P.; Ogle, Brenda M.

    2016-01-01

    Fusion of donor mesenchymal stem cells with parenchymal cells of the recipient can occur in the brain, liver, intestine and heart following transplantation. The therapeutic benefit or detriment of resultant hybrids is unknown. Here we sought a global view of phenotypic diversification of mesenchymal stem cell-cardiomyocyte hybrids and associated time course. Using single-cell RNA-seq, we found hybrids consistently increase ribosome components and decrease genes associated with the cell cycle suggesting an increase in protein production and decrease in proliferation to accommodate the fused state. But in the case of most other gene groups, hybrids were individually distinct. In fact, though hybrids can express a transcriptome similar to individual fusion partners, approximately one-third acquired distinct expression profiles in a single day. Some hybrids underwent reprogramming, expressing pluripotency and cardiac precursor genes latent in parental cells and associated with developmental and morphogenic gene groups. Other hybrids expressed genes associated with ontologic cancer sets and two hybrids of separate experimental replicates clustered with breast cancer cells, expressing critical oncogenes and lacking tumor suppressor genes. Rapid transcriptional diversification of this type garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion. PMID:26997336

  4. Group V secretory phospholipase A2 reveals its role in house dust mite-induced allergic pulmonary inflammation by regulation of dendritic cell function

    PubMed Central

    Giannattasio, Giorgio; Fujioka, Daisuke; Xing, Wei; Katz, Howard R.; Boyce, Joshua A.; Balestrieri, Barbara

    2010-01-01

    We have previously shown that group V secretory phospholipase A2 (sPLA2) regulates phagocytosis of zymosan and Candida albicans by a mechanism that depends on fusion of phagosomes with late endosomes in macrophages. Here we report that group V sPLA2 (Pla2g5)-null mice exposed to an extract of house dust mite Dermatophagoides farinae (Df) had markedly reduced pulmonary inflammation and goblet cell metaplasia compared to wild-type (WT) mice. Pla2g5-null mice had also impaired Th2-type adaptive immune responses to Df compared to WT mice. Pla2g5-null bone marrow-derived dendritic cells (BMDCs) activated by Df had delayed intracellular processing of allergen and impaired allergen-dependent maturation, a pattern recapitulated by the native lung DCs of Df-challenged mice. Adoptively transferred Df-loaded Pla2g5-null BMDCs were less able than Df-loaded WT BMDCs to induce pulmonary inflammation and Th2 polarization in WT mice. However, Pla2g5-null recipients transferred with WT or Pla2g5-null Df-loaded BMDCs exhibited significantly reduced local inflammatory responses to Df, even though the transfer of WT BMDCs still induced an intact Th2 cytokine response in regional lymph nodes. Thus, the expression of group V sPLA2 in APC regulates Ag processing and maturation of dendritic cells, and contributes to pulmonary inflammation and immune response against Df. Furthermore, an additional yet to be identified resident cell type is essential for the development of pulmonary inflammation, likely a cell in which group V sPLA2 is upregulated by Df and whose function is also regulated by group V sPLA2. PMID:20817863

  5. Nucleotide substitutions revealing specific functions of Polycomb group genes.

    PubMed

    Bajusz, Izabella; Sipos, László; Pirity, Melinda K

    2015-04-01

    POLYCOMB group (PCG) proteins belong to the family of epigenetic regulators of genes playing important roles in differentiation and development. Mutants of PcG genes were isolated first in the fruit fly, Drosophila melanogaster, resulting in spectacular segmental transformations due to the ectopic expression of homeotic genes. Homologs of Drosophila PcG genes were also identified in plants and in vertebrates and subsequent experiments revealed the general role of PCG proteins in the maintenance of the repressed state of chromatin through cell divisions. The past decades of gene targeting experiments have allowed us to make significant strides towards understanding how the network of PCG proteins influences multiple aspects of cellular fate determination during development. Being involved in the transmission of specific expression profiles of different cell lineages, PCG proteins were found to control wide spectra of unrelated epigenetic processes in vertebrates, such as stem cell plasticity and renewal, genomic imprinting and inactivation of X-chromosome. PCG proteins also affect regulation of metabolic genes being important for switching programs between pluripotency and differentiation. Insight into the precise roles of PCG proteins in normal physiological processes has emerged from studies employing cell culture-based systems and genetically modified animals. Here we summarize the findings obtained from PcG mutant fruit flies and mice generated to date with a focus on PRC1 and PRC2 members altered by nucleotide substitutions resulting in specific alleles. We also include a compilation of lessons learned from these models about the in vivo functions of this complex protein family. With multiple knockout lines, sophisticated approaches to study the consequences of peculiar missense point mutations, and insights from complementary gain-of-function systems in hand, we are now in a unique position to significantly advance our understanding of the molecular basis of

  6. Sequencing of Porcine Enterovirus Groups II and III Reveals Unique Features of Both Virus Groups

    PubMed Central

    Krumbholz, Andi; Dauber, Malte; Henke, Andreas; Birch-Hirschfeld, Eckhard; Knowles, Nick J.; Stelzner, Axel; Zell, Roland

    2002-01-01

    The molecular classification of the porcine enterovirus (PEV) groups II and III was investigated. The sequence of the almost complete PEV-8 (group II) genome reveals that this virus has unique L and 2A gene regions. A reclassification of this group into a new picornavirus genus is suggested. PEV group III viruses are typical enteroviruses. They differ from other enteroviruses by a prolonged stem-loop D of the 5′-cloverleaf structure. PMID:11992011

  7. Genetic structure of Tunisian ethnic groups revealed by paternal lineages.

    PubMed

    Fadhlaoui-Zid, Karima; Martinez-Cruz, Begoña; Khodjet-el-khil, Houssein; Mendizabal, Isabel; Benammar-Elgaaied, Amel; Comas, David

    2011-10-01

    Tunisia has experienced a variety of human migrations that have modeled the myriad cultural groups inhabiting the area. Both Arabic and Berber-speaking populations live in Tunisia. Berbers are commonly considered as in situ descendants of peoples who settled roughly in Palaeolithic times, and posterior demographic events such as the arrival of the Neolithic, the Arab migrations, and the expulsion of the "Moors" from Spain, had a strong cultural influence. Nonetheless, the genetic structure and the population relationships of the ethnic groups living in Tunisia have been poorly assessed. In order to gain insight into the paternal genetic landscape and population structure, more than 40 Y-chromosome single nucleotide polymorphisms and 17 short tandem repeats were analyzed in five Tunisian ethnic groups (three Berber-speaking isolates, one Andalusian, and one Cosmopolitan Arab). The most common lineage was the North African haplogroup E-M81 (71%), being fixed in two Berber samples (Chenini-Douiret and Jradou), suggesting isolation and genetic drift. Differential levels of paternal gene flow from the Near East were detected in the Tunisian samples (J-M267 lineage over 30%); however, no major sub-Saharan African or European influence was found. This result contrasts with the high amount of sub-Saharan and Eurasian maternal lineages previously described in Tunisia. Overall, our results reveal a certain genetic inter-population diversity, especially among Berber groups, and sexual asymmetry, paternal lineages being mostly of autochthonous origin. In addition, Andalusians, who are supposed to be migrants from southern Spain, do not exhibit any substantial contribution of European lineages, suggesting a North African origin for this ethnic group. PMID:21915847

  8. Dermatoglyphics from all Chinese ethnic groups reveal geographic patterning.

    PubMed

    Zhang, Hai-Guo; Chen, Yao-Fong; Ding, Ming; Jin, Li; Case, D Troy; Jiao, Yun-Ping; Wang, Xian-Ping; Bai, Chong-Xian; Jin, Gang; Yang, Jiang-Ming; Wang, Han; Yuan, Jian-Bing; Huang, Wei; Wang, Zhu-Gang; Chen, Ren-Biao

    2010-01-01

    Completion of a survey of dermatoglyphic variables for all ethnic groups in an ethnically diverse country like China is a huge research project, and an achievement that anthropological and dermatoglyphic scholars in the country could once only dream of. However, through the endeavors of scientists in China over the last 30 years, the dream has become reality. This paper reports the results of a comprehensive analysis of dermatoglyphics from all ethnic groups in China. Using cluster analysis and principal component analysis of dermatoglyphics, it has been found that Chinese populations can be generally divided into a southern group and a northern group. Furthermore, there has been considerable debate about the origins of many Chinese populations and about proper assignment of these peoples to larger ethnic groups. In this paper, we suggest that dermatoglyphic data can inform these debates by helping to classify a Chinese population as a northern or southern group, using selected reference populations and quantitative methods. This study is the first to assemble and investigate dermatoglyphics from all 56 Chinese ethnic groups. It is fortunate that data on population dermatoglyphics, a field of physical anthropology, have now been collected for all 56 Chinese ethnic groups, because intermarriage between individuals from different Chinese ethnic groups occurs more frequently in recent times, making population dermatoglyphic research an ever more challenging field of inquiry. PMID:20098698

  9. Plastome data reveal multiple geographic origins of Quercus Group Ilex.

    PubMed

    Simeone, Marco Cosimo; Grimm, Guido W; Papini, Alessio; Vessella, Federico; Cardoni, Simone; Tordoni, Enrico; Piredda, Roberta; Franc, Alain; Denk, Thomas

    2016-01-01

    Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnH-psbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not

  10. Plastome data reveal multiple geographic origins of Quercus Group Ilex

    PubMed Central

    Grimm, Guido W.; Papini, Alessio; Vessella, Federico; Cardoni, Simone; Tordoni, Enrico; Piredda, Roberta; Franc, Alain; Denk, Thomas

    2016-01-01

    Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnH-psbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not

  11. ALBEDOS OF SMALL HILDA GROUP ASTEROIDS AS REVEALED BY SPITZER

    SciTech Connect

    Ryan, Erin Lee; Woodward, Charles E. E-mail: chelsea@astro.umn.edu

    2011-06-15

    We present thermal 24 {mu}m observations from the Spitzer Space Telescope of 62 Hilda asteroid group members with diameters ranging from 3 to 12 km. Measurements of the thermal emission, when combined with reported absolute magnitudes, allow us to constrain the albedo and diameter of each object. From our Spitzer sample, we find the mean geometric albedo, p{sub V} = 0.07 {+-} 0.05, for small (D < 10 km) Hilda group asteroids. This Spitzer-derived value of p{sub V} is greater than and spans a larger range in albedo space than the mean albedo of large (D {approx}> 10 km) Hilda group asteroids which is p{sub V} = 0.04 {+-} 0.01. Though this difference may be attributed to space weathering, the small Hilda group population reportedly displays greater taxonomic range from C-, D-, and X-type whose albedo distributions are commensurate with the range of determined albedos. We discuss the derived Hilda size-frequency distribution, color-color space, and geometric albedo for our survey sample in the context of the expected migration induced 'seeding' of the Hilda asteroid group with outer solar system proto-planetesimals as outlined in the 'Nice' formalism.

  12. Low Mass Members in Nearby Young Moving Groups Revealed

    NASA Astrophysics Data System (ADS)

    Schlieder, Joshua; Simon, Michal; Rice, Emily; Lepine, Sebastien

    2010-08-01

    We are now ready to expand our program that identifies highly probable low-mass members of the nearby young moving groups (NYMGs) to stars of mass ~ 0.1 Msun. This is important 1) To provide high priority targets for exoplanet searches by direct imaging, 2) To complete the census of the membership in the NYMGs, and 3) To provide a well-characterized sample of nearby young stars for detailed study of their physical properties and multiplicity (the median distances of the (beta) Pic and AB Dor groups are ~ 35 pc with ages ~ 12 and 50 Myr respectively). Our proven technique starts with a proper motion selection algorithm, proceeds to vet the sample for indicators of youth, and requires as its last step the measurement of candidate member radial velocities (RVs). So far, we have obtained all RV measurements with the high resolution IR spectrometer at the NASA-IRTF and have reached the limits of its applicability. To identify probable new members in the south, and also those of the lowest mass, we need the sensitivity of PHOENIX at Gemini-S and NIRSPEC at Keck-II.

  13. A fifth major genetic group among honeybees revealed in Syria

    PubMed Central

    2013-01-01

    Background Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). Results Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. Conclusion This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria. PMID:24314104

  14. Single cell transcriptional analysis reveals novel innate immune cell types.

    PubMed

    Kippner, Linda E; Kim, Jinhee; Gibson, Greg; Kemp, Melissa L

    2014-01-01

    Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR) for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription profiling provides

  15. Micropatterning of cells reveals chiral morphogenesis

    PubMed Central

    2013-01-01

    Invariant left-right (LR) patterning or chirality is critical for embryonic development. The loss or reversal of LR asymmetry is often associated with malformations and disease. Although several theories have been proposed, the exact mechanism of the initiation of the LR symmetry has not yet been fully elucidated. Recently, chirality has been detected within single cells as well as multicellular structures using several in vitro approaches. These studies demonstrated the universality of cell chirality, its dependence on cell phenotype, and the role of physical boundaries. In this review, we discuss the theories for developmental LR asymmetry, compare various in vitro cell chirality model systems, and highlight possible roles of cell chirality in stem cell differentiation. We emphasize that the in vitro cell chirality systems have great promise for helping unveil the nature of chiral morphogenesis in development. PMID:23672821

  16. Cell-size maintenance: universal strategy revealed.

    PubMed

    Jun, Suckjoon; Taheri-Araghi, Sattar

    2015-01-01

    How cells maintain a stable size has fascinated scientists since the beginning of modern biology, but has remained largely mysterious. Recently, however, the ability to analyze single bacteria in real time has provided new, important quantitative insights into this long-standing question in cell biology. PMID:25497321

  17. Batteries and fuel cells working group report

    SciTech Connect

    Eberhardt, J. . Office of Advanced Transportation Materials); Landgrebe, A. . Electric and Hybrid Propulsion Systems); Lemons, R.; Wilson, M. ); MacAurther, D. (CH

    1991-01-01

    Electrochemical energy systems are dominated by interfacial phenomena. Catalysis, corrosion, electrical and ionic contact, and wetting behavior are critical to the performance of fuel cells and batteries. Accordingly, development of processing techniques to control these surface properties is important to successful commercialization of advanced batteries and fuel cells. Many of the surface processing issues are specific to a particular electrochemical system. Therefore, the working group focused on systems that are of specific interest to DOE/Conservation and Renewable Energy. These systems addressed were: Polymer Electrolyte Membrane (PEM) Fuel Cells, Direct Methanol Oxidation (DMO) Fuel Cells, and Lithium/Polymer Batteries. The approach used by the working group for each of these systems was to follow the current path through the system and to identify the principal interfaces. The function of each interface was specified together with its desired properties. The degree to which surface properties limit performance in present systems was rated. Finally, the surface processing needs associated with the performance limiting interfaces were identified. This report summarizes this information.

  18. Arc spot grouping: An entanglement of arc spot cells

    SciTech Connect

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  19. Arc spot grouping: An entanglement of arc spot cells

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-01

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  20. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.

    PubMed

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T; Sorensen, Staci A; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-02-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type-specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  1. Single-cell chromatin accessibility reveals principles of regulatory variation.

    PubMed

    Buenrostro, Jason D; Wu, Beijing; Litzenburger, Ulrike M; Ruff, Dave; Gonzales, Michael L; Snyder, Michael P; Chang, Howard Y; Greenleaf, William J

    2015-07-23

    Cell-to-cell variation is a universal feature of life that affects a wide range of biological phenomena, from developmental plasticity to tumour heterogeneity. Although recent advances have improved our ability to document cellular phenotypic variation, the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of mammalian DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells by assay for transposase-accessible chromatin using sequencing (ATAC-seq) integrated into a programmable microfluidics platform. Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provide insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type-specific accessibility variance across eight cell types. Targeted perturbations of cell cycle or transcription factor signalling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome compartments de novo, linking single-cell accessibility variation to three-dimensional genome organization. Single-cell analysis of DNA accessibility provides new insight into cellular variation of the 'regulome'. PMID:26083756

  2. Group 2 innate lymphoid cells and asthma.

    PubMed

    Kabata, Hiroki; Moro, Kazuyo; Koyasu, Shigeo; Asano, Koichiro

    2015-07-01

    Group 2 innate lymphoid cells (ILC2s) are recently identified cell populations that produce type 2 cytokines such as IL-5 and IL-13 in response to epithelial cell-derived cytokines. Although ILC2s were initially reported to play a key role in the anti-helminth innate immunity, we now have greater interest in their role in asthma and other allergic diseases. In various asthma mouse models, ILC2s provoke eosinophilic inflammation accompanied by airway hyperresponsiveness independent of acquired immunity. Moreover, recent mouse studies show that ILC2s also promote acquired immunity and Th2 polarization, and various cytokines and lipid mediators influence the functions of ILC2s. Although ILC2s have also been identified in humans, studies on the role of human ILC2s in asthma are very limited. Thus far, human studies have shown that there is a slight difference in responsiveness and production of cytokines between mouse and human ILC2s, and it has been suggested that ILC2s are involved in allergic-type asthma and the exacerbation of asthma. In this review, we focus on mouse and human ILC2s, and discuss their role in asthma. PMID:26117253

  3. Automated live cell imaging systems reveal dynamic cell behavior.

    PubMed

    Chirieleison, Steven M; Bissell, Taylor A; Scelfo, Christopher C; Anderson, Jordan E; Li, Yong; Koebler, Doug J; Deasy, Bridget M

    2011-07-01

    Automated time-lapsed microscopy provides unique research opportunities to visualize cells and subcellular components in experiments with time-dependent parameters. As accessibility to these systems is increasing, we review here their use in cell science with a focus on stem cell research. Although the use of time-lapsed imaging to answer biological questions dates back nearly 150 years, only recently have the use of an environmentally controlled chamber and robotic stage controllers allowed for high-throughput continuous imaging over long periods at the cell and subcellular levels. Numerous automated imaging systems are now available from both companies that specialize in live cell imaging and from major microscope manufacturers. We discuss the key components of robots used for time-lapsed live microscopic imaging, and the unique data that can be obtained from image analysis. We show how automated features enhance experimentation by providing examples of uniquely quantified proliferation and migration live cell imaging data. In addition to providing an efficient system that drastically reduces man-hours and consumes fewer laboratory resources, this technology greatly enhances cell science by providing a unique dataset of temporal changes in cell activity. PMID:21692197

  4. Blood group glycolipids as epithelial cell receptors for Candida albicans.

    PubMed Central

    Cameron, B J; Douglas, L J

    1996-01-01

    The role of glycosphingolipids as possible epithelial cell receptors for Candida albicans was examined by investigating the binding of biotinylated yeasts to lipids extracted from human buccal epithelial cells and separated on thin-layer chromatograms. Binding was visualized by the addition of 125I-streptavidin followed by autoradiography. Five C. albicans strains thought from earlier work to have a requirement for fucose-containing receptors all bound to the same three components in the lipid extract. A parallel chromatogram overlaid with biotinylated Ulex europaeus lectin, which is a fucose-binding lectin with a specificity for the H blood group antigen, showed that two of these glycosphingolipids carried this antigenic determinant. Preparations of crude and purified adhesin (a protein with a size of 15.7 kDa which lacked cysteine residues) from one of the strains also bound to these same two components. The third glycosphingolipid, which bound whole cells but neither preparation of adhesin, was recognized by Helix pomatia lectin, indicating that it contained N-acetylgalactosamine, possibly in the form of the A blood group antigen. Overlay assays with a sixth strain of C. albicans (GDH 2023) revealed a completely different binding pattern of four receptors, each of which contained N-acetylglucosamine. These results confirm earlier predictions about the receptor specificity of the strains made on the basis of adhesion inhibition studies and indicate that blood group antigens can act as epithelial cell receptors for C. albicans. PMID:8641797

  5. Macrophage characteristics of stem cells revealed by transcriptome profiling

    SciTech Connect

    Charriere, Guillaume M.; Cousin, Beatrice; Arnaud, Emmanuelle; Saillan-Barreau, Corinne; Andre, Mireille; Massoudi, Ali; Dani, Christian; Penicaud, Luc; Casteilla, Louis . E-mail: casteil@toulouse.inserm.fr

    2006-10-15

    We previously showed that the phenotypes of adipocyte progenitors and macrophages were close. Using functional analyses and microarray technology, we first tested whether this intriguing relationship was specific to adipocyte progenitors or could be shared with other progenitors. Measurements of phagocytic activity and gene profiling analysis of different progenitor cells revealed that the latter hypothesis should be retained. These results encouraged us to pursue and to confirm our analysis with a gold-standard stem cell population, embryonic stem cells or ESC. The transcriptomic profiles of ESC and macrophages were clustered together, unlike differentiated ESC. In addition, undifferentiated ESC displayed higher phagocytic activity than other progenitors, and they could phagocytoze apoptotic bodies. These data suggest that progenitors and stem cells share some characteristics of macrophages. This opens new perspectives on understanding stem cell phenotype and functionalities such as a putative role of stem cells in tissue remodeling by discarding dead cells but also their immunomodulation or fusion properties.

  6. Music-supported motor training after stroke reveals no superiority of synchronization in group therapy

    PubMed Central

    Van Vugt, Floris T.; Ritter, Juliane; Rollnik, Jens D.; Altenmüller, Eckart

    2014-01-01

    Background: Music-supported therapy has been shown to be an effective tool for rehabilitation of motor deficits after stroke. A unique feature of music performance is that it is inherently social: music can be played together in synchrony. Aim: The present study explored the potential of synchronized music playing during therapy, asking whether synchronized playing could improve fine motor rehabilitation and mood. Method: Twenty-eight patients in neurological early rehabilitation after stroke with no substantial previous musical training were included. Patients learned to play simple finger exercises and familiar children's songs on the piano for 10 sessions of half an hour. Patients first received three individual therapy sessions and then continued in pairs. The patient pairs were divided into two groups. Patients in one group played synchronously (together group) whereas the patients in the other group played one after the other (in-turn group). To assess fine motor skill recovery the patients performed standard clinical tests such as the nine-hole-pegboard test (9HPT) and index finger-tapping speed and regularity, and metronome-paced finger tapping. Patients' mood was established using the Profile of Mood States (POMS). Results: Both groups showed improvements in fine motor control. In metronome-paced finger tapping, patients in both groups improved significantly. Mood tests revealed reductions in depression and fatigue in both groups. During therapy, patients in the in-turn group rated their partner as more sympathetic than the together-group in a visual-analog scale. Conclusions: Our results suggest that music-supported stroke rehabilitation can improve fine motor control and mood not only individually but also in patient pairs. Patients who were playing in turn rather than simultaneously tended to reveal greater improvement in fine motor skill. We speculate that patients in the former group may benefit from the opportunity to learn from observation. PMID

  7. Synthetic protein interactions reveal a functional map of the cell

    PubMed Central

    Berry, Lisa K; Ólafsson, Guðjón; Ledesma-Fernández, Elena; Thorpe, Peter H

    2016-01-01

    To understand the function of eukaryotic cells, it is critical to understand the role of protein-protein interactions and protein localization. Currently, we do not know the importance of global protein localization nor do we understand to what extent the cell is permissive for new protein associations – a key requirement for the evolution of new protein functions. To answer this question, we fused every protein in the yeast Saccharomyces cerevisiae with a partner from each of the major cellular compartments and quantitatively assessed the effects upon growth. This analysis reveals that cells have a remarkable and unanticipated tolerance for forced protein associations, even if these associations lead to a proportion of the protein moving compartments within the cell. Furthermore, the interactions that do perturb growth provide a functional map of spatial protein regulation, identifying key regulatory complexes for the normal homeostasis of eukaryotic cells. DOI: http://dx.doi.org/10.7554/eLife.13053.001 PMID:27098839

  8. Group D Adenoviruses Infect Primary Central Nervous System Cells More Efficiently than Those from Group C

    PubMed Central

    Chillon, Miguel; Bosch, Assumpció; Zabner, Joseph; Law, Lane; Armentano, Donna; Welsh, Michael J.; Davidson, Beverly L.

    1999-01-01

    Group C adenovirus-mediated gene transfer to central nervous system cells is inefficient. We found that wild-type group D viruses, or recombinant adenovirus type 2 (Ad2) (group C) modified to contain Ad17 (group D) fiber, were more efficient in infecting primary cultures of neurons. Together with studies on primary vascular endothelial cells and tissue culture cell lines, our results indicate that there is not a universally applicable adenovirus serotype for use as a gene transfer vector. PMID:9971839

  9. EEG reveals an early influence of social conformity on visual processing in group pressure situations.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2013-01-01

    Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony. PMID:23163969

  10. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content

    PubMed Central

    Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit; Saari, Heikki; Ibañez, Elisa Lazaro; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian

    2015-01-01

    Current analysis of exosomes focuses primarily on bulk analysis, where exosome-to-exosome variability cannot be assessed. In this study, we used Raman spectroscopy to study the chemical composition of single exosomes. We measured spectra of individual exosomes from 8 cell lines. Cell-line-averaged spectra varied considerably, reflecting the variation in total exosomal protein, lipid, genetic, and cytosolic content. Unexpectedly, single exosomes isolated from the same cell type also exhibited high spectral variability. Subsequent spectral analysis revealed clustering of single exosomes into 4 distinct groups that were not cell-line specific. Each group contained exosomes from multiple cell lines, and most cell lines had exosomes in multiple groups. The differences between these groups are related to chemical differences primarily due to differing membrane composition. Through a principal components analysis, we identified that the major sources of spectral variation among the exosomes were in cholesterol content, relative expression of phospholipids to cholesterol, and surface protein expression. For example, exosomes derived from cancerous versus non-cancerous cell lines can be largely separated based on their relative expression of cholesterol and phospholipids. We are the first to indicate that exosome subpopulations are shared among cell types, suggesting distributed exosome functionality. The origins of these differences are likely related to the specific role of extracellular vesicle subpopulations in both normal cell function and carcinogenesis, and they may provide diagnostic potential at the single exosome level. PMID:26649679

  11. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease.

    PubMed

    Chernova, T; Sun, X M; Powley, I R; Galavotti, S; Grosso, S; Murphy, F A; Miles, G J; Cresswell, L; Antonov, A V; Bennett, J; Nakas, A; Dinsdale, D; Cain, K; Bushell, M; Willis, A E; MacFarlane, M

    2016-07-01

    Malignant mesothelioma (MM) is an aggressive, fatal tumor strongly associated with asbestos exposure. There is an urgent need to improve MM patient outcomes and this requires functionally validated pre-clinical models. Mesothelioma-derived cell lines provide an essential and relatively robust tool and remain among the most widely used systems for candidate drug evaluation. Although a number of cell lines are commercially available, a detailed comparison of these commercial lines with freshly derived primary tumor cells to validate their suitability as pre-clinical models is lacking. To address this, patient-derived primary mesothelioma cell lines were established and characterized using complementary multidisciplinary approaches and bioinformatic analysis. Clinical markers of mesothelioma, transcriptional and metabolic profiles, as well as the status of p53 and the tumor suppressor genes CDKN2A and NF2, were examined in primary cell lines and in two widely used commercial lines. Expression of MM-associated markers, as well as the status of CDKN2A, NF2, the 'gatekeeper' in MM development, and their products demonstrated that primary cell lines are more representative of the tumor close to its native state and show a degree of molecular diversity, thus capturing the disease heterogeneity in a patient cohort. Molecular profiling revealed a significantly different transcriptome and marked metabolic shift towards a greater glycolytic phenotype in commercial compared with primary cell lines. Our results highlight that multiple, appropriately characterised, patient-derived tumor cell lines are required to enable concurrent evaluation of molecular profiles versus drug response. Furthermore, application of this approach to other difficult-to-treat tumors would generate improved cellular models for pre-clinical evaluation of novel targeted therapies. PMID:26891694

  12. Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation

    PubMed Central

    Vo, Brenda N.; Drovandi, Christopher C.; Pettitt, Anthony N.; Pettet, Graeme J.

    2015-01-01

    In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ. PMID:26642072

  13. Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation.

    PubMed

    Vo, Brenda N; Drovandi, Christopher C; Pettitt, Anthony N; Pettet, Graeme J

    2015-12-01

    In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2-12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226-268 µm2h-1, 311-351 µm2h-1 and 0.23-0.39, 0.32-0.61 for the experimental periods of 0-24 h and 24-48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ. PMID:26642072

  14. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease

    PubMed Central

    Chernova, T; Sun, X M; Powley, I R; Galavotti, S; Grosso, S; Murphy, F A; Miles, G J; Cresswell, L; Antonov, A V; Bennett, J; Nakas, A; Dinsdale, D; Cain, K; Bushell, M; Willis, A E; MacFarlane, M

    2016-01-01

    Malignant mesothelioma (MM) is an aggressive, fatal tumor strongly associated with asbestos exposure. There is an urgent need to improve MM patient outcomes and this requires functionally validated pre-clinical models. Mesothelioma-derived cell lines provide an essential and relatively robust tool and remain among the most widely used systems for candidate drug evaluation. Although a number of cell lines are commercially available, a detailed comparison of these commercial lines with freshly derived primary tumor cells to validate their suitability as pre-clinical models is lacking. To address this, patient-derived primary mesothelioma cell lines were established and characterized using complementary multidisciplinary approaches and bioinformatic analysis. Clinical markers of mesothelioma, transcriptional and metabolic profiles, as well as the status of p53 and the tumor suppressor genes CDKN2A and NF2, were examined in primary cell lines and in two widely used commercial lines. Expression of MM-associated markers, as well as the status of CDKN2A, NF2, the ‘gatekeeper' in MM development, and their products demonstrated that primary cell lines are more representative of the tumor close to its native state and show a degree of molecular diversity, thus capturing the disease heterogeneity in a patient cohort. Molecular profiling revealed a significantly different transcriptome and marked metabolic shift towards a greater glycolytic phenotype in commercial compared with primary cell lines. Our results highlight that multiple, appropriately characterised, patient-derived tumor cell lines are required to enable concurrent evaluation of molecular profiles versus drug response. Furthermore, application of this approach to other difficult-to-treat tumors would generate improved cellular models for pre-clinical evaluation of novel targeted therapies. PMID:26891694

  15. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions

    PubMed Central

    Bellas, Christopher M.; Anesio, Alexandre M.; Barker, Gary

    2015-01-01

    Microbial communities in glacial ecosystems are diverse, active, and subjected to strong viral pressures and infection rates. In this study we analyse putative virus genomes assembled from three dsDNA viromes from cryoconite hole ecosystems of Svalbard and the Greenland Ice Sheet to assess the potential hosts and functional role viruses play in these habitats. We assembled 208 million reads from the virus-size fraction and developed a procedure to select genuine virus scaffolds from cellular contamination. Our curated virus library contained 546 scaffolds up to 230 Kb in length, 54 of which were circular virus consensus genomes. Analysis of virus marker genes revealed a wide range of viruses had been assembled, including bacteriophages, cyanophages, nucleocytoplasmic large DNA viruses and a virophage, with putative hosts identified as Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes, eukaryotic algae and amoebae. Whole genome comparisons revealed the majority of circular genome scaffolds (CGS) formed 12 novel groups, two of which contained multiple phage members with plasmid-like properties, including a group of phage-plasmids possessing plasmid-like partition genes and toxin-antitoxin addiction modules to ensure their replication and a satellite phage-plasmid group. Surprisingly we also assembled a phage that not only encoded plasmid partition genes, but a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas adaptive bacterial immune system. One of the spacers was an exact match for another phage in our virome, indicating that in a novel use of the system, the lysogen was potentially capable of conferring immunity on its bacterial host against other phage. Together these results suggest that highly novel and diverse groups of viruses are present in glacial environments, some of which utilize very unusual life strategies and genes to control their replication and maintain a long-term relationship with their hosts

  16. Self-assembled monolayers of alkanethiolates on surface chemistry groups in osteosarcoma cells

    PubMed Central

    DENG, YING-HU; LI, LI-HUA; HE, JIN; LI, MEI; ZHANG, YU; WANG, XIU-MEI; CUI, FU-ZHAI; XIA, HONG

    2015-01-01

    Cell biomedical behavior is influenced by a number of factors, and the extracellular matrix (ECM) of the cellular microenvironment affects certain cancer cells. In the current study, U-2OS cells were cultured on gold surfaces modified with different terminal chemical groups [methyl (-CH3), amino (-NH2), hydroxyl (-OH) and carboxyl (-COOH)]. The results revealed that different chemical surfaces convey different behaviors. The density of the different functional surfaces was confirmed by atomic force microscopy. Cell morphology, proliferation rate and cell cycle were investigated using scanning electron microscopy, cell counting and flow cytometry. In conclusion, the type of chemical group on a biomaterial is an important property for the growth of osteosarcoma cells; -NH2 and -COOH surfaces sustained visible cell adhesion and promoted cell growth. PMID:25373556

  17. Glucolytic fingerprinting reveals metabolic groups within the genus Bifidobacterium: an exploratory study.

    PubMed

    Rios-Covián, D; Sánchez, B; Cuesta, I; Cueto-Díaz, S; Hernández-Barranco, A M; Gueimonde, M; De Los Reyes-Gavilán, C G

    2016-03-11

    Microorganisms of the genus Bifidobacterium are inhabitants of diverse niches including the digestive tract of humans and animals. The species Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium breve and Bifidobacterium longum have qualified presumption of safety status granted by EFSA and several strains are considered probiotic, and are being included in functional dairy fermented products. In the present work we carried out a preliminary exploration of general metabolic characteristics and organic acid production profiles of a reduced number of strains selected from these and other species of the genus Bifidobacterium. The use of resting cells allowed obtaining metabolic fingerprints without interference of metabolites accumulated during growth in culture media. Acetic acid was the most abundant organic acid formed per mol of glucose consumed (from 1.07±0.03 to 1.71±0.22 mol) followed by lactic acid (from 0.34±0.06 to 0.90±0.12 mol), with moderate differences in production among strains; pyruvic, succinic and formic acids were also produced at considerably lower proportions, with variability among strains. The acetic to lactic acid ratio showed lower values in stationary phase as regard to the exponential phase for most, but not all, the microorganisms; this was due to a decrease in acetic acid molar proportions together with increases of lactic acid proportions in stationary phase. A linear discriminant analysis allowed to cluster strains into species with 51-100% probability, evidencing different metabolic profiles, according to the relative production of organic acids from glucose by resting cells, of microorganisms collected at the exponential phase of growth. Looking for a single metabolic marker that could adequately discriminate metabolic groups, we found that groups established by the acetic to lactic acid ratio fit well with differences previously evidenced by the discriminant analysis. The proper

  18. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    PubMed Central

    Macaulay, Iain C.; Svensson, Valentine; Labalette, Charlotte; Ferreira, Lauren; Hamey, Fiona; Voet, Thierry; Teichmann, Sarah A.; Cvejic, Ana

    2016-01-01

    Summary The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment. PMID:26804912

  19. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state

    PubMed Central

    Rotem, Assaf; Ram, Oren; Shoresh, Noam; Sperling, Ralph A.; Goren, Alon; Weitz, David A.; Bernstein, Bradley E.

    2015-01-01

    Chromatin profiling provides a versatile means to investigate functional genomic elements and their regulation. However, current methods yield ensemble profiles that are insensitive to cell-to-cell variation. Here we combine microfluidics, DNA barcoding and sequencing to collect chromatin data at single-cell resolution. We demonstrate the utility of the technology by assaying thousands of individual cells, and using the data to deconvolute a mixture of ES cells, fibroblasts and hematopoietic progenitors into high-quality chromatin state maps for each cell type. The data from each single cell is sparse, comprising on the order of 1000 unique reads. However, by assaying thousands of ES cells, we identify a spectrum of sub-populations defined by differences in chromatin signatures of pluripotency and differentiation priming. We corroborate these findings by comparison to orthogonal single-cell gene expression data. Our method for single-cell analysis reveals aspects of epigenetic heterogeneity not captured by transcriptional analysis alone. PMID:26458175

  20. Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development

    PubMed Central

    Chen, Jinmiao; Schlitzer, Andreas; Chakarov, Svetoslav; Ginhoux, Florent; Poidinger, Michael

    2016-01-01

    Single-cell RNA-sequencing offers unprecedented resolution of the continuum of state transition during cell differentiation and development. However, tools for constructing multi-branching cell lineages from single-cell data are limited. Here we present Mpath, an algorithm that derives multi-branching developmental trajectories using neighborhood-based cell state transitions. Applied to mouse conventional dendritic cell (cDC) progenitors, Mpath constructs multi-branching trajectories spanning from macrophage/DC progenitors through common DC progenitor to pre-dendritic cells (preDC). The Mpath-generated trajectories detect a branching event at the preDC stage revealing preDC subsets that are exclusively committed to cDC1 or cDC2 lineages. Reordering cells along cDC development reveals sequential waves of gene regulation and temporal coupling between cell cycle and cDC differentiation. Applied to human myoblasts, Mpath recapitulates the time course of myoblast differentiation and isolates a branch of non-muscle cells involved in the differentiation. Our study shows that Mpath is a useful tool for constructing cell lineages from single-cell data. PMID:27356503

  1. Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development.

    PubMed

    Chen, Jinmiao; Schlitzer, Andreas; Chakarov, Svetoslav; Ginhoux, Florent; Poidinger, Michael

    2016-01-01

    Single-cell RNA-sequencing offers unprecedented resolution of the continuum of state transition during cell differentiation and development. However, tools for constructing multi-branching cell lineages from single-cell data are limited. Here we present Mpath, an algorithm that derives multi-branching developmental trajectories using neighborhood-based cell state transitions. Applied to mouse conventional dendritic cell (cDC) progenitors, Mpath constructs multi-branching trajectories spanning from macrophage/DC progenitors through common DC progenitor to pre-dendritic cells (preDC). The Mpath-generated trajectories detect a branching event at the preDC stage revealing preDC subsets that are exclusively committed to cDC1 or cDC2 lineages. Reordering cells along cDC development reveals sequential waves of gene regulation and temporal coupling between cell cycle and cDC differentiation. Applied to human myoblasts, Mpath recapitulates the time course of myoblast differentiation and isolates a branch of non-muscle cells involved in the differentiation. Our study shows that Mpath is a useful tool for constructing cell lineages from single-cell data. PMID:27356503

  2. Biochemical and molecular tools reveal two diverse Xanthomonas groups in bananas.

    PubMed

    Adriko, J; Aritua, V; Mortensen, C N; Tushemereirwe, W K; Mulondo, A L; Kubiriba, J; Lund, O S

    2016-02-01

    Xanthomonas campestris pv. musacearum (Xcm) causing the banana Xanthomonas wilt (BXW) disease has been the main xanthomonad associated with bananas in East and Central Africa based on phenotypic and biochemical characteristics. However, biochemical methods cannot effectively distinguish between pathogenic and non-pathogenic xanthomonads. In this study, gram-negative and yellow-pigmented mucoid bacteria were isolated from BXW symptomatic and symptomless bananas collected from different parts of Uganda. Biolog, Xcm-specific (GspDm), Xanthomonas vasicola species-specific (NZ085) and Xanthomonas genus-specific (X1623) primers in PCR, and sequencing of ITS region were used to identify and characterize the isolates. Biolog tests revealed several isolates as xanthomonads. The GspDm and NZ085 primers accurately identified three isolates from diseased bananas as Xcm and these were pathogenic when re-inoculated into bananas. DNA from more isolates than those amplified by GspDm and NZ085 primers were amplified by the X1623 primers implying they are xanthomonads, these were however non-pathogenic on bananas. In the 16-23 ITS sequence based phylogeny, the pathogenic bacteria clustered together with the Xcm reference strain, while the non-pathogenic xanthomonads isolated from both BXW symptomatic and symptomless bananas clustered with group I xanthomonads. The findings reveal dynamic Xanthomonas populations in bananas, which can easily be misrepresented by only using phenotyping and biochemical tests. A combination of tools provides the most accurate identity and characterization of these plant associated bacteria. The interactions between the pathogenic and non-pathogenic xanthomonads in bananas may pave way to understanding effect of microbial interactions on BXW disease development and offer clues to biocontrol of Xcm. PMID:26805624

  3. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion.

    PubMed

    Rosenthal, Sara Brin; Twomey, Colin R; Hartnett, Andrew T; Wu, Hai Shan; Couzin, Iain D

    2015-04-14

    Coordination among social animals requires rapid and efficient transfer of information among individuals, which may depend crucially on the underlying structure of the communication network. Establishing the decision-making circuits and networks that give rise to individual behavior has been a central goal of neuroscience. However, the analogous problem of determining the structure of the communication network among organisms that gives rise to coordinated collective behavior, such as is exhibited by schooling fish and flocking birds, has remained almost entirely neglected. Here, we study collective evasion maneuvers, manifested through rapid waves, or cascades, of behavioral change (a ubiquitous behavior among taxa) in schooling fish (Notemigonus crysoleucas). We automatically track the positions and body postures, calculate visual fields of all individuals in schools of ∼150 fish, and determine the functional mapping between socially generated sensory input and motor response during collective evasion. We find that individuals use simple, robust measures to assess behavioral changes in neighbors, and that the resulting networks by which behavior propagates throughout groups are complex, being weighted, directed, and heterogeneous. By studying these interaction networks, we reveal the (complex, fractional) nature of social contagion and establish that individuals with relatively few, but strongly connected, neighbors are both most socially influential and most susceptible to social influence. Furthermore, we demonstrate that we can predict complex cascades of behavioral change at their moment of initiation, before they actually occur. Consequently, despite the intrinsic stochasticity of individual behavior, establishing the hidden communication networks in large self-organized groups facilitates a quantitative understanding of behavioral contagion. PMID:25825752

  4. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion

    PubMed Central

    Rosenthal, Sara Brin; Twomey, Colin R.; Hartnett, Andrew T.; Wu, Hai Shan; Couzin, Iain D.

    2015-01-01

    Coordination among social animals requires rapid and efficient transfer of information among individuals, which may depend crucially on the underlying structure of the communication network. Establishing the decision-making circuits and networks that give rise to individual behavior has been a central goal of neuroscience. However, the analogous problem of determining the structure of the communication network among organisms that gives rise to coordinated collective behavior, such as is exhibited by schooling fish and flocking birds, has remained almost entirely neglected. Here, we study collective evasion maneuvers, manifested through rapid waves, or cascades, of behavioral change (a ubiquitous behavior among taxa) in schooling fish (Notemigonus crysoleucas). We automatically track the positions and body postures, calculate visual fields of all individuals in schools of ∼150 fish, and determine the functional mapping between socially generated sensory input and motor response during collective evasion. We find that individuals use simple, robust measures to assess behavioral changes in neighbors, and that the resulting networks by which behavior propagates throughout groups are complex, being weighted, directed, and heterogeneous. By studying these interaction networks, we reveal the (complex, fractional) nature of social contagion and establish that individuals with relatively few, but strongly connected, neighbors are both most socially influential and most susceptible to social influence. Furthermore, we demonstrate that we can predict complex cascades of behavioral change at their moment of initiation, before they actually occur. Consequently, despite the intrinsic stochasticity of individual behavior, establishing the hidden communication networks in large self-organized groups facilitates a quantitative understanding of behavioral contagion. PMID:25825752

  5. Single-Cell Transcript Profiles Reveal Multilineage Priming in Early Progenitors Derived from Lgr5(+) Intestinal Stem Cells.

    PubMed

    Kim, Tae-Hee; Saadatpour, Assieh; Guo, Guoji; Saxena, Madhurima; Cavazza, Alessia; Desai, Niyati; Jadhav, Unmesh; Jiang, Lan; Rivera, Miguel N; Orkin, Stuart H; Yuan, Guo-Cheng; Shivdasani, Ramesh A

    2016-08-23

    Lgr5(+) intestinal stem cells (ISCs) drive epithelial self-renewal, and their immediate progeny-intestinal bipotential progenitors-produce absorptive and secretory lineages via lateral inhibition. To define features of early transit from the ISC compartment, we used a microfluidics approach to measure selected stem- and lineage-specific transcripts in single Lgr5(+) cells. We identified two distinct cell populations, one that expresses known ISC markers and a second, abundant population that simultaneously expresses markers of stem and mature absorptive and secretory cells. Single-molecule mRNA in situ hybridization and immunofluorescence verified expression of lineage-restricted genes in a subset of Lgr5(+) cells in vivo. Transcriptional network analysis revealed that one group of Lgr5(+) cells arises from the other and displays characteristics expected of bipotential progenitors, including activation of Notch ligand and cell-cycle-inhibitor genes. These findings define the earliest steps in ISC differentiation and reveal multilineage gene priming as a fundamental property of the process. PMID:27524622

  6. Phylogenomic analyses reveal subclass Scuticociliatia as the sister group of subclass Hymenostomatia within class Oligohymenophorea.

    PubMed

    Feng, Jin-Mei; Jiang, Chuan-Qi; Warren, Alan; Tian, Miao; Cheng, Jun; Liu, Guang-Long; Xiong, Jie; Miao, Wei

    2015-09-01

    Scuticociliates and hymenostomes are two groups of the ciliate class Oligohymenophorea, a diverse clade that includes two model genera, Tetrahymena and Paramecium, which have been intensively studied due to their ease of culture and their amenability to a wide range of biochemical and genetic investigations. However, phylogenetic relationships among the subclasses of the Oligohymenophorea, and especially between the Scuticociliatia and Hymenostomatia, are not clearly resolved. Here, we investigate the phylogenetic relationship between the subclasses Scuticociliatia and Hymenostomatia based on omics data. The transcriptomes of five species, comprising four oligohymenophoreans and one colpodean, were sequenced. A supermatrix was constructed for phylogenomic analyses based on 113 genes encoding 43,528 amino acid residues from 26 taxa, including ten representatives of the class Oligohymenophorea. Our phylogenomic analyses revealed that the monophyletic Scuticociliatia is sister to the monophyletic Hymenostomatia, which together form the terminal branch within the monophyletic class Oligohymenophorea. Competing hypotheses for this relationship were rejected by topological tests. Our results provide corroborative evidence for the close relationship between the subclasses Scuticociliatia and Hymenostomatia, justifying the possible use of the model hymenostome T. thermophila as an effective experimental system to study the molecular and cellular biology of the scuticociliates. PMID:25999054

  7. Natural grouping of neural responses reveals spatially segregated clusters in prearcuate cortex

    PubMed Central

    Kiani, Roozbeh; Cueva, Christopher J.; Reppas, John B.; Peixoto, Diogo; Ryu, Stephen I.; Newsome, William T.

    2015-01-01

    Summary A fundamental challenge in studying the frontal lobe is to parcellate this cortex into ‘natural’ functional modules despite the absence of topographic maps, which are so helpful in primary sensory areas. Here we show that unsupervised clustering algorithms, applied to 96-channel array recordings from prearcuate gyrus, reveal spatially segregated sub-networks that remain stable across behavioral contexts. Looking for natural groupings of neurons based on response similarities, we discovered that the recorded area includes at least two spatially segregated sub-networks that differentially represent behavioral choice and reaction time. Importantly, these sub-networks are detectable during different behavioral states, and surprisingly, are defined better by ‘common noise’ than task-evoked responses. Our parcellation process works well on ‘spontaneous’ neural activity, and thus bears strong resemblance to the identification of ‘resting state’ networks in fMRI datasets. Our results demonstrate a powerful new tool for identifying cortical sub-networks by objective classification of simultaneously recorded electrophysiological activity. PMID:25728571

  8. Genomic Analysis Reveals the Molecular Basis for Capsule Loss in the Group B Streptococcus Population

    PubMed Central

    Rosini, Roberto; Campisi, Edmondo; De Chiara, Matteo; Tettelin, Hervé; Rinaudo, Daniela; Toniolo, Chiara; Metruccio, Matteo; Guidotti, Silvia; Sørensen, Uffe B. Skov; Kilian, Mogens; Ramirez, Mario; Janulczyk, Robert; Donati, Claudio; Grandi, Guido; Margarit, Immaculada

    2015-01-01

    The human and bovine bacterial pathogen Streptococcus agalactiae (Group B Streptococcus, GBS) expresses a thick polysaccharide capsule that constitutes a major virulence factor and vaccine target. GBS can be classified into ten distinct serotypes differing in the chemical composition of their capsular polysaccharide. However, non-typeable strains that do not react with anti-capsular sera are frequently isolated from colonized and infected humans and cattle. To gain a comprehensive insight into the molecular basis for the loss of capsule expression in GBS, a collection of well-characterized non-typeable strains was investigated by genome sequencing. Genome based phylogenetic analysis extended to a wide population of sequenced strains confirmed the recently observed high clonality among GBS lineages mainly containing human strains, and revealed a much higher degree of diversity in the bovine population. Remarkably, non-typeable strains were equally distributed in all lineages. A number of distinct mutations in the cps operon were identified that were apparently responsible for inactivation of capsule synthesis. The most frequent genetic alterations were point mutations leading to stop codons in the cps genes, and the main target was found to be cpsE encoding the portal glycosyl trasferase of capsule biosynthesis. Complementation of strains carrying missense mutations in cpsE with a wild-type gene restored capsule expression allowing the identification of amino acid residues essential for enzyme activity. PMID:25946017

  9. Genomic analysis reveals the molecular basis for capsule loss in the group B Streptococcus population.

    PubMed

    Rosini, Roberto; Campisi, Edmondo; De Chiara, Matteo; Tettelin, Hervé; Rinaudo, Daniela; Toniolo, Chiara; Metruccio, Matteo; Guidotti, Silvia; Sørensen, Uffe B Skov; Kilian, Mogens; Ramirez, Mario; Janulczyk, Robert; Donati, Claudio; Grandi, Guido; Margarit, Immaculada

    2015-01-01

    The human and bovine bacterial pathogen Streptococcus agalactiae (Group B Streptococcus, GBS) expresses a thick polysaccharide capsule that constitutes a major virulence factor and vaccine target. GBS can be classified into ten distinct serotypes differing in the chemical composition of their capsular polysaccharide. However, non-typeable strains that do not react with anti-capsular sera are frequently isolated from colonized and infected humans and cattle. To gain a comprehensive insight into the molecular basis for the loss of capsule expression in GBS, a collection of well-characterized non-typeable strains was investigated by genome sequencing. Genome based phylogenetic analysis extended to a wide population of sequenced strains confirmed the recently observed high clonality among GBS lineages mainly containing human strains, and revealed a much higher degree of diversity in the bovine population. Remarkably, non-typeable strains were equally distributed in all lineages. A number of distinct mutations in the cps operon were identified that were apparently responsible for inactivation of capsule synthesis. The most frequent genetic alterations were point mutations leading to stop codons in the cps genes, and the main target was found to be cpsE encoding the portal glycosyl transferase of capsule biosynthesis. Complementation of strains carrying missense mutations in cpsE with a wild-type gene restored capsule expression allowing the identification of amino acid residues essential for enzyme activity. PMID:25946017

  10. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions.

    PubMed

    Chen, Weitao; Nie, Qing; Yi, Tau-Mu; Chou, Ching-Shan

    2016-07-01

    Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions. PMID

  11. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions

    PubMed Central

    Chen, Weitao; Nie, Qing; Yi, Tau-Mu; Chou, Ching-Shan

    2016-01-01

    Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions. PMID

  12. Mechanism of cell alignment in groups of Myxococcus xanthus bacteria

    NASA Astrophysics Data System (ADS)

    Balgam, Rajesh; Igoshin, Oleg

    2015-03-01

    Myxococcus xanthus is a model for studying self-organization in bacteria. These flexible cylindrical bacteria move along. In groups, M. xanthus cells align themselves into dynamic cell clusters but the mechanism underlying their formation is unknown. It has been shown that steric interactions can cause alignment in self-propelled hard rods but it is not clear how flexibility and reversals affect the alignment and cluster formation. We have investigated cell alignment process using our biophysical model of M. xanthus cell in an agent-based simulation framework under realistic cell flexibility values. We observed that flexible model cells can form aligned cell clusters when reversals are suppressed but these clusters disappeared when reversals frequency becomes similar to the observed value. However, M. xanthus cells follow slime (polysaccharide gel like material) trails left by other cells and we show that implementing this into our model rescues cell clustering for reversing cells. Our results show that slime following along with periodic cell reversals act as positive feedback to reinforce existing slime trails and recruit more cells. Furthermore, we have observed that mechanical cell alignment combined with slime following is sufficient to explain the distinct clustering patterns of reversing and non-reversing cells as observed in recent experiments. This work is supported by NSF MCB 0845919 and 1411780.

  13. Group 2 innate lymphoid cells license dendritic cells to potentiate memory T helper 2 cell responses

    PubMed Central

    Halim, Timotheus YF; Hwang, You Yi; Scanlon, Seth T; Zaghouani, Habib; Garbi, Natalio; Fallon, Padraic G; McKenzie, Andrew NJ

    2015-01-01

    Rapid memory CD4+ T helper 2 (TH2) cell activation during allergic inflammation requires their recruitment into the affected tissue. Here we demonstrate that group 2 innate lymphoid cells (ILC2) play a critical role in memory TH2 cell responses, with targeted ILC2 depletion profoundly impairing TH2 cell localization to the lungs and skin of sensitized mice after allergen re-challenge. ILC2-derived interleukin-13 (IL-13) is critical for eliciting IRF4+CD11b+CD103− dendritic cells (DCs) to produce the TH2 cell-attracting chemokine CCL17. Consequently, the sentinel function of DCs is contingent on ILC2s for the generation of an efficient memory TH2 cell response. These results elucidate a key new innate mechanism in the regulation of the immune memory response to allergens. PMID:26523868

  14. Emergence of Spatial Structure in Cell Groups and the Evolution of Cooperation

    PubMed Central

    Nadell, Carey D.; Foster, Kevin R.; Xavier, João B.

    2010-01-01

    On its own, a single cell cannot exert more than a microscopic influence on its immediate surroundings. However, via strength in numbers and the expression of cooperative phenotypes, such cells can enormously impact their environments. Simple cooperative phenotypes appear to abound in the microbial world, but explaining their evolution is challenging because they are often subject to exploitation by rapidly growing, non-cooperative cell lines. Population spatial structure may be critical for this problem because it influences the extent of interaction between cooperative and non-cooperative individuals. It is difficult for cooperative cells to succeed in competition if they become mixed with non-cooperative cells, which can exploit the public good without themselves paying a cost. However, if cooperative cells are segregated in space and preferentially interact with each other, they may prevail. Here we use a multi-agent computational model to study the origin of spatial structure within growing cell groups. Our simulations reveal that the spatial distribution of genetic lineages within these groups is linked to a small number of physical and biological parameters, including cell growth rate, nutrient availability, and nutrient diffusivity. Realistic changes in these parameters qualitatively alter the emergent structure of cell groups, and thereby determine whether cells with cooperative phenotypes can locally and globally outcompete exploitative cells. We argue that cooperative and exploitative cell lineages will spontaneously segregate in space under a wide range of conditions and, therefore, that cellular cooperation may evolve more readily than naively expected. PMID:20333237

  15. A multi-gene approach reveals a complex evolutionary history in the Cyanistes species group.

    PubMed

    Illera, Juan Carlos; Koivula, Kari; Broggi, Juli; Päckert, Martin; Martens, Jochen; Kvist, Laura

    2011-10-01

    Quaternary climatic oscillations have been considered decisive in shaping much of the phylogeographic structure around the Mediterranean Basin. Within this paradigm, peripheral islands are usually considered as the endpoints of the colonization processes. Here, we use nuclear and mitochondrial markers to investigate the phylogeography of the blue tit complex (blue tit Cyanistes caeruleus, Canary blue tit C. teneriffae and azure tit C. cyanus), and assess the role of the Canary Islands for the geographic structuring of genetic variation. The Canary blue tit exhibits strong genetic differentiation within the Canary Islands and, in combination with other related continental species, provides an ideal model in which to examine recent differentiation within a closely related group of continental and oceanic island avian species. We analysed DNA sequences from 51 breeding populations and more than 400 individuals in the blue tit complex. Discrepancies in the nuclear and mitochondrial gene trees provided evidence of a complex evolutionary process around the Mediterranean Basin. Coalescent analyses revealed gene flow between C. caeruleus and C. teneriffae suggesting a dynamic process with multiple phases of colonization and geographic overlapping ranges. Microsatellite data indicated strong genetic differentiation among the Canary Islands and between the Canary archipelago and the close continental areas, indicating limited contemporary gene flow. Diversification of the blue tit complex is estimated to have started during the early Pliocene (≈ 5 Ma), coincident with the end of Messinian salinity crisis. Phylogenetic analyses indicated that the North African blue tit is derived from the Canary blue tits, a pattern is avian 'back colonization' that contrasts with more traditionally held views of islands being sinks rather than sources. PMID:21880092

  16. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    PubMed

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  17. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells

    PubMed Central

    Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.

    2013-01-01

    Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486

  18. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  19. Vancomycin Tolerant, Methicillin-Resistant Staphylococcus aureus Reveals the Effects of Vancomycin on Cell Wall Thickening

    PubMed Central

    Cázares-Domínguez, Vicenta; Cruz-Córdova, Ariadnna; Ochoa, Sara A.; Escalona, Gerardo; Arellano-Galindo, José; Rodríguez-Leviz, Alejandra; Hernández-Castro, Rigoberto; López-Villegas, Edgar O.; Xicohtencatl-Cortes, Juan

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important opportunistic pathogen that causes both healthcare- and community-acquired infections. An increase in the incidence of these infections may lead to a substantial change in the rate of vancomycin usage. Incidence of reduced susceptibility to vancomycin has been increasing worldwide for the last few years, conferring different levels of resistance to vancomycin as well as producing changes in the cell wall structure. The aim of the present study was to determine the effect of vancomycin on cell wall thickening in clinical isolates of vancomycin-tolerant (VT) MRSA obtained from pediatric patients. From a collection of 100 MRSA clinical isolates from pediatric patients, 12% (12/100) were characterized as VT-MRSA, and from them, 41.66% (5/12) exhibited the heterogeneous vancomycin-intermediate S. aureus (hVISA) phenotype. Multiplex-PCR assays revealed 66.66% (8/12), 25% (3/12), and 8.33% (1/12) of the VT-MRSA isolates were associated with agr group II, I, and III polymorphisms, respectively; the II-mec gene was amplified from 83.3% (10/12) of the isolates, and the mecIVa gene was amplified from 16.66% (2/12) of the isolates. Pulsed field electrophoresis (PFGE) fingerprint analysis showed 62% similarity among the VT-MRSA isolates. Thin transverse sections analyzed by transmission electron microscopy (TEM) revealed an average increase of 24 nm (105.55%) in the cell wall thickness of VT-MRSA compared with untreated VT-MRSA isolates. In summary, these data revealed that the thickened cell walls of VT-MRSA clinical isolates with agr type II and SCCmec group II polymorphisms are associated with an adaptive resistance to vancomycin. PMID:25793280

  20. Cell-by-Cell Dissection of Gene Expression and Chromosomal Interactions Reveals Consequences of Nuclear Reorganization

    PubMed Central

    2005-01-01

    The functional consequences of long-range nuclear reorganization were studied in a cell-by-cell analysis of gene expression and long-range chromosomal interactions in the Drosophila eye and eye imaginal disk. Position-effect variegation was used to stochastically perturb gene expression and probe nuclear reorganization. Variegating genes on rearrangements of Chromosomes X, 2, and 3 were probed for long-range interactions with heterochromatin. Studies were conducted only in tissues known to express the variegating genes. Nuclear structure was revealed by fluorescence in situ hybridization with probes to the variegating gene and heterochromatin. Gene expression was determined alternately by immunofluorescence against specific proteins and by eye pigment autofluorescence. This allowed cell-by-cell comparisons of nuclear architecture between cells in which the variegating gene was either expressed or silenced. Very strong correlations between heterochromatic association and silencing were found. Expressing cells showed a broad distribution of distances between variegating genes and their own centromeric heterochromatin, while silenced cells showed a very tight distribution centered around very short distances, consistent with interaction between the silenced genes and heterochromatin. Spatial and temporal analysis of interactions with heterochromatin indicated that variegating genes primarily associate with heterochromatin in cells that have exited the cell cycle. Differentiation was not a requirement for association, and no differences in association were observed between cell types. Thus, long-range interactions between distal chromosome regions and their own heterochromatin have functional consequences for the organism. PMID:15737020

  1. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment

    PubMed Central

    van Wolfswinkel, Josien C.; Wagner, Daniel E.; Reddien, Peter W.

    2014-01-01

    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ζ (zeta) and σ (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings present a new view of planarian neoblasts, in which the population is comprised of two major and functionally distinct cellular compartments. PMID:25017721

  2. Retrohoming of a Mobile Group II Intron in Human Cells Suggests How Eukaryotes Limit Group II Intron Proliferation

    PubMed Central

    Truong, David M.; Hewitt, F. Curtis; Hanson, Joseph H.; Cui, Xiaoxia; Lambowitz, Alan M.

    2015-01-01

    Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a “ribozyme”) and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed “retrohoming”. Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse transcriptase and T7 RNA polymerase to express intron transcripts resistant to NMD, we find that simply supplementing culture medium with Mg2+ induces the Lactococcus lactis Ll.LtrB intron to retrohome into plasmid and chromosomal sites, the latter at frequencies up to ~0.1%, in viable HEK-293 cells. Surprisingly, under these conditions, the Ll.LtrB intron reverse transcriptase is required for retrohoming but not for RNA splicing as in bacteria. By using a genetic assay for in vivo selections combined with deep sequencing, we identified intron RNA mutations that enhance retrohoming in human cells, but <4-fold and not without added Mg2+. Further, the selected mutations lie outside the ribozyme catalytic core, which appears not readily modified to function efficiently at low Mg2+ concentrations. Our results reveal differences between group II intron retrohoming in human cells and bacteria and suggest constraints on critical nucleotide residues of the ribozyme core that limit how much group II intron retrohoming in eukaryotes can be enhanced. These findings have implications for group II intron use for gene targeting in eukaryotes and suggest how differences in intracellular Mg2+ concentrations between bacteria and eukarya may have impacted the

  3. Metabolic Differences in Microbial Cell Populations Revealed by Nanophotonic Ionization

    SciTech Connect

    Walker, Bennett; Antonakos, Cory; Retterer, Scott T; Vertes, Akos

    2013-01-01

    ellular differences are linked to cell differentiation, the proliferation of cancer and to the development of drug resistance in microbial infections. Due to sensitivity limitations, however, large- scale metabolic analysis at the single cell level is only available for cells significantly larger in volume than Saccharomyces cerevisiae (~30 fL). Here we demonstrate that by a nanophotonic ionization platform and mass spectrometry, over one hundred up to 108 metabolites, or up to 18% of the known S. cerevisiae metabolome, can be identified in very small cell populations (n < 100). Under ideal conditions, r Relative quantitation of up to 4% of the metabolites is achieved at the single cell level.

  4. Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3.

    PubMed

    Kolinko, Sebastian; Jogler, Christian; Katzmann, Emanuel; Wanner, Gerhard; Peplies, Jörg; Schüler, Dirk

    2012-07-01

    Magnetotactic bacteria (MTB) are a diverse group of prokaryotes that orient along magnetic fields using membrane-coated magnetic nanocrystals of magnetite (Fe(3) O(4) ) or greigite (Fe(3) S(4) ), the magnetosomes. Previous phylogenetic analysis of MTB has been limited to few cultivated species and most abundant members of natural populations, which were assigned to Proteobacteria and the Nitrospirae phyla. Here, we describe a single cell-based approach that allowed the targeted phylogenetic and ultrastructural analysis of the magnetotactic bacterium SKK-01, which was low abundant in sediments of Lake Chiemsee. Morphologically conspicuous single cells of SKK-01 were micromanipulated from magnetically collected multi-species MTB populations, which was followed by whole genome amplification and ultrastructural analysis of sorted cells. Besides intracellular sulphur inclusions, the large ovoid cells of SKK-01 harbour ∼175 bullet-shaped magnetosomes arranged in multiple chains that consist of magnetite as revealed by TEM and EDX analysis. Sequence analysis of 16 and 23S rRNA genes from amplified genomic DNA as well as fluorescence in situ hybridization assigned SKK-01 to the candidate division OP3, which so far lacks any cultivated representatives. SKK-01 represents the first morphotype that can be assigned to the OP3 group as well as the first magnetotactic member of the PVC superphylum. PMID:22003954

  5. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance

    PubMed Central

    Steinert, Elizabeth M.; Schenkel, Jason M.; Fraser, Kathryn A.; Beura, Lalit K.; Manlove, Luke S.; Igyártó, Botond Z.; Southern, Peter J.; Masopust, David

    2015-01-01

    Summary Memory CD8 T cells protect against intracellular pathogens by scanning host cell surfaces, thus infection detection rates depend on memory cell number and distribution. Population analyses rely on isolation from whole organs and interpretation is predicated on presumptions of near complete cell recovery. Paradigmatically, memory is parsed into central, effector, and resident subsets, ostensibly defined by immunosurveillance patterns, but in practice identified by phenotypic markers. Because isolation methods ultimately inform models of memory T cell differentiation, protection, and vaccine translation, we tested their validity via parabiosis and quantitative immunofluorescence microscopy of a mouse memory CD8 T cell population. We report three major findings: lymphocyte isolation fails to recover most cells and biases against certain subsets, residents greatly outnumber recirculating cells within nonlymphoid tissues, and memory subset homing to inflammation does not conform to previously hypothesized migration patterns. These results indicate that most host cells are surveyed for reinfection by segregated residents rather than by recirculating cells that migrate throughout the blood and body. PMID:25957682

  6. Immunochemistry of the streptococcal group R cell wall polysaccharide antigen.

    PubMed

    Soprey, P; Slade, H D

    1972-01-01

    The group R streptococcal group antigen has been shown to be a polysaccharide located at the surface of the cell wall of the organism. The antigen was extracted from cell walls in 0.05 n HCl or 5% trichloracetic acid at 100 C, from whole cells at room temperature in 0.85% NaCl or 0.1 m acetate (pH 5.0), and by sonic oscillation. The antigen is largely destroyed when extracted from whole cells in 0.05 n HCl at 100 C. Acetate is recommended for routine extraction. The antigen extracted by sonic treatment was separated into six immunologically active fractions on diethylaminoethyl-Sephadex. The fractions were found to possess a common antigen which exhibited similar properties on immunodiffusion and immunoelectrophoresis. The purified antigen did not react with any other streptococcal group antisera. Adsorption of group R serum with the antigen removed all antibodies against whole cell antigen extracts of R cells. Chemical and enzymatic analysis of three fractions showed that the antigen was composed of d-glucose, d-galactose, rhamnose, and glucosamine. No significant quantities of phosphorus, glycerol, ribitol, or muramic acid were present. Significant inhibition of the quantitative precipitin determination by d-galactose and stachyose indicated that galactose in terminal alpha linkage was the immunodominant hexose in the antigen. d-Glucose and d-glucosamine possessed a partial inhibitory activity. N-acetyl-d-glucosamine and l-rhamnose did not produce significant inhibition. The results indicate that the R antigen is an immunologically specific structure which serves as a reliable means of identification of these streptococci as a serological group. PMID:4632470

  7. Neurobehavioral Integrity of Chimpanzee Newborns: Comparisons across groups and across species reveal gene-environment interaction effects

    PubMed Central

    Bard, Kim A.; Brent, Linda; Lester, Barry; Worobey, John; Suomi, Stephen J.

    2014-01-01

    The aims of this article are to describe the neurobehavioral integrity of chimpanzee newborns, to investigate how early experiences affect the neurobehavioral organization of chimpanzees, and to explore species differences by comparing chimpanzee newborns to a group of typically developing human newborns. Neurobehavioral integrity related to orientation, motor performance, arousal, and state regulation of 55 chimpanzee (raised in four different settings) and 42 human newborns was measured with the Neonatal Behavioral Assessment Scale (NBAS) a semi-structured 25-minute interactive assessment. Thirty-eight chimpanzees were tested every other day from birth, and analyses revealed significant developmental changes in 19 of 27 NBAS scores. The cross-group and cross-species comparisons were conducted at 2 and 30 days of age. Among the 4 chimpanzee groups, significant differences were found in 23 of 24 NBAS scores. Surprisingly, the cross-species comparisons revealed that the human group was distinct in only 1 of 25 NBAS scores (the human group had significantly less muscle tone than all the chimpanzee groups). The human group was indistinguishable from at least one of the chimpanzee groups in the remaining 24 of 25 NBAS scores. The results of this study support the conclusion that the interplay between genes and environment, rather than genes alone or environment alone, accounts for phenotypic expressions of newborn neurobehavioral integrity in hominids. PMID:25110465

  8. Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, trithorax group and lama genes.

    PubMed

    Klebes, Ansgar; Sustar, Anne; Kechris, Katherina; Li, Hao; Schubiger, Gerold; Kornberg, Thomas B

    2005-08-01

    Drosophila imaginal disc cells can switch fates by transdetermining from one determined state to another. We analyzed the expression profiles of cells induced by ectopic Wingless expression to transdetermine from leg to wing by dissecting transdetermined cells and hybridizing probes generated by linear RNA amplification to DNA microarrays. Changes in expression levels implicated a number of genes: lamina ancestor, CG12534 (a gene orthologous to mouse augmenter of liver regeneration), Notch pathway members, and the Polycomb and trithorax groups of chromatin regulators. Functional tests revealed that transdetermination was significantly affected in mutants for lama and seven different PcG and trxG genes. These results validate our methods for expression profiling as a way to analyze developmental programs, and show that modifications to chromatin structure are key to changes in cell fate. Our findings are likely to be relevant to the mechanisms that lead to disease when homologs of Wingless are expressed at abnormal levels and to the manifestation of pluripotency of stem cells. PMID:16077094

  9. Phylogenetic Diversity of the Bacillus pumilus Group and the Marine Ecotype Revealed by Multilocus Sequence Analysis

    PubMed Central

    Dong, Chunming; Sun, Fengqin; Wang, Liping; Li, Guangyu; Shao, Zongze

    2013-01-01

    Bacteria closely related to Bacillus pumilus cannot be distinguished from such other species as B. safensis, B. stratosphericus, B. altitudinis and B. aerophilus simply by 16S rRNA gene sequence. In this report, 76 marine strains were subjected to phylogenetic analysis based on 7 housekeeping genes to understand the phylogeny and biogeography in comparison with other origins. A phylogenetic tree based on the 7 housekeeping genes concatenated in the order of gyrB-rpoB-pycA-pyrE-mutL-aroE-trpB was constructed and compared with trees based on the single genes. All these trees exhibited a similar topology structure with small variations. Our 79 strains were divided into 6 groups from A to F; Group A was the largest and contained 49 strains close to B. altitudinis. Additional two large groups were presented by B. safensis and B. pumilus respectively. Among the housekeeping genes, gyrB and pyrE showed comparatively better resolution power and may serve as molecular markers to distinguish these closely related strains. Furthermore, a recombinant phylogenetic tree based on the gyrB gene and containing 73 terrestrial and our isolates was constructed to detect the relationship between marine and other sources. The tree clearly showed that the bacteria of marine origin were clustered together in all the large groups. In contrast, the cluster belonging to B. safensis was mainly composed of bacteria of terrestrial origin. Interestingly, nearly all the marine isolates were at the top of the tree, indicating the possibility of the recent divergence of this bacterial group in marine environments. We conclude that B. altitudinis bacteria are the most widely spread of the B. pumilus group in marine environments. In summary, this report provides the first evidence regarding the systematic evolution of this bacterial group, and knowledge of their phylogenetic diversity will help in the understanding of their ecological role and distribution in marine environments. PMID:24244618

  10. Blockade of maitotoxin-induced oncotic cell death reveals zeiosis

    PubMed Central

    Estacion, Mark; Schilling, William P

    2002-01-01

    Background Maitotoxin (MTX) initiates cell death by sequentially activating 1) Ca2+ influx via non-selective cation channels, 2) uptake of vital dyes via formation of large pores, and 3) release of lactate dehydrogenase, an indication of cell lysis. MTX also causes formation of membrane blebs, which dramatically dilate during the cytolysis phase. To determine the role of phospholipase C (PLC) in the cell death cascade, U73122, a specific inhibitor of PLC, and U73343, an inactive analog, were examined on MTX-induced responses in bovine aortic endothelial cells. Results Addition of either U73122 or U73343, prior to MTX, produced a concentration-dependent inhibition of the cell death cascade (IC50 ≈ 1.9 and 0.66 μM, respectively) suggesting that the effect of these agents was independent of PLC. Addition of U73343 shortly after MTX, prevented or attenuated the effects of the toxin, but addition at later times had little or no effect. Time-lapse videomicroscopy showed that U73343 dramatically altered the blebbing profile of MTX-treated cells. Specifically, U73343 blocked bleb dilation and converted the initial blebbing event into "zeiosis", a type of membrane blebbing commonly associated with apoptosis. Cells challenged with MTX and rescued by subsequent addition of U73343, showed enhanced caspase-3 activity 48 hr after the initial insult, consistent with activation of the apoptotic program. Conclusions Within minutes of MTX addition, endothelial cells die by oncosis. Rescue by addition of U73343 shortly after MTX showed that a small percentage of cells are destined to die by oncosis, but that a larger percentage survive; cells that survive the initial insult exhibit zeiosis and may ultimately die by apoptotic mechanisms. PMID:11825342

  11. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.

    PubMed

    Trapnell, Cole; Cacchiarelli, Davide; Grimsby, Jonna; Pokharel, Prapti; Li, Shuqiang; Morse, Michael; Lennon, Niall J; Livak, Kenneth J; Mikkelsen, Tarjei S; Rinn, John L

    2014-04-01

    Defining the transcriptional dynamics of a temporal process such as cell differentiation is challenging owing to the high variability in gene expression between individual cells. Time-series gene expression analyses of bulk cells have difficulty distinguishing early and late phases of a transcriptional cascade or identifying rare subpopulations of cells, and single-cell proteomic methods rely on a priori knowledge of key distinguishing markers. Here we describe Monocle, an unsupervised algorithm that increases the temporal resolution of transcriptome dynamics using single-cell RNA-Seq data collected at multiple time points. Applied to the differentiation of primary human myoblasts, Monocle revealed switch-like changes in expression of key regulatory factors, sequential waves of gene regulation, and expression of regulators that were not known to act in differentiation. We validated some of these predicted regulators in a loss-of function screen. Monocle can in principle be used to recover single-cell gene expression kinetics from a wide array of cellular processes, including differentiation, proliferation and oncogenic transformation. PMID:24658644

  12. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities

    PubMed Central

    2010-01-01

    Background The term endothelial progenitor cells (EPCs) is currently used to refer to cell populations which are quite dissimilar in terms of biological properties. This study provides a detailed molecular fingerprint for two EPC subtypes: early EPCs (eEPCs) and outgrowth endothelial cells (OECs). Methods Human blood-derived eEPCs and OECs were characterised by using genome-wide transcriptional profiling, 2D protein electrophoresis, and electron microscopy. Comparative analysis at the transcript and protein level included monocytes and mature endothelial cells as reference cell types. Results Our data show that eEPCs and OECs have strikingly different gene expression signatures. Many highly expressed transcripts in eEPCs are haematopoietic specific (RUNX1, WAS, LYN) with links to immunity and inflammation (TLRs, CD14, HLAs), whereas many transcripts involved in vascular development and angiogenesis-related signalling pathways (Tie2, eNOS, Ephrins) are highly expressed in OECs. Comparative analysis with monocytes and mature endothelial cells clusters eEPCs with monocytes, while OECs segment with endothelial cells. Similarly, proteomic analysis revealed that 90% of spots identified by 2-D gel analysis are common between OECs and endothelial cells while eEPCs share 77% with monocytes. In line with the expression pattern of caveolins and cadherins identified by microarray analysis, ultrastructural evaluation highlighted the presence of caveolae and adherens junctions only in OECs. Conclusions This study provides evidence that eEPCs are haematopoietic cells with a molecular phenotype linked to monocytes; whereas OECs exhibit commitment to the endothelial lineage. These findings indicate that OECs might be an attractive cell candidate for inducing therapeutic angiogenesis, while eEPC should be used with caution because of their monocytic nature. PMID:20465783

  13. Capillary hydrodynamic chromatography reveals temporal profiles of cell aggregates.

    PubMed

    Tang, Ya-Ru; Huang, Hsin-Yi; Hu, Jie-Bi; Rattinam, Rajesh; Li, Chun-Hsien; Chen, Yu-Chie; Urban, Pawel L

    2016-03-01

    Microbial cells are known to form aggregates. Such aggregates can be found in various matrices; for example, functional drinks. Capillary hydrodynamic chromatography (HDC) enables separation of particles by size using nanoliter-scale volumes of samples. Here we propose an approach based on HDC for characterisation of real samples containing aggregated and non-aggregated bacterial and fungal cells. Separation of cells and cell aggregates in HDC arises from the parabolic flow profile under laminar flow conditions. In the presented protocol, hydrodynamic separation is coupled with different on-line and off-line detectors (light absorption/scattering and microscopy). The method has successfully been applied in the monitoring of dynamic changes in the microbiome of probiotic drinks. Chromatographic profiles of yogurt and kefir samples obtained at different times during fermentation are in a good agreement with microscopic images. Moreover, thanks to the implementation of an area imaging detector, capillary HDC could be multiplexed and used to profile spatial gradients in cell suspensions, which arise in the course of sedimentation of cells and cell aggregates. This result shows compatibility of sedimentation analysis and capillary HDC. We believe that the approach may find applications in the profiling of functional foods and other matrices containing aggregated bioparticles. PMID:26873471

  14. Microsatellite marker based genetic linkage maps of Oreochromis aureus and O. niloticus (Cichlidae): extensive linkage group segment homologies revealed.

    PubMed

    McConnell, S K; Beynon, C; Leamon, J; Skibinski, D O

    2000-06-01

    Partial genetic linkage maps, based on microsatellite markers, were constructed for two tilapia species, Oreochromis aureus and Oreochromis niloticus using an interspecific backcross population. The linkage map for O. aureus comprised 28 markers on 10 linkage groups and covered 212.8 CM. Nine markers were mapped to four linkage groups on an O. niloticus female linkage map covering 40.6 CM. Results revealed a high degree of conservation of synteny between the linkage groups defined in O. aureus and the previously published genetic linkage map of O. niloticus. PMID:10895314

  15. Revealed: The spy who regulates neuroblastoma stem cells.

    PubMed

    Vora, Parvez; Venugopal, Chitra; Singh, Sheila K

    2014-11-30

    Neuroblastoma (NB), an embryonal tumour of the sympathetic nervous system, is thought to originate from undifferentiated neural crest cells and is known to exhibit extremely heterogeneous biological and clinical behaviors. Occurring in very young children, the median age at diagnosis is 17 months and it accounts for 10% of all pediatric cancer mortalities. The standard treatment regimen for patients with high-risk NB includes induction and surgery followed by isotretinoin or Accutane (13-cis retinoic acid) treatment, which is shown to induce terminal differentiation of NB cells. However, molecular regulators that maintain an undifferentiated phenotype in NB cells are still poorly understood. PMID:25483101

  16. A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities

    PubMed Central

    Vizeacoumar, Franco J; Arnold, Roland; Vizeacoumar, Frederick S; Chandrashekhar, Megha; Buzina, Alla; Young, Jordan T F; Kwan, Julian H M; Sayad, Azin; Mero, Patricia; Lawo, Steffen; Tanaka, Hiromasa; Brown, Kevin R; Baryshnikova, Anastasia; Mak, Anthony B; Fedyshyn, Yaroslav; Wang, Yadong; Brito, Glauber C; Kasimer, Dahlia; Makhnevych, Taras; Ketela, Troy; Datti, Alessandro; Babu, Mohan; Emili, Andrew; Pelletier, Laurence; Wrana, Jeff; Wainberg, Zev; Kim, Philip M; Rottapel, Robert; O'Brien, Catherine A; Andrews, Brenda; Boone, Charles; Moffat, Jason

    2013-01-01

    Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a high-confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non-isogenic cancer cell lines. For example, the PTEN−/− DiE genes reveal a signature that can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model. PMID:24104479

  17. Revealing of Biological Activity in Crude Extracts, Seperated Fractions, Groups of Chemical Substance and Individual Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crude extracts, separated fractions, groups of chemical substances, and individual compounds from natural sources are all evaluated stepwise while performing purifications in in-house bioassays. In a stepwise fashion proceeding from crude extracts to fractions and on to pure compounds, decisions ar...

  18. Single-cell dynamics reveals sustained growth during diauxic shifts.

    PubMed

    Boulineau, Sarah; Tostevin, Filipe; Kiviet, Daniel J; ten Wolde, Pieter Rein; Nghe, Philippe; Tans, Sander J

    2013-01-01

    Stochasticity in gene regulation has been characterized extensively, but how it affects cellular growth and fitness is less clear. We study the growth of E. coli cells as they shift from glucose to lactose metabolism, which is characterized by an obligatory growth arrest in bulk experiments that is termed the lag phase. Here, we follow the growth dynamics of individual cells at minute-resolution using a single-cell assay in a microfluidic device during this shift, while also monitoring lac expression. Mirroring the bulk results, the majority of cells displays a growth arrest upon glucose exhaustion, and resume when triggered by stochastic lac expression events. However, a significant fraction of cells maintains a high rate of elongation and displays no detectable growth lag during the shift. This ability to suppress the growth lag should provide important selective advantages when nutrients are scarce. Trajectories of individual cells display a highly non-linear relation between lac expression and growth, with only a fraction of fully induced levels being sufficient for achieving near maximal growth. A stochastic molecular model together with measured dependencies between nutrient concentration, lac expression level, and growth accurately reproduces the observed switching distributions. The results show that a growth arrest is not obligatory in the classic diauxic shift, and underscore that regulatory stochasticity ought to be considered in terms of its impact on growth and survival. PMID:23637881

  19. Spatial guilds in the Serengeti food web revealed by a Bayesian group model.

    PubMed

    Baskerville, Edward B; Dobson, Andy P; Bedford, Trevor; Allesina, Stefano; Anderson, T Michael; Pascual, Mercedes

    2011-12-01

    Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts. PMID:22219719

  20. Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model

    PubMed Central

    Baskerville, Edward B.; Dobson, Andy P.; Bedford, Trevor; Allesina, Stefano; Anderson, T. Michael; Pascual, Mercedes

    2011-01-01

    Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts. PMID:22219719

  1. Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo

    PubMed Central

    Onjiko, Rosemary M.; Moody, Sally A.; Nemes, Peter

    2015-01-01

    Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo. PMID:25941375

  2. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade

    PubMed Central

    2013-01-01

    Background The SAR11 group of Alphaproteobacteria is highly abundant in the oceans. It contains a recently diverged freshwater clade, which offers the opportunity to compare adaptations to salt- and freshwaters in a monophyletic bacterial group. However, there are no cultivated members of the freshwater SAR11 group and no genomes have been sequenced yet. Results We isolated ten single SAR11 cells from three freshwater lakes and sequenced and assembled their genomes. A phylogeny based on 57 proteins indicates that the cells are organized into distinct microclusters. We show that the freshwater genomes have evolved primarily by the accumulation of nucleotide substitutions and that they have among the lowest ratio of recombination to mutation estimated for bacteria. In contrast, members of the marine SAR11 clade have one of the highest ratios. Additional metagenome reads from six lakes confirm low recombination frequencies for the genome overall and reveal lake-specific variations in microcluster abundances. We identify hypervariable regions with gene contents broadly similar to those in the hypervariable regions of the marine isolates, containing genes putatively coding for cell surface molecules. Conclusions We conclude that recombination rates differ dramatically in phylogenetic sister groups of the SAR11 clade adapted to freshwater and marine ecosystems. The results suggest that the transition from marine to freshwater systems has purged diversity and resulted in reduced opportunities for recombination with divergent members of the clade. The low recombination frequencies of the LD12 clade resemble the low genetic divergence of host-restricted pathogens that have recently shifted to a new host. PMID:24286338

  3. Phase Resetting Reveals Network Dynamics Underlying a Bacterial Cell Cycle

    PubMed Central

    Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R.; Scherer, Norbert F.

    2012-01-01

    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS). PMID:23209388

  4. Crystal structure of group II intron domain 1 reveals a template for RNA assembly.

    PubMed

    Zhao, Chen; Rajashankar, Kanagalaghatta R; Marcia, Marco; Pyle, Anna Marie

    2015-12-01

    Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. Here, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Composed of domain 1 from the Oceanobacillus iheyensis group II intron (266 nucleotides), this intermediate retains native-like features but adopts a compact conformation in which the active site cleft is closed. Transition between this closed and the open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. The open state is then stabilized by sequential docking of downstream intron domains, suggesting a 'first come, first folded' strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures. PMID:26502156

  5. Crystal structure of group II intron domain 1 reveals a template for RNA assembly

    PubMed Central

    Zhao, Chen; Rajashankar, Kanagalaghatta R.; Marcia, Marco; Pyle, Anna Marie

    2015-01-01

    Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. Here, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Comprised of intron domain 1 from the Oceanobacillus iheyensis group II intron (D1, 266 nts), this intermediate retains native-like features but adopts a compact conformation in which the active-site cleft is closed. Transition between this closed and open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. The open state is then stabilized by sequential docking of downstream intron domains, suggesting a “first comes, first folds” strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures. PMID:26502156

  6. Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution.

    PubMed

    Zhao, Chen; Pyle, Anna Marie

    2016-06-01

    Group II introns are self-splicing ribozymes that are essential in many organisms, and they have been hypothesized to share a common evolutionary ancestor with the spliceosome. Although structural similarity of RNA components supports this connection, it is of interest to determine whether associated protein factors also share an evolutionary heritage. Here we present the crystal structures of reverse transcriptase (RT) domains from two group II intron-encoded proteins (maturases) from Roseburia intestinalis and Eubacterium rectale, obtained at 1.2-Å and 2.1-Å resolution, respectively. These domains are more similar in architecture to the spliceosomal Prp8 RT-like domain than to any other RTs, and they share substantial similarity with flaviviral RNA polymerases. The RT domain itself is sufficient for binding intron RNA with high affinity and specificity, and it is contained within an active RT enzyme. These studies provide a foundation for understanding structure-function relationships within group II intron-maturase complexes. PMID:27136328

  7. Cell-to-Cell Diversity in a Synchronized Chlamydomonas Culture As Revealed by Single-Cell Analyses

    PubMed Central

    Garz, Andreas; Sandmann, Michael; Rading, Michael; Ramm, Sascha; Menzel, Ralf; Steup, Martin

    2012-01-01

    In a synchronized photoautotrophic culture of Chlamydomonas reinhardtii, cell size, cell number, and the averaged starch content were determined throughout the light-dark cycle. For single-cell analyses, the relative cellular starch was quantified by measuring the second harmonic generation (SHG). In destained cells, amylopectin essentially represents the only biophotonic structure. As revealed by various validation procedures, SHG signal intensities are a reliable relative measure of the cellular starch content. During photosynthesis-driven starch biosynthesis, synchronized Chlamydomonas cells possess an unexpected cell-to-cell diversity both in size and starch content, but the starch-related heterogeneity largely exceeds that of size. The cellular volume, starch content, and amount of starch/cell volume obey lognormal distributions. Starch degradation was initiated by inhibiting the photosynthetic electron transport in illuminated cells or by darkening. Under both conditions, the averaged rate of starch degradation is almost constant, but it is higher in illuminated than in darkened cells. At the single-cell level, rates of starch degradation largely differ but are unrelated to the initial cellular starch content. A rate equation describing the cellular starch degradation is presented. SHG-based three-dimensional reconstructions of Chlamydomonas cells containing starch granules are shown. PMID:23009858

  8. Focus Groups Reveal Differences in Career Experiences Between Male and Female Geoscientists

    NASA Astrophysics Data System (ADS)

    Oconnell, S.; Frey, C. D.; Holmes, M.

    2003-12-01

    We conducted twelve telephone focus groups of geoscientists to discover what motivates geoscientists to enter our field and stay in our field. There were separate male and female groups from six different professional categories: administrators, full and associate professors, non-tenure track personnel, assistant professors, post-docs and PhD candidates, Bachelor's and Master's candidates. A total of 96 geoscientists participated. Specifically, respondents were asked what initially brought them into the geosciences. Three dominant themes emerged: the subject matter itself, undergraduate experiences, and relationships. A total of 51 responses to this question related to the subject matter itself. Approximately 61 percent (31) of those responses were given by male focus group participants. Across all focus groups, participants brought up issues such as a general appreciation of the outdoors, weather, rocks, and dinosaurs. Following closely behind the general subject matter is undergraduate events. Fifty-one responses mentioned something about undergraduate experiences such as an introductory class, a laboratory experience, or field experiences. While both female and male participants discussed the role of interpersonal relationships in their decision to become a geoscientist, females were slightly more likely to bring up relevant relationships (26 times for females compared to 21 for males). These relationships varied in both groups from a parent or grandparents influence to camping trips with professors. When respondents were asked whether they had ever considered leaving the geosciences and under what circumstances, there was a striking difference between males and females: males were far less likely to have ever considered leaving. Younger males were more likely to consider leaving than older geoscientists. They feel challenged by the financial constraints of graduate school and the time constraints of academic vs. family life. Many females considered leaving at

  9. Up-regulated expression of Ran reveals its potential role to deltamethrin stress in Kc cells.

    PubMed

    Liu, Wei; Xu, Qin; Chi, Qingping; Hu, Junli; Li, Fengliang; Cheng, Luogen

    2016-05-25

    The GTP-binding nuclear protein Ran has mostly been reported to be an essential player in nuclear transport, chromosome alignment, microtubule dynamics, centrosome duplication, kinetochore attachment of microtubules, nuclear-envelope dynamics, and phagocytosis. However, until now, there has been no report showing the involvement of Ran in DM stress. In this paper, two-dimensional electrophoresis analysis showed that the expression level of Ran in Kc cells in response to DM was higher than that in the control group. In addition, quantitative analysis using real-time PCR revealed that the expression of Ran was obviously up-regulated at various concentrations of DM. Western blot analysis showed that Ran was up-regulated 2.27-fold over the control at 48h. Because we still could not pinpoint whether Ran was actually involved in DM stress reaction, to further verify the role of Ran in stress reaction, RNA interference and cell transfection were utilized. Overexpression of Ran in cells conferred a degree of protection against DM after 72h. Furthermore, interference with Ran significantly decrease cell viability. All of the above findings strongly imply that Ran may participate in the development of stress reaction to DM. Therefore, investigating the possible role of Ran in DM stress will broaden our limited knowledge regarding DM stress inducible genes. PMID:26924245

  10. Single cell Hi-C reveals cell-to-cell variability in chromosome structure

    PubMed Central

    Schoenfelder, Stefan; Yaffe, Eitan; Dean, Wendy; Laue, Ernest D.; Tanay, Amos; Fraser, Peter

    2013-01-01

    Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single cell Hi-C, combined with genome-wide statistical analysis and structural modeling of single copy X chromosomes, to show that individual chromosomes maintain domain organisation at the megabase scale, but show variable cell-to-cell chromosome territory structures at larger scales. Despite this structural stochasticity, localisation of active gene domains to boundaries of territories is a hallmark of chromosomal conformation. Single cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organisation underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns. PMID:24067610

  11. New patterns in human biogeography revealed by networks of contacts between linguistic groups

    PubMed Central

    Capitán, José A.; Bock Axelsen, Jacob; Manrubia, Susanna

    2015-01-01

    Human languages differ broadly in abundance and are distributed highly unevenly on the Earth. In many qualitative and quantitative aspects, they strongly resemble biodiversity distributions. An intriguing and previously unexplored issue is the architecture of the neighbouring relationships between human linguistic groups. Here we construct and characterize these networks of contacts and show that they represent a new kind of spatial network with uncommon structural properties. Remarkably, language networks share a meaningful property with food webs: both are quasi-interval graphs. In food webs, intervality is linked to the existence of a niche space of low dimensionality; in language networks, we show that the unique relevant variable is the area occupied by the speakers of a language. By means of a range model analogous to niche models in ecology, we show that a geometric restriction of perimeter covering by neighbouring linguistic domains explains the structural patterns observed. Our findings may be of interest in the development of models for language dynamics or regarding the propagation of cultural innovations. In relation to species distribution, they pose the question of whether the spatial features of species ranges share architecture, and eventually generating mechanism, with the distribution of human linguistic groups. PMID:25632000

  12. A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development.

    PubMed

    Garwood, Russell J; Sharma, Prashant P; Dunlop, Jason A; Giribet, Gonzalo

    2014-05-01

    Successfully placing fossils in phylogenies is integral to understanding the tree of life. Crown-group Paleozoic members of the arachnid order Opiliones are indicative of ancient origins and one of the earliest arthropod terrestrialization events [1, 2]. Opiliones epitomize morphological stasis, and all known fossils have been placed within the four extant suborders [3-5]. Here we report a Carboniferous harvestman species, Hastocularis argusgen. nov., sp. nov., reconstructed with microtomography (microCT). Phylogenetic analysis recovers this species, and the Devonian Eophalangium sheari, as members of an extinct harvestman clade. We establish the suborder Tetrophthalmi subordo nov., which bore four eyes, to accommodate H. argus and E. sheari, the latter previously considered to be a phalangid [6-9]. Furthermore, embryonic gene expression in the extant species Phalangium opilio demonstrates vestiges of lateral eye tubercles. These lateral eyes are lost in all crown-group Phalangida, but are observed in both our fossil and outgroup chelicerate orders. These data independently corroborate the diagnosis of two eye pairs in the fossil and demonstrate retention of eyes of separate evolutionary origins in modern harvestmen [10-12]. The discovery of Tetrophthalmi alters molecular divergence time estimates, supporting Carboniferous rather than Devonian diversification for extant suborders and directly impacting inferences of terrestrialization history and biogeography. Multidisciplinary approaches integrating fossil and neontological data increase confidence in phylogenies and elucidate evolutionary history. PMID:24726154

  13. Nitrogen niches revealed through species and functional group removal in a boreal shrub community.

    PubMed

    Gundale, Michael J; Hyodo, Fujio; Nilsson, Marie-Charlotte; Wardle, David A

    2012-07-01

    Most theories attempting to explain the coexistence of species in local communities make fundamental assumptions regarding whether neighbors exhibit competitive, neutral, or positive resource-use interactions; however, few long-term data from naturally assembled plant communities exist to test these assumptions. We utilized a 13-year experiment consisting of factorial removal of three shrub species (Vaccinium myrtillus, V. vitis-idaea, and Empetrum hermaphroditum) and factorial removal of two functional groups (tree roots and feather mosses) to assess how neighbors affect N acquisition and growth of each of the three shrub species. The removal plots were established on each of 30 lake islands in northern Sweden that form a natural gradient of resource availability. We tested the hypotheses that: (1) the presence of functionally similar neighbors would reduce shrub N acquisition through competition for a shared N resource; (2) the removal of functional groups would affect shrub N acquisition by altering the breadth of their niches; and (3) soil fertility would influence the effects of neighbor removals. We found that the removal of functionally similar neighbors (i.e., other shrub species) usually resulted in higher biomass and biomass N, with the strength of these effects varying strongly with site fertility. Shrub species removals never resulted in altered stable N isotope ratios (delta(15)N), suggesting that the niche breadth of the three shrubs was unaffected by the presence of neighboring shrub species. In the functional group removal experiment, we found positive effects of feather moss removal on V. myrtillus biomass and biomass N, and negative effects on E. hermaphrotium N concentration and V. vitis-idaea biomass and biomass N. Tree root removal also caused a significant shift in foliar delta(15)N of V. myrtillus and altered the delta(15)N, biomass, and biomass N of E. hermaphroditum. Collectively, these results show that the resource acquisition and niche

  14. Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates

    PubMed Central

    Mason, Victor C.; Li, Gang; Minx, Patrick; Schmitz, Jürgen; Churakov, Gennady; Doronina, Liliya; Melin, Amanda D.; Dominy, Nathaniel J.; Lim, Norman T-L.; Springer, Mark S.; Wilson, Richard K.; Warren, Wesley C.; Helgen, Kristofer M.; Murphy, William J.

    2016-01-01

    Colugos are among the most poorly studied mammals despite their centrality to resolving supraordinal primate relationships. Two described species of these gliding mammals are the sole living members of the order Dermoptera, distributed throughout Southeast Asia. We generated a draft genome sequence for a Sunda colugo and a Philippine colugo reference alignment, and used these to identify colugo-specific genetic changes that were enriched in sensory and musculoskeletal-related genes that likely underlie their nocturnal and gliding adaptations. Phylogenomic analysis and catalogs of rare genomic changes overwhelmingly support the contested hypothesis that colugos are the sister group to primates (Primatomorpha), to the exclusion of treeshrews. We captured ~140 kb of orthologous sequence data from colugo museum specimens sampled across their range and identified large genetic differences between many geographically isolated populations that may result in a >300% increase in the number of recognized colugo species. Our results identify conservation units to mitigate future losses of this enigmatic mammalian order. PMID:27532052

  15. Whole genome sequencing reveals extensive community-level transmission of group A Streptococcus in remote communities.

    PubMed

    Bowen, A C; Harris, T; Holt, D C; Giffard, P M; Carapetis, J R; Campbell, P T; McVERNON, J; Tong, S Y C

    2016-07-01

    Impetigo is common in remote Indigenous children of northern Australia, with the primary driver in this context being Streptococcus pyogenes [or group A Streptococcus (GAS)]. To reduce the high burden of impetigo, the transmission dynamics of GAS must be more clearly elucidated. We performed whole genome sequencing on 31 GAS isolates collected in a single community from children in 11 households with ⩾2 GAS-infected children. We aimed to determine whether transmission was occurring principally within households or across the community. The 31 isolates were represented by nine multilocus sequence types and isolates within each sequence type differed from one another by only 0-3 single nucleotide polymorphisms. There was evidence of extensive transmission both within households and across the community. Our findings suggest that strategies to reduce the burden of impetigo in this setting will need to extend beyond individual households, and incorporate multi-faceted, community-wide approaches. PMID:26833141

  16. Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates.

    PubMed

    Mason, Victor C; Li, Gang; Minx, Patrick; Schmitz, Jürgen; Churakov, Gennady; Doronina, Liliya; Melin, Amanda D; Dominy, Nathaniel J; Lim, Norman T-L; Springer, Mark S; Wilson, Richard K; Warren, Wesley C; Helgen, Kristofer M; Murphy, William J

    2016-08-01

    Colugos are among the most poorly studied mammals despite their centrality to resolving supraordinal primate relationships. Two described species of these gliding mammals are the sole living members of the order Dermoptera, distributed throughout Southeast Asia. We generated a draft genome sequence for a Sunda colugo and a Philippine colugo reference alignment, and used these to identify colugo-specific genetic changes that were enriched in sensory and musculoskeletal-related genes that likely underlie their nocturnal and gliding adaptations. Phylogenomic analysis and catalogs of rare genomic changes overwhelmingly support the contested hypothesis that colugos are the sister group to primates (Primatomorpha), to the exclusion of treeshrews. We captured ~140 kb of orthologous sequence data from colugo museum specimens sampled across their range and identified large genetic differences between many geographically isolated populations that may result in a >300% increase in the number of recognized colugo species. Our results identify conservation units to mitigate future losses of this enigmatic mammalian order. PMID:27532052

  17. Atomic force microscopy measurements reveal multiple bonds between Helicobacter pylori blood group antigen binding adhesin and Lewis b ligand

    PubMed Central

    Parreira, P.; Shi, Q.; Magalhaes, A.; Reis, C. A.; Bugaytsova, J.; Borén, T.; Leckband, D.; Martins, M. C. L.

    2014-01-01

    The strength of binding between the Helicobacter pylori blood group antigen-binding adhesin (BabA) and its cognate glycan receptor, the Lewis b blood group antigen (Leb), was measured by means of atomic force microscopy. High-resolution measurements of rupture forces between single receptor–ligand pairs were performed between the purified BabA and immobilized Leb structures on self-assembled monolayers. Dynamic force spectroscopy revealed two similar but statistically different bond populations. These findings suggest that the BabA may form different adhesive attachments to the gastric mucosa in ways that enhance the efficiency and stability of bacterial adhesion. PMID:25320070

  18. Footprints reveal direct evidence of group behavior and locomotion in Homo erectus.

    PubMed

    Hatala, Kevin G; Roach, Neil T; Ostrofsky, Kelly R; Wunderlich, Roshna E; Dingwall, Heather L; Villmoare, Brian A; Green, David J; Harris, John W K; Braun, David R; Richmond, Brian G

    2016-01-01

    Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6-7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus. PMID:27403790

  19. Dynamic renormalisation group reveals sequential mechanism of the secondary nucleation of proteins

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas; Arosio, Paolo; Knowles, Tuomas

    2014-03-01

    Secondary nucleation has emerged as a key process in the self-assembly of amyloid fibrils associated with a number of neurodegenerative disorders. Secondary nucleation conceptually involves both aggregates and monomers, but a variety of ways exist, in which this process may occur. Elucidation of this complex mechanism using experimental data represents a theoretical challenge. A systematic coarse-graining procedure inspired by the renormalisation group is used to bridge the length- and timescale gaps between detailed microscopic descriptions and the processes observed in experiments. Various mechanisms of secondary nucleation are discussed at different levels of coarse graining and compact terms in the master equation are generated, that provide a single-step description of this process. This treatment is general and allows to test assumptions regarding mechanisms at the microscopic level and to filter their effect on the kinetics at the macroscopic scale. By analysing data from the polymerisation of amylin, we conclude that pre-critical nuclei in islet amyloid polypeptides stay attached to the aggregates during the process of secondary nucleation.

  20. Group A Streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies.

    PubMed

    Graham, Morag R; Virtaneva, Kimmo; Porcella, Stephen F; Barry, William T; Gowen, Brian B; Johnson, Claire R; Wright, Fred A; Musser, James M

    2005-02-01

    The molecular basis for bacterial responses to host signals during natural infections is poorly understood. The gram-positive bacterial pathogen group A Streptococcus (GAS) causes human mucosal, skin, and life-threatening systemic infections. During the transition from a throat or skin infection to an invasive infection, GAS must adapt to changing environments and host factors. To better understand how GAS adapts, we used transcript profiling and functional analysis to investigate the transcriptome of a wild-type serotype M1 GAS strain in human blood. Global changes in GAS gene expression occur rapidly in response to human blood exposure. Increased transcription was observed for many genes that likely enhance bacterial survival, including those encoding superantigens and host-evasion proteins regulated by a multiple gene activator called Mga. GAS also coordinately expressed genes involved in proteolysis, transport, and catabolism of oligopeptides to obtain amino acids in this protein-rich host environment. Comparison of the transcriptome of the wild-type strain to that of an isogenic deletion mutant (DeltacovR) mutated in the two-component regulatory system designated CovR-CovS reinforced the hypothesis that CovR-CovS has an important role linking key biosynthetic, catabolic, and virulence functions during transcriptome restructuring. Taken together, the data provide crucial insights into strategies used by pathogenic bacteria for thwarting host defenses and surviving in human blood. PMID:15681829

  1. Linkage Groups of Protein-Coding Genes in Western Palearctic Water Frogs Reveal Extensive Evolutionary Conservation

    PubMed Central

    Hotz, H.; Uzzell, T.; Berger, L.

    1997-01-01

    Among progeny of a hybrid (Rana shqiperica X R. lessonae) X R. lessonae, 14 of 22 loci form four linkage groups (LGs): (1) mitochondrial aspartate aminotransferase, carbonate dehydratase-2, esterase 4, peptidase D; (2) mannosephosphate isomerase, lactate dehydrogenase-B, sex, hexokinase-1, peptidase B; (3) albumin, fructose-biphosphatase-1, guanine deaminase; (4) mitochondrial superoxide dismutase, cytosolic malic enzyme, xanthine oxidase. Fructose-biphosphate aldolase-2 and cytosolic aspartate aminotransferase possibly form a fifth LG. Mitochondrial aconitate hydratase, α-glucosidase, glyceraldehyde-3-phosphate dehydrogenase, phosphogluconate dehydrogenase, and phosphoglucomutase-2 are unlinked to other loci. All testable linkages (among eight loci of LGs 1, 2, 3, and 4) are shared with eastern Palearctic water frogs. Including published data, 44 protein loci can be assigned to 10 of the 13 chromosomes in Holarctic Rana. Of testable pairs among 18 protein loci, agreement between Palearctic and Nearctic Rana is complete (125 unlinked, 14 linked pairs among 14 loci of five syntenies), and Holarctic Rana and Xenopus laevis are highly concordant (125 shared nonlinkages, 13 shared linkages, three differences). Several Rana syntenies occur in mammals and fish. Many syntenies apparently have persisted for 60-140 X 10(6) years (frogs), some even for 350-400 X 10(6) years (mammals and teleosts). PMID:9286685

  2. Footprints reveal direct evidence of group behavior and locomotion in Homo erectus

    PubMed Central

    Hatala, Kevin G.; Roach, Neil T.; Ostrofsky, Kelly R.; Wunderlich, Roshna E.; Dingwall, Heather L.; Villmoare, Brian A.; Green, David J.; Harris, John W. K.; Braun, David R.; Richmond, Brian G.

    2016-01-01

    Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6–7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus. PMID:27403790

  3. Single cell activity reveals direct electron transfer in methanotrophic consortia.

    PubMed

    McGlynn, Shawn E; Chadwick, Grayson L; Kempes, Christopher P; Orphan, Victoria J

    2015-10-22

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer. PMID:26375009

  4. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    NASA Astrophysics Data System (ADS)

    Stingaciu, Laura-Roxana; O'Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  5. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    DOE PAGESBeta

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-21

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolutionmore » inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. We find our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. Lastly, these observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.« less

  6. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    PubMed Central

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture. PMID:26790980

  7. Single cell activity reveals direct electron transfer in methanotrophic consortia

    NASA Astrophysics Data System (ADS)

    McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.; Orphan, Victoria J.

    2015-10-01

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.

  8. Molecular gas in the x-ray bright group NGC 5044 as revealed by ALMA

    SciTech Connect

    David, Laurence P.; Forman, William; Vrtilek, Jan; Jones, Christine; O'Sullivan, Ewan; Lim, Jeremy; Combes, Francoise; Salome, Philippe; Edge, Alastair; Hamer, Stephen; Sun, Ming; Gastaldello, Fabio; Bardelli, Sandro; Temi, Pasquale; Ohyama, Youichi; Mathews, William; Giacintucci, Simona; Trung, Dinh-V

    2014-09-10

    An ALMA observation of the early-type galaxy NGC 5044, which resides at the center of an X-ray bright group with a moderate cooling flow, detected 24 molecular structures within the central 2.5 kpc. The masses of the molecular structures vary from 3 × 10{sup 5} M {sub ☉} to 10{sup 7} M {sub ☉} and the CO(2-1) linewidths vary from 15 to 65 km s{sup –1}. Given the large CO(2-1) linewidths, the observed structures are likely giant molecular associations (GMAs) and not individual giant molecular clouds (GMCs). Only a few of the GMAs are spatially resolved and the average density of these GMAs yields a GMC volume filling factor of about 15%. The masses of the resolved GMAs are insufficient for them to be gravitationally bound, however, the most massive GMA does contain a less massive component with a linewidth of 5.5 km s{sup –1} (typical of an individual virialized GMC). We also show that the GMAs cannot be pressure confined by the hot gas. Given the CO(2-1) linewidths of the GMAs (i.e., the velocity dispersion of the embedded GMCs) they should disperse on a timescale of about 12 Myr. No disk-like molecular structures are detected and all indications suggest that the molecular gas follows ballistic trajectories after condensing out of the thermally unstable hot gas. The 230 GHz luminosity of the central continuum source is 500 times greater than its low frequency radio luminosity and probably reflects a recent accretion event. The spectrum of the central continuum source also exhibits an absorption feature with a linewidth typical of an individual GMC and an infalling velocity of 250 km s{sup –1}.

  9. Critical genes in head and neck squamous cell carcinoma revealed by bioinformatic analysis of gene expression data.

    PubMed

    Wang, B; Wang, T; Cao, X L; Li, Y

    2015-01-01

    In this study, bioinformatic analysis of gene expression data of head and neck squamous cell carcinoma (HNSCC) was performed to identify critical genes. Gene expression data of HNSCC were downloaded from the Cancer Genome Atlas (TCGA) and differentially expressed genes were determined through significance analysis of microarrays. Protein-protein interaction networks were constructed and used to identify hub genes. Functional enrichment analysis was performed with DAVID. Relevant microRNAs, transcription factors, and small molecule drugs were predicted by the Fisher exact test. Survival analysis was performed with the Kaplan-Meier plot from a package for survival analysis in R. In the five groups of HNSCC patients, a total of 5946 DEGs were identified in group 1, 4575 DEGs in group 2, 5580 DEGs in group 3, 8017 DEGs in group 4, and 5469 DEGs in group 5. DEGs in the cell cycle and immune response were significantly over-represented. Five PPI networks were constructed from which hub genes were acquired, such as minichromosome maintenance complex component 7 (MCM7), MCM2, decorin (DCN), retinoblastoma 1 (RB1), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG). No significant difference in survival was observed among the 5 groups; however, a significant difference existed between two combined groups (groups 1, 3, and 5 vs groups 2 and 4). Our study revealed critical genes in HNSCC, which could supplement the knowledge about the pathogenesis of HNSCC and provide clues for future therapy development. PMID:26782382

  10. Thermal activation of a group II intron ribozyme reveals multiple conformational states.

    PubMed

    Franzen, J S; Zhang, M; Chay, T R; Peebles, C L

    1994-09-20

    Conformational changes often accompany biological catalysis. Group II introns promote a variety of reactions in vitro that show an unusually sharp temperature dependence. This suggests that the chemical steps are accompanied by the conversion of a folded-but-inactive form to a differently folded active state. We report here the kinetic analysis of 5'-splice-junction hydrolysis (SJH) by E1:12345, a transcript containing the 5'-exon plus the first five of six intron secondary structure domains. The pseudo-first-order SJH reaction shows (1) activation by added KCl to 1.5 M; (2) cooperative activation by added MgCl2, nHill = 4.1-4.3, and [MgCl2]vmax/2 approximately 0.040 M; and (3) a rather high apparent activation energy, Ea approximately 50 kcal mol-l. In contrast, the 5'-terminal phosphodiester bond of a domain 5 transcript (GGD5) was hydrolyzed with Ea approximately 30 kcal mol-1 under SJH conditions; the 5'-GG leader dinucleotide presumably lacks secondary structure constraints. The effect of adding the chaotropic salt tetraethylammonium chloride (TEA) was also investigated. TEA reduced the melting temperatures of GGD5 and E1:12345. TEA also shifted the profile of rate versus temperature for SJH by E1:12345 toward lower temperatures without affecting the maximum rate. TEA had little effect on the rate of hydrolysis of the 5'-phosphodiester bond of GGD5. The high apparent activation enthalpy and entropy for SJH along with the effect of TEA on these parameters imply that conversion of an inactive form of E1:12345 to an active conformation accompanies enhanced occupation of the transition state as the temperature is raised to that for maximum SJH. Analytical modeling indicates that either a two-state model (open and disordered, with open being active) or a three-state model (compact, open, and disordered) could account for the temperature dependence of kSJH. However, the three-state model is clearly preferable, since it does not require that the activation parameters

  11. Proteogenomic analysis reveals unanticipated adaptations of colorectal tumor cells to deficiencies in DNA mismatch repair

    PubMed Central

    Halvey, Patrick J.; Wang, Xiaojing; Wang, Jing; Bhat, Ajaz A.; Dhawan, Punita; Li, Ming; Zhang, Bing; Liebler, Daniel C.; Slebos, Robbert J.C.

    2014-01-01

    Summary A growing body of genomic data on human cancers poses the critical question of how genomic variations translate to cancer phenotypes. We employed standardized shotgun proteomics and targeted protein quantitation platforms to analyze a panel of 10 colon cancer cell lines differing by mutations in DNA mismatch repair (MMR) genes. In addition, we performed transcriptome sequencing (RNA-seq) to enable detection of protein sequence variants from the proteomic data. Biological replicate cultures yielded highly consistent proteomic inventories with a cumulative total of 6,513 protein groups with a protein FDR of 3.17% across all cell lines. Networks of co-expressed proteins with differential expression based on MMR status revealed impact on protein folding, turnover and transport, on cellular metabolism and on DNA and RNA synthesis and repair. Analysis of variant amino acid sequences suggested higher stability of proteins affected by naturally occurring germline polymorphisms than of proteins affected by somatic protein sequence changes. The data provide evidence for multi-system adaptation to MMR deficiency with a stress response that targets misfolded proteins for degradation through the ubiquitin-dependent proteasome pathway. Enrichment analysis suggested epithelial-to-mesenchymal transition (EMT) in RKO cells, as evidenced by increased mobility and invasion properties compared to SW480. The observed proteomic profiles demonstrate previously unknown consequences of altered DNA repair and provide an expanded basis for mechanistic interpretation of MMR phenotypes. PMID:24247723

  12. Hydrogen Peroxide Contributes to the Epithelial Cell Death Induced by the Oral Mitis Group of Streptococci

    PubMed Central

    Okahashi, Nobuo; Sumitomo, Tomoko; Nakata, Masanobu; Sakurai, Atsuo; Kuwata, Hirotaka; Kawabata, Shigetada

    2014-01-01

    Members of the mitis group of streptococci are normal inhabitants of the commensal flora of the oral cavity and upper respiratory tract of humans. Some mitis group species, such as Streptococcus oralis and Streptococcus sanguinis, are primary colonizers of the human oral cavity. Recently, we found that hydrogen peroxide (H2O2) produced by S. oralis is cytotoxic to human macrophages, suggesting that streptococcus-derived H2O2 may act as a cytotoxin. Since epithelial cells provide a physical barrier against pathogenic microbes, we investigated their susceptibility to infection by H2O2-producing streptococci in this study. Infection by S. oralis and S. sanguinis was found to stimulate cell death of Detroit 562, Calu-3 and HeLa epithelial cell lines at a multiplicity of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited S. oralis cytotoxicity, and H2O2 alone was capable of eliciting epithelial cell death. Moreover, S. oralis mutants lacking the spxB gene encoding pyruvate oxidase, which are deficient in H2O2 production, exhibited reduced cytotoxicity toward Detroit 562 epithelial cells. In addition, enzyme-linked immunosorbent assays revealed that both S. oralis and H2O2 induced interleukin-6 production in Detroit 562 epithelial cells. These results suggest that streptococcal H2O2 is cytotoxic to epithelial cells, and promotes bacterial evasion of the host defense systems in the oral cavity and upper respiratory tracts. PMID:24498253

  13. Metabolic profiling reveals key metabolic features of renal cell carcinoma

    PubMed Central

    Catchpole, Gareth; Platzer, Alexander; Weikert, Cornelia; Kempkensteffen, Carsten; Johannsen, Manfred; Krause, Hans; Jung, Klaus; Miller, Kurt; Willmitzer, Lothar; Selbig, Joachim; Weikert, Steffen

    2011-01-01

    Abstract Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC). Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced decision tree models were applied to characterize the metabolic signature of RCC and to explore features of metastasized tumours. The findings were validated in a second independent dataset. Vitamin E derivates and metabolites of glucose, fatty acid, and inositol phosphate metabolism determined the metabolic profile of RCC. α-tocopherol, hippuric acid, myoinositol, fructose-1-phosphate and glucose-1-phosphate contributed most to the tumour/normal discrimination and all showed pronounced concentration changes in RCC. The identified metabolic profile was characterized by a low recognition error of only 5% for tumour versus normal samples. Data on metastasized tumours suggested a key role for metabolic pathways involving arachidonic acid, free fatty acids, proline, uracil and the tricarboxylic acid cycle. These results illustrate the potential of mass spectroscopy based metabolomics in conjunction with sophisticated data analysis methods to uncover the metabolic phenotype of cancer. Differentially regulated metabolites, such as vitamin E compounds, hippuric acid and myoinositol, provide leads for the characterization of novel pathways in RCC. PMID:19845817

  14. Pure red-cell aplasia "epidemic"--mystery completely revealed?

    PubMed

    Locatelli, Francesco; Del Vecchio, Lucia; Pozzoni, Pietro

    2007-06-01

    Starting in 1998, the number of pure red-cell aplasia (PRCA) cases in patients treated with recombinant human erythropoietin (rHuEPO) increased dramatically. Most cases were observed in patients treated with epoetin alfa produced outside the United States. The peak was observed in 2002; since then, the PRCA incidence has declined. Many factors are likely to have contributed to this up-surge. The molecular structure of the various epoetins and patient characteristics do not seem to play a major role. The route of administration holds some importance, because most PRCA patients received rHuEPO subcutaneously. The peak of PRCA cases overlapped with the removal of human serum albumin from the Eprex formulation (Janssen-Pharmaceutica NV, Beerse, Belgium), for which polysorbate 80 and glycine were substituted. Polysorbate 80 may have increased the immunogenicity of Eprex by eliciting the formation of epoetin-containing micelles or by interacting with leachates released by the uncoated rubber stoppers of prefilled syringes. Compared with the previous formulation, the polysorbate 80 formulation has lower stability, making it more susceptible to stress conditions such as insufficient attention to the cold chain. This situation could facilitate protein denaturation or aggregate formation. Uncoated rubber stoppers were replaced with coated stoppers, and the cold chain was reinforced; the Eprex formulation has remained unchanged. Even though the incidence of PRCA returned to very low levels, discriminating the cause-effect relationship of a single action is difficult, given that all occurred with a similar chronology, and that PRCA develops after a relatively long exposure period. Careful observation of future trends of new PRCA cases is thus mandatory. PMID:17556324

  15. An integrative approach to phylogeny reveals patterns of environmental distribution and novel evolutionary relationships in a major group of ciliates

    PubMed Central

    Sun, Ping; Clamp, John; Xu, Dapeng; Huang, Bangqin; Shin, Mann Kyoon

    2016-01-01

    Peritrichs are a major group of ciliates with worldwide distribution. Yet, its internal phylogeny remains unresolved owing to limited sampling. Additionally, ecological distributions of peritrichs are poorly known. We performed substantially expanded phylogenetic analyses of peritrichs that incorporated SSU rDNA sequences of samples collected from three continents, revealing a number of new relationships between and within major lineages that greatly challenged the classic view of the group. Interrogation of a dataset comprising new environmental sequences from an estuary and the open ocean generated with high throughput sequencing and clone libraries plus putative environmental peritrich sequences at Genbank, produced a comprehensive tree of peritrichs from a variety of habitats and revealed unique ecological distribution patterns of several lineages for the first time. Also, evidence of adaptation to extreme environments in the Astylozoidae clade greatly broadened the phylogenetic range of peritrichs capable of living in extreme environments. Reconstruction of ancestral states revealed that peritrichs may have transitioned repeatedly from freshwater to brackish/marine/hypersaline environments. This work establishes a phylogenetic framework for more mature investigations of peritrichs in the future, and the approach used here provides a model of how to elucidate evolution in the context of ecological niches in any lineage of microbial eukaryotes. PMID:26880590

  16. Growth conditions of 0-group plaice Pleuronectes platessa in the western Wadden Sea as revealed by otolith microstructure analysis

    NASA Astrophysics Data System (ADS)

    Cardoso, Joana F. M. F.; Freitas, Vânia; de Paoli, Hélène; Witte, Johannes IJ.; van der Veer, Henk W.

    2016-05-01

    Growth studies based on population-based growth estimates are limited by the fact that they do not take into account differences in age/size structure within the population. To overcome these problems, otolith microstructure analysis is often used to estimate individual growth. Here, we analyse growth of 0-group plaice in the western Wadden Sea in two years: a year preceded by a mild winter (1995) and a year preceded by a severe winter (1996). Growth was analysed by combining information on individual growth based on otolith analysis with predictions of maximum growth (= under optimal food conditions) based on a Dynamic Energy Budget model. Otolith analysis revealed that settlement occurred earlier in 1995 than in 1996. In both years, one main cohort was found, followed by a group of late settlers. No differences in mean length-at-age were found between these groups. DEB modelling suggested that growth was not maximal during the whole growing season: realized growth (the fraction of maximum growth realized by 0-group plaice) declined in the summer, although this decline was relatively small. In addition, late settling individuals exhibited lower realized growth than individuals from the main cohort. This study confirms that growth conditions for 0-group plaice are not optimal and that a growth reduction occurs in summer, as suggested in previous studies.

  17. Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells

    PubMed Central

    Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris

    2016-01-01

    Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that

  18. Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells.

    PubMed

    Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris; Kiessling, Ann A

    2016-01-15

    Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that

  19. Clonal Dynamics Reveal Two Distinct Populations of Basal Cells in Slow-Turnover Airway Epithelium.

    PubMed

    Watson, Julie K; Rulands, Steffen; Wilkinson, Adam C; Wuidart, Aline; Ousset, Marielle; Van Keymeulen, Alexandra; Göttgens, Berthold; Blanpain, Cédric; Simons, Benjamin D; Rawlins, Emma L

    2015-07-01

    Epithelial lineages have been studied at cellular resolution in multiple organs that turn over rapidly. However, many epithelia, including those of the lung, liver, pancreas, and prostate, turn over slowly and may be regulated differently. We investigated the mouse tracheal epithelial lineage at homeostasis by using long-term clonal analysis and mathematical modeling. This pseudostratified epithelium contains basal cells and secretory and multiciliated luminal cells. Our analysis revealed that basal cells are heterogeneous, comprising approximately equal numbers of multipotent stem cells and committed precursors, which persist in the basal layer for 11 days before differentiating to luminal fate. We confirmed the molecular and functional differences within the basal population by using single-cell qRT-PCR and further lineage labeling. Additionally, we show that self-renewal of short-lived secretory cells is a feature of homeostasis. We have thus revealed early luminal commitment of cells that are morphologically indistinguishable from stem cells. PMID:26119728

  20. BOLD delay times using group delay in sickle cell disease

    NASA Astrophysics Data System (ADS)

    Coloigner, Julie; Vu, Chau; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John

    2016-03-01

    Sickle cell disease (SCD) is an inherited blood disorder that effects red blood cells, which can lead to vasoocclusion, ischemia and infarct. This disease often results in neurological damage and strokes, leading to morbidity and mortality. Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for measuring and mapping the brain activity. Blood Oxygenation Level-Dependent (BOLD) signals contain also information about the neurovascular coupling, vascular reactivity, oxygenation and blood propagation. Temporal relationship between BOLD fluctuations in different parts of the brain provides also a mean to investigate the blood delay information. We used the induced desaturation as a label to profile transit times through different brain areas, reflecting oxygen utilization of tissue. In this study, we aimed to compare blood flow propagation delay times between these patients and healthy subjects in areas vascularized by anterior, middle and posterior cerebral arteries. In a group comparison analysis with control subjects, BOLD changes in these areas were found to be almost simultaneous and shorter in the SCD patients, because of their increased brain blood flow. Secondly, the analysis of a patient with a stenosis on the anterior cerebral artery indicated that signal of the area vascularized by this artery lagged the MCA signal. These findings suggest that sickle cell disease causes blood propagation modifications, and that these changes could be used as a biomarker of vascular damage.

  1. Intra- and inter-group coordination patterns reveal collective behaviors of football players near the scoring zone.

    PubMed

    Duarte, Ricardo; Araújo, Duarte; Freire, Luís; Folgado, Hugo; Fernandes, Orlando; Davids, Keith

    2012-12-01

    This study examined emergent coordination processes in collective patterns of behavior in 3 vs 3 sub-phases of the team sport of association football near the scoring zone. We identified coordination tendencies for the centroid (i.e., team center) and surface area (i.e., occupied space) of each sub-group of performers (n=20 plays). We also compared these kinematic variables at three key moments of play using mixed-model ANOVAs. The centroids demonstrated a strong symmetric relation that described the coordinated attacking/defending actions of performers in this sub-phase of play. Conversely, analysis of the surface area of each team did not reveal a clear coordination pattern between sub-groups. But the difference in the occupied area between the attacking and defending sub-groups significantly increased over time. Findings emphasized that major changes in sub-group behaviors occurred just before an assisted pass was made (i.e., leading to a loss of stability in the 3 vs 3 sub-phases). PMID:22513231

  2. Role of group 3 innate lymphoid cells during experimental otitis media in a rat model.

    PubMed

    Cho, Chang Gun; Gong, Sung Ho; Kim, Hee-Bok; Song, Jae-Jun; Park, Joo Hyun; Lim, Yun-Sung; Park, Seok-Won

    2016-09-01

    The objective of this study was to evaluate the role of group 3 innate lymphoid cells (ILC3) in the middle ear (ME) mucosal response to bacterial infection in a rat model. To confirm the role of ILC3 in bacterially induced otitis media (OM), the serum concentrations of IL-17 and IL-22 were determined by ELISA, and the tissue expression of IL-17 and IL-22 in infected ME mucosa was assessed by immunohistochemical staining. Immunohistochemical staining of specific cell surface markers was also assessed to confirm the origin of the cells expressing IL-17 and IL-22. Twenty Sprague-Dawley rats were used in the surgically-induced animal model of OM. OM was induced by inoculation of non-typeable Haemophilus influenzae into the ME cavity of the rats. The rats were divided into four experimental groups: three infected groups and one control group. Infected groups were subdivided into sets of 5 rats, one for each of the three time points (1, 4 and 7 days post-inoculation). For determination of rat IL-17 and IL-22 levels in infected rats and control rats, infected or control ME mucosa sections were analyzed by immunohistochemistry with specific antibodies directed against IL-17 and IL-22. Immunohistochemical staining for CD3, RORγt, and NKp46 were also conducted on the samples to confirm the origin of cells expressing IL-17 and IL-22. IL-17 and IL-22 serum concentrations were significantly increased in the infected rats compared to control rats. Immunohistochemical staining revealed increased IL-17 and IL-22 expressions in all infected ME mucosae from the first day after inoculation. In addition, the results of tissue staining for the specific surface markers were negative for CD3 and NKp46, but were highly positive for RORγt. IL-17 and IL-22 revealed their association with the bacterially induced proliferative and hyperplastic responses of ME mucosa, which are characteristic features in pathogenesis of OM. Surface marker examination showed that the source cells for IL-17

  3. Quantitative measures to reveal coordinated cytoskeleton-nucleus reorganization during in vitro invasion of cancer cells

    NASA Astrophysics Data System (ADS)

    Dvir, Liron; Nissim, Ronen; Alvarez-Elizondo, Martha B.; Weihs, Daphne

    2015-04-01

    Metastasis formation is a major cause of mortality in cancer patients and includes tumor cell relocation to distant organs. A metastatic cell invades through other cells and extracellular matrix by biochemical attachment and mechanical force application. Force is used to move on or through a 2- or 3-dimensional (3D) environment, respectively, or to penetrate a 2D substrate. We have previously shown that even when a gel substrate is impenetrable, metastatic breast cancer cells can still indent it by applying force. Cells typically apply force through the acto-myosin network, which is mechanically connected to the nucleus. We develop a 3D image-analysis to reveal relative locations of the cell elements, and show that as cells apply force to the gel, a coordinated process occurs that involves cytoskeletal remodeling and repositioning of the nucleus. Our approach shows that the actin and microtubules reorganize in the cell, bringing the actin to the leading edge of the cell. In parallel, the nucleus is transported behind the actin, likely by the cytoskeleton, into the indentation dimple formed in the gel. The nucleus volume below the gel surface correlates with indentation depth, when metastatic breast cancer cells indent gels deeply. However, the nucleus always remains above the gel in benign cells, even when small indentations are observed. Determining mechanical processes during metastatic cell invasion can reveal how cells disseminate in the body and can uncover targets for diagnosis and treatment.

  4. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation.

    PubMed

    Shalek, Alex K; Satija, Rahul; Shuga, Joe; Trombetta, John J; Gennert, Dave; Lu, Diana; Chen, Peilin; Gertner, Rona S; Gaublomme, Jellert T; Yosef, Nir; Schwartz, Schraga; Fowler, Brian; Weaver, Suzanne; Wang, Jing; Wang, Xiaohui; Ding, Ruihua; Raychowdhury, Raktima; Friedman, Nir; Hacohen, Nir; Park, Hongkun; May, Andrew P; Regev, Aviv

    2014-06-19

    High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a 'core' module of antiviral genes is expressed very early by a few 'precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced 'peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses. PMID:24919153

  5. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation

    NASA Astrophysics Data System (ADS)

    Shalek, Alex K.; Satija, Rahul; Shuga, Joe; Trombetta, John J.; Gennert, Dave; Lu, Diana; Chen, Peilin; Gertner, Rona S.; Gaublomme, Jellert T.; Yosef, Nir; Schwartz, Schraga; Fowler, Brian; Weaver, Suzanne; Wang, Jing; Wang, Xiaohui; Ding, Ruihua; Raychowdhury, Raktima; Friedman, Nir; Hacohen, Nir; Park, Hongkun; May, Andrew P.; Regev, Aviv

    2014-06-01

    High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a `core' module of antiviral genes is expressed very early by a few `precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced `peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.

  6. Novel insights of the gastric gland organization revealed by chief cell specific expression of moesin.

    PubMed

    Zhu, Lixin; Hatakeyama, Jason; Zhang, Bing; Makdisi, Joy; Ender, Cody; Forte, John G

    2009-02-01

    ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an increased gradient of expression from the neck to the base of the glands. In addition, the staining pattern of moesin revealed a branched morphology for the gastric lumen. This pattern of short branches extending from the glandular lumen was confirmed by using antibody against zonula occludens-1 (ZO-1) to stain tight junctions. With a mucous neck cell probe (lectin GSII, from Griffonia simplicifolia) and a chief cell marker (pepsinogen C), immunohistochemistry revealed that the mucous neck cells at the top of the glands do not express moesin, but, progressing toward the base, mucous cells showing decreased GSII staining had low or moderate level of moesin expression. The level of moesin expression continued to increase toward the base of the glands and reached a plateau in the base where chief cells and parietal cells abound. The level of pepsinogen expression also increased toward the base. Pepsinogen C was located on cytoplasmic granules and/or more generally distributed in chief cells, whereas moesin was exclusively expressed on the apical membrane. This is a clear demonstration of distinctive cellular expression of two ERM family members in the same tissue. The results provide the first evidence that moesin is involved in the cell biology of chief cells. Novel insights on gastric gland morphology revealed by the moesin and ZO-1 staining provide the basis for a model of cell maturation and migration within the gland. PMID:19074636

  7. Novel insights of the gastric gland organization revealed by chief cell specific expression of moesin

    PubMed Central

    Zhu, Lixin; Hatakeyama, Jason; Zhang, Bing; Makdisi, Joy; Ender, Cody; Forte, John G.

    2009-01-01

    ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an increased gradient of expression from the neck to the base of the glands. In addition, the staining pattern of moesin revealed a branched morphology for the gastric lumen. This pattern of short branches extending from the glandular lumen was confirmed by using antibody against zonula occludens-1 (ZO-1) to stain tight junctions. With a mucous neck cell probe (lectin GSII, from Griffonia simplicifolia) and a chief cell marker (pepsinogen C), immunohistochemistry revealed that the mucous neck cells at the top of the glands do not express moesin, but, progressing toward the base, mucous cells showing decreased GSII staining had low or moderate level of moesin expression. The level of moesin expression continued to increase toward the base of the glands and reached a plateau in the base where chief cells and parietal cells abound. The level of pepsinogen expression also increased toward the base. Pepsinogen C was located on cytoplasmic granules and/or more generally distributed in chief cells, whereas moesin was exclusively expressed on the apical membrane. This is a clear demonstration of distinctive cellular expression of two ERM family members in the same tissue. The results provide the first evidence that moesin is involved in the cell biology of chief cells. Novel insights on gastric gland morphology revealed by the moesin and ZO-1 staining provide the basis for a model of cell maturation and migration within the gland. PMID:19074636

  8. Whole Genome Expression Analysis Reveals Differential Effects of TiO2 Nanotubes on Vascular Cells

    PubMed Central

    Peng, Lily; Barczak, Andrea J.; Barbeau, Rebecca A.; Xiao, Yuanyuan; LaTempa, Thomas J.; Grimes, Craig A.; Desai, Tejal A.

    2010-01-01

    The response of primary human endothelial (ECs) and vascular smooth muscle cells (VSMCs) to TiO2 nanotube arrays is studied through gene expression analysis. Microarrays revealed that nanotubes enhanced EC proliferation and motility, decreased VSMC proliferation, and decreased expression of molecules involved in inflammation and coagulation in both cell types. Networks generated from significantly affected genes suggest that cells may be sensing nanotopographical cues via pathways previously implicated in sensing shear stress. PMID:20030358

  9. Global detection of molecular changes reveals concurrent alteration of several biological pathways in nonsmall cell lung cancer cells

    PubMed Central

    Ju, Z.; Kapoor, M.; Newton, K; Cheon, K.; Ramaswamy, A.; Lotan, R.; Strong, L. C.; Koo, J. S.

    2006-01-01

    To identify the molecular changes that occur in non-small cell lung carcinoma (NSCLC), we compared the gene expression profile of the NCI-H292 (H292) NSCLC cell line with that of normal human tracheobronchial epithelial (NHTBE) cells. The NHTBE cells were grown in a three-dimensional organotypic culture system that permits maintenance of the normal pseudostratified mucociliary phenotype characteristic of bronchial epithelium in vivo. Microarray analysis using the Affymetrix oligonucleotide chip U95Av2 revealed that 1,683 genes showed a > 1.5-fold change in expression in the H292 cell line relative to the NHTBE cells. Specifically, 418 genes were downregulated and 1,265 were upregulated in the H292 cells. The expression data for selected genes were validated in several different NSCLC cell lines using quantitative real-time PCR and Western analysis. Further analysis of the differentially expressed genes indicated that WNT responses, apoptosis, cell cycle regulation and cell proliferation were significantly altered in the H292 cells. Functional analysis using fluorescence-activated cell sorting confirmed concurrent changes in the activity of these pathways in the H292 line. These findings show that (1) NSCLC cells display deregulation of the WNT, apoptosis, proliferation and cell cycle pathways, as has been found in many other types of cancer cells, and (2) that organotypically cultured NHTBE cells can be used as a reference to identify genes and pathways that are differentially expressed in tumor cells derived from bronchogenic epithelium. PMID:16049682

  10. Epigenetic control of group V phospholipase A2 expression in human malignant cells.

    PubMed

    Menschikowski, Mario; Hagelgans, Albert; Nacke, Brit; Jandeck, Carsten; Mareninova, Olga A; Asatryan, Liana; Siegert, Gabriele

    2016-06-01

    Secreted phospholipases A2 (sPLA2) are suggested to play an important role in inflammation and tumorigenesis. Different mechanisms of epigenetic regulation are involved in the control of group IIA, III and X sPLA2s expression in cancer cells, but group V sPLA2 (GV-PLA2) in this respect has not been studied. Here, we demonstrate the role of epigenetic mechanisms in regulation of GV-PLA2 expression in different cell lines originating from leukaemia and solid cancers. In blood leukocytes from leukaemic patients, levels of GV-PLA2 transcripts were significantly lower in comparison to those from healthy individuals. Similarly, in DU-145 and PC-3 prostate and CAL-51 and MCF-7 mammary cancer cell lines, levels of GV-PLA2 transcripts were significantly lower in relation to those found in normal epithelial cells of prostate or mammary. By sequencing and methylation-specific high-resolution melting (MS-HRM) analyses of bisulphite-modified DNA, distinct CpG sites in the GV-PLA2 promoter region were identified that were differentially methylated in cancer cells in comparison to normal epithelial and endothelial cells. Spearman rank order analysis revealed a significant negative correlation between the methylation degree and the cellular expression of GV-PLA2 (r = -0.697; p = 0.01). The effects of demethylating agent (5-aza-2'-deoxycytidine) and histone deacetylase inhibitor (trichostatin A) on GV-PLA2 transcription in the analysed cells confirmed the importance of DNA methylation and histone modification in the regulation of the GV-PLA2 gene expression in leukaemic, prostate and mammary cancer cell lines. The exposure of tumour cells to human recombinant GV-PLA2 resulted in a reduced colony forming activity of MCF-7, HepG2 and PC-3 cells, but not of DU-145 cells suggesting a cell-type-dependent effect of GV-PLA2 on cell growth. In conclusion, our results suggest that epigenetic mechanisms such as DNA methylation and histone modification play an important role in

  11. The Early Chemical Enrichment Histories of Two Sculptor Group Dwarf Galaxies as Revealed by RR Lyrae Variables

    NASA Astrophysics Data System (ADS)

    Yang, Soung-Chul; Wagner-Kaiser, Rachel; Sarajedini, Ata; Kim, Sang Chul; Kyeong, Jaemann

    2014-03-01

    We present the results of our analysis of the RR Lyrae (RRL) variable stars detected in two transition-type dwarf galaxies (dTrans), ESO294-G010 and ESO410-G005 in the Sculptor group, which is known to be one of the closest neighboring galaxy groups to our Local Group. Using deep archival images from the Advanced Camera for Surveys on board the Hubble Space Telescope, we have identified a sample of RRL candidates in both dTrans galaxies (219 RRab (RR0) and 13 RRc (RR1) variables in ESO294-G010; 225 RRab and 44 RRc stars in ESO410-G005). The metallicities of the individual RRab stars are calculated via the period-amplitude-[Fe/H] relation derived by Alcock et al. This yields mean metallicities of lang[Fe/H]rangESO294 = -1.77 ± 0.03 and lang[Fe/H]rangESO410 = -1.64 ± 0.03. The RRL metallicity distribution functions (MDFs) are investigated further via simple chemical evolution models; these reveal the relics of the early chemical enrichment processes for these two dTrans galaxies. In the case of both galaxies, the shapes of the RRL MDFs are well described by pre-enrichment models. This suggests two possible channels for the early chemical evolution for these Sculptor group dTrans galaxies: (1) the ancient stellar populations of our target dwarf galaxies might have formed from the star forming gas which was already enriched through "prompt initial enrichment" or an "initial nucleosynthetic spike" from the very first massive stars, or (2) this pre-enrichment state might have been achieved by the end products from more evolved systems of their nearest neighbor, NGC 55. We also study the environmental effects of the formation and evolution of our target dTrans galaxies by comparing their properties with those of 79 volume limited (D ⊙ < 2 Mpc) dwarf galaxy samples in terms of the luminosity-metallicity relation and the H I gas content. The presence of these RRL stars strongly supports the idea that although the Sculptor Group galaxies have a considerably different

  12. The early chemical enrichment histories of two Sculptor group dwarf galaxies as revealed by RR lyrae variables

    SciTech Connect

    Yang, Soung-Chul; Kim, Sang Chul; Kyeong, Jaemann; Wagner-Kaiser, Rachel; Sarajedini, Ata

    2014-03-20

    We present the results of our analysis of the RR Lyrae (RRL) variable stars detected in two transition-type dwarf galaxies (dTrans), ESO294-G010 and ESO410-G005 in the Sculptor group, which is known to be one of the closest neighboring galaxy groups to our Local Group. Using deep archival images from the Advanced Camera for Surveys on board the Hubble Space Telescope, we have identified a sample of RRL candidates in both dTrans galaxies (219 RRab (RR0) and 13 RRc (RR1) variables in ESO294-G010; 225 RRab and 44 RRc stars in ESO410-G005). The metallicities of the individual RRab stars are calculated via the period-amplitude-[Fe/H] relation derived by Alcock et al. This yields mean metallicities of ([Fe/H]){sub ESO294} = –1.77 ± 0.03 and ([Fe/H]){sub ESO410} = –1.64 ± 0.03. The RRL metallicity distribution functions (MDFs) are investigated further via simple chemical evolution models; these reveal the relics of the early chemical enrichment processes for these two dTrans galaxies. In the case of both galaxies, the shapes of the RRL MDFs are well described by pre-enrichment models. This suggests two possible channels for the early chemical evolution for these Sculptor group dTrans galaxies: (1) the ancient stellar populations of our target dwarf galaxies might have formed from the star forming gas which was already enriched through 'prompt initial enrichment' or an 'initial nucleosynthetic spike' from the very first massive stars, or (2) this pre-enrichment state might have been achieved by the end products from more evolved systems of their nearest neighbor, NGC 55. We also study the environmental effects of the formation and evolution of our target dTrans galaxies by comparing their properties with those of 79 volume limited (D {sub ☉} < 2 Mpc) dwarf galaxy samples in terms of the luminosity-metallicity relation and the H I gas content. The presence of these RRL stars strongly supports the idea that although the Sculptor Group galaxies have a considerably

  13. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny.

    PubMed

    Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S

    2016-01-01

    Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384

  14. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny

    PubMed Central

    Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S.

    2016-01-01

    Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384

  15. A simple engineered platform reveals different modes of tumor-microenvironmental cell interaction.

    PubMed

    Zhang, Chentian; Shenk, Elizabeth M; Blaha, Laura C; Ryu, Byungwoo; Alani, Rhoda M; Cabodi, Mario; Wong, Joyce Y

    2016-03-01

    How metastatic cancer lesions survive and grow in secondary locations is not fully understood. There is a growing appreciation for the importance of tumor components, i.e. microenvironmental cells, in this process. Here, we used a simple microfabricated dual cell culture platform with a 500 μm gap to assess interactions between two different metastatic melanoma cell lines (1205Lu isolated from a lung lesion established through a mouse xenograft; and WM852 derived from a stage III metastatic lesion of skin) and microenvironmental cells derived from either skin (fibroblasts), lung (epithelial cells) or liver (hepatocytes). We observed differential bi-directional migration between microenvironmental cells and melanoma, depending on the melanoma cell line. Lung epithelial cells and skin fibroblasts, but not hepatocytes, stimulated higher 1205Lu migration than without microenvironmental cells; in the opposite direction, 1205Lu cells induced hepatocytes to migrate, but had no effect on skin fibroblasts and slightly inhibited lung epithelial cells. In contrast, none of the microenvironments had a significant effect on WM852; in this case, skin fibroblasts and hepatocytes--but not lung epithelial cells--exhibited directed migration toward WM852. These observations reveal significant effects a given microenvironmental cell line has on the two different melanoma lines, as well as how melanoma effects different microenvironmental cell lines. Our simple platform thus has potential to provide complex insights into different strategies used by cancerous cells to survive in and colonize metastatic sites. PMID:26716792

  16. Networks of Food Sharing Reveal the Functional Significance of Multilevel Sociality in Two Hunter-Gatherer Groups.

    PubMed

    Dyble, Mark; Thompson, James; Smith, Daniel; Salali, Gul Deniz; Chaudhary, Nikhil; Page, Abigail E; Vinicuis, Lucio; Mace, Ruth; Migliano, Andrea Bamberg

    2016-08-01

    Like many other mammalian and primate societies [1-4], humans are said to live in multilevel social groups, with individuals situated in a series of hierarchically structured sub-groups [5, 6]. Although this multilevel social organization has been described among contemporary hunter-gatherers [5], questions remain as to the benefits that individuals derive from living in such groups. Here, we show that food sharing among two populations of contemporary hunter-gatherers-the Palanan Agta (Philippines) and Mbendjele BaYaka (Republic of Congo)-reveals similar multilevel social structures, with individuals situated in households, within sharing clusters of 3-4 households, within the wider residential camps, which vary in size. We suggest that these groupings serve to facilitate inter-sexual provisioning, kin provisioning, and risk reduction reciprocity, three levels of cooperation argued to be fundamental in human societies [7, 8]. Humans have a suite of derived life history characteristics including a long childhood and short inter-birth intervals that make offspring energetically demanding [9] and have moved to a dietary niche that often involves the exploitation of difficult to acquire foods with highly variable return rates [10-12]. This means that human foragers face both day-to-day and more long-term energetic deficits that conspire to make humans energetically interdependent. We suggest that a multilevel social organization allows individuals access to both the food sharing partners required to buffer themselves against energetic shortfalls and the cooperative partners required for skill-based tasks such as cooperative foraging. PMID:27451900

  17. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq.

    PubMed

    Gokce, Ozgun; Stanley, Geoffrey M; Treutlein, Barbara; Neff, Norma F; Camp, J Gray; Malenka, Robert C; Rothwell, Patrick E; Fuccillo, Marc V; Südhof, Thomas C; Quake, Stephen R

    2016-07-26

    The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs) that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states. PMID:27425622

  18. Group A Streptococci Bind to Mucin and Human Pharyngeal Cells through Sialic Acid-Containing Receptors

    PubMed Central

    Ryan, Patricia A.; Pancholi, Vijaykumar; Fischetti, Vincent A.

    2001-01-01

    The first step in the colonization of group A streptococci (Streptococcus pyogenes) is adherence to pharyngeal epithelial cells. Prior to adherence to their target tissue, the first barrier that the streptococci encounter is the mucous layer of the respiratory tract. The present study was undertaken to characterize the interaction between mucin, the major glycoprotein component of mucus, and streptococci. We report here that S. pyogenes is able to bind to bovine submaxillary mucin in solid-phase microtiter plate assays. Western blots probed with 125I-labeled mucin and a panel of monoclonal antibodies revealed that the streptococcal M protein is one of two cell wall-associated proteins responsible for this binding. The binding was further localized to the N-terminal portion of the M molecule. Further analysis revealed that the M protein binds to the sialic acid moieties on mucin, and this interaction seems to be based on M-protein conformation rather than specific amino acid sequences. We found that sialic acid also plays a critical role in the adherence of an M6 streptococcal strain to the Detroit 562 human pharyngeal cell line and have identified α2-6-linked sialic acid as an important sialylated linkage for M-protein recognition. Western blot analysis of extracted pharyngeal cell membrane proteins identified three potential sialic acid-containing receptors for the M protein. The results are the first to show that sialic acid not only is involved in the binding of the streptococci to mucin but also plays an important role in adherence of group A streptococci to the pharyngeal cell surface. PMID:11705914

  19. Mechanisms of Cell Cycle Control Revealed by a Systematic and Quantitative Overexpression Screen in S. cerevisiae

    PubMed Central

    Niu, Wei; Li, Zhihua; Zhan, Wenjing; Iyer, Vishwanath R.; Marcotte, Edward M.

    2008-01-01

    Regulation of cell cycle progression is fundamental to cell health and reproduction, and failures in this process are associated with many human diseases. Much of our knowledge of cell cycle regulators derives from loss-of-function studies. To reveal new cell cycle regulatory genes that are difficult to identify in loss-of-function studies, we performed a near-genome-wide flow cytometry assay of yeast gene overexpression-induced cell cycle delay phenotypes. We identified 108 genes whose overexpression significantly delayed the progression of the yeast cell cycle at a specific stage. Many of the genes are newly implicated in cell cycle progression, for example SKO1, RFA1, and YPR015C. The overexpression of RFA1 or YPR015C delayed the cell cycle at G2/M phases by disrupting spindle attachment to chromosomes and activating the DNA damage checkpoint, respectively. In contrast, overexpression of the transcription factor SKO1 arrests cells at G1 phase by activating the pheromone response pathway, revealing new cross-talk between osmotic sensing and mating. More generally, 92%–94% of the genes exhibit distinct phenotypes when overexpressed as compared to their corresponding deletion mutants, supporting the notion that many genes may gain functions upon overexpression. This work thus implicates new genes in cell cycle progression, complements previous screens, and lays the foundation for future experiments to define more precisely roles for these genes in cell cycle progression. PMID:18617996

  20. Mathematical Modeling Reveals That Changes to Local Cell Density Dynamically Modulate Baseline Variations in Cell Growth and Drug Response.

    PubMed

    Greene, James M; Levy, Doron; Herrada, Sylvia P; Gottesman, Michael M; Lavi, Orit

    2016-05-15

    Cell-to-cell variations contribute to drug resistance with consequent therapy failure in cancer. Experimental techniques have been developed to monitor tumor heterogeneity, but estimates of cell-to-cell variation typically fail to account for the expected spatiotemporal variations during the cell growth process. To fully capture the extent of such dynamic variations, we developed a mechanistic mathematical model supported by in vitro experiments with an ovarian cancer cell line. We introduce the notion of dynamic baseline cell-to-cell variation, showing how the emerging spatiotemporal heterogeneity of one cell population can be attributed to differences in local cell density and cell cycle. Manipulation of the geometric arrangement and spatial density of cancer cells revealed that given a fixed global cell density, significant differences in growth, proliferation, and paclitaxel-induced apoptosis rates were observed based solely on cell movement and local conditions. We conclude that any statistical estimate of changes in the level of heterogeneity should be integrated with the dynamics and spatial effects of the baseline system. This approach incorporates experimental and theoretical methods to systematically analyze biologic phenomena and merits consideration as an underlying reference model for cell biology studies that investigate dynamic processes affecting cancer cell behavior. Cancer Res; 76(10); 2882-90. ©2016 AACR. PMID:26933088

  1. Generation of 2,000 breast cancer metabolic landscapes reveals a poor prognosis group with active serotonin production

    PubMed Central

    Leoncikas, Vytautas; Wu, Huihai; Ward, Lara T.; Kierzek, Andrzej M.; Plant, Nick J.

    2016-01-01

    A major roadblock in the effective treatment of cancers is their heterogeneity, whereby multiple molecular landscapes are classified as a single disease. To explore the contribution of cellular metabolism to cancer heterogeneity, we analyse the Metabric dataset, a landmark genomic and transcriptomic study of 2,000 individual breast tumours, in the context of the human genome-scale metabolic network. We create personalized metabolic landscapes for each tumour by exploring sets of active reactions that satisfy constraints derived from human biochemistry and maximize congruency with the Metabric transcriptome data. Classification of the personalized landscapes derived from 997 tumour samples within the Metabric discovery dataset reveals a novel poor prognosis cluster, reproducible in the 995-sample validation dataset. We experimentally follow mechanistic hypotheses resulting from the computational study and establish that active serotonin production is a major metabolic feature of the poor prognosis group. These data support the reconsideration of concomitant serotonin-specific uptake inhibitors treatment during breast cancer chemotherapy. PMID:26813959

  2. Chromosomal evolution in Gekkonidae. I. Chromosome painting between Gekko and Hemidactylus species reveals phylogenetic relationships within the group.

    PubMed

    Trifonov, Vladimir A; Giovannotti, Massimo; O'Brien, Patricia C M; Wallduck, Margaret; Lovell, Frances; Rens, Willem; Parise-Maltempi, Patricia P; Caputo, Vincenzo; Ferguson-Smith, Malcolm A

    2011-10-01

    Geckos are a large group of lizards characterized by a rich variety of species, different modes of sex determination and diverse karyotypes. In spite of many unresolved questions on lizards' phylogeny and taxonomy, the karyotypes of most geckos have been studied by conventional cytogenetic methods only. We used flow-sorted chromosome-specific painting probes of Japanese gecko (Gekko japonicus), Mediterranean house gecko (Hemidactylus turcicus) and flat-tailed house gecko (Hemidactylus platyurus) to reveal homologous regions and to study karyotype evolution in seven gecko species (Gekko gecko, G. japonicus, G. ulikovskii, G. vittatus, Hemidactylus frenatus, H. platyurus and H. turcicus). Generally, the karyotypes of geckos were found to be conserved, but we revealed some characteristic rearrangements including both fissions and fusions in Hemidactylus. The karyotype of H. platyurus contained a heteromorphic pair in all female individuals, where one of the homologues had a terminal DAPI-negative and C-positive heterochromatic block that might indicate a putative sex chromosome. Among two male individuals studied, only one carried such a polymorphism, and the second one had none, suggesting a possible ZZ/ZW sex determination in some populations of this species. We found that all Gekko species have retained the putative ancestral karyotype, whilst the fission of the largest ancestral chromosome occurred in the ancestor of modern Hemidactylus species. Three common fissions occurred in the ancestor of Mediterranean house and flat-tailed house geckos, suggesting their sister group relationships. PCR-assisted mapping on flow-sorted chromosome libraries with conserved DMRT1 gene primers in G. japonicus indicates the localization of DMRT1 gene on chromosome 6. PMID:21987185

  3. Global gene expression profiling reveals similarities and differences among mouse pluripotent stem cells of different origins and strains

    PubMed Central

    Sharova, Lioudmila V.; Sharov, Alexei A.; Piao, Yulan; Shaik, Nabeebi; Sullivan, Terry; Stewart, Colin L.; Hogan, Brigid L.M.; Ko, Minoru S.H.

    2007-01-01

    Pluripotent stem cell lines with similar phenotypes can be derived from both blastocysts (embryonic stem cells, ESC) and primordial germ cells (embryonic germ cells, EGC). Here, we present a compendium DNA microarray analysis of multiple mouse ESCs and EGCs from different genetic backgrounds (strains 129 and C57BL/6) cultured under standard conditions and in differentiation-promoting conditions by the withdrawal of Leukemia Inhibitory Factor (LIF) or treatment with retinoic acid (RA). All pluripotent cell lines showed similar gene expression patterns, which separated them clearly from other tissue stem cells with lower developmental potency. Differences between pluripotent lines derived from different sources (ESC vs. EGC) were smaller than differences between lines derived from different mouse strains (129 vs. C57BL/6). Even in the differentiation-promoting conditions, these pluripotent cells showed the same general trends of gene expression changes regardless of their origin and genetic background. These data indicate that ESCs and EGCs are indistinguishable based on global gene expression patterns alone. On the other hand, a detailed comparison between a group of ESC lines and a group of EGC lines identified 20 signature genes whose average expression levels were consistently higher in ESC lines, and 84 signature genes whose average expression levels were consistently higher in EGC lines, irrespective of mouse strains. Similar analysis identified 250 signature genes whose average expression levels were consistently higher in a group of 129 cell lines, and 337 signature genes whose average expression levels were consistently higher in a group of C57BL/6 cell lines. Although none of the genes was exclusively expressed in either ESCs versus EGCs or 129 versus C57BL/6, in combination these signature genes provide a reliable separation and identification of each cell type. Differentiation-promoting conditions also revealed some minor differences between the cell

  4. A simple engineered platform reveals different modes of tumor-microenvironmental cell interaction

    PubMed Central

    Zhang, Chentian; Shenk, Elizabeth M; Blaha, Laura C; Ryu, Byungwoo; Alani, Rhoda M; Cabodi, Mario; Wong, Joyce Y

    2016-01-01

    How metastatic cancer lesions survive and grow in secondary locations is not fully understood. There is a growing appreciation for the importance of tumor components, i.e. microenvironmental cells, in this process. Here, we used a simple microfabricated dual cell culture platform with a 500 μm gap to assess interactions between two different metastatic melanoma cell lines (1205Lu isolated from a lung lesion established through a mouse xenograft; and WM852 derived from a stage III metastatic lesion of skin) and microenvironmental cells derived from either skin (fibroblasts), lung (epithelial cells) or liver (hepatocytes). We observed differential bi-directional migration between microenvironmental cells and melanoma, depending on the melanoma cell line. Lung epithelial cells and skin fibroblasts, but not hepatocytes, stimulated higher 1205Lu migration than without microenvironmental cells; in the opposite direction, 1205Lu cells induced hepatocytes to migrate, but had no effect on skin fibroblasts and slightly inhibited lung epithelial cells. In contrast, none of the microenvironments had a significant effect on WM852; in this case, skin fibroblasts and hepatocytes—but not lung epithelial cells—exhibited directed migration toward WM852. These observations reveal significant effects a given microenvironmental cell line has on the two different melanoma lines, as well as how melanoma effects different microenvironmental cell lines. Our simple platform thus has potential to provide complex insights into different strategies used by cancerous cells to survive in and colonize metastatic sites. PMID:26716792

  5. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    PubMed Central

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  6. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group.

    PubMed

    Nunoura, Takuro; Takaki, Yoshihiro; Kakuta, Jungo; Nishi, Shinro; Sugahara, Junichi; Kazama, Hiromi; Chee, Gab-Joo; Hattori, Masahira; Kanai, Akio; Atomi, Haruyuki; Takai, Ken; Takami, Hideto

    2011-04-01

    The domain Archaea has historically been divided into two phyla, the Crenarchaeota and Euryarchaeota. Although regarded as members of the Crenarchaeota based on small subunit rRNA phylogeny, environmental genomics and efforts for cultivation have recently revealed two novel phyla/divisions in the Archaea; the 'Thaumarchaeota' and 'Korarchaeota'. Here, we show the genome sequence of Candidatus 'Caldiarchaeum subterraneum' that represents an uncultivated crenarchaeotic group. A composite genome was reconstructed from a metagenomic library previously prepared from a microbial mat at a geothermal water stream of a sub-surface gold mine. The genome was found to be clearly distinct from those of the known phyla/divisions, Crenarchaeota (hyperthermophiles), Euryarchaeota, Thaumarchaeota and Korarchaeota. The unique traits suggest that this crenarchaeotic group can be considered as a novel archaeal phylum/division. Moreover, C. subterraneum harbors an ubiquitin-like protein modifier system consisting of Ub, E1, E2 and small Zn RING finger family protein with structural motifs specific to eukaryotic system proteins, a system clearly distinct from the prokaryote-type system recently identified in Haloferax and Mycobacterium. The presence of such a eukaryote-type system is unprecedented in prokaryotes, and indicates that a prototype of the eukaryotic protein modifier system is present in the Archaea. PMID:21169198

  7. Population-based resequencing revealed an ancestral winter group of cultivated flax: implication for flax domestication processes

    PubMed Central

    Fu, Yong-Bi

    2012-01-01

    Cultivated flax (Linum usitatissimum L.) is the earliest oil and fiber crop and its early domestication history may involve multiple events of domestication for oil, fiber, capsular indehiscence, and winter hardiness. Genetic studies have demonstrated that winter cultivated flax is closely related to oil and fiber cultivated flax and shows little relatedness to its progenitor, pale flax (L. bienne Mill.), but winter hardiness is one major characteristic of pale flax. Here, we assessed the genetic relationships of 48 Linum samples representing pale flax and four trait-specific groups of cultivated flax (dehiscent, fiber, oil, and winter) through population-based resequencing at 24 genomic regions, and revealed a winter group of cultivated flax that displayed close relatedness to the pale flax samples. Overall, the cultivated flax showed a 27% reduction of nucleotide diversity when compared with the pale flax. Recombination frequently occurred at these sampled genomic regions, but the signal of selection and bottleneck was relatively weak. These findings provide some insight into the impact and processes of flax domestication and are significant for expanding our knowledge about early flax domestication, particularly for winter hardiness. PMID:22822439

  8. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns.

    PubMed

    Hauser, Anja E; Junt, Tobias; Mempel, Thorsten R; Sneddon, Michael W; Kleinstein, Steven H; Henrickson, Sarah E; von Andrian, Ulrich H; Shlomchik, Mark J; Haberman, Ann M

    2007-05-01

    Proliferation, mutation, and selection in the germinal center (GC) are thought to occur in distinct microanatomical compartments-the dark zone (DZ) and the light zone (LZ). Thus, affinity maturation has been posited to require frequent trafficking between zones. Here we report the use of multiphoton in vivo microscopy to determine migration patterns of GC B cells. Analysis of time-resolved images revealed unexpected patterns of movement as well as GC B cell morphology. Though frequent movement between the DZ and LZ was anticipated, few cells were observed to cross the interface between the two compartments. Moreover, cell-track trajectories indicated that cell movement in this region is predominantly parallel to the interface, suggesting that B cells circulate within individual LZ and DZ compartments. The results suggest a revision to our views of B cell circulation within GCs and the functional relationship of its two major compartments. PMID:17509908

  9. Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.

    PubMed

    Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2016-06-01

    Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells. PMID:27074779

  10. Controlled One-on-One Encounters between Immune Cells and Microbes Reveal Mechanisms of Phagocytosis.

    PubMed

    Heinrich, Volkmar

    2015-08-01

    Among many challenges facing the battle against infectious disease, one quandary stands out. On the one hand, it is often unclear how well animal models and cell lines mimic human immune behavior. On the other hand, many core methods of cell and molecular biology cannot be applied to human subjects. For example, the profound susceptibility of neutropenic patients to infection marks neutrophils (the most abundant white blood cells in humans) as vital immune defenders. Yet because these cells cannot be cultured or genetically manipulated, there are gaps in our understanding of the behavior of human neutrophils. Here, we discuss an alternative, interdisciplinary strategy to dissect fundamental mechanisms of immune-cell interactions with bacteria and fungi. We show how biophysical analyses of single-live-cell/single-target encounters are revealing universal principles of immune-cell phagocytosis, while also dispelling misconceptions about the minimum required mechanistic determinants of this process. PMID:26244729

  11. Genetic and antigenic typing of border disease virus (BDV) isolates from Italy reveals the existence of a novel BDV group.

    PubMed

    Giammarioli, Monica; La Rocca, Severina Anna; Steinbach, Falko; Casciari, Cristina; De Mia, Gian Mario

    2011-01-27

    Border disease virus belongs to the Pestivirus genus, within the family Flaviviridae. Genetic analysis of pestiviruses isolated from sheep in continental Europe have led to the proposal that BDV isolates are segregated into at least seven clusters. In 2005 the molecular analysis of an Italian caprine BDV strain provided evidence for the presence of an atypical pestivirus, which may represent the first member of a putative novel pestivirus sub-group. To further build on this study, ovine pestivirus strains were isolated from small ruminant flocks and characterized both genetically and antigenically. A defined section of the 5'UTR and the complete N(pro) coding region were amplified and used for phylogenetic analysis. This revealed that these pestiviruses belong to the BDV species but differed significantly from all previously described ovine pestiviruses providing evidence for the presence of a novel genetic group. Four of the five isolates were also typed antigenically with a panel of pestivirus specific mAbs directed against NS2/3, E(rns) and E2 proteins. The four isolates reacted with a distinct set of mAbs, in particular against the BDV-E2 and the BDV-E(rns) epitopes. The isolates were greatly reactive for E(rns) and NS2/3 mAbs, which are otherwise typical for BVDV-2, and one E2 mAb that typically stains BVDV-1. The Italian pestiviruses analysed in this study, according to their antigenic and genetic properties, clustered into a novel phylogenetic group, that we propose to term BDV-7. PMID:20656426

  12. Crustal S-wave structure beneath Eastern Black Sea Region revealed by Rayleigh-wave group velocities

    NASA Astrophysics Data System (ADS)

    Çınar, Hakan; Alkan, Hamdi

    2016-01-01

    In this study, the crustal S-wave structure beneath the Eastern Black Sea Region (including the Eastern Black Sea Basin (EBSB) and Eastern Pontides (EP)) has been revealed using inversion of single-station, fundamental-mode Rayleigh-wave group velocities in the period range of 4-40 seconds. We used digital broadband recordings of 13 regional earthquakes that recently occurred in the easternmost EBSB recorded at stations of the Kandilli Observatory and Earthquake Research Institute (KOERI). The average group-velocity-dispersion curves were generated from 26 paths for the EBSB, and 16 paths for the EP, and they were inverted to determine the average 1-D shear-wave structure of the region. We have created a pseudo-section, roughly depicting the crustal structure of the region based on the group velocity inversion results of all station-earthquake paths. The thickness of the sedimentary layer reaches 12 km in the center of EBSB (Vs = 2.5-3.1 km/s) and decreases 4 km in the EP. There is a thin sedimentary layer in the EP (Vs = 2.7 km/s). A consolidated thin crust that exists in the EBSB possesses a high seismic velocity (Vs = 3.8 km/s). While a thin (∼26 km) and transitional crust exists beneath the EBSB, a thick (about 42 km) continental crust exists beneath the EP where the Conrad is clearly seen at about a 24 km depth. Thick continental crust in the EP region is clearly distinguished from a gradational velocity change (Vs = 3.4-3.8 km/s). The Moho dips approximately southwards, and the Vs velocity (4.25-4.15 km/s) beneath the Moho discontinuity decreases from the EBSB to the EP in the N-S direction. This may be an indication of a southward subduction.

  13. Different Cell Viability Assays Reveal Inconsistent Results After Bleomycin Electrotransfer In Vitro.

    PubMed

    Jakštys, Baltramiejus; Ruzgys, Paulius; Tamošiūnas, Mindaugas; Šatkauskas, Saulius

    2015-10-01

    The aim of this study was to compare different and commonly used cell viability assays after CHO cells treatment with anticancer drug bleomycin (20 nM), high voltage (HV) electric pulses (4 pulses, 1200 V/cm, 100 µs, 1 Hz), and combination of bleomycin and HV electric pulses. Cell viability was measured using clonogenic assay, propidium iodide (PI) assay, MTT assay, and employing flow cytometry modality to precisely count cells in definite volume of the sample (flow cytometry assay). Results showed that although clonogenic cell viability drastically decreased correspondingly to 57 and 3 % after cell treatment either with HV pulses or combination of bleomycin and HV pulses (bleomycin electrotransfer), PI assay performed ~15 min after the treatments indicated nearly 100 % cell viability. MTT assay performed at 6-72 h time points after these treatments revealed that MTT cell viability is highly dependent on evaluation time point and decreased with later evaluation time points. Nevertheless, in comparison to clonogenic cell viability, MTT cell viability after bleomycin electrotransfer at all testing time points was significantly higher. Flow cytometry assay if used at later times, 2-3 days after the treatment, allowed reliable evaluation of cell viability. In overall, our results showed that in order to estimate cell viability after cell treatment with combination of the bleomycin and electroporation the most reliable method is clonogenic assay. Improper use of PI and MTT assays can lead to misinterpretation of the experimental results. PMID:26077843

  14. Production of a recombinant antibody specific for i blood group antigen, a mesenchymal stem cell marker.

    PubMed

    Hirvonen, Tia; Suila, Heli; Tiitinen, Sari; Natunen, Suvi; Laukkanen, Marja-Leena; Kotovuori, Annika; Reinman, Mirka; Satomaa, Tero; Alfthan, Kaija; Laitinen, Saara; Takkinen, Kristiina; Räbinä, Jarkko; Valmu, Leena

    2013-10-01

    Multipotent mesenchymal stem/stromal cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. Panels of functional and phenotypical markers are currently used in characterization of different therapeutic stem cell populations from various sources. The i antigen (linear poly-N-acetyllactosamine) from the Ii blood group system has been suggested as a marker for MSCs derived from umbilical cord blood (UCB). However, there are currently no commercially available antibodies recognizing the i antigen. In the present study, we describe the use of antibody phage display technology to produce recombinant antibodies recognizing a structure from the surface of mesenchymal stem cells. We constructed IgM phage display libraries from the lymphocytes of a donor with an elevated serum anti-i titer. Antibody phage display technology is not dependent on immunization and thus allows the generation of antibodies against poorly immunogenic molecules, such as carbohydrates. Agglutination assays utilizing i antigen-positive red blood cells (RBCs) from UCB revealed six promising single-chain variable fragment (scFv) antibodies, three of which recognized epitopes from the surface of UCB-MSCs in flow cytometric assays. The amino acid sequence of the VH gene segment of B12.2 scFv was highly similar to the VH4.21 gene segment required to encode anti-i specificities. Further characterization of binding properties revealed that the binding of B12.2 hyperphage was inhibited by soluble linear lactosamine oligosaccharide. Based on these findings, we suggest that the B12.2 scFv we have generated is a prominent anti-i antibody that recognizes i antigen on the surface of both UCB-MSCs and RBCs. This binder can thus be utilized in UCB-MSC detection and isolation as well as in blood group serology. PMID:24083089

  15. Standardized orthotopic xenografts in zebrafish reveal glioma cell-line-specific characteristics and tumor cell heterogeneity

    PubMed Central

    Welker, Alessandra M.; Jaros, Brian D.; Puduvalli, Vinay K.; Imitola, Jaime; Kaur, Balveen; Beattie, Christine E.

    2016-01-01

    ABSTRACT Glioblastoma (GBM) is a deadly brain cancer, for which few effective drug treatments are available. Several studies have used zebrafish models to study GBM, but a standardized approach to modeling GBM in zebrafish was lacking to date, preventing comparison of data across studies. Here, we describe a new, standardized orthotopic xenotransplant model of GBM in zebrafish. Dose-response survival assays were used to define the optimal number of cells for tumor formation. Techniques to measure tumor burden and cell spread within the brain over real time were optimized using mouse neural stem cells as control transplants. Applying this standardized approach, we transplanted two patient-derived GBM cell lines, serum-grown adherent cells and neurospheres, into the midbrain region of embryonic zebrafish and analyzed transplanted larvae over time. Progressive brain tumor growth and premature larval death were observed using both cell lines; however, fewer transplanted neurosphere cells were needed for tumor growth and lethality. Tumors were heterogeneous, containing both cells expressing stem cell markers and cells expressing markers of differentiation. A small proportion of transplanted neurosphere cells expressed glial fibrillary acidic protein (GFAP) or vimentin, markers of more differentiated cells, but this number increased significantly during tumor growth, indicating that these cells undergo differentiation in vivo. By contrast, most serum-grown adherent cells expressed GFAP and vimentin at the earliest times examined post-transplant. Both cell types produced brain tumors that contained Sox2+ cells, indicative of tumor stem cells. Transplanted larvae were treated with currently used GBM therapeutics, temozolomide or bortezomib, and this resulted in a reduction in tumor volume in vivo and an increase in survival. The standardized model reported here facilitates robust and reproducible analysis of glioblastoma tumor cells in real time and provides a platform for

  16. Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death

    PubMed Central

    2016-01-01

    Little is known about the regulation of nonapoptotic cell death. Using massive insertional mutagenesis of haploid KBM7 cells we identified nine genes involved in small-molecule-induced nonapoptotic cell death, including mediators of fatty acid metabolism (ACSL4) and lipid remodeling (LPCAT3) in ferroptosis. One novel compound, CIL56, triggered cell death dependent upon the rate-limiting de novo lipid synthetic enzyme ACC1. These results provide insight into the genetic regulation of cell death and highlight the central role of lipid metabolism in nonapoptotic cell death. PMID:25965523

  17. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves.

    PubMed

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-05-01

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions. PMID:25954881

  18. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves

    PubMed Central

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-01-01

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions. PMID:25954881

  19. Group A Streptococcus Modulates Host Inflammation by Manipulating Polymorphonuclear Leukocyte Cell Death Responses.

    PubMed

    Tsatsaronis, James A; Ly, Diane; Pupovac, Aleta; Goldmann, Oliver; Rohde, Manfred; Taylor, Jude M; Walker, Mark J; Medina, Eva; Sanderson-Smith, Martina L

    2015-01-01

    Polymorphonuclear leukocyte (PMN) cell death strongly influences the resolution of inflammatory episodes, and may exacerbate adverse pathologies in response to infection. We investigated PMN cell death mechanisms following infection by virulent group A Streptococcus (GAS). Human PMNs were infected in vitro with a clinical, virulent GAS isolate and an avirulent derivative strain, and compared for phagocytosis, the production of reactive oxygen species (ROS), mitochondrial membrane depolarization and apoptotic markers. C57BL/6J mice were then infected, in order to observe the effects on murine PMNs in vivo. Human PMNs phagocytosed virulent GAS less efficiently, produced less ROS and underwent reduced mitochondrial membrane depolarization compared with phagocytosis of avirulent GAS. Morphological and biochemical analyses revealed that PMNs infected with avirulent GAS exhibited nuclear fragmentation and caspase-3 activation consistent with an anti-inflammatory apoptotic phenotype. Conversely, virulent GAS induced PMN vacuolization and plasma membrane permeabilization, leading to a necrotic form of cell death. Infection of the mice with virulent GAS engendered significantly higher systemic pro-inflammatory cytokine release and localized infiltration of murine PMNs, with cells associated with virulent GAS infection exhibiting reduced apoptotic potential. Avirulent GAS infection was associated with lower levels of proinflammatory cytokines and tissue PMN apoptosis. We propose that the differences in PMN cell death mechanisms influence the inflammatory responses to infection by GAS. PMID:25997401

  20. Optomechanical properties of cancer cells revealed by light-induced deformation and quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Budde, Björn; Isbach, Michael; Rommel, Christina; Kemper, Björn; Schnekenburger, Jürgen

    2015-05-01

    There is a growing interest in cell biology and clinical diagnostics in label-free, optical techniques as the interaction with the sample is minimized and substances like dyes or fixatives do not affect the investigated cells. Such techniques include digital holographic microscopy (DHM) and the optical stretching by fiber optical two beam traps. DHM enables quantitative phase contrast imaging and thereby the determination of the cellular refractive index, dry mass and the volume, whereas optical cell stretching reveals the deformability of cells. Since optical stretching strongly depends on the optical properties and the shape of the investigated material we combined the usage of fiber optical stretching and DHM for the characterization of pancreatic tumor cells. The risk of tumors is their potential to metastasize, spread through the bloodstream and build distal tumors/metastases. The grade of dedifferentiation in which the cells lose their cell type specific properties is a measure for this metastatic potential. The less differentiated the cells are, the higher is their risk to metastasize. Our results demonstrate that pancreatic tumor cells, which are from the same tumor but vary in their grade of differentiation, show significant differences in their deformability. The retrieved data show that differentiated cells have a higher stiffness than less differentiated cells of the same tumor. Even cells that differ only in the expression of a single tumor suppressor gene which is responsible for cell-cell adhesions can be distinguished by their mechanical properties. Additionally, results from DHM measurements yield that the refractive index shows only few variations, indicating that it does not significantly influence optical cell stretching. The obtained results show a promising new approach for the phenotyping of different cell types, especially in tumor cell characterization and cancer diagnostics.

  1. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells.

    PubMed

    Curto, Pedro; Simões, Isaura; Riley, Sean P; Martinez, Juan J

    2016-01-01

    Spotted fever group (SFG) rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (Rickettsia conorii) and Rocky Mountain spotted fever (Rickettsia rickettsii). Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen) and Rickettsia montanensis (a non-virulent member of SFG) to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated

  2. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells

    PubMed Central

    Curto, Pedro; Simões, Isaura; Riley, Sean P.; Martinez, Juan J.

    2016-01-01

    Spotted fever group (SFG) rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (Rickettsia conorii) and Rocky Mountain spotted fever (Rickettsia rickettsii). Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen) and Rickettsia montanensis (a non-virulent member of SFG) to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated

  3. Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity

    PubMed Central

    Flood, Beverly E.; Fliss, Palmer; Jones, Daniel S.; Dick, Gregory J.; Jain, Sunit; Kaster, Anne-Kristin; Winkel, Matthias; Mußmann, Marc; Bailey, Jake

    2016-01-01

    The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group

  4. Clonal Dynamics Reveal Two Distinct Populations of Basal Cells in Slow-Turnover Airway Epithelium

    PubMed Central

    Watson, Julie K.; Rulands, Steffen; Wilkinson, Adam C.; Wuidart, Aline; Ousset, Marielle; Van Keymeulen, Alexandra; Göttgens, Berthold; Blanpain, Cédric; Simons, Benjamin D.; Rawlins, Emma L.

    2015-01-01

    Summary Epithelial lineages have been studied at cellular resolution in multiple organs that turn over rapidly. However, many epithelia, including those of the lung, liver, pancreas, and prostate, turn over slowly and may be regulated differently. We investigated the mouse tracheal epithelial lineage at homeostasis by using long-term clonal analysis and mathematical modeling. This pseudostratified epithelium contains basal cells and secretory and multiciliated luminal cells. Our analysis revealed that basal cells are heterogeneous, comprising approximately equal numbers of multipotent stem cells and committed precursors, which persist in the basal layer for 11 days before differentiating to luminal fate. We confirmed the molecular and functional differences within the basal population by using single-cell qRT-PCR and further lineage labeling. Additionally, we show that self-renewal of short-lived secretory cells is a feature of homeostasis. We have thus revealed early luminal commitment of cells that are morphologically indistinguishable from stem cells. PMID:26119728

  5. Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns.

    PubMed

    Arcinas, Arthur; Yen, Ten-Yang; Kebebew, Electron; Macher, Bruce A

    2009-08-01

    Cell surface proteins have been shown to be effective therapeutic targets. In addition, shed forms of these proteins and secreted proteins can serve as biomarkers for diseases, including cancer. Thus, identification of cell surface and secreted proteins has been a prime area of interest in the proteomics field. Most cell surface and secreted proteins are known to be glycosylated, and therefore, a proteomics strategy targeting these proteins was applied to obtain proteomic profiles from various thyroid cancer cell lines that represent the range of thyroid cancers of follicular cell origin. In this study, we oxidized the carbohydrates of secreted proteins and those on the cell surface with periodate and isolated them via covalent coupling to hydrazide resin. The glycoproteins obtained were identified from tryptic peptides and N-linked glycopeptides released from the hydrazide resin using two-dimensional liquid chromatography-tandem mass spectrometry in combination with the gas phase fractionation. Thyroid cancer cell lines derived from papillary thyroid cancer (TPC-1), follicular thyroid cancer (FTC-133), Hurthle cell carcinoma (XTC-1), and anaplastic thyroid cancer (ARO and DRO-1) were evaluated. An average of 150 glycoproteins were identified per cell line, of which more than 57% are known cell surface or secreted glycoproteins. The usefulness of the approach for identifying thyroid cancer associated biomarkers was validated by the identification of glycoproteins (e.g., CD44, galectin 3 and metalloproteinase inhibitor 1) that have been found to be useful markers for thyroid cancer. In addition to glycoproteins that are commonly expressed by all of the cell lines, we identified others that are only expressed in the more well-differentiated thyroid cancer cell lines (follicular, Hurthle cell and papillary), or by cell lines derived from undifferentiated tumors that are uniformly fatal forms of thyroid cancer (i.e., anaplastic). On the basis of the results obtained, a

  6. Mesopontine organization of cholinergic and catecholaminergic cell groups in the normal and narcoleptic dog.

    PubMed

    Tafti, M; Nishino, S; Liao, W; Dement, W C; Mignot, E

    1997-03-10

    Canine narcolepsy is a unique experimental model of a human sleep disorder characterized by excessive daytime sleepiness and cataplexy. There is a consensus recognition of an imbalance between cholinergic and catecholaminergic systems in narcolepsy although the underlying mechanisms remain poorly understood. Possible substrates could be an abnormal organization, numbers and/or ratio of cholinergic to catecholaminergic cells in the brain of narcoleptic dogs. Therefore, we sought to characterize the corresponding neuronal populations in normal and narcoleptic dogs (Doberman Pinscher) by using choline acetyltransferase (ChAT), nicotinamide adenosine dinucleotide phosphate (NADPH)-diaphorase, tyrosine hydroxylase (TH), and dopamine beta-hydroxylase (DBH). Cholinergic cell groups were found in an area extending from the central to the gigantocellular tegmental field and the periventricular gray corresponding to the pedunculopontine tegmental nucleus (PPT), the laterodorsal tegmental nucleus (LDT), and the parabrachial nucleus. An almost perfect co-localization of ChAT and NADPH-diaphorase was also observed. Catecholaminergic cell groups detected included the ventral tegmental area, the substantia nigra, and the locus coeruleus nucleus (LC). The anatomical distribution of catecholaminergic neurons was unusual in the dog in two important aspects: i) TH- and/or DBH-immunoreactive neurons of the LC were found almost exclusively in the reticular formation and not within the periventricular gray, ii) very few, if any TH-positive neurons were found in the central gray and dorsal raphe. Quantitative analysis did not reveal any significant differences in the organization and the number of cells identified in the LDT, PPT, and LC of normal and narcoleptic dogs. Moreover, the cholinergic to catecholaminergic ratio was found identical in the two groups. In conclusion, the present results do not support the hypothesis that the neurochemical imbalance in narcolepsy could result from

  7. Maturation of adult beta-cells revealed using a Pdx1/insulin dual-reporter lentivirus.

    PubMed

    Szabat, Marta; Luciani, Dan S; Piret, James M; Johnson, James D

    2009-04-01

    The enigmatic process of beta-cell maturation has significant implications for diabetes pathogenesis, and potential diabetes therapies. This study examined the dynamics and heterogeneity of insulin and pancreatic duodenal homeobox (Pdx)-1 gene expression in adult beta-cells. Insulin and Pdx1 expression were monitored in human and mouse islet cells and MIN6 cells using a Pdx1-monomeric red fluorescent protein/insulin-enhanced green fluorescent protein dual-reporter lentivirus. The majority of fluorescent cells were highly positive for both Pdx1 and insulin. Cells expressing Pdx1 but little or no insulin (Pdx1(+)/Ins(low)) comprised 15-25% of the total population. Time-lapse imaging demonstrated that Pdx1(+)/Ins(low) primary beta-cells and MIN6 cells could convert to Pdx1(+)/Ins(+) cells without cell division. Genes involved in the mature beta-cell phenotype (Glut2, MafA) were expressed at higher levels in Pdx1(+)/Ins(+) cells relative to Pdx1(+)/Ins(low) cells. Conversely, genes implicated in early beta-cell development (MafB, Nkx2.2) were enriched in Pdx1(+)/Ins(low) cells. Sorted Pdx1(+)/Ins(low) MIN6 cells had a higher replication rate and secreted less insulin relative to double-positive cells. Long-term phenotype tracking of Pdx1(+)/Ins(low) cells showed two groups, one that matured into Pdx1(+)/Ins(+) cells and one that remained immature. These results demonstrate that adult beta-cells pass through distinct maturation states, which is consistent with previously observed heterogeneity in insulin and Pdx1 expression in adult beta-cells. At a given time, a proportion of adult beta-cells share similar characteristics to functionally immature embryonic beta-cell progenitors. The maturation of adult beta-cells recapitulates development in that Pdx1 expression precedes the robust expression of insulin and other mature beta-cell genes. These results have implications for harnessing the maturation process for therapeutic purposes. PMID:19095744

  8. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    SciTech Connect

    Resch, Michael G.; Donohoe, Byron; Ciesielski, Peter; Nill, Jennifer; McKinney, Kellene; Mittal, Ashutosh; Katahira, Rui; Himmel, Michael; Biddy, Mary; Beckham, Gregg; Decker, Steve

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution.

  9. Functional interplay between NTP leaving group and base pair recognition during RNA polymerase II nucleotide incorporation revealed by methylene substitution

    PubMed Central

    Hwang, Candy S.; Xu, Liang; Wang, Wei; Ulrich, Sébastien; Zhang, Lu; Chong, Jenny; Shin, Ji Hyun; Huang, Xuhui; Kool, Eric T.; McKenna, Charles E.; Wang, Dong

    2016-01-01

    RNA polymerase II (pol II) utilizes a complex interaction network to select and incorporate correct nucleoside triphosphate (NTP) substrates with high efficiency and fidelity. Our previous ‘synthetic nucleic acid substitution’ strategy has been successfully applied in dissecting the function of nucleic acid moieties in pol II transcription. However, how the triphosphate moiety of substrate influences the rate of P-O bond cleavage and formation during nucleotide incorporation is still unclear. Here, by employing β,γ-bridging atom-‘substituted’ NTPs, we elucidate how the methylene substitution in the pyrophosphate leaving group affects cognate and non-cognate nucleotide incorporation. Intriguingly, the effect of the β,γ-methylene substitution on the non-cognate UTP/dT scaffold (∼3-fold decrease in kpol) is significantly different from that of the cognate ATP/dT scaffold (∼130-fold decrease in kpol). Removal of the wobble hydrogen bonds in U:dT recovers a strong response to methylene substitution of UTP. Our kinetic and modeling studies are consistent with a unique altered transition state for bond formation and cleavage for UTP/dT incorporation compared with ATP/dT incorporation. Collectively, our data reveals the functional interplay between NTP triphosphate moiety and base pair hydrogen bonding recognition during nucleotide incorporation. PMID:27060150

  10. Genome-Wide Analysis of Group A Streptococci Reveals a Mutation That Modulates Global Phenotype and Disease Specificity

    PubMed Central

    2006-01-01

    Many human pathogens produce phenotypic variants as a means to circumvent the host immune system and enhance survival and, as a potential consequence, exhibit increased virulence. For example, it has been known for almost 90 y that clinical isolates of the human bacterial pathogen group A streptococci (GAS) have extensive phenotypic heterogeneity linked to variation in virulence. However, the complete underlying molecular mechanism(s) have not been defined. Expression microarray analysis of nine clinical isolates identified two fundamentally different transcriptomes, designated pharyngeal transcriptome profile (PTP) and invasive transcriptome profile (ITP). PTP and ITP GAS differed in approximately 10% of the transcriptome, including at least 23 proven or putative virulence factor genes. ITP organisms were recovered from skin lesions of mice infected subcutaneously with PTP GAS and were significantly more able to survive phagocytosis and killing by human polymorphonuclear leukocytes. Complete genome resequencing of a mouse-derived ITP GAS revealed that the organism differed from its precursor by only a 7-bp frameshift mutation in the gene (covS) encoding the sensor kinase component of a two-component signal transduction system implicated in virulence. Genetic complementation, and sequence analysis of covR/S in 42 GAS isolates confirmed the central role of covR/S in transcriptome, exoproteome, and virulence modulation. Genome-wide analysis provides a heretofore unattained understanding of phenotypic variation and disease specificity in microbial pathogens, resulting in new avenues for vaccine and therapeutics research. PMID:16446783

  11. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape

    PubMed Central

    Li, Qin; Wennborg, Anders; Aurell, Erik; Dekel, Erez; Zou, Jie-Zhi; Xu, Yuting; Huang, Sui; Ernberg, Ingemar

    2016-01-01

    The observed intercellular heterogeneity within a clonal cell population can be mapped as dynamical states clustered around an attractor point in gene expression space, owing to a balance between homeostatic forces and stochastic fluctuations. These dynamics have led to the cancer cell attractor conceptual model, with implications for both carcinogenesis and new therapeutic concepts. Immortalized and malignant EBV-carrying B-cell lines were used to explore this model and characterize the detailed structure of cell attractors. Any subpopulation selected from a population of cells repopulated the whole original basin of attraction within days to weeks. Cells at the basin edges were unstable and prone to apoptosis. Cells continuously changed states within their own attractor, thus driving the repopulation, as shown by fluorescent dye tracing. Perturbations of key regulatory genes induced a jump to a nearby attractor. Using the Fokker–Planck equation, this cell population behavior could be described as two virtual, opposing influences on the cells: one attracting toward the center and the other promoting diffusion in state space (noise). Transcriptome analysis suggests that these forces result from high-dimensional dynamics of the gene regulatory network. We propose that they can be generalized to all cancer cell populations and represent intrinsic behaviors of tumors, offering a previously unidentified characteristic for studying cancer. PMID:26929366

  12. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape.

    PubMed

    Li, Qin; Wennborg, Anders; Aurell, Erik; Dekel, Erez; Zou, Jie-Zhi; Xu, Yuting; Huang, Sui; Ernberg, Ingemar

    2016-03-01

    The observed intercellular heterogeneity within a clonal cell population can be mapped as dynamical states clustered around an attractor point in gene expression space, owing to a balance between homeostatic forces and stochastic fluctuations. These dynamics have led to the cancer cell attractor conceptual model, with implications for both carcinogenesis and new therapeutic concepts. Immortalized and malignant EBV-carrying B-cell lines were used to explore this model and characterize the detailed structure of cell attractors. Any subpopulation selected from a population of cells repopulated the whole original basin of attraction within days to weeks. Cells at the basin edges were unstable and prone to apoptosis. Cells continuously changed states within their own attractor, thus driving the repopulation, as shown by fluorescent dye tracing. Perturbations of key regulatory genes induced a jump to a nearby attractor. Using the Fokker-Planck equation, this cell population behavior could be described as two virtual, opposing influences on the cells: one attracting toward the center and the other promoting diffusion in state space (noise). Transcriptome analysis suggests that these forces result from high-dimensional dynamics of the gene regulatory network. We propose that they can be generalized to all cancer cell populations and represent intrinsic behaviors of tumors, offering a previously unidentified characteristic for studying cancer. PMID:26929366

  13. Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene

    PubMed Central

    Yaworsky, Paul J.; Kappen, Claudia

    2014-01-01

    Using transgenic embryos, we have identified two distinct CNS progenitor cell-specific enhancers, each requiring the cooperation of at least two independent regulatory sites, within the second intron of the rat nestin gene. One enhancer is active throughout the developing CNS while the other is specifically active in the ventral midbrain. These experiments demonstrate that neural progenitor cells in the midbrain constitute a unique subpopulation based upon their ability to activate the midbrain regulatory elements. Our finding of differential enhancer activity from a gene encoding a structural protein reveals a previously unrecognized diversity in neural progenitor cell populations. PMID:9917366

  14. Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling

    PubMed Central

    Geoghegan, Vincent; Guo, Ailan; Trudgian, David; Thomas, Benjamin; Acuto, Oreste

    2015-01-01

    The impact of protein arginine methylation on the regulation of immune functions is virtually unknown. Here, we apply a novel method—isomethionine methyl-SILAC—coupled with antibody-mediated arginine-methylated peptide enrichment to identify methylated peptides in human T cells by mass spectrometry. This approach allowed the identification of 2,502 arginine methylation sites from 1,257 tissue-specific and housekeeping proteins. We find that components of T cell antigen receptor signal machinery and several key transcription factors that regulate T cell fate determination are methylated on arginine. Moreover, we demonstrate changes in arginine methylation stoichiometry during cellular stimulation in a subset of proteins critical to T cell differentiation. Our data suggest that protein arginine methyltransferases exert key regulatory roles in T cell activation and differentiation, opening a new field of investigation in T cell biology. PMID:25849564

  15. An efficient method that reveals both the dendrites and the soma mosaics of retinal ganglion cells.

    PubMed

    Zhan, X J; Troy, J B

    1997-03-01

    A method of using neurobiotin to stain both the dendrites and the soma mosaics of retinal ganglion cells in fresh retinae is described. This method is simple to use and efficient in revealing morphological details for a large number of retinal ganglion cells. It has five advantages over currently available staining methods. (1) It stains all ganglion cells in the whole retina or in a selected retinal area, permitting ganglion cell distributions across the retina to be obtained. (2) It reveals cell dendrites in great detail, especially in regions outside the area centralis. The dendritic field mosaics and, therefore the dendritic field coverage factors, of different ganglion cell types across the whole retina can be obtained easily. (3) It works reliably, efficiently, and does not require the expensive set-up or the pains-taking work needed when staining cells through intracellular injection. (4) It works under both in vivo and in vitro settings, permitting the use of retinae from animals sacrificed for other purposes and the use of postmortem human retinae. (5) The end product of the visualization process is optically dark and electron dense, permitting specimens to be examined under both light and electron microscopes. PMID:9128174

  16. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers

    PubMed Central

    Castellano, Giancarlo; Pascual, Marien; Heath, Simon; Kulis, Marta; Segura, Victor; Bergmann, Anke; Esteve, Anna; Merkel, Angelika; Raineri, Emanuele; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Russiñol, Nuria; Queirós, Ana C.; Beekman, Renée; Rodríguez-Madoz, Juan R.; José-Enériz, Edurne San; Fang, Fang; Gutiérrez, Norma C.; García-Verdugo, José M.; Robson, Michael I.; Schirmer, Eric C.; Guruceaga, Elisabeth; Martens, Joost H.A.; Gut, Marta; Calasanz, Maria J.; Flicek, Paul; Siebert, Reiner; Campo, Elías; Miguel, Jesús F. San; Melnick, Ari; Stunnenberg, Hendrik G.; Gut, Ivo G.

    2015-01-01

    While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM. PMID:25644835

  17. Genome-wide analysis of Musashi-2 targets reveals novel functions in governing epithelial cell migration

    PubMed Central

    Bennett, Christopher G.; Riemondy, Kent; Chapnick, Douglas A.; Bunker, Eric; Liu, Xuedong; Kuersten, Scott; Yi, Rui

    2016-01-01

    The Musashi-2 (Msi2) RNA-binding protein maintains stem cell self-renewal and promotes oncogenesis by enhancing cell proliferation in hematopoietic and gastrointestinal tissues. However, it is unclear how Msi2 recognizes and regulates mRNA targets in vivo and whether Msi2 primarily controls cell growth in all cell types. Here we identified Msi2 targets with HITS-CLIP and revealed that Msi2 primarily recognizes mRNA 3′UTRs at sites enriched in multiple copies of UAG motifs in epithelial progenitor cells. RNA-seq and ribosome profiling demonstrated that Msi2 promotes targeted mRNA decay without affecting translation efficiency. Unexpectedly, the most prominent Msi2 targets identified are key regulators that govern cell motility with a high enrichment in focal adhesion and extracellular matrix-receptor interaction, in addition to regulators of cell growth and survival. Loss of Msi2 stimulates epithelial cell migration, increases the number of focal adhesions and also compromises cell growth. These findings provide new insights into the molecular mechanisms of Msi2's recognition and repression of targets and uncover a key function of Msi2 in restricting epithelial cell migration. PMID:27034466

  18. An optimized isolation of biotinylated cell surface proteins reveals novel players in cancer metastasis

    PubMed Central

    Karhemo, Piia-Riitta; Ravela, Suvi; Laakso, Marko; Ritamo, Ilja; Tatti, Olga; Mäkinen, Selina; Goodison, Steve; Stenman, Ulf-Håkan; Hölttä, Erkki; Hautaniemi, Sampsa; Valmu, Leena; Lehti, Kaisa; Laakkonen, Pirjo

    2012-01-01

    Details of metastasis, the deadliest aspect of cancer, are unclear. Cell surface proteins play central roles in adhesive contacts between the tumor cell and the stroma during metastasis. We optimized a fast, small-scale isolation of biotinylated cell surface proteins to reveal novel metastasis-associated players froman isogenic pair of human MDA-MB-435 cancer cells with opposite metastatic phenotypes. Isolated proteins were trypsin digested and analyzed using LC–MS/MS followed by quantitation with the Progenesis LC–MS software. Sixteen proteins displayed over twofold expression differences between the metastatic and non-metastatic cells. Interestingly, overexpression of most of them (14/16) in the metastatic cells indicates a gain of novel surface protein profile as compared to the non-metastatic one. All five validated, differentially expressed proteins showed higher expression in the metastatic cells in culture, and four of these were further validated in vivo. Moreover, we analyzed the expression of two of the identified proteins, CD109 and ITGA6 in 3-dimensional cultures of six melanoma cell lines. Both proteins marked the surface of cells derived from melanoma metastasis over cells derived from primary melanoma. These unbiased identification and validation of both known and novel metastasis-associated proteins indicate a reliable approach for the identification of differentially expressed surface proteins. PMID:22813880

  19. Genetically Induced Cell Death in Bulge Stem Cells Reveals Their Redundancy for Hair and Epidermal Regeneration

    PubMed Central

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2015-01-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent. Stem Cells 2015;33:988–998 PMID:25447755

  20. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response

    PubMed Central

    Feinerman, Ofer; Jentsch, Garrit; Tkach, Karen E; Coward, Jesse W; Hathorn, Matthew M; Sneddon, Michael W; Emonet, Thierry; Smith, Kendall A; Altan-Bonnet, Grégoire

    2010-01-01

    Understanding how the immune system decides between tolerance and activation by antigens requires addressing cytokine regulation as a highly dynamic process. We quantified the dynamics of interleukin-2 (IL-2) signaling in a population of T cells during an immune response by combining in silico modeling and single-cell measurements in vitro. We demonstrate that IL-2 receptor expression levels vary widely among T cells creating a large variability in the ability of the individual cells to consume, produce and participate in IL-2 signaling within the population. Our model reveals that at the population level, these heterogeneous cells are engaged in a tug-of-war for IL-2 between regulatory (Treg) and effector (Teff) T cells, whereby access to IL-2 can either increase the survival of Teff cells or the suppressive capacity of Treg cells. This tug-of-war is the mechanism enforcing, at the systems level, a core function of Treg cells, namely the specific suppression of survival signals for weakly activated Teff cells but not for strongly activated cells. Our integrated model yields quantitative, experimentally validated predictions for the manipulation of Treg suppression. PMID:21119631

  1. Studies in transgenic mice reveal potential relationships between secretin-producing cells and other endocrine cell types.

    PubMed

    Lopez, M J; Upchurch, B H; Rindi, G; Leiter, A B

    1995-01-13

    We have produced transgenic mice expressing fusion genes consisting of 1.6 kilobase pairs of the secretin gene 5' flanking region to direct the expression of human growth hormone (hGH) or simian virus 40 large T antigen to secretin-producing cells. Analysis of different mouse tissues for hGH transcripts revealed expression in each of the major secretin-producing tissues, namely the intestine and endocrine pancrease. Multiple label immunohistochemistry demonstrated that the transgene was correctly directed to secretin cells in the intestinal tract, including a previously unrecognized population of secretin cells in the colon of adult and developing mice. In the small intestine, subpopulations of hGH-containing cells frequently coexpressed substance P, serotonin, and cholecystokinin, whereas in the colon, cells expressing hGH frequently coexpressed glucagon, peptide YY, or neurotensin. Transgenic mice expressing large T antigen in secretin cells developed poorly differentiated neuroendocrine tumors of the small intestine, well differentiated colonic tumors containing glucagon-expressing cells, and insulin-producing tumors in pancreas. These studies indicate that the major cis-regulatory sequences necessary for secretin expression in enteroendocrine cells and fetal islets are localized with 1.6 kilobase pairs of the transcriptional start site. Coexpression of reporter transgenes with several gastrointestinal hormones suggests a potential relationships between secretin cells and other enteroendocrine cell types, as well as pancreatic beta cells. PMID:7822327

  2. Antibody repertoire deep sequencing reveals antigen-independent selection in maturing B cells

    PubMed Central

    Kaplinsky, Joseph; Li, Anthony; Sun, Amy; Coffre, Maryaline; Koralov, Sergei B.; Arnaout, Ramy

    2014-01-01

    Antibody repertoires are known to be shaped by selection for antigen binding. Unexpectedly, we now show that selection also acts on a non–antigen-binding antibody region: the heavy-chain variable (VH)–encoded “elbow” between variable and constant domains. By sequencing 2.8 million recombined heavy-chain genes from immature and mature B-cell subsets in mice, we demonstrate a striking gradient in VH gene use as pre-B cells mature into follicular and then into marginal zone B cells. Cells whose antibodies use VH genes that encode a more flexible elbow are more likely to mature. This effect is distinct from, and exceeds in magnitude, previously described maturation-associated changes in heavy-chain complementarity determining region 3, a key antigen-binding region, which arise from junctional diversity rather than differential VH gene use. Thus, deep sequencing reveals a previously unidentified mode of B-cell selection. PMID:24927543

  3. Heterogeneity of Mesp1+ mesoderm revealed by single-cell RNA-seq.

    PubMed

    Chan, Sunny Sun-Kin; Chan, Howe H W; Kyba, Michael

    2016-06-01

    Mesp1 is a transcription factor that promotes differentiation of pluripotent cells into different mesoderm lineages including hematopoietic, cardiac and skeletal myogenic. This occurs via at least two transient cell populations: a common hematopoietic/cardiac progenitor population and a common cardiac/skeletal myogenic progenitor population. It is not established whether Mesp1-induced mesoderm cells are intrinsically heterogeneous, or are simply capable of multiple lineage decisions. In the current study, we applied single-cell RNA-seq to analyze Mesp1+ mesoderm. Initial whole transcriptome analysis showed a surprising homogeneity among Mesp1-induced mesoderm cells. However, this apparent global homogeneity masked an intrinsic heterogeneity revealed by interrogating a panel of early mesoderm patterning factors. This approach enabled discovery of subpopulations primed for hematopoietic or cardiac development. These studies demonstrate the heterogeneic nature of Mesp1+ mesoderm. PMID:27131741

  4. Single cell mass cytometry reveals remodeling of human T cell phenotypes by varicella zoster virus.

    PubMed

    Sen, Nandini; Mukherjee, Gourab; Arvin, Ann M

    2015-11-15

    The recent application of mass cytometry (CyTOF) to biology provides a 'systems' approach to monitor concurrent changes in multiple host cell factors at the single cell level. We used CyTOF to evaluate T cells infected with varicella zoster virus (VZV) infection, documenting virus-mediated phenotypic and functional changes caused by this T cell tropic human herpesvirus. Here we summarize our findings using two complementary panels of antibodies against surface and intracellular signaling proteins to elucidate the consequences of VZV-mediated perturbations on the surface and in signaling networks of infected T cells. CyTOF data was analyzed by several statistical, analytical and visualization tools including hierarchical clustering, orthogonal scaling, SPADE, viSNE, and SLIDE. Data from the mass cytometry studies demonstrated that VZV infection led to 'remodeling' of the surface architecture of T cells, promoting skin trafficking phenotypes and associated with concomitant activation of T-cell receptor and PI3-kinase pathways. This method offers a novel approach for understanding viral interactions with differentiated host cells important for pathogenesis. PMID:26213183

  5. Cancer cell(s) cycle sequencing reveals universal mechanisms of apoptosis.

    PubMed

    Marretta, R M Ardito; Ales, F

    2010-12-01

    In this paper, cell cycle in higher eukaryotes and their molecular networks signals both in G1/S and G2/M transitions are replicated in silico. Biochemical kinetics, converted into a set of differential equations, and system control theory are employed to design multi-nested digital layers to simulate protein-to-protein activation and inhibition for cell cycle dynamics in the presence of damaged genomes. Sequencing and controlling the digital process of four micro-scale species networks (p53/Mdm2/DNA damage, p21mRNA/cyclin-CDK complex, CDK/CDC25/weel/SKP2/APC/CKI and apoptosis target genes system) not only allows the comprehension of the mechanisms of these molecule interactions but paves the way for unraveling the participants and their by-products, until now quite unclear, which have the task of carrying out (or not) cell death. Whatever the running simulations (e.g., different species signals, mutant cells and different DNA damage levels), the results of the proposed cell digital multi-layers give reason to believe in the existence of a universal apoptotic mechanism. As a consequence, we identified and selected cell check points, sizers, timers and specific target genes dynamic both for influencing mitotic process and avoiding cancer proliferation as much as for leading the cancer cell(s) to collapse into a steady stable apoptosis phase. PMID:21141676

  6. Necrotic enlargement of cone photoreceptor cells and the release of high-mobility group box-1 in retinitis pigmentosa

    PubMed Central

    Murakami, Y; Ikeda, Y; Nakatake, S; Tachibana, T; Fujiwara, K; Yoshida, N; Notomi, S; Nakao, S; Hisatomi, T; Miller, J W; Vavvas, DG; Sonoda, KH; Ishibashi, T

    2015-01-01

    Retinitis pigmentosa (RP) refers to a group of inherited retinal degenerations resulting form rod and cone photoreceptor cell death. The rod cell death due to deleterious genetic mutations has been shown to occur mainly through apoptosis, whereas the mechanisms and features of the secondary cone cell death have not been fully elucidated. Our previous study showed that the cone cell death in rd10 mice, an animal model of RP, involves necrotic features and is partly mediated by the receptor interacting protein kinase. However, the relevancy of necrotic cone cell death in human RP patients remains unknown. In the present study, we showed that dying cone cells in rd10 mice exhibited cellular enlargement, along with necrotic changes such as cellular swelling and mitochondrial rupture. In human eyes, live imaging of cone cells by adaptive optics scanning laser ophthalmoscopy revealed significantly increased percentages of enlarged cone cells in the RP patients compared with the control subjects. The vitreous of the RP patients contained significantly higher levels of high-mobility group box-1, which is released extracellularly associated with necrotic cell death. These findings suggest that necrotic enlargement of cone cells is involved in the process of cone degeneration, and that necrosis may be a novel target to prevent or delay the loss of cone-mediated central vision in RP. PMID:27551484

  7. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry

    PubMed Central

    Horowitz, Amir; Strauss-Albee, Dara M.; Leipold, Michael; Kubo, Jessica; Nemat-Gorgani, Neda; Dogan, Ozge C.; Dekker, Cornelia L.; Mackey, Sally; Maecker, Holden; Swan, Gary E.; Davis, Mark M.; Norman, Paul J.; Guethlein, Lisbeth A.; Desai, Manisha; Parham, Peter; Blish, Catherine A.

    2013-01-01

    Natural Killer (NK) cells play critical roles in immune defense and reproduction, yet remain the most poorly understood major lymphocyte population. Because their activation is controlled by a variety of combinatorially expressed activating and inhibitory receptors, NK cell diversity and function are closely linked. To provide an unprecedented understanding of NK cell repertoire diversity, we used mass cytometry to simultaneously analyze 35 parameters, including 28 NK cell receptors, on peripheral blood NK cells from five sets of monozygotic twins and twelve unrelated donors of defined HLA and killer cell immunoglobulin-like receptor (KIR) genotype. This analysis revealed a remarkable degree of NK cell diversity, with an estimated 6,000-30,000 phenotypic populations within an individual and >100,000 phenotypes in this population. Genetics largely determined inhibitory receptor expression, whereas activation receptor expression was heavily environmentally influenced. Therefore, NK cells may maintain self-tolerance through strictly regulated expression of inhibitory receptors, while using adaptable expression patterns of activating and costimulatory receptors to respond to pathogens and tumors. These findings further suggest the possibility that discrete NK cell subpopulations could be harnessed for immunotherapeutic strategies in the settings of infection, reproduction, and transplantation. PMID:24154599

  8. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    PubMed

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  9. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    PubMed Central

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  10. Single-Cell Analyses of ESCs Reveal Alternative Pluripotent Cell States and Molecular Mechanisms that Control Self-Renewal

    PubMed Central

    Papatsenko, Dmitri; Darr, Henia; Kulakovskiy, Ivan V.; Waghray, Avinash; Makeev, Vsevolod J.; MacArthur, Ben D.; Lemischka, Ihor R.

    2015-01-01

    Summary Analyses of gene expression in single mouse embryonic stem cells (mESCs) cultured in serum and LIF revealed the presence of two distinct cell subpopulations with individual gene expression signatures. Comparisons with published data revealed that cells in the first subpopulation are phenotypically similar to cells isolated from the inner cell mass (ICM). In contrast, cells in the second subpopulation appear to be more mature. Pluripotency Gene Regulatory Network (PGRN) reconstruction based on single-cell data and published data suggested antagonistic roles for Oct4 and Nanog in the maintenance of pluripotency states. Integrated analyses of published genomic binding (ChIP) data strongly supported this observation. Certain target genes alternatively regulated by OCT4 and NANOG, such as Sall4 and Zscan10, feed back into the top hierarchical regulator Oct4. Analyses of such incoherent feedforward loops with feedback (iFFL-FB) suggest a dynamic model for the maintenance of mESC pluripotency and self-renewal. PMID:26267829

  11. Hematopoietic Signaling Mechanism Revealed from a Stem/Progenitor Cell Cistrome.

    PubMed

    Hewitt, Kyle J; Kim, Duk Hyoung; Devadas, Prithvia; Prathibha, Rajalekshmi; Zuo, Chandler; Sanalkumar, Rajendran; Johnson, Kirby D; Kang, Yoon-A; Kim, Jin-Soo; Dewey, Colin N; Keles, Sunduz; Bresnick, Emery H

    2015-07-01

    Thousands of cis-elements in genomes are predicted to have vital functions. Although conservation, activity in surrogate assays, polymorphisms, and disease mutations provide functional clues, deletion from endogenous loci constitutes the gold-standard test. A GATA-2-binding, Gata2 intronic cis-element (+9.5) required for hematopoietic stem cell genesis in mice is mutated in a human immunodeficiency syndrome. Because +9.5 is the only cis-element known to mediate stem cell genesis, we devised a strategy to identify functionally comparable enhancers ("+9.5-like") genome-wide. Gene editing revealed +9.5-like activity to mediate GATA-2 occupancy, chromatin opening, and transcriptional activation. A +9.5-like element resided in Samd14, which encodes a protein of unknown function. Samd14 increased hematopoietic progenitor levels/activity and promoted signaling by a pathway vital for hematopoietic stem/progenitor cell regulation (stem cell factor/c-Kit), and c-Kit rescued Samd14 loss-of-function phenotypes. Thus, the hematopoietic stem/progenitor cell cistrome revealed a mediator of a signaling pathway that has broad importance for stem/progenitor cell biology. PMID:26073540

  12. Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis.

    PubMed

    Shin, Jaehoon; Berg, Daniel A; Zhu, Yunhua; Shin, Joseph Y; Song, Juan; Bonaguidi, Michael A; Enikolopov, Grigori; Nauen, David W; Christian, Kimberly M; Ming, Guo-li; Song, Hongjun

    2015-09-01

    Somatic stem cells contribute to tissue ontogenesis, homeostasis, and regeneration through sequential processes. Systematic molecular analysis of stem cell behavior is challenging because classic approaches cannot resolve cellular heterogeneity or capture developmental dynamics. Here we provide a comprehensive resource of single-cell transcriptomes of adult hippocampal quiescent neural stem cells (qNSCs) and their immediate progeny. We further developed Waterfall, a bioinformatic pipeline, to statistically quantify singe-cell gene expression along a de novo reconstructed continuous developmental trajectory. Our study reveals molecular signatures of adult qNSCs, characterized by active niche signaling integration and low protein translation capacity. Our analyses further delineate molecular cascades underlying qNSC activation and neurogenesis initiation, exemplified by decreased extrinsic signaling capacity, primed translational machinery, and regulatory switches in transcription factors, metabolism, and energy sources. Our study reveals the molecular continuum underlying adult neurogenesis and illustrates how Waterfall can be used for single-cell omics analyses of various continuous biological processes. PMID:26299571

  13. Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells.

    PubMed

    Watson, Bonnie S; Bedair, Mohamed F; Urbanczyk-Wochniak, Ewa; Huhman, David V; Yang, Dong Sik; Allen, Stacy N; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W

    2015-04-01

    Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4'-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4'-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously. PMID:25667316

  14. Integrated Metabolomics and Transcriptomics Reveal Enhanced Specialized Metabolism in Medicago truncatula Root Border Cells1[OPEN

    PubMed Central

    Watson, Bonnie S.; Bedair, Mohamed F.; Urbanczyk-Wochniak, Ewa; Huhman, David V.; Yang, Dong Sik; Allen, Stacy N.; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W.

    2015-01-01

    Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4′-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4′-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously. PMID:25667316

  15. Group I PAK inhibitor IPA-3 induces cell death and affects cell adhesivity to fibronectin in human hematopoietic cells.

    PubMed

    Kuželová, Kateřina; Grebeňová, Dana; Holoubek, Aleš; Röselová, Pavla; Obr, Adam

    2014-01-01

    P21-activated kinases (PAKs) are involved in the regulation of multiple processes including cell proliferation, adhesion and migration. However, the current knowledge about their function is mainly based on results obtained in adherent cell types. We investigated the effect of group I PAK inhibition using the compound IPA-3 in a variety of human leukemic cell lines (JURL-MK1, MOLM-7, K562, CML-T1, HL-60, Karpas-299, Jurkat, HEL) as well as in primary blood cells. IPA-3 induced cell death with EC50 ranging from 5 to more than 20 μM. Similar range was found for IPA-3-mediated dephosphorylation of a known PAK downstream effector, cofilin. The cell death was associated with caspase-3 activation, PARP cleavage and apoptotic DNA fragmentation. In parallel, 20 μM IPA-3 treatment induced rapid and marked decrease of the cell adhesivity to fibronectin. Per contra, partial reduction of PAK activity using lower dose IPA-3 or siRNA resulted in a slight increase in the cell adhesivity. The changes in the cell adhesivity were also studied using real-time microimpedance measurement and by interference reflection microscopy. Significant differences in the intracellular IPA-3 level among various cell lines were observed indicating that an active mechanism is involved in IPA-3 transport. PMID:24664099

  16. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices

    SciTech Connect

    Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.

    2009-02-01

    The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observed increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress.

  17. Single cell lineage tracing reveals that oriented cell division contributes to trabecular morphogenesis and regional specification

    PubMed Central

    Li, Jingjing; Miao, Lianjie; Shieh, David; Spiotto, Ernest; Li, Jian; Zhou, Bin; Paul, Antoni; Schwartz, Robert J.; Firulli, Anthony B.; Singer, Harold A.; Huang, Guoying; Wu, Mingfu

    2016-01-01

    Summary The cardiac trabeculae are sheet-like structures extending from the myocardium that function to increase surface area. A lack of trabeculation causes embryonic lethality due to compromised cardiac function. To understand the cellular and molecular mechanisms of trabecular formation, we genetically labeled individual cardiomyocytes prior to trabeculation via the brainbow multicolor system, and traced and analyzed the labeled cells during trabeculation by whole-embryo clearing and imaging. The clones derived from labeled single cells displayed four different geometric patterns that are derived from different patterns of oriented cell division (OCD) and migration. Of the four types of clones, the inner, transmural, and mixed clones contributed to trabecular cardiomyocytes. Further studies showed that perpendicular OCD is an extrinsic asymmetric cell division that putatively contributes to trabecular regional specification. Furthermore, N-Cadherin deletion in labeled clones disrupted the clonal patterns. In summary, our data demonstrate that OCD contributes to trabecular morphogenesis and specification. PMID:27052172

  18. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells.

    PubMed

    Grover, Amit; Sanjuan-Pla, Alejandra; Thongjuea, Supat; Carrelha, Joana; Giustacchini, Alice; Gambardella, Adriana; Macaulay, Iain; Mancini, Elena; Luis, Tiago C; Mead, Adam; Jacobsen, Sten Eirik W; Nerlov, Claus

    2016-01-01

    Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis. PMID:27009448

  19. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells

    PubMed Central

    Grover, Amit; Sanjuan-Pla, Alejandra; Thongjuea, Supat; Carrelha, Joana; Giustacchini, Alice; Gambardella, Adriana; Macaulay, Iain; Mancini, Elena; Luis, Tiago C.; Mead, Adam; Jacobsen, Sten Eirik W.; Nerlov, Claus

    2016-01-01

    Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis. PMID:27009448

  20. Polycomb Group Protein Pcgf6 Acts as a Master Regulator to Maintain Embryonic Stem Cell Identity

    PubMed Central

    Yang, Chao-Shun; Chang, Kung-Yen; Dang, Jason; Rana, Tariq M.

    2016-01-01

    The polycomb repressive complex 1 (PRC1) is a multi-subunit complex that plays critical roles in the epigenetic modulation of gene expression. Here, we show that the PRC1 component polycomb group ring finger 6 (Pcgf6) is required to maintain embryonic stem cell (ESC) identity. In contrast to canonical PRC1, Pcgf6 acts as a positive regulator of transcription and binds predominantly to promoters bearing active chromatin marks. Pcgf6 is expressed at high levels in ESCs, and knockdown reduces the expression of the core ESC regulators Oct4, Sox2, and Nanog. Conversely, Pcgf6 overexpression prevents downregulation of these factors and impairs differentiation. In addition, Pcgf6 enhanced reprogramming in both mouse and human somatic cells. The genomic binding profile of Pcgf6 is highly similar to that of trithorax group proteins, but not of PRC1 or PRC2 complexes, suggesting that Pcgf6 functions atypically in ESCs. Our data reveal novel roles for Pcgf6 in directly regulating Oct4, Nanog, Sox2, and Lin28 expression to maintain ESC identity. PMID:27247273

  1. Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors

    PubMed Central

    Gonzalez, Christian; Sims, Jennifer S.; Hornstein, Nicholas; Mela, Angeliki; Garcia, Franklin; Lei, Liang; Gass, David A.; Amendolara, Benjamin; Bruce, Jeffrey N.

    2014-01-01

    Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5′-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation. PMID:25122893

  2. Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function.

    PubMed

    Arda, H Efsun; Li, Lingyu; Tsai, Jennifer; Torre, Eduardo A; Rosli, Yenny; Peiris, Heshan; Spitale, Robert C; Dai, Chunhua; Gu, Xueying; Qu, Kun; Wang, Pei; Wang, Jing; Grompe, Markus; Scharfmann, Raphael; Snyder, Michael S; Bottino, Rita; Powers, Alvin C; Chang, Howard Y; Kim, Seung K

    2016-05-10

    Intensive efforts are focused on identifying regulators of human pancreatic islet cell growth and maturation to accelerate development of therapies for diabetes. After birth, islet cell growth and function are dynamically regulated; however, establishing these age-dependent changes in humans has been challenging. Here, we describe a multimodal strategy for isolating pancreatic endocrine and exocrine cells from children and adults to identify age-dependent gene expression and chromatin changes on a genomic scale. These profiles revealed distinct proliferative and functional states of islet α cells or β cells and histone modifications underlying age-dependent gene expression changes. Expression of SIX2 and SIX3, transcription factors without prior known functions in the pancreas and linked to fasting hyperglycemia risk, increased with age specifically in human islet β cells. SIX2 and SIX3 were sufficient to enhance insulin content or secretion in immature β cells. Our work provides a unique resource to study human-specific regulators of islet cell maturation and function. PMID:27133132

  3. Identification of essential Alphaproteobacterial genes reveals operational variability in conserved developmental and cell cycle systems

    PubMed Central

    Curtis, Patrick D.; Brun, Yves V.

    2014-01-01

    Summary The cell cycle of Caulobacter crescentus is controlled by a complex signaling network that coordinates events. Genome sequencing has revealed many C. crescentus cell cycle genes are conserved in other Alphaproteobacteria, but it is not clear to what extent their function is conserved. As many cell cycle regulatory genes are essential in C. crescentus, the essential genes of two Alphaproteobacteria, Agrobacterium tumefaciens (Rhizobiales) and Brevundimonas subvibrioides (Caulobacterales), were elucidated to identify changes in cell cycle protein function over different phylogenetic distances as demonstrated by changes in essentiality. The results show the majority of conserved essential genes are involved in critical cell cycle processes. Changes in component essentiality reflect major changes in lifestyle, such as divisome components in A. tumefaciens resulting from that organism’s different growth pattern. Larger variability of essentiality was observed in cell cycle regulators, suggesting regulatory mechanisms are more customizable than the processes they regulate. Examples include variability in the essentiality of divJ and divK spatial cell cycle regulators, and non-essentiality of the highly conserved and usually essential DNA methyltransferase CcrM. These results show that while essential cell functions are conserved across varying genetic distance, much of a given organism’s essential gene pool is specific to that organism. PMID:24975755

  4. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer.

    PubMed

    Bindea, Gabriela; Mlecnik, Bernhard; Tosolini, Marie; Kirilovsky, Amos; Waldner, Maximilian; Obenauf, Anna C; Angell, Helen; Fredriksen, Tessa; Lafontaine, Lucie; Berger, Anne; Bruneval, Patrick; Fridman, Wolf Herman; Becker, Christoph; Pagès, Franck; Speicher, Michael R; Trajanoski, Zlatko; Galon, Jérôme

    2013-10-17

    The complex interactions between tumors and their microenvironment remain to be elucidated. Combining large-scale approaches, we examined the spatio-temporal dynamics of 28 different immune cell types (immunome) infiltrating tumors. We found that the immune infiltrate composition changed at each tumor stage and that particular cells had a major impact on survival. Densities of T follicular helper (Tfh) cells and innate cells increased, whereas most T cell densities decreased along with tumor progression. The number of B cells, which are key players in the core immune network and are associated with prolonged survival, increased at a late stage and showed a dual effect on recurrence and tumor progression. The immune control relevance was demonstrated in three endoscopic orthotopic colon-cancer mouse models. Genomic instability of the chemokine CXCL13 was a mechanism associated with Tfh and B cell infiltration. CXCL13 and IL21 were pivotal factors for the Tfh/B cell axis correlating with survival. This integrative study reveals the immune landscape in human colorectal cancer and the major hallmarks of the microenvironment associated with tumor progression and recurrence. PMID:24138885

  5. Revealing the cellular localization of STAT1 during the cell cycle by super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Wang, Feng; Liu, Yanhou; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2015-03-01

    Signal transducers and activators of transcription (STATs) can transduce cytokine signals and regulate gene expression. The cellular localization and nuclear trafficking of STAT1, a representative of the STAT family with multiple transcriptional functions, is tightly related with transcription process, which usually happens in the interphase of the cell cycle. However, these priority questions regarding STAT1 distribution and localization at the different cell-cycle stages remain unclear. By using direct stochastic optical reconstruction microscopy (dSTORM), we found that the nuclear expression level of STAT1 increased gradually as the cell cycle carried out, especially after EGF stimulation. Furthermore, STAT1 formed clusters in the whole cell during the cell cycle, with the size and the number of clusters also increasing significantly from G1 to G2 phase, suggesting that transcription and other cell-cycle related activities can promote STAT1 to form more and larger clusters for fast response to signals. Our work reveals that the cellular localization and clustering distribution of STAT1 are associated with the cell cycle, and further provides an insight into the mechanism of cell-cycle regulated STAT1 signal transduction.

  6. Optogenetic toolkit reveals the role of Ca2+ sparklets in coordinated cell migration.

    PubMed

    Kim, Jin Man; Lee, Minji; Kim, Nury; Heo, Won Do

    2016-05-24

    Cell migration is controlled by various Ca(2+) signals. Local Ca(2+) signals, in particular, have been identified as versatile modulators of cell migration because of their spatiotemporal diversity. However, little is known about how local Ca(2+) signals coordinate between the front and rear regions in directionally migrating cells. Here, we elucidate the spatial role of local Ca(2+) signals in directed cell migration through combinatorial application of an optogenetic toolkit. An optically guided cell migration approach revealed the existence of Ca(2+) sparklets mediated by L-type voltage-dependent Ca(2+) channels in the rear part of migrating cells. Notably, we found that this locally concentrated Ca(2+) influx acts as an essential transducer in establishing a global front-to-rear increasing Ca(2+) gradient. This asymmetrical Ca(2+) gradient is crucial for maintaining front-rear morphological polarity by restricting spontaneous lamellipodia formation in the rear part of migrating cells. Collectively, our findings demonstrate a clear link between local Ca(2+) sparklets and front-rear coordination during directed cell migration. PMID:27190091

  7. Revealing the dependence of cell spreading kinetics on its spreading morphology using microcontact printed fibronectin patterns

    PubMed Central

    Huang, Cheng-Kuang; Donald, Athene

    2015-01-01

    Since the dawn of in vitro cell cultures, how cells interact and proliferate within a given external environment has always been an important issue in the study of cell biology. It is now well known that mammalian cells typically exhibit a three-phase sigmoid spreading on encountering a substrate. To further this understanding, we examined the influence of cell shape towards the second rapid expansion phase of spreading. Specifically, 3T3 fibroblasts were seeded onto silicon elastomer films made from polydimethylsiloxane (PDMS), and micro-contact printed with fibronectin stripes of various dimensions. PDMS is adopted in our study for its biocompatibility, its ease in producing very smooth surfaces, and in the fabrication of micro-contact printing stamps. The substrate patterns are compared with respect to their influence on cell spreading over time. Our studies reveal, during the early rapid expansion phase, 3T3 fibroblasts are found to spread radially following a law; meanwhile, they proliferated in a lengthwise fashion on the striped patterns, following a law. We account for the observed differences in kinetics through a simple geometric analysis which predicted similar trends. In particular, a t2 law for radial spreading cells, and a t1 law for lengthwise spreading cells. PMID:25551146

  8. Revealing the cellular localization of STAT1 during the cell cycle by super-resolution imaging.

    PubMed

    Gao, Jing; Wang, Feng; Liu, Yanhou; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2015-01-01

    Signal transducers and activators of transcription (STATs) can transduce cytokine signals and regulate gene expression. The cellular localization and nuclear trafficking of STAT1, a representative of the STAT family with multiple transcriptional functions, is tightly related with transcription process, which usually happens in the interphase of the cell cycle. However, these priority questions regarding STAT1 distribution and localization at the different cell-cycle stages remain unclear. By using direct stochastic optical reconstruction microscopy (dSTORM), we found that the nuclear expression level of STAT1 increased gradually as the cell cycle carried out, especially after EGF stimulation. Furthermore, STAT1 formed clusters in the whole cell during the cell cycle, with the size and the number of clusters also increasing significantly from G1 to G2 phase, suggesting that transcription and other cell-cycle related activities can promote STAT1 to form more and larger clusters for fast response to signals. Our work reveals that the cellular localization and clustering distribution of STAT1 are associated with the cell cycle, and further provides an insight into the mechanism of cell-cycle regulated STAT1 signal transduction. PMID:25762114

  9. Revealing the cellular localization of STAT1 during the cell cycle by super-resolution imaging

    PubMed Central

    Gao, Jing; Wang, Feng; Liu, Yanhou; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2015-01-01

    Signal transducers and activators of transcription (STATs) can transduce cytokine signals and regulate gene expression. The cellular localization and nuclear trafficking of STAT1, a representative of the STAT family with multiple transcriptional functions, is tightly related with transcription process, which usually happens in the interphase of the cell cycle. However, these priority questions regarding STAT1 distribution and localization at the different cell-cycle stages remain unclear. By using direct stochastic optical reconstruction microscopy (dSTORM), we found that the nuclear expression level of STAT1 increased gradually as the cell cycle carried out, especially after EGF stimulation. Furthermore, STAT1 formed clusters in the whole cell during the cell cycle, with the size and the number of clusters also increasing significantly from G1 to G2 phase, suggesting that transcription and other cell-cycle related activities can promote STAT1 to form more and larger clusters for fast response to signals. Our work reveals that the cellular localization and clustering distribution of STAT1 are associated with the cell cycle, and further provides an insight into the mechanism of cell-cycle regulated STAT1 signal transduction. PMID:25762114

  10. Genome-Wide Profiling of Pluripotent Cells Reveals a Unique Molecular Signature of Human Embryonic Germ Cells

    PubMed Central

    Pashai, Nikta; Hao, Haiping; All, Angelo; Gupta, Siddharth; Chaerkady, Raghothama; De Los Angeles, Alejandro; Gearhart, John D.; Kerr, Candace L.

    2012-01-01

    Human embryonic germ cells (EGCs) provide a powerful model for identifying molecules involved in the pluripotent state when compared to their progenitors, primordial germ cells (PGCs), and other pluripotent stem cells. Microarray and Principal Component Analysis (PCA) reveals for the first time that human EGCs possess a transcription profile distinct from PGCs and other pluripotent stem cells. Validation with qRT-PCR confirms that human EGCs and PGCs express many pluripotency-associated genes but with quantifiable differences compared to pluripotent embryonic stem cells (ESCs), induced pluripotent stem cells (IPSCs), and embryonal carcinoma cells (ECCs). Analyses also identified a number of target genes that may be potentially associated with their unique pluripotent states. These include IPO7, MED7, RBM26, HSPD1, and KRAS which were upregulated in EGCs along with other pluripotent stem cells when compared to PGCs. Other potential target genes were also found which may contribute toward a primed ESC-like state. These genes were exclusively up-regulated in ESCs, IPSCs and ECCs including PARP1, CCNE1, CDK6, AURKA, MAD2L1, CCNG1, and CCNB1 which are involved in cell cycle regulation, cellular metabolism and DNA repair and replication. Gene classification analysis also confirmed that the distinguishing feature of EGCs compared to ESCs, ECCs, and IPSCs lies primarily in their genetic contribution to cellular metabolism, cell cycle, and cell adhesion. In contrast, several genes were found upregulated in PGCs which may help distinguish their unipotent state including HBA1, DMRT1, SPANXA1, and EHD2. Together, these findings provide the first glimpse into a unique genomic signature of human germ cells and pluripotent stem cells and provide genes potentially involved in defining different states of germ-line pluripotency. PMID:22737227

  11. Live Cell Imaging Reveals the Dynamics of Telomerase Recruitment to Telomeres.

    PubMed

    Schmidt, Jens C; Zaug, Arthur J; Cech, Thomas R

    2016-08-25

    Telomerase maintains genome integrity by adding repetitive DNA sequences to the chromosome ends in actively dividing cells, including 90% of all cancer cells. Recruitment of human telomerase to telomeres occurs during S-phase of the cell cycle, but the molecular mechanism of the process is only partially understood. Here, we use CRISPR genome editing and single-molecule imaging to track telomerase trafficking in nuclei of living human cells. We demonstrate that telomerase uses three-dimensional diffusion to search for telomeres, probing each telomere thousands of times each S-phase but only rarely forming a stable association. Both the transient and stable association events depend on the direct interaction of the telomerase protein TERT with the telomeric protein TPP1. Our results reveal that telomerase recruitment to telomeres is driven by dynamic interactions between the rapidly diffusing telomerase and the chromosome end. PMID:27523609

  12. An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability

    PubMed Central

    Schütte, Judith; Wang, Huange; Antoniou, Stella; Jarratt, Andrew; Wilson, Nicola K; Riepsaame, Joey; Calero-Nieto, Fernando J; Moignard, Victoria; Basilico, Silvia; Kinston, Sarah J; Hannah, Rebecca L; Chan, Mun Chiang; Nürnberg, Sylvia T; Ouwehand, Willem H; Bonzanni, Nicola; de Bruijn, Marella FTR; Göttgens, Berthold

    2016-01-01

    Transcription factor (TF) networks determine cell-type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukaemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes. DOI: http://dx.doi.org/10.7554/eLife.11469.001 PMID:26901438

  13. Remodeling of the Z-Ring Nanostructure during the Streptococcus pneumoniae Cell Cycle Revealed by Photoactivated Localization Microscopy

    PubMed Central

    Jacq, Maxime; Bourgeois, Dominique; Moriscot, Christine; Di Guilmi, Anne-Marie; Vernet, Thierry

    2015-01-01

    ABSTRACT Ovococci form a morphological group that includes several human pathogens (enterococci and streptococci). Their shape results from two modes of cell wall insertion, one allowing division and one allowing elongation. Both cell wall synthesis modes rely on a single cytoskeletal protein, FtsZ. Despite the central role of FtsZ in ovococci, a detailed view of the in vivo nanostructure of ovococcal Z-rings has been lacking thus far, limiting our understanding of their assembly and architecture. We have developed the use of photoactivated localization microscopy (PALM) in the ovococcus human pathogen Streptococcus pneumoniae by engineering spDendra2, a photoconvertible fluorescent protein optimized for this bacterium. Labeling of endogenously expressed FtsZ with spDendra2 revealed the remodeling of the Z-ring’s morphology during the division cycle at the nanoscale level. We show that changes in the ring’s axial thickness and in the clustering propensity of FtsZ correlate with the advancement of the cell cycle. In addition, we observe double-ring substructures suggestive of short-lived intermediates that may form upon initiation of septal cell wall synthesis. These data are integrated into a model describing the architecture and the remodeling of the Z-ring during the cell cycle of ovococci. PMID:26286692

  14. African American Adolescents with Sickle Cell Disease: Support Groups and Psychological Well-Being.

    ERIC Educational Resources Information Center

    Gardner, Marilyn M.; Telfair, Joseph

    1999-01-01

    Studied the impact of support groups on the psychological well-being of adolescents with sickle cell disease (SCD). Response of 79 adolescent SCD group members show that psychological well-being was best predicted by fewer physical symptoms and greater satisfaction with the group. Findings suggest the beneficial effects of SCD support groups. (SLD)

  15. Effect of different agents onto multidrug resistant cells revealed by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Boutin, C.; Roche, Y.; Jaffiol, R.; Millot, J.-M.; Millot, C.; Plain, J.; Deturche, R.; Jeannesson, P.; Manfait, M.; Royer, P.

    Fluorescence correlation spectroscopy (FCS), which is a sensitive and non invasive technique, has been used to characterize the plasma membrane fluidity and heterogeneity of multidrug resistant living cells. At the single cell level, the effects of different membrane agents present in the extra-cellular medium have been analyzed. Firstly, we reveal a modification of plasma membrane microviscosity according to the addition of a fluidity modulator, benzyl alcohol. In the other hand, revertant such as verapamil and cyclosporin-A appears to act more specifically on the slow diffusion sites as microdomains.

  16. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression

    PubMed Central

    Lucas, Morghan C.; Timpson, Paul

    2016-01-01

    Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression. PMID:27239290

  17. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression.

    PubMed

    Vennin, Claire; Herrmann, David; Lucas, Morghan C; Timpson, Paul

    2016-01-01

    Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression. PMID:27239290

  18. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system

    PubMed Central

    Nern, Aljoscha; Pfeiffer, Barret D.; Rubin, Gerald M.

    2015-01-01

    We describe the development and application of methods for high-throughput neuroanatomy in Drosophila using light microscopy. These tools enable efficient multicolor stochastic labeling of neurons at both low and high densities. Expression of multiple membrane-targeted and distinct epitope-tagged proteins is controlled both by a transcriptional driver and by stochastic, recombinase-mediated excision of transcription-terminating cassettes. This MultiColor FlpOut (MCFO) approach can be used to reveal cell shapes and relative cell positions and to track the progeny of precursor cells through development. Using two different recombinases, the number of cells labeled and the number of color combinations observed in those cells can be controlled separately. We demonstrate the utility of MCFO in a detailed study of diversity and variability of Distal medulla (Dm) neurons, multicolumnar local interneurons in the adult visual system. Similar to many brain regions, the medulla has a repetitive columnar structure that supports parallel information processing together with orthogonal layers of cell processes that enable communication between columns. We find that, within a medulla layer, processes of the cells of a given Dm neuron type form distinct patterns that reflect both the morphology of individual cells and the relative positions of their arbors. These stereotyped cell arrangements differ between cell types and can even differ for the processes of the same cell type in different medulla layers. This unexpected diversity of coverage patterns provides multiple independent ways of integrating visual information across the retinotopic columns and implies the existence of multiple developmental mechanisms that generate these distinct patterns. PMID:25964354

  19. Single-Cell Tracking Reveals Antibiotic-Induced Changes in Mycobacterial Energy Metabolism

    PubMed Central

    Özdemir, Emre; McKinney, John D.

    2015-01-01

    ABSTRACT ATP is a key molecule of cell physiology, but despite its importance, there are currently no methods for monitoring single-cell ATP fluctuations in live bacteria. This is a major obstacle in studies of bacterial energy metabolism, because there is a growing awareness that bacteria respond to stressors such as antibiotics in a highly individualistic manner. Here, we present a method for long-term single-cell tracking of ATP levels in Mycobacterium smegmatis based on a combination of microfluidics, time-lapse microscopy, and Förster resonance energy transfer (FRET)-based ATP biosensors. Upon treating cells with antibiotics, we observed that individual cells undergo an abrupt and irreversible switch from high to low intracellular ATP levels. The kinetics and extent of ATP switching clearly discriminate between an inhibitor of ATP synthesis and other classes of antibiotics. Cells that resume growth after 24 h of antibiotic treatment maintain high ATP levels throughout the exposure period. In contrast, antibiotic-treated cells that switch from ATP-high to ATP-low states never resume growth after antibiotic washout. Surprisingly, only a subset of these nongrowing ATP-low cells stains with propidium iodide (PI), a widely used live/dead cell marker. These experiments also reveal a cryptic subset of cells that do not resume growth after antibiotic washout despite remaining ATP high and PI negative. We conclude that ATP tracking is a more dynamic, sensitive, reliable, and discriminating marker of cell viability than staining with PI. This method could be used in studies to evaluate antimicrobial effectiveness and mechanism of action, as well as for high-throughput screening. PMID:25691591

  20. Single-cell transcriptome analysis reveals coordinated ectopic gene expression patterns in medullary thymic epithelial cells

    PubMed Central

    Brennecke, Philip; Reyes, Alejandro; Pinto, Sheena; Rattay, Kristin; Nguyen, Michelle; Küchler, Rita; Huber, Wolfgang; Kyewski, Bruno; Steinmetz, Lars M.

    2015-01-01

    Expression of tissue-restricted self-antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for self-tolerance induction and prevents autoimmunity, with each TRA being expressed in only a few mTECs. How this process is regulated in single mTECs and coordinated at the population level, such that the varied single-cell patterns add up to faithfully represent TRAs, is poorly understood. Here we used single-cell RNA-sequencing and provide evidence for numerous recurring TRA co-expression patterns, each present in only a subset of mTECs. Co-expressed genes clustered in the genome and showed enhanced chromatin accessibility. Our findings characterize TRA expression in mTECs as a coordinated process, which might involve local re-modeling of chromatin and thus ensures a comprehensive representation of the immunological self. PMID:26237553

  1. Adipose-Resident Group 1 Innate Lymphoid Cells Promote Obesity-Associated Insulin Resistance.

    PubMed

    O'Sullivan, Timothy E; Rapp, Moritz; Fan, Xiying; Weizman, Orr-El; Bhardwaj, Priya; Adams, Nicholas M; Walzer, Thierry; Dannenberg, Andrew J; Sun, Joseph C

    2016-08-16

    Innate lymphoid cells (ILCs) function to protect epithelial barriers against pathogens and maintain tissue homeostasis in both barrier and non-barrier tissues. Here, utilizing Eomes reporter mice, we identify a subset of adipose group 1 ILC (ILC1) and demonstrate a role for these cells in metabolic disease. Adipose ILC1s were dependent on the transcription factors Nfil3 and T-bet but phenotypically and functionally distinct from adipose mature natural killer (NK) and immature NK cells. Analysis of parabiotic mice revealed that adipose ILC1s maintained long-term tissue residency. Diet-induced obesity drove early production of interleukin (IL)-12 in adipose tissue depots and led to the selective proliferation and accumulation of adipose-resident ILC1s in a manner dependent on the IL-12 receptor and STAT4. ILC1-derived interferon-γ was necessary and sufficient to drive proinflammatory macrophage polarization to promote obesity-associated insulin resistance. Thus, adipose-resident ILC1s contribute to obesity-related pathology in response to dysregulated local proinflammatory cytokine production. PMID:27496734

  2. Piwi maintains germline stem cells and oogenesis in Drosophila through negative regulation of Polycomb Group proteins

    PubMed Central

    Peng, Jamy C.; Valouev, Anton; Liu, Na; Lin, Haifan

    2015-01-01

    The Drosophila Piwi protein regulates both niche and intrinsic mechanisms to maintain germline stem cells, but its underlying mechanism remains unclear. Here we report that Piwi cooperates with Polycomb Group complexes PRC1 and PRC2 in niche and germline cells to regulate ovarian germline stem cells and oogenesis. Piwi physically interacts with PRC2 subunits Su(z)12 and Esc in the ovary and in vitro. Chromatin co-immunoprecipitation of Piwi, the PRC2 enzymatic subunit E(z), lysine-27-tri-methylated histone 3 (H3K27m3), and RNA polymerase II in wild-type and piwi mutant ovaries reveals that Piwi binds a conserved DNA motif at ~72 genomic sites, and inhibits PRC2 binding to many non-Piwi-binding genomic targets and H3K27 tri-methylation. Moreover, Piwi influences RNA Polymerase II activities in Drosophila ovaries likely via inhibiting PRC2. We hypothesize that Piwi negatively regulates PRC2 binding by sequestering PRC2 in the nucleoplasm, thus reducing PRC2 binding to many targets and influences transcription during oogenesis. PMID:26780607

  3. Functional Heterogeneity of Embryonic Stem Cells Revealed through Translational Amplification of an Early Endodermal Transcript

    PubMed Central

    Canham, Maurice A.; Sharov, Alexei A.; Ko, Minoru S. H.; Brickman, Joshua M.

    2010-01-01

    ES cells are defined as self-renewing, pluripotent cell lines derived from early embryos. Cultures of ES cells are also characterized by the expression of certain markers thought to represent the pluripotent state. However, despite the widespread expression of key markers such as Oct4 and the appearance of a characteristic undifferentiated morphology, functional ES cells may represent only a small fraction of the cultures grown under self-renewing conditions. Thus phenotypically “undifferentiated” cells may consist of a heterogeneous population of functionally distinct cell types. Here we use a transgenic allele designed to detect low level transcription in the primitive endoderm lineage as a tool to identify an immediate early endoderm-like ES cell state. This reporter employs a tandem array of internal ribosomal entry sites to drive translation of an enhanced Yellow Fluorescent Protein (Venus) from the transcript that normally encodes for the early endodermal marker Hex. Expression of this Venus transgene reports on single cells with low Hex transcript levels and reveals the existence of distinct populations of Oct4 positive undifferentiated ES cells. One of these cells types, characterized by both the expression of the Venus transgene and the ES cells marker SSEA-1 (V+S+), appears to represent an early step in primitive endoderm specification. We show that the fraction of cells present within this state is influenced by factors that both promote and suppress primitive endoderm differentiation, but conditions that support ES cell self-renewal prevent their progression into differentiation and support an equilibrium between this state and at least one other that resembles the Nanog positive inner cell mass of the mammalian blastocysts. Interestingly, while these subpopulations are equivalently and clonally interconvertible under self-renewing conditions, when induced to differentiate both in vivo and in vitro they exhibit different behaviours. Most strikingly

  4. Donor-Specific Indirect Pathway Analysis Reveals a B-Cell-Independent Signature Which Reflects Outcomes in Kidney Transplant Recipients

    PubMed Central

    Haynes, L. D.; Jankowska-Gan, E.; Sheka, A.; Keller, M. R.; Hernandez-Fuentes, M. P.; Lechler, R. I.; Seyfert-Margolis, V.; Turka, L. A.; Newell, K. A.; Burlingham, W. J.

    2012-01-01

    To investigate the role of donor-specific indirect pathway T cells in renal transplant tolerance, we analyzed responses in peripheral blood of 45 patients using the trans-vivo delayed-type hypersensitivity assay. Subjects were enrolled into five groups—identical twin, clinically tolerant (TOL), steroid monotherapy (MONO), standard immunosuppression (SI) and chronic rejection (CR)—based on transplant type, posttransplant immunosuppression and graft function. The indirect pathway was active in all groups except twins but distinct intergroup differences were evident, corresponding to clinical status. The antidonor indirect pathway T effector response increased across patient groups (TOL < MONO < SI < CR; p < 0.0001) whereas antidonor indirect pathway T regulatory response decreased (TOL > MONO = SI > CR; p < 0.005). This pattern differed from that seen in circulating naïve B-cell numbers and in a cross-platform biomarker analysis, where patients on monotherapy were not ranked closest to TOL patients, but rather were indistinguishable from chronically rejecting patients. Cross-sectional analysis of the indirect pathway revealed a spectrum in T-regulatory:T-effector balance, ranging from TOL patients having predominantly regulatory responses to CR patients having predominantly effector responses. Therefore, the indirect pathway measurements reflect a distinct aspect of tolerance from the recently reported elevation of circulating naïve B cells, which was apparent only in recipients off immunosuppression. PMID:22151236

  5. Rapid cell-surface prion protein conversion revealed using a novel cell system

    PubMed Central

    Goold, R.; Rabbanian, S.; Sutton, L.; Andre, R.; Arora, P.; Moonga, J.; Clarke, A.R.; Schiavo, G.; Jat, P.; Collinge, J.; Tabrizi, S.J.

    2011-01-01

    Prion diseases are fatal neurodegenerative disorders with unique transmissible properties. The infectious and pathological agent is thought to be a misfolded conformer of the prion protein. Little is known about the initial events in prion infection because the infecting prion source has been immunologically indistinguishable from normal cellular prion protein (PrPC). Here we develop a unique cell system in which epitope-tagged PrPC is expressed in a PrP knockdown (KD) neuroblastoma cell line. The tagged PrPC, when expressed in our PrP-KD cells, supports prion replication with the production of bona fide epitope-tagged infectious misfolded PrP (PrPSc). Using this epitope-tagged PrPSc, we study the earliest events in cellular prion infection and PrP misfolding. We show that prion infection of cells is extremely rapid occurring within 1 min of prion exposure, and we demonstrate that the plasma membrane is the primary site of prion conversion. PMID:21505437

  6. Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells.

    PubMed

    Chang, Hsin-Yi; Li, Ming-Hua; Huang, Tsui-Chin; Hsu, Chia-Lang; Tsai, Shang-Ru; Lee, Si-Chen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-02-01

    Breast cancer is one of the leading cancer-related causes of death worldwide. Treatment of triple-negative breast cancer (TNBC) is complex and challenging, especially when metastasis has developed. In this study, we applied infrared radiation as an alternative approach for the treatment of TNBC. We used middle infrared (MIR) with a wavelength range of 3-5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells but did not affect the growth of normal breast epithelial cells. We performed iTRAQ-coupled LC-MS/MS analysis to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1749 proteins were identified, quantified, and subjected to functional enrichment analysis. From the constructed functionally enriched network, we confirmed that MIR caused G2/M cell cycle arrest, remodeled the microtubule network to an astral pole arrangement, altered the actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Our results reveal the coordinative effects of MIR-regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy. PMID:25556991

  7. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    PubMed

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli. PMID:27555592

  8. MAMMALIAN CELL GENE MUTATION ASSAYS WORKING GROUP REPORT

    EPA Science Inventory

    Mammalian cell gene mutation assays have been used for many years and the diversity of the available systems attests to the varied methods found to grow mammalian dells and detect mutations. s part of the International Workshop on Standardization of Genotoxicity Test Procedures, ...

  9. Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells

    PubMed Central

    Cordeiro, Ingrid R.; Lopes, Daiana V.; Abreu, José G.; Carneiro, Katia; Rossi, Maria I. D.; Brito, José M.

    2015-01-01

    ABSTRACT Human adipose-derived stromal cells (hADSC) are a heterogeneous cell population that contains adult multipotent stem cells. Although it is well established that hADSC have skeletal potential in vivo in adult organisms, in vitro assays suggest further differentiation capacity, such as into glia. Thus, we propose that grafting hADSC into the embryo can provide them with a much more instructive microenvironment, allowing the human cells to adopt diverse fates or niches. Here, hADSC spheroids were grafted into either the presumptive presomitic mesoderm or the first branchial arch (BA1) regions of chick embryos. Cells were identified without previous manipulations via human-specific Alu probes, which allows efficient long-term tracing of heterogeneous primary cultures. When grafted into the trunk, in contrast to previous studies, hADSC were not found in chondrogenic or osteogenic territories up to E8. Surprisingly, 82.5% of the hADSC were associated with HNK1+ tissues, such as peripheral nerves. Human skin fibroblasts showed a smaller tropism for nerves. In line with other studies, hADSC also adopted perivascular locations. When grafted into the presumptive BA1, 74.6% of the cells were in the outflow tract, the final goal of cardiac neural crest cells, and were also associated with peripheral nerves. This is the first study showing that hADSC could adopt a perineural niche in vivo and were able to recognize cues for neural crest cell migration of the host. Therefore, we propose that xenografts of human cells into chick embryos can reveal novel behaviors of heterogeneous cell populations, such as response to migration cues. PMID:26319582

  10. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death.

    PubMed

    Darshan, N; Manonmani, H K

    2016-12-01

    The antimicrobial activity of prodigiosin from Serratia nematodiphila darsh1, a bacterial pigment was tested against few food borne bacterial pathogens Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The mode of action of prodigiosin was studied. Prodigiosin induced bactericidal activity indicating a stereotypical set of biochemical and morphological feature of Programmed cell death (PCD). PCD involves DNA fragmentation, generation of ROS, and expression of a protein with caspase-like substrate specificity in bacterial cells. Prodigiosin was observed to be internalized into bacterial cells and was localized predominantly in the membrane and the nuclear fraction, thus, facilitating intracellular trafficking and then binding of prodigiosin to the bacterial DNA. Corresponding to an increasing concentration of prodigiosin, the level of certain proteases were observed to increase in bacteria studied, thus initiating the onset of PCD. Prodigiosin at a sub-inhibitory concentration inhibits motility of pathogens. Our observations indicated that prodigiosin could be a promising antibacterial agent and could be used in the prevention of bacterial infections. PMID:27460563

  11. Transcriptional activity around bacterial cell death reveals molecular biomarkers for cell viability

    PubMed Central

    Kort, Remco; Keijser, Bart J; Caspers, Martien PM; Schuren, Frank H; Montijn, Roy

    2008-01-01

    Background In bacteriology, the ability to grow in selective media and to form colonies on nutrient agar plates is routinely used as a retrospective criterion for the detection of living bacteria. However, the utilization of indicators for bacterial viability-such as the presence of specific transcripts or membrane integrity-would overcome bias introduced by cultivation and reduces the time span of analysis from initiation to read out. Therefore, we investigated the correlation between transcriptional activity, membrane integrity and cultivation-based viability in the Gram-positive model bacterium Bacillus subtilis. Results We present microbiological, cytological and molecular analyses of the physiological response to lethal heat stress under accurately defined conditions through systematic sampling of bacteria from a single culture exposed to gradually increasing temperatures. We identified a coherent transcriptional program including known heat shock responses as well as the rapid expression of a small number of sporulation and competence genes, the latter only known to be active in the stationary growth phase. Conclusion The observed coordinated gene expression continued even after cell death, in other words after all bacteria permanently lost their ability to reproduce. Transcription of a very limited number of genes correlated with cell viability under the applied killing regime. The transcripts of the expressed genes in living bacteria – but silent in dead bacteria-include those of essential genes encoding chaperones of the protein folding machinery and can serve as molecular biomarkers for bacterial cell viability. PMID:19061518

  12. Metabolomic profiles reveal key metabolic changes in heat stress-treated mouse Sertoli cells.

    PubMed

    Xu, Bo; Chen, Minjian; Ji, Xiaoli; Yao, Mengmeng; Mao, Zhilei; Zhou, Kun; Xia, Yankai; Han, Xiao; Tang, Wei

    2015-10-01

    Heat stress (HS) is a potential harmful factor for male reproduction. However, the effect of HS on Sertoli cells is largely unknown. In this study, the metabolic changes in Sertoli cell line were analyzed after HS treatment. Metabolomic analysis revealed that carnitine, 2-hydroxy palmitic acid, nicotinic acid, niacinamide, adenosine monophosphate, glutamine and creatine were the key changed metabolites. We found the expression levels of BTB factors (Connexin43, ZO-1, Vimentin, Claudin1, Claudin5) were disrupted in TM-4 cells after HS treatment, which were recovered by the addition of carnitine. RT-PCR indicated that the mRNA levels of inflammatory cytokines (IL-1α, IL-1β, IL-6) were increased after HS treatment, and their related miRNAs (miR-132, miR-431, miR-543) levels were decreased. Our metabolomic data provided a novel understanding of metabolic changes in male reproductive cells after HS treatment and revealed that HS-induced changes of BTB factors and inflammatory status might be caused by the decreased carnitine after HS treatment. PMID:26165742

  13. Oxidant Signaling in Cells Revealed by Single Rare-Earth Based Nanoparticle Imaging

    NASA Astrophysics Data System (ADS)

    Bouzigues, Cedric; Abdesselem, Mouna; Ramodiharilafy, Rivo; Gacoin, Thierry; Tharaux, Pierre-Louis; Alexandrou, Antigoni

    The spatio-temporal organization of signaling pathways controls the cell response. Reactive oxygen species (ROS) are second messengers involved in the control of numerous normal and pathological processes and their local concentration is thus tightly regulated. However, the dynamics of ROS production and organization is mostly unknown, due to the lack of efficient probes. We developed single ROS sensitive Eu3+-doped nanoparticle imaging to quantitatively probed the intracellular ROS response. We revealed specific temporal patterns of ROS production under different types of stimulation (PDGF and ET-1) and quantitatively identified mechanisms of transactivation, which notably control the dynamics of the cell response. By using a microfluidic system, we apply spatially controlled stimulations and displayed the maintenance of asymmetric ROS concentration in the cell under a PDGF gradient. We then developed a ratiometric method using a nanoparticle mix, to quantitatively detect ROS with a 500 ms temporal resolution. We thus elucidate molecular mechanisms responsible for the control of the oxidant production kinetics. Altogether, our results reveal regulation mechanisms controlling ROS spatio-temporal organization, which can be crucial for the buildup of the cell response.

  14. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state

    PubMed Central

    Verfaillie, Annelien; Imrichova, Hana; Atak, Zeynep Kalender; Dewaele, Michael; Rambow, Florian; Hulselmans, Gert; Christiaens, Valerie; Svetlichnyy, Dmitry; Luciani, Flavie; Van den Mooter, Laura; Claerhout, Sofie; Fiers, Mark; Journe, Fabrice; Ghanem, Ghanem-Elias; Herrmann, Carl; Halder, Georg; Marine, Jean-Christophe; Aerts, Stein

    2015-01-01

    Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance. PMID:25865119

  15. Functional TCR retrieval from single antigen-specific human T cells reveals multiple novel epitopes.

    PubMed

    Simon, Petra; Omokoko, Tana A; Breitkreuz, Andrea; Hebich, Lisa; Kreiter, Sebastian; Attig, Sebastian; Konur, Abdo; Britten, Cedrik M; Paret, Claudia; Dhaene, Karl; Türeci, Özlem; Sahin, Ugur

    2014-12-01

    The determination of the epitope specificity of disease-associated T-cell responses is relevant for the development of biomarkers and targeted immunotherapies against cancer, autoimmune, and infectious diseases. The lack of known T-cell epitopes and corresponding T-cell receptors (TCR) for novel antigens hinders the efficient development and monitoring of new therapies. We developed an integrated approach for the systematic retrieval and functional characterization of TCRs from single antigen-reactive T cells that includes the identification of epitope specificity. This is accomplished through the rapid cloning of full-length TCR-α and TCR-β chains directly from single antigen-specific CD8(+) or CD4(+) T lymphocytes. The functional validation of cloned TCRs is conducted using in vitro-transcribed RNA transfer for expression of TCRs in T cells and HLA molecules in antigen-presenting cells. This method avoids the work and bias associated with repetitive cycles of in vitro T-cell stimulation, and enables fast characterization of antigen-specific T-cell responses. We applied this strategy to viral and tumor-associated antigens (TAA), resulting in the retrieval of 56 unique functional antigen-specific TCRs from human CD8(+) and CD4(+) T cells (13 specific for CMV-pp65, 16 specific for the well-known TAA NY-ESO-1, and 27 for the novel TAA TPTE), which are directed against 39 different epitopes. The proof-of-concept studies with TAAs NY-ESO-1 and TPTE revealed multiple novel TCR specificities. Our approach enables the rational development of immunotherapy strategies by providing antigen-specific TCRs and immunogenic epitopes. PMID:25245536

  16. Quantitative evaluation of cell-to-cell communication effects in cell group class using on-chip individual-cell-based cultivation system.

    PubMed

    Wakamoto, Yuichi; Yasuda, Kenji

    2006-10-27

    Cell-to-cell communication is considered to underlie the coordinated behavior and the multicellularity of cell group class, which cannot be explained only by the knowledge of lower class of life system from molecule to individual cell, because they are determined by at least two different ways: diffusible chemical signals and their direct physical contacts. We show in this paper a new method of individual-cell-based cell observation that can estimate the role of cell-to-cell communication, diffusible chemical signals, and physical contacts as separated properties, by applying an on-chip individual-cell-based cultivation system. The exchange of stationary phase medium on isolated individual Escherichia coli from exponential phase medium and the control of physical contacts indicated that the cell-to-cell direct contact did not affect the growth rate; only the communication through diffusible signals affects the growth rates as Hill's equation manner. PMID:16970916

  17. Fuel cells and university research: the report of the energy committee's working group on fuel cells

    SciTech Connect

    Callagher-Daggitt, G.E.

    1984-01-01

    A SERC reassessment of fuel cells was prompted by a letter in early August 1981 to Sir Geoffrey Allen, then Chairman of SERC, from the Chief Engineer and Scientist of DoI, Dr Duncan Davies. A copy of the Davies letter was passed on to ERSU with a request for information about university research activity within the UK in this field. The consensus of opinion at these meetings was that the UK should not attempt to repeat the work on first-generation fuel cells being carried out in the USA, Japan, Belgium, and Germany. However, it was felt that universities should be encouraged to strengthen their research efforts in a few fundamental areas that were identified as essential for the materials breakthroughs needed to develop a viable second-generation fuel-cell technology, and it was decided to recommend that the Energy Committee of SERC give ERSU a watching brief with a mandate to review the situation in 18 months. Having considered the recommendations arising out of the Fuel-Cell Appraisal Meeting and the follow-on meeting between SERC and government departments, the Energy Committee set up a Working Group on Fuel Cells and asked it: to identify problems and those areas where work could usefully be carried out in the universities, to consider how university research into identified areas can be initiated and supported, and to prepare a report for the Energy Committee of SERC containing recommendations relating to university research in this field. This report has been prepared in response to that request.

  18. Revealing Dynamic Processes of Materials in Liquids Using Liquid Cell Transmission Electron Microscopy

    PubMed Central

    Niu, Kai-Yang; Liao, Hong-Gang; Zheng, Haimei

    2012-01-01

    The recent development for in situ transmission electron microscopy, which allows imaging through liquids with high spatial resolution, has attracted significant interests across the research fields of materials science, physics, chemistry and biology. The key enabling technology is a liquid cell. We fabricate liquid cells with thin viewing windows through a sequential microfabrication process, including silicon nitride membrane deposition, photolithographic patterning, wafer etching, cell bonding, etc. A liquid cell with the dimensions of a regular TEM grid can fit in any standard TEM sample holder. About 100 nanoliters reaction solution is loaded into the reservoirs and about 30 picoliters liquid is drawn into the viewing windows by capillary force. Subsequently, the cell is sealed and loaded into a microscope for in situ imaging. Inside the TEM, the electron beam goes through the thin liquid layer sandwiched between two silicon nitride membranes. Dynamic processes of nanoparticles in liquids, such as nucleation and growth of nanocrystals, diffusion and assembly of nanoparticles, etc., have been imaged in real time with sub-nanometer resolution. We have also applied this method to other research areas, e.g., imaging proteins in water. Liquid cell TEM is poised to play a major role in revealing dynamic processes of materials in their working environments. It may also bring high impact in the study of biological processes in their native environment. PMID:23287885

  19. Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells

    NASA Technical Reports Server (NTRS)

    Hu, Shaohua; Chen, Jianxin; Fabry, Ben; Numaguchi, Yasushi; Gouldstone, Andrew; Ingber, Donald E.; Fredberg, Jeffrey J.; Butler, James P.; Wang, Ning

    2003-01-01

    We describe a novel synchronous detection approach to map the transmission of mechanical stresses within the cytoplasm of an adherent cell. Using fluorescent protein-labeled mitochondria or cytoskeletal components as fiducial markers, we measured displacements and computed stresses in the cytoskeleton of a living cell plated on extracellular matrix molecules that arise in response to a small, external localized oscillatory load applied to transmembrane receptors on the apical cell surface. Induced synchronous displacements, stresses, and phase lags were found to be concentrated at sites quite remote from the localized load and were modulated by the preexisting tensile stress (prestress) in the cytoskeleton. Stresses applied at the apical surface also resulted in displacements of focal adhesion sites at the cell base. Cytoskeletal anisotropy was revealed by differential phase lags in X vs. Y directions. Displacements and stresses in the cytoskeleton of a cell plated on poly-L-lysine decayed quickly and were not concentrated at remote sites. These data indicate that mechanical forces are transferred across discrete cytoskeletal elements over long distances through the cytoplasm in the living adherent cell.

  20. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation

    NASA Astrophysics Data System (ADS)

    Gentleman, Eileen; Swain, Robin J.; Evans, Nicholas D.; Boonrungsiman, Suwimon; Jell, Gavin; Ball, Michael D.; Shean, Tamaryn A. V.; Oyen, Michelle L.; Porter, Alexandra; Stevens, Molly M.

    2009-09-01

    An important aim of regenerative medicine is to restore tissue function with implantable, laboratory-grown constructs that contain tissue-specific cells that replicate the function of their counterparts in the healthy native tissue. It remains unclear, however, whether cells used in bone regeneration applications produce a material that mimics the structural and compositional complexity of native bone. By applying multivariate analysis techniques to micro-Raman spectra of mineralized nodules formed in vitro, we reveal cell-source-dependent differences in interactions between multiple bone-like mineral environments. Although osteoblasts and adult stem cells exhibited bone-specific biological activities and created a material with many of the hallmarks of native bone, the `bone nodules' formed from embryonic stem cells were an order of magnitude less stiff, and lacked the distinctive nanolevel architecture and complex biomolecular and mineral composition noted in the native tissue. Understanding the biological mechanisms of bone formation in vitro that contribute to cell-source-specific materials differences may facilitate the development of clinically successful engineered bone.

  1. Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors

    PubMed Central

    Park, Ryan J.; Shen, Hongying; Liu, Lijuan; Liu, Xinran; Ferguson, Shawn M.; De Camilli, Pietro

    2013-01-01

    Summary Dynamin, which is encoded by three genes in mammals, is a GTPase implicated in endocytic membrane fission. Dynamin 1 and 3 are predominantly expressed in brain, whereas dynamin 2 is ubiquitously expressed. With the goal of assessing the impact of the lack of dynamin on cell physiology, we previously generated and characterized dynamin 1 and 2 double knockout (DKO) fibroblasts. These DKO cells were unexpectedly viable in spite of a severe impairment of clathrin-mediated endocytosis. As low-level expression of the dynamin 3 gene in these cells could not be excluded, we have now engineered dynamin 1, 2 and 3 triple KO (TKO) fibroblasts. These cells did not reveal any additional defects beyond what was previously observed in DKO fibroblasts. Surprisingly, although fluid-phase endocytosis and peripheral membrane ruffling were not impaired by the lack of all three dynamins, two structurally similar, widely used dynamin inhibitors, dynasore and Dyngo-4a, robustly inhibited these two processes both in wild-type and TKO cells. Dynamin TKO cells will be useful tools for the further exploration of dynamin-dependent processes and the development of more specific dynamin inhibitors. PMID:24046449

  2. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification

    PubMed Central

    Zdravkovic, Tamara; Nazor, Kristopher L.; Larocque, Nicholas; Gormley, Matthew; Donne, Matthew; Hunkapillar, Nathan; Giritharan, Gnanaratnam; Bernstein, Harold S.; Wei, Grace; Hebrok, Matthias; Zeng, Xianmin; Genbacev, Olga; Mattis, Aras; McMaster, Michael T.; Krtolica, Ana; Valbuena, Diana; Simón, Carlos; Laurent, Louise C.; Loring, Jeanne F.; Fisher, Susan J.

    2015-01-01

    Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin revealed differential expression among blastomeres of 8- to 10-cell human embryos. The UCSFB lines formed derivatives of the three germ layers and CDX2-positive progeny, from which we derived the first human trophoblast stem cell line. Our data suggest heterogeneity among early-stage blastomeres and that the UCSFB lines have unique properties, indicative of a more immature state than conventional lines. PMID:26483210

  3. Transcriptomic changes in human renal proximal tubular cells revealed under hypoxic conditions by RNA sequencing.

    PubMed

    Yu, Wenmin; Li, Yiping; Wang, Zhi; Liu, Lei; Liu, Jing; Ding, Fengan; Zhang, Xiaoyi; Cheng, Zhengyuan; Chen, Pingsheng; Dou, Jun

    2016-09-01

    Chronic hypoxia often occurs among patients with chronic kidney disease (CKD). Renal proximal tubular cells may be the primary target of a hypoxic insult. However, the underlying transcriptional mechanisms remain undefined. In this study, we revealed the global changes in gene expression in HK‑2 human renal proximal tubular cells under hypoxic and normoxic conditions. We analyzed the transcriptome of HK‑2 cells exposed to hypoxia for 24 h using RNA sequencing. A total of 279 differentially expressed genes was examined, as these genes could potentially explain the differences in HK‑2 cells between hypoxic and normoxic conditions. Moreover, 17 genes were validated by qPCR, and the results were highly concordant with the RNA seqencing results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to better understand the functions of these differentially expressed genes. The upregulated genes appeared to be significantly enriched in the pathyway of extracellular matrix (ECM)-receptor interaction, and in paticular, the pathway of renal cell carcinoma was upregulated under hypoxic conditions. The downregulated genes were enriched in the signaling pathway related to antigen processing and presentation; however, the pathway of glutathione metabolism was downregulated. Our analysis revealed numerous novel transcripts and alternative splicing events. Simultaneously, we also identified a large number of single nucleotide polymorphisms, which will be a rich resource for future marker development. On the whole, our data indicate that transcriptome analysis provides valuable information for a more in depth understanding of the molecular mechanisms in CKD and renal cell carcinoma. PMID:27432315

  4. Proteomic analysis reveals the differential histone programs between male germline cells and vegetative cells in Lilium davidii.

    PubMed

    Yang, Hao; Yang, Ning; Wang, Tai

    2016-03-01

    In flowering plants, male germline fate is determined after asymmetric division of the haploid microspore. Daughter cells have distinct fates: the generative cell (GC) undergoes further mitosis to generate sperm cells (SCs), and the vegetative cell (VC) terminally differentiates. However, our understanding of the mechanisms underlying germline development remains limited. Histone variants and modifications define chromatin states, and contribute to establishing and maintaining cell identities by affecting gene expression. Here, we constructed a lily protein database, then extracted and detailed histone entries into a comprehensive lily histone database. We isolated large amounts of nuclei from VCs, GCs and SCs from lily, and profiled histone variants of all five histone families in all three cell types using proteomics approaches. We revealed 92 identities representing 32 histone variants: six for H1, 11 for H2A, eight for H2B, five for H3 and two for H4. Nine variants, including five H1, two H2B, one H3 and one H4 variant, specifically accumulated in GCs and SCs. We also detected H3 modification patterns in the three cell types. GCs and SCs had almost identical histone profiles and similar H3 modification patterns, which were significantly different from those of VCs. Our study also revealed the presence of multiple isoforms, and differential expression patterns between isoforms of a variant. The results suggest that differential histone programs between the germline and companion VCs may be established following the asymmetric division, and are important for identity establishment and differentiation of the male germline as well as the VC. PMID:26846354

  5. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    PubMed Central

    Chen, Minjiang; Zheng, Hong; Wei, Tingting; Wang, Dan; Xia, Huanhuan; Zhao, Liangcai; Ji, Jiansong

    2016-01-01

    Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism. PMID:27413747

  6. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism.

    PubMed

    Chen, Minjiang; Zheng, Hong; Wei, Tingting; Wang, Dan; Xia, Huanhuan; Zhao, Liangcai; Ji, Jiansong; Gao, Hongchang

    2016-01-01

    Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism. PMID:27413747

  7. Polyclonal B-cell activation reveals antibodies against human immunodeficiency virus type 1 (HIV-1) in HIV-1-seronegative individuals.

    PubMed Central

    Jehuda-Cohen, T; Slade, B A; Powell, J D; Villinger, F; De, B; Folks, T M; McClure, H M; Sell, K W; Ahmed-Ansari, A

    1990-01-01

    Identification of human immunodeficiency virus type 1 (HIV-1)-infected individuals is of paramount importance for the control of the spread of AIDS worldwide. Currently, the vast majority of screening centers throughout the world rely on serological techniques. As such, clinically asymptomatic but HIV-infected, seronegative individuals are rarely identified. In this report we show that 18% (30/165) of seronegative individuals who were considered to be a unique cohort of patients at high risk for HIV infection had circulating B cells that, upon in vitro polyclonal activation with pokeweed mitogen, produced antibodies reactive with HIV. Furthermore, polymerase chain reaction analysis of DNA obtained from aliquots of the peripheral blood mononuclear cells from these seronegative but pokeweed mitogen assay-positive individuals tested revealed the presence of HIV-specific sequences in a significant number of samples. In addition, depletion of CD8+ T cells from peripheral blood mononuclear cells of HIV-1-seronegative individuals prior to in vitro culture with pokeweed mitogen resulted in increased sensitivity for detecting HIV-reactive antibodies. This assay has obvious epidemiological implications, especially in the case of high-risk groups, and also provides a simple technique to enhance detection of HIV-infected individuals. Of further interest is the determination of the mechanisms related to the lack of HIV-specific antibodies in the serum of these infected individuals. Images PMID:2111024

  8. [Lysis of the cell walls of streptococcus group A by Streptomyces griseus pronase].

    PubMed

    Savel'ev, E P; Petrov, G I

    1978-01-01

    The effect of Streptomyces griseus pronase on Streptococcus group A cell walls was studied. Cell walls were shown to be lysed by pronase, the lysis level being dependent on the molarity of the potassium-phosphate buffer used. With an increase in the buffer molarity from 0.005 M to 0.05 M lysis of cell walls decreased from 70-80% to 30%. By DEAE-cellulose chromatography lysates were separated into two fractions the first of which contained a group specific polysaccharide. A preparative method of obtaining a group specific polysaccharide of Streptococcus group A using Streptomyces griseus pronase under mild conditions is described. PMID:416431

  9. Natural Killer (NK)/melanoma cell interaction induces NK-mediated release of chemotactic High Mobility Group Box-1 (HMGB1) capable of amplifying NK cell recruitment

    PubMed Central

    Parodi, Monica; Pedrazzi, Marco; Cantoni, Claudia; Averna, Monica; Patrone, Mauro; Cavaletto, Maria; Spertino, Stefano; Pende, Daniela; Balsamo, Mirna; Pietra, Gabriella; Sivori, Simona; Carlomagno, Simona; Mingari, Maria Cristina; Moretta, Lorenzo; Sparatore, Bianca; Vitale, Massimo

    2015-01-01

    In this study we characterize a new mechanism by which Natural Killer (NK) cells may amplify their recruitment to tumors. We show that NK cells, upon interaction with melanoma cells, can release a chemotactic form of High Mobility Group Box-1 (HMGB1) protein capable of attracting additional activated NK cells. We first demonstrate that the engagement of different activating NK cell receptors, including those mainly involved in tumor cell recognition can induce the active release of HMGB1. Then we show that during NK-mediated tumor cell killing two HMGB1 forms are released, each displaying a specific electrophoretic mobility possibly corresponding to a different redox status. By the comparison of normal and perforin-defective NK cells (which are unable to kill target cells) we demonstrate that, in NK/melanoma cell co-cultures, NK cells specifically release an HMGB1 form that acts as chemoattractant, while dying tumor cells passively release a non-chemotactic HMGB1. Finally, we show that Receptor for Advanced Glycation End products is expressed by NK cells and mediates HMGB1-induced NK cell chemotaxis. Proteomic analysis of NK cells exposed to recombinant HMGB1 revealed that this molecule, besides inducing immediate chemotaxis, also promotes changes in the expression of proteins involved in the regulation of the cytoskeletal network. Importantly, these modifications could be associated with an increased motility of NK cells. Thus, our findings allow the definition of a previously unidentified mechanism used by NK cells to amplify their response to tumors, and provide additional clues for the emerging role of HMGB1 in immunomodulation and tumor immunity. PMID:26587323

  10. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.

    PubMed

    Huang, Jiun-Yan; Huang, Chi-Wei; Kao, Kuo-Ching; Lai, Pik-Yin

    2013-04-10

    Biological systems are often organized spatially and temporally by multi-scale functional subsystems (modules). A specific subcellular process often corresponds to a subsystem composed of some of these interconnected modules. Accurate identification of system-level modularity organization from the large scale networks can provide valuable information on subsystem models of subcellular processes or physiological phenomena. Computational identification of functional modules from the large scale network is the key approach to solve the complexity of modularity in the past decade, but the overlapping and multi-scale nature of modules often renders unsatisfactory results in these methods. Most current methods for modularity detection are optimization-based and suffered from the drawback of size resolution limit. It is difficult to trace the origin of the unsatisfactory results, which may be due to poor data, inappropriate objective function selection or simply resulted from natural evolution, and hence no system-level accurate modular models for subcellular processes can be offered. Motivated by the idea of evolution with robustness and adaption as guiding principles, we propose a novel approach that can identify significant multi-scale overlapping modules that are sufficiently accurate at the system and subsystem levels, giving biological insights for subcellular processes. The success of our evolution strategy method is demonstrated by applying to the yeast protein-protein interaction network. Functional subsystems of important physiological phenomena can be revealed. In particular, the cell cycle controlling network is selected for detailed discussion. The cell cycle subcellular processes in yeast can be successfully dissected into functional modules of cell cycle control, cell size check point, spindle assembly checkpoint, and DNA damage check point in G2/M and S phases. The interconnections between check points and cell cycle control modules provide clues on the

  11. Spatial Intensity Distribution Analysis Reveals Abnormal Oligomerization of Proteins in Single Cells.

    PubMed

    Godin, Antoine G; Rappaz, Benjamin; Potvin-Trottier, Laurent; Kennedy, Timothy E; De Koninck, Yves; Wiseman, Paul W

    2015-08-18

    Knowledge of membrane receptor organization is essential for understanding the initial steps in cell signaling and trafficking mechanisms, but quantitative analysis of receptor interactions at the single-cell level and in different cellular compartments has remained highly challenging. To achieve this, we apply a quantitative image analysis technique-spatial intensity distribution analysis (SpIDA)-that can measure fluorescent particle concentrations and oligomerization states within different subcellular compartments in live cells. An important technical challenge faced by fluorescence microscopy-based measurement of oligomerization is the fidelity of receptor labeling. In practice, imperfect labeling biases the distribution of oligomeric states measured within an aggregated system. We extend SpIDA to enable analysis of high-order oligomers from fluorescence microscopy images, by including a probability weighted correction algorithm for nonemitting labels. We demonstrated that this fraction of nonemitting probes could be estimated in single cells using SpIDA measurements on model systems with known oligomerization state. Previously, this artifact was measured using single-step photobleaching. This approach was validated using computer-simulated data and the imperfect labeling was quantified in cells with ion channels of known oligomer subunit count. It was then applied to quantify the oligomerization states in different cell compartments of the proteolipid protein (PLP) expressed in COS-7 cells. Expression of a mutant PLP linked to impaired trafficking resulted in the detection of PLP tetramers that persist in the endoplasmic reticulum, while no difference was measured at the membrane between the distributions of wild-type and mutated PLPs. Our results demonstrate that SpIDA allows measurement of protein oligomerization in different compartments of intact cells, even when fractional mislabeling occurs as well as photobleaching during the imaging process, and

  12. Effects of surface functional groups on proliferation and biofunction of Schwann cells.

    PubMed

    Wang, Yaling; Ji, Yawei; Zhao, Yahong; Kong, Yan; Gao, Ming; Feng, Qilin; Wu, Yue; Yang, Yumin

    2016-05-01

    Scaffolds in tissue engineering should be rationally designed to become an adhesion substrate friendly to cells. Schwann cells play an important role in nerve regeneration and repair. Previous studies have suggested that surface chemical groups have effect on many types of cells. However, there have hitherto been few reports on Schwann cells. In this study, we investigated cell adhesion, survival, proliferation, and neurotrophic actions of Schwann cells cultured on glass coverslips modified with different chemical groups, including methyl, carboxyl, amino, hydroxyl, mercapto, and sulfonic groups. Schwann cells on amino and carboxyl surfaces had higher attachment rate, presenting good morphology, high proliferation, and strong neurotrophic functions, while on methyl surfaces, few cells can survive, cells shrunk into round shape, exhibiting poor proliferation and weak neurotrophic functions. Growth of cells on other groups was between methyl and amino, carboxyl, and had little difference among them. Our data indicated that chemical groups can regulate behavior of Schwann cells, indicating a way to design new scaffolds for peripheral nerve regeneration. PMID:26911577

  13. Revealing Glycoproteins in the Secretome of MCF-7 Human Breast Cancer Cells

    PubMed Central

    Tan, Aik-Aun; Phang, Wai-Mei; Gopinath, Subash C. B.; Hashim, Onn H.; Kiew, Lik Voon; Chen, Yeng

    2015-01-01

    Breast cancer is one of the major issues in the field of oncology, reported with a higher prevalence rate in women worldwide. In attempt to reveal the potential biomarkers for breast cancer, the findings of differentially glycosylated haptoglobin and osteonectin in previous study have drawn our attention towards glycoproteins of secretome from the MCF-7 cancer cell line. In the present study, further analyses were performed on the medium of MCF-7 cells by subjecting it to two-dimensional analyses followed by image analysis in contrast to the medium of human mammary epithelial cells (HMEpC) as a negative control. Carboxypeptidase A4 (CPA4), alpha-1-antitrypsin (AAT), haptoglobin (HP), and HSC70 were detected in the medium of MCF-7, while only CPA4 and osteonectin (ON) were detected in HMEpC medium. In addition, CPA4 was detected as upregulated in the MCF-7 medium. Further analysis by lectin showed that CPA4, AAT, HP, and HSC70 were secreted as N-glycan in the medium of MCF-7, with HP also showing differentially N-glycosylated isoforms. For the HMEpC, only CPA4 was detected as N-glycan. No O-glycan was detected in the medium of HMEpC but MCF-7 expressed O-glycosylated CPA4 and HSC70. All these revealed that glycoproteins could be used as glycan-based biomarkers for the prognosis of breast cancer. PMID:26167486

  14. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation.

    PubMed

    Wang, Maojun; Wang, Pengcheng; Tu, Lili; Zhu, Sitao; Zhang, Lin; Li, Zhonghua; Zhang, Qinghua; Yuan, Daojun; Zhang, Xianlong

    2016-05-19

    Epigenetic modifications are highlighted for their great importance in regulating plant development, but their function associated with single-cell differentiation remains undetermined. Here, we used the cotton fibre, which is the epidermal hair on the cotton ovule, as a model to investigate the regulatory role of DNA methylation in cell differentiation. The level of CHH (H = A, T, or C) DNA methylation level was found to increase during fibre development, accompanied by a decrease in RNA-directed DNA methylation (RdDM). Examination of nucleosome positioning revealed a gradual transition from euchromatin to heterochromatin for chromatin dynamics in developing fibres, which could shape the DNA methylation landscape. The observed increase in DNA methylation in fibres, compared with other ovule tissue, was demonstrated to be mediated predominantly by an active H3K9me2-dependent pathway rather than the RdDM pathway, which was inactive. Furthermore, integrated multi-omics analyses revealed that dynamic DNA methylation played a role in the regulation of lipid biosynthesis and spatio-temporal modulation of reactive oxygen species during fibre differentiation. Our study illustrates two divergent pathways mediating a continuous increase of DNA methylation and also sheds further light on the epigenetic basis for single-cell differentiation in plants. These data and analyses are made available to the wider research community through a comprehensive web portal. PMID:27067544

  15. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation

    PubMed Central

    Wang, Maojun; Wang, Pengcheng; Tu, Lili; Zhu, Sitao; Zhang, Lin; Li, Zhonghua; Zhang, Qinghua; Yuan, Daojun; Zhang, Xianlong

    2016-01-01

    Epigenetic modifications are highlighted for their great importance in regulating plant development, but their function associated with single-cell differentiation remains undetermined. Here, we used the cotton fibre, which is the epidermal hair on the cotton ovule, as a model to investigate the regulatory role of DNA methylation in cell differentiation. The level of CHH (H = A, T, or C) DNA methylation level was found to increase during fibre development, accompanied by a decrease in RNA-directed DNA methylation (RdDM). Examination of nucleosome positioning revealed a gradual transition from euchromatin to heterochromatin for chromatin dynamics in developing fibres, which could shape the DNA methylation landscape. The observed increase in DNA methylation in fibres, compared with other ovule tissue, was demonstrated to be mediated predominantly by an active H3K9me2-dependent pathway rather than the RdDM pathway, which was inactive. Furthermore, integrated multi-omics analyses revealed that dynamic DNA methylation played a role in the regulation of lipid biosynthesis and spatio-temporal modulation of reactive oxygen species during fibre differentiation. Our study illustrates two divergent pathways mediating a continuous increase of DNA methylation and also sheds further light on the epigenetic basis for single-cell differentiation in plants. These data and analyses are made available to the wider research community through a comprehensive web portal. PMID:27067544

  16. The Group 3 Innate Lymphoid Cell Defect in Aryl Hydrocarbon Receptor Deficient Mice Is Associated with T Cell Hyperactivation during Intestinal Infection.

    PubMed

    Wagage, Sagie; Harms Pritchard, Gretchen; Dawson, Lucas; Buza, Elizabeth L; Sonnenberg, Gregory F; Hunter, Christopher A

    2015-01-01

    Intestinal infection with the intracellular parasite Toxoplasma gondii results in the translocation of commensal bacteria to peripheral organs and the development of a T cell response specific to the microbiota. In naïve mice, the recently described RORγt+ group 3 innate lymphoid cell (ILC) population plays a critical role in promoting intestinal barrier function and limiting responses to gut-resident commensal bacteria. Given this role for group 3 ILCs, studies were performed to evaluate whether these cells might influence the immune response to mucosal infection with T. gondii. Phenotypic characterization of RORγt+ ILCs in T. gondii infected mice revealed that this population decreased following challenge but the population that remained expressed costimulatory molecules and IL-22. One factor that influences the maintenance of RORγt+ ILCs is the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, and Ahr-/- mice have a marked defect in the lamina propria group 3 ILC population. When Ahr-/- mice were challenged with T. gondii, they lost more weight than wild type controls. This disease course in Ahr-/- animals was associated with increased T cell responses to Toxoplasma antigen and crude commensal antigen preparations. Together, these data suggest that group 3 ILCs have a role in limiting T cell activation during intestinal infection. PMID:26010337

  17. The Group 3 Innate Lymphoid Cell Defect in Aryl Hydrocarbon Receptor Deficient Mice Is Associated with T Cell Hyperactivation during Intestinal Infection

    PubMed Central

    Wagage, Sagie; Harms Pritchard, Gretchen; Dawson, Lucas; Buza, Elizabeth L.; Sonnenberg, Gregory F.; Hunter, Christopher A.

    2015-01-01

    Intestinal infection with the intracellular parasite Toxoplasma gondii results in the translocation of commensal bacteria to peripheral organs and the development of a T cell response specific to the microbiota. In naïve mice, the recently described RORγt+ group 3 innate lymphoid cell (ILC) population plays a critical role in promoting intestinal barrier function and limiting responses to gut-resident commensal bacteria. Given this role for group 3 ILCs, studies were performed to evaluate whether these cells might influence the immune response to mucosal infection with T. gondii. Phenotypic characterization of RORγt+ ILCs in T. gondii infected mice revealed that this population decreased following challenge but the population that remained expressed costimulatory molecules and IL-22. One factor that influences the maintenance of RORγt+ ILCs is the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, and Ahr-/- mice have a marked defect in the lamina propria group 3 ILC population. When Ahr-/- mice were challenged with T. gondii, they lost more weight than wild type controls. This disease course in Ahr-/- animals was associated with increased T cell responses to Toxoplasma antigen and crude commensal antigen preparations. Together, these data suggest that group 3 ILCs have a role in limiting T cell activation during intestinal infection. PMID:26010337

  18. Dynamics of natural killer cell receptor revealed by quantitative analysis of photoswitchable protein.

    PubMed

    Pageon, Sophie V; Aquino, Gerardo; Lagrue, Kathryn; Köhler, Karsten; Endres, Robert G; Davis, Daniel M

    2013-11-01

    Natural Killer (NK) cell activation is dynamically regulated by numerous activating and inhibitory surface receptors that accumulate at the immune synapse. Quantitative analysis of receptor dynamics has been limited by methodologies that rely on indirect measurements such as fluorescence recovery after photobleaching. Here, we report an apparently novel approach to study how proteins traffic to and from the immune synapse using NK cell receptors tagged with the photoswitchable fluorescent protein tdEosFP, which can be irreversibly photoswitched from a green to red fluorescent state by ultraviolet light. Thus, after a localized switching event, the movement of the photoswitched molecules can be temporally and spatially resolved by monitoring fluorescence in two regions of interest. By comparing images with mathematical models, we evaluated the diffusion coefficient of the receptor KIR2DL1 (0.23 ± 0.06 μm(2) s(-1)) and assessed how synapse formation affects receptor dynamics. Our data conclude that the inhibitory NK cell receptor KIR2DL1 is continually trafficked into the synapse, and remains surprisingly stable there. Unexpectedly, however, in NK cells forming synapses with multiple target cells simultaneously, KIR2DL1 at one synapse can relocate to another synapse. Thus, our results reveal a previously undetected intersynaptic exchange of protein. PMID:24209843

  19. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Daosen; Feng, Yanyan; Zhang, Qinnan; Su, Xin; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-04-01

    Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.

  20. Genetic Manipulations Reveal Dynamic Cell and Gene Functions: Cre-ating a New View of Myogenesis

    PubMed Central

    Hutcheson, David A.; Kardon, Gabrielle

    2010-01-01

    Development of multicellular organisms is temporally and spatially complex. The Cre/loxP and Flp/FRT systems for genetic manipulation in mammals now enable researchers to explicitly examine in vivo the temporal and spatial role of cells and genes during development via cell lineage and ablation studies and conditional gene inactivation and activation. Recently we have used these methods to genetically dissect the role of Pax3+ and Pax7+ progenitor populations and the function of β-catenin, an important regulator of myogenesis, in vertebrate limb myogenesis. Our lineage and ablation studies of Pax3+ and Pax7+ progenitors revealed surprising insights into myogenesis not apparent from Pax3 and Pax7 expression and functional studies. In addition, conditional inactivation and activation of β-catenin in different progenitor populations and their progeny demonstrated that β-catenin plays several cell-autonomous roles in myogenesis. Our studies highlight the hierarchical (i.e. genes versus cells), temporal, and spatial complexity of development and demonstrate that manipulations of both cells and genes will be required to obtain a full understanding of the development of multicellular organisms. PMID:19844163

  1. Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell-wall structure and assembly

    PubMed Central

    Desmarais, Samantha M.; De Pedro, Miguel A.; Cava, Felipe; Huang, Kerwyn Casey

    2013-01-01

    The peptidoglycan (PG) cell wall is a unique macromolecule responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. A quantitative understanding of the relationships between PG architecture, morphogenesis, immune system activation, and pathogenesis can provide molecular-scale insights into the function of proteins involved in cell-wall synthesis and cell growth. High Performance Liquid Chromatography (HPLC) has played an important role in our understanding of the structural and chemical complexity of the cell wall by providing an analytical method to quantify differences in chemical composition. Here, we present a primer on the basic chemical features of wall structure that can be revealed through HPLC, along with a description of the applications of HPLC PG analyses for interpreting the effects of genetic and chemical perturbations to a variety of bacterial species in different environments. We describe the physical consequences of different PG compositions on cell shape, and review complementary experimental and computational methodologies for PG analysis. Finally, we present a partial list of future targets of development for HPLC and related techniques. PMID:23679048

  2. Phenotypic and Functional Plasticity of Murine Intestinal NKp46+ Group 3 Innate Lymphoid Cells.

    PubMed

    Verrier, Thomas; Satoh-Takayama, Naoko; Serafini, Nicolas; Marie, Solenne; Di Santo, James P; Vosshenrich, Christian A J

    2016-06-01

    Group 3 innate lymphoid cells (ILC3) actively participate in mucosal defense and homeostasis through prompt secretion of IL-17A, IL-22, and IFN-γ. Reports identify two ILC3 lineages: a CCR6(+)T-bet(-) subset that appears early in embryonic development and promotes lymphoid organogenesis and a CCR6(-)T-bet(+) subset that emerges after microbial colonization and harbors NKp46(+) ILC3. We demonstrate that NKp46 expression in the ILC3 subset is highly unstable. Cell fate mapping using Ncr1(CreGFP) × Rosa26(RFP) mice revealed the existence of an intestinal RFP(+) ILC3 subset (Ncr1(FM)) lacking NKp46 expression at the transcript and protein levels. Ncr1(FM) ILC3 produced more IL-22 and were distinguishable from NKp46(+) ILC3 by differential CD117, CD49a, DNAX accessory molecule-1, and, surprisingly, CCR6 expression. Ncr1(FM) ILC3 emerged after birth and persisted in adult mice following broad-spectrum antibiotic treatment. These results identify an unexpected phenotypic instability within NKp46(+) ILC3 that suggests a major role for environmental signals in tuning ILC3 functional plasticity. PMID:27183613

  3. Bcl11b is essential for group 2 innate lymphoid cell development

    PubMed Central

    Oliphant, Christopher J.; Englezakis, Alexandros; Yu, Yong; Clare, Simon; Rodewald, Hans-Reimer; Belz, Gabrielle; Liu, Pentao; Fallon, Padraic G.

    2015-01-01

    Group 2 innate lymphoid cells (ILC2s) are often found associated with mucosal surfaces where they contribute to protective immunity, inappropriate allergic responses, and tissue repair. Although we know they develop from a common lymphoid progenitor in the bone marrow (BM), the specific lineage path and transcriptional regulators that are involved are only starting to emerge. After ILC2 gene expression analysis we investigated the role of Bcl11b, a factor previously linked to T cell commitment, in ILC2 development. Using combined Bcl11b-tom and Id2-gfp reporter mice, we show that Bcl11b is expressed in ILC2 precursors in the BM and maintained in mature ILC2s. In vivo deletion of Bcl11b, by conditional tamoxifen-induced depletion or by Bcl11b−/− fetal liver chimera reconstitution, demonstrates that ILC2s are wholly dependent on Bcl11b for their development. Notably, in the absence of Bcl11b there is a concomitant expansion of the RORγt+ ILC3 population, suggesting that Bcl11b may negatively regulate this lineage. Using Nippostrongylus brasiliensis infection, we reveal that the absence of Bcl11b leads to impaired worm expulsion, caused by a deficit in ILC2s, whereas Citrobacter rodentium infection is cleared efficiently. These data clearly establish Bcl11b as a new factor in the differentiation of ILC2s. PMID:25964370

  4. Thirty-five voices in search of an author: what focus groups reveal about patients experiences in managed care settings.

    PubMed

    Frankel, Richard M; Hourigan, Nancy Treger

    2004-01-01

    Surprisingly little direct information from patients is available in the medical literature. Focus groups, which came into use in the 1940s, provide a simple, cost effective way of exploring attitudes and values within market segments or targeted groups. In healthcare, focus groups are being used to track patients' experiences, expectations and satisfaction in order to optimize quality and cost effectiveness. This study reports on a collaboration of three upstate New York Health Maintenance Organizations (HMOs) that used the same focus group format and questions to identify' best practices' and opportunities for improvement. Participants across groups reported similar experiences despite differences in geography and plan organization. Members' most positive comments were about costs, preventive services, ease of paper work and access to sick care, all administrative functions of the health plans. The most negative focused on retaining one's physician, telephone access, providers' medical skills, provider behavior and notification of results, all related to interpersonal/communication issues. We conclude that focus groups are useful for understanding and responding to the 'voice of the customer'. They also have some distinct advantages over forced-choice questionnaires, especially in trying to discover the range of patients' experiences and expectations, though they are not without their challenges. PMID:16808688

  5. Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure

    PubMed Central

    Grand, Ralph S.; Pichugina, Tatyana; Gehlen, Lutz R.; Jones, M. Beatrix; Tsai, Peter; Allison, Jane R.; Martienssen, Robert; O'Sullivan, Justin M.

    2014-01-01

    Successful progression through the cell cycle requires spatial and temporal regulation of gene transcript levels and the number, positions and condensation levels of chromosomes. Here we present a high resolution survey of genome interactions in Schizosaccharomyces pombe using synchronized cells to investigate cell cycle dependent changes in genome organization and transcription. Cell cycle dependent interactions were captured between and within S. pombe chromosomes. Known features of genome organization (e.g. the clustering of telomeres and retrotransposon long terminal repeats (LTRs)) were observed throughout the cell cycle. There were clear correlations between transcript levels and chromosomal interactions between genes, consistent with a role for interactions in transcriptional regulation at specific stages of the cell cycle. In silico reconstructions of the chromosome organization within the S. pombe nuclei were made by polymer modeling. These models suggest that groups of genes with high and low, or differentially regulated transcript levels have preferred positions within the S. pombe nucleus. We conclude that the S. pombe nucleus is spatially divided into functional sub-nuclear domains that correlate with gene activity. The observation that chromosomal interactions are maintained even when chromosomes are fully condensed in M phase implicates genome organization in epigenetic inheritance and bookmarking. PMID:25342201

  6. [Acute intestinal obstruction revealing enteropathy associated t-cell lymphoma, about a case].

    PubMed

    Garba, Abdoul Aziz; Adamou, Harissou; Magagi, Ibrahim Amadou; Brah, Souleymane; Habou, Oumarou

    2016-01-01

    Enteropathy associated T-cell lymphoma (EATL) is a rare complication of celiac disease (CD). We report a case of EATL associated with CD revealed by acute intestinal obstruction. A North African woman of 38 years old with a history of infertility and chronic abdominal pain was admitted in emergency with acute intestinal obstruction. During the surgery, we found a tumor on the small intestine with mesenteric lymphadenopathy. Histology and immunohistochemistry of the specimen objectified a digestive T lymphoma CD3+ and immunological assessment of celiac disease was positive. The diagnosis of EATL was thus retained. Chemotherapy (CHOEP protocol) was established as well as gluten-free diet with a complete response to treatment. The EATL is a rare complication of CD that can be revealed by intestinal obstruction. The prognosis can be improved by early treatment involving surgery and chemotherapy. Its prevention requires early diagnosis of celiac and gluten-free diets. PMID:27217874

  7. Evaluation of a 7-Methoxycoumarin-3-carboxylic Acid Ester Derivative as a Fluorescent, Cell-Cleavable, Phosphonate Protecting Group.

    PubMed

    Wiemer, Andrew J; Shippy, Rebekah R; Kilcollins, Ashley M; Li, Jin; Hsiao, Chia-Hung Christine; Barney, Rocky J; Geng, M Lei; Wiemer, David F

    2016-01-01

    Cell-cleavable protecting groups often enhance cellular delivery of species that are charged at physiological pH. Although several phosphonate protecting groups have achieved clinical success, it remains difficult to use these prodrugs in live cells to clarify biological mechanisms. Here, we present a strategy that uses a 7-methoxycoumarin-3-carboxylic acid ester as a fluorescent protecting group. This strategy was applied to synthesis of an (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) analogue to assess cellular uptake and human Vγ9Vδ2 T cell activation. The fluorescent ester displayed low cellular toxicity (IC50 >100 μm) and strong T cell activation (EC50 =0.018 μm) relative to the unprotected anion (EC50 =23 μm). The coumarin-derived analogue allowed no-wash analysis of biological deprotection, which revealed rapid internalization of the prodrug. These results demonstrate that fluorescent groups can be applied both as functional drug delivery tools and useful biological probes of drug uptake. PMID:26503489

  8. RNA-Seq Analysis of Sulfur-Deprived Chlamydomonas Cells Reveals Aspects of Acclimation Critical for Cell Survival[W

    PubMed Central

    González-Ballester, David; Casero, David; Cokus, Shawn; Pellegrini, Matteo; Merchant, Sabeeha S.; Grossman, Arthur R.

    2010-01-01

    The Chlamydomonas reinhardtii transcriptome was characterized from nutrient-replete and sulfur-depleted wild-type and snrk2.1 mutant cells. This mutant is null for the regulatory Ser-Thr kinase SNRK2.1, which is required for acclimation of the alga to sulfur deprivation. The transcriptome analyses used microarray hybridization and RNA-seq technology. Quantitative RT-PCR evaluation of the results obtained by these techniques showed that RNA-seq reports a larger dynamic range of expression levels than do microarray hybridizations. Transcripts responsive to sulfur deprivation included those encoding proteins involved in sulfur acquisition and assimilation, synthesis of sulfur-containing metabolites, Cys degradation, and sulfur recycling. Furthermore, we noted potential modifications of cellular structures during sulfur deprivation, including the cell wall and complexes associated with the photosynthetic apparatus. Moreover, the data suggest that sulfur-deprived cells accumulate proteins with fewer sulfur-containing amino acids. Most of the sulfur deprivation responses are controlled by the SNRK2.1 protein kinase. The snrk2.1 mutant exhibits a set of unique responses during both sulfur-replete and sulfur-depleted conditions that are not observed in wild-type cells; the inability of this mutant to acclimate to S deprivation probably leads to elevated levels of singlet oxygen and severe oxidative stress, which ultimately causes cell death. The transcriptome results for wild-type and mutant cells strongly suggest the occurrence of massive changes in cellular physiology and metabolism as cells become depleted for sulfur and reveal aspects of acclimation that are likely critical for cell survival. PMID:20587772

  9. Genetic Characterization of Turkish Snake Melon (Cucumis melo L. subsp. melo flexuosus Group) Accessions Revealed by SSR Markers.

    PubMed

    Solmaz, Ilknur; Kacar, Yildiz Aka; Simsek, Ozhan; Sari, Nebahat

    2016-08-01

    Snake melon is an important cucurbit crop especially in the Southeastern and the Mediterranean region of Turkey. It is consumed as fresh or pickled. The production is mainly done with the local landraces in the country. Turkey is one of the secondary diversification centers of melon and possesses valuable genetic resources which have different morphological characteristics in case of snake melon. Genetic diversity of snake melon genotypes collected from different regions of Turkey and reference genotypes obtained from World Melon Gene Bank in Avignon-France was examined using 13 simple sequence repeat (SSR) markers. A total of 69 alleles were detected, with an average of 5.31 alleles per locus. The polymorphism information content of SSR markers ranged from 0.19 to 0.57 (average 0.38). Based on cluster analysis, two major groups were defined. The first major group included only one accession (61), while the rest of all accessions grouped in the second major group and separated into different sub-clusters. Based on SSR markers, cluster analysis indicated that considerably high genetic variability exists among the examined accessions; however, Turkish snake melon accessions were grouped together with the reference snake melon accessions. PMID:27193591

  10. G9a regulates group 2 innate lymphoid cell development by repressing the group 3 innate lymphoid cell program.

    PubMed

    Antignano, Frann; Braam, Mitchell; Hughes, Michael R; Chenery, Alistair L; Burrows, Kyle; Gold, Matthew J; Oudhoff, Menno J; Rattray, David; Halim, Timotheus Y; Cait, Alissa; Takei, Fumio; Rossi, Fabio M; McNagny, Kelly M; Zaph, Colby

    2016-06-27

    Innate lymphoid cells (ILCs) are emerging as important regulators of homeostatic and disease-associated immune processes. Despite recent advances in defining the molecular pathways that control development and function of ILCs, the epigenetic mechanisms that regulate ILC biology are unknown. Here, we identify a role for the lysine methyltransferase G9a in regulating ILC2 development and function. Mice with a hematopoietic cell-specific deletion of G9a (Vav.G9a(-/-) mice) have a severe reduction in ILC2s in peripheral sites, associated with impaired development of immature ILC2s in the bone marrow. Accordingly, Vav.G9a(-/-) mice are resistant to the development of allergic lung inflammation. G9a-dependent dimethylation of histone 3 lysine 9 (H3K9me2) is a repressive histone mark that is associated with gene silencing. Genome-wide expression analysis demonstrated that the absence of G9a led to increased expression of ILC3-associated genes in developing ILC2 populations. Further, we found high levels of G9a-dependent H3K9me2 at ILC3-specific genetic loci, demonstrating that G9a-mediated repression of ILC3-associated genes is critical for the optimal development of ILC2s. Together, these results provide the first identification of an epigenetic regulatory mechanism in ILC development and function. PMID:27298444

  11. Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

    PubMed Central

    Vlasblom, James; Gagarinova, Alla; Phanse, Sadhna; Graham, Chris; Yousif, Fouad; Ding, Huiming; Xiong, Xuejian; Nazarians-Armavil, Anaies; Alamgir, Md; Ali, Mehrab; Pogoutse, Oxana; Pe'er, Asaf; Arnold, Roland; Michaut, Magali; Parkinson, John; Golshani, Ashkan; Whitfield, Chris; Wodak, Shoshana J.; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack F.; Emili, Andrew

    2011-01-01

    As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target. PMID:22125496

  12. Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers

    PubMed Central

    Hendrix, Jelle; Baumgärtel, Viola; Schrimpf, Waldemar; Ivanchenko, Sergey; Digman, Michelle A.; Gratton, Enrico; Kräusslich, Hans-Georg; Müller, Barbara

    2015-01-01

    Assembly of the Gag polyprotein into new viral particles in infected cells is a crucial step in the retroviral replication cycle. Currently, little is known about the onset of assembly in the cytosol. In this paper, we analyzed the cytosolic HIV-1 Gag fraction in real time in live cells using advanced fluctuation imaging methods and thereby provide detailed insights into the complex relationship between cytosolic Gag mobility, stoichiometry, and interactions. We show that Gag diffuses as a monomer on the subsecond timescale with severely reduced mobility. Reduction of mobility is associated with basic residues in its nucleocapsid (NC) domain, whereas capsid (CA) and matrix (MA) domains do not contribute significantly. Strikingly, another diffusive Gag species was observed on the seconds timescale that oligomerized in a concentration-dependent manner. Both NC- and CA-mediated interactions strongly assist this process. Our results reveal potential nucleation steps of cytosolic Gag fractions before membrane-assisted Gag assembly. PMID:26283800

  13. Communication is key: Reducing DEK1 activity reveals a link between cell-cell contacts and epidermal cell differentiation status.

    PubMed

    Galletti, Roberta; Ingram, Gwyneth C

    2015-01-01

    Plant epidermis development requires not only the initial acquisition of tissue identity, but also the ability to differentiate specific cell types over time and to maintain these differentiated states throughout the plant life. To set-up and maintain differentiation, plants activate specific transcriptional programs. Interfering with these programs can prevent differentiation and/or force differentiated cells to lose their identity and re-enter a proliferative state. We have recently shown that the Arabidopsis Defective Kernel 1 (DEK1) protein is required both for the differentiation of epidermal cells and for the maintenance of their fully differentiated state. Defects in DEK1 activity lead to a deregulation of the expression of epidermis-specific differentiation-promoting HD-ZIP IV transcription factors. Here we propose a working model in which DEK1, by maintaining cell-cell contacts, and thus communication between neighboring cells, influences HD-ZIP IV gene expression and epidermis differentiation. PMID:27064205

  14. Mathematical model for cell competition: Predator-prey interactions at the interface between two groups of cells in monolayer tissue.

    PubMed

    Nishikawa, Seiya; Takamatsu, Atsuko; Ohsawa, Shizue; Igaki, Tatsushi

    2016-09-01

    The phenomenon of 'cell competition' has been implicated in the normal development and maintenance of organs, such as in the regulation of organ size and suppression of neoplastic development. In cell competition, one group of cells competes with another group through an interaction at their interface. Which cell group "wins" is governed by a certain relative fitness within the cells. However, this idea of cellular fitness has not been clearly defined. We construct two types of mathematical models to describe this phenomenon of cell competition by considering the interaction at the interface as a predator-prey type interaction in a monolayer tissue such as epithelium. Both of these models can reproduce several typical experimental observations involving systems of mutant cells (losers) and normal cells (winners). By analyzing one of the model and defining an index for the degree of fitness in groups of cells, we show that the fate of each group mainly depends on the relative carrying capacities of certain resources and the strength of the predator-prey interaction at the interface. This contradicts the classical hypothesis in which the relative proliferation rate determines the winner. PMID:27234645

  15. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.

    PubMed

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas; Lyon, David; Mullari, Meeli; Madsen, Maria V; Daniel, Jeremy A; Jensen, Lars J; Nielsen, Michael L

    2016-01-01

    The posttranslational modification of proteins by arginine methylation is functionally important, yet the breadth of this modification is not well characterized. Using high-resolution mass spectrometry, we identified 8030 arginine methylation sites within 3300 human proteins in human embryonic kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified by methylation. Through quantitative proteomics and RNA interference to examine arginine methylation stoichiometry, we unexpectedly found that the protein arginine methyltransferase (PRMT) family of arginine methyltransferases catalyzed methylation independently of arginine sequence context. In contrast to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially regulated the functions of the pre-mRNA splicing factor SRSF2 (serine/arginine-rich splicing factor 2) and the RNA transport ribonucleoprotein HNRNPUL1 (heterogeneous nuclear ribonucleoprotein U-like 1). Knocking down PRMT5 impaired the RNA binding function of SRSF2, whereas knocking down PRMT4 [also known as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human arginine methylome provides a missing piece in the global and integrative view of cellular physiology and protein regulation. PMID:27577262

  16. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill

    PubMed Central

    Mason, Olivia U; Hazen, Terry C; Borglin, Sharon; Chain, Patrick S G; Dubinsky, Eric A; Fortney, Julian L; Han, James; Holman, Hoi-Ying N; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M; Tringe, Susannah G; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M; Jansson, Janet K

    2012-01-01

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea. PMID:22717885

  17. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    SciTech Connect

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  18. Retrieval of the Vacuolar H+-ATPase from Phagosomes Revealed by Live Cell Imaging

    PubMed Central

    Clarke, Margaret; Maddera, Lucinda; Engel, Ulrike; Gerisch, Günther

    2010-01-01

    Background The vacuolar H+-ATPase, or V-ATPase, is a highly-conserved multi-subunit enzyme that transports protons across membranes at the expense of ATP. The resulting proton gradient serves many essential functions, among them energizing transport of small molecules such as neurotransmitters, and acidifying organelles such as endosomes. The enzyme is not present in the plasma membrane from which a phagosome is formed, but is rapidly delivered by fusion with endosomes that already bear the V-ATPase in their membranes. Similarly, the enzyme is thought to be retrieved from phagosome membranes prior to exocytosis of indigestible material, although that process has not been directly visualized. Methodology To monitor trafficking of the V-ATPase in the phagocytic pathway of Dictyostelium discoideum, we fed the cells yeast, large particles that maintain their shape during trafficking. To track pH changes, we conjugated the yeast with fluorescein isothiocyanate. Cells were labeled with VatM-GFP, a fluorescently-tagged transmembrane subunit of the V-ATPase, in parallel with stage-specific endosomal markers or in combination with mRFP-tagged cytoskeletal proteins. Principal Findings We find that the V-ATPase is commonly retrieved from the phagosome membrane by vesiculation shortly before exocytosis. However, if the cells are kept in confined spaces, a bulky phagosome may be exocytosed prematurely. In this event, a large V-ATPase-rich vacuole coated with actin typically separates from the acidic phagosome shortly before exocytosis. This vacuole is propelled by an actin tail and soon acquires the properties of an early endosome, revealing an unexpected mechanism for rapid recycling of the V-ATPase. Any V-ATPase that reaches the plasma membrane is also promptly retrieved. Conclusions/Signficance Thus, live cell microscopy has revealed both a usual route and alternative means of recycling the V-ATPase in the endocytic pathway. PMID:20052281

  19. Chemometric Analysis of Bacterial Peptidoglycan Reveals Atypical Modifications That Empower the Cell Wall against Predatory Enzymes and Fly Innate Immunity.

    PubMed

    Espaillat, Akbar; Forsmo, Oskar; El Biari, Khouzaima; Björk, Rafael; Lemaitre, Bruno; Trygg, Johan; Cañada, Francisco Javier; de Pedro, Miguel A; Cava, Felipe

    2016-07-27

    Peptidoglycan is a fundamental structure for most bacteria. It contributes to the cell morphology and provides cell wall integrity against environmental insults. While several studies have reported a significant degree of variability in the chemical composition and organization of peptidoglycan in the domain Bacteria, the real diversity of this polymer is far from fully explored. This work exploits rapid ultraperformance liquid chromatography and multivariate data analysis to uncover peptidoglycan chemical diversity in the Class Alphaproteobacteria, a group of Gram negative bacteria that are highly heterogeneous in terms of metabolism, morphology and life-styles. Indeed, chemometric analyses revealed novel peptidoglycan structures conserved in Acetobacteria: amidation at the α-(l)-carboxyl of meso-diaminopimelic acid and the presence of muropeptides cross-linked by (1-3) l-Ala-d-(meso)-diaminopimelate cross-links. Both structures are growth-controlled modifications that influence sensitivity to Type VI secretion system peptidoglycan endopeptidases and recognition by the Drosophila innate immune system, suggesting relevant roles in the environmental adaptability of these bacteria. Collectively our findings demonstrate the discriminative power of chemometric tools on large cell wall-chromatographic data sets to discover novel peptidoglycan structural properties in bacteria. PMID:27337563

  20. A broadly neutralizing anti-influenza antibody reveals ongoing capacity of haemagglutinin-specific memory B cells to evolve.

    PubMed

    Fu, Ying; Zhang, Zhen; Sheehan, Jared; Avnir, Yuval; Ridenour, Callie; Sachnik, Thomas; Sun, Jiusong; Hossain, M Jaber; Chen, Li-Mei; Zhu, Quan; Donis, Ruben O; Marasco, Wayne A

    2016-01-01

    Understanding the natural evolution and structural changes involved in broadly neutralizing antibody (bnAb) development holds great promise for improving the design of prophylactic influenza vaccines. Here we report an haemagglutinin (HA) stem-directed bnAb, 3I14, isolated from human memory B cells, that utilizes a heavy chain encoded by the IGHV3-30 germline gene. MAb 3I14 binds and neutralizes groups 1 and 2 influenza A viruses and protects mice from lethal challenge. Analysis of VH and VL germline back-mutants reveals binding to H3 and H1 but not H5, which supports the critical role of somatic hypermutation in broadening the bnAb response. Moreover, a single VLD94N mutation improves the affinity of 3I14 to H5 by nearly 10-fold. These data provide evidence that memory B cell evolution can expand the HA subtype specificity. Our results further suggest that establishing an optimized memory B cell pool should be an aim of 'universal' influenza vaccine strategies. PMID:27619409

  1. Methylome, transcriptome, and PPARγ cistrome analyses reveal two epigenetic transitions in fat cells

    PubMed Central

    Takada, Hitomi; Saito, Yutaka; Mituyama, Toutai; Wei, Zong; Yoshihara, Eiji; Jacinto, Sandra; Downes, Michael; Evans, Ronald M; Kida, Yasuyuki S

    2014-01-01

    Although DNA modification is adaptive to extrinsic demands, little is known about epigenetic alterations associated with adipose differentiation and reprogramming. We systematically characterized the global trends of our methylome and transcriptome data with reported PPARγ cistrome data. Our analysis revealed that DNA methylation was altered between induced pluripotent stem cells (iPSCs) and adipose derived stem cells (ADSCs). Surprisingly, DNA methylation was not obviously changed in differentiation from ADSCs to mature fat cells (FatCs). This indicates that epigenetic predetermination of the adipogenic fate is almost established prior to substantial expression of the lineage. Furthermore, the majority of the PPARγ cistrome corresponded to the pre-set methylation profile between ADSCs and FatCs. In contrast to the pre-set model, we found that a subset of PPARγ-binding sites for late-expressing genes such as Adiponectin and Adiponectin receptor2 were differentially methylated independently of the early program. Thus, these analyses identify two types of epigenetic mechanisms that distinguish the pre-set cell fate and later stages of adipose differentiation. PMID:25093444

  2. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    PubMed Central

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy. PMID:26893143

  3. sdf1 Expression Reveals a Source of Perivascular-Derived Mesenchymal Stem Cells in Zebrafish

    PubMed Central

    Lund, Troy C.; Patrinostro, Xiaobai; Kramer, Ashley C.; Stadem, Paul; Higgins, LeeAnn; Markowski, Todd W.; Wroblewski, Matt S.; Lidke, Diane S.; Tolar, Jakub; Blazar, Bruce R.

    2014-01-01

    There is accumulating evidence that mesenchymal stem cells (MSC) have their origin as perivascular cells (PVC) in vivo, but precisely identifying them has been a challenge, as they have no single definitive marker and are rare. We have developed a fluorescent transgenic vertebrate model in which PVC can be visualized in vivo based upon sdf1 expression in the zebrafish. Prospective isolation and culture of sdf1DsRed PVC demonstrated properties consistent with MSC including prototypical cell surface marker expression; mesodermal differentiation into adipogenic, osteogenic and chondrogenic lineages; and the ability to support hematopoietic cells. Global proteomic studies performed by 2-dimensional liquid chromatography and tandem mass spectrometry revealed a high degree of similarity to human MSC and discovery of novel markers (CD99, CD151 and MYOF) that were previously unknown to be expressed by hMSC. Dynamic in vivo imaging during fin regeneration showed that PVC may arise from undifferentiated mesenchyme providing evidence of a PVC – MSC relationship. This is the first model, established in zebrafish, in which MSC can be visualized in vivo and will allow us to better understand their function in a native environment. PMID:24905975

  4. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis

    PubMed Central

    Levine, Jacob H.; Simonds, Erin F.; Bendall, Sean C.; Davis, Kara L.; Amir, El-ad D.; Tadmor, Michelle; Litvin, Oren; Fienberg, Harris; Jager, Astraea; Zunder, Eli; Finck, Rachel; Gedman, Amanda L.; Radtke, Ina; Downing, James R.; Pe’er, Dana; Nolan, Garry P.

    2015-01-01

    SUMMARY Acute myeloid leukemia (AML) manifests as phenotypically and functionally diverse cells, often within the same patient. Intratumor phenotypic and functional heterogeneity have been linked primarily by physical sorting experiments, which assume that functionally distinct subpopulations can be prospectively isolated by surface phenotypes. This assumption has proven problematic and we therefore developed a data-driven approach. Using mass cytometry, we profiled surface and intracellular signaling proteins simultaneously in millions of healthy and leukemic cells. We developed PhenoGraph, which algorithmically defines phenotypes in high-dimensional single-cell data. PhenoGraph revealed that the surface phenotypes of leukemic blasts do not necessarily reflect their intracellular state. Using hematopoietic progenitors, we defined a signaling-based measure of cellular phenotype, which led to isolation of a gene expression signature that was predictive of survival in independent cohorts. This study presents new methods for large-scale analysis of single-cell heterogeneity and demonstrates their utility, yielding insights into AML pathophysiology. PMID:26095251

  5. CAFET Algorithm Reveals Wnt/PCP Signature in Lung Squamous Cell Carcinoma

    PubMed Central

    Hu, Yue; Galkin, Anna V.; Wu, Chunlei; Reddy, Venkateshwar; Su, Andrew I.

    2011-01-01

    We analyzed the gene expression patterns of 138 Non-Small Cell Lung Cancer (NSCLC) samples and developed a new algorithm called Coverage Analysis with Fisher’s Exact Test (CAFET) to identify molecular pathways that are differentially activated in squamous cell carcinoma (SCC) and adenocarcinoma (AC) subtypes. Analysis of the lung cancer samples demonstrated hierarchical clustering according to the histological subtype and revealed a strong enrichment for the Wnt signaling pathway components in the cluster consisting predominantly of SCC samples. The specific gene expression pattern observed correlated with enhanced activation of the Wnt Planar Cell Polarity (PCP) pathway and inhibition of the canonical Wnt signaling branch. Further real time RT-PCR follow-up with additional primary tumor samples and lung cancer cell lines confirmed enrichment of Wnt/PCP pathway associated genes in the SCC subtype. Dysregulation of the canonical Wnt pathway, characterized by increased levels of β-catenin and epigenetic silencing of negative regulators, has been reported in adenocarcinoma of the lung. Our results suggest that SCC and AC utilize different branches of the Wnt pathway during oncogenesis. PMID:22016777

  6. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    NASA Astrophysics Data System (ADS)

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-02-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy.

  7. Next-Generation Sequencing of Pulmonary Large Cell Neuroendocrine Carcinoma Reveals Small Cell Carcinoma–like and Non–Small Cell Carcinoma–like Subsets

    PubMed Central

    Rekhtman, Natasha; Pietanza, Maria C.; Hellmann, Matthew D.; Naidoo, Jarushka; Arora, Arshi; Won, Helen; Halpenny, Darragh F.; Wang, Hangjun; Tian, Shaozhou K.; Litvak, Anya M.; Paik, Paul K.; Drilon, Alexander E.; Socci, Nicholas; Poirier, John T.; Shen, Ronglai; Berger, Michael F.; Moreira, Andre L.; Travis, William D.; Rudin, Charles M.; Ladanyi, Marc

    2016-01-01

    Purpose Pulmonary large cell neuroendocrine carcinoma (LCNEC) is a highly aggressive neoplasm, whose biologic relationship to small cell lung carcinoma (SCLC) versus non-SCLC (NSCLC) remains unclear, contributing to uncertainty regarding optimal clinical management. To clarify these relationships, we analyzed genomic alterations in LCNEC compared with other major lung carcinoma types. Experimental Design LCNEC (n = 45) tumor/normal pairs underwent targeted next-generation sequencing of 241 cancer genes by Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) platform and comprehensive histologic, immunohistochemical, and clinical analysis. Genomic data were compared with MSK-IMPACT analysis of other lung carcinoma histologies (n = 242). Results Commonly altered genes in LCNEC included TP53 (78%), RB1 (38%), STK11 (33%), KEAP1 (31%), and KRAS (22%). Genomic profiles segregated LCNEC into 2 major and 1 minor subsets: SCLC-like (n = 18), characterized by TP53+RB1 co-mutation/loss and other SCLC-type alterations, including MYCL amplification; NSCLC-like (n = 25), characterized by the lack of coaltered TP53+RB1 and nearly universal occurrence of NSCLC-type mutations (STK11, KRAS, and KEAP1); and carcinoid-like (n = 2), characterized by MEN1 mutations and low mutation burden. SCLC-like and NSCLC-like subsets revealed several clinicopathologic differences, including higher proliferative activity in SCLC-like tumors (P < 0.0001) and exclusive adenocarcinoma-type differentiation marker expression in NSCLC-like tumors (P = 0.005). While exhibiting predominant similarity with lung adenocarcinoma, NSCLC-like LCNEC harbored several distinctive genomic alterations, including more frequent mutations in NOTCH family genes (28%), implicated as key regulators of neuroendocrine differentiation. Conclusions LCNEC is a biologically heterogeneous group of tumors, comprising distinct subsets with genomic signatures of SCLC, NSCLC (predominantly

  8. DNA fingerprinting and anastomosis grouping reveal similar genetic diversity in Rhizoctonia species infecting turfgrasses in the transition zone of USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia blight (sensu lato) is a common and serious disease of many turfgrass species. The most widespread causal agent, R. solani, consists of several genetically different subpopulations. Though hyphal anastomosis reactions have been used to group Rhizoctonia species, they are time consuming a...

  9. Comparison of Sewage and Animal Fecal Microbiomes by using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups

    EPA Science Inventory

    Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but human and other animal gut microbiota contain an array of other taxonomic groups that might serve as indicators for sources of fecal pollution. High thr...

  10. Phylogeny of replication initiator protein TrfA reveals a highly divergent clade of incompatibility group P1 plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incompatibility group P-1 (incP-1) includes broad host range plasmids of Gram negative bacteria and are classified into five subgroups (alpha, beta, gamma, delta, and epsilon). The incP-1 replication module consists of the trfA gene, encoding the replication initiator protein TrfA, and the origin o...

  11. Extensive introgressive hybridization within the northern oriole group (Genus Icterus) revealed by three-species isolation with migration analysis

    PubMed Central

    Jacobsen, Frode; Omland, Kevin E

    2012-01-01

    Until recently, studies of divergence and gene flow among closely-related taxa were generally limited to pairs of sister taxa. However, organisms frequently exchange genes with other non-sister taxa. The “northern oriole” group within genus Icterus exemplifies this problem. This group involves the extensively studied hybrid zone between Baltimore oriole (Icterus galbula) and Bullock's oriole (I. bullockii), an alleged hybrid zone between I. bullockii and black-backed oriole (I. abeillei), and likely mtDNA introgression between I. galbula and I. abeillei. Here, we examine the divergence population genetics of the entire northern oriole group using a multipopulation Isolation-with-Migration (IM) model. In accordance with Haldane's rule, nuclear loci introgress extensively beyond the I. galbula–I. bullockii hybrid zone, while mtDNA does not. We found no evidence of introgression between I. bullockii and I. abeillei or between I. galbula and I. abeillei when all three species were analyzed together in a three-population model. However, traditional pairwise analysis suggested some nuclear introgression from I. abeillei into I. galbula, probably reflecting genetic contributions from I. bullockii unaccounted for in a two-population model. Thus, only by including all members of this group in the analysis was it possible to rigorously estimate the level of gene flow among these three closely related species. PMID:23145328

  12. Ultrasound-mediated structural changes in cells revealed by FTIR spectroscopy: A contribution to the optimization of gene and drug delivery

    NASA Astrophysics Data System (ADS)

    Grimaldi, Paola; Di Giambattista, Lucia; Giordani, Serena; Udroiu, Ion; Pozzi, Deleana; Gaudenzi, Silvia; Bedini, Angelico; Giliberti, Claudia; Palomba, Raffaele; Congiu Castellano, Agostina

    2011-12-01

    Ultrasound effects on biological samples are gaining a growing interest concerning in particular, the intracellular delivery of drugs and genes in a safe and in a efficient way. Future progress in this field will require a better understanding of how ultrasound and acoustic cavitation affect the biological system properties. The morphological changes of cells due to ultrasound (US) exposure have been extensively studied, while little attention has been given to the cells structural changes. We have exposed two different cell lines to 1 MHz frequency ultrasound currently used in therapy, Jurkat T-lymphocytes and NIH-3T3 fibroblasts, both employed as models respectively in the apoptosis and in the gene therapy studies. The Fourier Transform Infrared (FTIR) Spectroscopy was used as probe to reveal the structural changes in particular molecular groups belonging to the main biological systems. The genotoxic damage of cells exposed to ultrasound was ascertained by the Cytokinesis-Block Micronucleus (CBMN) assay. The FTIR spectroscopy results, combined with multivariate statistical analysis, regarding all cellular components (lipids, proteins, nucleic acids) of the two cell lines, show that Jurkat cells are more sensitive to therapeutic ultrasound in the lipid and protein regions, whereas the NIH-3T3 cells are more sensitive in the nucleic acids region; a meaningful genotoxic effect is present in both cell lines only for long sonication times while in the Jurkat cells also a significant cytotoxic effect is revealed for long times of exposure to ultrasound.

  13. Molecular processes during fat cell development revealed by gene expression profiling and functional annotation

    PubMed Central

    Hackl, Hubert; Burkard, Thomas Rainer; Sturn, Alexander; Rubio, Renee; Schleiffer, Alexander; Tian, Sun; Quackenbush, John; Eisenhaber, Frank; Trajanoski, Zlatko

    2005-01-01

    Background Large-scale transcription profiling of cell models and model organisms can identify novel molecular components involved in fat cell development. Detailed characterization of the sequences of identified gene products has not been done and global mechanisms have not been investigated. We evaluated the extent to which molecular processes can be revealed by expression profiling and functional annotation of genes that are differentially expressed during fat cell development. Results Mouse microarrays with more than 27,000 elements were developed, and transcriptional profiles of 3T3-L1 cells (pre-adipocyte cells) were monitored during differentiation. In total, 780 differentially expressed expressed sequence tags (ESTs) were subjected to in-depth bioinformatics analyses. The analysis of 3'-untranslated region sequences from 395 ESTs showed that 71% of the differentially expressed genes could be regulated by microRNAs. A molecular atlas of fat cell development was then constructed by de novo functional annotation on a sequence segment/domain-wise basis of 659 protein sequences, and subsequent mapping onto known pathways, possible cellular roles, and subcellular localizations. Key enzymes in 27 out of 36 investigated metabolic pathways were regulated at the transcriptional level, typically at the rate-limiting steps in these pathways. Also, coexpressed genes rarely shared consensus transcription-factor binding sites, and were typically not clustered in adjacent chromosomal regions, but were instead widely dispersed throughout the genome. Conclusions Large-scale transcription profiling in conjunction with sophisticated bioinformatics analyses can provide not only a list of novel players in a particular setting but also a global view on biological processes and molecular networks. PMID:16420668

  14. Effect of Lewis blood group antigen expression on bacterial adherence to COS-1 cells.

    PubMed Central

    Gaffney, R A; Schaeffer, A J; Anderson, B E; Duncan, J L

    1994-01-01

    Epithelial cells from secretor individuals demonstrate decreased bacterial adherence compared with cells from nonsecretors. Lewis blood group antigen expression is one component of the secretor/nonsecretor phenotype and several epidemiologic studies have suggested a link between Lewis blood group antigen phenotype and susceptibility to urinary tract infections. In this study, we examined the possibility that the expression of the difucosylated Lewis blood group determinants, Leb and Ley (associated with the secretor phenotype), made cells less susceptible to Escherichia coli adherence by masking receptors for pili. COS-1 cells, which do not produce Lewis (Lea, Leb, Le(x), and Ley) blood group antigens, were used as target cells for bacterial adherence. The surface blood group antigen expression pattern of the cells was then modified by cotransfection with plasmids containing DNA inserts encoding alpha (1,2)-fucosyltransferase and alpha (1,3)- and alpha (1,4)-fucosyltransferases, resulting in the expression of Leb and Ley. E. coli HB101 expressing various adhesins (type 1, PapJ96, PapIA2, PapAD110, Prs, and S) from recombinant plasmids bound equally well to untransfected cells and transfected cells expressing Lea and Le(x) (nonsecretor phenotype) and Leb and Ley (secretor phenotype) antigens. We conclude that the presence of Leb and Ley antigens on cells from secretors does not alone mask receptors for E. coli pili or hinder bacterial adherence. PMID:8005692

  15. Structure of Pneumococcal Peptidoglycan Hydrolase LytB Reveals Insights into the Bacterial Cell Wall Remodeling and Pathogenesis*

    PubMed Central

    Bai, Xiao-Hui; Chen, Hui-Jie; Jiang, Yong-Liang; Wen, Zhensong; Huang, Yubin; Cheng, Wang; Li, Qiong; Qi, Lei; Zhang, Jing-Ren; Chen, Yuxing; Zhou, Cong-Zhao

    2014-01-01

    Streptococcus pneumoniae causes a series of devastating infections in humans. Previous studies have shown that the endo-β-N-acetylglucosaminidase LytB is critical for pneumococcal cell division and nasal colonization, but the biochemical mechanism of LytB action remains unknown. Here we report the 1.65 Å crystal structure of the catalytic domain (residues Lys-375–Asp-658) of LytB (termed LytBCAT), excluding the choline binding domain. LytBCAT consists of three structurally independent modules: SH3b, WW, and GH73. These modules form a “T-shaped” pocket that accommodates a putative tetrasaccharide-pentapeptide substrate of peptidoglycan. Structural comparison and simulation revealed that the GH73 module of LytB harbors the active site, including the catalytic residue Glu-564. In vitro assays of hydrolytic activity indicated that LytB prefers the peptidoglycan from the lytB-deficient pneumococci, suggesting the existence of a specific substrate of LytB in the immature peptidoglycan. Combined with in vitro cell-dispersing and in vivo cell separation assays, we demonstrated that all three modules are necessary for the optimal activity of LytB. Further functional analysis showed that the full catalytic activity of LytB is required for pneumococcal adhesion to and invasion into human lung epithelial cells. Structure-based alignment indicated that the unique modular organization of LytB is highly conserved in its orthologs from Streptococcus mitis group and Gemella species. These findings provided structural insights into the pneumococcal cell wall remodeling and novel hints for the rational design of therapeutic agents against pneumococcal growth and thereby the related diseases. PMID:25002590

  16. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling

    PubMed Central

    Robbins, Scott H; Walzer, Thierry; Dembélé, Doulaye; Thibault, Christelle; Defays, Axel; Bessou, Gilles; Xu, Huichun; Vivier, Eric; Sellars, MacLean; Pierre, Philippe; Sharp, Franck R; Chan, Susan; Kastner, Philippe; Dalod, Marc

    2008-01-01

    Background Dendritic cells (DCs) are a complex group of cells that play a critical role in vertebrate immunity. Lymph-node resident DCs (LN-DCs) are subdivided into conventional DC (cDC) subsets (CD11b and CD8α in mouse; BDCA1 and BDCA3 in human) and plasmacytoid DCs (pDCs). It is currently unclear if these various DC populations belong to a unique hematopoietic lineage and if the subsets identified in the mouse and human systems are evolutionary homologs. To gain novel insights into these questions, we sought conserved genetic signatures for LN-DCs and in vitro derived granulocyte-macrophage colony stimulating factor (GM-CSF) DCs through the analysis of a compendium of genome-wide expression profiles of mouse or human leukocytes. Results We show through clustering analysis that all LN-DC subsets form a distinct branch within the leukocyte family tree, and reveal a transcriptomal signature evolutionarily conserved in all LN-DC subsets. Moreover, we identify a large gene expression program shared between mouse and human pDCs, and smaller conserved profiles shared between mouse and human LN-cDC subsets. Importantly, most of these genes have not been previously associated with DC function and many have unknown functions. Finally, we use compendium analysis to re-evaluate the classification of interferon-producing killer DCs, lin-CD16+HLA-DR+ cells and in vitro derived GM-CSF DCs, and show that these cells are more closely linked to natural killer and myeloid cells, respectively. Conclusion Our study provides a unique database resource for future investigation of the evolutionarily conserved molecular pathways governing the ontogeny and functions of leukocyte subsets, especially DCs. PMID:18218067

  17. RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure.

    PubMed

    Lu, Zhipeng; Zhang, Qiangfeng Cliff; Lee, Byron; Flynn, Ryan A; Smith, Martin A; Robinson, James T; Davidovich, Chen; Gooding, Anne R; Goodrich, Karen J; Mattick, John S; Mesirov, Jill P; Cech, Thomas R; Chang, Howard Y

    2016-05-19

    RNA has the intrinsic property to base pair, forming complex structures fundamental to its diverse functions. Here, we develop PARIS, a method based on reversible psoralen crosslinking for global mapping of RNA duplexes with near base-pair resolution in living cells. PARIS analysis in three human and mouse cell types reveals frequent long-range structures, higher-order architectures, and RNA-RNA interactions in trans across the transcriptome. PARIS determines base-pairing interactions on an individual-molecule level, revealing pervasive alternative conformations. We used PARIS-determined helices to guide phylogenetic analysis of RNA structures and discovered conserved long-range and alternative structures. XIST, a long noncoding RNA (lncRNA) essential for X chromosome inactivation, folds into evolutionarily conserved RNA structural domains that span many kilobases. XIST A-repeat forms complex inter-repeat duplexes that nucleate higher-order assembly of the key epigenetic silencing protein SPEN. PARIS is a generally applicable and versatile method that provides novel insights into the RNA structurome and interactome. VIDEO ABSTRACT. PMID:27180905

  18. DNA-based digital tension probes reveal integrin forces during early cell adhesion

    PubMed Central

    Zhang, Yun; Ge, Chenghao; Zhu, Cheng; Salaita, Khalid

    2014-01-01

    Mechanical stimuli profoundly alter cell fate, yet the mechanisms underlying mechanotransduction remain obscure due to a lack of methods for molecular force imaging. Here, to address this need, we develop a new class of molecular tension probes that function as a switch to generate a 20–30-fold increase in fluorescence upon experiencing a threshold piconewton force. The probes employ immobilized DNA-hairpins with tunable force response thresholds, ligands, and fluorescence reporters. Quantitative imaging reveals that integrin tension is highly dynamic and increases with an increasing integrin density during adhesion formation. Mixtures of fluorophore-encoded probes show integrin mechanical preference for cyclized-RGD over linear-RGD peptides. Multiplexed probes with variable guanine-cytosine content within their hairpins reveal integrin preference for the more stable probes at the leading tip of growing adhesions near the cell edge. DNA-based tension probes are among the most sensitive optical force reporters to date, overcoming the force and spatial-resolution limitations of traction force microscopy. PMID:25342432

  19. DNA Sequence Variation at the Period Locus Reveals the History of Species and Speciation Events in the Drosophila Virilis Group

    PubMed Central

    Hilton, H.; Hey, J.

    1996-01-01

    The virilis phylad of the Drosophila virilis group consists of five closely related taxa: D. virilis, D. lummei, D. novamexicana, D. americana americana and D. americana texana. DNA sequences from a 2.1-kb pair portion of the period locus were generated in four to eight individuals from each of the five taxa. We found evidence of recombination and high levels of variation within species. We found no evidence of recent natural selection. Surprisingly there was no evidence of divergence between D. a. americana and D. a. texana, and they collectively appear to have had a large historical effective population size. The ranges of these two taxa overlap in a large hybrid zone that has been delineated in the eastern U.S. on the basis of the geographic pattern of a chromosomal fusion. Also surprisingly, D. novamexicana appears to consist of two distinct groups each with low population size and no gene flow between them. PMID:8913746

  20. Truncated Power Laws Reveal a Link between Low-Level Behavioral Processes and Grouping Patterns in a Colonial Bird

    PubMed Central

    Jovani, Roger; Serrano, David; Ursúa, Esperanza; Tella, José L.

    2008-01-01

    Background Departures from power law group size frequency distributions have been proposed as a useful tool to link individual behavior with population patterns and dynamics, although examples are scarce for wild animal populations. Methodology/Principal Findings We studied a population of Lesser kestrels (Falco naumanni) breeding in groups (colonies) from one to ca. 40 breeding pairs in 10,000 km2 in NE Spain. A 3.5 fold steady population increase occurred during the eight-year study period, accompanied by a geographical expansion from an initial subpopulation which in turn remained stable in numbers. This population instability was mainly driven by first-breeders, which are less competitive at breeding sites, being relegated to breed solitarily or in small colony sizes, and disperse farther than adults. Colony size frequency distributions shifted from an initial power law to a truncated power law mirroring population increase. Thus, we hypothesized that population instability was behind the truncation of the power law. Accordingly, we found a power law distribution through years in the initial subpopulation, and a match between the power law breakpoint (at ca. ten pairs) and those colony sizes from which the despotic behavior of colony owners started to impair the settlement of newcomers. Moreover, the instability hypothesis was further supported by snapshot data from another population of Lesser kestrels in SW Spain suffering a population decline. Conclusions/Significance Appropriate analysis of the scaling properties of grouping patterns has unraveled the link between local agonistic processes and large-scale (population) grouping patterns in a wild bird population. PMID:18431479

  1. Protein array profiling of tic patient sera reveals a broad range and enhanced immune response against Group A Streptococcus antigens.

    PubMed

    Bombaci, Mauro; Grifantini, Renata; Mora, Marirosa; Reguzzi, Valerio; Petracca, Roberto; Meoni, Eva; Balloni, Sergio; Zingaretti, Chiara; Falugi, Fabiana; Manetti, Andrea G O; Margarit, Immaculada; Musser, James M; Cardona, Francesco; Orefici, Graziella; Grandi, Guido; Bensi, Giuliano

    2009-01-01

    The human pathogen Group A Streptococcus (Streptococcus pyogenes, GAS) is widely recognized as a major cause of common pharyngitis as well as of severe invasive diseases and non-suppurative sequelae associated with the existence of GAS antigens eliciting host autoantibodies. It has been proposed that a subset of paediatric disorders characterized by tics and obsessive-compulsive symptoms would exacerbate in association with relapses of GAS-associated pharyngitis. This hypothesis is however still controversial. In the attempt to shed light on the contribution of GAS infections to the onset of neuropsychiatric or behavioral disorders affecting as many as 3% of children and adolescents, we tested the antibody response of tic patient sera to a representative panel of GAS antigens. In particular, 102 recombinant proteins were spotted on nitrocellulose-coated glass slides and probed against 61 sera collected from young patients with typical tic neuropsychiatric symptoms but with no overt GAS infection. Sera from 35 children with neither tic disorder nor overt GAS infection were also analyzed. The protein recognition patterns of these two sera groups were compared with those obtained using 239 sera from children with GAS-associated pharyngitis. This comparative analysis identified 25 antigens recognized by sera of the three patient groups and 21 antigens recognized by tic and pharyngitis sera, but poorly or not recognized by sera from children without tic. Interestingly, these antigens appeared to be, in quantitative terms, more immunogenic in tic than in pharyngitis patients. Additionally, a third group of antigens appeared to be preferentially and specifically recognized by tic sera. These findings provide the first evidence that tic patient sera exhibit immunological profiles typical of individuals who elicited a broad, specific and strong immune response against GAS. This may be relevant in the context of one of the hypothesis proposing that GAS antigen

  2. The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister-group to protostomes

    SciTech Connect

    Helfenbein, Kevin G.; Fourcade, H. Matthew; Vanjani, Rohit G.; Boore, Jeffrey L.

    2004-05-01

    We report the first complete mitochondrial (mt) DNA sequence from a member of the phylum Chaetognatha (arrow worms). The Paraspadella gotoi mtDNA is highly unusual, missing 23 of the genes commonly found in animal mtDNAs, including atp6, which has otherwise been found universally to be present. Its 14 genes are unusually arranged into two groups, one on each strand. One group is punctuated by numerous non-coding intergenic nucleotides, while the other group is tightly packed, having no non-coding nucleotides, leading to speculation that there are two transcription units with differing modes of expression. The phylogenetic position of the Chaetognatha within the Metazoa has long been uncertain, with conflicting or equivocal results from various morphological analyses and rRNA sequence comparisons. Comparisons here of amino acid sequences from mitochondrially encoded proteins gives a single most parsimonious tree that supports a position of Chaetognatha as sister to the protostomes studied here. From this, one can more clearly interpret the patterns of evolution of various developmental features, especially regarding the embryological fate of the blastopore.

  3. Draft Genome Sequences of Xanthomonas sacchari and Two Banana-Associated Xanthomonads Reveal Insights into the Xanthomonas Group 1 Clade

    PubMed Central

    Studholme, David J.; Wasukira, Arthur; Paszkiewicz, Konrad; Aritua, Valente; Thwaites, Richard; Smith, Julian; Grant, Murray

    2011-01-01

    We present draft genome sequences for three strains of Xanthomonas species, each of which was associated with banana plants (Musa species) but is not closely related to the previously sequenced banana-pathogen Xanthomonas campestris pathovar musacearum. Strain NCPPB4393 had been deposited as Xanthomonas campestris pathovar musacearum but in fact falls within the species Xanthomonas sacchari. Strain NCPPB1132 is more distantly related to Xanthomonas sacchari whilst strain NCPPB 1131 grouped in a distinct species-level clade related to X. sacchari, along with strains from ginger, rice, cotton and sugarcane. These three newly sequenced strains share many genomic features with the previously sequenced Xanthomonas albilineans, for example possessing an unsual metE allele and lacking the Hrp type III secretion system. However, they are distinct from Xanthomonas albilineans in many respects, for example showing little evidence of genome reduction. They also lack the SPI-1 type III secretion system found in Xanthomonas albilineans. Unlike X. albilineans, all three strains possess a gum gene cluster. The data reported here provide the first genome-wide survey of non-Hrp Xanthomonas species other than Xanthomonas albilineans, which is an atypical member of this group. We hope that the availability of complete sequence data for this group of organisms is the first step towards understanding their interactions with plants and identifying potential virulence factors. PMID:24710305

  4. The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes.

    PubMed

    Helfenbein, Kevin G; Fourcade, H Matthew; Vanjani, Rohit G; Boore, Jeffrey L

    2004-07-20

    We report the complete mtDNA sequence from a member of the phylum Chaetognatha (arrow worms). The Paraspadella gotoi mtDNA is highly unusual, missing 23 of the genes commonly found in animal mtDNAs, including atp6, which has otherwise been found universally to be present. Its 14 genes are unusually arranged into two groups, one on each strand. One group is punctuated by numerous noncoding intergenic nucleotides although the other group is tightly packed, having no noncoding nucleotides, leading to speculation that there are two transcription units with differing modes of expression. The phylogenetic position of the Chaetognatha within the Metazoa has long been uncertain, with conflicting or equivocal results from various morphological analyses and rRNA sequence comparisons. Comparisons here of amino acid sequences from mitochondrially encoded proteins give a single most parsimonious tree that supports a position of Chaetognatha as sister to the protostomes studied here. From this analysis, one can more clearly interpret the patterns of evolution of various developmental features, especially regarding the embryological fate of the blastopore. PMID:15249679

  5. Polycomb group gene BMI1 controls invasion of medulloblastoma cells and inhibits BMP-regulated cell adhesion

    PubMed Central

    2014-01-01

    Background Medulloblastoma is the most common intracranial childhood malignancy and a genetically heterogeneous disease. Despite recent advances, current therapeutic approaches are still associated with high morbidity and mortality. Recent molecular profiling has suggested the stratification of medulloblastoma from one single disease into four distinct subgroups namely: WNT Group (best prognosis), SHH Group (intermediate prognosis), Group 3 (worst prognosis) and Group 4 (intermediate prognosis). BMI1 is a Polycomb group repressor complex gene overexpressed across medulloblastoma subgroups but most significantly in Group 4 tumours. Bone morphogenetic proteins are morphogens belonging to TGF-β superfamily of growth factors, known to inhibit medulloblastoma cell proliferation and induce apoptosis. Results Here we demonstrate that human medulloblastoma of Group 4 characterised by the greatest overexpression of BMI1, also display deregulation of cell adhesion molecules. We show that BMI1 controls intraparenchymal invasion in a novel xenograft model of human MB of Group 4, while in vitro assays highlight that cell adhesion and motility are controlled by BMI1 in a BMP dependent manner. Conclusions BMI1 controls MB cell migration and invasion through repression of the BMP pathway, raising the possibility that BMI1 could be used as a biomarker to identify groups of patients who may benefit from a treatment with BMP agonists. PMID:24460684

  6. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    PubMed Central

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  7. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form

    PubMed Central

    Sandoz, Kelsi M.; Popham, David L.; Beare, Paul A.; Sturdevant, Daniel E.; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A.

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3–3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3–3 cross-links as opposed to 16% 3–3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella’s environmental resistance. PMID:26909555

  8. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form.

    PubMed

    Sandoz, Kelsi M; Popham, David L; Beare, Paul A; Sturdevant, Daniel E; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance. PMID:26909555

  9. Cardiac Metastases of Renal Cell Carcinoma Revealed by Syncope: Diagnosis and Treatment

    PubMed Central

    Bazine, Aziz; Fetohi, Mohamed; Tanz, Rachid; Mahfoud, Tarik; Ichou, Mohamed; Errihani, Hassan

    2014-01-01

    Abstract Introduction Cardiac metastases from renal cell carcinoma are very rare. In this report, we describe a case of ventricular metastases in the absence of vena cava or right atrial involvement. Case Report We report the case of a 60-year-old man who had a past history of heavy tobacco intake and well-controlled arterial hypertension. He experienced sudden-onset palpitations, lost consciousness and, as a result, was involved in an accident on the public highway. Cardiac arrhythmia was suspected and, therefore, transthoracic echocardiography was suggested, which revealed a large right ventricular mass. Chest and abdominal computed tomography demonstrated a mass in the right ventricle, but without contiguous vena cava involvement, and a right renal mass related to the probable neoplasm. An ultrasound-guided renal biopsy showed a clear-cell renal cell carcinoma. A bone scan revealed a metastatic bone disease. The patient was started on sunitinib treatment, which was well tolerated. However, approximately 8 months later, reevaluation showed pulmonary metastases. The patient was subsequently started on treatment with everolimus, which, however, was poorly tolerated. Two months later, the patient died due to terminal respiratory insufficiency. Discussion Based on the literature and our observations in this case, targeted antiangiogenic therapy should be considered as a viable therapeutic alternative to metastasectomy for patients with inoperable cardiac metastatic disease as long as there is no baseline systolic or diastolic dysfunction. The case also emphasizes the importance of a thorough history review and physical examination in the workup of patients with syncope. PMID:25232327

  10. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD

    PubMed Central

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K.; Miyazaki, Hideki; Michael, Iacovos P.; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-01-01

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis. PMID:26831065

  11. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    SciTech Connect

    Vanderslice, P.; Ballinger, S.M., Tam, E.K.; Goldstein, S.M.; Craik, C.S.; Caughey, G.H. )

    1990-05-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the {approx}1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5{prime} regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family.

  12. Solvatochromic Nile Red probes with FRET quencher reveal lipid order heterogeneity in living and apoptotic cells.

    PubMed

    Kreder, Rémy; Pyrshev, Kyrylo A; Darwich, Zeinab; Kucherak, Oleksandr A; Mély, Yves; Klymchenko, Andrey S

    2015-06-19

    Detecting and imaging lipid microdomains (rafts) in cell membranes remain a challenge despite intensive research in the field. Two types of fluorescent probes are used for this purpose: one specifically labels a given phase (liquid ordered, Lo, or liquid disordered, Ld), while the other, being environment-sensitive (solvatochromic), stains the two phases in different emission colors. Here, we combined the two approaches by designing a phase-sensitive probe of the Ld phase and a quencher of the Ld phase. The former is an analogue of the recently developed Nile Red-based probe NR12S, bearing a bulky hydrophobic chain (bNR10S), while the latter is based on Black Hole Quencher-2 designed as bNR10S (bQ10S). Fluorescence spectroscopy of large unilamellar vesicles and microscopy of giant vesicles showed that the bNR10S probe can partition specifically into the Ld phase, while bQ10S can specifically quench the NR12S probe in the Ld phase so that only its fraction in the Lo phase remains fluorescent. Thus, the toolkit of two probes with quencher can specifically target Ld and Lo phases and identify their lipid order from the emission color. Application of this toolkit in living cells (HeLa, CHO, and 293T cell lines) revealed heterogeneity in the cell plasma membranes, observed as distinct probe environments close to the Lo and Ld phases of model membranes. In HeLa cells undergoing apoptosis, our toolkit showed the formation of separate domains of the Ld-like phase in the form of blebs. The developed tools open new possibilities in lipid raft research. PMID:25710589

  13. A discrete model of Drosophila eggshell patterning reveals cell-autonomous and juxtacrine effects.

    PubMed

    Fauré, Adrien; Vreede, Barbara M I; Sucena, Elio; Chaouiya, Claudine

    2014-03-01

    The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems. PMID:24675973

  14. Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry.

    PubMed

    Silva-Ayala, Daniela; López, Tomás; Gutiérrez, Michelle; Perrimon, Norbert; López, Susana; Arias, Carlos F

    2013-06-18

    Rotavirus (RV) is the major cause of childhood gastroenteritis worldwide. This study presents a functional genome-scale analysis of cellular proteins and pathways relevant for RV infection using RNAi. Among the 522 proteins selected in the screen for their ability to affect viral infectivity, an enriched group that participates in endocytic processes was identified. Within these proteins, subunits of the vacuolar ATPase, small GTPases, actinin 4, and, of special interest, components of the endosomal sorting complex required for transport (ESCRT) machinery were found. Here we provide evidence for a role of the ESCRT complex in the entry of simian and human RV strains in both monkey and human epithelial cells. In addition, the ESCRT-associated ATPase VPS4A and phospholipid lysobisphosphatidic acid, both crucial for the formation of intralumenal vesicles in multivesicular bodies, were also found to be required for cell entry. Interestingly, it seems that regardless of the molecules that rhesus RV and human RV strains use for cell-surface attachment and the distinct endocytic pathway used, all these viruses converge in early endosomes and use multivesicular bodies for cell entry. Furthermore, the small GTPases RHOA and CDC42, which regulate different types of clathrin-independent endocytosis, as well as early endosomal antigen 1 (EEA1), were found to be involved in this process. This work reports the direct involvement of the ESCRT machinery in the life cycle of a nonenveloped virus and highlights the complex mechanism that these viruses use to enter cells. It also illustrates the efficiency of high-throughput RNAi screenings as genetic tools for comprehensively studying the interaction between viruses and their host cells. PMID:23733942

  15. A Discrete Model of Drosophila Eggshell Patterning Reveals Cell-Autonomous and Juxtacrine Effects

    PubMed Central

    Fauré, Adrien; Vreede, Barbara M. I.; Sucena, Élio; Chaouiya, Claudine

    2014-01-01

    The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems. PMID:24675973

  16. Validation of the Reveal(®) 2.0 Group D1 Salmonella Test for Detection of Salmonella Enteritidis in Raw Shell Eggs and Poultry-Associated Matrixes.

    PubMed

    Mozola, Mark; Biswas, Preetha; Viator, Ryan; Feldpausch, Emily; Foti, Debra; Li, Lin; Le, Quynh-Nhi; Alles, Susan; Rice, Jennifer

    2016-07-01

    A study was conducted to assess the performance of the Reveal(®) 2.0 Group D1 Salmonella lateral flow immunoassay for use in detection of Salmonella Enteritidis (SE) in raw shell eggs and poultry-associated matrixes, including chicken carcass rinse and poultry feed. In inclusivity testing, the Reveal 2.0 test detected all 37 strains of SE tested. The test also detected all but one of 18 non-Enteritidis somatic group D1 Salmonella serovars examined. In exclusivity testing, none of 42 strains tested was detected. The exclusivity panel included Salmonella strains of somatic groups other than D1, as well as strains of other genera of Gram-negative bacteria. In matrix testing, performance of the Reveal 2.0 test was compared to that of the U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook reference culture procedure for chicken carcass rinse and to that of the U.S. Food and Drug Administration Bacteriological Analytical Manual for raw shell eggs and poultry feed. For all matrixes evaluated, there were no significant differences in the ability to detect SE when comparing the Reveal 2.0 method and the appropriate reference culture procedure as determined by probability of detection statistical analysis. The ability of the Reveal 2.0 test to withstand modest perturbations to normal operating parameters was examined in robustness experiments. Results showed that the test can withstand deviations in up to three operating parameters simultaneously without significantly affecting performance. Real-time stability testing of multiple lots of Reveal 2.0 devices established the shelf life of the test device at 16 months postmanufacture. PMID:27214854

  17. Genome Sequence of Candidatus Nitrososphaera evergladensis from Group I.1b Enriched from Everglades Soil Reveals Novel Genomic Features of the Ammonia-Oxidizing Archaea

    PubMed Central

    Zhalnina, Kateryna V.; Dias, Raquel; Leonard, Michael T.; Dorr de Quadros, Patricia; Camargo, Flavio A. O.; Drew, Jennifer C.; Farmerie, William G.; Daroub, Samira H.; Triplett, Eric W.

    2014-01-01

    The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group. PMID:24999826

  18. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea.

    PubMed

    Zhalnina, Kateryna V; Dias, Raquel; Leonard, Michael T; Dorr de Quadros, Patricia; Camargo, Flavio A O; Drew, Jennifer C; Farmerie, William G; Daroub, Samira H; Triplett, Eric W

    2014-01-01

    The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group. PMID:24999826

  19. Identity and fate of Tbx4-expressing cells reveal developmental cell fate decisions in the allantois, limb, and external genitalia

    PubMed Central

    Naiche, L. A.; Arora, Ripla; Kania, Artur; Lewandoski, Mark; Papaioannou, Virginia E.

    2011-01-01

    T-box gene Tbx4 is critical for the formation of the umbilicus and the initiation of the hindlimb. Previous studies show broad expression in the allantois, hindlimb, lung and proctodeum. We have examined the expression of Tbx4 in detail and used a Tbx4-Cre line to trace the fates of Tbx4-expressing cells. Tbx4 expression and lineage reveal that various distinct appendages, such as the allantois, hindlimb, and external genitalia, all arise from a single mesenchymal expression domain. Additionally, although Tbx4 is associated primarily with the hindlimb, we find two forelimb expression domains. Most notably, we find that, despite the requirement for Tbx4 in allantoic vasculogenesis, the presumptive endothelial cells of the allantois do not express Tbx4 and lineage tracing reveals that the umbilical vasculature never expresses Tbx4. These results imply that endothelial lineages are segregated prior to the onset of vasculogenesis, and demonstrate a role for the peri-vascular tissue in vasculogenesis. PMID:21932311

  20. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo

    PubMed Central

    Kokkinopoulos, Ioannis; Ishida, Hidekazu; Saba, Rie; Ruchaya, Prashant; Cabrera, Claudia; Struebig, Monika; Barnes, Michael; Terry, Anna; Kaneko, Masahiro; Shintani, Yasunori; Coppen, Steven; Shiratori, Hidetaka; Ameen, Torath; Mein, Charles; Hamada, Hiroshi; Suzuki, Ken; Yashiro, Kenta

    2015-01-01

    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study. PMID:26469858

  1. The Combining Sites of Anti-lipid A Antibodies Reveal a Widely Utilized Motif Specific for Negatively Charged Groups.

    PubMed

    Haji-Ghassemi, Omid; Müller-Loennies, Sven; Rodriguez, Teresa; Brade, Lore; Grimmecke, Hans-Dieter; Brade, Helmut; Evans, Stephen V

    2016-05-01

    Lipopolysaccharide dispersed in the blood by Gram-negative bacteria can be a potent inducer of septic shock. One research focus has been based on antibody sequestration of lipid A (the endotoxic principle of LPS); however, none have been successfully developed into a clinical treatment. Comparison of a panel of anti-lipid A antibodies reveals highly specific antibodies produced through distinct germ line precursors. The structures of antigen-binding fragments for two homologous mAbs specific for lipid A, S55-3 and S55-5, have been determined both in complex with lipid A disaccharide backbone and unliganded. These high resolution structures reveal a conserved positively charged pocket formed within the complementarity determining region H2 loops that binds the terminal phosphates of lipid A. Significantly, this motif occurs in unrelated antibodies where it mediates binding to negatively charged moieties through a range of epitopes, including phosphorylated peptides used in diagnostics and therapeutics. S55-3 and S55-5 have combining sites distinct from anti-lipid A antibodies previously described (as a result of their separate germ line origin), which are nevertheless complementary both in shape and charge to the antigen. S55-3 and S55-5 display similar avidity toward lipid A despite possessing a number of different amino acid residues in their combining sites. Binding of lipid A occurs independent of the acyl chains, although the GlcN-O6 attachment point for the core oligosaccharide is buried in the combining site, which explains their inability to recognize LPS. Despite their lack of therapeutic potential, the observed motif may have significant immunological implications as a tool for engineering recombinant antibodies. PMID:26933033

  2. In situ hybridization of oxytocin messenger RNA: macroscopic distribution and quantitation in rat hypothalamic cell groups

    SciTech Connect

    Burbach, J.P.; Voorhuis, T.A.; van Tol, H.H.; Ivell, R.

    1987-05-29

    Oxytocin mRNA was detected in the rat hypothalamus by in situ hybridization to a single stranded /sup 35/S-labelled DNA probe and the distribution of oxytocin mRNA-containing cell groups was studied at the macroscopic level. Specificity of hybridization was confirmed by comparison to vasopressin mRNA hybridization in parallel tissue sections. Cell groups containing oxytocin mRNA were confined to a set of hypothalamic cell groups, i.c. the supraoptic, paraventricular, anterior commissural nuclei, nucleus circularis and scattered hypothalamic islets. These cell groups displayed similar densities of autoradiographic signals indicating that the oxytocin gene is expressed at approximately the same average level at these various sites.

  3. Crystal structure of the trithorax group protein ASH2L reveals a forkhead-like DNA binding domain

    SciTech Connect

    Sarvan, Sabina; Avdic, Vanja; Tremblay, Véronique; Chaturvedi, Chandra-Prakash; Zhang, Pamela; Lanouette, Sylvain; Blais, Alexandre; Brunzelle, Joseph S; Brand, Marjorie; Couture, Jean-François

    2012-05-02

    Absent, small or homeotic discs-like 2 (ASH2L) is a trithorax group (TrxG) protein and a regulatory subunit of the SET1 family of lysine methyltransferases. Here we report that ASH2L binds DNA using a forkhead-like helix-wing-helix (HWH) domain. In vivo, the ASH2L HWH domain is required for binding to the {beta}-globin locus control region, histone H3 Lys4 (H3K4) trimethylation and maximal expression of the {beta}-globin gene (Hbb-1), validating the functional importance of the ASH2L DNA binding domain.

  4. Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells.

    PubMed

    Oikawa, Tsunekazu; Wauthier, Eliane; Dinh, Timothy A; Selitsky, Sara R; Reyna-Neyra, Andrea; Carpino, Guido; Levine, Ronald; Cardinale, Vincenzo; Klimstra, David; Gaudio, Eugenio; Alvaro, Domenico; Carrasco, Nancy; Sethupathy, Praveen; Reid, Lola M

    2015-01-01

    The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells--newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies. PMID:26437858

  5. Morphology-based mammalian stem cell tests reveal potential developmental toxicity of donepezil.

    PubMed

    Lau, Caroline G Y; Marikawa, Yusuke

    2014-11-01

    Various compounds, including therapeutic drugs, can adversely impact the survival and development of embryos in the uterus. Identification of such development-interfering agents is a challenging task, although multi-angle approaches--including the use of in vitro toxicology studies involving embryonic stem cells--should alleviate some of the current difficulties. In the present study, we utilized the in vitro elongation of embryoid bodies (EBs) derived from mouse embryonal carcinoma stem cell line P19C5 as a model of early embryological events, specifically that of gastrulation and axial patterning. From our study, we identified donepezil, a medication indicated for the management of Alzheimer's disease, as a potential developmental toxicant. The extent of P19C5 EB axial elongation was diminished by donepezil in a dose-dependent manner. Although donepezil is a known inhibitor of acetylcholinesterase, interference of elongation was not mediated through this enzyme. Quantitative reverse-transcriptase PCR revealed that donepezil altered the expression pattern of a specific set of developmental regulator genes involved in patterning along the anterior-posterior body axis. When tested in mouse whole embryo culture, donepezil caused morphological abnormalities including impaired somitogenesis. Donepezil also diminished elongation morphogenesis of EBs generated from human embryonic stem cells. These results suggest that donepezil interferes with axial elongation morphogenesis of early embryos by altering the expression pattern of regulators of axial development. PMID:25269881

  6. Simulations reveal conformational changes of methylhydroxyl groups during dissolution of cellulose Iβ in ionic liquid 1-ethyl-3-methylimidazolium acetate.

    PubMed

    Liu, Hanbin; Cheng, Gang; Kent, Michael; Stavila, Vitalie; Simmons, Blake A; Sale, Kenneth L; Singh, Seema

    2012-07-19

    In this work, we use molecular dynamics (MD) simulations to study the dissolution of microcrystalline cellulose in the ionic liquid 1-ethyl-3-methylimidazolium acetate (abbreviated as [C2mim][OAc]) at 20 wt % loading. The interactions of [C2mim][OAc] with the Iβ cellulose structure at 120 °C were studied. The results show that both the cation and the anion of [C2mim][OAc] penetrate into the cellulose Iβ crystal structure but that the anion in particular forms strong hydrogen bonds with cellulose. Our results also show that the methylhydroxyl groups of cellulose solvated in [C2mim][OAc] are predominantly in the gauche-trans (gt) conformation, in contrast to the dominant trans-gauche (tg) conformation of cellulose Iβ in air or the gauche-gauche (gg) conformation for cellulose chains in water or after pretreatment with ammonia. Because the gt conformation is found mainly in cellulose II, these simulations suggest that regenerated cellulose under similar pretreatment conditions is composed mainly of cellulose II, and this result was confirmed by X-ray diffraction of samples processed under similar pretreatment conditions. These simulations provide new insight into the efficacy of [C2mim][OAc] pretreatment, suggesting that [C2mim][OAc] interacts with and biases the methylhydroxyl groups of cellulose toward orientations that are consistent with the experimentally observed more easily hydrolyzed cellulose II. PMID:22574852

  7. Use of guinea pig embryo cell cultures for isolation and propagation of group A coxsackieviruses.

    PubMed Central

    Landry, M L; Madore, H P; Fong, C K; Hsiung, G D

    1981-01-01

    The isolation of group A coxsackieviruses from clinical specimens generally requires the use of suckling mice. By using guinea pig embryo cells, the following coxsackieviruses were isolated from throat swabs and stool samples obtained from patients with a variety of illnesses: two of type A2, one each of types A6 and A8, and four of type 10. Distinct cytopathic effects were produced in 3 to 5 days in the guinea pig embryo cells inoculated with the clinical specimens. In addition, a number of prototype group A coxsackieviruses, including types 2--6, 8, 10, and 12, were readily propagated in guinea pig embryo cell cultures. Thus, guinea pig embryo cells appeared to be a sensitive alternative cell culture system for the isolation and propagation of certain types of group A coxsackieviruses. Images PMID:6263943

  8. Netrin-1-Regulated Distribution of UNC5B and DCC in Live Cells Revealed by TICCS.

    PubMed

    Gopal, Angelica A; Rappaz, Benjamin; Rouger, Vincent; Martyn, Iain B; Dahlberg, Peter D; Meland, Rachel J; Beamish, Ian V; Kennedy, Timothy E; Wiseman, Paul W

    2016-02-01

    Netrins are secreted proteins that direct cell migration and adhesion during development. Netrin-1 binds its receptors deleted in colorectal cancer (DCC) and the UNC5 homologs (UNC5A-D) to activate downstream signaling that ultimately directs cytoskeletal reorganization. To investigate how netrin-1 regulates the dynamic distribution of DCC and UNC5 homologs, we applied fluorescence confocal and total internal reflection fluorescence microscopy, and sliding window temporal image cross correlation spectroscopy, to measure time profiles of the plasma membrane distribution, aggregation state, and interaction fractions of fluorescently tagged netrin receptors expressed in HEK293T cells. Our measurements reveal changes in receptor aggregation that are consistent with netrin-1-induced recruitment of DCC-enhanced green fluorescent protein (EGFP) from intracellular vesicles to the plasma membrane. Netrin-1 also induced colocalization of coexpressed full-length DCC-EGFP with DCC-T-mCherry, a putative DCC dominant negative that replaces the DCC intracellular domain with mCherry, consistent with netrin-1-induced receptor oligomerization, but with no change in aggregation state with time, providing evidence that signaling via the DCC intracellular domain triggers DCC recruitment to the plasma membrane. UNC5B expressed alone was also recruited by netrin-1 to the plasma membrane. Coexpressed DCC and UNC5 homologs are proposed to form a heteromeric netrin-receptor complex to mediate a chemorepellent response. Application of temporal image cross correlation spectroscopy to image series of cells coexpressing UNC5B-mCherry and DCC-EGFP revealed a netrin-1-induced increase in colocalization, with both receptors recruited to the plasma membrane from preexisting clusters, consistent with vesicular recruitment and receptor heterooligomerization. Plasma membrane recruitment of DCC or UNC5B was blocked by application of the netrin-1 VI-V peptide, which fails to activate chemoattraction, or

  9. Can ill-structured problems reveal beliefs about medical knowledge and knowing? A focus-group approach

    PubMed Central

    Roex, Ann; Clarebout, Geraldine; Dory, Valerie; Degryse, Jan

    2009-01-01

    Background Epistemological beliefs (EB) are an individual's cognitions about knowledge and knowing. In several non-medical domains, EB have been found to contribute to the way individuals reason when faced with ill-structured problems (i.e. problems with no clear-cut, right or wrong solutions). Such problems are very common in medical practice. Determining whether EB are also influential in reasoning processes with regard to medical issues to which there is no straightforward answer, could have implications for medical education. This study focused on 2 research questions: 1. Can ill-structured problems be used to elicit general practice trainees' and trainers' EB? and 2. What are the views of general practice trainees and trainers about knowledge and how do they justify knowing? Methods 2 focus groups of trainees (n = 18) were convened on 3 occasions during their 1st year of postgraduate GP training. 2 groups of GP trainers (n = 11) met on one occasion. Based on the methodology of the Reflective Judgement Interview (RJI), participants were asked to comment on 11 ill-structured problems. The sessions were audio taped and transcribed and an adapted version of the RJI scoring rules was used to assess the trainees' reasoning about ill-structured problems. Results Participants made a number of statements illustrating their EB and their importance in clinical reasoning. The level of EB varied widely form one meeting to another and depending on the problem addressed. Overall, the EB expressed by trainees did not differ from those of trainers except on a particular ill-structured problem regarding shoulder pain. Conclusion The use of focus groups has entailed some difficulties in the interpretation of the results, but a number of preliminary conclusions can be drawn. Ill-structured medical problems can be used to elicit EB. Most trainees and trainers displayed pre-reflective and quasi-reflective EB. The way trainees and doctors view and justify knowledge are likely to be

  10. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall*

    PubMed Central

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.

    2015-01-01

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment “ghosts” and applied 2D 13C-13C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. PMID:25825492

  11. A mosaic genetic screen reveals distinct roles for trithorax and polycomb group genes in Drosophila eye development.

    PubMed Central

    Janody, Florence; Lee, Jeffrey D; Jahren, Neal; Hazelett, Dennis J; Benlali, Aude; Miura, Grant I; Draskovic, Irena; Treisman, Jessica E

    2004-01-01

    The wave of differentiation that traverses the Drosophila eye disc requires rapid transitions in gene expression that are controlled by a number of signaling molecules also required in other developmental processes. We have used a mosaic genetic screen to systematically identify autosomal genes required for the normal pattern of photoreceptor differentiation, independent of their requirements for viability. In addition to genes known to be important for eye development and to known and novel components of the Hedgehog, Decapentaplegic, Wingless, Epidermal growth factor receptor, and Notch signaling pathways, we identified several members of the Polycomb and trithorax classes of genes encoding general transcriptional regulators. Mutations in these genes disrupt the transitions between zones along the anterior-posterior axis of the eye disc that express different combinations of transcription factors. Different trithorax group genes have very different mutant phenotypes, indicating that target genes differ in their requirements for chromatin remodeling, histone modification, and coactivation factors. PMID:15020417

  12. Phylogenetic relationships and protein modelling revealed two distinct subfamilies of group II HKT genes between crop and model grasses.

    PubMed

    Ariyarathna, H A Chandima K; Francki, Michael G

    2016-07-01

    Molecular evolution of large protein families in closely related species can provide useful insights on structural functional relationships. Phylogenetic analysis of the grass-specific group II HKT genes identified two distinct subfamilies, I and II. Subfamily II was represented in all species, whereas subfamily I was identified only in the small grain cereals and possibly originated from an ancestral gene duplication post divergence from the coarse grain cereal lineage. The core protein structures were highly analogous despite there being no more than 58% amino acid identity between members of the two subfamilies. Distinctly variable regions in known functional domains, however, indicated functional divergence of the two subfamilies. The subsets of codons residing external to known functional domains predicted signatures of positive Darwinian selection potentially identifying new domains of functional divergence and providing new insights on the structural function and relationships between protein members of the two subfamilies. PMID:27203707

  13. The Dynamic Conformational Cycle of the Group I Chaperonin C-Termini Revealed via Molecular Dynamics Simulation

    PubMed Central

    Dalton, Kevin M.; Frydman, Judith; Pande, Vijay S.

    2015-01-01

    Chaperonins are large ring shaped oligomers that facilitate protein folding by encapsulation within a central cavity. All chaperonins possess flexible C-termini which protrude from the equatorial domain of each subunit into the central cavity. Biochemical evidence suggests that the termini play an important role in the allosteric regulation of the ATPase cycle, in substrate folding and in complex assembly and stability. Despite the tremendous wealth of structural data available for numerous orthologous chaperonins, little structural information is available regarding the residues within the C-terminus. Herein, molecular dynamics simulations are presented which localize the termini throughout the nucleotide cycle of the group I chaperonin, GroE, from Escherichia coli. The simulation results predict that the termini undergo a heretofore unappreciated conformational cycle which is coupled to the nucleotide state of the enzyme. As such, these results have profound implications for the mechanism by which GroE utilizes nucleotide and folds client proteins. PMID:25822285

  14. The dynamic conformational cycle of the group I chaperonin C-termini revealed via molecular dynamics simulation.

    PubMed

    Dalton, Kevin M; Frydman, Judith; Pande, Vijay S

    2015-01-01

    Chaperonins are large ring shaped oligomers that facilitate protein folding by encapsulation within a central cavity. All chaperonins possess flexible C-termini which protrude from the equatorial domain of each subunit into the central cavity. Biochemical evidence suggests that the termini play an important role in the allosteric regulation of the ATPase cycle, in substrate folding and in complex assembly and stability. Despite the tremendous wealth of structural data available for numerous orthologous chaperonins, little structural information is available regarding the residues within the C-terminus. Herein, molecular dynamics simulations are presented which localize the termini throughout the nucleotide cycle of the group I chaperonin, GroE, from Escherichia coli. The simulation results predict that the termini undergo a heretofore unappreciated conformational cycle which is coupled to the nucleotide state of the enzyme. As such, these results have profound implications for the mechanism by which GroE utilizes nucleotide and folds client proteins. PMID:25822285

  15. Connectivity-based whole brain dual parcellation by group ICA reveals tract structures and decreased connectivity in schizophrenia.

    PubMed

    Wu, Lei; Calhoun, Vince D; Jung, Rex E; Caprihan, Arvind

    2015-11-01

    Mapping brain connectivity based on neuroimaging data is a promising new tool for understanding brain structure and function. In this methods paper, we demonstrate that group independent component analysis (GICA) can be used to perform a dual parcellation of the brain based on its connectivity matrix (cmICA). This dual parcellation consists of a set of spatially independent source maps, and a corresponding set of paired dual maps that define the connectivity of each source map to the brain. These dual maps are called the connectivity profiles of the source maps. Traditional analysis of connectivity matrices has been used previously for brain parcellation, but the present method provides additional information on the connectivity of these segmented regions. In this paper, the whole brain structural connectivity matrices were calculated on a 5 mm(3) voxel scale from diffusion imaging data based on the probabilistic tractography method. The effect of the choice of the number of components (30 and 100) and their stability were examined. This method generated a set of spatially independent components that are consistent with the canonical brain tracts provided by previous anatomic descriptions, with the high order model yielding finer segmentations. The corpus-callosum example shows how this method leads to a robust parcellation of a brain structure based on its connectivity properties. We applied cmICA to study structural connectivity differences between a group of schizophrenia subjects and healthy controls. The connectivity profiles at both model orders showed similar regions with reduced connectivity in schizophrenia patients. These regions included forceps major, right inferior fronto-occipital fasciculus, uncinate fasciculus, thalamic radiation, and corticospinal tract. This paper provides a novel unsupervised data-driven framework that summarizes the information in a large global connectivity matrix and tests for brain connectivity differences. It has the

  16. Functionally Active T1-T1 Interfaces Revealed by the Accessibility of Intracellular Thiolate Groups in Kv4 Channels

    PubMed Central

    Wang, Guangyu; Shahidullah, Mohammad; Rocha, Carmen A.; Strang, Candace; Pfaffinger, Paul J.; Covarrubias, Manuel

    2005-01-01

    Gating of voltage-dependent K+ channels involves movements of membrane-spanning regions that control the opening of the pore. Much less is known, however, about the contributions of large intracellular channel domains to the conformational changes that underlie gating. Here, we investigated the functional role of intracellular regions in Kv4 channels by probing relevant cysteines with thiol-specific reagents. We find that reagent application to the intracellular side of inside-out patches results in time-dependent irreversible inhibition of Kv4.1 and Kv4.3 currents. In the absence or presence of Kv4-specific auxiliary subunits, mutational and electrophysiological analyses showed that none of the 14 intracellular cysteines is essential for channel gating. C110, C131, and C132 in the intersubunit interface of the tetramerization domain (T1) are targets responsible for the irreversible inhibition by a methanethiosulfonate derivative (MTSET). This result is surprising because structural studies of Kv4-T1 crystals predicted protection of the targeted thiolate groups by constitutive high-affinity Zn2+ coordination. Also, added Zn2+ or a potent Zn2+ chelator (TPEN) does not significantly modulate the accessibility of MTSET to C110, C131, or C132; and furthermore, when the three critical cysteines remained as possible targets, the MTSET modification rate of the activated state is ∼200-fold faster than that of the resting state. Biochemical experiments confirmed the chemical modification of the intact α-subunit and the purified tetrameric T1 domain by MTS reagents. These results conclusively demonstrate that the T1–T1 interface of Kv4 channels is functionally active and dynamic, and that critical reactive thiolate groups in this interface may not be protected by Zn2+ binding. PMID:15955876

  17. An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells

    SciTech Connect

    Heibeck, Tyler H.; Ding, Shi-Jian; Opresko, Lee K.; Zhao, Rui; Schepmoes, Athena A.; Yang, Feng; Tolmachev, Aleksey V.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Wiley, H. S.; Qian, Weijun

    2009-08-01

    Protein tyrosine phosphorylation is a central regulatory mechanism in cell signaling. To extensively characterize the site-specific tyrosine phosphorylation in human cells, we present here a global survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell (HMEC) line by applying anti-phosphotyrosine (pTyr) peptide immunoaffinity purification (IP) coupled with high sensitivity LC-MS/MS. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and an acute stimulated condition with epidermal growth factor (EGF). The estimated false discovery rate is 1.0% as measured by comparison against a scrambled database search. Comparison of these data to the literature showed significant agreement in site matches. Additionally 281 sites were not previously observed in HMEC culture were found. Twenty-nine of these sites have not been reported in any human cell or tissue system. The global profiling also allowed us to examine the phosphorylation stoichiometry differences based on spectral count information. Comparison of the data to a previous global proteome profiling study illustrates that most of the highly phoshorylated proteins are of relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed for many of the identified proteins, suggesting potentially more important functional roles for those highly phosphorylated pTyr sites within a given protein. By mapping to major signaling networks such as EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which should allow us to select interesting targeted involved in a given pathway for more directed studies. This extensive HMEC tyrosine phosphorylation dataset represents an important database

  18. Angiogenesis Interactome and Time Course Microarray Data Reveal the Distinct Activation Patterns in Endothelial Cells

    PubMed Central

    Chu, Liang-Hui; Lee, Esak; Bader, Joel S.; Popel, Aleksander S.

    2014-01-01

    Angiogenesis involves stimulation of endothelial cells (EC) by various cytokines and growth factors, but the signaling mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with protein-protein interactions associated with angiogenesis (the “angiome”) could reveal how different stimuli result in different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367 and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A). We used the Short Time-series Expression Miner (STEM) to identify significant temporal gene expression profiles. The statistically significant patterns between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME) show that different substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC) and human microvascular EC (MEC). The results show that VEGFR1–VEGFR2 levels are more closely coupled than VEGFR1–VEGFR3 or VEGFR2–VEGFR3 in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological processes such as cell cycle. PMID:25329517

  19. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography.

    PubMed

    He, Wanzhong; Ladinsky, Mark S; Huey-Tubman, Kathryn E; Jensen, Grant J; McIntosh, J Richard; Björkman, Pamela J

    2008-09-25

    The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rats, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0-6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates the efficient unidirectional transport of IgG, because FcRn binds IgG at pH 6.0-6.5 but not at pH 7 or more. As milk passes through the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum and jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum). Here we use electron tomography to make jejunal transcytosis visible directly in space and time, developing new labelling and detection methods to map individual nanogold-labelled Fc within transport vesicles and simultaneously to characterize these vesicles by immunolabelling. Combining electron tomography with a non-perturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine whether a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moves through networks of entangled tubular and irregular vesicles, only some of which are microtubule-associated, as it migrates to the basolateral surface. New features of transcytosis are elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis through clathrin-coated pits. Markers for early, late and recycling endosomes each labelled vesicles in different and overlapping morphological classes, revealing spatial complexity in endo-lysosomal trafficking. PMID:18818657

  20. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography

    PubMed Central

    He, Wanzhong; Ladinsky, Mark S.; Huey-Tubman, Kathryn E.; Jensen, Grant J.; McIntosh, J. Richard; Björkman, Pamela J.

    2009-01-01

    The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers1,2, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rodents, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0-6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates efficient unidirectional transport of IgG, since FcRn binds IgG at pH 6.0-6.5 but not pH ≥7 1,2. As milk passes through the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum, jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum)3-6. We used electron tomography to directly visualize jejunal transcytosis in space and time, developing new labeling and detection methods to map individual nanogold-labeled Fc within transport vesicles7 and to simultaneously characterize these vesicles by immunolabeling. Combining electron tomography with a non-perturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine if a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moved through networks of entangled tubular and irregular vesicles, only some of which were microtubule-associated, as it migrated to the basolateral surface. New features of transcytosis were elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis via clathrin-coated pits. Markers for early, late, and recycling endosomes each labeled vesicles in different and overlapping morphological classes, revealing unexpected spatial complexity in endo-lysosomal trafficking. PMID:18818657

  1. Gene Expression Profiling of Dendritic Cells Reveals Important Mechanisms Associated with Predisposition to Staphylococcus Infections

    PubMed Central

    Toufeer, Mehdi; Bonnefont, Cécile M. D.; Foulon, Eliane; Caubet, Cécile; Tasca, Christian; Aurel, Marie-Rose; Robert-Granié, Christèle; Rupp, Rachel; Foucras, Gilles

    2011-01-01

    Background Staphylococcus aureus is a major pathogen of humans and animals and emerging antibiotic-resistant strains have further increased the concern of this health issue. Host genetics influence susceptibility to S. aureus infections, and the genes determining the outcome of infections should be identified to find alternative therapies to treatment with antibiotics. Here, we used outbred animals from a divergent selection based on susceptibility towards Staphylococcus infection to explore host immunogenetics. Methodology/Principal Findings We investigated how dendritic cells respond to heat-inactivated S. aureus and whether dendritic cells from animals showing different degrees of susceptibility had distinct gene expression profiles. We measured gene expression levels of in vitro S. aureus-stimulated bone marrow-derived dendritic cells at three different time points (0, 3 and 8 hrs) by using 15 k ovine Agilent microarrays. Furthermore, differential expression of a selected number of genes was confirmed by RT-qPCR. Gene signatures of stimulated DCs were obtained and showed that genes involved in the inflammatory process and T helper cell polarization were highly up-regulated upon stimulation. Moreover, a set of 204 genes were statistically differentially expressed between susceptible and resistant animals, and grouped them according to their predisposition to staphylococcal infection. Interestingly, over-expression of the C1q and Ido1 genes was observed in the resistant line and suggested a role of classical pathway of complement and early regulation of inflammation pathways, respectively. On the contrary, over expression of genes involved in the IL1R pathway was observed in susceptible animals. Furthermore, the leucocyte extravasation pathway was also found to be dominant in the susceptible line. Conclusion/Significance We successfully obtained Staphylococcus aureus associated gene expression of ovine BM-DC in an 8-hour kinetics experiment. The distinct

  2. Ruptured spleens with expanded marginal zones do not reveal occult B-cell clones.

    PubMed

    Kroft, S H; Singleton, T P; Dahiya, M; Ross, C W; Schnitzer, B; Hsi, E D

    1997-12-01

    An indolent variant of splenic marginal zone lymphoma (SMZL) lacking massive splenomegaly has been described as an incidental finding in spleens removed for rupture or hypersplenism. We studied traumatically ruptured spleens with expanded marginal zones (MZs) to assess the incidence of occult monoclonal B-cell populations in this setting. Ninety-one ruptured or lacerated spleens removed from 1984 to 1995 were classified as to whether they had expanded MZs (> 12 cell layers thick). When available, paraffin-embedded, formalin-fixed tissue from cases with expanded MZs was examined for immunoglobulin heavy chain gene rearrangement by polymerase chain reaction (PCR) and stained for CD20, CD43, and kappa and lambda light chains. Splenectomies were performed for blunt (70 patients) and penetrating (7 patients) trauma, surgical misadventure (13 patients), or spontaneous rupture (1 patient). There were 58 men and 33 women in our study, ranging in age from 17 to 87 years (mean, 40 yr). Average spleen weight was 183 g (range, 44-505 g). Twenty-seven (30%) of 91 patients had expanded MZs. There were no significant differences in age, sex, spleen weight, or reason for excision between those cases with and without MZ expansion. Germinal centers varied from absent to inactive to floridly reactive. Paraffin blocks were available in 24 cases; the 20 with amplifiable DNA were polyclonal by PCR. Follow-up was available for 25 of the 27 patients with expanded MZs (range, 1-85 mo; median, 6 mo); lymphoma did not develop in anyone, although one patient's spleen was morphologically suspicious for lymphoma, showing involvement of red pulp by MZ-type B-cells; PCR revealed a polyclonal pattern. This patient's 3-year follow-up revealed no evidence of lymphoma. Traumatically ruptured spleens with expanded MZs do not seem to harbor occult B-cell clones, as detected by PCR. Although a few cases of incidentally removed spleens have been reported to contain low-stage SMZL, this seems to be an

  3. Functions of an Adult Sickle Cell Group: Education, Task Orientation, and Support.

    ERIC Educational Resources Information Center

    Butler, Dennis J.; Beltran, Lou R.

    1993-01-01

    Reports on development of adult sickle cell support group and provides description of psychosocial factors most prevalent in patients' lives (anxiety about death, disruption of social support network, disability, dependence on pain medication, conflicts with health care providers). Notes that support group enhanced participants' knowledge about…

  4. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.

    PubMed

    Ohnuki, Shinsuke; Enomoto, Kenichi; Yoshimoto, Hiroyuki; Ohya, Yoshikazu

    2014-03-01

    The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate the fermentation process, we used the image processing software, CalMorph, which generates morphological data on yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that much of the observed variability in the experiment was summarized in just two components: a change with a peak and a change over time. Second, PCA indicated the independent and important morphological features responsible for dynamic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol production. PMID:24012106

  5. Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours.

    PubMed

    Litchfield, Kevin; Summersgill, Brenda; Yost, Shawn; Sultana, Razvan; Labreche, Karim; Dudakia, Darshna; Renwick, Anthony; Seal, Sheila; Al-Saadi, Reem; Broderick, Peter; Turner, Nicholas C; Houlston, Richard S; Huddart, Robert; Shipley, Janet; Turnbull, Clare

    2015-01-01

    Testicular germ cell tumours (TGCTs) are the most common cancer in young men. Here we perform whole-exome sequencing (WES) of 42 TGCTs to comprehensively study the cancer's mutational profile. The mutation rate is uniformly low in all of the tumours (mean 0.5 mutations per Mb) as compared with common cancers, consistent with the embryological origin of TGCT. In addition to expected copy number gain of chromosome 12p and mutation of KIT, we identify recurrent mutations in the tumour suppressor gene CDC27 (11.9%). Copy number analysis reveals recurring amplification of the spermatocyte development gene FSIP2 (15.3%) and a 0.4 Mb region at Xq28 (15.3%). Two treatment-refractory patients are shown to harbour XRCC2 mutations, a gene strongly implicated in defining cisplatin resistance. Our findings provide further insights into genes involved in the development and progression of TGCT. PMID:25609015

  6. Whole exome sequencing reveals the mutational spectrum of testicular germ cell tumours

    PubMed Central

    Litchfield, Kevin; Summersgill, Brenda; Yost, Shawn; Sultana, Razvan; Labreche, Karim; Dudakia, Darshna; Renwick, Anthony; Seal, Sheila; Al-Saadi, Reem; Broderick, Peter; Turner, Nicholas C.; Houlston, Richard S; Huddart, Robert; Shipley, Janet; Turnbull, Clare

    2014-01-01

    Testicular germ cell tumours (TGCTs) are the most common cancer in young men. Here we perform whole exome sequencing of 42 TGCTs to comprehensively study the mutational profile of TGCT. The mutation rate is uniformly low in all of the tumours (mean 0.5 mutations per megabase [Mb]) as compared to the common cancers, consistent with the embryological origin of TGCT. In addition to expected copy number gain of chromosome 12p and mutation of KIT we identify recurrent mutations in the tumour suppressor gene CDC27 (11.9%). Copy number analysis reveals recurring amplification of the spermatocyte development gene FSIP2 (15.3%) and a 0.4Mb region at Xq28 (15.3%). Two treatment-refractory patients are shown to harbour XRCC2 mutations, a gene strongly implicated in defining cisplatin resistance. Our findings provide further insights into genes involved in the development and progression of TGCT. PMID:25609015

  7. Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Gusarov, Sergey; Skaf, Munir S; Kovalenko, Andriy

    2015-01-01

    Plant biomass recalcitrance, a major obstacle to achieving sustainable production of second generation biofuels, arises mainly from the amorphous cell-wall matrix containing lignin and hemicellulose assembled into a complex supramolecular network that coats the cellulose fibrils. We employed the statistical-mechanical, 3D reference interaction site model with the Kovalenko-Hirata closure approximation (or 3D-RISM-KH molecular theory of solvation) to reveal the supramolecular interactions in this network and provide molecular-level insight into the effective lignin-lignin and lignin-hemicellulose thermodynamic interactions. We found that such interactions are hydrophobic and entropy-driven, and arise from the expelling of water from the mutual interaction surfaces. The molecular origin of these interactions is carbohydrate-π and π-π stacking forces, whose strengths are dependent on the lignin chemical composition. Methoxy substituents in the phenyl groups of lignin promote substantial entropic stabilization of the ligno-hemicellulosic matrix. Our results provide a detailed molecular view of the fundamental interactions within the secondary plant cell walls that lead to recalcitrance. PMID:26263115

  8. Comparative proteomic analysis revealing the complex network associated with waterlogging stress in maize (Zea mays L.) seedling root cells.

    PubMed

    Yu, Feng; Han, Xuesong; Geng, Cunjuan; Zhao, Yanxin; Zhang, Zuxin; Qiu, Fazhan

    2015-01-01

    Soil waterlogging is one of the major abiotic stresses affecting maize grain yields. To understand the molecular mechanisms underlying waterlogging tolerance in maize, the iTRAQ LC-MS/MS technique was employed to map the proteomes of seedling root cells of the A3237 (tolerant inbred) and A3239 (sensitive inbred) lines under control and waterlogging conditions. Among the 3318 proteins identified, 211 were differentially abundant proteins (DAPs), of which 81 were specific to A3237 and 57 were specific to A3239. These DAPs were categorized into 11 groups that were closely related to the plant stress response, including metabolism, energy, transport, and disease/defense. In the waterlogged A3237 root cells, NADP-malic enzyme, glutamate decarboxylase, coproporphyrinogen III oxidase, GSH S-transferase, GSH dehydrogenase, and xyloglucan endotransglycosylase 6 were specifically accumulated to manage energy consumption, maintain pH levels, and minimize oxidative damage. The evaluations of five specific physiological parameters (alcohol dehydrogenase activity and GSH, malondialdehyde, adenosine 5'-triphosphate, and nicotinamide adenine dinucleotide concentrations) were in agreement with the proteomic results. Moreover, based on the proteomic assay, eight representative genes encoding DAPs were selected for validation at the transcriptional level. qRT-PCR revealed that the expression levels of these genes correlated with their observed protein abundance. These findings shed light on the complex mechanisms underlying waterlogging tolerance in maize. All MS data have been deposited into the ProteomeXchange with the identifier PXD001125 http://proteomecentral.proteomexchange.org/dataset/PXD001125. PMID:25316036

  9. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential.

    PubMed

    Bolton, Helen; Graham, Sarah J L; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-01-01

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic. PMID:27021558

  10. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential

    PubMed Central

    Bolton, Helen; Graham, Sarah J. L.; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-01-01

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic. PMID:27021558

  11. Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages.

    PubMed

    Casero, David; Sandoval, Salemiz; Seet, Christopher S; Scholes, Jessica; Zhu, Yuhua; Ha, Vi Luan; Luong, Annie; Parekh, Chintan; Crooks, Gay M

    2015-12-01

    To elucidate the transcriptional 'landscape' that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNAs (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus. PMID:26502406

  12. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake.

    PubMed

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D; Otero, Carolina

    2016-12-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes. PMID:26847692

  13. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake

    NASA Astrophysics Data System (ADS)

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D.; Otero, Carolina

    2016-02-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

  14. Revealing nonergodic dynamics in living cells from a single particle trajectory

    NASA Astrophysics Data System (ADS)

    Lanoiselée, Yann; Grebenkov, Denis S.

    2016-05-01

    We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can thus capture additional information on the process as compared to the conventional time-averaged mean-square displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle tracking experiments in microbiology.

  15. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    PubMed Central

    Carlile, Thomas M.; Rojas-Duran, Maria F.; Zinshteyn, Boris; Shin, Hakyung; Bartoli, Kristen M.; Gilbert, Wendy V.

    2014-01-01

    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs1, enhances the function of transfer RNA and ribosomal RNA by stabilizing RNA structure2–8. mRNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function – it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding center9,10. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological was unclear. Here we present a comprehensive analysis of pseudouridylation in yeast and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as 100 novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease11–13. PMID:25192136

  16. Restricted diffusion of methyl groups in proteins revealed by deuteron NMR: manifestation of intra-well dynamics.

    PubMed

    Vugmeyster, Liliya; Ostrovsky, Dmitry

    2014-02-21

    The three-site hops of methyl groups are usually used as an approximation of the mechanistic description of motions responsible for the longitudinal NMR relaxation. Distinguishing between three-site hops and a more realistic mechanism of diffusion in a potential requires extended experimental and computational analysis. In order to achieve this goal, in this work the restricted diffusion is decomposed into two independent modes, namely, the jumps between potential wells and intra-well fluctuations, assuming time scale separation between these modes. This approach allows us to explain the rise in the theoretical value of T1 minimum for the restricted diffusion mechanism compared with the three-site hops mechanism via rescaling the three-site hops correlation function by the order parameter of intra-well motions. The main result of the paper is that, in general, intra-well dynamics can be visible in NMR even in the limit of large barrier heights in contrast to the common view that this limit converges to the three-site hops mechanism. Based on a previously collected detailed set of deuteron NMR relaxation and spectral data in the villin headpiece subdomain protein over a wide temperature range of 300-31 K, we are then able to conclude that the mechanism of diffusion in the threefold potential is likely to be the main source of the dynamics in this system. PMID:24559369

  17. Differentiation and diversity of subsets in group 1 innate lymphoid cells.

    PubMed

    Seillet, Cyril; Belz, Gabrielle T

    2016-01-01

    NK cells were first identified in 1975 and represent the prototypical group 1 innate lymphoid cell (ILC). More recently, the discovery of new members of the ILC family has highlighted the complexity of this innate lymphoid lineage. Importantly, it has been recognized that different subsets exist within the group 1 ILC, which have potential roles in mediating immune protection and immunosurveillance, and in regulating tissue homeostasis and inflammation. Here, we review the developmental relationships between the different group 1 ILC, which have been identified to date and discuss how heterogeneity within this expanding family may have arisen. PMID:26346810

  18. A Synthetic Polymer Scaffold Reveals the Self-Maintenance Strategies of Rat Glioma Stem Cells by Organization of the Advantageous Niche.

    PubMed

    Tabu, Kouichi; Muramatsu, Nozomi; Mangani, Christian; Wu, Mei; Zhang, Rong; Kimura, Taichi; Terashima, Kazuo; Bizen, Norihisa; Kimura, Ryosuke; Wang, Wenqian; Murota, Yoshitaka; Kokubu, Yasuhiro; Nobuhisa, Ikuo; Kagawa, Tetsushi; Kitabayashi, Issay; Bradley, Mark; Taga, Tetsuya

    2016-05-01

    Cancer stem cells (CSCs) are believed to be maintained within a microenvironmental niche. Here we used polymer microarrays for the rapid and efficient identification of glioma CSC (GSC) niche mimicries and identified a urethane-based synthetic polymer, upon which two groups of niche components, namely extracellular matrices (ECMs) and iron are revealed. In cultures, side population (SP) cells, defined as GSCs in the rat C6 glioma cell line, are more efficiently sustained in the presence of their differentiated progenies expressing higher levels of ECMs and transferrin, while in xenografts, ECMs are supplied by the vascular endothelial cells (VECs), including SP cell-derived ones with distinctively greater ability to retain xenobiotics than host VECs. Iron is stored in tumor infiltrating host macrophages (Mφs), whose protumoral activity is potently enhanced by SP cell-secreted soluble factor(s). Finally, coexpression of ECM-, iron-, and Mφ-related genes is found to be predictive of glioma patients' outcome. Our polymer-based approach reveals the intrinsic capacities of GSCs, to adapt the environment to organize a self-advantageous microenvironment niche, for their maintenance and expansion, which redefines the current concept of anti-CSC niche therapy and has the potential to accelerate cancer therapy development. Stem Cells 2016;34:1151-1162. PMID:26822103

  19. Comparison of Sewage and Animal Fecal Microbiomes by Using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups.

    PubMed

    Fisher, Jenny C; Eren, A Murat; Green, Hyatt C; Shanks, Orin C; Morrison, Hilary G; Vineis, Joseph H; Sogin, Mitchell L; McLellan, Sandra L

    2015-10-01

    Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts. PMID:26231648

  20. Comparison of Sewage and Animal Fecal Microbiomes by Using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups

    PubMed Central

    Fisher, Jenny C.; Eren, A. Murat; Green, Hyatt C.; Shanks, Orin C.; Morrison, Hilary G.; Vineis, Joseph H.; Sogin, Mitchell L.

    2015-01-01

    Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts. PMID:26231648

  1. "Spider"-shaped porphyrins with conjugated pyridyl anchoring groups as efficient sensitizers for dye-sensitized solar cells.

    PubMed

    Stangel, Christina; Bagaki, Anthi; Angaridis, Panagiotis A; Charalambidis, Georgios; Sharma, Ganesh D; Coutsolelos, Athanasios G

    2014-11-17

    Two novel "spider-shaped" porphyrins, meso-tetraaryl-substituted 1PV-Por and zinc-metalated 1PV-Zn-Por, bearing four oligo(p-phenylenevinylene) (oPPV) pyridyl groups with long dodecyloxy chains on the phenyl groups, have been synthesized. The presence of four pyridyl groups in both porphyrins, which allow them to act as anchoring groups upon coordination to various Lewis acid sites, the conjugated oPPV bridges, which offer the possibility of electronic communication between the porphyrin core and the pyridyl groups, and the dodecyloxy groups, which offer the advantage of high solubility in a variety of organic solvents of different polarities and could prevent porphyrin aggregation, renders porphyrins 1PV-Por and 1PV-Zn-Por very promising sensitizers for dye-sensitized solar cells (DSSCs). Photophysical measurements, together with electrochemistry experiments and density functional theory calculations, suggest that both porphyrins have frontier molecular orbital energy levels that favor electron injection and dye regeneration in DSSCs. Solar cells sensitized by 1PV-Por and 1PV-Zn-Por were fabricated, and it was found that they show power conversion efficiencies (PCEs) of 3.28 and 5.12%, respectively. Photovoltaic measurements (J-V curves) together with incident photon-to-electron conversion efficiency spectra of the two cells reveal that the higher PCE value of the DSSC based on 1PV-Zn-Por is ascribed to higher short-circuit current (Jsc), open-circuit voltage (Voc), and dye loading values. Emission spectra and electrochemistry experiments suggest a greater driving force for injection of the photogenerated electrons into the TiO2 conduction band for 1PV-Zn-Por rather than its free-base analogue. Furthermore, electrochemical impedance spectroscopy measurements prove that the utilization of 1PV-Zn-Por as a sensitizer offers a high charge recombination resistance and, therefore, leads to a longer electron lifetime. PMID:25365138

  2. Proteomic Analysis of Grape Berry Cell Cultures Reveals that Developmentally Regulated Ripening Related Processes Can Be Studied Using Cultured Cells

    PubMed Central

    Sharathchandra, Ramaschandra G.; Stander, Charmaine; Jacobson, Dan; Ndimba, Bongani; Vivier, Melané A.

    2011-01-01

    Background This work describes a proteomics profiling method, optimized and applied to berry cell suspensions to evaluate organ-specific cultures as a platform to study grape berry ripening. Variations in berry ripening within a cluster(s) on a vine and in a vineyard are a major impediment towards complete understanding of the functional processes that control ripening, specifically when a characterized and homogenous sample is required. Berry cell suspensions could overcome some of these problems, but their suitability as a model system for berry development and ripening needs to be established first. Methodology/Principal Findings In this study we report on the proteomic evaluation of the cytosolic proteins obtained from synchronized cell suspension cultures that were established from callus lines originating from green, véraison and ripe Vitis vinifera berry explants. The proteins were separated using liquid phase IEF in a Microrotofor cell and SDS PAGE. This method proved superior to gel-based 2DE. Principal component analysis confirmed that biological and technical repeats grouped tightly and importantly, showed that the proteomes of berry cultures originating from the different growth/ripening stages were distinct. A total of twenty six common bands were selected after band matching between different growth stages and twenty two of these bands were positively identified. Thirty two % of the identified proteins are currently annotated as hypothetical. The differential expression profile of the identified proteins, when compared with published literature on grape berry ripening, suggested common trends in terms of relative abundance in the different developmental stages between real berries and cell suspensions. Conclusions The advantages of having suspension cultures that accurately mimic specific developmental stages are profound and could significantly contribute to the study of the intricate regulatory and signaling networks responsible for berry

  3. STED Nanoscopy Reveals Molecular Details of Cholesterol- and Cytoskeleton-Modulated Lipid Interactions in Living Cells

    PubMed Central

    Mueller, V.; Ringemann, C.; Honigmann, A.; Schwarzmann, G.; Medda, R.; Leutenegger, M.; Polyakova, S.; Belov, V.N.; Hell, S.W.; Eggeling, C.

    2011-01-01

    Details about molecular membrane dynamics in living cells, such as lipid-protein interactions, are often hidden from the observer because of the limited spatial resolution of conventional far-field optical microscopy. The superior spatial resolution of stimulated emission depletion (STED) nanoscopy can provide new insights into this process. The application of fluorescence correlation spectroscopy (FCS) in focal spots continuously tuned down to 30 nm in diameter distinguishes between free and anomalous molecular diffusion due to, for example, transient binding of lipids to other membrane constituents, such as lipids and proteins. We compared STED-FCS data recorded on various fluorescent lipid analogs in the plasma membrane of living mammalian cells. Our results demonstrate details about the observed transient formation of molecular complexes. The diffusion characteristics of phosphoglycerolipids without hydroxyl-containing headgroups revealed weak interactions. The strongest interactions were observed with sphingolipid analogs, which showed cholesterol-assisted and cytoskeleton-dependent binding. The hydroxyl-containing headgroup of gangliosides, galactosylceramide, and phosphoinositol assisted binding, but in a much less cholesterol- and cytoskeleton-dependent manner. The observed anomalous diffusion indicates lipid-specific transient hydrogen bonding to other membrane molecules, such as proteins, and points to a distinct connectivity of the various lipids to other membrane constituents. This strong interaction is different from that responsible for forming cholesterol-dependent, liquid-ordered domains in model membranes. PMID:21961591

  4. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells

    PubMed Central

    Robijns, J.; Molenberghs, F.; Sieprath, T.; Corne, T. D. J.; Verschuuren, M.; De Vos, W. H.

    2016-01-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development. PMID:27461848

  5. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation.

    PubMed

    Chen, Xiaoying; Zhang, Kunshan; Zhou, Liqiang; Gao, Xinpei; Wang, Junbang; Yao, Yinan; He, Fei; Luo, Yuping; Yu, Yongchun; Li, Siguang; Cheng, Liming; Sun, Yi E

    2016-03-01

    The mammalian brain is heterogeneous, containing billions of neurons and trillions of synapses forming various neural circuitries, through which sense, movement, thought, and emotion arise. The cellular heterogeneity of the brain has made it difficult to study the molecular logic of neural circuitry wiring, pruning, activation, and plasticity, until recently, transcriptome analyses with single cell resolution makes decoding of gene regulatory networks underlying aforementioned circuitry properties possible. Here we report success in performing both electrophysiological and whole-genome transcriptome analyses on single human neurons in culture. Using Weighted Gene Coexpression Network Analyses (WGCNA), we identified gene clusters highly correlated with neuronal maturation judged by electrophysiological characteristics. A tight link between neuronal maturation and genes involved in ubiquitination and mitochondrial function was revealed. Moreover, we identified a list of candidate genes, which could potentially serve as biomarkers for neuronal maturation. Coupled electrophysiological recording and single cell transcriptome analysis will serve as powerful tools in the future to unveil molecular logics for neural circuitry functions. PMID:26883038

  6. Elevated intracellular Ca2+ reveals a functional membrane nucleotide pool in intact human red blood cells

    PubMed Central

    Tiffert, Teresa

    2011-01-01

    Elevated intracellular calcium generates rapid, profound, and irreversible changes in the nucleotide metabolism of human red blood cells (RBCs), triggered by the adenosine triphosphatase (ATPase) activity of the powerful plasma membrane calcium pump (PMCA). In the absence of glycolytic substrates, Ca2+-induced nucleotide changes are thought to be determined by the interaction between PMCA ATPase, adenylate kinase, and AMP-deaminase enzymes, but the extent to which this three-enzyme system can account for the Ca2+-induced effects has not been investigated in detail before. Such a study requires the formulation of a model incorporating the known kinetics of the three-enzyme system and a direct comparison between its predictions and precise measurements of the Ca2+-induced nucleotide changes, a precision not available from earlier studies. Using state-of-the-art high-performance liquid chromatography, we measured the changes in the RBC contents of ATP, ADP, AMP, and IMP during the first 35 min after ionophore-induced pump-saturating Ca2+ loads in the absence of glycolytic substrates. Comparison between measured and model-predicted changes revealed that for good fits it was necessary to assume mean ATPase Vmax values much higher than those ever measured by PMCA-mediated Ca2+ extrusion. These results suggest that the local nucleotide concentrations generated by ATPase activity at the inner membrane surface differed substantially from those measured in bulk cell extracts, supporting previous evidence for the existence of a submembrane microdomain with a distinct nucleotide metabolism. PMID:21948947

  7. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing

    PubMed Central

    Xue, Zhigang; Huang, Kevin; Cai, Chaochao; Cai, Lingbo; Jiang, Chun-yan; Feng, Yun; Liu, Zhenshan; Zeng, Qiao; Cheng, Liming; Sun, Yi E.; Liu, Jia-yin; Horvath, Steve; Fan, Guoping

    2016-01-01

    Mammalian pre-implantation development is a complex process involving dramatic changes in the transcriptional architecture1–4. We report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos, using single-cell RNA sequencing. Based on single-nucleotide variants in human blastomere messenger RNAs and paternal-specific single-nucleotide polymorphisms, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25 to 53%). By weighted gene co-expression network analysis5,6, we find that each developmental stage can be delineated concisely by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation and metabolism, acting in a step-wise fashion from cleavage to morula. Cross-species comparisons with mouse pre-implantation embryos reveal that the majority of human stage-specific modules (7out of 9) are notably preserved, but developmental specificity and timing differ between human and mouse. Furthermore, we identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely to be key in driving mammalian pre-implantation development. Together, the results provide a valuable resource to dissect gene regulatory mechanisms underlying progressive development of early mammalian embryos. PMID:23892778

  8. Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells

    PubMed Central

    Oikawa, Tsunekazu; Wauthier, Eliane; Dinh, Timothy A.; Selitsky, Sara R.; Reyna-Neyra, Andrea; Carpino, Guido; Levine, Ronald; Cardinale, Vincenzo; Klimstra, David; Gaudio, Eugenio; Alvaro, Domenico; Carrasco, Nancy; Sethupathy, Praveen; Reid, Lola M.

    2015-01-01

    The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells—newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies. PMID:26437858

  9. Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution

    PubMed Central

    Benchenane, Karim; Khamassi, Mehdi; Wiener, Sidney I.; Battaglia, Francesco P.

    2009-01-01

    Simultaneous recordings of many single neurons reveals unique insights into network processing spanning the timescale from single spikes to global oscillations. Neurons dynamically self-organize in subgroups of coactivated elements referred to as cell assemblies. Furthermore, these cell assemblies are reactivated, or replayed, preferentially during subsequent rest or sleep episodes, a proposed mechanism for memory trace consolidation. Here we employ Principal Component Analysis to isolate such patterns of neural activity. In addition, a measure is developed to quantify the similarity of instantaneous activity with a template pattern, and we derive theoretical distributions for the null hypothesis of no correlation between spike trains, allowing one to evaluate the statistical significance of instantaneous coactivations. Hence, when applied in an epoch different from the one where the patterns were identified, (e.g. subsequent sleep) this measure allows to identify times and intensities of reactivation. The distribution of this measure provides information on the dynamics of reactivation events: in sleep these occur as transients rather than as a continuous process. PMID:19529888

  10. High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics

    PubMed Central

    Schmid, Benjamin; Shah, Gopi; Scherf, Nico; Weber, Michael; Thierbach, Konstantin; Campos, Citlali Pérez; Roeder, Ingo; Aanstad, Pia; Huisken, Jan

    2013-01-01

    The ever-increasing speed and resolution of modern microscopes make the storage and post-processing of images challenging and prevent thorough statistical analyses in developmental biology. Here, instead of deploying massive storage and computing power, we exploit the spherical geometry of zebrafish embryos by computing a radial maximum intensity projection in real time with a 240-fold reduction in data rate. In our four-lens selective plane illumination microscope (SPIM) setup the development of multiple embryos is recorded in parallel and a map of all labelled cells is obtained for each embryo in <10 s. In these panoramic projections, cell segmentation and flow analysis reveal characteristic migration patterns and global tissue remodelling in the early endoderm. Merging data from many samples uncover stereotypic patterns that are fundamental to endoderm development in every embryo. We demonstrate that processing and compressing raw image data in real time is not only efficient but indispensable for image-based systems biology. PMID:23884240

  11. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells.

    PubMed

    Robijns, J; Molenberghs, F; Sieprath, T; Corne, T D J; Verschuuren, M; De Vos, W H

    2016-01-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development. PMID:27461848

  12. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells

    NASA Astrophysics Data System (ADS)

    Robijns, J.; Molenberghs, F.; Sieprath, T.; Corne, T. D. J.; Verschuuren, M.; de Vos, W. H.

    2016-07-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development.

  13. The excitement of multiple noradrenergic cell groups in the rat brain related to hyperbaric oxygen seizure.

    PubMed

    Arai, Minako; Takata, Ken; Takeda, Yoshimasa; Mizobuchi, Satoshi; Morita, Kiyoshi

    2011-06-01

    The mechanism of oxygen toxicity for central nervous system and hyperbaric oxygen (HBO) seizure has not been clarified. Noradrenergic cells in the brain may contribute to HBO seizure. In this study, we defined the activation of noradrenergic cells during HBO exposure by c-fos immunohistochemistry. Electroencephalogram electrodes were pre-implanted in all animals under general anesthesia. In HBO seizure animals, HBO was induced with 5 atm of 100% oxygen until manifestation of general tonic convulsion. HBO non-seizure animals were exposed to 25 min of HBO. Control animals were put in the chamber for 120 min without pressurization. All animals were processed for c-fos immunohistochemical staining. All animals in the HBO seizure group showed electrical discharge on EEG. In the immunohistochemistry, c-fos was increased in the A1, A2 and A6 cells of the HBO seizure group, and in the A2 and A6 cells of the HBO non-seizure group, yet was extremely low in all three cell types in the control group. These results suggest the participation of noradrenaline in HBO seizure, which can be explained by the early excitement of A1 cells due to their higher sensitivity to high blood pressure, hyperoxia, or by the post-seizure activation of all noradrenergic cells. PMID:21709713

  14. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    PubMed Central

    2014-01-01

    . Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family. Conclusions Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity. PMID:24422981

  15. Gene expression profiling via bioinformatics analysis reveals biomarkers in laryngeal squamous cell carcinoma

    PubMed Central

    GUAN, GUO-FANG; ZHENG, YING; WEN, LIAN-JI; ZHANG, DE-JUN; YU, DUO-JIAO; LU, YAN-QING; ZHAO, YAN; ZHANG, HUI

    2015-01-01

    The present study aimed to identify key genes and relevant microRNAs (miRNAs) involved in laryngeal squamous cell carcinoma (LSCC). The gene expression profiles of LSCC tissue samples were analyzed with various bioinformatics tools. A gene expression data set (GSE51985), including ten laryngeal squamous cell carcinoma (LSCC) tissue samples and ten adjacent non-neoplastic tissue samples, was downloaded from the Gene Expression Omnibus. Differential analysis was performed using software package limma of R. Functional enrichment analysis was applied to the differentially expressed genes (DEGs) using the Database for Annotation, Visualization and Integrated Discovery. Protein-protein interaction (PPI) networks were constructed for the protein products using information from the Search Tool for the Retrieval of Interacting Genes/Proteins. Module analysis was performed using ClusterONE (a software plugin from Cytoscape). MicroRNAs (miRNAs) regulating the DEGs were predicted using WebGestalt. A total of 461 DEGs were identified in LSCC, 297 of which were upregulated and 164 of which were downregulated. Cell cycle, proteasome and DNA replication were significantly over-represented in the upregulated genes, while the ribosome was significantly over-represented in the downregulated genes. Two PPI networks were constructed for the up- and downregulated genes. One module from the upregulated gene network was associated with protein kinase. Numerous miRNAs associated with LSCC were predicted, including miRNA (miR)-25, miR-32, miR-92 and miR-29. In conclusion, numerous key genes and pathways involved in LSCC were revealed, which may aid the advancement of current knowledge regarding the pathogenesis of LSCC. In addition, relevant miRNAs were also identified, which may represent potential biomarkers for use in the diagnosis or treatment of the disease. PMID:25936657

  16. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    PubMed

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production. PMID:26820137

  17. High-mobility group box 2 (HMGB2) modulates radioresponse and is downregulated by p53 in colorectal cancer cell

    PubMed Central

    Shin, Young-Joo; Kim, Mi-Sook; Kim, Moon-Sun; Lee, Joonseok; Kang, Miae; Jeong, Jae-Hoon

    2013-01-01

    Overexpression of high-mobility group box 2 (HMGB2) is recently reported in several malignant cancers and was correlated with poor response to preoperative chemoradiotherapy of colorectal cancer patients. To enhance the chemoradiotherapy efficacy, the biological function of HMGB2 was investigated with respect to radiation response. HMGB2 gene knockdown cells were constructed by infecting shRNA expressing lentivirus and clonogenic assay was performed to count the radiosensitivity. HMGB2 knockdown sensitized HCT-116 and HT-29 colorectal cancer cells to ionizing radiation. This could be due to an increased DNA damage and an inefficient DNA damage repair in HMGB2 knockdown cells. In addition, an exposure to radiation downregulated HMGB2 expression in colorectal cancer cells with an intact TP53 gene. HMGB2 gene expression of TP53-mutant cell was not affected by irradiation. p53-mediated downregulation of HMGB2 was confirmed by direct activation of p53 using Nutlin-3 or by inducing p53 expression using Tet-On system. Luciferase reporter assay showed that HMGB2 promoter activity was inversely correlated with the amount p53 cotransfected. Our study revealed that HMGB2 is necessary to protect colorectal cancer cells from DNA damage and efficient DNA repair and p53-mediated downregulation is a critical mechanism of modulating HMGB2 expression. PMID:23255232

  18. Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA.

    PubMed

    Robins, P; Jones, C J; Biggerstaff, M; Lindahl, T; Wood, R D

    1991-12-01

    Complementation group A of xeroderma pigmentosum (XP) represents one of the most prevalent and serious forms of this cancer-prone disorder. Because of a marked defect in DNA excision repair, cells from individuals with XP-A are hypersensitive to the toxic and mutagenic effects of ultraviolet light and many chemical agents. We report here the isolation of the XP-A DNA repair protein by complementation of cell extracts from a repair-defective human XP-A cell line. XP-A protein purified from calf thymus migrates on denaturing gel electrophoresis as a doublet of 40 and 42 kilodaltons. The XP-A protein binds preferentially to ultraviolet light-irradiated DNA, with a preference for damaged over nondamaged nucleotides of approximately 10(3). This strongly suggests that the XP-A protein plays a direct role in the recognition of and incision at lesions in DNA. We further show that this protein corresponds to the product encoded by a recently isolated gene that can restore excision repair to XP-A cells. Thus, excision repair of plasmid DNA by cell extracts sufficiently resembles genomic repair in cells to reveal accurately the repair defect in an inherited disease. The general approach described here can be extended to the identification and isolation of other human DNA repair proteins. PMID:1935910

  19. Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA.

    PubMed Central

    Robins, P; Jones, C J; Biggerstaff, M; Lindahl, T; Wood, R D

    1991-01-01

    Complementation group A of xeroderma pigmentosum (XP) represents one of the most prevalent and serious forms of this cancer-prone disorder. Because of a marked defect in DNA excision repair, cells from individuals with XP-A are hypersensitive to the toxic and mutagenic effects of ultraviolet light and many chemical agents. We report here the isolation of the XP-A DNA repair protein by complementation of cell extracts from a repair-defective human XP-A cell line. XP-A protein purified from calf thymus migrates on denaturing gel electrophoresis as a doublet of 40 and 42 kilodaltons. The XP-A protein binds preferentially to ultraviolet light-irradiated DNA, with a preference for damaged over nondamaged nucleotides of approximately 10(3). This strongly suggests that the XP-A protein plays a direct role in the recognition of and incision at lesions in DNA. We further show that this protein corresponds to the product encoded by a recently isolated gene that can restore excision repair to XP-A cells. Thus, excision repair of plasmid DNA by cell extracts sufficiently resembles genomic repair in cells to reveal accurately the repair defect in an inherited disease. The general approach described here can be extended to the identification and isolation of other human DNA repair proteins. Images PMID:1935910

  20. Group I-III-VI.sub.2 semiconductor films for solar cell application

    DOEpatents

    Basol, Bulent M.; Kapur, Vijay K.

    1991-01-01

    This invention relates to an improved thin film solar cell with excellent electrical and mechanical integrity. The device comprises a substrate, a Group I-III-VI.sub.2 semiconductor absorber layer and a transparent window layer. The mechanical bond between the substrate and the Group I-III-VI.sub.2 semiconductor layer is enhanced by an intermediate layer between the substrate and the Group I-III-VI.sub.2 semiconductor film being grown. The intermediate layer contains tellurium or substitutes therefor, such as Se, Sn, or Pb. The intermediate layer improves the morphology and electrical characteristics of the Group I-III-VI.sub.2 semiconductor layer.

  1. Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells

    PubMed Central

    Artyomov, Maxim N.; Munk, Adiel; Gorvel, Laurent; Korenfeld, Daniel; Cella, Marina; Tung, Thomas

    2015-01-01

    Characterization of functionally distinct dendritic cell (DC) subsets in mice has fueled interest in whether analogous counterparts exist in humans. Transcriptional modules of coordinately expressed genes were used for defining shared functions between the species. Comparing modules derived from four human skin DC subsets and modules derived from the Immunological Genome Project database for all mouse DC subsets revealed that human Langerhans cells (LCs) and the mouse XCR1+CD8α+CD103+ DCs shared the class I–mediated antigen processing and cross-presentation transcriptional modules that were not seen in mouse LCs. Furthermore, human LCs were enriched in a transcriptional signature specific to the blood cross-presenting CD141/BDCA-3+ DCs, the proposed equivalent to mouse CD8α+ DCs. Consistent with our analysis, LCs were highly adept at inducing primary CTL responses. Thus, our study suggests that the function of LCs may not be conserved between mouse and human and supports human LCs as an especially relevant therapeutic target. PMID:25918340

  2. Functional interactions of dopamine cell groups reflect personality, sex, and social context in highly social finches.

    PubMed

    Kelly, Aubrey M; Goodson, James L

    2015-03-01

    Dopamine (DA) is well known for its involvement in novelty-seeking, learning, and goal-oriented behaviors such as social behavior. However, little is known about how DA modulates social processes differentially in relation to sex and behavioral phenotype (e.g., personality). Importantly, the major DA cell groups (A8-A15) are conserved across all amniote vertebrates, and thus broadly relevant insights may be obtained through investigations of avian species such as zebra finches (Taeniopygia guttata), which express a human-like social organization based on biparental nuclear families that are embedded within larger social groups. We here build upon a previous study that quantified multidimensional personality structures in male and female zebra finches using principal components analysis (PCA) of extensive behavioral measures in social and nonsocial contexts. These complex dimensions of behavioral phenotype can be characterized as Social competence/dominance, Gregariousness, and Anxiety. Here we analyze Fos protein expression in DA neuronal populations in response to social novelty and demonstrate that the Fos content of multiple dopamine cell groups is significantly predicted by sex, personality, social context, and their interactions. In order to further investigate coordinated neuromodulation of behavior across multiple DA cell groups, we also conducted a PCA of neural variables (DA cell numbers and their phasic Fos responses) and show that behavioral PCs are associated with unique suites of neural PCs. These findings demonstrate that personality and sex are reflected in DA neuron activity and coordinated patterns of neuromodulation arising from multiple DA cell groups. PMID:25496780

  3. Oxidation of cell surface thiol groups by contact sensitizers triggers the maturation of dendritic cells.

    PubMed

    Kagatani, Saori; Sasaki, Yoshinori; Hirota, Morihiko; Mizuashi, Masato; Suzuki, Mie; Ohtani, Tomoyuki; Itagaki, Hiroshi; Aiba, Setsuya

    2010-01-01

    p38 mitogen-activated protein kinase (MAPK) has a crucial role in the maturation of dendritic cells (DCs) by sensitizers. Recently, it has been reported that the oxidation of cell surface thiols by an exogenous impermeant thiol oxidizer can phosphorylate p38 MAPK. In this study, we examined whether sensitizers oxidize cell surface thiols of monocyte-derived DCs (MoDCs). When cell surface thiols were quantified by flow cytometry using Alexa fluor maleimide, all the sensitizers that we examined decreased cell surface thiols on MoDCs. To examine the effects of decreased cell surface thiols by sensitizers on DC maturation, we analyzed the effects of an impermeant thiol oxidizer, o-phenanthroline copper complex (CuPhen). The treatment of MoDCs with CuPhen decreased cell surface thiols, phosphorylated p38 MAPK, and induced MoDC maturation, that is, the augmentation of CD83, CD86, HLA-DR, and IL-8 mRNA, as well as the downregulation of aquaporin-3 mRNA. The augmentation of CD86 was significantly suppressed when MoDCs were pretreated with N-acetyl-L-cystein or treated with SB203580. Finally, we showed that epicutaneous application of 2,4-dinitrochlorobenzene on mouse skin significantly decreased cell surface thiols of Langerhans cells in vivo. These data suggest that the oxidation of cell surface thiols has some role in triggering DC maturation by sensitizers. PMID:19641517

  4. Drawings of Blood Cells Reveal People’s Perception of Their Blood Disorder: A Pilot Study

    PubMed Central

    Ramondt, Steven; Cameron, Linda D.; Broadbent, Elizabeth; Kaptein, Adrian A.

    2016-01-01

    Context Sickle cell disease (SCD) and thalassemia are rare but chronic blood disorders. Recent literature showed impaired quality of life (QOL) in people with these blood disorders. Assessing one of the determinants of QOL (i.e. illness perceptions) therefore, is an important next research area. Objective We aimed to explore illness perceptions of people with a blood disorder with drawings in addition to the Brief Illness Perception Questionnaire (Brief IPQ). Drawings are a novel method to assess illness perceptions and the free-range answers drawings offer can add additional insight into how people perceive their illness. Method We conducted a cross-sectional study including 17 participants with a blood disorder. Participants’ illness perceptions were assessed by the Brief IPQ and drawings. Brief IPQ scores were compared with reference groups from the literature (i.e. people with asthma or lupus erythematosus). Results Participants with SCD or thalassemia perceived their blood disorder as being more chronic and reported more severe symptoms than people with either asthma or lupus erythematosus. In the drawings of these participants with a blood disorder, a greater number of blood cells drawn was negatively correlated with perceived personal control (P<0.05), indicating that a greater quantity in the drawing is associated with more negative or distressing beliefs. Conclusion Participants with a blood disorder perceive their disease as fairly threatening compared with people with other chronic illnesses. Drawings can add additional insight into how people perceive their illness by offering free-range answers. PMID:27123580

  5. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges

    PubMed Central

    Kamke, Janine; Sczyrba, Alexander; Ivanova, Natalia; Schwientek, Patrick; Rinke, Christian; Mavromatis, Kostas; Woyke, Tanja; Hentschel, Ute

    2013-01-01

    Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems. PMID:23842652

  6. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair

    PubMed Central

    Pipalia, Tapan G.; Koth, Jana; Roy, Shukolpa D.; Hammond, Christina L.; Kawakami, Koichi

    2016-01-01

    ABSTRACT Heterogeneity of stem cells or their niches is likely to influence tissue regeneration. Here we reveal stem/precursor cell diversity during wound repair in larval zebrafish somitic body muscle using time-lapse 3D confocal microscopy on reporter lines. Skeletal muscle with incision wounds rapidly regenerates both slow and fast muscle fibre types. A swift immune response is followed by an increase in cells at the wound site, many of which express the muscle stem cell marker Pax7. Pax7+ cells proliferate and then undergo terminal differentiation involving Myogenin accumulation and subsequent loss of Pax7 followed by elongation and fusion to repair fast muscle fibres. Analysis of pax7a and pax7b transgenic reporter fish reveals that cells expressing each of the duplicated pax7 genes are distinctly localised in uninjured larvae. Cells marked by pax7a only or by both pax7a and pax7b enter the wound rapidly and contribute to muscle wound repair, but each behaves differently. Low numbers of pax7a-only cells form nascent fibres. Time-lapse microscopy revealed that the more numerous pax7b-marked cells frequently fuse to pre-existing fibres, contributing more strongly than pax7a-only cells to repair of damaged fibres. pax7b-marked cells are more often present in rows of aligned cells that are observed to fuse into a single fibre, but more rarely contribute to nascent regenerated fibres. Ablation of a substantial portion of nitroreductase-expressing pax7b cells with metronidazole prior to wounding triggered rapid pax7a-only cell accumulation, but this neither inhibited nor augmented pax7a-only cell-derived myogenesis and thus altered the cellular repair dynamics during wound healing. Moreover, pax7a-only cells did not regenerate pax7b cells, suggesting a lineage distinction. We propose a modified founder cell and fusion-competent cell model in which pax7a-only cells initiate fibre formation and pax7b cells contribute to fibre growth. This newly discovered cellular

  7. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    SciTech Connect

    Resch, M.

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution imaging techniques. Also, translating findings between model substrates to intact biomass is critical for evaluating enzyme performance. Here we employ a fungal free enzyme cocktail, a complexed cellulosomal system, and a combination of the two to investigate saccharification mechanisms on cellulose I, II and III along with corn stover from Clean Fractionation (CF), which is an Organosolv pretreatment. The insoluble Cellulose Enriched Fraction (CEF) from CF contains mainly cellulose with minor amounts of residual hemicellulose and lignin, the amount of which depends on the CF pretreatment severity. Enzymatic digestions at both low and high-solids loadings demonstrate that CF reduces the amount of enzyme required to depolymerize polysaccharides relative to deacetylated, dilute acid pretreated corn stover. Transmission and scanning electron microscopy of the biomass provides evidence for the different mechanisms of enzymatic deconstruction between free and complexed enzyme systems, and reveals the basis for the synergistic relationship between the two enzyme paradigms on a process-relevant substrate for the first time. These results also demonstrate that the presence of lignin, rather than cellulose morphology, is more detrimental to cellulosome action than to free cellulases. As enzyme costs are a major economic driver for biorefineries, this study provides key inputs for the evaluation of CF as a pretreatment method for biomass conversion.

  8. Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma.

    PubMed

    Cheng, Caixia; Zhou, Yong; Li, Hongyi; Xiong, Teng; Li, Shuaicheng; Bi, Yanghui; Kong, Pengzhou; Wang, Fang; Cui, Heyang; Li, Yaoping; Fang, Xiaodong; Yan, Ting; Li, Yike; Wang, Juan; Yang, Bin; Zhang, Ling; Jia, Zhiwu; Song, Bin; Hu, Xiaoling; Yang, Jie; Qiu, Haile; Zhang, Gehong; Liu, Jing; Xu, Enwei; Shi, Ruyi; Zhang, Yanyan; Liu, Haiyan; He, Chanting; Zhao, Zhenxiang; Qian, Yu; Rong, Ruizhou; Han, Zhiwei; Zhang, Yanlin; Luo, Wen; Wang, Jiaqian; Peng, Shaoliang; Yang, Xukui; Li, Xiangchun; Li, Lin; Fang, Hu; Liu, Xingmin; Ma, Li; Chen, Yunqing; Guo, Shiping; Chen, Xing; Xi, Yanfeng; Li, Guodong; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Jia, JunMei; Li, Qingshan; Cheng, Xiaolong; Zhan, Qimin; Cui, Yongping

    2016-02-01

    Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs. PMID:26833333

  9. Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Cheng, Caixia; Zhou, Yong; Li, Hongyi; Xiong, Teng; Li, Shuaicheng; Bi, Yanghui; Kong, Pengzhou; Wang, Fang; Cui, Heyang; Li, Yaoping; Fang, Xiaodong; Yan, Ting; Li, Yike; Wang, Juan; Yang, Bin; Zhang, Ling; Jia, Zhiwu; Song, Bin; Hu, Xiaoling; Yang, Jie; Qiu, Haile; Zhang, Gehong; Liu, Jing; Xu, Enwei; Shi, Ruyi; Zhang, Yanyan; Liu, Haiyan; He, Chanting; Zhao, Zhenxiang; Qian, Yu; Rong, Ruizhou; Han, Zhiwei; Zhang, Yanlin; Luo, Wen; Wang, Jiaqian; Peng, Shaoliang; Yang, Xukui; Li, Xiangchun; Li, Lin; Fang, Hu; Liu, Xingmin; Ma, Li; Chen, Yunqing; Guo, Shiping; Chen, Xing; Xi, Yanfeng; Li, Guodong; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Jia, JunMei; Li, Qingshan; Cheng, Xiaolong; Zhan, Qimin; Cui, Yongping

    2016-01-01

    Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs. PMID:26833333

  10. Role of the Group B Antigen of Streptococcus agalactiae: A Peptidoglycan-Anchored Polysaccharide Involved in Cell Wall Biogenesis

    PubMed Central

    Chapot-Chartier, Marie-Pierre; Courtin, Pascal; Kulakauskas, Saulius; Péchoux, Christine; Trieu-Cuot, Patrick; Mistou, Michel-Yves

    2012-01-01

    Streptococcus agalactiae (Group B streptococcus, GBS) is a leading cause of infections in neonates and an emerging pathogen in adults. The Lancefield Group B carbohydrate (GBC) is a peptidoglycan-anchored antigen that defines this species as a Group B Streptococcus. Despite earlier immunological and biochemical characterizations, the function of this abundant glycopolymer has never been addressed experimentally. Here, we inactivated the gene gbcO encoding a putative UDP-N-acetylglucosamine-1-phosphate:lipid phosphate transferase thought to catalyze the first step of GBC synthesis. Indeed, the gbcO mutant was unable to synthesize the GBC polymer, and displayed an important growth defect in vitro. Electron microscopy study of the GBC-depleted strain of S. agalactiae revealed a series of growth-related abnormalities: random placement of septa, defective cell division and separation processes, and aberrant cell morphology. Furthermore, vancomycin labeling and peptidoglycan structure analysis demonstrated that, in the absence of GBC, cells failed to initiate normal PG synthesis and cannot complete polymerization of the murein sacculus. Finally, the subcellular localization of the PG hydrolase PcsB, which has a critical role in cell division of streptococci, was altered in the gbcO mutant. Collectively, these findings show that GBC is an essential component of the cell wall of S. agalactiae whose function is reminiscent of that of conventional wall teichoic acids found in Staphylococcus aureus or Bacillus subtilis. Furthermore, our findings raise the possibility that GBC-like molecules play a major role in the growth of most if not all beta –hemolytic streptococci. PMID:22719253

  11. NitroDIGE analysis reveals inhibition of protein S-nitrosylation by epigallocatechin gallates in lipopolysaccharide-stimulated microglial cells

    PubMed Central

    2014-01-01

    Background Nitric oxide (NO) is a signaling molecule regulating numerous cellular functions in development and disease. In the brain, neuronal injury or neuroinflammation can lead to microglial activation, which induces NO production. NO can react with critical cysteine thiols of target proteins forming S-nitroso-proteins. This modification, known as S-nitrosylation, is an evolutionarily conserved redox-based post-translational modification (PTM) of specific proteins analogous to phosphorylation. In this study, we describe a protocol for analyzing S-nitrosylation of proteins using a gel-based proteomic approach and use it to investigate the modes of action of a botanical compound found in green tea, epigallocatechin-3-gallate (EGCG), on protein S-nitrosylation after microglial activation. Methods/Results To globally and quantitatively analyze NO-induced protein S-nitrosylation, the sensitive gel-based proteomic method, termed NitroDIGE, was developed by combining two-dimensional differential in-gel electrophoresis (2-D DIGE) with the modified biotin switch technique (BST) using fluorescence-tagged CyDye™ thiol reactive agents to label S-nitrosothiols. The NitroDIGE method showed high specificity and sensitivity in detecting S-nitrosylated proteins (SNO-proteins). Using this approach, we identified a subset of SNO-proteins ex vivo by exposing immortalized murine BV-2 microglial cells to a physiological NO donor, or in vivo by exposing BV-2 cells to endotoxin lipopolysaccharides (LPS) to induce a proinflammatory response. Moreover, EGCG was shown to attenuate S-nitrosylation of proteins after LPS-induced activation of microglial cells primarily by modulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response. Conclusions These results demonstrate that NitroDIGE is an effective proteomic strategy for “top-down” quantitative analysis of protein S-nitrosylation in multi-group samples in response to nitrosative stress due

  12. Electrochemical Investigation of a Microbial Solar Cell Reveals a Nonphotosynthetic Biocathode Catalyst

    PubMed Central

    Glaven, Richard H.; Wang, Zheng; Zhou, Jing; Vora, Gary J.; Tender, Leonard M.

    2013-01-01

    Microbial solar cells (MSCs) are microbial fuel cells (MFCs) that generate their own oxidant and/or fuel through photosynthetic reactions. Here, we present electrochemical analyses and biofilm 16S rRNA gene profiling of biocathodes of sediment/seawater-based MSCs inoculated from the biocathode of a previously described sediment/seawater-based MSC. Electrochemical analyses indicate that for these second-generation MSC biocathodes, catalytic activity diminishes over time if illumination is provided during growth, whereas it remains relatively stable if growth occurs in the dark. For both illuminated and dark MSC biocathodes, cyclic voltammetry reveals a catalytic-current–potential dependency consistent with heterogeneous electron transfer mediated by an insoluble microbial redox cofactor, which was conserved following enrichment of the dark MSC biocathode using a three-electrode configuration. 16S rRNA gene profiling showed Gammaproteobacteria, most closely related to Marinobacter spp., predominated in the enriched biocathode. The enriched biocathode biofilm is easily cultured on graphite cathodes, forms a multimicrobe-thick biofilm (up to 8.2 μm), and does not lose catalytic activity after exchanges of the reactor medium. Moreover, the consortium can be grown on cathodes with only inorganic carbon provided as the carbon source, which may be exploited for proposed bioelectrochemical systems for electrosynthesis of organic carbon from carbon dioxide. These results support a scheme where two distinct communities of organisms develop within MSC biocathodes: one that is photosynthetically active and one that catalyzes reduction of O2 by the cathode, where the former partially inhibits the latter. The relationship between the two communities must be further explored to fully realize the potential for MSC applications. PMID:23603672

  13. Network-based gene expression analysis of intracranial aneurysm tissue reveals role of antigen presenting cells.

    PubMed

    Krischek, B; Kasuya, H; Tajima, A; Akagawa, H; Sasaki, T; Yoneyama, T; Ujiie, H; Kubo, O; Bonin, M; Takakura, K; Hori, T; Inoue, I

    2008-07-17

    Little is known about the pathology and pathogenesis of the rupture of intracranial aneurysms. For a better understanding of the molecular processes involved in intracranial aneurysm (IA) formation we performed a gene expression analysis comparing ruptured and unruptured aneurysm tissue to a control artery. Tissue samples of six ruptured and four unruptured aneurysms, and four cerebral arteries serving as controls, were profiled using oligonucleotide microarrays. Gene ontology classification of the differentially expressed genes was analyzed and regulatory functional networks and canonical pathways were identified with a network-based computational pathway analysis tool. Real time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical staining were performed as confirmation. Analysis of aneurysmal and control tissue revealed 521 differentially expressed genes. The most significantly associated gene ontology term was antigen processing (P=1.64E-16). Further network-based analysis showed the top scoring regulatory functional network to be built around overexpressed major histocompatibility class (MHC) I and II complex related genes and confirmed the canonical pathway "Antigen Presentation" to have the highest upregulation in IA tissue (P=7.3E-10). Real time RT-PCR showed significant overexpression of MHC class II genes. Immunohistochemical staining showed strong positivity for MHC II molecule specific antibody (HLA II), for CD68 (macrophages, monocytes), for CD45RO (T-cells) and HLA I antibody. Our results offer strong evidence for MHC class II gene overexpression in human IA tissue and that antigen presenting cells (macrophages, monocytes) play a key role in IA formation. PMID:18538937

  14. Electrochemical investigation of a microbial solar cell reveals a nonphotosynthetic biocathode catalyst.

    PubMed

    Strycharz-Glaven, Sarah M; Glaven, Richard H; Wang, Zheng; Zhou, Jing; Vora, Gary J; Tender, Leonard M

    2013-07-01

    Microbial solar cells (MSCs) are microbial fuel cells (MFCs) that generate their own oxidant and/or fuel through photosynthetic reactions. Here, we present electrochemical analyses and biofilm 16S rRNA gene profiling of biocathodes of sediment/seawater-based MSCs inoculated from the biocathode of a previously described sediment/seawater-based MSC. Electrochemical analyses indicate that for these second-generation MSC biocathodes, catalytic activity diminishes over time if illumination is provided during growth, whereas it remains relatively stable if growth occurs in the dark. For both illuminated and dark MSC biocathodes, cyclic voltammetry reveals a catalytic-current-potential dependency consistent with heterogeneous electron transfer mediated by an insoluble microbial redox cofactor, which was conserved following enrichment of the dark MSC biocathode using a three-electrode configuration. 16S rRNA gene profiling showed Gammaproteobacteria, most closely related to Marinobacter spp., predominated in the enriched biocathode. The enriched biocathode biofilm is easily cultured on graphite cathodes, forms a multimicrobe-thick biofilm (up to 8.2 μm), and does not lose catalytic activity after exchanges of the reactor medium. Moreover, the consortium can be grown on cathodes with only inorganic carbon provided as the carbon source, which may be exploited for proposed bioelectrochemical systems for electrosynthesis of organic carbon from carbon dioxide. These results support a scheme where two distinct communities of organisms develop within MSC biocathodes: one that is photosynthetically active and one that catalyzes reduction of O2 by the cathode, where the former partially inhibits the latter. The relationship between the two communities must be further explored to fully realize the potential for MSC applications. PMID:23603672

  15. Global Phosphoproteome Profiling Reveals Unanticipated Networks Responsive to Cisplatin Treatment of Embryonic Stem Cells ▿ †

    PubMed Central

    Pines, Alex; Kelstrup, Christian D.; Vrouwe, Mischa G.; Puigvert, Jordi C.; Typas, Dimitris; Misovic, Branislav; de Groot, Anton; von Stechow, Louise; van de Water, Bob; Danen, Erik H. J.; Vrieling, Harry; Mullenders, Leon H. F.; Olsen, Jesper V.

    2011-01-01

    Cellular responses to DNA-damaging agents involve the activation of various DNA damage signaling and transduction pathways. Using quantitative and high-resolution tandem mass spectrometry, we determined global changes in protein level and phosphorylation site profiles following treatment of SILAC (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected. Although the ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) consensus sequence (S/T-Q motif) was significantly overrepresented among hyperphosphorylated peptides, about half of the >2-fold-upregulated phosphorylation sites based on the consensus sequence were not direct substrates of ATM and ATR. Eleven protein kinases mainly belonging to the mitogen-activated protein kinase (MAPK) family were identified as being regulated in their kinase domain activation loop. The biological importance of three of these kinases (cyclin-dependent kinase 7 [CDK7], Plk1, and KPCD1) in the protection against cisplatin-induced cytotoxicity was demonstrated by small interfering RNA (siRNA)-mediated knockdown. Our results indicate that the cellular response to cisplatin involves a variety of kinases and phosphatases not only acting in the nucleus but also regulating cytoplasmic targets, resulting in extensive cytoskeletal rearrangements. Integration of transcriptomic and proteomic data revealed a poor correlation between changes in the relative levels of transcripts and their corresponding proteins, but a large overlap in affected pathways at the levels of mRNA, protein, and phosphoprotein. This study provides an integrated view of pathways activated by genotoxic stress and deciphers kinases that play a pivotal role in regulating cellular processes other than the DNA damage response. PMID:22006019

  16. Microarray reveals complement components are regulated in the serum-deprived rat retinal ganglion cell line

    PubMed Central

    Khalyfa, Abdelnaby; Chlon, Timothy; Qiang, He; Agarwal, Neeraj

    2007-01-01

    H (CFH), the major inhibitor of the alternative complement pathway is downregulated in serum-deprived RGC-5. CFH protein was detected within RGC-5 cells as well as the rat retina with the aid of immunocytochemistry and confocal microscopy. Conclusions This study was undertaken to generate a genome-wide gene expression profile of RGC-5 after serum deprivation, and to identify candidate and novel genes that may be involved in the signal transduction pathways leading to apoptosis. RGC-5 serum deprivation revealed up-and downregulation in gene expression profiles. The data gathered from this study was the first report that the genes identified in microarray data and validated by real-time RT-PCR may play an important role in RGC-5 cell death. Among the validated genes, C3 and C1s showed significant upregulation of the complement component pathway. The results further indicate that components of the complement pathway are present in neurons of the rat retina. The data indicated that complement factors are likely involved in the pathway leading to ganglion cell death in the serum-deprivation paradigm, which may be similar to the mechanism of cell death in glaucoma. PMID:17356516

  17. Report: Stem cell applications in neurological practice, an expert group consensus appraisal

    PubMed Central

    Devi, M. Gourie; Sharma, Alka; Mohanty, Sujata; Jain, Neeraj; Verma, Kusum; Padma, M. Vasantha; Pal, Pramod; Chabbra, H. S.; Khadilkar, Satish; Prabhakar, Sudesh; Singh, Gagandeep

    2016-01-01

    Introduction: Neurologists in their clinical practice are faced with inquiries about the suitability of stem cell approaches by patients with a variety of acute and chronic (namely neurodegenerative) disorders. The challenge is to provide these patients with accurate information about the scope of stem cell use as well as at the same time, empowering patients with the capacity to make an autonomous decision regarding the use of stem cells. Methods: The Indian Academy of Neurology commissioned an Expert Group Meeting to formulate an advisory to practicing neurologists to counsel patients seeking information and advice about stem cell approaches. Results and Conclusions: In the course of such counselling, it should be emphasized that the information provided by many lay websites might be unsubstantiated. Besides, standard recommendations for the stem cell research, in particular, the application of several layers of oversight should be strictly adhered in order to ensure safety and ethical use of stem cells in neurological disorders. PMID:27570390

  18. Interstitial flows promote an amoeboid over mesenchymal motility of breast cancer cells revealed by a three dimensional microfluidic model

    PubMed Central

    Huang, Yu Ling; Tung, Chih-kuan; Zheng, Anqi; Kim, Beum Jun; Wu, Mingming

    2015-01-01

    Malignant tumors are often associated with an elevated fluid pressure due to the abnormal growth of vascular vessels, and thus an increased interstitial flow out of the tumor. Recent in vitro work revealed that interstitial flows critically regulated tumor cell migration within a three dimensional biomatrix, and breast cancer cell migration behavior depended sensitively on the cell seeding density, chemokine availability and flow rates. In this paper, we focus on roles of interstitial flows in modulating heterogeneity of cancer cell motility phenotype within a three dimensional biomatrix. Using a newly developed microfluidic model, we show that breast cancer cells (MDA-MB-231) embedded in a 3D type I collagen matrix exhibit both an amoeboid and a mesenchymal motility, and interstitial flows promote the cell population towards the amoeboid motility phenotype. Furthermore, the addition of exogenous adhesion molecules (fibronectin) within the extracellular matrix (type I collagen) partially rescues the mesenchymal phenotype in the presence of the flow. Quantitative analysis of cell tracks and cell shape shows distinct differential migration characteristics of amoeboid and mesenchymal cells. Notably, the fastest moving cells belong to the subpopulation of amoeboid cells. Together, these findings highlight the important roles of biophysical forces in modulating tumor cell migration heterogeneity and plasticity, as well as the suitability of microfluidic models in interrogating tumor cell dynamics at single-cell and subpopulation level. PMID:26235230

  19. Interstitial flows promote amoeboid over mesenchymal motility of breast cancer cells revealed by a three dimensional microfluidic model.

    PubMed

    Huang, Yu Ling; Tung, Chih-Kuan; Zheng, Anqi; Kim, Beum Jun; Wu, Mingming

    2015-11-01

    Malignant tumors are often associated with an elevated fluid pressure due to the abnormal growth of vascular vessels, and thus an increased interstitial flow out of the tumors. Recent in vitro works revealed that interstitial flows critically regulated tumor cell migration within a three dimensional biomatrix, and breast cancer cell migration behavior depended sensitively on the cell seeding density, chemokine availability and flow rates. In this paper, we focus on the role of interstitial flows in modulating the heterogeneity of cancer cell motility phenotype within a three dimensional biomatrix. Using a newly developed microfluidic model, we show that breast cancer cells (MDA-MB-231) embedded in a 3D type I collagen matrix exhibit both amoeboid and mesenchymal motility, and interstitial flows promote the cell population towards the amoeboid motility phenotype. Furthermore, the addition of exogenous adhesion molecules (fibronectin) within the extracellular matrix (type I collagen) partially rescues the mesenchymal phenotype in the presence of the flow. Quantitative analysis of cell tracks and cell shapes shows distinct differential migration characteristics of amoeboid and mesenchymal cells. Notably, the fastest moving cells belong to the subpopulation of amoeboid cells. Together, these findings highlight the important role of biophysical forces in modulating tumor cell migration heterogeneity and plasticity, as well as the suitability of microfluidic models in interrogating tumor cell dynamics at single-cell and subpopulation level. PMID:26235230

  20. A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development.

    PubMed

    Eckelhart, Eva; Warsch, Wolfgang; Zebedin, Eva; Simma, Olivia; Stoiber, Dagmar; Kolbe, Thomas; Rülicke, Thomas; Mueller, Mathias; Casanova, Emilio; Sexl, Veronika

    2011-02-01

    We generated a transgenic mouse line that expresses the Cre recombinase under the control of the Ncr1 (p46) promoter. Cre-mediated recombination was tightly restricted to natural killer (NK) cells, as revealed by crossing Ncr1-iCreTg mice to the eGFP-LSLTg reporter strain. Ncr1-iCreTg mice were further used to study NK cell-specific functions of Stat5 (signal transducers and activators of transcription 5) by generating Stat5(f/f) Ncr1-iCreTg animals. Stat5(f/f) Ncr1-iCreTg mice were largely devoid of NK cells in peripheral lymphoid organs. In the bone marrow, NK-cell maturation was abrogated at the NK cell-precursor stage. Moreover, we found that in vitro deletion of Stat5 in interleukin 2-expanded NK cells was incompatible with NK-cell viability. In vivo assays confirmed the complete abrogation of NK cell-mediated tumor control against B16F10-melanoma cells. In contrast, T cell-mediated tumor surveillance against MC38-adenocarcinoma cells was undisturbed. In summary, the results of our study show that STAT5 has a cell-intrinsic role in NK-cell development and that Ncr1-iCreTg mice are a powerful novel tool with which to study NK-cell development, biology, and function. PMID:21127177

  1. NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling

    SciTech Connect

    Mace, P.D.; Robinson, H.; Wallez, Y.; Dobaczewska, M. K.; Lee, J. J.; Pasquale, E. B.; Riedl, S. J.

    2011-12-01

    Members of the novel SH2-containing protein (NSP) and Crk-associated substrate (Cas) protein families form multidomain signaling platforms that mediate cell migration and invasion through a collection of distinct signaling motifs. Members of each family interact via their respective C-terminal domains, but the mechanism of this association has remained enigmatic. Here we present the crystal structures of the C-terminal domain from the NSP protein BCAR3 and the complex of NSP3 with p130Cas. BCAR3 adopts the Cdc25-homology fold of Ras GTPase exchange factors, but it has a 'closed' conformation incapable of enzymatic activity. The structure of the NSP3-p130Cas complex reveals that this closed conformation is instrumental for interaction of NSP proteins with a focal adhesion-targeting domain present in Cas proteins. This enzyme-to-adaptor conversion enables high-affinity, yet promiscuous, interactions between NSP and Cas proteins and represents an unprecedented mechanistic paradigm linking cellular signaling networks.

  2. Cell Ablation Reveals That Expression from the Phaseolin Promoter Is Confined to Embryogenesis and Microsporogenesis.

    PubMed Central

    Van Der Geest, AHM.; Frisch, D. A.; Kemp, J. D.; Hall, T. C.

    1995-01-01

    Most previous studies of the [beta]-phaseolin (phas) gene, which encodes the major storage protein in bean (Phaseolus vulgaris L.), have shown its expression to be rigorously confined to the developing seed, both in bean and transgenic tobacco (Nicotiana tabacum L. cv Xanthi) plants. To confirm unequivocally the lack of phas expression in vegetative tissues, we placed the diphtheria toxin A-chain (DT-A) coding region under the control of [beta]-phaseolin promoter sequences. Tobacco plants transgenic for phas/DT-A were phenotypically normal until flowering, when they produced anthers that were externally normal but contained no viable pollen. Microscopic examination of immature anthers revealed a normal tapetum, but the pollen mother cells did not undergo meiosis and subsequently degenerated, resulting in male-sterile plants. This demonstration of phas expression during microsporogenesis was corroborated by the expression of [beta]-glucuronidase in pollen of plants transformed with comparable phas/uidA constructs. Although these findings suggested that similarities in phas expression may exist between seed and pollen maturation, no phas activity could be detected in bean pollen. After fertilization of the DT-A-transformed plants with pollen from wild-type tobacco, 50% of the resulting embryos aborted at the heart stage, defining this as the earliest time for phas expression during embryogenesis. PMID:12228659

  3. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    SciTech Connect

    Klopffleisch, Karsten; Phan, Nguyen; Chen, Jay; Panstruga, Ralph; Uhrig, Joachim; Jones, Alan M

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of G{alpha}, G{beta}, and G{gamma} subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.

  4. A novel sigma factor reveals a unique regulon controlling cell-specific recombination in Mycoplasma genitalium.

    PubMed

    Torres-Puig, Sergi; Broto, Alicia; Querol, Enrique; Piñol, Jaume; Pich, Oscar Q

    2015-05-26

    The Mycoplasma genitalium MG428 protein shows homology to members of the sigma-70 family of sigma factors. Herein, we found that MG428 activates transcription of recA, ruvA and ruvB as well as several genes with unknown function. Deletion of MG_428 or some of the up-regulated unknown genes led to severe recombination defects. Single cell analyses revealed that activation of the MG428-regulon is a rare event under laboratory growth conditions. A conserved sequence with sigma-70 promoter architecture (TTGTCA-N(18/19)-ATTWAT) was identified in the upstream region of all of the MG428-regulated genes or operons. Primer extension analyses demonstrated that transcription initiates immediately downstream of this sigma70-type promoter in a MG428-dependent manner. Furthermore, mutagenesis of the conserved -10 and -35 elements corroborated the requirement of these regions for promoter function. Therefore, a new mycoplasma promoter directs transcription of a unique recombination regulon. Additionally, MG428 was found to interact with the RNAP core enzyme, reinforcing the predicted role of this protein as an alternative sigma factor. Finally, our results indicate that MG428 contributes to the generation of genetic diversity in this model organism. Since recombination is an important mechanism to generate antigenic variation, MG428 emerges as a novel factor contributing to M. genitalium virulence. PMID:25925568

  5. A novel sigma factor reveals a unique regulon controlling cell-specific recombination in Mycoplasma genitalium

    PubMed Central

    Torres-Puig, Sergi; Broto, Alicia; Querol, Enrique; Piñol, Jaume; Pich, Oscar Q.

    2015-01-01

    The Mycoplasma genitalium MG428 protein shows homology to members of the sigma-70 family of sigma factors. Herein, we found that MG428 activates transcription of recA, ruvA and ruvB as well as several genes with unknown function. Deletion of MG_428 or some of the up-regulated unknown genes led to severe recombination defects. Single cell analyses revealed that activation of the MG428-regulon is a rare event under laboratory growth conditions. A conserved sequence with sigma-70 promoter architecture (TTGTCA-N18/19-ATTWAT) was identified in the upstream region of all of the MG428-regulated genes or operons. Primer extension analyses demonstrated that transcription initiates immediately downstream of this sigma70-type promoter in a MG428-dependent manner. Furthermore, mutagenesis of the conserved −10 and −35 elements corroborated the requirement of these regions for promoter function. Therefore, a new mycoplasma promoter directs transcription of a unique recombination regulon. Additionally, MG428 was found to interact with the RNAP core enzyme, reinforcing the predicted role of this protein as an alternative sigma factor. Finally, our results indicate that MG428 contributes to the generation of genetic diversity in this model organism. Since recombination is an important mechanism to generate antigenic variation, MG428 emerges as a novel factor contributing to M. genitalium virulence. PMID:25925568

  6. Pushing structural limits to reveal fundamental mechanisms of organic solar cell operation

    NASA Astrophysics Data System (ADS)

    Rand, Barry

    2015-03-01

    Organic-based solar cells are beginning to emerge with the potential to compete with other thin film photovoltaic technologies, with efficiencies of 12% recently demonstrated. Unique to the function of organic photovoltaics are the creation of tightly bound excitons that can only be efficiently separated at a donor/acceptor (D/A) interface capable of providing the necessary energetic driving force for dissociation. The consequences of this are the need for long exciton diffusion lengths and the presence of charge transfer (CT) states, ground state complexes that exist at the D/A interface. We have found that charge transfer states are more easily separated into free charge if they are delocalized; an aspect that becomes most feasible for highly ordered systems. I will discuss our recent efforts to template and control film morphology and molecular orientation. These studies allow us to understand the importance of molecular orientation, crystallite size, and crystal phase. We will show templated devices utilizing neat films as well as bulk heterojunctions, with crystallite dimensions spanning from the more standard nano-sized grains to those with highly ordered micron-sized crystalline domains revealing unprecedented thin film exciton diffusion lengths of 100s of nm. In these highly ordered films, owing to significant delocalization, we are able to directly measure photocurrent from multiple CT states, an aspect which has important consequences for the design of more efficient photocurrent generation. We acknowledge support from DOE BES Grant #11493344.

  7. Single-cell genomics reveal metabolic strategies for microbial growth and survival in an oligotrophic aquifer

    SciTech Connect

    Wilkins, Michael J.; Kennedy, David W.; Castelle, Cindy; Field, Erin; Stepanauskas, Ramunas; Fredrickson, Jim K.; Konopka, Allan

    2014-02-09

    Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site and have been shown to significantly change in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single cell genomics techniques to shed light on the physiological niche of these microorganisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3­-type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide-range of both intra-and extra­-cellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors (TBDRs), which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. CRISPR-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic microorganisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area subsurface and biogeochemical shifts associated with Columbia River water intrusion.

  8. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity.

    PubMed

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4(+)SNS-Cre/TdTomato(+), 2) IB4(-)SNS-Cre/TdTomato(+), and 3) Parv-Cre/TdTomato(+) cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. PMID:25525749

  9. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    PubMed Central

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  10. Distribution of Ca2+ channels on cochlear outer hair cells revealed by fluorescent dihydropyridines.

    PubMed

    Oshima, T; Ikeda, K; Furukawa, M; Ueda, N; Suzuki, H; Takasaka, T

    1996-09-01

    Physiological evidence has shown that cochlear outer hair cells (OHC) possess L-type voltage-dependent Ca2+ channels through which Ca2+ enters the OHC during depolarization. Their subcellular distribution has, however, remained unclear. In this study, the distribution of L-type Ca2+ channels on the basolateral plasma membrane of OHC has been demonstrated by the use of a laser scanning confocal microscope (LSCM) and a fluorescent probe DMBODIPY-DHP. The fluorescent staining pattern on the basolateral wall is nonuniform, suggesting a heterogeneous distribution of the channels in the plasma membrane. Direct imaging of intracellular Ca2+ visualized in real time by means of the LSCM and the fluorescent Ca2+ probe fluo 3 revealed temporal and spatial integration of Ca2+ movements and Ca2+ channel distribution. Exposure to high-K+ solution induced heterogeneity in the subcellular increase in the intracellular Ca2+ concentration. These results suggest that the heterogeneous distribution of L-type Ca2+ channels on the basolateral membrane might induce heterogeneous intracellular Ca2+ distribution during electrical activity in the OHC. PMID:8843725

  11. Mutations at the Subunit Interface of Yeast Proliferating Cell Nuclear Antigen Reveal a Versatile Regulatory Domain

    PubMed Central

    Halmai, Miklos; Frittmann, Orsolya; Szabo, Zoltan; Daraba, Andreea; Gali, Vamsi K.; Balint, Eva; Unk, Ildiko

    2016-01-01

    Proliferating cell nuclear antigen (PCNA) plays a key role in many cellular processes and due to that it interacts with a plethora of proteins. The main interacting surfaces of Saccharomyces cerevisiae PCNA have been mapped to the interdomain connecting loop and to the carboxy-terminal domain. Here we report that the subunit interface of yeast PCNA also has regulatory roles in the function of several DNA damage response pathways. Using site-directed mutagenesis we engineered mutations at both sides of the interface and investigated the effect of these alleles on DNA damage response. Genetic experiments with strains bearing the mutant alleles revealed that mutagenic translesion synthesis, nucleotide excision repair, and homologous recombination are all regulated through residues at the subunit interface. Moreover, genetic characterization of one of our mutants identifies a new sub-branch of nucleotide excision repair. Based on these results we conclude that residues at the subunit boundary of PCNA are not only important for the formation of the trimer structure of PCNA, but they constitute a regulatory protein domain that mediates different DNA damage response pathways, as well. PMID:27537501

  12. Incorporation of phosphate group modulates bone cell attachment and differentiation on oligo(polyethylene glycol) fumarate hydrogel.

    PubMed

    Dadsetan, Mahrokh; Giuliani, Melissa; Wanivenhaus, Florian; Brett Runge, M; Charlesworth, Jon E; Yaszemski, Michael J

    2012-04-01

    In this work, we have investigated the development of a synthetic hydrogel that contains a negatively charged phosphate group for use as a substrate for bone cell attachment and differentiation in culture. The photoreactive, phosphate-containing molecule, bis(2-(methacryloyloxy)ethyl)phosphate (BP), was incorporated into oligo(polyethylene glycol) fumarate hydrogel and the mechanical, rheological and thermal properties of the resulting hydrogels were characterized. Our results showed changes in hydrogel compression and storage moduli with incorporation of BP. The modification also resulted in decreased crystallinity as recorded by differential scanning calorimetry. Our data revealed that incorporation of BP improved attachment and differentiation of human fetal osteoblast (hFOB) cells in a dose-dependent manner. A change in surface chemistry and mineralization of the phosphate-containing surfaces verified by scanning electron microscopy and energy dispersive X-ray analysis was found to be important for hFOB cell attachment and differentiation. We also demonstrated that phosphate-containing hydrogels support attachment and differentiation of primary bone marrow stromal cells. These findings suggest that BP-modified hydrogels are capable of sustaining attachment and differentiation of both bone marrow stromal cells and osteoblasts that are critical for bone regeneration. PMID:22277774

  13. Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding

    PubMed Central

    Ailte, Ieva; Lingelem, Anne Berit Dyve; Kavaliauskiene, Simona; Bergan, Jonas; Kvalvaag, Audun Sverre; Myrann, Anne-Grethe; Skotland, Tore; Sandvig, Kirsten

    2016-01-01

    Shiga toxin (Stx), an AB5 toxin, binds specifically to the neutral glycosphingolipid Gb3 at the cell surface before being transported into cells. We here demonstrate that addition of conical lysophospholipids (LPLs) with large head groups inhibit Stx binding to cells whereas LPLs with small head groups do not. Lysophosphatidylinositol (LPI 18:0), the most efficient LPL with the largest head group, was selected for in-depth investigations to study how the binding of Stx is regulated. We show that the inhibition of Stx binding by LPI is reversible and possibly regulated by cholesterol since addition of methyl-β-cyclodextrin (mβCD) reversed the ability of LPI to inhibit binding. LPI-induced inhibition of Stx binding is independent of signalling and membrane turnover as it occurs in fixed cells as well as after depletion of cellular ATP. Furthermore, data obtained with fluorescent membrane dyes suggest that LPI treatment has a direct effect on plasma membrane lipid packing with shift towards a liquid disordered phase in the outer leaflet, while lysophosphoethanolamine (LPE), which has a small head group, does not. In conclusion, our data show that cellular treatment with conical LPLs with large head groups changes intrinsic properties of the plasma membrane and modulates Stx binding to Gb3. PMID:27458147

  14. Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding.

    PubMed

    Ailte, Ieva; Lingelem, Anne Berit Dyve; Kavaliauskiene, Simona; Bergan, Jonas; Kvalvaag, Audun Sverre; Myrann, Anne-Grethe; Skotland, Tore; Sandvig, Kirsten

    2016-01-01

    Shiga toxin (Stx), an AB5 toxin, binds specifically to the neutral glycosphingolipid Gb3 at the cell surface before being transported into cells. We here demonstrate that addition of conical lysophospholipids (LPLs) with large head groups inhibit Stx binding to cells whereas LPLs with small head groups do not. Lysophosphatidylinositol (LPI 18:0), the most efficient LPL with the largest head group, was selected for in-depth investigations to study how the binding of Stx is regulated. We show that the inhibition of Stx binding by LPI is reversible and possibly regulated by cholesterol since addition of methyl-β-cyclodextrin (mβCD) reversed the ability of LPI to inhibit binding. LPI-induced inhibition of Stx binding is independent of signalling and membrane turnover as it occurs in fixed cells as well as after depletion of cellular ATP. Furthermore, data obtained with fluorescent membrane dyes suggest that LPI treatment has a direct effect on plasma membrane lipid packing with shift towards a liquid disordered phase in the outer leaflet, while lysophosphoethanolamine (LPE), which has a small head group, does not. In conclusion, our data show that cellular treatment with conical LPLs with large head groups changes intrinsic properties of the plasma membrane and modulates Stx binding to Gb3. PMID:27458147

  15. Streptolysin S Promotes Programmed Cell Death and Enhances Inflammatory Signaling in Epithelial Keratinocytes during Group A Streptococcus Infection

    PubMed Central

    Flaherty, Rebecca A.; Puricelli, Jessica M.; Higashi, Dustin L.; Park, Claudia J.

    2015-01-01

    Streptococcus pyogenes, or group A Streptococcus (GAS), is a pathogen that causes a multitude of human diseases from pharyngitis to severe infections such as toxic shock syndrome and necrotizing fasciitis. One of the primary virulence factors produced by GAS is the peptide toxin streptolysin S (SLS). In addition to its well-recognized role as a cytolysin, recent evidence has indicated that SLS may influence host cell signaling pathways at sublytic concentrations during infection. We employed an antibody array-based approach to comprehensively identify global host cell changes in human epithelial keratinocytes in response to the SLS toxin. We identified key SLS-dependent host responses, including the initiation of specific programmed cell death and inflammatory cascades with concomitant downregulation of Akt-mediated cytoprotection. Significant signaling responses identified by our array analysis were confirmed using biochemical and protein identification methods. To further demonstrate that the observed SLS-dependent host signaling changes were mediated primarily by the secreted toxin, we designed a Transwell infection system in which direct bacterial attachment to host cells was prevented, while secreted factors were allowed access to host cells. The results using this approach were consistent with our direct infection studies and reveal that SLS is a bacterial toxin that does not require bacterial attachment to host cells for activity. In light of these findings, we propose that the production of SLS by GAS during skin infection promotes invasive outcomes by triggering programmed cell death and inflammatory cascades in host cells to breach the keratinocyte barrier for dissemination into deeper tissues. PMID:26238711

  16. Risk Factors for Endothelial Cell Loss after Phacoemulsification: Comparison in Different Anterior Chamber Depth Groups

    PubMed Central

    Cho, Yang Kyeung; Chang, Hwa Seok

    2010-01-01

    Purpose To assess the risk factors for endothelial cell loss after phacoemulsification with implantation of intraocular lens according to anterior chamber depth (ACD). Methods This prospective study included 94 eyes of 94 patients undergoing phacoemulsification cataract surgery. To assess the risk factors for corneal endothelial cell loss, we examined seven variables at 1 day, 1 week, 6 weeks, and 12 weeks postoperatively in each ACD-stratified group. Results Multiple linear regression analysis showed that the only variable influencing the percentage decrease in corneal endothelial cell density throughout the postoperative follow-up period in the long ACD group (ACD III) was nucleosclerosis. The variables influencing the percentage decrease in corneal endothelial cell density in the short ACD group (ACD I) at one day and one week postoperatively were corneal incisional tunnel length and nucleosclerosis. Conclusions Risk factors for endothelial cell loss after phaoemulsification were different according to ACD. Long corneal tunnel length can be one of the risk factors for endothelial cell loss in short ACD eyes. PMID:20157408

  17. Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation.

    PubMed

    Sun, Jing; Cheng, Jun; Yang, Zongbo; Li, Ke; Zhou, Junhu; Cen, Kefa

    2015-10-01

    The pore structures and surface morphological characteristics of Nannochloropsis sp. cells with arsenic adsorption were initially investigated by N2-adsorption analysis and scanning electronic microscopy. Functional groups of cells were analysed by Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy. Total surface area of microalgal cells increased from 0.54 m(2)/g to 1.80 m(2)/g upon arsenic adsorption. The external cell surface area increased. More wrinkles and measles-like granules formed on the surfaces as a result of arsenic toxicity. Arsenic ions blocked cell pores and decreased the average pore diameter and total pore volume. Ether cross-linked structures in the algaenan layer of cell walls were disrupted as the percentage of C-O functional groups decreased. These functional groups underwent complexation reactions with arsenic ions. Accumulation of polyunsaturated fatty acids decreased because of oxidative stresses induced by arsenic. The increase in generation of short-chain saturated fatty acids was favourable for the production of quality biodiesel. PMID:26210144

  18. Low dose irradiation of thyroid cells reveals a unique transcriptomic and epigenetic signature in RET/PTC-positive cells.

    PubMed

    Abou-El-Ardat, Khalil; Monsieurs, Pieter; Anastasov, Nataša; Atkinson, Mike; Derradji, Hanane; De Meyer, Tim; Bekaert, Sofie; Van Criekinge, Wim; Baatout, Sarah

    2012-03-01

    The high doses of radiation received in the wake of the Chernobyl incident and the atomic bombing of Hiroshima and Nagasaki have been linked to the increased appearance of thyroid cancer in the children living in the vicinity of the site. However, the data gathered on the effect of low doses of radiation on the thyroid remain limited. We have examined the genome wide transcriptional response of a culture of TPC-1 human cell line of papillary thyroid carcinoma origin with a RET/PTC1 translocation to various doses (0.0625, 0.5, and 4Gy) of X-rays and compared it to response of thyroids with a RET/PTC3 translocation and against wild-type mouse thyroids irradiated with the same doses using Affymetrix microarrays. We have found considerable overlap at a high dose of 4Gy in both RET/PTC-positive systems but no common genes at 62.5mGy. In addition, the response of RET/PTC-positive system at all doses was distinct from the response of wild-type thyroids with both systems signaling down different pathways. Analysis of the response of microRNAs in TPC-1 cells revealed a radiation-responsive signature of microRNAs in addition to dose-responsive microRNAs. Our results point to the fact that a low dose of X-rays seems to have a significant proliferative effect on normal thyroids. This observation should be studied further as opposed to its effect on RET/PTC-positive thyroids which was subtle, anti-proliferative and system-dependent. PMID:22027090

  19. Purified group X secretory phospholipase A(2) induced prominent release of arachidonic acid from human myeloid leukemia cells.

    PubMed

    Hanasaki, K; Ono, T; Saiga, A; Morioka, Y; Ikeda, M; Kawamoto, K; Higashino, K; Nakano, K; Yamada, K; Ishizaki, J; Arita, H

    1999-11-26

    Group X secretory phospholipase A(2) (sPLA(2)-X) possesses several structural features characteristic of both group IB and IIA sPLA(2)s (sPLA(2)-IB and -IIA) and is postulated to be involved in inflammatory responses owing to its restricted expression in the spleen and thymus. Here, we report the purification of human recombinant COOH-terminal His-tagged sPLA(2)-X, the preparation of its antibody, and the purification of native sPLA(2)-X. The affinity-purified sPLA(2)-X protein migrated as various molecular species of 13-18 kDa on SDS-polyacrylamide gels, and N-glycosidase F treatment caused shifts to the 13- and 14-kDa bands. NH(2)-terminal amino acid sequencing analysis revealed that the 13-kDa form is a putative mature sPLA(2)-X and the 14-kDa protein possesses a propeptide of 11 amino acid residues attached at the NH(2) termini of the mature protein. Separation with reverse-phase high performance liquid chromatography revealed that N-linked carbohydrates are not required for the enzymatic activity and pro-sPLA(2)-X has a relatively weak potency compared with the mature protein. The mature sPLA(2)-X induced the release of arachidonic acid from phosphatidylcholine more efficiently than other human sPLA(2) groups (IB, IIA, IID, and V) and elicited a prompt and marked release of arachidonic acid from human monocytic THP-1 cells compared with sPLA(2)-IB and -IIA with concomitant production of prostaglandin E(2). A prominent release of arachidonic acid was also observed in sPLA(2)-X-treated human U937 and HL60 cells. Immunohistochemical analysis of human lung preparations revealed its expression in alveolar epithelial cells. These results indicate that human sPLA(2)-X is a unique N-glycosylated sPLA(2) that releases arachidonic acid from human myeloid leukemia cells more efficiently than sPLA(2)-IB and -IIA. PMID:10567392

  20. Conditional Disruption of Raptor Reveals an Essential Role for mTORC1 in B Cell Development, Survival, and Metabolism

    PubMed Central

    Iwata, Terri N.; Ramírez, Julita A.; Tsang, Mark; Park, Heon; Margineantu, Daciana H.; Hockenbery, David M.

    2016-01-01

    Mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that coordinates nutrient and growth factor availability with cellular growth, division, and differentiation. Studies examining the roles of mTOR signaling in immune function revealed critical roles for mTOR in regulating T cell differentiation and function. However, few studies have investigated the roles of mTOR in early B cell development. In this study, we found that mTOR is highly activated during the pro- and pre-B stages of mouse B cell development. Conditional disruption of the mTOR coactivating protein Raptor in developing mouse B cells resulted in a developmental block at the pre-B cell stage, with a corresponding lack of peripheral B cells and loss of Ag-specific Ab production. Pre-B cell survival and proliferation were significantly reduced in Raptor-deficient mice. Forced expression of a transgenic BCR or a BclxL transgene on Raptor-deficient B cells failed to rescue B cell development, suggesting that pre-BCR signaling and B cell survival are impaired in a BclxL-independent manner. Raptor-deficient pre-B cells exhibited significant decreases in oxidative phosphorylation and glycolysis, indicating that loss of mTOR signaling in B cells significantly impairs cellular metabolic capacity. Treatment of mice with rapamycin, an allosteric inhibitor of mTOR, recapitulated the early B cell developmental block. Collectively, our data reveal a previously uncharacterized role for mTOR signaling in early B cell development, survival, and metabolism. PMID:27521345

  1. Analysis of leaf development in fugu mutants of Arabidopsis reveals three compensation modes that modulate cell expansion in determinate organs.

    PubMed

    Ferjani, Ali; Horiguchi, Gorou; Yano, Satoshi; Tsukaya, Hirokazu

    2007-06-01

    In multicellular organisms, the coordination of cell proliferation and expansion is fundamental for proper organogenesis, yet the molecular mechanisms involved in this coordination are largely unexplored. In plant leaves, the existence of this coordination is suggested by compensation, in which a decrease in cell number triggers an increase in mature cell size. To elucidate the mechanisms of compensation, we isolated five new Arabidopsis (Arabidopsis thaliana) mutants (fugu1-fugu5) that exhibit compensation. These mutants were characterized together with angustifolia3 (an3), erecta (er), and a KIP-RELATED PROTEIN2 (KRP2) overexpressor, which were previously reported to exhibit compensation. Time-course analyses of leaf development revealed that enhanced cell expansion in fugu2-1, fugu5-1, an3-4, and er-102 mutants is induced postmitotically, indicating that cell enlargement is not caused by the uncoupling of cell division from cell growth. In each of the mutants, either the rate or duration of cell expansion was selectively enhanced. In contrast, we found that enhanced cell expansion in KRP2 overexpressor occurs during cell proliferation. We further demonstrated that enhanced cell expansion occurs in cotyledons with dynamics similar to that in leaves. In contrast, cell expansion was not enhanced in roots even though they exhibit decreased cell numbers. Thus, compensation was confirmed to occur preferentially in determinate organs. Flow cytometric analyses revealed that increases in ploidy level are not always required to trigger compensation, suggesting that compensation is only partially mediated by ploidy-dependent processes. Our results suggest that compensation reflects an organ-wide coordination of cell proliferation and expansion in determinate organs, and involves at least three different expansion pathways. PMID:17468216

  2. Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells

    PubMed Central

    Armitage, Emily G.; Kotze, Helen L.; Allwood, J. William; Dunn, Warwick B.; Goodacre, Royston; Williams, Kaye J.

    2015-01-01

    Hypoxia inducible factors (HIFs) plays an important role in oxygen compromised environments and therefore in tumour survival. In this research, metabolomics has been applied to study HIFs metabolic function in two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby the metabolism has been profiled for a range of oxygen potentials. Wild type cells have been compared to cells deficient in HIF signalling to reveal its effect on cellular metabolism under normal oxygen conditions as well as low oxygen, hypoxic and anoxic environments. Characteristic responses to hypoxia that were conserved across both cell models involved the anti-correlation between 2-hydroxyglutarate, 2-oxoglutarate, fructose, hexadecanoic acid, hypotaurine, pyruvate and octadecenoic acid with 4-hydroxyproline, aspartate, cysteine, glutamine, lysine, malate and pyroglutamate. Further to this, network-based correlation analysis revealed HIF specific pathway responses to each oxygen condition that were also conserved between cell models. From this, 4-hydroxyproline was revealed as a regulating hub in low oxygen survival of WT cells while fructose appeared to be in HIF deficient cells. Pathways surrounding these hubs were built from the direct connections of correlated metabolites that look beyond traditional pathways in order to understand the mechanism of HIF response to low oxygen environments. PMID:26508589

  3. Stimulatory effect of Echinacea purpurea extract on the trafficking activity of mouse dendritic cells: revealed by genomic and proteomic analyses

    PubMed Central

    2010-01-01

    Background Several Echinacea species have been used as nutraceuticals or botanical drugs for "immunostimulation", but scientific evidence supporting their therapeutic use is still controversial. In this study, a phytocompound mixture extracted from the butanol fraction (BF) of a stem and leaf (S+L) extract of E. purpurea ([BF/S+L/Ep]) containing stringently defined bioactive phytocompounds was obtained using standardized and published procedures. The transcriptomic and proteomic effects of this phytoextract on mouse bone marrow-derived dendritic cells (BMDCs) were analyzed using primary cultures. Results Treatment of BMDCs with [BF/S+L/Ep] did not significantly influence the phenotypic maturation activity of dendritic cells (DCs). Affymetrix DNA microarray and bioinformatics analyses of genes differentially expressed in DCs treated with [BF/S+L/Ep] for 4 or 12 h revealed that the majority of responsive genes were related to cell adhesion or motility (Cdh10, Itga6, Cdh1, Gja1 and Mmp8), or were chemokines (Cxcl2, Cxcl7) or signaling molecules (Nrxn1, Pkce and Acss1). TRANSPATH database analyses of gene expression and related signaling pathways in treated-DCs predicted the JNK, PP2C-α, AKT, ERK1/2 or MAPKAPK pathways as the putative targets of [BF/S+L/Ep]. In parallel, proteomic analysis showed that the expressions of metabolic-, cytoskeleton- or NF-κB signaling-related proteins were regulated by treatment with [BF/S+L/Ep]. In vitro flow cytometry analysis of chemotaxis-related receptors and in vivo cell trafficking assay further showed that DCs treated with [BF/S+L/Ep] were able to migrate more effectively to peripheral lymph node and spleen tissues than DCs treated as control groups. Conclusion Results from this study suggest that [BF/S+L/Ep] modulates DC mobility and related cellular physiology in the mouse immune system. Moreover, the signaling networks and molecules highlighted here are potential targets for nutritional or clinical application of Echinacea or

  4. Impact of Nanotopography and/or Functional Groups on Periodontal Ligament Cell Growth

    NASA Astrophysics Data System (ADS)

    Şaşmazel, Hilal Türkoğlu; Manolache, S.; Gümüşderelİoğlu, M.

    The main purpose of this contribution was to obtain COOH functionalities and/or nanotopographic changes on the surface of 3D, non-woven polyester fabric (NWPF) discs (12.5 mm in diameter) by using low pressure water/O2 plasma assisted treatments. The prepared discs were characterized by various methods after the plasma treatment. Periodontal ligament (PDL) fibroblasts were used in cell culture studies. The cell culture results showed that plasma treated 3D NWPF discs are favorable for PDL cell spreading, growth and viability due to the presence of functional groups and/or the nanotopography of their surfaces.

  5. Expression profiling of constitutive mast cells reveals a unique identity within the immune system.

    PubMed

    Dwyer, Daniel F; Barrett, Nora A; Austen, K Frank

    2016-07-01

    Mast cells are evolutionarily ancient sentinel cells. Like basophils, mast cells express the high-affinity receptor for immunoglobulin E (IgE) and have been linked to host defense and diverse immune-system-mediated diseases. To better characterize the function of these cells, we assessed the transcriptional profiles of mast cells isolated from peripheral connective tissues and basophils isolated from spleen and blood. We found that mast cells were transcriptionally distinct, clustering independently from all other profiled cells, and that mast cells demonstrated considerably greater heterogeneity across tissues than previously appreciated. We observed minimal homology between mast cells and basophils, which shared more overlap with other circulating granulocytes than with mast cells. The derivation of mast-cell and basophil transcriptional signatures underscores their differential capacities to detect environmental signals and influence the inflammatory milieu. PMID:27135604

  6. A Nanoprinted Model of Interstitial Cancer Migration Reveals a Link between Cell Deformability and Proliferation.

    PubMed

    Panagiotakopoulou, Magdalini; Bergert, Martin; Taubenberger, Anna; Guck, Jochen; Poulikakos, Dimos; Ferrari, Aldo

    2016-07-26

    Metastatic progression of tumors requires the coordinated dissemination of cancerous cells through interstitial tissues and their replication in distant body locations. Despite their importance in cancer treatment decisions, key factors, such as cell shape adaptation and the role it plays in dense tissue invasion by cancerous cells, are not well understood. Here, we employ a 3D electrohydrodynamic nanoprinting technology to generate vertical arrays of topographical pores that mimic interstitial tissue resistance to the mesenchymal migration of cancerous cells, in order to determine the effect of nuclear size, cell deformability, and cell-to-substrate adhesion on tissue invasion efficiency. The high spatial and temporal resolution of our analysis demonstrates that the ability of cells to deform depends on the cell cycle phase, peaks immediately after mitosis, and is key to the invasion process. Increased pore penetration efficiency by cells in early G1 phase also coincided with their lower nuclear volume and higher cell deformability, compared with the later cell cycle stages. Furthermore, artificial decondensation of chromatin induced an increase in cell and nuclear deformability and improved pore penetration efficiency of cells in G1. Together, these results underline that along the cell cycle cells have different abilities to dynamically remodel their actin cytoskeleton and induce nuclear shape changes, which determines their pore penetration efficiency. Thus, our results support a mechanism in which cell proliferation and pore penetration are functionally linked to favor the interstitial dissemination of metastatic cells. PMID:27268411

  7. Human chromosome 15 confers partial complementation of phenotypes to xeroderma pigmentosum group F cells.

    PubMed Central

    Saxon, P J; Schultz, R A; Stanbridge, E J; Friedberg, E C

    1989-01-01

    Microcell-mediated transfer of a single human chromosome from repair-proficient human cells to genetic complementation group F cells from the hereditary disease xeroderma pigmentosum (XP) results in partial complementation of repair-defective phenotypes. The complementing chromosome was identified by cytogenetic and molecular analysis as human chromosome 15. Transfer of this chromosome to XP-F cells restores approximately 20% of the resistance of wild-type cells to killing by UV radiation or by the UV-mimetic chemical 4-nitroquinoline-1-oxide (4NQO), as well as partial repair synthesis of DNA measured as unscheduled DNA synthesis. Additionally, complemented XP-F cells have an enhanced capacity for reactivation of the plasmid-borne E. coli cat gene following its inactivation by UV radiation. Phenotypic complementation of XP cells by chromosome 15 is specific to genetic complementation group F; no effect on the UV sensitivity of XP-A, XP-C, or XP-D cells was detected. The observation that phenotypic complementation is partial is open to several interpretations and does not allow the definitive conclusion that the XP-F locus is carried on chromosome 15. Images Figure 3 Figure 4 PMID:2929593

  8. Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells.

    PubMed

    Cautivo, Kelly M; Molofsky, Ari B

    2016-06-01

    Adipose tissue (AT) is home to an abundance of immune cells. With chronic obesity, inflammatory immune cells accumulate and promote insulin resistance and the progression to type 2 diabetes mellitus. In contrast, recent studies have highlighted the regulation and function of immune cells in lean, healthy AT, including those associated with type 2 or "allergic" immunity. Although traditionally activated by infection with multicellular helminthes, AT type 2 immunity is active independently of infection, and promotes tissue homeostasis, AT "browning," and systemic insulin sensitivity, protecting against obesity-induced metabolic dysfunction and type 2 diabetes mellitus. In particular, group 2 innate lymphoid cells (ILC2s) are integral regulators of AT type 2 immunity, producing the cytokines interleukin-5 and IL-13, promoting eosinophils and alternatively activated macrophages, and cooperating with and promoting AT regulatory T (Treg) cells. In this review, we focus on the recent developments in our understanding of group 2 innate lymphoid cell cells and type 2 immunity in AT metabolism and homeostasis. PMID:27120716

  9. Heterogeneity and diversity of group 3 innate lymphoid cells: new cells on the block.

    PubMed

    Satoh-Takayama, Naoko

    2016-01-01

    Innate lymphoid cells (ILCs) are a newly identified subset of innate cells that play fundamentally crucial roles for early immune defense at mucosal and non-mucosal sites. ILCs consist of ILC1s, ILC2s and ILC3s, which each have distinct transcription factors controlling their development and function. Interestingly, each of the ILC subsets represents the innate counterparts of CD4(+) helper T-cell subsets T(h1), T(h2) and T(h17) on the basis of transcriptional regulation. ILC1s that produce IFN-γ or TNF-α, ILC2s that produce T(h2)-type cytokines mainly such as IL-5 or IL-13 and ILC3s have been recently reported and reviewed in terms of IL-22- or IL-17-producing function and cell development. However, in this relatively new field, it remains likely that additional functional and regulatory mechanisms remain to be explored. More recent findings show that ILC3s are regulated by RORγt, which plays an important role for the mucosal barrier and surface protection against pathogenic bacterial infection. ILC3s might cooperate with other cells (e.g. T cells or dendritic cells) directly or indirectly, and subsequently ILC3s have impact on tissues with prompt regulation. Especially, ILC3s in mucosal site are well known to protect the intestinal surface barrier through inducible anti-microbial peptides via IL-22. Here, I will summarize and discuss the roles, function and heterogeneity of ILC3s in mucosal tissues. PMID:26462712

  10. Polycomb Group Proteins: Multi-Faceted Regulators of Somatic Stem Cells and Cancer

    PubMed Central

    Sauvageau, Martin; Sauvageau, Guy

    2016-01-01

    Polycomb Group (PcG) proteins are transcriptional repressors that epigenetically modify chromatin and participate in the establishment and maintenance of cell fates. These proteins play important roles in both stem cell self-renewal and in cancer development. Our understanding of their mechanism of action has greatly advanced over the past 10 years, but many unanswered questions remain. In this review, we present the currently available experimental data that connect PcG protein function with some of the key processes which govern somatic stem cell activity. We also highlight recent studies suggesting that a delicate balance in PcG gene dosage is crucial for proper stem cell homeostasis and prevention of cancer stem cell development. PMID:20804967

  11. Microbial fuel cell-based diagnostic platform to reveal antibacterial effect of beta-lactam antibiotics.

    PubMed

    Schneider, György; Czeller, Miklós; Rostás, Viktor; Kovács, Tamás

    2015-06-01

    Beta-lactam antibiotics comprise the largest group of antibacterial agents. Due to their bactericidal properties and limited toxicity to humans they are preferred in antimicrobial therapy. In most cases, therapy is empiric since susceptibility testing in diagnostic laboratories takes a relatively long time. This paper presents a novel platform that is based on the microbial fuel cell (MFC) technology and focuses on the early antibiogram determination of isolates against a series of beta-lactam antibiotics. An advantage of the system is that it can be integrated into traditional microbiological diagnostic laboratory procedures. Tested bacterium suspensions are uploaded into the anodic chambers of each miniaturized MFC unit integrated into a panel system, containing different antibiotic solutions. Electronic signals gained in each MFC unit are continuously monitored and are proportional to the metabolic activity of the presenting test bacterium. Using this method, antibiotic susceptibility can be evaluated in 2-4h after inoculation. Hereby we demonstrate the efficacy of the platform in antibiogram determination by testing the susceptibilities of Escherichia coli strain ATCC 25922 and Staphylococcus aureus strain ATCC 29213 against 10 beta-lactam antibiotics (penicillin, ampicillin, ticarcillin, cefazolin, cefuroxime, cefoperazone, cefepime, cefoxitin, cefaclor, imipenem). This paper also presents the construction of the background instrumentation and the panel system into which a printed circuit board (PCB) based electrode was integrated. Our results suggest that MFC based biosensors have the potential to be used in diagnostics for antibiogram determination. PMID:26002505

  12. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs

    PubMed Central

    Zheng, Yiyu; Li, Xiaoman; Hu, Haiyan

    2015-01-01

    Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5′ distal regions were often enriched in 3′ distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/. PMID:25505144

  13. A Novel SDHA-deficient Renal Cell Carcinoma Revealed by Comprehensive Genomic Profiling.

    PubMed

    Yakirevich, Evgeny; Ali, Siraj M; Mega, Anthony; McMahon, Caitlin; Brodsky, Alexander S; Ross, Jeffrey S; Allen, Justin; Elvin, Julia A; Safran, Howard; Resnick, Murray B

    2015-06-01

    Succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC) is an emerging provisional entity included in the 2013 International Society of Urological Pathology Vancouver Classification. Most genomic alterations in patients with SDH-deficient RCCs involve the SDHB subunit, and the associated renal tumors have loss of immunohistochemical SDHB expression and distinctive morphologic features. Renal tumors less commonly possess genomic alterations involving the SDHC and SDHD subunits, but no SDHA alterations have as yet been described. Here we identified a novel SDHA homozygous deletion in an aggressive variant of RCC diagnosed initially as unclassified type in a 54-year-old patient. A search for novel actionable mutations by comprehensive genomic profiling based on clinical next-generation sequencing evaluating entire coding regions of 315 cancer-related genes, including all SDH subunits, was performed. Sequencing identified a novel 17 kbp homozygous deletion of 9 SDHA exons on chromosome 5p15. SDHA and SDHB immunohistochemistry further confirmed that the homozygous deletion led to the loss of SDHA and SDHB protein expression. Histologically, the tumor had a mixed pattern of high-grade papillary and collecting duct carcinoma and distinctive pale eosinophilic cytoplasmic inclusions similar to those described in SDHB-deficient RCC. This is the first report that identifies SDHA inactivation in RCC. Additional studies utilizing comprehensive genomic profiling, immunohistochemistry, and careful morphologic evaluation are needed both prospectively and retrospectively to identify the group of RCCs harboring SDHA genomic alterations. PMID:25724004

  14. Single-cell sequencing of Thiomargarita reveals genomic flexibility for adaptation to dynamic redox conditions

    DOE PAGESBeta

    Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja; Richter, Michael; Schulz-Vogt, Heide N.; Flood, Beverly E.; Bailey, Jake V.; Mußmann, Marc

    2016-06-21

    Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiornargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of amore » chain-forming "Candidatus Thiomargarita nelsonii Thio36", and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. "Ca. T. nelsonii Thio36" is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that "Ca. T. nelsonii Thio36" can function as a chemolithoautotroph. Carbon can be fixed via the Calvin-Benson-Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, "Ca. T. nelsonii Thio36" also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na+-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae "Ca. T. nelsonii Thio36" encodes many genes similar to those of (filamentous) cyanobacteria. In conclusion, the genome of "Ca. T. nelsonii Thio36" provides additional insight into the ecology of giant sulfur

  15. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions

    PubMed Central

    Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja; Richter, Michael; Schulz-Vogt, Heide N.; Flood, Beverly E.; Bailey, Jake V.; Mußmann, Marc

    2016-01-01

    Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming “Candidatus Thiomargarita nelsonii Thio36”, and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. “Ca. T. nelsonii Thio36” is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that “Ca. T. nelsonii Thio36” can function as a chemolithoautotroph. Carbon can be fixed via the Calvin–Benson–Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, “Ca. T. nelsonii Thio36” also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na+-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae “Ca. T. nelsonii Thio36” encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of “Ca. T. nelsonii Thio36” provides additional insight into the ecology of

  16. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions.

    PubMed

    Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja; Richter, Michael; Schulz-Vogt, Heide N; Flood, Beverly E; Bailey, Jake V; Mußmann, Marc

    2016-01-01

    Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming "Ca