Science.gov

Sample records for cell growth inhibitory

  1. Growth inhibitory effect of Cucurbitacin E on breast cancer cells

    PubMed Central

    Lan, Tian; Wang, Linling; Xu, Qian; Liu, Weiguo; Jin, Hongchuan; Mao, Weimin; Wang, Xian; Wang, Xiaojia

    2013-01-01

    Objective: Due its inhibitory effects on chemical carcinogenesis and inflammation, Cucurbitacins have been proposed as an effective agent for the prevention or treatment of human cancers. In this study, we aimed to explore the effect of Cucurbitacin E (CuE) on human breast cancer cells. Methods: The inhibitory effect of CuE on proliferation of Bcap37 and MDA-MB-231 cells was assessed by MTT assay. The cell cycle distribution and cell apoptosis were determined by flow cytometry (FCM). The expression of pro-caspase 3, cleaved caspase 3, p21, p27 and the phosphorylation of signaling proteins was detected by Western Blotting. Results: CuE inhibited the growth of human breast cancer cells in a dose and time-dependent manner. FCM analysis showed that CuE induced G2/M phase arrest and cell apoptosis. CuE treatment promoted the cleavage of caspase 3 and upregulated p21 and p27. In addition, the phosphorylation of STAT3 but not ERK-1/2 was abrogated upon CuE treatment. Interestingly, losedose CuE significantly enhanced the growth inhibition induced by cisplatin. Conclusions Cucurbitacin E (CuE) could inhibit the growth of human breast cancer cells in vitro. CuE induced both apoptosis and cell cycle arrest probably through the inhibition of STAT3 function. Lose-dose CuE significantly enhanced the growth inhibitory effect of cisplatin on breast cancer cells, further indicating the potential clinical values of CuE for the prevention or treatment of human breast cancer PMID:24040444

  2. Structural modification of luteolin from Flos Chrysanthemi leads to increased tumor cell growth inhibitory activity.

    PubMed

    Yang, Chao; Chen, Hui; Lu, Shihai; Zhang, Meng; Tian, Wei; Wang, Mingping; Zhang, Ling; Song, Yunlong; Shen, Aijun; Zhou, Youjun; Zhu, Ju; Zheng, Canhui

    2016-08-01

    The luteolin from Flos Chrysanthemi was found to directly bind to the Bcl-2 protein and inhibit the tumor cell growth in our previous study. However, it has been shown to possess wide and week biological activities. In this study, a series of derivatives of luteolin were designed and synthesized, and their tumor cell growth inhibitory activities were evaluated against human leukemia cell line HL-60. The results showed that compounds 1B-2, 2A-3, and 2B-5, with hydrophobic substituted benzyl groups introduced to B ring and hydrogen or methyl introduced to 7-OH group of luteolin, exhibited the strongest inhibitory activity with the IC50 lower than 10μM, which were significantly more potent than luteolin. The studies presented here offer a good example for modifications of flavones to improve their tumor cell growth inhibitory activities. PMID:27353532

  3. Discovery of colon tumor cell growth inhibitory agents through a combinatorial approach

    PubMed Central

    Abadi, Ashraf H.; Abouel-Ella, Dalal A.; Lehmann, Jochen; Tinsley, Heather N.; Gary, Bernard D.; Piazza, Gary A.; Abdel-Fattah, Mohammed A.O.

    2016-01-01

    Two series with the general formula of 4,6-diaryl-2-oxo-1,2 dihydropyridine-3-carbonitriles and their isosteric 4,6-diaryl-2-imino-1,2-dihydropyridine-3-carbonitrile were synthesized through one pot reaction of the appropriate acetophenone, aldehyde, ammonium acetate with ethyl cyanoacetate or malononitrile, respectively. The synthesized compounds were evaluated for their tumor cell growth inhibitory activity against the human HT-29 colon tumor cell line, as well as their PDE3 inhibitory activity. Compound 4-(2-Ethoxyphenyl)-2-oxo-6-thiophen-3-yl-1,2-dihydropyridine-3 carbonitrile (21) showed tumor cell growth inhibitory activity with an IC50 value of 1.25 μM. Meanwhile, 4-(4-Ethoxyphenyl)-2-imino-6-(thiophen-3-yl)-1,2-dihydropyridine-3-carbonitrile (26) showed inhibitory effect upon PDE3 using cAMP or cGMP as substrate. No correlation exists between PDE3 inhibition and the tumor cell growth inhibitory activity. Docking compound 21 to other possible molecular targets showed the potential to bind PIM1 Kinase. PMID:19836860

  4. Synthesis and cancer cell growth inhibitory activity of icaritin derivatives.

    PubMed

    Wang, Chen; Wu, Ping; Shi, Jing-Fang; Jiang, Zi-Hua; Wei, Xiao-Yi

    2015-07-15

    A series of icaritin derivatives bearing carboxylic acid or carboxylic ester groups are synthesized, and their in vitro cytotoxic activity against three cancer cell lines, MCF-7, MDA-MB-435s, and A549, are evaluated by MTT assay. Several derivatives including 2h, 2j, 5b and 5d show higher cytotoxic activity than the parent compound icaritin against these cancer cell lines. Compounds 5b and 5d are even more cytotoxic to MCF-7 cells than the clinic drug tamoxifen. Moreover, compound 5b is found to be non-toxic to normal cells (Vero) and both 5b and 5d exhibit good selectivity towards estrogen receptor positive MCF-7 breast cancer cells over estrogen receptor negative MDA-MB-435s breast cancer cells. The structure activity relationship analysis has revealed that mono-substitution at either C-3 or C-7 hydroxyl group of icaritin could improve the cytotoxicity of icaritin, and the C-3 hydroxyl group may be a preferable site for chemical modification. In addition, the length, the flexibility and the additional branching substituent group of the substitution chain(s) at both C-3 and C-7 hydroxyl groups can all affect the anti-cancer activity of these derivatives. PMID:26079090

  5. Isolation and Structure of Cancer Cell Growth Inhibitory Tetracyclic Triterpenoids from the Zimbabwean Monadenium lugardae.

    PubMed

    Pettit, George R; Ye, Qinghua; Herald, Delbert L; Knight, John C; Hogan, Fiona; Melody, Noeleen; Mukku, Venugopal J R V; Doubek, Dennis L; Chapuis, Jean-Charles

    2016-06-24

    The Zimbabwean medicinal plant Monadenium lugardae was evaluated as a potential source of new anticancer constituents. Four new tetracyclic triterpene (1-4) were isolated, accompanied by four previously known triterpenes (5-8). Against a panel of human tumor cell lines, lugardstatins 1 (1) and 2 (2) had good cancer cell growth inhibitory activity. All of the triterpene structures (1-8) were established by 1D and 2D NMR spectrometric and HR mass spectrometric analysis. PMID:27214528

  6. Antineoplastic agents, 256. Cell growth inhibitory isocarbostyrils from Hymenocallis.

    PubMed

    Pettit, G R; Pettit, G R; Backhaus, R A; Boyd, M R; Meerow, A W

    1993-10-01

    The bulbs of Hymenocallis littoralis, collected in Hawaii and horticulturally grown in Arizona, and bulbs of Hymenocallis caribaea and Hymenocallis latifolia, collected in Singapore, were found to contain a cytotoxic, isocarbostyril-type biosynthetic product, 7-deoxy-trans-dihydronarciclasine [2]. This new compound inhibited the cytopathicity and/or replication of various viruses. Companion cytotoxic constituents of H. littoralis and Hymenocallis sp. were found to be pancratistatin [1], narciclasine [5], and 7-deoxynarciclasine [4]. These four compounds, along with four other closely related compounds, were comparatively evaluated in the National Cancer Institute's in vitro cytotoxicity panel. Although there were striking differences in overall potency, some of the compounds shared a highly characteristic differential cytotoxicity profile against the 60 diverse human tumor cell lines comprising the NCI panel. As a group, the melanoma subpanel lines were most sensitive; certain individual lines within other subpanels (eg., NSC lung, colon, brain, renal) were as much as a thousand-fold or more sensitive than the less sensitive lines. PMID:8277308

  7. Modulation of tumor growth by inhibitory Fcγ receptor expressed by human melanoma cells

    PubMed Central

    Cassard, Lydie; Cohen-Solal, Joël F.G.; Galinha, Annie; Sastre-Garau, Xavier; Mathiot, Claire; Galon, Jérôme; Dorval, Thierry; Bernheim, Alain; Fridman, Wolf H.; Sautès-Fridman, Catherine

    2002-01-01

    The efficacy of anti-tumor IgG reflects the balance between opposing signals mediated by activating and inhibitory Fcγ receptors (FcγRs) expressed by effector cells. Here, we show that human malignant melanoma cells express the inhibitory low-affinity Fcγ receptor FcγRIIB1 in 40% of tested metastases. When melanoma cells were grafted in nude mice, a profound inhibition of FcγRIIB1 tumor growth that required the intracytoplasmic region of the receptor was observed. IgG immune complexes (ICs) may be required for this inhibition, since sera from nude mice bearing tumors contained IgG that decreased the proliferation of FcγRIIB1-positive cells in vitro, and tumor development of FcγRIIB1-positive melanoma lines was not inhibited in antibody-defective severe combined immunodeficiency (SCID) mice. Passive immunization of SCID mice with anti–ganglioside GD2 antibody resulted in significant inhibition of growth of FcγRIIB1-positive tumors in an intracytoplasmic-dependent manner. Altogether, these data suggest that human melanoma cells express biologically active inhibitory FcγRIIB1, which regulates their development upon direct interaction with anti-tumor antibodies. Therefore, FcγR expression on human tumors may be one component of the efficacy of antibody-mediated therapies, and FcγR-positive tumors could be the most sensitive candidates for such treatments. PMID:12438452

  8. Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells

    SciTech Connect

    Yu, Hong-Nu; Noh, Eun-Mi; Lee, Young-Rae; Roh, Si-Gyun; Song, Eun-Kyung; Han, Myung-Kwan; Lee, Yong-Chul; Shim, In Kyong; Lee, Seung Jin; Jung, Sung Hoo; Kim, Jong-Suk Youn, Hyun Jo

    2008-12-05

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligands have been identified as a potential source of therapy for human cancers. However, PPAR{gamma} ligands have a limitation for breast cancer therapy, since estrogen receptor {alpha} (ER{sub {alpha}}) negatively interferes with PPAR{gamma} signaling in breast cancer cells. Here we show that ER{sub {alpha}} inhihits PPAR{gamma} transactivity and ER{sub {alpha}}-mediated inhibition of PPAR{gamma} transactivity is blocked by tamoxifen, an estrogen receptor blocker. The activation of ER{sub {alpha}} with 17-{beta}-estradiol blocked PPRE transactivity induced by troglitazone, a PPAR{gamma} ligand, indicating the resistance of ER{sub {alpha}}-positive breast cancer cells to troglitazone. Indeed, troglitazone inhibited the growth of ER{sub {alpha}}-negative MDA-MB-231 cells more than that of ER{sub {alpha}}-positive MCF-7 cells. Combination of troglitazone with tamoxifen led to a marked increase in growth inhibition of ER{sub {alpha}}-positive MCF-7 cells compared to either agent alone. Our data indicates that troglitazone enhances the growth inhibitory activity of tamoxifen in ER{sub {alpha}}-positive MCF-7 cells.

  9. Physical and biological characterization of a growth-inhibitory activity purified from the neuroepithelioma cell line A673.

    PubMed Central

    Stam, K; Stewart, A A; Qu, G Y; Iwata, K K; Fenyö, D; Chait, B T; Marshak, D R; Haley, J D

    1995-01-01

    Epithelial- and haematopoietic-cell growth-inhibitory activities have been identified in the conditioned medium of the human peripheral neuroepithelioma cell line A673. An A673-cell-derived growth-inhibitory activity was previously fractionated into two distinct components which inhibited the proliferation of human carcinoma and leukaemia cells in culture. One inhibitory activity was shown to comprise interleukin-1 alpha (IL-1 alpha). Here, we have purified to homogeneity a distinct activity which inhibited the growth of the epithelial cells in vitro. Using a combination of protein-sequence analysis and mass spectrometry, we demonstrated that biological activity can be assigned to a dimeric protein with a molecular mass of 25,576 (+/- 4) Da and an N-terminal sequence identical with that of transforming growth factor-beta 1 (TGF-beta 1). Further characterization of the growth inhibitor with TGF-beta-isoform-specific antibodies showed that > 90% of the bioactivity consists of TGF-beta 1 and not TGF-beta 2 or TGF-beta 3. Although A673 cells were growth-inhibited by exogenous TGF-beta 1, we showed that TGF-beta 1 in A673-cell-conditioned media was present in the latent, biologically inactive, form which did not act as an autocrine growth modulator of A673 cells in vitro. Images Figure 2 Figure 3 PMID:7826358

  10. Merkel cell polyomavirus large T antigen has growth-promoting and inhibitory activities.

    PubMed

    Cheng, Jingwei; Rozenblatt-Rosen, Orit; Paulson, Kelly G; Nghiem, Paul; DeCaprio, James A

    2013-06-01

    Merkel cell carcinoma (MCC) is a rare and aggressive form of skin cancer. In at least 80% of all MCC, Merkel cell polyomavirus (MCPyV) DNA has undergone clonal integration into the host cell genome, and most tumors express the MCPyV large and small T antigens. In all cases of MCC reported to date, the integrated MCPyV genome has undergone mutations in the large T antigen. These mutations result in expression of a truncated large T antigen that retains the Rb binding or LXCXE motif but deletes the DNA binding and helicase domains. However, the transforming functions of full-length and truncated MCPyV large T antigen are unknown. We compared the transforming activities of full-length, truncated, and alternatively spliced 57kT forms of MCPyV large T antigen. MCPyV large T antigen could bind to Rb but was unable to bind to p53. Furthermore, MCPyV-truncated large T antigen was more effective than full-length and 57kT large T antigen in promoting the growth of human and mouse fibroblasts. In contrast, expression of the MCPyV large T antigen C-terminal 100 residues could inhibit the growth of several different cell types. These data imply that the deletion of the C terminus of MCPyV large T antigen found in MCC serves not only to disrupt viral replication but also results in the loss of a distinct growth-inhibitory function intrinsic to this region. PMID:23514892

  11. Merkel Cell Polyomavirus Large T Antigen Has Growth-Promoting and Inhibitory Activities

    PubMed Central

    Cheng, Jingwei; Rozenblatt-Rosen, Orit; Paulson, Kelly G.; Nghiem, Paul

    2013-01-01

    Merkel cell carcinoma (MCC) is a rare and aggressive form of skin cancer. In at least 80% of all MCC, Merkel cell polyomavirus (MCPyV) DNA has undergone clonal integration into the host cell genome, and most tumors express the MCPyV large and small T antigens. In all cases of MCC reported to date, the integrated MCPyV genome has undergone mutations in the large T antigen. These mutations result in expression of a truncated large T antigen that retains the Rb binding or LXCXE motif but deletes the DNA binding and helicase domains. However, the transforming functions of full-length and truncated MCPyV large T antigen are unknown. We compared the transforming activities of full-length, truncated, and alternatively spliced 57kT forms of MCPyV large T antigen. MCPyV large T antigen could bind to Rb but was unable to bind to p53. Furthermore, MCPyV-truncated large T antigen was more effective than full-length and 57kT large T antigen in promoting the growth of human and mouse fibroblasts. In contrast, expression of the MCPyV large T antigen C-terminal 100 residues could inhibit the growth of several different cell types. These data imply that the deletion of the C terminus of MCPyV large T antigen found in MCC serves not only to disrupt viral replication but also results in the loss of a distinct growth-inhibitory function intrinsic to this region. PMID:23514892

  12. Growth Inhibitory Effect of Polyunsaturated Fatty Acids (PUFAs) on Colon Cancer Cells via Their Growth Inhibitory Metabolites and Fatty Acid Composition Changes

    PubMed Central

    Zhang, Chengcheng; Yu, Haining; Ni, Xiaofeng; Shen, Shengrong; Das, Undurti N.

    2015-01-01

    Background Colorectal cancer is common. Polyunsaturated fatty acids (PUFAs) exert growth-inhibitory and pro-apoptotic effects on colon cancer cells. Metabolites of PUFAs such as prostaglandins (PGs), leukotrienes (LTs) and lipoxins (LXs) play a significant role in colon cancer. Methods Human colon cancer LoVo and RKO cells were cultured with different concentration of PUFAs and 5-fluorouracil (5-FU) in vitro. Cell morphological changes, fatty acid composition, formation of PGE2, LTB4 and LXA4 and expression of COX-2, ALOX5, PGD synthase (PGDS), microsomal prostaglandin E synthase (mPGES) were assessed in LoVo and RKO cells when supplemented with PUFAs and 5-FU. Results PUFAs and 5-FU inhibited growth of LoVo and RKO cells to the same extent at the doses used and produced significant alterations in their shape. As expected, higher concentrations of supplemented PUFAs were noted in the cells compared to control. LA, GLA, AA, ALA and EPA supplementation to LoVo cells suppressed production of PGE2, LTB4,and ALOX5, mPGES expression, but enhanced that of LXA4; whereas DHA enhanced PGE2 and LXA4 synthesis but decreased LTB4 formation and COX-2, ALOX5, mPGES expression. In contrast, 5-FU enhanced formation of PGE2, LTB4 and mPGES expression, but suppressed LXA4 synthesis and COX-2 expression. PGE2, LTB4 synthesis and ALOX5 expression was suppressed by LA, GLA, ALA and DHA; whereas AA, EPA and 5-FU enhanced PGE2 but paradoxically AA decreased and EPA and 5-FU enhanced LTB4 synthesis in RKO cells. All the PUFAs tested enhanced, while 5-FU decreased LXA4 formation in RKO cells; whereas GLA, AA, and 5-FU augmented while LA, ALA, EPA and DHA enhanced COX-2 expression in RKO cells. Conclusions Tumoricidal action of PUFAs on colorectal LoVo and RKO cancer cells in vitro was associated with increased formation of LXA4, decreased synthesis of PGE2 and LTB4 and suppressed expression of COX-2, ALOX5, mPGES, whereas 5-FU produced contrasting actions on these indices. PMID:25886460

  13. Mechanisms of inhibitory effects of cerivastatin on rat vascular smooth muscle cell growth.

    PubMed

    Igarashi, Masahiko; Yamaguchi, Hiroshi; Hirata, Akihiko; Tsuchiya, Hiromi; Ohnuma, Hiroshi; Tominaga, Makoto; Daimon, Makoto; Kato, Takeo

    2002-08-01

    The aim of this study was to clarify the mechanism(s) of an inhibitory effect of cerivastatin on cultured rat vascular smooth muscle cell (VSMC) growth. After being starved, cultured VSMCs were stimulated by 5% fetal bovine serum with either various concentrations of cerivastatin or 10-4 M of mevalonate. Cerivastatin dose-dependently decreased the values of [3H]-thymidine incorporation and cell numbers and the level of phosphorylated extracellular signal-regulated protein kinase 1/2. It also suppressed the level of proliferative cell nuclear antigen in a dose-dependent manner. These reductions were abolished by the addition of mevalonate. Similarly, the level of phosphorylated p38 was also decreased by cerivastatin. In contrast, cerivastatin dose-dependently activated the phosphorylation of both c-jun NH2-terminal protein kinase and activating transcription factor-2, and these activations were abolished by the addition of mevalonate. The levels of phosphorylated Akt and p70 S6 kinase as well as those of Bcl-2 were dose-dependently reduced by cerivastatin, and these reductions were abolished by the addition of mevalonate. Cerivastatin could dose-dependently elevate the levels of CPP32/caspase-3 activity and cytoplasmic histone-associated DNA fragments in VSMCs without causing cytotoxicity. These results indicate that cerivastatin suppresses cell survival and activates the apoptotic cellular signaling in VSMCs, suggesting that it could be effective for preventing the progression of restenosis after angioplasty. PMID:12131557

  14. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study

    PubMed Central

    BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert

    2016-01-01

    Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources. PMID:27597966

  15. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study.

    PubMed

    BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert; Mollo, Ernesto

    2016-01-01

    Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources. PMID:27597966

  16. Prothrombin kringle-2 domain has a growth inhibitory activity against basic fibroblast growth factor-stimulated capillary endothelial cells.

    PubMed

    Lee, T H; Rhim, T; Kim, S S

    1998-10-30

    Recently, O'Reilly et al. (O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H., and Folkman, J. (1994) Cell 79, 315-328; O'Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J. (1997) Cell 88, 277-285) developed a simple in vitro angiogenesis assay system using bovine capillary endothelial cell proliferation and purified potent angiogenic inhibitors, including angiostatin and endostatin. Using a simple in vitro assay for angiogenesis, we purified a protein molecule that showed anti-endothelial cell proliferative activity from the serum of New Zealand White rabbits, which was stimulated by lipopolysaccharide. The purified protein showed only bovine capillary endothelial cell growth inhibition and not any cytotoxicity. This molecule was identified as a prothrombin kringle-2 domain (fragment-2) using Edman degradation and the amino acid sequence deduced from the cloned cDNA. Both the prothrombin kringle-2 domain released from prothrombin by factor Xa cleavage and the angiogenic inhibitor purified from rabbit sera exhibited anti-endothelial cell proliferative activity. The recombinant rabbit prothrombin kringle-2 domain showed potent inhibitory activity with half-maximal concentrations (ED50) of 2 microg/ml media. As in angiostatin, the recombinant rabbit prothrombin kringle-2 domain also inhibited angiogenesis in the chorioallantoic membrane of chick embryos. PMID:9786880

  17. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.

    PubMed

    Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi

    2015-04-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy. PMID:25647359

  18. Synergistic inhibitory effect of cetuximab and tectochrysin on human colon cancer cell growth via inhibition of EGFR signal.

    PubMed

    Park, Mi Hee; Hong, Ji Eun; Hwang, Chul Ju; Choi, Mingi; Choi, Jeong Soon; An, Young Jin; Son, Dong Ju; Hong, Jin Tae

    2016-05-01

    The purpose of this study was to evaluate the enhancing potency of tectochrysin, a flavonoid isolated from Alpinia oxyphylla Miquel by combining cetuximab, an anti-EGFR monoclonal antibody, on human colon cancer cell growth through further inhibition of EGFR pathway. HCT116 and SW480 colon cancer cells were treated with cetuximab (30 μg/mL, 1/10 of IC50), tectochrysin (5 μg/mL, 1/3 of IC50), or the combination of both agents. The growth inhibitory effect was examined using the MTT assay while apoptotic cell death was performed using TUNEL staining assays. The DNA binding activity of NF-kappa B and AP-1 was investigated by electrophoretic mobility shift assay. Protein expression was determined by Western blot. Cell proliferation was significantly inhibited by the combination of cetuximab and tectochrysin than treatment with cetuximab or tectochrysin alone (combination index: 0.572 and 0.533, respectively). Combination treatment of cells with cetuximab and tectochrysin significantly reduced the expressions of p-EGFR and COX-2 in both cell lines. Combination treatment also significantly inhibited activities of NF-kB and AP-1 compared to the single agent treatment. Our results indicate that combined therapy with lower concentration of cetuximab and tectochrysin could significantly enhance the cancer cell growth inhibitory effect through the inhibition of EGFR signaling. PMID:27025376

  19. Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth.

    PubMed

    Wang, Zhujun; Zhang, Xuewu

    2016-02-01

    In this study, the whole proteins of Spirulina (Arthrospira) platensis were extracted, hydrolysis with three proteases (trypsin, alcalase and papain) was performed, and gel filtration chromatography was employed to separate hydrolysates. Totally, 15 polypeptides were isolated, which showed anti-proliferation activities on five cancer cells (HepG-2, MCF-7, SGC-7901, A549 and HT-29), with the IC50 values between <31.25 and 336.57 μg mL(-1). Moreover, a new peptide YGFVMPRSGLWFR was identified from papain-digested hydrolysates. It also exhibited inhibitory activities on cancer cells, and the best activity was observed on A549 cancer cells (IC50 values 104.05 μg mL(-1)). In other words, these polypeptides exhibited anti-proliferation activities on cancer cells, and low toxicity or stimulatory activity on normal cells, suggesting that they are promising ingredients in food and pharmaceutical applications. PMID:26584028

  20. Synergistic growth-inhibitory effects of ponatinib and midostaurin (PKC412) on neoplastic mast cells carrying KIT D816V.

    PubMed

    Gleixner, Karoline V; Peter, Barbara; Blatt, Katharina; Suppan, Verena; Reiter, Andreas; Radia, Deepti; Hadzijusufovic, Emir; Valent, Peter

    2013-09-01

    Patients with advanced systemic mastocytosis, including mast cell leukemia, have a poor prognosis. In these patients, neoplastic mast cells usually harbor the KIT mutant D816V that confers resistance against tyrosine kinase inhibitors. We examined the effects of the multi-kinase blocker ponatinib on neoplastic mast cells and investigated whether ponatinib acts synergistically with other antineoplastic drugs. Ponatinib was found to inhibit the kinase activity of KIT G560V and KIT D816V in the human mast cell leukemia cell line HMC-1. In addition, ponatinib was found to block Lyn- and STAT5 activity in neoplastic mast cells. Ponatinib induced growth inhibition and apoptosis in HMC-1.1 cells (KIT G560V(+)) and HMC-1.2 cells (KIT G560V(+)/KIT D816V(+)) as well as in primary neoplastic mast cells. The effects of ponatinib were dose-dependent, but higher IC50-values were obtained in HMC-1 cells harboring KIT D816V than in those lacking KIT D816V. In drug combination experiments, ponatinib was found to synergize with midostaurin in producing growth inhibition and apoptosis in HMC-1 cells and primary neoplastic mast cells. The ponatinib+midostaurin combination induced substantial inhibition of KIT-, Lyn-, and STAT5 activity, but did not suppress Btk. We then applied a Btk short interfering RNA and found that Btk knockdown sensitizes HMC-1 cells against ponatinib. Finally, we were able to show that ponatinib synergizes with the Btk-targeting drug dasatinib to produce growth inhibition in HMC-1 cells. In conclusion, ponatinib exerts major growth-inhibitory effects on neoplastic mast cells in advanced systemic mastocytosis and synergizes with midostaurin and dasatinib in inducing growth arrest in neoplastic mast cells. PMID:23539538

  1. Synergistic growth-inhibitory effects of ponatinib and midostaurin (PKC412) on neoplastic mast cells carrying KIT D816V

    PubMed Central

    Gleixner, Karoline V.; Peter, Barbara; Blatt, Katharina; Suppan, Verena; Reiter, Andreas; Radia, Deepti; Hadzijusufovic, Emir; Valent, Peter

    2013-01-01

    Patients with advanced systemic mastocytosis, including mast cell leukemia, have a poor prognosis. In these patients, neoplastic mast cells usually harbor the KIT mutant D816V that confers resistance against tyrosine kinase inhibitors. We examined the effects of the multi-kinase blocker ponatinib on neoplastic mast cells and investigated whether ponatinib acts synergistically with other antineoplastic drugs. Ponatinib was found to inhibit the kinase activity of KIT G560V and KIT D816V in the human mast cell leukemia cell line HMC-1. In addition, ponatinib was found to block Lyn- and STAT5 activity in neoplastic mast cells. Ponatinib induced growth inhibition and apoptosis in HMC-1.1 cells (KIT G560V+) and HMC-1.2 cells (KIT G560V+/KIT D816V+) as well as in primary neoplastic mast cells. The effects of ponatinib were dose-dependent, but higher IC50-values were obtained in HMC-1 cells harboring KIT D816V than in those lacking KIT D816V. In drug combination experiments, ponatinib was found to synergize with midostaurin in producing growth inhibition and apoptosis in HMC-1 cells and primary neoplastic mast cells. The ponatinib+midostaurin combination induced substantial inhibition of KIT-, Lyn-, and STAT5 activity, but did not suppress Btk. We then applied a Btk short interfering RNA and found that Btk knockdown sensitizes HMC-1 cells against ponatinib. Finally, we were able to show that ponatinib synergizes with the Btk-targeting drug dasatinib to produce growth inhibition in HMC-1 cells. In conclusion, ponatinib exerts major growth-inhibitory effects on neoplastic mast cells in advanced systemic mastocytosis and synergizes with midostaurin and dasatinib in inducing growth arrest in neoplastic mast cells. PMID:23539538

  2. In vitro bioassays for anticancer drug screening: effects of cell concentration and other assay parameters on growth inhibitory activity.

    PubMed

    Lieberman, M M; Patterson, G M; Moore, R E

    2001-11-01

    In vitro growth inhibition assays were performed using human cancer cell lines at various concentrations with experimental anticancer drugs such as the cryptophycins and other cytotoxins. The effect of variations in assay parameters on the observed growth inhibition of these anticancer therapeutic agents was determined. The results demonstrated that the observed inhibitory activity of these compounds varied inversely with the cell concentrations used. The observed differences in activity between different cytotoxins were not necessarily proportionate. Thus, the relative activities of two toxins also varied with cell concentration. Furthermore, the sensitivity of these cell lines to the cytostatic purine analog, 6-mercaptopurine (used as a control), varied with cell concentration as well. The activity of this compound was dependent on the medium used for cell growth, yielding good activity in Eagle's minimum essential medium, but not in Ham's F-12 (Kaigin) medium. Moreover, growth inhibition by cryptophycin as well as 6-mercaptopurine was also dependent on the serum concentration in the medium. Finally, the sensitivity of the cancer cell lines to various organic solvents commonly used as drug vehicles for in vitro testing, such as ethanol, dimethylformamide, and dimethylsulfoxide, was likewise found to vary inversely with cell concentration. PMID:11578805

  3. NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation.

    PubMed

    Yoshinaga, Ayana; Kajiya, Natsuki; Oishi, Kazuki; Kamada, Yuko; Ikeda, Asami; Chigwechokha, Petros Kingstone; Kibe, Toshiro; Kishida, Michiko; Kishida, Shosei; Komatsu, Masaharu; Shiozaki, Kazuhiro

    2016-07-01

    Naringin, which is one of the flavonoids contained in citrus fruits, is well known to possess various healthy functions to humans. It has been reported that naringin suppresses cancer cell growth in vitro and in vivo, although the underlying mechanisms are not fully understood. Recently, the roles of glycoconjugates, such as gangliosides, in cancer cells have been focused because of their regulatory effects of malignant phenotypes. Here, to clarify the roles of naringin in the negative-regulation of cancer cell growth, the alteration of glycoconjugates induced by naringin exposure and its significance on cell signaling were investigated. Human cancer cells, HeLa and A549, were exposed to various concentrations of naringin. Naringin treatment induced the suppression of cell growth toward HeLa and A549 cells accompanied with an increase of apoptotic cells. In naringin-exposed cells, GM3 ganglioside was drastically increased compared to the GM3 content prior to the treatment. Furthermore, naringin inhibited NEU3 sialidase, a GM3 degrading glycosidase. Similarly, NEU3 inhibition activities were also detected by other flavanone, such as hesperidin and neohesperidin dihydrocalcone, but their aglycones showed less inhibitions. Naringin-treated cancer cells showed suppressed EGFR and ERK phosphorylation levels. These results suggest a novel mechanism of naringin in the suppression of cancer cell growth through the alteration of glycolipids. NEU3 inhibitory effect of naringin induced GM3 accumulation in HeLa and A549 cells, leading the attenuation of EGFR/ERK signaling accompanied with a decrease in cell growth. PMID:27105818

  4. An Investigation of the Growth Inhibitory Capacity of Several Medicinal Plants From Iran on Tumor Cell Lines

    PubMed Central

    Esmaeilbeig, Maryam; Kouhpayeh, Seyed Amin; Amirghofran, Zahra

    2015-01-01

    Background: Traditional herbal medicine is a valuable resource that provides new drugs for cancer treatment. Objectives: In this study we aim to screen and investigate the in vitro anti-tumor activities of ten species of plants commonly grown in Southern Iran. Materials and Methods: We used the MTT colorimetric assay to evaluate the cytotoxic activities of the methanol extracts of these plants on various tumor cell lines. The IC50 was calculated as a scale for this evaluation. Results: Satureja bachtiarica, Satureja hortensis, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed the inhibitoriest effects on Jurkat cells with > 80% inhibition at 200 µg/mL. Satureja hortensis (IC50: 66.7 µg/mL) was the most effective. These plants also strongly inhibited K562 cell growth; Satureja bachtiarica (IC50: 28.3 µg/mL), Satureja hortensis (IC50: 52 µg/mL) and Thymus vulgaris (IC50: 87 µg/mL) were the most effective extracts. Cichorium intybus, Rheum ribes, Alhagi pseudalhagi and Glycyrrihza glabra also showed notable effects on the leukemia cell lines. The Raji cell line was mostly inhibited by Satureja bachtiarica and Thymus vulgaris with approximately 40% inhibition at 200µg/ml. The influence of these extracts on solid tumor cell lines was not strong. Fen cells were mostly affected by Glycyrrihza glabra (IC50: 182 µg/mL) and HeLa cells by Satureja hortensis (31.6% growth inhibitory effect at 200 µg/mL). Conclusions: Leukemic cell lines were more sensitive to the extracts than the solid tumor cell lines; Satureja hortensis, Satureja bachtiarica, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed remarkable inhibitory potential. PMID:26634114

  5. Acid-catalyzed synthesis of 10-substituted triazolyl artemisinins and their growth inhibitory activity against various cancer cells.

    PubMed

    Oh, Sangtae; Shin, Woon-Seob; Ham, Jungyeob; Lee, Seokjoon

    2010-07-15

    A diastereomeric and regioisomeric library of 10-substituted triazolyl artemisinin compounds (6a-6h, 7a-7h, and 8a-8h) with a potent growth inhibitory activities against various cancer cell lines was established. These compounds were synthesized by a reaction with dihydroartemisinin (2) and various substituted triazoles (5a-5h) in methylene chloride using a BF(3)Et(2)O catalyst. Most of the compounds exhibited a strong potency in the submicromolar range, and, in particular, 6f, 7f, and 8f, which have a pentylphenyltriazole moiety, proved to be promising candidates for preclinical trials. PMID:20538462

  6. Growth inhibitory effects of crude pomegranate peel extract on chronic myeloid leukemia, K562 cells

    PubMed Central

    Asmaa, Mat Jusoh Siti; Ali, Al-Jamal Hamid; Farid, Johan Muhammad; Azman, Seeni

    2015-01-01

    Background: Pomegranate (Punica granatum) is currently a member of Lythraceae family which has potentially cytotoxic activities. Numerous studies have been done on cytotoxic components of pomegranate's juices, barks and leaves. The peels, which considered as a waste, contain higher antioxidant components compared with other parts of the plant. Aim: To investigate the potential anti-cancer activity of pomegranate peel on growth and cell death mechanisms of chronic myeloid leukemic (CML) cells, K562. Materials and Methods: Punica granatum peels extract (PGPE) was extracted by successive ethanol extraction, 80% (v/v), freeze dried, diluted to 20 mg/mL working concentration and was subjected to phytochemical screening. K562 cell was treated with crude PGPE for 72 h. Following IC50 concentration, the apoptosis, cell cycle and protein analysis were evaluated. Cell growth inhibition assay was performed by conventional trypan blue exclusion assay. Apoptosis and cell cycle were analyzed by flow-cytometry using BD apoptosis and cell cycle kits and protein analysis by western blotting. All the results are expressed as mean ± standard error of mean of three independent experiments. Statistical analysis was performed by nonparametric Mann-Whitney U-test. Results: Results demonstrated that PGPE promotes growth inhibition of K562 cells mainly via G2/M phase arrest while still conserving apoptosis induction, but at a lower rate. Apoptosis activities were proposed by the up-regulation of caspases and cytochrome c with an elevated level of p21 and p53. Conclusion: PGPE caused an inhibition in cell proliferation of CML cell mainly by cell cycle arrest. PMID:26097816

  7. Synergistic growth inhibitory and differentiating effects of trimidox and tiazofurin in human promyelocytic leukemia HL-60 cells.

    PubMed

    Szekeres, T; Fritzer, M; Strobl, H; Gharehbaghi, K; Findenig, G; Elford, H L; Lhotka, C; Schoen, H J; Jayaram, H N

    1994-12-15

    Increased ribonucleotide reductase (RR) activity has been linked with malignant transformation and tumor cell growth. Therefore, this enzyme is considered to be an excellent target for cancer chemotherapy. We have examined the effects of a newly patented RR inhibitor, trimidox (3,4,5-trihydroxybenzohydroxamidoxime). Trimidox inhibited the growth of human promyelocytic leukemia HL-60 cells with an IC50 of 35 mumol/L. Incubation of HL-60 cells with 50 mumol/L trimidox for 24 hours decreased deoxyguanosine triphosphate (dGTP) and deoxycytidine triphosphate (dCTP) pools to 24% and 39% of control values, respectively. Incubation of HL-60 cells with 20 to 80 mumol/L trimidox even up to a period of 4 days did not alter the distribution of cells in different phases of cell cycle. Sequential incubation of HL-60 cells with trimidox (25 mumol/L) for 24 hours and then with 10 mumol/L tiazofurin (an inhibitor of inosine monophosphate dehydrogenase) for 4 days produced synergistic growth inhibitory activity, and the cell number decreased to 16% of untreated controls. When differentiation-linked cell surface marker expressions were determined in cells treated with trimidox and tiazofurin, a significantly increased fluorescence intensity was observed for the CD 11b (2.9-fold). CD 33 (1.9-fold), and HLA-D cell surface antigens. Expression of the transferrin receptor (CD71) increased 7.3-fold in cells treated with both agents, compared with untreated controls. Our results suggest that trimidox in combination with tiazofurin might be useful in the treatment of leukemia. PMID:7994048

  8. Growth-inhibitory effect of Scutellaria lindbergii in human cancer cell lines.

    PubMed

    Tayarani-Najaran, Z; Mousavi, S H; Asili, J; Emami, S A

    2010-02-01

    Scutellaria lindbergii (Lamiaceae) is Iranian species of Scutellaria. Cytotoxic properties of total methanol extract of S. lindbergii and its fractions were investigated on different cancer cell lines including AGS, HeLa, MCF-7, and PC12. Meanwhile the role of apoptosis was explored in this toxicity. Malignant and non-malignant cells were cultured in DMEM medium and incubated with different concentrations of plant extracts. Cell viability was quantitated by MTT assay. Apoptotic cells were determined using PI staining of DNA fragmentation by flow cytometry (sub-G1 peak). S. lindbergii inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions of S. lindbergii, the methylene chloride fraction was found to be more toxic compared to other fractions. S. lindbergii-induced a sub-G1 peak in flow cytometry histogram of treated cells compared to control indicating apoptotic cell death is involved in S. lindbergii-induced toxicity. In conclusion, S. lindbergii exerts cytotoxic effects in different cancer cell lines in which apoptosis plays an important role. Thus S. lindbergii could be considered as a potential chemotherapeutic agent in cancer treatment. PMID:19932732

  9. Growth inhibitory effect of the ternary complex factor Net on human pancreatic carcinoma cell lines.

    PubMed

    Li, Baiwen; Ni, Peihua; Zhu, Qi; Cao, Haixia; Xu, Hong; Zhang, Su; Au, Chris; Zhang, Yongping

    2008-10-01

    Pancreatic carcinoma is one of the most aggressive malignancies and carries the most dismal prognoses of all cancers. A better understanding of the genes involving in tumor development may allow us to tackle this rapidly progressive disease. The Net gene belongs to the ternary complex transcription factor (TCF) family and is regulated by the Ras/mitogen-activated protein kinase-signaling pathway. Under basal conditions, Net shows strong repressing function on transcription of proto-oncogene gene c-fos. Moreover, the lower expression of Net has been noted in some carcinoma cells, such as cervical cancer. To study the effect of Net on c-fos expression and its potential role in the growth of pancreatic carcinoma, we developed a recombinant plasmid, a pEGFP-N1-Net, which codes for Net-EGFP fusion proteins, and stably transfected it into BxPC-3 human pancreatic carcinoma cells. Using stable transformants, we were able to show that overexpression of Net decreased the expression of c-fos and inhibited pancreatic cancer cell proliferation. Cell cycle analysis demonstrated that Net overexpression inhibited cell cycle progression. These findings suggested that loss of Net repression could augment c-fos expression and further trigger neoplastic cell proliferation, which was involved in the pathogenesis of pancreatic cancer. Therefore, Net might be a potential target for the treatment of c-fos-positive pancreatic cancer. PMID:18832796

  10. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model

    PubMed Central

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D.; Shetake, Neena; Balla, Murali M. S.; Kumar, Amit; Ray, Pritha; Ghosh, Anu

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  11. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    PubMed

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D; Shetake, Neena; Balla, Murali M S; Kumar, Amit; Ray, Pritha; Ghosh, Anu; Pandey, B N

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  12. Growth-Inhibitory and Apoptosis-Inducing Effects of Punica granatum L. var. spinosa (Apple Punice) on Fibrosarcoma Cell Lines

    PubMed Central

    Sineh Sepehr, Koushan; Baradaran, Behzad; Mazandarani, Masoumeh; Yousefi, Bahman; Abdollahpour Alitappeh, Meghdad; Khori, Vahid

    2014-01-01

    Purpose: Punica granatum L. var. granatum (Pomegranate), an herbaceous plant found in Iran, The aim of this study was to investigate the cytotoxic effects, induction of apoptosis, and the mechanism of cell death of ethanol extract from Punica granatum L. var. spinosa on the mouse fibrosarcoma cell line, WEHI-164. Methods: Various parts of the herbs were extracted from fruit using ethanol as the solvent, and the cytotoxicity and cell viability of the ethanolic extract were determined by the MTT assay. To determine whether necrosis or apoptosis is the predominant cause of cell death, cell death detection was performed using the ELISA method. The induction of apoptosis was confirmed using the terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP nick end labeling (TUNEL) assay. Moreover, a sensitive immunoblotting technique was used to examine the production of Caspase-3 and Bcl2 proteins. Results: Our findings suggested that the ethalonic extract of Punica granatum L. var. spinosa altered cell morphology, decreased cell viability, suppressed cell proliferation and induced cell death in a time- and dose-dependent manner in WEHI-164 cells (IC50 = 229.024μg/ml), when compared to a chemotherapeutic anticancer drug, Toxol (Vesper Pharmaceuticals), with increased nucleosome production from apoptotic cells. Induction of apoptosis by the plant extract was proved by the decrease of pro-Caspase-3 and Bcl2 proteins and quantitatively confirmed by Immunoblotting analysis. Conclusion: The results obtained from the present study have demonstrated the growth-inhibitory effect of Ethanol Extracts from Punica granatum L. var. spinosa, and clearly showed that apoptosis was the major mechanism of in-vitro cell death induced by the extract. PMID:25671193

  13. Growth inhibitory effect of KYKZL-1 on Hep G{sub 2} cells via inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest

    SciTech Connect

    Cheng, Jing; Du, Yi-Fang; Xiao, Zhi-Yi; Pan, Li-Li; Li, Wei; Huan, Lin; Gong, Zhu-Nan; Wei, Shao-Hua; Huang, Shi-Qian; Xun, Wei; Zhang, Yi; Chang, Lei-Lei; Xie, Meng-Yu; Ao, Gui-Zhen; Cai, Jie; Qiu, Ting; Wu, Hao; Sun, Ting; Xu, Guang-Lin

    2014-01-01

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G{sub 2} growth. We found that KYKZL-1 inhibited the growth of Hep G{sub 2} cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE{sub 2} and LTB{sub 4} production in Hep G{sub 2} cells. Accordingly, exogenous addition of PGE{sub 2} or LTB{sub 4} reversed the decreases in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S–G{sub 2} checkpoint via the activation of p21{sup CIP1} protein and down-regulation of cyclin A expression. These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 resulted in apoptosis of Hep G{sub 2} cells. • KYKZL-1 activated caspase-3 through cytochrome c and bcl-2/bax ratio. • KYKZL-1 caused cell cycle arrest via modulation of p21{sup CIP1} and cyclin A level.

  14. The Induction of Metformin Inhibitory Effects on Tumor Cell Growth in Hypoxic Condition.

    PubMed

    Safari, Zohreh; Safaralizadeh, Reza; Seyedzadeh, Mir Hadi; Valinezad Orang, Ayla; Zare, Ahad; Hosseinpour Feizi, Mohammad Ali; Kardar, Gholam Ali

    2015-12-01

    It is aimed to evaluate the actual anti-cancerous effects of metformin on cancer cells in hypoxic condition. Non-cancerous cells (HEK293) and cancer cells (MCF-7) were cultured in both hypoxia and normoxia conditions and treated with different concentrations of metformin. The proliferation, apoptosis, and necrosis rate were assessed using MTT test and Annexin V assay. The S6K1 phosphorylation was assessed using western blotting. Zymography was used to measure the activity of metalloproteinase-9 (MMP-9). Metformin treatment inhibited proliferation of cancer cells in the optimal concentration of 10 mM under hypoxia condition, while it showed no effects on non-cancerous cell viability. The statistical analysis of MTT assay indicated that the pro-apoptotic function of metformin for cancer cells under hypoxia condition compared to normoxia was significant with different metformin concentrations (p<0.01). However, the effect of metformin treatments for non-cancerous cells under hypoxia condition compared to normoxia was not significant. Western-blot analysis indicated a significant decrease in S6K1 phosphorylation in cancer cells under hypoxia condition (p<0.05). Nevertheless, there was no considerable difference between normoxia and hypoxia conditions in non-cancerous cells. MMP-9 zymography analysis revealed that the highest inhibition of MMP-9 activity was observed in hypoxia condition by 20mM of metformin concentration only in cancer cell. The results indicate that in hypoxia condition metformin exerts its anti-cancerous function by inhibiting proliferation and tumor progression and inducing cell apoptosis more effectively than normoxia condition. In line with cancer cell conditions, most importantly hypoxic condition, metformin can be considered as a potential anti-cancerous drug. PMID:26725558

  15. Growth inhibitory effects of Phyllanthus niruri extracts in combination with cisplatin on cancer cell lines

    PubMed Central

    Araújo Júnior, Raimundo Fernandes; Soares, Luiz Alberto Lira; da Costa Porto, Cínthia Raquel; de Aquino, Ranniere Gurgel Furtado; Guedes, Hugo Gonçalo; Petrovick, Pedro Ros; de Souza, Tatiane Pereira; Araújo, Aurigena Antunes; Guerra, Gerlane Coelho Bernardo

    2012-01-01

    AIM:To investigate the cytotoxic effects of spray-dried extracts of Phyllanthus niruri in combination with cisplatin on two cancer cell lines. METHODS: Colorectal carcinoma (HT29) and human hepatocellular carcinoma (HepG2) cells were treated with spray-dried extracts of Phyllanthus niruri (SDEPN) either alone or in combination with cisplatin at different concentrations (0.5 mg/mL and 1 mg/mL) for 4 h and 24 h. To verify and quantify cancer cells treated with these products as well as identify the cell cycle stage and cell viability, we stained the cells with propidium iodide and assessed them by flow cytometry. The percentage of cells in different cell cycle phases was quantified and data were expressed as histograms. Significant differences between groups were determined using analysis of variance and Bonferroni’s test, as indicated. A value of P < 0.05 was considered to be statistically significant. RESULTS: SDEPN had significantly different cytotoxic effects on HT29 (2.81 ± 0.11 vs 3.51 ± 1.13, P > 0.05) and HepG2 (5.07 ± 0.3 vs 15.9 ± 1.04, P < 0.001) cells when compared to control cells for 4 h. SDEPN also had significantly different cytotoxic effects on HT29 (1.91 ± 0.57 vs 4.53 ± 1.22, P > 0.05) and HepG2 (14.56 ± 1.6 vs 35.67 ± 3.94, P < 0.001) cells when compared to control cells for 24 h. Both cell lines were killed by cisplatin in a dose-dependent manner compared to control cells (HepG2 cells for 4 h: 10.78 ± 1.58 vs 53.89 ± 1.53, P < 0.001; 24 h: 8.9 ± 1.43 vs 62.78 ± 1.87, P < 0.001 and HT29 cells for 4 h: 9.52 ± 0.913 vs 49.86 ± 2.89, P < 0.001; 24 h: 11.78 ± 1.05 vs 53.34 ± 2.65, P < 0.001). In HT29 cells, pretreatment with SDEPN and subsequent treatment with cisplatin resulted in a greater number of cells being killed (12.78 ± 1.01 vs 93.76 ± 1.6, P < 0.001). HepG2 cells showed significant cell killing with treatment with SDEPN when combined with cisplatin (12.87 ± 2.78 vs 78.8 ± 3.02, P < 0.001). CONCLUSION: SDEPN is

  16. Thiosemicarbazone-Pt(II) Complex Causes a Growth Inhibitory Effect on Human Mesenchymal Stem Cells.

    PubMed

    Garcia-Ruiz, Josefa Predestinacion; Matesanz Garcia, Ana Isabel; Souza, Ana Perez; Castelo, Pilar Souza

    2015-01-01

    We showed di[3,5-diacetyl-1,2,4-triazolbis(4-cyclohexylthiosemicarbazonato) platinum(II)] complex, (W8), endowed with important antitumor properties. Here, we analysed whether W8 can affect human bone marrow-derived Mesenchymal Stem Cells, (hMSCs), involved in tissue repair, immunomodulatory properties and also capacity for homing to injure-tumor sites in ovarian cancer. Specifically, we analysed the effect of W8 on cell proliferation, response to scratch, and whether copper-derived cellular mechanism is used by this platinum(II) complex being studied. Results showed that W8 causes a significant inhibition of cell proliferation at µM concentration. This effect is directly related to the alteration of cytoskeletal proteins and inhibition of the response to scratch induced by the presence of foetal bovine serum. This strongly supports the notion of W8 triggers the energetic metabolism of hMSCs and adds an extra support by the results showing W8 relationship with the cellular copper ions. W8, acting in hMSCs, regulates in addition the inhibition of cell proliferation, the inhibition of tumor angiogenesis and metastasis. PMID:25974080

  17. Chemical constituents of Rhododendron formosanum show pronounced growth inhibitory effect on non-small-cell lung carcinoma cells.

    PubMed

    Way, Tzong-Der; Tsai, Shang-Jie; Wang, Chao-Min; Ho, Chi-Tang; Chou, Chang-Hung

    2014-01-29

    The aim of the present study was to investigate whether Rhododendron formosanum Hemsl. (Ericaceae), an endemic species in Taiwan, exhibits antineoplastic potential against non-small-cell lung carcinoma (NSCLC). R. formosanum was successively extracted with methanol and then separated into dichloromethane (RFL-DCM), ethyl acetate (RFL-EA), n-butanol (RFL-BuOH), and water (RFL-H2O) fractions. Among these extracts, RFL-EA exhibited the most effective antineoplastic effect. This study also demonstrated that fractions 2 and 3 from the RFL-EA extract (RFL-EA-2, RFL-EA-3) possessed the strongest antineoplastic potential against NSCLC cells. The major phytochemical constituents of RFL-EA-2 and RFL-EA-3 were ursolic acid, oleanolic acid, and betulinic acid. This study indicated that ursolic acid demonstrated the most efficient antineoplastic effects on NSCLC cells. Ursolic acid inhibited growth of NSCLC cells in a dose- and time-dependent manner and stimulated apoptosis. Apoptosis was substantiated by activation of caspase-3 and -9, and a decrease in Bcl-2 and an elevation of the Bax were also observed following ursolic acid treatment. Ursolic acid activated AMP-activated protein kinase (AMPK) and then inhibited the mammalian target of rapamycin (mTOR), which controls protein synthesis and cell growth. Moreover, ursolic acid decreased the expression and/or activity of lipogenic enzymes, such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN) via AMPK activation. Collectively, these data provide insight into the chemical constituents and anticancer activity of R. formosanum against NSCLC cells, which are worthy of continued study. PMID:24447325

  18. A glycosylation-deficient endothelial cell mutant with modified responses to transforming growth factor-beta and other growth inhibitory cytokines: evidence for multiple growth inhibitory signal transduction pathways.

    PubMed Central

    Fafeur, V; O'Hara, B; Böhlen, P

    1993-01-01

    An endothelial cell line (M40) resistant to growth inhibition by transforming growth factor-beta type 1 (TGF beta 1) was isolated by chemical mutagenesis and growth in the presence of TGF beta 1. Like normal endothelial cells, this mutant is characterized by high expression of type II TGF beta receptor and low expression of type I TGF beta receptor. However, the mutant cells display a type II TGF beta receptor of reduced molecular weight as a result of a general defect in N-glycosylation of proteins. The alteration does not impair TGF beta 1 binding to cell surface receptors or the ability of TGF beta 1 to induce fibronectin or plasminogen activator inhibitor-type I production. M40 cells were also resistant to growth inhibition by tumor necrosis factor alpha (TNF alpha) and interleukin-1 alpha (IL-1 alpha) but were inhibited by interferon-gamma (IFN gamma) and heparin. These results imply that TGF beta 1, TNF alpha, and IL-1 alpha act through signal transducing pathways that are separate from pathways for IFN gamma and heparin. Basic fibroblast growth factor was still mitogenic for M40, further suggesting that TGF beta 1, TNF alpha, and IL-1 alpha act by direct inhibition of cell growth rather than by interfering with growth stimulatory pathways. Images PMID:8382975

  19. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    PubMed Central

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Introduction Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. Methods MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. Results The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with

  20. Inhibitory effect of isoamericanol A from Jatropha curcas seeds on the growth of MCF-7 human breast cancer cell line by G2/M cell cycle arrest.

    PubMed

    Katagi, Ayako; Sui, Li; Kamitori, Kazuyo; Suzuki, Toshisada; Katayama, Takeshi; Hossain, Akram; Noguchi, Chisato; Dong, Youyi; Yamaguchi, Fuminori; Tokuda, Masaaki

    2016-01-01

    Although various parts of J. curcas (Jatropha curcas L., Euphorbiaceae) have long been used as traditional folk medicines for their antiviral, analgesic, and/or antidotal efficacies, we are the first to investigate the role of anti-carcinogenicity of isoamericanol A (IAA) from the seed extract. Our results showed that IAA is capable of inhibiting cell proliferation in a dose-dependent manner on the human cancer cell lines of MCF-7, MDA-MB231, HuH-7, and HeLa. Flow cytometry analysis showed IAA significantly induces cell cycle arrest at G2/M on MCF-7 cells. At both protein and mRNA levels examined by western blot and real-time PCR, the results revealed increased expression of BTG2 (B-cell translocation gene 2), p21 (p21(WAF1/CIPI) ), and GADD45A (growth arrest and DNA-damage-inducible, alpha) after IAA treatment, but inversed expression in CDK1 (cyclin-dependent kinase 1) and cyclins B1 and B2. All these effects contribute to G2/M cell cycle arrest. Furthermore, these results coincide with the changes in molecular expressions determined by DNA-microarray analysis. Our findings indicate that IAA has an inhibitory effect on cell proliferation of MCF-7 through cell cycle arrest, giving it great potential as a future therapeutic reagent for cancers. PMID:27441238

  1. In vitro and in vivo studies on the inhibitory effects of myocardial cell culture medium on growth of a human lung adenocarcinoma cell line, A549

    PubMed Central

    Zheng, Y.; Zhou, J.; Fu, S.Z.; Fan, J.; Wu, J.B.

    2016-01-01

    Background Although the heart is one of the body’s vital organs, with an abundant blood supply, metastasis to the heart is considered rare. In a previous study, we found that the myocardial microenvironment might contain a low molecular weight natural tumour suppressor. The present study was designed to investigate the inhibitory effect of cardiac myocyte–conditioned medium (cmcm) on the growth of A549 human lung adenocarcinoma cells in vitro and in vivo. Methods An mtt assay was used to detect the inhibition ratio with respect to A549 proliferation. Human lung adenocarcinoma cells (A549 cell strain) were transplanted subcutaneously into nude mice to produce tumours. The xenograft tumour growth in mice was observed after selected drug administration. Results After treatment with cmcm and cisplatin (Cis), A549 cell viability significantly declined (p < 0.001). The cell viability in the cmcm and Cis groups were 53.42% ± 3.45% and 58.45% ± 6.39% respectively. Growth of implanted tumour cells in vivo was significantly inhibited in the cmcm group, the group treated with recombinant human adenovirus–p53, and the Cis-treated group compared with a control group. The inhibition rates were 41.44% in the cmcm group, 41.34% in the p53 group, and 64.50% in the Cis group. Lung metastasis capacity was significantly reduced in the presence of cmcm (p < 0.05). Lung metastasis inhibition rates in mice were 56.52% in the cmcm group, 47.83% in the p53 group, and 82.61% in the Cis group. With cmcm, the lives of A549-tumour-bearing mice could be significantly prolonged without any effect on weight loss. Conclusions Use of cmcm has the effect of reducing A549 cell viability, tumour volume, and lung metastasis rate, while prolonging survival duration without severe toxicity. PMID:26966411

  2. The cytotoxic and growth inhibitory effects of palladium(II) complexes on MDA-MB-435 cells

    PubMed Central

    Campanella, Nathália Cristina; da Silva Demartini, Mariana; Torres, Claudia; de Almeida, Eduardo Tonon; Gouvêa, Cibele Marli Cação Paiva

    2012-01-01

    The antitumorigenic potential of two palladium(II) complexes, [Pd(ca2-o-phen)Cl2] – C1 and [Pd(dmba)(dppp)Cl] – C2, was evaluated, using MDA-MB-435 cells, a human breast adenocarcinoma cell-line that does not express the estrogen receptor α (ER−). Growth inhibition and induced alterations in cell-morphology were analyzed. The sulforhodamine B test showed that, compared to control cells, both C1 and C2 significantly inhibited (p < 0.5) cell growth. The maximum effect with both was achieved with 1 μM complexes, after 24 h of treatment. No further cell-growth inhibition was achieved by increasing concentration or incubation time. Cell morphology was analyzed after staining with hematoxylin-eosin (HE). The morphological changes noted in the treated cells were cell rounding-up, shrinkage, nuclear condensation and reduction of cell length (p < 0.05), thereby indicating that both C1 and C2 are cytotoxic to breast adenocarcinoma cells. All together, there was every indication that, by decreasing cell growth and inducing morphological changes, the tested complexes are cytotoxic, hence their potentiality as promising candidates for antineoplastic drug development. PMID:22481890

  3. Generation of leukemia inhibitory factor and basic fibroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells.

    PubMed

    Luo, Jiesi; Suhr, Steven T; Chang, Eun Ah; Wang, Kai; Ross, Pablo J; Nelson, Laura L; Venta, Patrick J; Knott, Jason G; Cibelli, Jose B

    2011-10-01

    For more than thirty years, the dog has been used as a model for human diseases. Despite efforts made to develop canine embryonic stem cells, success has been elusive. Here, we report the generation of canine induced pluripotent stem cells (ciPSCs) from canine adult fibroblasts, which we accomplished by introducing human OCT4, SOX2, c-MYC, and KLF4. The ciPSCs expressed critical pluripotency markers and showed evidence of silencing the viral vectors and normal karyotypes. Microsatellite analysis indicated that the ciPSCs showed the same profile as the donor fibroblasts but differed from cells taken from other dogs. Under culture conditions favoring differentiation, the ciPSCs could form cell derivatives from the ectoderm, mesoderm, and endoderm. Further, the ciPSCs required leukemia inhibitory factor and basic fibroblast growth factor to survive, proliferate, and maintain pluripotency. Our results demonstrate an efficient method for deriving canine pluripotent stem cells, providing a powerful platform for the development of new models for regenerative medicine, as well as for the study of the onset, progression, and treatment of human and canine genetic diseases. PMID:21495906

  4. Generation of Leukemia Inhibitory Factor and Basic Fibroblast Growth Factor-Dependent Induced Pluripotent Stem Cells from Canine Adult Somatic Cells

    PubMed Central

    Luo, Jiesi; Suhr, Steven T.; Chang, Eun Ah; Wang, Kai; Ross, Pablo J.; Nelson, Laura L.; Venta, Patrick J.; Knott, Jason G.

    2011-01-01

    For more than thirty years, the dog has been used as a model for human diseases. Despite efforts made to develop canine embryonic stem cells, success has been elusive. Here, we report the generation of canine induced pluripotent stem cells (ciPSCs) from canine adult fibroblasts, which we accomplished by introducing human OCT4, SOX2, c-MYC, and KLF4. The ciPSCs expressed critical pluripotency markers and showed evidence of silencing the viral vectors and normal karyotypes. Microsatellite analysis indicated that the ciPSCs showed the same profile as the donor fibroblasts but differed from cells taken from other dogs. Under culture conditions favoring differentiation, the ciPSCs could form cell derivatives from the ectoderm, mesoderm, and endoderm. Further, the ciPSCs required leukemia inhibitory factor and basic fibroblast growth factor to survive, proliferate, and maintain pluripotency. Our results demonstrate an efficient method for deriving canine pluripotent stem cells, providing a powerful platform for the development of new models for regenerative medicine, as well as for the study of the onset, progression, and treatment of human and canine genetic diseases. PMID:21495906

  5. [Inhibitory effects of a hot water extract from Japanese tea on the cell growth of mutans streptococci].

    PubMed

    Kitamura, K; Loyola, J P; Sobue, S

    1990-01-01

    This study was undertaken to examine the effect of a hot water extract from Japanese tea on the cellular growth of mutans streptococci in vitro. The extract contained polyphenol compounds, mainly catechin derivatives. Few fluoride components were contained in the extract. Streptococcus mutans MT8148R (serotype c) and S. sobrinus MT6715 (serotype g) strains were used in the present study. The organisms (10-10(7) CFU/ml) were cultured in brain heart infusion (BHI) and tryptose phosphate (TP) broths containing the tea extract (0-8 mg/ml). After incubation for 24-48 hours the cell numbers in the cultures were determined. Furthermore, cell growth of these strains on BHI agar plates containing the extract (0-2 mg/ml) were examined. The results obtained were as follows: 1. The tea extract (2-8 mg/ml) in BHI broth inhibited remarkably the growth of S. mutans and S. sobrinus (inoculum size; 10(6) CFU/ml). No difference in susceptibility to the tea extract between S. mutans and S. sobrinus was noted. 2. The cell growth of both strains in TP broth was inhibited by the tea extract. However S. sobrinus was found to be more sensitive to the extract than S. mutans. 3. Growth of S. sobrinus cells on the BHI agar plate was suppressed by the tea extract more effectively than that of S. mutans. These results suggest that the tea extract would be useful as an anti-cariogenic agent. PMID:2133962

  6. Inhibitory effect of vitamin K1 on growth and polyamine biosynthesis of human gastric and colon carcinoma cell lines.

    PubMed

    Linsalata, Michele; Orlando, Antonella; Tutino, Valeria; Notarnicola, Maria; D'Attoma, Benedetta; Russo, Francesco

    2015-08-01

    Gastric and colon cancers remain the leading cause of cancer mortality throughout the world. Since the gastrointestinal tract works in a constant link with the external environment, chemoprevention by dietary constituents could represent a possible approach to reduce cancer risk. Dietary vitamin K1 (VK1) has been shown to prevent the growth of many types of cancer cells. However, no data are available on possible different susceptibility to VK1 by gastric or colon neoplastic cell lines. Moreover, the exact mechanism of action of VK1 is still object of investigation, even if it has been reported that VK1 may induce cell cycle arrest and apoptosis. Therefore, molecules affecting cell growth such as the natural polyamines could be of interest in VK1 action. The aim of the present study was to investigate the effects of increasing concentrations of VK1 (from 10 to 200 µM) administered up to 72 h, on the cell proliferation and apoptosis of a gastric (HGC-27) and a colon (SW480) cancer cell line. Additionally, the polyamine biosynthesis and the MAPK pathway were also examined. VK1 treatments caused an inhibition of cell proliferation and an induction of apoptosis in both cell lines, with a concomitant significant decrease of the polyamine biosynthesis, increased phospho-ERK 1/2 expression was also observed. A different proliferative behavior and a different response to VK1 by gastric and colon cancer cells was evident, with colon cells showing a more pronounced susceptibility to VK1 action. VK1 is safe and without known toxicities in adult humans, consequently it could be effective in prevention and treatment of selected gastrointestinal neoplasms. Protocols based on the use of VK1, along with polyamine inhibitors and/or analogues, could represent a suitable alternative option for improving the efficacy of chemoprevention and treatment in future strategies for gastrointestinal cancer management. PMID:26043965

  7. Melatonin downregulates nuclear receptor RZR/RORγ expression causing growth-inhibitory and anti-angiogenesis activity in human gastric cancer cells in vitro and in vivo

    PubMed Central

    Wang, Ri-Xiong; Liu, Hui; Xu, Li; Zhang, Hui; Zhou, Rui-Xiang

    2016-01-01

    An adequate supply of oxygen and nutrients, derived from the formation of novel blood vessels, is critical for the growth and expansion of tumor cells. It has been demonstrated that melatonin (MLT) exhibits marked in vitro and in vivo oncostatic activities. The primary purpose of the present study was to evaluate the in vitro and in vivo antitumor activity of MLT on the growth and angiogenesis of gastric cancer cells, and explore the underlying molecular mechanisms. The present results revealed that MLT inhibited the growth of gastric cancer SGC-7901 cells in a dose- and time-dependent manner. In addition, the present study demonstrated that low concentrations (0.01, 0.1 and 1 mM) of MLT had no clear effect on vascular endothelial growth factor (VEGF) secretion, whereas a high concentration (3 mM) of MLT suppressed VEGF secretion in SGC-7901 cells. Notably, administration of MLT caused suppression of gastric cancer growth and blockade of tumor angiogenesis in tumor-bearing nude mice. Furthermore, MLT treatment reduced the expression of the MLT nuclear receptor RZR/RORγ, SUMO-specific protease 1, hypoxia-inducible factor-1α and VEGF at transcriptional and translational levels within gastric cancer cells during tumorigenesis. In conclusion, MLT nuclear receptor RZR/RORγ may be of great importance in the MLT mediated anti-angiogenesis and growth-inhibitory effect in gastric cancer cells. Since RZR/RORγ is overexpressed in multiple human cancers, MLT may be a promising agent for the treatment of cancers. PMID:27446366

  8. The MTT assay underestimates the growth inhibitory effects of interferons.

    PubMed Central

    Jabbar, S. A.; Twentyman, P. R.; Watson, J. V.

    1989-01-01

    The growth inhibitory effects of interferons, IFN-alpha and IFN-gamma on human lung cancer cell lines were studied using both a tetrazolium (MTT) colorimetric assay and direct cell counting. Significant discrepancies between the two assays were observed, the MTT assay consistently underestimating the growth inhibitory effects of the IFNs. There was no direct chemical effect of the IFNs on the tetrazolium reduction process. IFN treated cells showed increased cell size compared with control cells, although there was little or no change in cell cycle distribution. Mitochondrial activity was 30-50% greater in IFN-gamma treated cells (COR-L23) than the controls. Reduced formazan production per cell was observed in medium which had supported cell growth for several days. Differential 'medium conditioning' led to a difference in formazan production per cell between IFN and control cells and this was the major basis of the observed discrepancy. This discrepancy was not due to the differences in the glucose concentrations between these media. However, differences in pH between the media proved to be the major contributory factor of the discrepancy. PMID:2529890

  9. Synergistic Inhibitory Effects of Cetuximab and Cisplatin on Human Colon Cancer Cell Growth via Inhibition of the ERK-Dependent EGF Receptor Signaling Pathway

    PubMed Central

    Son, Dong Ju; Hong, Ji Eun; Ban, Jung Ok; Park, Ju Ho; Lee, Hye Lim; Gu, Sun Mi; Hwang, Jae Yeon; Jung, Myung Hee; Lee, Dong Won; Han, Sang-Bae; Hong, Jin Tae

    2015-01-01

    The purpose of this study was to evaluate the anticancer efficacy of cetuximab combined with cisplatin (combination treatment) on colon cancer growth, as well as its underlying action mechanism. Combination treatment synergistically potentiated the effect of cetuximab on cell growth inhibition and apoptosis induction in HCT116 and SW480 cells. Combination treatment further suppressed the expression of the activated form of epidermal growth factor receptor (EGFR) and MAP kinase (p-ERK and p-p38) and also significantly inhibited the activity of activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). Additionally, the expression of cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) mRNA was significantly reduced by the combination treatment as compared to the expression seen for treatment with cetuximab or cisplatin alone. We found that the synergistic inhibitory effects of cetuximab and cisplatin on AP-1 and NF-κB activation, as well as on cell viability, were reversed by pretreatment with an ERK inhibitor. Results demonstrate that combined treatment with cetuximab and cisplatin exerts synergistic anticancer effects on colon cancer cells and also suggest that the ERK pathway plays a critical role in these effects via the suppression of the EGFR signaling pathway, along with the inhibition of COX-2, IL-8, and AP-1 and NF-κB. PMID:26491668

  10. Synergistic growth inhibitory effects of the dual endothelin-1 receptor antagonist bosentan on pancreatic stellate and cancer cells.

    PubMed

    Fitzner, Brit; Brock, Peter; Holzhüter, Stephanie-Anna; Nizze, Horst; Sparmann, Gisela; Emmrich, Jörg; Liebe, Stefan; Jaster, Robert

    2009-02-01

    Pancreatic stellate cells (PSC) play a key role in pancreatic fibrosis. Activation of PSC occurs in response to pro-fibrogenic stimuli and is maintained by autocrine loops of mediators, such as endothelin (ET)-1. Here, we have evaluated effects of the dual ET receptor antagonist bosentan in models of pancreatic fibrogenesis and cancer. Cell culture studies revealed that PSC and DSL6A pancreatic cancer cells expressed both ET-1 and ET receptors. Bosentan efficiently inhibited proliferation of both cell types and collagen synthesis in PSC. Expression of the myofibroblastic marker alpha-smooth muscle actin, connective tissue growth factor, and ET-1 itself in PSC was reduced, while expression of matrix metalloproteinase-9 was enhanced. Like PSC, DSL6A cells secrete less ET-1 when cultured with bosentan. In a rat model of pancreatic fibrosis, chronic pancreatitis induced by dibutyltin dichloride, a tendency towards a diminished disease progression was observed in a subgroup of rats with less severe disease. Together, our results indicate that bosentan exerts antifibrotic and antitumor effects in vitro. Its efficiency in vivo warrants further investigation. PMID:18612819

  11. Novel oral histone deacetylase inhibitor, MPT0E028, displays potent growth-inhibitory activity against human B-cell lymphoma in vitro and in vivo

    PubMed Central

    Huang, Han-Li; Peng, Chieh-Yu; Lai, Mei-Jung; Chen, Chun-Han; Lee, Hsueh-Yun; Wang, Jing-Chi; Liou, Jing-Ping; Pan, Shiow-Lin; Teng, Che-Ming

    2015-01-01

    Histone deacetylase (HDAC) inhibitor has been a promising therapeutic option in cancer therapy due to its ability to induce growth arrest, differentiation, and apoptosis. In this study, we demonstrated that MPT0E028, a novel HDAC inhibitor, reduces the viability of B-cell lymphomas by inducing apoptosis and shows a more potent HDAC inhibitory effect compared to SAHA, the first HDAC inhibitor approved by the FDA. In addition to HDACs inhibition, MPT0E028 also possesses potent direct Akt targeting ability as measured by the kinome diversity screening assay. Also, MPT0E028 reduces Akt phosphorylation in B-cell lymphoma with an IC50 value lower than SAHA. Transient transfection assay revealed that both targeting HDACs and Akt contribute to the apoptosis induced by MPT0E028, with both mechanisms functioning independently. Microarray analysis also shows that MPT0E028 may regulate many oncogenes expression (e.g., TP53, MYC, STAT family). Furthermore, in vivo animal model experiments demonstrated that MPT0E028 (50–200 mg/kg, po, qd) prolongs the survival rate of mice bearing human B-cell lymphoma Ramos cells and inhibits tumor growth in BJAB xenograft model. In summary, MPT0E028 possesses strong in vitro and in vivo activity against malignant cells, representing a potential therapeutic approach for cancer therapy. PMID:25669976

  12. Inhibitory effects of tetrandrine on epidermal growth factor-induced invasion and migration in HT29 human colorectal adenocarcinoma cells.

    PubMed

    Horng, Chi-Ting; Yang, Jai-Sing; Chiang, Jo-Hua; Lu, Chi-Cheng; Lee, Chiu-Fang; Chiang, Ni-Na; Chen, Fu-An

    2016-01-01

    Tetrandrine has been shown to reduce cancer cell proliferation and to inhibit metastatic effects in multiple cancer models in vitro and in vivo. However, the effects of tetrandrine on the underlying mechanism of HT29 human colorectal adenocarcinoma cell metastasis remain to be fully elucidated. The aim of the present study was focused on tetrandrine‑treated HT29 cells following epidermal growth factor (EGF) treatment, and Transwell, gelatin zymography, gene expression and immunoblotting assays were performed to investigate metastatic effects in vitro. Tetrandrine was observed to dose‑dependently inhibit EGF‑induced HT29 cell invasion and migration, however, no effect on cell viability occurred following exposure to tetradrine between 0.5 and 2 µM. Tetrandrine treatment inhibited the enzymatic activity of matrix metalloprotease (MMP)‑2 and MMP‑9 in a concentration‑dependent manner. The present study also found a reduction in the mRNA expression levels of MMP‑2 and MMP‑9 in the tetrandrine‑treated HT29 cells. Tetrandrine also suppressed the phosphorylation of EGF receptor (EGFR) and its downstream pathway, including phosphoinositide‑dependent kinase 1, phosphatidylinositol 3‑kinase and phosphorylated AKT, suppressing the gene expression of MMP‑2 and MMP‑9. Furthermore, tetrandrine triggered mitogen‑activated protein kinase signaling through the suppressing the activation of phosphorylated extracellular signal‑regulated protein kinase. These data suggested that targeting EGFR signaling and its downstream molecules contributed to the inhibition of EGF‑induced HT29 cell metastasis caused by tetrandrine, eventually leading to a reduction in the mRNA and gelatinase activities of MMP-2 and MMP-9, respectively. PMID:26648313

  13. Inhibitory effect of STAT3 gene combined with CDDP on growth of human Wilms tumour SK-NEP-1 cells.

    PubMed

    Wang, Junrong; Zhang, Nina; Qu, Haijiang; You, Guangxian; Yuan, Junhui; Chen, Caie; Li, Wenyi; Pan, Feng

    2016-07-01

    To investigate the effects of signal transducer and activator of transcription 3 (STAT3) combined with cisplatin (CDDP) on the growth of human Wilms tumour (WT) SK-NEP-1 cell subcutaneous xenografts in nude mice and the possible mechanisms. Human WT SK-NEP-1 cells were subcutaneously transplanted to establish the BALB/c nude mice xenograft model. Mice were randomly divided into five groups: blank control group, adenovirus control group (NC group), STAT3 group, CDDP group and STAT3 plus CDDP group (combination group). Tumour volume and tumour weight were observed during the therapeutic process. The expression levels of STAT3, glucose regulatory protein 78 (GRP78) and BCL2-associated X protein (BAX) were evaluated by immunohistochemical analysis. Compared with the STAT3 group or CDDP group, the tumour weight and volume was significantly reduced in the combination group (P<0.05). No statistical significance was found in NC group compared with the blank control group (P > 0.05). Immunohistochemical analysis showed that STAT3, GRP78 and BAX protein levels in the combination group were significantly higher than those in STAT3 group and CDDP group (P<0.05). Exogenous STAT3 and CDDP may synergistically inhibit the xenograft tumour growth through up-regulation of BAX protein via GRP78. PMID:27129294

  14. Cellular response to micropatterned growth promoting and inhibitory substrates

    PubMed Central

    2013-01-01

    Background Normal development and the response to injury both require cell growth, migration and morphological remodeling, guided by a complex local landscape of permissive and inhibitory cues. A standard approach for studying by such cues is to culture cells on uniform substrates containing known concentrations of these molecules, however this method fails to represent the molecular complexity of the natural growth environment. Results To mimic the local complexity of environmental conditions in vitro, we used a contact micropatterning technique to examine cell growth and differentiation on patterned substrates printed with the commonly studied growth permissive and inhibitory substrates, poly-L-lysine (PLL) and myelin, respectively. We show that micropatterning of PLL can be used to direct adherence and axonal outgrowth of hippocampal and cortical neurons as well as other cells with diverse morphologies like Oli-neu oligodendrocyte progenitor cell lines and fibroblast-like COS7 cells in culture. Surprisingly, COS7 cells exhibited a preference for low concentration (1 pg/mL) PLL zones over adjacent zones printed with high concentrations (1 mg/mL). We demonstrate that micropatterning is also useful for studying factors that inhibit growth as it can direct cells to grow along straight lines that are easy to quantify. Furthermore, we provide the first demonstration of microcontact printing of myelin-associated proteins and show that they impair process outgrowth from Oli-neu oligodendrocyte precursor cells. Conclusion We conclude that microcontact printing is an efficient and reproducible method for patterning proteins and brain-derived myelin on glass surfaces in order to study the effects of the microenvironment on cell growth and morphogenesis. PMID:24119185

  15. Inhibitory Effects of PEI-RGD/125I-(αV) ASODN on Growth and Invasion of HepG2 Cells

    PubMed Central

    Cai, Haidong; Qiao, Yu; Sun, Ming; Yuan, Xueyu; Luo, Qiong; Yang, Yuehua; Yuan, Shidong; Lv, Zhongwei

    2015-01-01

    Background To investigate the in vitro inhibitory effects of PEI-RGD/125I-(αV)ASODN (PEI, polyethylenimine; RGD, Arg-Gly-Asp; ASODN, antisense oligodeoxynucleotide) on the growth and invasion of HepG2 cells. Material/Methods ASODN of the integrin αV-subunit was marked with 125I and underwent complexation with PEI-RGD, a PEI derivative. Next, PEI-RGD/125I-(αV) ASODN was introduced into HepG2 cells via receptor-mediated transfection, and its inhibition rate on HepG2 cell growth was tested using the methyl thiazolyl tetrazolium (MTT) method. The effects of PEI-RGD/125I-(αV) ASODN on HepG2 cell invasion ability were evaluated using the Boyden chamber assay. Results 1) The 125I marking rate of (αV) ASODN was 73.78±4.09%, and the radiochemical purity was 96.68±1.38% (greater than 90% even after a 48-h incubation period at 37°C), indicating high stability. 2) The cytotoxicity assays showed that the cell inhibition rates did not differ significantly between the PEI-RGD/125I-(αV)ASODN group and the PEI-RGD/(αV) ASODN group, but they were both significantly higher than in the other groups and were positively correlated (r=0.879) with the dosage within a certain range. 3) The invasion assays showed that the inhibition rate was significantly greater in the PEI-RGD/125I-(αV) ASODN group compared to the other groups. Conclusions PEI-RGD/125I-(αV) ASODN can efficiently inhibit the growth and proliferation of HepG2 cells and can also weaken their invasive ability. PMID:26258995

  16. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway.

    PubMed

    Su, Ke; Wang, Chun-Fang; Zhang, Ying; Cai, Yu-Jie; Zhang, Yan-Yan; Zhao, Qian

    2016-08-01

    Cervical cancer has been the fourth most common cancer killing many women across the world. Carnosic acid (CA), as a phenolic diterpene, has been suggested to against cancer, exerting protective effects associated with inflammatory cytokines. It is aimed to demonstrate the therapeutic role of carnosic acid against cervical cancer and indicate its underlying molecular mechanisms. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) was performed to assess the possible anti-proliferative effects of carnosic acid. And also, colony formation was used to further estimate carnosic acid's ability in suppressing cervical cancer cells proliferation. Flow cytometry assays were performed here to indicate the alterations of cervical cancer cells cycle and the development of apoptosis. Western blot assays and RT-PCR were also applied to clarify the apoptosis-associated signaling pathways affected by reactive oxygen species (ROS) generation. And immunofluorescence was used to detect ROS-positive cells. In vivo experiments, CaSki xenograft model samples of nude mice were involved to further elucidate the effects of carnosic acid. In our results, we found that carnosic acid exerted anti-tumor ability in vitro supported by up-regulation of apoptosis and ROS production in cervical cancer cells. Also, acceleration of ROS led to the phospharylation of (c-Jun N-terminal kinase (JNK) and its-related signals, as well as activation of Endoplasmic Reticulum (ER) stress, promoting the progression of apoptosis via stimulating Caspase3 expression. The development and growth of xenograft tumors in nude mice were found to be inhibited by the administration of carnosic acid for five weeks. And the suppressed role of carnosic acid in proliferation of cervical cancer cells and apoptosis of nude mice with tumor tissues were observed in our study. Taken together, our data indicated that carnosic acid resulted in apoptosis both in vitro and vivo experiments via promoting ROS and

  17. Isolation of an inhibitory insulin-like growth factor (IGF) binding protein from bone cell-conditioned medium: A potential local regulator of IGF action

    SciTech Connect

    Mohan, S.; Bautista, C.M.; Wergedal, J.; Baylink, D.J. )

    1989-11-01

    Inhibitory insulin-like growth factor binding protein (In-IGF-BP) has been purified to homogeneity from medium conditioned by TE89 human osteosarcoma cells by two different methods using Sephadex G-100 gel filtration, FPLC Mono Q ion-exchange, HPLC C{sub 4} reverse-phase, HPLC CN reverse-phase and affinity chromatographies. In-IGF-BP thus purified appeared to be homogeneous and unique by the following criteria. (i) N-terminal sequence analysis yielded a unique sequence (Asp-Glu-Ala-Ile-His-Cys-Pro-Pro-Glu-Ser-Glu-Ala-Lys-Leu-Ala). (ii) Amino acid composition of In-IGF-BP revealed marked differences with the amino acid compositions of other known PBs. (iii) In-IGF-BP exhibited a single band with molecular mass of 25 kDa under reducing conditions on sodium dodecyl sulfate/polyacrylamide gels. IGF-I and IGF-II but not insulin displaced the binding of {sup 125}I-labeled IGF-I or {sup 125}I-labeled IGF-II binding to In-IGF-BP. In-IGF-BP inhibited basal, IGF-stimulated bone cell proliferation and serum-stimulated bone cell proliferation. Forskolin increases synthesis of In-IGF-BP in TE85 human osteosarcoma cells in a dose-dependent manner. Based on these findings, the authors conclude that In-IGF-BP is a protein that has a unique sequence and significant biological actions on bone cells.

  18. Serum fractions inhibitory to the growth of Leptospires.

    PubMed

    Ryu, E

    1965-11-01

    It is known that the growth inhibitory substance of animal sera on Leptospires exists in the albumin fraction. Since the globulin fraction obtained from animal sera having growth inhibitory property may support, though variable individually, some degree of leptospiral growth, it may be added, with 5% of pooled rabbit serum, to the medium to be used for the propagation of Leptospires. PMID:4220645

  19. Glanduliferins A and B, two new glucosylated steroids from Impatiens glandulifera, with in vitro growth inhibitory activity in human cancer cells.

    PubMed

    Cimmino, Alessio; Mathieu, Véronique; Evidente, Marco; Ferderin, Marlène; Moreno Y Banuls, Laetitia; Masi, Marco; De Carvalho, Annelise; Kiss, Robert; Evidente, Antonio

    2016-03-01

    Impatiens glandulifera has been imported from Himalaya in Europe and is considered as an invasive alien plant whose spreading arouses increasing interest among scientific literature. Via anti-cancer bioguiding, two new glucosylated steroids, named glanduliferins A and B, were isolated from the dried stem of I. glandulifera plants, together with the well-known α-spinasterol and 2-methoxy-1,4-naphthoquinone, which are also isolated from roots and leaves. They were characterized as 17-(2-hydroxy-2-pentamethylcyclopropyl-ethyl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopents[a]phenathren-3-O-(4-O-acetyl)-α-D-glucopyranoside and 17-(4-ethyl-1,5-dimethyl-hex-2-enyl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopents[a]phenathren-3-O-(6-O-acetyl)-β-D-glucopyranoside using various NMR and HRESIMS techniques and chemical methods. In vitro determination of the growth inhibitory activity of the four isolated compounds using the MTT colorimetric assay revealed mean IC50 growth inhibitory value of ~30 μM for glanduliferin A while glanduliferin B and α-spinasterol were poorly active till 100 μM. 2-methoxy-1,4-naphthoquinone revealed to be active in the single micromolar digit range as previously described. Quantitative videomicroscopy analyses of the effects of glanduliferins A and B suggested cytostatic rather than cytotoxic activity in U373 glioblastoma (GBM) cells. PMID:26732071

  20. Predictors of Longitudinal Growth in Inhibitory Control in Early Childhood

    ERIC Educational Resources Information Center

    Moilanen, Kristin L.; Shaw, Daniel S.; Dishion, Thomas J.; Gardner, Frances; Wilson, Melvin

    2010-01-01

    In the current study, we examined latent growth in 731 young children's inhibitory control from the ages of two to four years, and whether demographic characteristics or parenting behaviors were related to initial levels and growth in inhibitory control. As part of an ongoing longitudinal evaluation of the family check-up, children's inhibitory…

  1. Relationship between lipophilicity and inhibitory activity against cancer cell growth of nine kinds of alk(en)yl trisulfides with different side chains.

    PubMed

    Iitsuka, Yuji; Tanaka, Yuki; Hosono-Fukao, Tomomi; Hosono, Takashi; Seki, Taiichiro; Ariga, Toyohiko

    2010-01-01

    Of the compounds contained in or derived from garlic (Allium sativum L.), alk(en)yl sulfides are known to be responsible for most of the physiological or neutraceutical functions of garlic. We previously found that diallyl trisulfide (DATS) is a potent inhibitor of tubulin polymerization and cancer cell growth, and an effective stimulator of the hepatic detoxification system. Here, we synthesized nine trisulfides having different aliphatic side chains, and determined their log P, a parameter for lipophilicity of nonionized solutes, and inhibitory activities, IC50 (microM), toward cancer cell growth. The log P values of these trisulfides ranged from the lowest, 2.72, for dimethyl trisulfide, to the highest, 7.62, for dipentyl trisulfide. The relationship between the IC50 and log P of the nine trisulfides was parabolic in nature, in which dibutenyl- and dipropyl-compounds, determined to have a log P of approximately 5, were located at the minimum point of the parabola, indicating the maximum potency. The reason why DATS, having a log P of about 4, was excessively stronger than diethyl trisulfide, with a similar log P, is not fully understood; but perhaps it can be explained by a higher reactivity of the diallyl compound in nucleophilic substitution. The compounds with 3-carbon chains were stronger in terms of growth inhibition than the others; but weaker compounds, those with 4- or 5-carbon chains, showed higher activity if a double bond was introduced into them to reduce their log P to the effective range. In this study, we confirmed the superiority of trisulfides with 3-carbon chains [i.e., DATS and dipropyl trisulfide (DPTS)]. In addition, we observed for the first time that dibutenyl trisulfide, a compound not found in garlic, is one of the potent structures among alk(en)yl trisulfides. PMID:20939433

  2. Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells

    PubMed Central

    Camirand, Anne; Zakikhani, Mahvash; Young, Fiona; Pollak, Michael

    2005-01-01

    Introduction Gefitinib (Iressa, ZD 1839, AstraZeneca) blocks the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and inhibits proliferation of several human cancer cell types including breast cancer. Phase II clinical trials with gefitinib monotherapy showed an objective response of 9 to 19% in non-small-cell lung cancer patients and less than 10% for breast cancer, and phase III results have indicated no benefit of gefitinib in combination with chemotherapy over chemotherapy alone. In order to improve the antineoplastic activity of gefitinib, we investigated the effects of blocking the signalling of the insulin-like growth factor 1 receptor (IGF-1R), a tyrosine kinase with a crucial role in malignancy that is coexpressed with EGFR in most human primary breast carcinomas. Methods AG1024 (an inhibitor of IGF-1R) was used with gefitinib for treatment of MDA468, MDA231, SK-BR-3, and MCF-7 breast cancer lines, which express similar levels of IGF-1R but varying levels of EGFR. Proliferation assays, apoptosis induction studies, and Western blot analyses were conducted with cells treated with AG1024 and gefitinib as single agents and in combination. Results Gefitinib and AG1024 reduced proliferation in all lines when used as single agents, and when used in combination revealed an additive-to-synergistic effect on cell growth inhibition. Flow cytometry measurements of cells stained with annexin V-propidium iodide and cells stained for caspase-3 activation indicated that adding an IGF-1R-targeting strategy to gefitinib results in higher levels of apoptosis than are achieved with gefitinib alone. Gefitinib either reduced or completely inhibited p42/p44 Erk kinase phosphorylation, depending on the cell line, while Akt phosphorylation was reduced by a combination of the two agents. Overexpression of IGF-1R in SK-BR-3 cells was sufficient to cause a marked enhancement in gefitinib resistance. Conclusion These results indicate that IGF-1R signaling

  3. Inhibitory effect of RNA-mediated knockdown of zinc finger protein 91 pseudogene on pancreatic cancer cell growth and invasion

    PubMed Central

    Huang, Weiyi; Li, Ning; Hu, Jiong; Wang, Lei

    2016-01-01

    Worldwide, human pancreatic cancer is a rare malignancy with a poor prognosis. Long non-coding RNAs (lncRNAs) are known to have a crucial role in cancer occurrence and progression; however, the role of pseudogene-expressed lncRNAs, a major type of lncRNA, have not been thoroughly analyzed in cancer. Therefore, the present study focused on zinc finger protein 91 pseudogene (ZFP91-P). ZFP91-P expression was initially detected in two pancreatic cancer cell lines by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the highest expression of ZFP91-P was found in the BXPC-3-H cell line. Subsequently, BXPC-3-H cells were transfected with ZFP91-P short hairpin RNA (shRNA) using a plasmid vector and termed shZFP91-P. Cells transfected with negative control plasmid vector were termed shCon. MTT and Transwell assays were performed to analyze the proliferation and migration of BXPC-3-H cells, respectively, and western blotting was used to detect epithelial-mesenchymal transition markers, including vimentin and β-catenin. The present study showed that depletion of ZFP91-P markedly decreased pancreatic cancer cell proliferation and inhibited cell migration capacity. In addition, the expression of β-catenin increased while vimentin expression decreased. The current findings suggest that high expression of ZFP91-P promotes the migration of BXPC-3-H cells and may be a novel marker for early diagnosis for pancreatic cancer. PMID:27446435

  4. Predictors of Longitudinal Growth in Inhibitory Control in Early Childhood

    PubMed Central

    Moilanen, Kristin L.; Shaw, Daniel S.; Dishion, Thomas J.; Gardner, Frances; Wilson, Melvin

    2009-01-01

    In the current study, we examined latent growth in 731 young children’s inhibitory control from ages 2 to 4, and whether demographic characteristics or parenting behaviors were related to initial levels and growth in inhibitory control. As part of an ongoing longitudinal evaluation of the Family Check-Up (FCU), children’s inhibitory control was assessed yearly at ages 2, 3, and 4. Inhibitory control was initially low and increased linearly to age 4. High levels of harsh parenting and male gender were associated with low initial status in inhibitory control. High levels of supportive parenting were associated with faster growth. Extreme family poverty and African American ethnicity were also associated with slower growth. The results highlight parenting as a target for early interventions in contexts of high socioeconomic risk. PMID:20376201

  5. Macrophage migration inhibitory factor up-regulates alpha(v)beta(3) integrin and vascular endothelial growth factor expression in endometrial adenocarcinoma cell line Ishikawa.

    PubMed

    Bondza, Patrick Kibangou; Metz, Christine N; Akoum, Ali

    2008-04-01

    Human endometrium undergoes a series of dynamic physiological changes during the menstrual cycle of reproductive age women. Many factors, including hormones, cytokines, growth factors, matrix metalloproteinases and integrins, are essential for the success of embryonic implantation into endometrial tissue. Herein, we used a well-differentiated endometrial adenocarcinoma cell line, Ishikawa, to investigate in vitro the role played by macrophage migration inhibitory factor (MIF) in the regulation of endometrial receptivity markers. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that MIF induced a slight increase in alpha(v) (alphav) mRNA integrin subunit expression during the first 12h, but reached a significant difference after 24h MIF treatment compared to control, whereas beta(3) (beta3) integrin subunit displayed significant increase in mRNA 2h following treatment. Immunocytofluorescence showed strong alphav and beta3 immunostaining at 25 ng/ml MIF, and Western blotting clearly indicated increased alphav and beta3 protein expression. MIF treatment significantly stimulated vascular endothelial growth factor (VEGF) mRNA expression in a dose- and time-dependent manner after 24 h treatment. Moreover, immunocytofluorescence revealed positive VEGF immunostaining compared to control, and analysis by ELISA of VEGF release in culture supernatants demonstrated that MIF (25 ng/ml) significantly induced VEGF secretion at 12 and 24 h. In conclusion, this study provides evidence that MIF directly up-regulates alphavbeta3 integrin and VEGF expression in human endometrial Ishikawa cells and may advance our understanding of factors involved in the establishment of endometrial receptivity and successful implantation. PMID:17854909

  6. Synergistic growth inhibitory effect of deracoxib with doxorubicin against a canine mammary tumor cell line, CMT-U27

    PubMed Central

    BAKIREL, Tülay; ALKAN, Fulya Üstün; ÜSTÜNER, Oya; ÇINAR, Suzan; YILDIRIM, Funda; ERTEN, Gaye; BAKIREL, Utku

    2016-01-01

    Cyclooxygenase (COX) inhibitors have been shown to exert anti-angiogenic and anti-tumor activities on many types of malignant tumors. These anticancer properties make it worthwhile to examine the possible benefit of combining COX inhibitors with other anti-cancer agents. In the present study, we evaluated the potential of deracoxib (DER) in potentiating antitumor activity of doxorubicin (DOX) in canine mammary carcinoma cells (CMT-U27). DER (50–250 µM) enhanced the antiproliferative activity of DOX by reducing the IC50 (approximately 3- to 3.5 fold). Interaction analysis of the data showed that combinations of DOX at 0.9 µM with DER (100–250 µM) produced synergism in the CMT-U27 cell line, with a ratio index ranging from 1.98 to 2.33. In additional studies identifying the mechanism of observed synergistic effect, we found that DER strongly potentiated DOX-caused G0/G1 arrest in cell cycle progression. Also, DER (100–250 µM) augmented apoptosis induction with approximately 1.35- and 1.37- fold increases in apoptotic response caused by DOX in the cells. DER enhanced the antiproliferative effect of DOX in conjunction with induction of apoptosis by modulation of Bcl-2 expression and changes in the cell cycle of the CMT-U27 cell line. Although the exact molecular mechanism of the alterations in the cell cycle and apoptosis observed with DER and DOX combinations require further investigations, the results suggest that the synergistic effect of DOX and DER combinations in CMT therapy may be achieved at relatively lower doses of DOX with lesser side effects. Therefore, combining DER with DOX may prove beneficial in the clinical treatment of canine mammary cancer. PMID:26822118

  7. Synergistic growth inhibitory effect of deracoxib with doxorubicin against a canine mammary tumor cell line, CMT-U27.

    PubMed

    Bakirel, Tülay; Alkan, Fulya Üstün; Üstüner, Oya; Çinar, Suzan; Yildirim, Funda; Erten, Gaye; Bakirel, Utku

    2016-05-01

    Cyclooxygenase (COX) inhibitors have been shown to exert anti-angiogenic and anti-tumor activities on many types of malignant tumors. These anticancer properties make it worthwhile to examine the possible benefit of combining COX inhibitors with other anti-cancer agents. In the present study, we evaluated the potential of deracoxib (DER) in potentiating antitumor activity of doxorubicin (DOX) in canine mammary carcinoma cells (CMT-U27). DER (50-250 µM) enhanced the antiproliferative activity of DOX by reducing the IC50 (approximately 3- to 3.5 fold). Interaction analysis of the data showed that combinations of DOX at 0.9 µM with DER (100-250 µM) produced synergism in the CMT-U27 cell line, with a ratio index ranging from 1.98 to 2.33. In additional studies identifying the mechanism of observed synergistic effect, we found that DER strongly potentiated DOX-caused G0/G1 arrest in cell cycle progression. Also, DER (100-250 µM) augmented apoptosis induction with approximately 1.35- and 1.37- fold increases in apoptotic response caused by DOX in the cells. DER enhanced the antiproliferative effect of DOX in conjunction with induction of apoptosis by modulation of Bcl-2 expression and changes in the cell cycle of the CMT-U27 cell line. Although the exact molecular mechanism of the alterations in the cell cycle and apoptosis observed with DER and DOX combinations require further investigations, the results suggest that the synergistic effect of DOX and DER combinations in CMT therapy may be achieved at relatively lower doses of DOX with lesser side effects. Therefore, combining DER with DOX may prove beneficial in the clinical treatment of canine mammary cancer. PMID:26822118

  8. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines.

    PubMed

    Yesil-Celiktas, Ozlem; Sevimli, Canan; Bedir, Erdal; Vardar-Sukan, Fazilet

    2010-06-01

    The leaves of Rosmarinus officinalis harvested from three different locations of Turkey were extracted by both methanolic and supercritical CO(2) extraction. Subsequently, six extracts and the active compounds, carnosic acid, and rosmarinic acid were applied to various human cancer cell lines including NCI-H82 (human, small cell lung, carcinoma), DU-145 (human, prostate, carcinoma), Hep-3B (human, black, liver, carcinoma, hepatocellular), K-562 (human chronic myeloid leukemia), MCF-7 (human, breast, adenocarcinoma), PC-3 (human, prostate, adenocarcinoma) and MDA-MB-231 (human, breast, adenocarcinoma) by MTT assay. Supercritical CO(2) extracts had superior antiproliferative effect compared to the soxhlet extracts. Although the extracts exhibited various cytotoxic effects against different cell lines, comparatively low IC(50) values ranging between 12.50 and 47.55 microg/ml were attained against K-562, being the most sensitive cell line. Moreover, carnosic acid caused the lowest cell viability with values ranging from 13 to 30 % at a concentration of 19 muM after 48 h of treatments, resulting in superior antiproliferative effect. Rosemary extract is a potential candidate to be included in the anti-cancer diet with pre-determined doses avoiding toxicity. PMID:20449663

  9. Plant-derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) exhibits growth inhibitory effects in prostate cancer cells

    PubMed Central

    Sarkar, Shayan; Jain, Sumeet; Rai, Vineeta; Sahoo, Dipak K.; Raha, Sumita; Suklabaidya, Sujit; Senapati, Shantibhusan; Rangnekar, Vivek M.; Maiti, Indu B.; Dey, Nrisingha

    2015-01-01

    The gene Par-4 (Prostate Apoptosis Response 4) was originally identified in prostate cancer cells undergoing apoptosis and its product Par-4 showed cancer specific pro-apoptotic activity. Particularly, the SAC domain of Par-4 (SAC-Par-4) selectively kills cancer cells leaving normal cells unaffected. The therapeutic significance of bioactive SAC-Par-4 is enormous in cancer biology; however, its large scale production is still a matter of concern. Here we report the production of SAC-Par-4-GFP fusion protein coupled to translational enhancer sequence (5′ AMV) and apoplast signal peptide (aTP) in transgenic Nicotiana tabacum cv. Samsun NN plants under the control of a unique recombinant promoter M24. Transgene integration was confirmed by genomic DNA PCR, Southern and Northern blotting, Real-time PCR, and Nuclear run-on assays. Results of Western blot analysis and ELISA confirmed expression of recombinant SAC-Par-4-GFP protein and it was as high as 0.15% of total soluble protein. In addition, we found that targeting of plant recombinant SAC-Par-4-GFP to the apoplast and endoplasmic reticulum (ER) was essential for the stability of plant recombinant protein in comparison to the bacterial derived SAC-Par-4. Deglycosylation analysis demonstrated that ER-targeted SAC-Par-4-GFP-SEKDEL undergoes O-linked glycosylation unlike apoplast-targeted SAC-Par-4-GFP. Furthermore, various in vitro studies like mammalian cells proliferation assay (MTT), apoptosis induction assays, and NF-κB suppression suggested the cytotoxic and apoptotic properties of plant-derived SAC-Par-4-GFP against multiple prostate cancer cell lines. Additionally, pre-treatment of MAT-LyLu prostate cancer cells with purified SAC-Par-4-GFP significantly delayed the onset of tumor in a syngeneic rat prostate cancer model. Taken altogether, we proclaim that plant made SAC-Par-4 may become a useful alternate therapy for effectively alleviating cancer in the new era. PMID:26500666

  10. Characterization, Purification of Poncirin from Edible Citrus Ougan (Citrus reticulate cv. Suavissima) and Its Growth Inhibitory Effect on Human Gastric Cancer Cells SGC-7901

    PubMed Central

    Zhu, Xiaoyan; Luo, Fenglei; Zheng, Yixiong; Zhang, Jiukai; Huang, Jianzhen; Sun, Chongde; Li, Xian; Chen, Kunsong

    2013-01-01

    Poncirin is a bitter flavanone glycoside with various biological activities. Poncirin was isolated from four different tissues (flavedo, albedo, segment membrane, and juice sac) of Ougan fruit (Citrus reticulate cv. Suavissima). The highest content of poncirin was found in the albedo of Ougan fruit (1.37 mg/g DW). High speed counter-current chromatography (HSCCC) combined with D101 resin chromatography was utilized for the separation and purification of poncirin from the albedo of Ougan fruit. After this two-step purification, poncirin purity increased from 0.14% to 96.56%. The chemical structure of the purified poncirin was identified by both HPLC-PDA and LC-MS. Poncirin showed a significant in vitro inhibitory effect on the growth of the human gastric cancer cells, SGC-7901, in a dose-dependent manner. Thus, poncirin from Ougan fruit, may be beneficial for gastric cancer prevention. The purification method demonstrated here will be useful for further studies on the pharmacological mechanism of poncirin activity, as well as for guiding the consumption of Ougan fruit. PMID:23615464

  11. Elevated serum levels of macrophage migration inhibitory factor and stem cell growth factor β in patients with idiopathic and systemic sclerosis associated pulmonary arterial hypertension.

    PubMed

    Stefanantoni, K; Sciarra, I; Vasile, M; Badagliacca, R; Poscia, R; Pendolino, M; Alessandri, C; Vizza, C D; Valesini, G; Riccieri, V

    2015-01-01

    Pulmonary arterial hypertension (PAH) can be idiopathic or secondary to autoimmune diseases, and it represents one of the most threatening complications of systemic sclerosis (SSc). Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with proinflammatory functions that appears to be involved in the pathogenesis of hypoxia-induced PH. In SSc patients, high serum levels of MIF have been associated with the development of ulcers and PAH. Stem cell growth factor β (SCGF β) is a human growth factor that, together with MIF, is involved in the pathogenesis of chronic spinal cord injury. The aim of our study was to measure serum levels of MIF in patients with idiopathic and SSc-associated PAH. We enrolled 13 patients with idiopathic PAH and 15 with SSc-associated PAH. We also selected 14 SSc patients without PAH and 12 normal healthy controls, matched for sex and age. PAH was confirmed by right hearth catheterism (mPAP>25 mmHg). MIF and SCGF β levels were measured by ELISA. We found significantly higher circulating levels of MIF and of SCGF β in patients with idiopathic PAH (P=0.03 and P=0.004) and with PAH secondary to SSc (P=0.018 and P=0.023) compared to SSc patients without PAH. Higher levels of MIF were found in those patients with an higher New York Heart Association (NYHA) class (P=0.03). We can hypothesize that MIF and SCGF β are able to play a role in PAH, both idiopathic or secondary, and in the future they may be evaluated as useful biomarkers and prognostic factors for this serious vascular disease. PMID:25829187

  12. [Inhibitory effect of tumor growth by methionine-enkephalin].

    PubMed

    Mascarenhas, G; Quirico-Santos, T

    1992-03-01

    Methionine-enkephalin (Met-Enk) is an endogenous opioid pentapeptide derived from the prohormone proenkephalin A, present in neuroendocrine and hematopoietic cells. Enkephalins are known to play an important role on the processes of induction, activation and control of immunomodulatory events. Met-Enk has been considered a potent antitumoral agent. The present study shows that Met-Enk exerts an inhibitory effect on the growth of a macrophage derived fibrous histiocytoma (MC-II) inoculated intradermally into BALB/cJ mice. Such effect was mainly influenced by the protocol, route of administration and concentration of Met-Enk used for treatment. Neither higher doses of Met-Enk injected intracerebrally or subcutaneously, nor the use of various protocols of treatment, did modify the process of tumorigenesis. In contrast, low dose (0.25 mg/kg) of Met-Enk injected intracerebrally together with tumor inoculation, significantly reduced tumor growth and prolonged survival rate. PMID:1339154

  13. A Peculiar Molecular Profile of Umbilical Cord-Mesenchymal Stromal Cells Drives Their Inhibitory Effects on Multiple Myeloma Cell Growth and Tumor Progression

    PubMed Central

    Ciavarella, Sabino; Caselli, Anna; Tamma, Antonella Valentina; Savonarola, Annalisa; Loverro, Giuseppe; Paganelli, Roberto; Tucci, Marco

    2015-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are under intensive investigation in preclinical models of cytotherapies against cancer, including multiple myeloma (MM). However, the therapeutic use of stromal progenitors holds critical safety concerns due to their potential MM-supporting activity in vivo. Here, we explored whether MSCs from sources other than BM, such as adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs), affect MM cell growth in comparison to either normal (nBM-MSCs) or myelomatous marrow MSCs (MM-BM-MSCs). Results from both proliferation and clonogenic assays indicated that, in contrast to nBM- and MM-BM-MSCs, both AD and particularly UC-MSCs significantly inhibit MM cell clonogenicity and growth in vitro. Furthermore, when co-injected with UC-MSCs into mice, RPMI-8226 MM cells formed smaller subcutaneous tumor masses, while peritumoral injections of the same MSC subtype significantly delayed the tumor burden growing in subcutaneous plasmocytoma-bearing mice. Finally, both microarrays and ELISA revealed different expression of several genes and soluble factors in UC-MSCs as compared with other MSCs. Our data suggest that UC-MSCs have a distinct molecular profile that correlates with their intrinsic anti-MM activity and emphasize the UCs as ideal sources of MSCs for future cell-based therapies against MM. PMID:25758779

  14. The inhibitory effect of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1{alpha} expression

    SciTech Connect

    Xu, Wei; Guo, Ting; Zhang, Yan; Jiang, Xiaohong; Zhang, Yongxian; Zen, Ke; Yu, Bo; Zhang, Chen-Yu

    2011-05-01

    Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPAR{gamma}) coactivator-1 alpha (PGC-1{alpha}) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1{alpha} in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1{alpha} expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1{alpha} mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1{alpha} expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1{alpha} by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1{alpha} had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1{alpha} decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPAR{gamma} activation by a PPAR{gamma} antagonist GW9662 abolished the suppressive effects of PGC-1{alpha} on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1{alpha} were enhanced by a PPAR{gamma} agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1{alpha} expression. PGC-1{alpha} suppresses PDGF-induced VSMC migration through PPAR{gamma} coactivation and, consequently, p38 MAPK inhibition.

  15. Review of Growth Inhibitory Peptide as a biotherapeutic agent for tumor growth, adhesion, and metastasis.

    PubMed

    Muehlemann, M; Miller, K D; Dauphinee, M; Mizejewski, G J

    2005-09-01

    This review surveys the biological activities of an alpha-fetoprotein (AFP) derived peptide termed the Growth Inhibitory Peptide (GIP), which is a synthetic 34 amino acid segment produced from the full length 590 amino acid AFP molecule. The GIP has been shown to be growth-suppressive in both fetal and tumor cells but not in adult terminally-differentiated cells. The mechanism of action of this peptide has not been fully elucidated; however, GIP is highly interactive at the plasma membrane surface in cellular events such as endocytosis, cell contact inhibition and cytoskeleton-induced cell shape changes. The GIP was shown to be growth-suppressive in nine human tumor types and to suppress the spread of tumor infiltrates and metastases in human and mouse mammary cancers. The AFP-derived peptide and its subfragments were also shown to inhibit tumor cell adhesion to extracellular matrix (ECM) proteins and to block platelet aggregation; thus it was expected that the GIP would inhibit cell spreading/migration and metastatic infiltration into host tissues such as lung and pancreas. It was further found that the cyclic versus linear configuration of GIP determined its biological and anti-cancer efficacy. Genbank amino acid sequence identities with a variety of integrin alpha/beta chain proteins supported the GIP's linkage to inhibition of tumor cell adhesion and platelet aggregation. The combined properties of tumor growth suppression, prevention of tumor cell-to-ECM adhesion, and inhibition of platelet aggregation indicate that tumor-to-platelet interactions present promising targets for GIP as an anti-metastatic agent. Finally, based on cholinergic studies, it was proposed that GIP could influence the enzymatic activity of membrane acetylcholinesterases during tumor growth and metastasis. It was concluded that the GIP derived from full-length AFP represents a growth inhibitory motif possessing instrinsic properties that allow it to interfere in cell surface events such

  16. INTRODUCTION OF A HA-RAS ONCOGENE INTO RAT LIVER EPITHELIAL CELLS AND PARENCHYMAL HEPATACYTES CONFERS REISTANCE TO THE GROWTH INHIBITORY EFFECTS OF TGF-B

    EPA Science Inventory

    Growth of rat liver epithelial cells (RLEC) and primary cultures of parenchymal hepatocytes is potentially inhibited by TGF-b. Transfection of a mutaged Ha-ras oncogene, but not a human c-myc oncogene, into RLEC resulted in cell lines ressitant to growth inhibition by TGF-b under...

  17. Xanthine oxidase inhibitory triterpenoid and phloroglucinol from guttiferaceous plants inhibit growth and induced apoptosis in human NTUB1 cells through a ROS-dependent mechanism.

    PubMed

    Lin, Kai-Wei; Huang, A-Mei; Tu, Huang-Yao; Lee, Ling-Yi; Wu, Chien-Chang; Hour, Tzyh-Chyuan; Yang, Shyh-Chyun; Pu, Yeong-Shiau; Lin, Chun-Nan

    2011-01-12

    A known triterpenoid, β-amyrin (1), and a known and a new phloroglucinol, cohulupone (2) and garcinielliptone P (3), were isolated from the pericarp and heartwood and seed of Garcinia subelliptica, respectively. A new xanthonolignoid, hyperielliptone HF (4), was isolated from the heartwood of Hypericum geminiflorum. The new compounds were established by analysis of their spectroscopic data. Compounds 1-3 showed an inhibitory effect on xanthine oxidase (XO). Treatment of NTUB1, a human bladder cancer cell, with 1 or 1 cotreated with cisplatin for 24 h resulted in a decreased viability of cells. Exposure of NTUB1 to 1 or 1 cotreated with cisplatin for 24 h significantly increased the level of production of reactive oxygen species (ROS). Flow cytometric analysis indicated that treatment of NTUB1 with 1 or 1 cotreated with cisplatin led to the cell cycle arrest, accompanied by an increase in the extent of apoptotic cell death in 1 or 1 combined with cisplatin-treated NTUB1 after 24 h. These data suggested that the presentation of cell cycle arrest and apoptosis in 1 or 1 combined with cisplatin-treated NTUB1 for 24 h was mediated through an increased amount of ROS in cells exposed to 1 or 1 cotreated with cisplatin. PMID:21158429

  18. Inhibitory effects of Lang-du extract on the in vitro and in vivo growth of melanoma cells and its molecular mechanisms of action

    PubMed Central

    Wang, Liping; Duan, Huiying; Liu, Kun; Jiang, Peng; Qu, Zhen; Yagasaki, Kazumi

    2010-01-01

    The purpose of this study is to investigate the effects of Lang-du extract (LDE) from Traditional Chinese Medicine (TCM) Euphorbia fischeriana Steud on the in vitro and in vivo growth of melanoma cells and its molecular mechanisms of action. Our present results have shown that LDE significantly suppressed the in vitro melanoma cell growth in dose- and time-dependent manners. LDE also displayed the synergistic effect with γ-radiation on the reduction of the cell viability in melanoma cells. The animal experimental results further confirmed that compared with the control group without drug treatment, the tumor volume in mice was significantly and time-dependently less in LDE group. The absolute weight of solid tumor in the LDE group was 7-fold lower than that in the control group. Western blot analysis indicated that LDE markedly down-regulated the expression of anti-apoptotic protein Bcl-2 and up-regulated the level of pro-apoptotic protein Bax, eventually leading the reduction of Bcl-2/Bax protein ratios both in the cultured melanoma cells and in the tumors from melanoma-bearing mice. In addition, LDE significantly reduced the tumor progression-associated protein levels of vascular endothelial growth factor (VEGF), hepatocyte growth factor/scatter factor (HGF/SF), and osteopontin (OPN) in tumors from the LDE-treated mice. Our findings suggest that LDE may have a wide therapeutic and/or adjuvant therapeutic application in the treatment of melanoma and other cancer. PMID:20607395

  19. Mechanism of growth inhibitory effect of Blumea balsamifera extract in hepatocellular carcinoma.

    PubMed

    Norikura, Toshio; Kojima-Yuasa, Akiko; Shimizu, Miki; Huang, Xuedan; Xu, Shenghui; Kametani, Saeda; Rho, Sook-Nyung; Kennedy, David Opare; Matsui-Yuasa, Isao

    2008-05-01

    Blumea balsamifera is known to improve physiological disorders such as rheumatism and hypertension, but its anticancer activity has not been well elucidated. In this study, we found that Blumea balsamifera MeOH extract (BME) induced growth-inhibitory activity in rat and human hepatocellular carcinoma cells without cytotoxicity in rat hepatocytes which were used as a normal cell model. BME induced cell cycle arrest at the G1 phase via decreases in the expression of cyclin-E and phosphorylation of retinoblastoma protein. Furthermore, BME reduced the level of a proliferation-inducing ligand, that stimulates tumor cell growth. These findings suggest that BME has possible therapeutic potential in hepatoma cancer patients and that depletion of cellular APRIL is an important mechanism in the growth-inhibitory effect of BME. PMID:18460811

  20. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells

    PubMed Central

    Nadeem Aslam, Muhammad; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-01-01

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological level of extracellular Ca2+ (1.4 mM). However, with cells that are resistant to Ca2+ alone, the extract was still able to reduce proliferation and stimulate differentiation. PMID:19394137

  1. Enantiomeric resolution of albendazole sulfoxide by semipreparative HPLC and in vitro study of growth inhibitory effects on human cancer cell lines.

    PubMed

    Belaz, Kátia Roberta A; Denadai, Marina; Almeida, Ana Paula; Lima, Raquel T; Vasconcelos, M Helena; Pinto, M Madalena; Cass, Quezia B; Oliveira, Regina V

    2012-07-01

    Analytical and semipreparative high performance liquid chromatography methods using polysaccharide-based chiral stationary phases were developed for the enantiomeric resolution of albendazol sulfoxide. The enantioseparation of this compound was evaluated with four chiral stationary phases: cellulose and amylose tris(3,5-dimethylphenylcarbamate), amylose tris[(S)-1-phenylethylcarbamate] and amylose tris(3,5-dimethoxyphenylcarbamate), under three elution conditions: normal, reversed-phase and polar organic mode. The influences of the mobile phase and of the structure of the chiral stationary phase on the enantiomeric separation are discussed. The best chiral performances were achieved on an amylose tris(3,5-dimethylphenylcarbamate) phase under normal (R(s)=4.96) and polar organic mode (R(s)=2.60 and 3.09). A polar organic condition using methanol as mobile phase offered shorter retention factors (k(1)=0.34) and was scaled up to semipreparative HPLC to obtain milligram quantities of both albendazole sulfoxide enantiomers for further in vitro studies. Optical rotation and circular dichroism of both enantiomers of albendazole sulfoxide was determined. The compounds ABZ, ABZ-SO, (R)-(+)-ABZ-SO and (S)-(-)-ABZ-SO were all evaluated regarding their capacity to inhibit the in vitro growth of three human tumor cell lines: MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A375-C5 (melanoma). In addition, the effect of the (R)-(+)-ABZ-SO compound in the cell cycle profile and apoptosis of MCF-7 cells were also studied. Results indicated that compound ABZ was the most potent regarding cell growth inhibition and that the (+)-(R)-ABZ was a more potent inhibitor of cell growth than the (S)-(-)-ABZ-SO, particularly in the MCF-7 cell line. In addition, the (R)-(+)-ABZ-SO significantly increased the levels of apoptosis of the MCF-7 cells. PMID:22487592

  2. Potentiation of Growth Inhibitory Responses of the mTOR Inhibitor Everolimus by Dual mTORC1/2 Inhibitors in Cultured Breast Cancer Cell Lines

    PubMed Central

    Leung, Euphemia Y.; Askarian-Amiri, Marjan; Finlay, Graeme J.; Rewcastle, Gordon W.; Baguley, Bruce C.

    2015-01-01

    The mammalian target of rapamycin (mTOR), a vital component of signaling pathways involving PI3K/AKT, is an attractive therapeutic target in breast cancer. Everolimus, an allosteric mTOR inhibitor that inhibits the mTOR functional complex mTORC1, is approved for treatment of estrogen receptor positive (ER+) breast cancer. Other mTOR inhibitors show interesting differences in target specificities: BEZ235 and GSK2126458 are ATP competitive mTOR inhibitors targeting both PI3K and mTORC1/2; AZD8055, AZD2014 and KU-0063794 are ATP competitive mTOR inhibitors targeting both mTORC1 and mTORC2; and GDC-0941 is a pan-PI3K inhibitor. We have addressed the question of whether mTOR inhibitors may be more effective in combination than singly in inhibiting the proliferation of breast cancer cells. We selected a panel of 30 human breast cancer cell lines that included ER and PR positive, HER2 over-expressing, and “triple negative” variants, and determined whether signaling pathway utilization was related to drug-induced inhibition of proliferation. A significant correlation (p = 0.005) was found between everolimus IC50 values and p70S6K phosphorylation, but not with AKT or ERK phosphorylation, consistent with the mTOR pathway being a principal target. We then carried out combination studies with four everolimus resistant triple-negative breast cancer cell lines, and found an unexpectedly high degree of synergy between everolimus and the other inhibitors tested. The level of potentiation of everolimus inhibitory activity (measured by IC50 values) was found to be cell line-specific for all the kinase inhibitors tested. The results suggest that judicious combination of mTOR inhibitors with different modes of action could have beneficial effects in the treatment of breast cancer. PMID:26148118

  3. Inhibitory Receptors Beyond T Cell Exhaustion

    PubMed Central

    Fuertes Marraco, Silvia A.; Neubert, Natalie J.; Verdeil, Grégory; Speiser, Daniel E.

    2015-01-01

    Inhibitory receptors (iRs) are frequently associated with “T cell exhaustion”. However, the expression of iRs is also dependent on T cell differentiation and activation. Therapeutic blockade of various iRs, also referred to as “checkpoint blockade”, is showing ­unprecedented results in the treatment of cancer patients. Consequently, the clinical potential in this field is broad, calling for increased research efforts and rapid refinements in the understanding of iR function. In this review, we provide an overview on the significance of iR expression for the interpretation of T cell functionality. We summarize how iRs have been strongly associated with “T cell exhaustion” and illustrate the parallel evidence on the importance of T cell differentiation and activation for the expression of iRs. The differentiation subsets of CD8 T cells (naïve, effector, and memory cells) show broad and inherent differences in iR expression, while activation leads to strong upregulation of iRs. Therefore, changes in iR expression during an immune response are often concomitant with T cell differentiation and activation. Sustained expression of iRs in chronic infection and in the tumor microenvironment likely reflects a specialized T cell differentiation. In these situations of prolonged antigen exposure and chronic inflammation, T cells are “downtuned” in order to limit tissue damage. Furthermore, we review the novel “checkpoint blockade” treatments and the potential of iRs as biomarkers. Finally, we provide recommendations for the immune monitoring of patients to interpret iR expression data combined with parameters of activation and differentiation of T cells. PMID:26167163

  4. The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells

    PubMed Central

    Hong, Seung-Keun; Kim, Jin-Hwan; Lin, Ming-Fong; Park, Jong-In

    2011-01-01

    Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16INK4A and p21CIP1, but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation. PMID:21871886

  5. The inhibitory effect of disodium cromoglycate on the growth of Chlamydophila (Chlamydia) pneumoniae in vitro.

    PubMed

    Yamazaki, Tsutomu; Yamaguchi, Tetsuya; Sasaki, Nozomu; Inoue, Miyuki; Sato, Kozue; Kishimoto, Toshio

    2006-04-01

    Chlamydophila (Chlamydia) pneumoniae is associated with asthma and several other respiratory illnesses. Disodium cromoglycate (DSCG) is known to inhibit both immediate and late asthmatic responses. In this study, the inhibitory effect of DSCG on the growth of C. pneumoniae was examined by minimum inhibitory concentration (MIC) and pre-inoculation minimal cidal concentration (MCC) assays using HL cells and C. pneumoniae AR-39. DSCG below the clinically relevant concentration inhibited the growth of C. pneumoniae in a dose-dependent manner in both the MCC and MIC assays. The inhibitory effect was also time-dependent in the MCC assay at 20 mg/ml of DSCG. These results warrant further clinical study on the connection between C. pneumoniae infections and use of DSCG. PMID:16595921

  6. Prostaglandin receptor EP3 mediates growth inhibitory effect of aspirin through androgen receptor and contributes to castration resistance in prostate cancer cells.

    PubMed

    Kashiwagi, Eiji; Shiota, Masaki; Yokomizo, Akira; Itsumi, Momoe; Inokuchi, Junichi; Uchiumi, Takeshi; Naito, Seiji

    2013-06-01

    Although numerous epidemiological studies show aspirin to reduce risk of prostate cancer, the mechanism of this effect is unclear. Here, we first confirmed that aspirin downregulated androgen receptor (AR) and prostate-specific antigen in prostate cancer cells. We also found that aspirin upregulated prostaglandin receptor subtype EP3 but not EP2 or EP4. The EP3 antagonist L798106 and EP3 knockdown increased AR expression and cell proliferation, whereas the EP3 agonist sulprostone decreased them, indicating that EP3 affects AR expression. Additionally, EP3 (PTGER3) transcript levels were significantly decreased in human prostate cancer tissues compared with those in normal human prostate tissues, suggesting that EP3 is important to prostate carcinogenesis. Decreased EP3 expression was also seen in castration-resistant subtype CxR cells compared with parental LNCaP cells. Finally, we found that aspirin and EP3 modulators affected prostate cancer cell growth. Taken together, aspirin suppressed LNCaP cell proliferation via EP3 signaling activation; EP3 downregulation contributed to prostate carcinogenesis and to progression from androgen-dependent prostate cancer to castration-resistant prostate cancer by regulating AR expression. In conclusion, cyclooxygenases and EP3 may represent attractive therapeutic molecular targets in androgen-dependent prostate cancer. PMID:23493387

  7. HMG-CoA reductase inhibitor mevastatin enhances the growth inhibitory effect of butyrate in the colorectal carcinoma cell line Caco-2.

    PubMed

    Wächtershäuser, A; Akoglu, B; Stein, J

    2001-07-01

    Mevastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in cholesterol synthesis. Butyrate, a short-chain fatty acid, reduces proliferation and induces differentiation of human colon cancer cells. The aim of our study was to determine the effect of mevastatin, alone or in combination with butyrate, on proliferation, the cell cycle and apoptosis in the human colorectal carcinoma cell line Caco-2. In this report we show that mevastatin combined with butyrate synergistically suppressed growth of Caco-2 cells in a dose- and time-dependent manner. In addition, incubation with mevastatin arrested cells in the G1 phase of the cell cycle after 24 h with a switch to the G2/M phase after 72 h. This was accompanied by a down-regulation of cyclin-dependent kinases (cdk) 4 and cdk 6 as well as cyclin D1, while cdk 2 and cyclin E protein levels remained unchanged during mevastatin treatment. Cell cycle inhibitors p21 and p27 were significantly upregulated by mevastatin. The proapoptotic properties of mevastatin were further enhanced by co-incubation with butyrate. Lastly, the effects of mevastatin could be reversed by addition of mevalonate, but not farnesyl- or geranylgeranylpyrophosphate, intermediate products of cholesterol synthesis, to the medium. These results suggest that HMG-CoA reductase inhibitors like mevastatin may enhance the antiproliferative effect of butyrate in colon cancer cells via induction of apoptosis together with a G0/G1 cell cycle arrest. PMID:11408350

  8. Mechanism of action of the inhibitory effect of nifedipine on the growth of cultured aortic cells from spontaneously hypertensive and normotensive rats.

    PubMed Central

    Hérembert, T; Zhu, D L; Marche, P

    1995-01-01

    1. To gain insight into the parameters which control vascular structure, we investigated the mechanisms whereby nifedipine, and other dihydropyridines, inhibit the growth of cultured fibroblasts isolated from the adventitia of the aorta of spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats. 2. The effects of nifedipine on cell proliferation and on serum-induced DNA synthesis were determined by measuring the cell number and the incorporation of [3H]-thymidine, respectively. The mechanism of action of nifedipine was studied by adding the drug either to randomly growing cells or to quiescent, G0/G1 arrested and synchronized cells. The effects of varying the duration of drug treatment were also examined. 3. In randomly growing cultures nifedipine, like other dihydropyridines concentration-dependently inhibited cell proliferation; the rank order of effect (measured at a concentration of 10 microM) was nifedipine > nisoldipine > nitrendipine approximately nimodipine. 4. In G0/G1 arrested cell cultures, nifedipine concentration-dependently inhibited serum-induced [3H]-thymidine incorporation. In this respect it had similar effects in cell cultures from WKY and SHR. In both SHR and WKY cultures, nifedipine delayed the transition from G0/G1 to S phase, and inhibited serum-induced DNA synthesis possibly by acting on the early G1 phase. 5. In cell cultures from both SHR and WKY, serum-induced DNA synthesis was similarly (approximately 40%) inhibited after a 1 day treatment with 10 microM nifedipine. In contrast, after 5 days treatment with the drug, the inhibition of DNA synthesis was approximately 65% and approximately 10% in SHR and WKY cultures, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7541285

  9. Tamoxifen enhances the differentiation-inducing and growth-inhibitory effects of all-trans retinoic acid in acute promyelocytic leukemia cells.

    PubMed

    Adachi, Koji; Honma, Yoshio; Miyake, Takaaki; Kawakami, Koshi; Takahashi, Tsutomu; Suzumiya, Junji

    2016-03-01

    All-trans retinoic acid (ATRA) is valuable in differentiation therapy for acute promyelocytic leukemia (APL). However, ATRA has had limited success as a single agent, due to the development of resistance. We found that tamoxifen effectively enhanced the differentiation-inducing effect of ATRA. Tamoxifen alone inhibited the proliferation of myeloid leukemia cell lines while only slightly increasing morphologic differentiation. Tamoxifen effectively enhanced the growth-inhibiting actions of various differentiation-inducing agents. ATRA in the presence of tamoxifen increased NBT reduction and the expression of CD11b in HL-60 cells more effectively than ATRA alone. Tamoxifen also enhanced the differentiation induced by the other inducers tested. ATRA induced the differentiation of APL cell lines NB4 and HT93 and APL cells in primary culture, and this differentiation was also enhanced by tamoxifen. Tamoxifen is one of the most widely used drugs for the treatment of cancer and has few side effects. The combination of ATRA and tamoxifen might be considered for the treatment of APL patients in whom it can be difficult to apply arsenic trioxide or anthracyclines. PMID:26797574

  10. Selective Phosphorylation of South and North-Cytidine and Adenosine Methanocarba-Nucleosides by Human Nucleoside and Nucleotide Kinases Correlates with Their Growth Inhibitory Effects on Cultured Cells.

    PubMed

    Sjuvarsson, Elena; Marquez, Victor E; Eriksson, Staffan

    2015-01-01

    Here bicyclo[3.1.0]hexane locked deoxycytidine (S-MCdC, N-MCdC), and deoxyadenosine analogs (S-MCdA and N-MCdA) were examined as substrates for purified preparations of human deoxynucleoside kinases: dCK, dGK, TK2, TK1, the ribonucleoside kinase UCK2, two NMP kinases (CMPK1, TMPK) and a NDP kinase. dCK can be important for the first step of phosphorylation of S-MCdC in cells, but S-MCdCMP was not a substrate for CMPK1, TMPK, or NDPK. dCK and dGK had a preference for the S-MCdA whereas N-MCdA was not a substrate for dCK, TK1, UCK2, TK2, dGK nucleoside kinases. The cell growth experiments suggested that N-MCdC and S-MCdA could be activated in cells by cellular kinases so that a triphosphate metabolite was formed. List of abbreviations: ddC, 2', 3'-didioxycytosine, Zalcitabine; 3TC, β-L-(-)-2',3'-dideoxy-3'-thiacytidine, Lamivudine; CdA, 2-cloro-2'-deoxyadenosine, Cladribine; AraA, 9-β-D-arabinofuranosyladenine; hCNT 1-3, human Concentrative Nucleoside Transporter type 1, 2 and 3; hENT 1-4, human Equilibrative Nucleoside Transporter type 1, 2, 3, and 4. PMID:26167664

  11. The inhibitory effect of natural microflora of food on growth of Listeria monocytogenes in enrichment broths.

    PubMed

    Al-Zeyara, Shaikha A; Jarvis, Basil; Mackey, Bernard M

    2011-01-31

    low numbers of L. monocytogenes during enrichment of minced beef in TSB revealed that growth of L. monocytogenes ceased at a cell concentration of about 10(2)cfu/ml when lactic acid bacteria entered stationary phase. However in ONE Broth growth of lactic acid bacteria was slower than in TSB with a longer lag time allowing L. monocytogenes to achieve much higher numbers before lactic acid bacteria reached stationary phase. This work has identified the relative inhibitory effects of different components of a natural food microflora and shown that the ability of low numbers of L. monocytogenes to achieve high cell concentrations is highly dependent on the extent to which enrichment media are able to inhibit or delay growth of the more effective competitors. PMID:21176988

  12. Wnt inhibitory factor-1 regulates glioblastoma cell cycle and proliferation.

    PubMed

    Wu, Jun; Fang, Jiasheng; Yang, Zhuanyi; Chen, Fenghua; Liu, Jingfang; Wang, Yanjin

    2012-10-01

    Wnt proteins are powerful regulators of cell proliferation and differentiation, and activation of the Wnt signalling pathway is involved in the pathogenesis of several types of human tumours. Wnt inhibitory factor-1 (WIF-1) acts as a Wnt antagonist and tumour suppressor. Previous studies have shown that reducing expression of the WIF-1 gene aberrantly activates Wnt signalling and induces the development of certain types of cancers. In the present study, we examined the expression of WIF-1 in human primary glioblastoma multiforme (GBM) tumours. Studies using semiquantitative reverse transcription-polymerase chain reaction and immunohistochemical analysis revealed that WIF-1 expression is lower in human GBM than in normal brain tissue. To clarify the role of WIF-1, we transfected U251 human glioblastoma-derived cells, which do not express WIF-1, with the pcDNA3.1-WIF1 vector to restore WIF-1 expression. The results of cell proliferation, colony formation and apoptosis assays, as well as flow cytometry, indicate that exogenous WIF-1 has no effect on U251 cell apoptosis, but does arrest cells at the G(0)/G(1) phase and inhibit cell growth. Collectively, our data suggest that WIF-1 is a potent inhibitor of GBM growth. PMID:22901505

  13. Hellebrin and its aglycone form hellebrigenin display similar in vitro growth inhibitory effects in cancer cells and binding profiles to the alpha subunits of the Na+/K+-ATPase

    PubMed Central

    2013-01-01

    Background Surface-expressed Na+/K+-ATPase (NaK) has been suggested to function as a non-canonical cardiotonic steroid-binding receptor that activates multiple signaling cascades, especially in cancer cells. By contrast, the current study establishes a clear correlation between the IC50in vitro growth inhibitory concentration in human cancer cells and the Ki for the inhibition of activity of purified human α1β1 NaK. Methods The in vitro growth inhibitory effects of seven cardiac glycosides including five cardenolides (ouabain, digoxin, digitoxin, gitoxin, uzarigenin-rhamnoside, and their respective aglycone forms) and two bufadienolides (gamabufotalin-rhamnoside and hellebrin, and their respective aglycone forms) were determined by means of the MTT colorimetric assay and hellebrigenin-induced cytotoxic effects were visualized by means of quantitative videomicroscopy. The binding affinity of ten of the 14 compounds under study was determined with respect to human α1β1, α2β1 and α3β1 NaK complexes. Lactate releases and oxygen consumption rates were also determined in cancer cells treated with these various cardiac glycosides. Results Although cardiotonic steroid aglycones usually display weaker binding affinity and in vitro anticancer activity than the corresponding glycoside, the current study demonstrates that the hellebrin / hellebrigenin pair is at odds with respect to this rule. In addition, while some cardiac steroid glycosides (e.g., digoxin), but not the aglycones, display a higher binding affinity for the α2β1 and α3β1 than for the α1β1 complex, both hellebrin and its aglycone hellebrigenin display ~2-fold higher binding affinity for α1β1 than for the α2β1 and α3β1 complexes. Finally, the current study highlights a common feature for all cardiotonic steroids analyzed here, namely a dramatic reduction in the oxygen consumption rate in cardenolide- and bufadienolide-treated cells, reflecting a direct impact on mitochondrial oxidative

  14. Differential growth inhibitory effects of highly oxygenated guaianolides isolated from the Middle Eastern indigenous plant Achillea falcata in HCT-116 colorectal cancer cells.

    PubMed

    Tohme, Rita; Al Aaraj, Lamis; Ghaddar, Tarek; Gali-Muhtasib, Hala; Saliba, Najat A; Darwiche, Nadine

    2013-01-01

    Medicinal plants play a crucial role in traditional medicine and in the maintenance of human health worldwide. Sesquiterpene lactones represent an interesting group of plant-derived compounds that are currently being tested as lead drugs in cancer clinical trials. Achillea falcata is a medicinal plant indigenous to the Middle Eastern region and belongs to the Asteraceae family, which is known to be rich in sesquiterpene lactones. We subjected Achillea falcata extracts to bioassay-guided fractionation against the growth of HCT-116 colorectal cancer cells and identified four secotanapartholides, namely 3-β-methoxy-isosecotanapartholide (1), isosecotanapartholide (2), tanaphallin (3), and 8-hydroxy-3-methoxyisosecotanapartholide (4). Three highly oxygenated guaianolides were isolated for the first time from Achillea falcata, namely rupin A (5), chrysartemin B (6), and 1β, 2β-epoxy-3β,4α,10α-trihydroxyguaian-6α,12-olide (7). These sesquiterpene lactones showed no or minor cytotoxicity while exhibiting promising anticancer effects against HCT-116 cells. Further structure-activity relationship studies related the bioactivity of the tested compounds to their skeleton, their lipophilicity, and to the type of functional groups neighboring the main alkylating center of the molecule. PMID:23860275

  15. Preliminary investigation of the inhibitory effects of mechanical stress in tumor growth

    NASA Astrophysics Data System (ADS)

    Garg, Ishita; Miga, Michael I.

    2008-03-01

    In the past years different models have been formulated to explain the growth of gliomas in the brain. The most accepted model is based on a reaction-diffusion equation that describes the growth of the tumor as two separate components- a proliferative component and an invasive component. While many improvements have been made to this basic model, the work exploring the factors that naturally inhibit growth is insufficient. It is known that stress fields affect the growth of normal tissue. Due to the rigid skull surrounding the brain, mechanical stress might be an important factor in inhibiting the growth of gliomas. A realistic model of glioma growth would have to take that inhibitory effect into account. In this work a mathematical model based on the reaction-diffusion equation was used to describe tumor growth, and the affect of mechanical stresses caused by the mass effect of tumor cells was studied. An initial tumor cell concentration with a Gaussian distribution was assumed and tumor growth was simulated for two cases- one where growth was solely governed by the reaction-diffusion equation and second where mechanical stress inhibits growth by affecting the diffusivity. All the simulations were performed using the finite difference method. The results of simulations show that the proposed mechanism of inhibition could have a significant affect on tumor growth predictions. This could have implications for varied applications in the imaging field that use growth models, such as registration and model updated surgery.

  16. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    SciTech Connect

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang; Yang, Runxiang; Cai, Xinyi; Zhang, Lijuan; Jin, Congguo; Huang, Yunchao

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  17. Microwave-assisted stereoselective approach to novel steroidal ring D-fused 2-pyrazolines and an evaluation of their cell-growth inhibitory effects in vitro.

    PubMed

    Mótyán, Gergő; Kovács, Ferenc; Wölfling, János; Gyovai, András; Zupkó, István; Frank, Éva

    2016-08-01

    Novel ring D-condensed 2-pyrazolines in the Δ(5)-androstene series were efficiently synthesized from 16-dehydropregnenolone or its acetate with different arylhydrazines or methylhydrazine, respectively, under microwave irradiation. The reactions are assumed to occur via hydrazone intermediates, followed by intramolecular 1,4-addition leading to the fused heteroring stereoselectively with a 16α,17α-cis ring junction. The synthesized compounds were subjected to in vitro pharmacological studies of their antiproliferative activities against four human breast (MCF7, T47D, MDA-MB-231 and MDA-MB-361) and three cervical (HeLa, C33A and SiHA) malignant cell lines. Flow cytometry revealed that the most potent agent elicited a cell cycle disturbance. PMID:27154752

  18. [Inhibitory effects of liquor cultured with Nelumbo nucifera and Nymphaea tetragona on the growth of Microcystis aeruginosa].

    PubMed

    Li, Lei; Hou, Wen-hua

    2007-10-01

    The inhibitory effects of liquor cultured with Nelumbo nucifera and Nymphaea tetragona on the growth of Microcystis aeruginosa have been investigated by measuring the cell number and the chlorophyll a content of Microcystis aeruginosa of culture in the laboratory. The results showed that the inhibitory effects on the growth of Microcystis aeruginosa with different concentration of the liquor cultured with Nelumbo nucifera and Nymphaea tetragona were dissimilar, and an evident phenomenon appeared that low concentrations could promote the growth of Microcystis aeruginosa. However, the inhibitory effects on the growth of Microcystis aeruginosa with continuous liquor cultured with Nelumbo nucifera and Nymphaea tetragona were obvious, which made the algal cell almost lose the capability of photosynthesis, and the inhibitory effects of liquor cultured with Nymphaea tetragona were better than those of Nelumbo nucifera. The scale-up experiment demonstrated that the algal cell received menace and damage by measuring the activities of peroxidase (SOD) and the accumulated contents of malondialdehyde (MDA) of Microcystis aeruginosa in the co-culture. Sterilization methods influenced the algal growth inhibition experiment so that high temperature couldn't replace micropore filter, which explained that the matter excreted by Nelumbo nucifera and Nymphaea tetragona may contain thermally-instabe matter. PMID:18268975

  19. Inhibitory effect of mineral ion accumulation on high density growth of the hyperthermophilic archaeon Sulfolobus solfataricus.

    PubMed

    Park, C B; Lee, S B

    1999-01-01

    A fed-batch operation for high density cultivation of Sulfolobus solfataricus (DSM 1617) in a bench-top fermentor using a feed medium composed of glucose and yeast extract was investigated. The highest maximal cell density obtained in controlled fed-batch cultures was 21.7 g/l. Although higher yeast extract concentrations in the medium favored greater cell biomass yield, cell growth ceased with low cell densities. It was observed that large amounts of inorganic ions, such as sulfate, ammonium, potassium and phosphate ions, were accumulated in the culture broth at higher yeast extract concentrations. This was due to either the addition of the titrant or feeding of yeast extract during cultivation. Fed-batch cultures with additional mineral salts in the feed medium showed much lower cell biomass, indicating that accumulation of inorganic ions has a significant inhibitory effect on the growth of S. solfataricus. Inhibition of cell growth by the presence of mineral ions was further confirmed by the batch culture experiments. Some plausible mechanisms which can account for the growth inhibition at higher mineral ion concentrations have been suggested. PMID:16232474

  20. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1

    PubMed Central

    Arafat, Kholoud; Iratni, Rabah; Takahashi, Takashi; Parekh, Khatija; Al Dhaheri, Yusra; Adrian, Thomas E.; Attoub, Samir

    2013-01-01

    A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5–5 µM for 7 days) significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer. PMID:23805285

  1. Inhibitory effect of increased photoperiod on wool follicle growth.

    PubMed

    Pearson, A J; Parry, A L; Ashby, M G; Choy, V J; Wildermoth, J E; Craven, A J

    1996-01-01

    constant levels of follicle activity (PFA: 73%, SFA: 95%) were maintained throughout short-day treatment. Release of SD6 ewes into summer photoperiod in January 1991 temporarily interrupted follicle growth (PFA: 68 to 17%, SFA: 96 to 19%) and caused out-of-season shedding in March and April. Contemporary C follicle activities were high (PFA: 95%, SFA: 98%). These data suggest that natural and experimental increases in daylength have a short-term inhibitory effect on growing wool follicles which could be mediated through rising concentrations of plasma prolactin. PMID:8568463

  2. In vitro growth inhibitory efficacy of some target specific novel drug molecules against Theileria equi.

    PubMed

    Gopalakrishnan, A; Maji, C; Dahiya, R K; Suthar, A; Kumar, R; Gupta, A K; Dimri, U; Kumar, S

    2016-02-15

    The in vitro growth inhibitory efficacies of five drug molecules against Theileria equi were evaluated in in vitro cultured parasites. A continuous microaerophilic stationary-phase culture (MASP) system was established for propagation of T. equi parasites. This in vitro culture system was used to assess the growth inhibitory effect of harmaline hydrochloride dihydrate (HHD), hexadecyltrimethylammonium bromide (HDTAB), hesparidin methyl chalcone (HMC), andrographolide and imidocarb dipropionate against T. equi. The 50% inhibitory concentration value of HHD, HDTAB, HMC, and imidocarb dipropionate for T. equi growth were 17.42 μM, 14.00 μM, 246.34 μM and 0.279 μM (equivalent to 0.139 μg/ml), respectively (P<0.05). The andrographolide was not effective in inhibiting in vitro growth of T. equi in the present study. Furthermore, the in vitro cytotoxicity of these five drugs was evaluated on horse PBMC. At 2000 μM concentration of HHD, HDTAB, HMC, andrographolide and imidocarb dipropionate were 8.34, 46.44, 58.53, 31.06, 15.14% cytotoxic on PBMC, respectively. Out of our four tested drug molecules, HHD was having low IC50 value along with least cytotoxicity, as compared to reference drug imidocarb dipropionate. The difference in IC50 value of HDTAB and HHD was significant, but HDTAB was moderately more cytotoxic on PBMC cell lines. HHD and HDTAB are selective inhibitor for heat shock protein 90 (Hsp90) and choline kinase pathway. It can be concluded that HHD and HDTAB are potential drug molecules against T. equi parasite by acting on Hsp90 and choline kinase pathway. PMID:26827852

  3. The Role of Leukemia Inhibitory Factor Receptor Signaling in Skeletal Muscle Growth, Injury and Disease.

    PubMed

    Hunt, Liam C; White, Jason

    2016-01-01

    Cytokines are an incredibly diverse group of secreted proteins with equally diverse functions. The actions of cytokines are mediated by the unique and sometimes overlapping receptors to which the soluble ligands bind. Classified within the interleukin-6 family of cytokines are leukemia inhibitory factor (LIF), oncostatin-M (OSM), cardiotrophin-1 (CT-1) and ciliary neurotrophic factor (CNTF). These cytokines all bind to the leukemia inhibitory factor receptor (LIFR) and gp130, and in some cases an additional receptor subunit, leading to activation of downstream kinases and transcriptional activators. LIFR is expressed on a broad range of cell types and can generate pleiotropic effects. In the context of skeletal muscle physiology, these cytokines have been shown to exert effects on motor neurons, inflammatory and muscle cells. From isolated cells through to whole organisms, manipulations of LIFR signaling cytokines have a wide range of outcomes influencing muscle cell growth, myogenic differentiation, response to exercise, metabolism, neural innervation and recruitment of inflammatory cells to sites of muscle injury. This article will discuss the shared and distinct processes that LIFR cytokines regulate in a variety of experimental models with the common theme of skeletal muscle physiology. PMID:27003396

  4. YM155 exerts a growth inhibitory effect on human osteosarcoma in vitro and in vivo.

    PubMed

    Zhang, Zhuo; Ma, Lianjun; Wang, Jincheng

    2015-08-01

    YM155, a novel small-molecule inhibitor of survivin, is known to exert antitumor effects on various cancers, including breast, prostate and lung cancer. However, there are few studies describing the inhibitory effect of YM155 on human osteosarcoma (OS) which highly expresses survivin. Here, we tested the effects of YM155 on OS cells by several in vitro experiments. It was found that YM155 inhibited cell proliferation, colony formation, migration and invasion, induced cell apoptosis, as well as increased caspase-3, -8 and -9 activity in the OS cell lines in a dose-dependent manner. We also found that YM155 suppressed Mcl-1 and survivin expression without affecting the expression of anti-apoptotic proteins X-linked inhibitor of apoptosis (XIAP) and Bcl-2. In addition, YM155 decreased phosphoinositide 3-kinase (PI3K) and AKT expression without effecting total PI3K and AKT in the OS cell lines, which contributed to suppression of OS tumor growth at least in part. In addition, YM155 also suppressed tumor growth in vivo, reducing the size of OS MG63 cell xenografts. Taken together, the findings revealed that YM155 suppresses the tumor growth of OS in vitro and in vivo, suggesting that YM155 has potential as a therapeutic agent for the treatment of OS. PMID:26081496

  5. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  6. Inhibitory effects of gossypol-related compounds on growth of Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gossypolone demonstrated growth inhibitory activity against Aspergillus flavus isolate AF13. Growth inhibition was concentration dependent, with a 50% effective dose of 90 µg gossypolone per mL of medium (165 µM). Growth inhibition levels of up to 95% were achieved with gossypolone concentrations ...

  7. Inhibitory Effects of Metabolites of 5-Demethylnobiletin on Human Nonsmall Cell Lung Cancer Cells.

    PubMed

    Song, Mingyue; Charoensinphon, Noppawat; Wu, Xian; Zheng, Jinkai; Gao, Zili; Xu, Fei; Wang, Minqi; Xiao, Hang

    2016-06-22

    5-Demethylnobiletin is a unique flavonoid found in citrus fruits with potential chemopreventive effects against human cancers. We previously identified three metabolites of 5DN, namely 5,4'-didemethylnobiletin (M1), 5,3',4'- tridemethylnobiletin (M2), and 5,3'-didemethylnobiletin (M3) in mice fed 5DN. Herein, we investigated the inhibitory effects of these three metabolites on NSCLC cells. Our results demonstrated that M1, M2, and especially M3 showed stronger inhibition on the growth and colony formation of H460 and H1299 cells compared to 5DN. Three metabolites significantly inhibited the tumorsphere formation of A549 cells. Flow cytometry analysis showed that all metabolites induced cell cycle arrest and cellular apoptosis, and these effects were also stronger than that of 5DN. The inhibitory effects of these metabolites were associated with their ability to modulate the key signaling proteins related to cell proliferation and apoptosis. Overall, our results provided a basis for utilizing 5DN and its metabolites for chemoprevention of lung cancer. PMID:27219898

  8. Hypoxia shifts activity of neuropeptide Y in Ewing sarcoma from growth-inhibitory to growth-promoting effects

    PubMed Central

    Galli, Susana; Izycka-Swieszewska, Ewa; Earnest, Joshua Patrick; Shabbir, Asim; Everhart, Lindsay M.; Wang, Shuo; Martin, Samantha; Horton, Meredith; Mahajan, Akanksha; Christian, David; O'Neill, Alison; Wang, Hongkun; Zhuang, Tingting; Czarnecka, Magdalena; Johnson, Michael D.; Toretsky, Jeffrey A.; Kitlinska, Joanna

    2013-01-01

    Ewing sarcoma (ES) is an aggressive malignancy driven by an oncogenic fusion protein, EWS-FLI1. Neuropeptide Y (NPY), and two of its receptors, Y1R and Y5R are up-regulated by EWS-FLI1 and abundantly expressed in ES cells. Paradoxically, NPY acting via Y1R and Y5R stimulates ES cell death. Here, we demonstrate that these growth-inhibitory actions of NPY are counteracted by hypoxia, which converts the peptide to a growth-promoting factor. In ES cells, hypoxia induces another NPY receptor, Y2R, and increases expression of dipeptidyl peptidase IV (DPPIV), an enzyme that cleaves NPY to a shorter form, NPY3-36. This truncated peptide no longer binds to Y1R and, therefore, does not stimulate ES cell death. Instead, NPY3-36 acts as a selective Y2R/Y5R agonist. The hypoxia-induced increase in DPPIV activity is most evident in a population of ES cells with high aldehyde dehydrogenase (ALDH) activity, rich in cancer stem cells (CSCs). Consequently, NPY, acting via Y2R/Y5Rs, preferentially stimulates proliferation and migration of hypoxic ALDHhigh cells. Hypoxia also enhances the angiogenic potential of ES by inducing Y2Rs in endothelial cells and increasing the release of its ligand, NPY3-36, from ES cells. In summary, hypoxia acts as a molecular switch shifting NPY activity away from Y1R/Y5R-mediated cell death and activating the Y2R/Y5R/DPPIV/NPY3-36 axis, which stimulates ES CSCs and promotes angiogenesis. Hypoxia-driven actions of the peptide such as these may contribute to ES progression. Due to the receptor-specific and multifaceted nature of NPY actions, these findings may inform novel therapeutic approaches to ES. PMID:24318733

  9. RGS19 converts iron deprivation stress into a growth-inhibitory signal.

    PubMed

    Hwang, Junmo; Kim, Hyeng-Soo; Kang, Beom Sik; Kim, Do-Hyung; Ryoo, Zae Young; Choi, Sang-Un; Lee, Sanggyu

    2015-08-14

    Iron chelation is a promising therapeutic strategy for cancer that works, in part, by inducing overexpression of N-myc downstream-regulated gene 1 protein (NDRG1), a known growth inhibitor and metastasis suppressor. However, details of the signaling cascades that convert physical stress into a biological response remain elusive. We investigated the role of RGS19, a regulator of G-protein signaling, in iron chelator-induced NDRG1 overexpression in HeLa cells. Knockdown of RGS19 diminished the expression of genes involved in desferrioxamine (DFO)-induced growth inhibition. Conversely, overexpression of RGS19 enhanced the expression of these genes. Moreover, overexpression of RGS19 reduced cell viability. Overexpression of G-protein alpha subunit i3 (Gαi3) repressed the induction of NDRG1 expression. Selective inhibition of downstream targets of Gαi3 abrogated DFO-induced overexpression of NDRG1. DFO protected RGS19 from proteolysis induced by GAIP interacting protein N terminus (GIPN); moreover, an iron-deficient RGS19 mutant was stable in the presence of GIPN and retained GTPase-activating protein activity. RGS19 was co-purified with iron and showed unique UV-absorption characteristics frequently observed in iron-binding proteins. This study demonstrates that RGS19 senses cellular iron availability and is stabilized under iron-depleted conditions, resulting in the induction of a growth-inhibitory signal. PMID:26116529

  10. Antifungal susceptibility and growth inhibitory response of oral Candida species to Brucea javanica Linn. extract

    PubMed Central

    2013-01-01

    Background Candida species have been associated with the emergence of resistant strains towards selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease candidal infections. The present study was undertaken to investigate the antifungal susceptibility patterns and growth inhibiting effect of Brucea javanica seeds extract against Candida species. Methods A total of seven Candida strains that includes Candida albicans ATCC14053, Candida dubliniensis ATCCMYA-2975, Candida glabrata ATCC90030, Candida krusei ATCC14243, Candida lusitaniae ATCC64125, Candida parapsilosis ATCC22019 and Candida tropicalis ATCC13803 were used in this study. The antifungal activity, minimum inhibitory concentration and minimum fungicidal concentration of B. javanica extract were evaluated. Each strain was cultured in Yeast Peptone Dextrose broth under four different growth environments; (i) in the absence and presence of B. javanica extract at respective concentrations of (ii) 1 mg/ml (iii) 3 mg/ml and (iv) 6 mg/ml. The growth inhibitory responses of the candidal cells were determined based on changes in the specific-growth rates (μ) and doubling time (g). The values in the presence of extract were computed as percentage in the optical density relative to that of the total cells suspension in the absence of extract. Results B. javanica seeds extract exhibited antifungal properties. C. tropicalis showed the highest growth rate; 0.319 ± 0.002 h-1, while others were in the range of 0.141 ± 0.001 to 0.265 ± 0.005 h-1. In the presence of extract, the lag and log phases were extended and deviated the μ- and g-values. B. javanica extract had significantly reduced the μ-values of C. dubliniensis, C. krusei and C. parapsilosis at more than 80% (ρ < 0.05), while others were reduced within the range of 2.28% to 57.05%. The g-values of most candidal strains were extended and significantly reduced (ρ < 0.05) in relative to the

  11. Chitinase-mediated inhibitory activity of Brassica transgenic on growth of Alternaria brassicae.

    PubMed

    Mondal, Kalyan K; Chatterjee, Subhas Chandra; Viswakarma, Navin; Bhattacharya, Ram Charan; Grover, Anita

    2003-09-01

    Chitinase, capable of degrading the cell walls of invading phytopathogenic fungi, plays an important role in plant defense response, particularly when this enzyme is overexpressed through genetic engineering. In the present study, Brassica plant (Brassica juncea L.) was transformed with chitinase gene tagged with an overexpressing promoter 35 S CaMV. The putative transgenics were assayed for their inhibitory activity against Alternaria brassicae, the inducer of Alternaria leaf spot of Brassica both in vitro and under polyhouse conditions. In in vitro fungal growth inhibition assays, chitinase inhibited the fungal colony size by 12-56% over the non-trangenic control. The bioassay under artificial epiphytotic conditions revealed the delay in the onset of disease as well as reduced lesion number and size in 35S-chitinase Brassica as compared to the untransformed control plants. PMID:14570264

  12. Inhibitory Effect of Baicalin and Baicalein on Ovarian Cancer Cells

    PubMed Central

    Chen, Jianchu; Li, Zhaoliang; Chen, Allen Y.; Ye, Xingqian; Luo, Haitao; Rankin, Gary O.; Chen, Yi Charlie

    2013-01-01

    Ovarian cancer is one of the primary causes of death for women all through the Western world. Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants and are thought to have antioxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. Two kinds of ovarian cancer (OVCAR-3 and CP-70) cell lines and a normal ovarian cell line (IOSE-364) were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45–55 μM for baicalin and 25–40 μM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 μM for baicalin and 68 μM for baicalein. Baicalin decreased expression of VEGF (20 μM), cMyc (80 μM), and NFkB (20 μM); baicalein decreased expression of VEGF (10 μM), HIF-1α (20 μM), cMyc (20 μM), and NFkB (40 μM). Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB. Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers. PMID:23502466

  13. The inhibitory effects of interleukin-1 on growth hormone action during catabolic illness.

    PubMed

    Cooney, Robert N; Shumate, Margaret

    2006-01-01

    Growth hormone (GH) induces the expression of the anabolic genes responsible for growth, metabolism, and differentiation. Normally, GH stimulates the synthesis of circulating insulin-like growth factor-I (IGF-I) by liver, which upregulates protein synthesis in many tissues. The development of GH resistance during catabolic illness or inflammation contributes to loss of body protein, resulting in multiple complications that prolong recovery and cause death. In septic patients, increased levels of proinflammatory cytokines and GH resistance are commonly observed together. Numerous studies have provided evidence that the inhibitory effects of cytokines on skeletal muscle protein synthesis during sepsis and inflammation are mediated indirectly by changes in the GH/IGF-I system. Interleukin (IL)-1, a member of the family of proinflammatory cytokines, interacts with most cell types and is an important mediator of the inflammatory response. Infusion of a specific IL-1 receptor antagonist (IL-1Ra) ameliorates protein catabolism and GH resistance during systemic infection. This suggests that IL-1 is an important mediator of GH resistance during systemic infection or inflammation. Consequently, a better understanding of the interaction between GH, IL-1, and the regulation of protein metabolism is of great importance for the care of the patient. PMID:17027521

  14. Growth inhibition of Listeria spp. on Camembert cheese by bacteria producing inhibitory substances.

    PubMed

    Sulzer, G; Busse, M

    1991-12-01

    Bacterial strains exhibiting antimicrobial activity towards other bacteria are quite common in nature. During the past few years several genera have been shown to exert inhibitory action against Listeria. spp. In the present work strains of Enterococcus, Lactobacillus and Lactococcus were tested for their influence on the development of Listeria spp. on Camembert cheese. Partial or complete inhibition of growth of Listeria spp. was observed using various inhibitory bacteria. Complete inhibition occurred when the inhibitory strain was used as a starter culture and there was a low level of contamination with Listeria spp. during the first stage of ripening. Very little inhibition occurred if the inhibitory strain was added together with the starter culture. PMID:1790105

  15. Inhibitory effects of several saturated fatty acids and their related fatty alcohols on the growth of Candida albicans.

    PubMed

    Hayama, Kazumi; Takahashi, Miki; Yui, Satoru; Abe, Shigeru

    2015-12-01

    We examined the effect of 5 saturated fatty acids and their related alcohols on the growth of Candida albicans. The inhibitory effects of these compounds against the yeast and hyphal growth forms of C. albicans were examined using the modified NCCLS method and crystal violet staining, respectively. Among these compounds, capric acid inhibited both types of growth at the lowest concentration. The IC(80), i.e., the concentration at which the compounds reduced the growth of C. albicans by 80% in comparison with the growth of control cells, of capric acid for the hyphal growth of this fungus, which is indispensable for its mucosal invasion, was 16.7 μM. These fatty acids, including capric acid, have an unpleasant smell, which may limit their therapeutic use. To test them at reduced concentrations, the combined effect of these fatty acids and oligonol, a depolymerized polyphenol, was evaluated in vitro. These combinations showed potent synergistic inhibition of hyphal growth [fractional inhibitory concentration (FIC) index = 0.319]. Our results demonstrated that capric acid combined with oligonol could be used as an effective anti-Candida compound. It may be a candidate prophylactic or therapeutic tool against mucosal Candida infection. PMID:26781922

  16. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach.

    PubMed Central

    Burns, A J; Lomax, A E; Torihashi, S; Sanders, K M; Ward, S M

    1996-01-01

    The structural relationships between interstitial cells of Cajal (ICC), varicose nerve fibers, and smooth muscle cells in the gastrointestinal tract have led to the suggestion that ICC may be involved in or mediate enteric neurotransmission. We characterized the distribution of ICC in the murine stomach and found two distinct classes on the basis of morphology and immunoreactivity to antibodies against c-Kit receptors. ICC with multiple processes formed a network in the myenteric plexus region from corpus to pylorus. Spindle-shaped ICC were found within the circular and longitudinal muscle layers (IC-IM) throughout the stomach. The density of these cells was greatest in the proximal stomach. IC-IM ran along nerve fibers and were closely associated with nerve terminals and adjacent smooth muscle cells. IC-IM failed to develop in mice with mutations in c-kit. Therefore, we used W/W(V) mutants to test whether IC-IM mediate neural inputs in muscles of the gastric fundus. The distribution of inhibitory nerves in the stomachs of c-kit mutants was normal, but NO-dependent inhibitory neuro-regulation was greatly reduced. Smooth muscle tissues of W/W(V) mutants relaxed in response to exogenous sodium nitroprusside, but the membrane potential effects of sodium nitroprusside were attenuated. These data suggest that IC-IM play a critical serial role in NO-dependent neurotransmission: the cellular mechanism(s) responsible for transducing NO into electrical responses may be expressed in IC-IM. Loss of these cells causes loss of electrical responsiveness and greatly reduces responses to nitrergic nerve stimulation. Images Fig. 1 Fig. 2 Fig. 4 PMID:8876253

  17. Inhibitory C-type lectin receptors in myeloid cells

    PubMed Central

    Redelinghuys, Pierre; Brown, Gordon D.

    2011-01-01

    C-type lectin receptors encoded by the natural killer gene complex play critical roles in enabling NK cell discrimination between self and non-self. In recent years, additional genes at this locus have been identified with patterns of expression that extend to cells of the myeloid lineage where many of the encoded inhibitory receptors have equally important functions as regulators of immune homeostasis. In the present review we highlight the roles of some of these receptors including recent insights gained with regard to the identification of exogenous and endogenous ligands, mechanisms of cellular inhibition and activation, regulated expression within different cellular and immune contexts, as well as functions that include the regulation of bone homeostasis and involvement in autoimmunity. PMID:20934454

  18. Prenatal Origins of Temperament: Fetal Growth, Brain Structure, and Inhibitory Control in Adolescence

    PubMed Central

    Schlotz, Wolff; Godfrey, Keith M.; Phillips, David I.

    2014-01-01

    Objective Individual differences in the temperamental dimension of effortful control are constitutionally based and have been associated with an adverse prenatal developmental environment, with structural brain alterations presenting a potential mechanism. We investigated this hypothesis for anatomically defined brain regions implicated in cognitive and inhibitory motor control. Methods Twenty-seven 15–16 year old participants with low, medium, or high fetal growth were selected from a longitudinal birth cohort to maximize variation and represent the full normal spectrum of fetal growth. Outcome measures were parent ratings of attention and inhibitory control, thickness and surface area of the orbitofrontal cortex (lateral (LOFC) and medial (MOFC)) and right inferior frontal gyrus (rIFG), and volumetric measures of the striatum and amygdala. Results Lower birth weight was associated with lower inhibitory control, smaller surface area of LOFC, MOFC and rIFG, lower caudate volume, and thicker MOFC. A mediation model found a significant indirect effect of birth weight on inhibitory control via caudate volume. Conclusions Our findings support a neuroanatomical mechanism underlying potential long-term consequences of an adverse fetal developmental environment for behavioral inhibitory control in adolescence and have implications for understanding putative prenatal developmental origins of externalizing behavioral problems and self-control. PMID:24802625

  19. Monitoring cell growth.

    PubMed

    Strober, W

    2001-05-01

    This appendix provides two protocols for monitoring cell growth. Counting cells using a hemacytometer is tedious but it allows one to effectively distinguish live cells from dead cells (using Trypan Blue exclusion). In addition, this procedure is less subject to errors due to cell clumping or heterogeneity of cell size. The use of an electronic cell counter is quicker and easier than counting cells using a hemacytometer. However, an electronic cell counter as currently constructed does not distinguish live from dead cells in a reliable fashion and is subject to error due to the presence of cell clumps. Overall, the electronic cell counter is best reserved for repetitive and rapid counting of fresh peripheral blood cells and should be used with caution when counting cell populations derived from tissues. PMID:18432653

  20. Inhibitory effects of spices on growth and toxin production of toxigenic fungi.

    PubMed Central

    Hitokoto, H; Morozumi, S; Wauke, T; Sakai, S; Kurata, H

    1980-01-01

    The inhibitory effects of 29 commercial powdered spices on the growth and toxin production of three species of toxigenic Aspergillus were observed by introducing these materials into culture media for mycotoxin production. Of the 29 samples tested, cloves, star anise seeds, and allspice completely inhibited the fungal growth, whereas most of the others inhibited only the toxin production. Eugenol extracted from cloves and thymol from thyme caused complete inhibition of the growth of both Aspergillus flavus and Aspergillus versicolor at 0.4 mg/ml or less. At a concentration of 2 mg/ml, anethol extracted from star anise seeds inhibited the growth of all the strains. PMID:6769391

  1. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons.

    PubMed

    Murayama, Chiaki; Watanabe, Shimpei; Nakamura, Motokazu; Norimoto, Hisayoshi

    2015-01-01

    Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine) is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH), a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF) in cultured rat dorsal root ganglion (DRG) neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control), a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in "itch-scratch" animal models is under investigation. PMID:26287150

  2. Inhibitory effects of cucurbitacin B on laryngeal squamous cell carcinoma.

    PubMed

    Liu, Tingyan; Zhang, Meixia; Zhang, Hongliang; Sun, Chunyan; Deng, Yihui

    2008-10-01

    Cucurbitacins are compounds isolated from various plant families, which have been used as folk medicines for centuries in countries such as India and China because of their wide spectrum of pharmacological activities such as cytotoxic, anti-inflammatory, and anticancer effects. Accumulated evidences have shown that cucurbitacin B inhibits the growth of numerous human cancer cell lines and tumor xenografts. To determine whether cucurbitacin B can inhibit the growth of laryngeal squamous cell carcinoma, in the present study we investigated the antitumor effect of cucurbitacin B on Hep-2 cells. Hep-2 cells were treated with different concentrations of cucurbitacin B for different time. Cell proliferation, cell cycle distribution, and cell apoptosis were evaluated using MTT assay, flow cytometry, and fluorescent microscopy. It was found that cucurbitacin B exhibited significant efficacy in growth inhibition, cell cycle arrest at G2/M phase, and apoptosis induction in a dose- and time-dependent manner. Measuring the modulation of regulators in the cell cycle, apoptosis and signal transductions by Western blot analysis showed that the effect of cucurbitacin B was due to suppression of the expression of p-STAT3, Bcl-2, and cyclin B1. Moreover, in vivo studies were performed in a mouse xenograft model, where cucurbitacin B inhibited tumor growth in a dose-dependent manner. In conclusion, the antitumor effect of cucurbitacin B on Hep-2 cells was due to the induction of cell cycle arrest as well as apoptosis. The possible mechanisms underlying the action might be attributed to the suppression of STAT3 phosphorylation. This investigation suggests a potential clinical application of cucurbitacin B for the treatment of laryngeal cancer patients. PMID:18309509

  3. Growth-inhibitory and metal-binding proteins in Chlorella vulgaris exposed to cadmium or zinc.

    PubMed

    Huang, Zhiyong; Li, Lianping; Huang, Gaoling; Yan, Qingpi; Shi, Bing; Xu, Xiaoqin

    2009-01-18

    Phytochelatins, with the general structure of (gamma-Glu-Cys)n-Gly (n=2-11), are usually recognized as being strongly induced by metals in microalgae and play an important role in the detoxification of heavy metals in environment. However, there have been few studies on metallothionein (MT) synthesis in Chlorella vulgaris (C. vulgaris) exposed to heavy metals. The present study describes the growth inhibition of C. vulgaris exposed to different concentrations of cadmium and zinc, and the induction of metal-binding MT-like proteins in the cells. The amounts of metal-binding proteins, induced in the alga exposed to different concentrations of Cd and Zn, were analyzed with a size-exclusion HPLC coupled to ICP-MS. After being purified with a gel filtration column (Sephadex G-75, 3.5cmx80cm) and a desalting column (G-25, 1.5cmx30cm), the isoforms and sub-isoforms of Zn-binding protein were characterized by a reverse phase-HPLC coupled to electrospray ionization and a triple quadrupole mass spectrometer (HPLC-ESI-MS/MS). In addition, the ultraviolet spectra of purified Zn-binding proteins were analyzed in media with different pH values. The results showed that the significant inhibitory effects (at p<0.05) on the cell growth were observed when excessive metals such as 80micromoll(-1) of Cd, and 60 and 80micromoll(-1) of Zn were added. The Cd/Zn-binding proteins induced in C. vulgaris exposed to Cd and Zn were referred to as Cd/Zn-MT-like proteins in which the mean molecular mass of the apo-MT-like was 6152Da. The induced Cd/Zn-MT-like proteins might be involved in the detoxification of heavy metals, such as cadmium and zinc, by the alga. PMID:19019465

  4. Lysophospholipid receptors LPA1–3 are not required for the inhibitory effects of LPA on mouse retinal growth cones

    PubMed Central

    Birgbauer, Eric; Chun, Jerold

    2016-01-01

    One of the major requirements in the development of the visual system is axonal guidance of retinal ganglion cells toward correct targets in the brain. A novel class of extracellular lipid signaling molecules, lysophospholipids, may serve as potential axon guidance cues. They signal through cognate G protein-coupled receptors, at least some of which are expressed in the visual system. Here we show that in the mouse visual system, a lysophospholipid known as lysophosphatidic acid (LPA) is inhibitory to retinal neurites in vitro when delivered extracellularly, causing growth cone collapse and neurite retraction. This inhibitory effect of LPA is both active in the nanomolar range and specific compared to the related lysophospholipid, sphingosine 1-phosphate (S1P). Knockout mice lacking three of the five known LPA receptors, LPA1–3, continue to display retinal growth cone collapse and neurite retraction in response to LPA, demonstrating that these three receptors are not required for these inhibitory effects and indicating the existence of one or more functional LPA receptors expressed on mouse retinal neurites that can mediate neurite retraction. PMID:26966392

  5. Purinergic inhibitory regulation of murine detrusor muscles mediated by PDGFRα+ interstitial cells

    PubMed Central

    Lee, Haeyeong; Koh, Byoung H; Peri, Lauren E; Sanders, Kenton M; Koh, Sang Don

    2014-01-01

    Purines induce transient contraction and prolonged relaxation of detrusor muscles. Transient contraction could be due to activation of inward currents in smooth muscle cells, but the mechanism of purinergic relaxation has not been determined. We recently reported a new class of interstitial cells in detrusor muscles and showed that these cells could be identified with antibodies against platelet-derived growth factor receptor-α (PDGFRα+ cells). The current density of small conductance Ca2+-activated K+ (SK) channels in these cells is far higher (∼100 times) than in smooth muscle cells. Thus, we examined purinergic receptor (P2Y) mediated SK channel activation as a mechanism for purinergic relaxation. P2Y receptors (mainly P2ry1 gene) were highly expressed in PDGFRα+ cells. Under voltage clamp conditions, ATP activated large outward currents in PDGFRα+ cells that were inhibited by blockers of SK channels. ATP also induced significant hyperpolarization under current clamp conditions. A P2Y1 agonist, MRS2365, mimicked the effects of ATP, and a P2Y1 antagonist, MRS2500, inhibited ATP-activated SK currents. Responses to ATP were largely abolished in PDGFRα+ cells of P2ry1−/− mice, and no response was elicited by MRS2365 in these cells. A P2X receptor agonist had no effect on PDGFRα+ cells but, like ATP, activated transient inward currents in smooth muscle cells (SMCs). A P2Y1 antagonist decreased nerve-evoked relaxation. These data suggest that purines activate SK currents via mainly P2Y1 receptors in PDGFRα+ cells. Our findings provide an explanation for purinergic relaxation in detrusor muscles and show that there are no discrete inhibitory nerve fibres. A dual receptive field for purines provides the basis for inhibitory neural regulation of excitability. PMID:24396055

  6. Inhibitory Effects of Angelica Polysaccharide on Activation of Mast Cells

    PubMed Central

    Mao, Wei-An; Sun, Yuan-Yuan; Mao, Jing-Yi; Wang, Li; Zhang, Jian; Zhou, Jie; Rahman, Khalid; Ye, Ying

    2016-01-01

    This study was designed to investigate the inhibitory effects of Angelica polysaccharide (AP) on activation of mast cells and its possible molecular mechanism. In our study, we determined the proinflammatory cytokines and allergic mediators in anti-DNP IgE stimulated RBL-2H3 cells and found that AP (50, 100, and 200 μg/mL) significantly decreased the release of histamine, β-hexosaminidase, leukotrienes C4 (LTC4), IL-1, IL-4, TNF-α, IL-6, and human monocyte chemotactic protein-1 (MCP-1/CCL2) (p < 0.05). In addition, Ca2+ entry was inhibited by treatment with AP. AP also downregulated the protein expressions of p-Fyn, p-Akt, p-P38, IL-4, TNF-α, and NF-κB p65 in both Fyn gene upregulated and normal RBL-2H3 cells (p < 0.05). Collectively, our results showed that AP could inhibit the activation of mast cells via suppressing the releases of proinflammatory cytokines allergic mediators, Gab2/PI3-K/Akt and Fyn/Syk pathways. PMID:27200102

  7. Carnosol, a dietary diterpene, displays growth inhibitory effects in human prostate cancer PC3 cells leading to G2-phase cell cycle arrest and targets the 5'-AMP-activated protein kinase (AMPK) pathway

    PubMed Central

    Johnson, Jeremy J.; Syed, Deeba N.; Heren, Chenelle R.; Suh, Yewseok; Adhami, Vaqar M.; Mukhtar, Hasan

    2010-01-01

    Purpose The anti-cancer effect of carnosol was investigated in human prostate cancer PC3 cells. Methods Biochemical analysis and protein array data of carnosol treated PC3 cells were analyzed. Results We evaluated carnosol for its potential anti-cancer properties in the PC3 cells. Using an MTT assay we found that carnosol (10 – 70 µM) decreases cell viability in a time and dose dependent manner. Next, we evaluated the effect of carnosol (20–60 uM) effect using flow cytometry as well as biochemical analysis and found induction of G2-phase cell cycle arrest. To establish a more precise mechanism, we performed a protein array that evaluated 638 proteins involved in cell signaling pathways. The protein array identified 5'-AMP-activated protein kinase (AMPK), a serine/threonine protein kinase involved in the regulation of cellular energy balance as a potential target. Further downstream effects consistent with cancer inhibition included the modulation of the mTOR/HSP70S6k/4E-BP1 pathway. Additionally, we found that carnosol targeted the PI3K/Akt pathway in a dose dependent manner. Conclusions These results suggest that carnosol targets multiple signaling pathways that include the AMPK pathway. The ability of carnosol to inhibit prostate cancer in vitro suggests carnosol may be a novel agent for the management of PCa. PMID:18286356

  8. Siglec-G is a B-1 cell inhibitory receptor and also controls B cell tolerance.

    PubMed

    Nitschke, Lars

    2015-12-01

    B cell antigen receptor signaling on B-1 cells is controlled by several inhibitory receptors, including Siglec-G, which is a member of the Siglec (sialic acid-binding immunoglobulin-like lectin) family and inhibits B cell signaling. The inhibitory function of Siglec-G is largely restricted to B-1 cells, as demonstrated by studies of Siglec-G-deficient mice showing a phenotype affecting mostly B-1 cells. Siglec-G-deficient mice show a markedly increased B-1a cell population, enhanced B-1 cell signaling, and a shift in the immunoglobulin repertoire secreted by their B-1 cells. Mouse models have provided evidence that Siglec-G binds to the B cell receptor (BCR) on the B cell surface via interaction with sialic acid ligands. As an inhibitory receptor on B cells, Siglec-G controls B cell tolerance, and deficiency of this protein can increase the severity of autoimmune diseases. Despite its importance on B-1 cells, there is evidence that the control of B cell tolerance by Siglec-G occurs on conventional B-2 cells. PMID:26194636

  9. Essential Oils from Ugandan Aromatic Medicinal Plants: Chemical Composition and Growth Inhibitory Effects on Oral Pathogens

    PubMed Central

    Ocheng, Francis; Bwanga, Freddie; Joloba, Moses; Softrata, Abier; Azeem, Muhammad; Pütsep, Katrin; Borg-Karlson, Anna-Karin; Obua, Celestino; Gustafsson, Anders

    2015-01-01

    The study assessed the growth inhibitory effects of essential oils extracted from ten Ugandan medicinal plants (Bidens pilosa, Helichrysum odoratissimum, Vernonia amygdalina, Hoslundia opposita, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus, Teclea nobilis, Zanthoxylum chalybeum, and Lantana trifolia) used traditionally in the management of oral diseases against oral pathogens. Chemical compositions of the oils were explored by GC-MS. Inhibitory effects of the oils were assessed on periodontopathic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and cariogenic Streptococcus mutans and Lactobacillus acidophilus using broth dilution methods at concentrations of 1%, 0.1%, and 0.01%. The most sensitive organism was A. actinomycetemcomitans. Its growth was markedly inhibited by six of the oils at all the concentrations tested. Essential oil from C. nardus exhibited the highest activity with complete growth inhibition of A. actinomycetemcomitans and P. gingivalis at all the three concentrations tested, the major constituents in the oil being mainly oxygenated sesquiterpenes. Most of the oils exhibited limited effects on L. acidophilus. We conclude that essential oils from the studied plants show marked growth inhibitory effects on periodontopathic A. actinomycetemcomitans and P. gingivalis, moderate effects on cariogenic S. mutans, and the least effect on L. acidophilus. The present study constitutes a basis for further investigations and development of certain oils into alternative antiplaque agents. PMID:26170872

  10. Essential Oils from Ugandan Aromatic Medicinal Plants: Chemical Composition and Growth Inhibitory Effects on Oral Pathogens.

    PubMed

    Ocheng, Francis; Bwanga, Freddie; Joloba, Moses; Softrata, Abier; Azeem, Muhammad; Pütsep, Katrin; Borg-Karlson, Anna-Karin; Obua, Celestino; Gustafsson, Anders

    2015-01-01

    The study assessed the growth inhibitory effects of essential oils extracted from ten Ugandan medicinal plants (Bidens pilosa, Helichrysum odoratissimum, Vernonia amygdalina, Hoslundia opposita, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus, Teclea nobilis, Zanthoxylum chalybeum, and Lantana trifolia) used traditionally in the management of oral diseases against oral pathogens. Chemical compositions of the oils were explored by GC-MS. Inhibitory effects of the oils were assessed on periodontopathic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and cariogenic Streptococcus mutans and Lactobacillus acidophilus using broth dilution methods at concentrations of 1%, 0.1%, and 0.01%. The most sensitive organism was A. actinomycetemcomitans. Its growth was markedly inhibited by six of the oils at all the concentrations tested. Essential oil from C. nardus exhibited the highest activity with complete growth inhibition of A. actinomycetemcomitans and P. gingivalis at all the three concentrations tested, the major constituents in the oil being mainly oxygenated sesquiterpenes. Most of the oils exhibited limited effects on L. acidophilus. We conclude that essential oils from the studied plants show marked growth inhibitory effects on periodontopathic A. actinomycetemcomitans and P. gingivalis, moderate effects on cariogenic S. mutans, and the least effect on L. acidophilus. The present study constitutes a basis for further investigations and development of certain oils into alternative antiplaque agents. PMID:26170872

  11. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    SciTech Connect

    Teng, Chih-Chuan; Kuo, Hsing-Chun; Cheng, Ho-Chen; Wang, Ting-Chung; Sze, Chun-I

    2012-08-15

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr{sup 15} and Cdc25cSer{sup 216}. Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer{sup 216} expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer{sup 216} in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer{sup 216} cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  12. FKBP-12 exhibits an inhibitory activity on calcium oxalate crystal growth in vitro.

    PubMed

    Han, In Sook; Nakagawa, Yasushi; Park, Jong Wook; Suh, Min Ho; Suh, Sung Il; Shin, Song Woo; Ahn, Su Yul; Choe, Byung Kil

    2002-02-01

    Urolithiasis and calcium oxalate crystal deposition diseases are still significant medical problems. In the course of nephrocalcin cDNA cloning, we have identified FKBP-12 as an inhibitory molecule of calcium oxalate crystal growth. lambdagt 11 cDNA libraries were constructed from renal carcinoma tissues and screened for nephrocalcin cDNA clones using anti-nephrocalcin antibody as a probe. Clones expressing recombinant proteins, which appeared to be antigenically cross-reactive to nephrocalcin, were isolated and their DNA sequences and inhibitory activities on the calcium oxalate crystal growth were determined. One of the clone lambda gt 11 #31-1 had a partial fragment (80 bp) of FKBP-12 cDNA as an insert. Therefore, a full-length FKBP-12 cDNA was PCR-cloned from the lambda gt 11 renal carcinoma cDNA library and was subcloned into an expression vector. The resultant recombinant FKBP-12 exhibited an inhibitory activity on the calcium oxalate crystal growth (Kd=10(-7) M). Physiological effect of the extracellular FKBP-12 was investigated in terms of macrophage activation and proinflammatory cytokine gene induction. Extracellular FKBP-12 failed to activate macrophages even at high concentrations. FKBP-12 seems an anti-stone molecule for the oxalate crystal deposition disease and recurrent stone diseases. PMID:11850587

  13. Mechanics of Cell Growth

    PubMed Central

    Ateshian, Gerard A.; Morrison, Barclay; Holmes, Jeffrey W.; Hung, Clark T.

    2012-01-01

    Cell growth describes an essential feature of biological tissues. This growth process may be modeled by using a set of relatively simple governing equations based on the axioms of mass and momentum balance, and using a continuum framework that describes cells and tissues as mixtures of a solid matrix, a solvent and multiple solutes. In this model the mechanics of cell growth is driven by osmotic effects, regulated by the cells’ active uptake of solutes and passive uptake of solvent. By accounting for the anisotropy of the cells’ cytoskeletal structures or extracellular matrix, as well as external constraints, a wide variety of growing shapes may be produced as illustrated in various examples. PMID:22904576

  14. Sulforaphane Analogues with Heterocyclic Moieties: Syntheses and Inhibitory Activities against Cancer Cell Lines.

    PubMed

    Shi, Ye-Hui; Dai, Dong-Fang; Li, Jing; Dong, Yan-Wei; Jiang, Yin; Li, Huan-Gong; Gao, Yuan; Chong, Chuan-Ke; Li, Hui-Ying; Chu, Xiao-Qian; Yang, Cheng; Zhang, Quan; Tong, Zhong-Sheng; Bai, Cui-Gai; Chen, Yue

    2016-01-01

    Recent studies have shown that sulforaphane (SFN) selectively inhibits the growth of ALDH⁺ breast cancer stem-like cells.Herein, a series of SFN analogues were synthesized and evaluated against breast cancer cell lines MCF-7 and SUM-159, and the leukemia stem cell-like cell line KG-1a. These SFN analogues were characterized by the replacement of the methyl group with heterocyclic moieties, and the replacement of the sulfoxide group with sulfide or sulfone. A growth inhibitory assay indicated that the tetrazole analogs 3d, 8d and 9d were significantly more potent than SFN against the three cancer cell lines. Compound 14c, the water soluble derivative of tetrazole sulfide 3d, demonstrated higher potency against KG-1a cell line than 3d. SFN, 3d and 14c significantly induced the activation of caspase-3, and reduced the ALDH⁺ subpopulation in the SUM159 cell line, while the marketed drug doxrubicin(DOX) increased the ALDH⁺ subpopulation. PMID:27110751

  15. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  16. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  17. N'-Alkylaminosulfonyl Analogues of 6-Fluorobenzylideneindolinones with Desirable Physicochemical Profiles and Potent Growth Inhibitory Activities on Hepatocellular Carcinoma.

    PubMed

    Chen, Xiao; Yang, Tianming; Deivasigamani, Amudha; Shanmugam, Muthu K; Hui, Kam-Man; Sethi, Gautam; Go, Mei-Lin

    2015-09-01

    The benzylideneindolinone 6-chloro-3-(3'-trifluoromethylbenzylidene)-1,3-dihydroindol-2-one (4) was reported to exhibit potent and selective growth inhibitory effects on hepatocellular carcinoma (HCC). Corroborative evidence supported multi-receptor tyrosine kinase (RTK) inhibition as a possible mode of action. However, the poor physicochemical properties of 4 limited its furtherance as a lead compound. In this study, the modification of 4 was investigated with the aim of improving its potency and physicochemical profile. The 6-fluorobenzylideneindolinone 3-12 bearing a 3'-N-propylaminosulfonyl substituent was found to be a promising substitute. Compound 3-12 [6-fluoro-3-(3'-N-propylaminosulfonylbenzylidene)-1,3-dihydroindol-2-one] was found to be tenfold more soluble than 4 and to have sub-micromolar growth inhibitory activities on HCC cells. It is apoptogenic and inhibits the phosphorylation of several RTKs in HuH7, of which the inhibition of FGFR4 and HER3 are prominent. Compound 3-12 decreased the tumor load in a physiologically relevant orthotopic HCC xenograft murine model. Structure-activity relationships support pivotal roles for the fluoro and N'-propylaminosulfonyl moieties in enhancing cell-based activity and moderating the physicochemical profile (solubility, permeability) of 3-12. PMID:26214403

  18. Characterization of DicB by partially masking its potent inhibitory activity of cell division.

    PubMed

    Yang, Shaoyuan; Pei, Hairun; Zhang, Xiaoying; Wei, Qiang; Zhu, Jia; Zheng, Jimin; Jia, Zongchao

    2016-07-01

    DicB, a protein encoded by the Kim (Qin) prophage in Escherichia coli, inhibits cell division through interaction with MinC. Thus far, characterization of DicB has been severely hampered owing to its potent activity which ceases cell division and leads to cell death. In this work, through fusing maltose-binding protein to the N-terminus of DicB (MBP-DicB), we successfully expressed and purified recombinant DicB that enabled in vitro analysis for the first time. More importantly, taking advantage of the reduced inhibitory activity of MBP-DicB, we were able to study its effects on cell growth and morphology. Inhibition of cell growth by MBP-DicB was systematically evaluated using various DicB constructs, and their corresponding effects on cell morphology were also investigated. Our results revealed that the N-terminal segment of DicB plays an essential functional role, in contrast to its C-terminal tail. The N-terminus of DicB is of critical importance as even the first amino acid (following the initial Met) could not be removed, although it could be mutated. This study provides the first glimpse of the molecular determinants underlying DicB's function. PMID:27466443

  19. Characterization of DicB by partially masking its potent inhibitory activity of cell division

    PubMed Central

    Yang, Shaoyuan; Pei, Hairun; Zhang, Xiaoying; Wei, Qiang; Zhu, Jia; Zheng, Jimin; Jia, Zongchao

    2016-01-01

    DicB, a protein encoded by the Kim (Qin) prophage in Escherichia coli, inhibits cell division through interaction with MinC. Thus far, characterization of DicB has been severely hampered owing to its potent activity which ceases cell division and leads to cell death. In this work, through fusing maltose-binding protein to the N-terminus of DicB (MBP–DicB), we successfully expressed and purified recombinant DicB that enabled in vitro analysis for the first time. More importantly, taking advantage of the reduced inhibitory activity of MBP–DicB, we were able to study its effects on cell growth and morphology. Inhibition of cell growth by MBP–DicB was systematically evaluated using various DicB constructs, and their corresponding effects on cell morphology were also investigated. Our results revealed that the N-terminal segment of DicB plays an essential functional role, in contrast to its C-terminal tail. The N-terminus of DicB is of critical importance as even the first amino acid (following the initial Met) could not be removed, although it could be mutated. This study provides the first glimpse of the molecular determinants underlying DicB's function. PMID:27466443

  20. Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling.

    PubMed

    Diniz, Luan Pereira; Tortelli, Vanessa; Garcia, Matheus Nunes; Araújo, Ana Paula Bérgamo; Melo, Helen M; Silva, Gisele S Seixas da; Felice, Fernanda G De; Alves-Leon, Soniza Vieira; Souza, Jorge Marcondes de; Romão, Luciana Ferreira; Castro, Newton Gonçalves; Gomes, Flávia Carvalho Alcantara

    2014-12-01

    The balance between excitatory and inhibitory synaptic inputs is critical for the control of brain function. Astrocytes play important role in the development and maintenance of neuronal circuitry. Whereas astrocytes-derived molecules involved in excitatory synapses are recognized, molecules and molecular mechanisms underlying astrocyte-induced inhibitory synapses remain unknown. Here, we identified transforming growth factor beta 1 (TGF-β1), derived from human and murine astrocytes, as regulator of inhibitory synapse in vitro and in vivo. Conditioned media derived from human and murine astrocytes induce inhibitory synapse formation in cerebral cortex neurons, an event inhibited by pharmacologic and genetic manipulation of the TGF-β pathway. TGF-β1-induction of inhibitory synapse depends on glutamatergic activity and activation of CaM kinase II, which thus induces localization and cluster formation of the synaptic adhesion protein, Neuroligin 2, in inhibitory postsynaptic terminals. Additionally, intraventricular injection of TGF-β1 enhanced inhibitory synapse number in the cerebral cortex. Our results identify TGF-β1/CaMKII pathway as a novel molecular mechanism underlying astrocyte control of inhibitory synapse formation. We propose here that the balance between excitatory and inhibitory inputs might be provided by astrocyte signals, at least partly achieved via TGF-β1 downstream pathways. Our work contributes to the understanding of the GABAergic synapse formation and may be of relevance to further the current knowledge on the mechanisms underlying the development of various neurological disorders, which commonly involve impairment of inhibitory synapse transmission. PMID:25042347

  1. Cell Growth Enhancement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  2. Growth inhibitory response and ultrastructural modification of oral-associated candidal reference strains (ATCC) by Piper betle L. extract

    PubMed Central

    Nordin, Mohd-Al-Faisal; Wan Harun, Wan Himratul-Aznita; Abdul Razak, Fathilah; Musa, Md Yusoff

    2014-01-01

    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments: (i) in the absence of P. betle extract; and in the presence of P. betle extract at respective concentrations of (ii) 1 mg⋅mL−1; (iii) 3 mg⋅mL−1; and (iv) 6 mg⋅mL−1. The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (µ). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the µ-values of the treated cells were significantly different than those of the untreated cells (P<0.05), indicating the fungistatic properties of the P. betle extract. The candidal population was also reduced from an average of 13.44×106 to 1.78×106 viable cell counts (CFU)⋅mL−1. SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity. PMID:24406634

  3. Growth-Inhibitory and Antiangiogenic Activity of the MEK Inhibitor PD0325901 in Malignant Melanoma with or without BRAF Mutations12

    PubMed Central

    Ciuffreda, Ludovica; Del Bufalo, Donatella; Desideri, Marianna; Di Sanza, Cristina; Stoppacciaro, Antonella; Ricciardi, Maria Rosaria; Chiaretti, Sabina; Tavolaro, Simona; Benassi, Barbara; Bellacosa, Alfonso; Foà, Robin; Tafuri, Agostino; Cognetti, Francesco; Anichini, Andrea; Zupi, Gabriella; Milella, Michele

    2009-01-01

    The Raf/MEK/ERK pathway is an important mediator of tumor cell proliferation and angiogenesis. Here, we investigated the growth-inhibitory and antiangiogenic properties of PD0325901, a novel MEK inhibitor, in human melanoma cells. PD0325901 effects were determined in a panel of melanoma cell lines with different genetic aberrations. PD0325901 markedly inhibited ERK phosphorylation and growth of both BRAF mutant and wild-type melanoma cell lines, with IC50 in the nanomolar range even in the least responsive models. Growth inhibition was observed both in vitro and in vivo in xenograft models, regardless of BRAF mutation status, and was due to G1-phase cell cycle arrest and subsequent induction of apoptosis. Cell cycle (cyclin D1, c-Myc, and p27KIP1) and apoptosis (Bcl-2 and survivin) regulators were modulated by PD0325901 at the protein level. Gene expression profiling revealed profound modulation of several genes involved in the negative control of MAPK signaling and melanoma cell differentiation, suggesting alternative, potentially relevant mechanisms of action. Finally, PD0325901 inhibited the production of the proangiogenic factors vascular endothelial growth factor and interleukin 8 at a transcriptional level. In conclusion, PD0325901 exerts potent growth-inhibitory, proapoptotic, and antiangiogenic activity in melanoma lines, regardless of their BRAF mutation status. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective treatment strategies for patients experiencing malignant melanoma. PMID:19649202

  4. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    PubMed

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion. PMID:20382202

  5. Mutation at Glu23 eliminates the neuron growth inhibitory activity of human metallothionein-3

    SciTech Connect

    Ding Zhichun; Teng Xinchen; Cai Bin; Wang Hui; Zheng Qi; Wang Yang; Zhou Guoming; Zhang Mingjie; Wu Houming; Sun Hongzhe . E-mail: hsun@hku.hk; Huang Zhongxian . E-mail: zxhuang@fudan.edu.cn

    2006-10-20

    Human metallothionein-3 (hMT3), first isolated and identified as a neuronal growth inhibitory factor (GIF), is a metalloprotein expressed predominantly in brain. However, untill now, the exact mechanism of the bioactivity of hMT3 is still unknown. In order to study the influence of acid-base catalysis on S-nitrosylation of hMT3, we constructed the E23K mutant of hMT3. During the course of bioassay, we found out unexpectedly that mutation at E23 of hMT3 eliminates the neuronal growth inhibitory activity completely. To the best of our knowledge, it is First report that other residues, besides the TCPCP motif, in the {beta}-domain can alter the bioactivity of hMT3. In order to figure out the causes for the loss of bioactivity of the E23K mutant, the biochemical properties were characterized by UV-vis spectroscopy, CD spectroscopy, pH titration, DTNB reaction, EDTA reaction, and SNOC reaction. All data demonstrated that stability of the metal-thiolate cluster and overall structure of the E23K mutant were not altered too much. However, the reaction of the E23K mutant with SNOC exhibited biphasic kinetics and the mutant protein released zinc ions much faster than hMT3 in the initial step, while hMT3 exhibited single kinetic process. The 2D [{sup 1}H-{sup 15}N] HSQC was also employed to characterize structural changes during the reaction of hMT3 with varying mounts of nitric oxide. It was shown that the resonance of Glu23 disappeared at a molar ratio of NO to protein of 4. Based on these results, we suggest that mutation at Glu23 may alter the NO metabolism and/or affect zinc homeostasis in brain, thus altering the neuronal growth inhibitory activity.

  6. Histone deacetylase inhibitory effect of Brazilian propolis and its association with the antitumor effect in Neuro2a cells

    PubMed Central

    Ishiai, Shinobu; Tahara, Wataru; Yamamoto, Etsuko; Yamamoto, Rindai; Nagai, Kaoru

    2014-01-01

    Propolis is a resinous product produced by honey bees and is known to have antitumor functions. On the other hand, histone deacetylase (Hdac) inhibitors have recently attracted attention for their antitumor effects. In this study, we examined whether Brazilian green propolis has an Hdac inhibitory activity and its contribution on antitumor effects. By in vitro Hdac activity assay, Brazilian propolis extract (BPE) significantly inhibited the enzyme activity. Actually, BPE treatment increased the intracellular histone acetylation in Neuro2a cells. Regarding antitumor effect in Neuro2a cells, BPE treatment significantly decreased cell viability. An Hdac activator theophylline significantly attenuated the effect. Then, we analyzed whether the decreasing effect on cell number was caused by cell death or growth retardation. By live/dead cell staining, BPE treatment significantly increased the dead cell number. By cell cycle analysis, BPE treatment retarded cell cycle at the M-phase. Both of these cellular effects were suppressed by addition of theophylline. These data indicate that BPE induced both cell death and growth retardation via Hdac inhibitory activity. We demonstrated that Brazilian propolis bears regulatory functions on histone acetylation via Hdac inhibition, and the effect contributes antitumor functions. Our data suggest that intake of Brazilian propolis shows preventing effects against cancer. PMID:25473514

  7. Growth inhibitory effect of shelf life extending agents on Bacillus subtilis IAM 1026.

    PubMed

    Mitsuboshi, Saori; Obitsu, Rie; Muramatsu, Kanako; Furube, Kentaro; Yoshitake, Shigehiro; Kiuchi, Kan

    2007-06-01

    Natural shelf life extending agents and sugar fatty acid esters that might inhibit the growth of B. subtilis IAM 1026 were screened, and the effective agents were as follows: beta-thujaplicin (Hinokitiol) and chitosan, inhibited the growth of IAM 1026 at a concentration of 0.001% ; epsilon-polylysine and M-1695 (a sugar fatty acid ester) at 0.005%; citrus seed extract, thiamin lauryl sulfate, and grapefruit seed extract at 0.01%; CT-1695 and L-1695 (sugar fatty acid esters) at 0.05%; pectin digests and SM-800 (a sugar fatty acid ester) at 0.5%; water pepper seed extract and the sugar fatty acid esters SM-1000 and CE-1695 at 1.0%. The growth inhibitory effects of the agents in custard cream were not necessarily similar to those in liquid culture. The agent that showed the highest inhibitory effect in custard cream was 0.3% beta-thujaplicin, followed by 0.3% epsilon-polylysine. PMID:17629249

  8. Segregating metabolic processes into different microbial cells accelerates the consumption of inhibitory substrates.

    PubMed

    Lilja, Elin E; Johnson, David R

    2016-07-01

    Different microbial cell types typically specialize at performing different metabolic processes. A canonical example is substrate cross-feeding, where one cell type consumes a primary substrate into an intermediate and another cell type consumes the intermediate. While substrate cross-feeding is widely observed, its consequences on ecosystem processes is often unclear. How does substrate cross-feeding affect the rate or extent of substrate consumption? We hypothesized that substrate cross-feeding eliminates competition between different enzymes and reduces the accumulation of growth-inhibiting intermediates, thus accelerating substrate consumption. We tested this hypothesis using isogenic mutants of the bacterium Pseudomonas stutzeri that either completely consume nitrate to dinitrogen gas or cross-feed the intermediate nitrite. We demonstrate that nitrite cross-feeding eliminates inter-enzyme competition and, in turn, reduces nitrite accumulation. We further demonstrate that nitrite cross-feeding accelerates substrate consumption, but only when nitrite has growth-inhibiting effects. Knowledge about inter-enzyme competition and the inhibitory effects of intermediates could therefore be important for deciding how to best segregate different metabolic processes into different microbial cell types to optimize a desired biotransformation. PMID:26771930

  9. microRNA-145 Mediates the Inhibitory Effect of Adipose Tissue-Derived Stromal Cells on Prostate Cancer.

    PubMed

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Nakagawa, Takatoshi; Ibuki, Naokazu; Yoshikawa, Yuki; Tsujino, Takuya; Uchimoto, Taizo; Saito, Kenkichi; Takai, Tomoaki; Tanda, Naoki; Minami, Koichiro; Uehara, Hirofumi; Komura, Kazumasa; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2016-09-01

    Adipose-derived stromal cell (ASC), known as one of the mesenchymal stem cells (MSCs), is a promising tool for regenerative medicine; however, the effect of ASCs on tumor growth has not been studied sufficiently. We investigated the hypothesis that ASCs have an inhibitory effect on metastatic tumor progression. To evaluate the in vitro inhibitory effect of ASCs on metastatic prostate cancer (PCa), direct coculture and indirect separate culture experiments with PC3M-luc2 cells and human ASCs were performed, and ASCs were administered to PC3M-luc2 cell-derived tumor-bearing nude mice for in vivo experiment. We also performed exosome microRNA (miRNA) array analysis to explore a mechanistic insight into the effect of ASCs on PCa cell proliferation/apoptosis. Both in vitro and in vivo experiments exhibited the inhibitory effect of ASCs on PC3M-luc2 cell proliferation, inducing apoptosis and PCa growth, respectively. Among upregulated miRNAs in ASCs compared with fibroblasts, we focused on miR-145, which was known as a tumor suppressor. ASC-derived conditioned medium (CM) significantly inhibited PC3M-luc2 cell proliferation, inducing apoptosis, but the effect was canceled by miR-145 knockdown in ASCs. ASC miR-145 knockdown CM also reduced the expression of Caspase 3/7 with increased antiapoptotic protein, BclxL, expression in PC3M-luc2 cells. This study provides preclinical data that ASCs inhibit PCa growth, inducing PCa cell apoptosis with reduced activity of BclxL, at least in part, by miR-145, including exosomes released from ASCs, suggesting that ASC administration could be a novel and promising therapeutic strategy in patients with PCa. PMID:27465939

  10. Transcriptome analysis of phycocyanin inhibitory effects on SKOV-3 cell proliferation.

    PubMed

    Ying, Jun; Wang, Jian; Ji, Huijuan; Lin, Chaoqing; Pan, Ruowang; Zhou, Li; Song, Yulong; Zhang, Enyong; Ren, Ping; Chen, Jishun; Liu, Qian; Xu, Teng; Yi, Huiguang; Li, Jinsong; Bao, Qiyu; Hu, Yunliang; Li, Peizhen

    2016-07-01

    Phycocyanin (PC) from Spirulina platensis has inhibitory effects on tumor cell growth. In this research, the transcriptome study was designed to investigate the underlying molecular mechanisms of PC inhibition on human ovarian cancer cell SKOV-3 proliferation. The PC IC50 was 216.6μM and 163.8μM for 24h and 48h exposure, respectively, as determined by CCK-8 assay. The morphological changes of SKOV-3 cells after PC exposure were recorded using HE staining. Cells arrested in G2/M stages as determined by flow cytometry. The transcriptome analysis showed that 2031 genes (with > three-fold differences) were differentially expressed between the untreated and the PC-treated cells, including 1065 up-regulated and 966 down-regulated genes. Gene ontology and KEGG pathway analysis identified 18 classical pathways that were remarkably enriched, such as neurotrophin signaling pathway, VEGF signaling pathway and P53 signaling pathway. qPCR results further showed that PTPN12, S100A2, RPL26, and LAMA3 increased while HNRNPA1P10 decreased in PC-treated cells. Molecules and genes in those pathways may be potential targets to develop treatments for ovarian cancer. PMID:26995654

  11. The Inhibitory Effect of Rhein on Proliferation of High Glucose-induced Mesangial Cell Through Cell Cycle Regulation and Induction of Cell Apoptosis

    PubMed Central

    Xu, Shouzhu; Lv, Yanying; Zhao, Jing; Wang, Junping; Wang, Guangjian; Wang, Siwang

    2016-01-01

    Objectives: Increased mesangial cell proliferation and accumulation of extracellular matrix (ECM) are the major pathological features of early-stage diabetic nephropathy. This study was sought to investigate the inhibitory effects of rhein (RH) on high glucose (HG)-cultured mesangial cells. Specially, we focus on the analysis of proliferation rate, cell cycle regulation, apoptosis, and the expression of collagen IV and laminin. Materials and Methods: The established rat renal mesangial cell (RMC) line was cultured in medium with different concentrations of glucose (5.6 mM or 25 mM) and RH (40 μM, 20 μM, and 10 μM). Pro-treated cells were collected at 12 h, 24 h, and 48 h for cell proliferation analysis and after 24 h for the experiments of flow cytometry, transmission electron microscope, real-time polymerase chain reaction, and Western blotting. Results: Our data shows HG can promote the proliferation of RMCs and RH has an inhibitory effect on HG-induced RMC proliferation and expression of ECM. Based on our data, we hypothesize this inhibitory effect might be a result of cell cycle regulation and the induction of cellular apoptosis. Conclusion: RH can inhibit cellular proliferation and downregulate the expression of ECM under the circumstance of HG. The mechanism of growth suppression may be due to cell cycle arrest at G1 phase, induction of cell apoptosis, and upregulation of apoptotic mediators bax and caspase-3. SUMMARY Rhein (RH) has an inhibitory effect on high glucose.induced rat mesangial cells proliferationRH has an inhibitory effect on the expression of extracellular matrixRH has a growth.suppression effectRH can upregulate the expression of apoptotic mediators bax and caspase-3All above shows RH is one of the main active ingredient in Shenkang injection. Abbreviations used: RH: Rhein, ECM: Extracellular matrix, DN: Diabetic nephropathy, RMC: Renal mesangial cell, SKI: Shenkang injection, MTT: 3-(4,5-dimethylthiazol–2-yl)-2,5-diphenyltetrazolium

  12. NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors.

    PubMed

    Anton, Olga M; Vielkind, Susina; Peterson, Mary E; Tagaya, Yutaka; Long, Eric O

    2015-11-15

    IL-15 bound to the IL-15Rα-chain (IL-15Rα) is presented in trans to cells bearing the IL-2Rβ-chain and common γ-chain. As IL-15 transpresentation occurs in the context of cell-to-cell contacts, it has the potential for regulation by and of other receptor-ligand interactions. In this study, human NK cells were tested for the sensitivity of IL-15 transpresentation to inhibitory receptors. Human cells expressing HLA class I ligands for inhibitory receptors KIR2DL1, KIR2DL2/3, or CD94-NKG2A were transfected with IL-15Rα. Proliferation of primary NK cells in response to transpresented IL-15 was reduced by engagement of either KIR2DL1 or KIR2DL2/3 by cognate HLA-C ligands. Inhibitory KIR-HLA-C interactions did not reduce the proliferation induced by soluble IL-15. Therefore, transpresentation of IL-15 is subject to downregulation by MHC class I-specific inhibitory receptors. Similarly, proliferation of the NKG2A(+) cell line NKL induced by IL-15 transpresentation was inhibited by HLA-E. Coengagement of inhibitory receptors, either KIR2DL1 or CD94-NKG2A, did not inhibit phosphorylation of Stat5 but inhibited selectively phosphorylation of Akt and S6 ribosomal protein. IL-15Rα was not excluded from, but was evenly distributed across, inhibitory synapses. These findings demonstrate a novel mechanism to attenuate IL-15-dependent NK cell proliferation and suggest that inhibitory NK cell receptors contribute to NK cell homeostasis. PMID:26453750

  13. In vitro inhibitory properties of ferrocene-substituted chalcones and aurones on bacterial and human cell cultures.

    PubMed

    Tiwari, Keshri Nath; Monserrat, Jean-Philippe; Hequet, Arnaud; Ganem-Elbaz, Carine; Cresteil, Thierry; Jaouen, Gérard; Vessières, Anne; Hillard, Elizabeth A; Jolivalt, Claude

    2012-06-01

    Two series of ten chalcones and ten aurones, where ferrocene replaces the C ring and with diverse substituents on the A ring were synthesized. The compounds were tested against two antibiotic-sensitive bacterial strains, E. coli ATCC 25922 and S. aureus ATCC 25923, and two antibiotic-resistant strains, S. aureus SA-1199B and S. epidermidis IPF896. The unsubstituted compound and those with methoxy substitution showed an inhibitory effect on all bacterial strains at minimum inhibitory concentrations ranging between 2 and 32 mg L(-1). For four of these compounds, the effect was bactericidal, as opposed to bacteriostatic. The corresponding organic aurones did not show growth inhibition, underscoring the role of the ferrocene group. The methoxy-substituted aurones and the unsubstituted aurone also showed low micromolar (IC(50)) activity against MRC-5 non-tumoral lung cells and MDA-MB-231 breast cancer cells, suggesting non-specific toxicity. PMID:22240736

  14. Feeding deterrent and growth inhibitory activities of PONNEEM, a newly developed phytopesticidal formulation against Helicoverpa armigera (Hubner)

    PubMed Central

    Packiam, Soosaimanickam Maria; Baskar, Kathirvelu; Ignacimuthu, Savarimuthu

    2014-01-01

    Objective To assess the feeding deterrent, growth inhibitory and egg hatchability effects of PONNEEM on Helicoverpa armigera (H. armigera). Methods Five oil formulations were prepared at different ratios to assess the feeding deterrent, growth inhibitory and egg hatchability effects on H. armigera. Results Invariably all the newly formulated phytopesticidal oil formulations showed the feeding deterrent and growth inhibitory activities against H. armigera. The maximum feeding deterrent activity of 88.44% was observed at 15 µL/L concentration of PONNEEM followed by formulation A (74.54%). PONNEEM was found to be effective in growth inhibitory activities and egg hatchability at 10 µL/L concentration. It exhibited statistically significant feeding deterrent activity and growth inhibitory activity compared with all the other treatments. Conclusions PONNEEM was found to be effective phytopesticidal formulation to control the larval stage of H. armigera. This is the first report for the feeding deterrent activity of PONNEEM against H. armigera. This newly formulated phytopesticide was patented in India. PMID:25183105

  15. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    NASA Astrophysics Data System (ADS)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  16. Inhibitory effects of Hedyotis diffusa Willd. on colorectal cancer stem cells

    PubMed Central

    SUN, GUODONG; WEI, LIHUI; FENG, JIANYU; LIN, JIUMAO; PENG, JUN

    2016-01-01

    Cancer stem cells (CSCs) are proposed to be closely correlated with the development and progression of tumors, as well as with chemo- and radioresistance. Targeting CSCs may therefore be a promising potential strategy for the treatment of cancer. Currently, natural products have received great interest due to their therapeutic efficacy and reduced adverse effects compared with modern chemotherapeutics. As a significant component of a number of traditional Chinese medicine formulas, the medicinal herb Hedyotis diffusa Willd. (HDW) has long been utilized in China to clinically treat a variety of malignancies, including colorectal cancer (CRC). Previously, the authors of the present study reported that HDW suppressed CRC growth through multiple mechanisms, including promoting apoptosis, and inhibiting cell proliferation and tumor angiogenesis. To additionally investigate its mode of action, the present study isolated a stem-like side population (SP) from colorectal cancer HT-29 cells to investigate the effect of ethanol extract of HDW on CSCs. It was observed that HDW was able to markedly downregulate the expression of CSC marker leucine-rich repeat-containing G-protein coupled receptor 5 and also significantly decrease the proportion of SP in HT-29 cells, in a dose-dependent manner. Furthermore, HDW treatment significantly and dose-dependently inhibited the viability and sphere formation, and induced cell morphological changes of isolated HT-29 SP cells. In addition, HDW greatly suppressed the messenger RNA expression of several critical genes that mediate CSC features, including ATP-binding cassette, sub-family B, member 1, β-catenin, c-Myc, proliferating cell nuclear antigen and survivin. In conclusion, the present study indicates that HDW may exert inhibitory effects on cancer stem cells. PMID:27313710

  17. Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation.

    PubMed

    Rybalchenko, Oxana V; Bondarenko, Viktor M; Orlova, Olga G; Markov, Alexander G; Amasheh, S

    2015-10-01

    Beneficial effects of Lactobacilli have been reported, and lactic bacteria are employed for conservation of foods. Therefore, the effects of a Lactobacillus fermentum strain were analyzed regarding inhibitory effects on staphylococci, Candida albicans and enterotoxigenic enterobacteria by transmission electron microscopy (TEM). TEM of bacterial biofilms was performed using cocultures of bacteriocin-producing L. fermentum 97 with different enterotoxigenic strains: Staphylococcus epidermidis expressing the ica gene responsible for biofilm formation, Staphylococcus aureus producing enterotoxin type A, Citrobacter freundii, Enterobacter cloaceae, Klebsiella oxytoca, Proteus mirabilis producing thermolabile and thermostable enterotoxins determined by elt or est genes, and Candida albicans. L. fermentum 97 changed morphological features and suppressed biofilm formation of staphylococci, enterotoxigenic enterobacteria and Candida albicans; a marked transition to resting states, a degradation of the cell walls and cytoplasm, and a disruption of mature bacterial biofilms were observed, the latter indicating efficiency even in the phase of higher cell density. PMID:26267163

  18. Current perspectives on natural killer cell education and tolerance: emerging roles for inhibitory receptors

    PubMed Central

    Thomas, L Michael

    2015-01-01

    Natural killer (NK) cells are regulated through the coordinated functions of activating and inhibitory receptors. These receptors can act during the initial engagement of an NK cell with a target cell, or in subsequent NK cell engagements to maintain tolerance. Notably, each individual possesses a sizable minority-population of NK cells that are devoid of inhibitory receptors that recognize the surrounding MHC class I (ie, self-MHC). Since these NK cells cannot perform conventional inhibition, they are rendered less responsive through the process of NK cell education (also known as licensing) in order to reduce the likelihood of auto-reactivity. This review will delineate current views on NK cell education, clarify various misconceptions about NK cell education, and, lastly, discuss the relevance of NK cell education in anti-cancer therapies.

  19. A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity

    PubMed Central

    Ankri, Lea; Husson, Zoé; Pietrajtis, Katarzyna; Proville, Rémi; Léna, Clément; Yarom, Yosef; Dieudonné, Stéphane; Uusisaari, Marylka Yoe

    2015-01-01

    The cerebellum, a crucial center for motor coordination, is composed of a cortex and several nuclei. The main mode of interaction between these two parts is considered to be formed by the inhibitory control of the nuclei by cortical Purkinje neurons. We now amend this view by showing that inhibitory GABA-glycinergic neurons of the cerebellar nuclei (CN) project profusely into the cerebellar cortex, where they make synaptic contacts on a GABAergic subpopulation of cerebellar Golgi cells. These spontaneously firing Golgi cells are inhibited by optogenetic activation of the inhibitory nucleo-cortical fibers both in vitro and in vivo. Our data suggest that the CN may contribute to the functional recruitment of the cerebellar cortex by decreasing Golgi cell inhibition onto granule cells. DOI: http://dx.doi.org/10.7554/eLife.06262.001 PMID:25965178

  20. Two inhibitory systems and CKIs regulate cell cycle exit of mammalian cardiomyocytes after birth.

    PubMed

    Tane, Shoji; Okayama, Hitomi; Ikenishi, Aiko; Amemiya, Yuki; Nakayama, Keiichi I; Takeuchi, Takashi

    2015-10-16

    Mammalian cardiomyocytes actively proliferate during embryonic stages, following which they exit their cell cycle after birth, and the exit is maintained. Previously, we showed that two inhibitory systems (the G1-phase inhibitory system: repression of cyclin D1 expression; the M-phase inhibitory system: inhibition of CDK1 activation) maintain the cell cycle exit of mouse adult cardiomyocytes. We also showed that two CDK inhibitors (CKIs), p21(Cip1) and p27(Kip1), regulate the cell cycle exit in a portion of postnatal cardiomyocytes. It remains unknown whether the two inhibitory systems are involved in the cell cycle exit of postnatal cardiomyocytes and whether p21(Cip1) and p27(Kip1) also inhibit entry to M-phase. Here, we showed that more than 40% of cardiomyocytes entered an additional cell cycle by induction of cyclin D1 expression at postnatal stages, but M-phase entry was inhibited in the majority of cardiomyocytes. Marked cell cycle progression and endoreplication were observed in cardiomyocytes of p21(Cip1) knockout mice at 4 weeks of age. In addition, tri- and tetranucleated cardiomyocytes increased significantly in p21(Cip1) knockout mice. These data showed that the G1-phase inhibitory system and two CKIs (p21(Cip1) and p27(Kip1)) inhibit entry to an additional cell cycle in postnatal cardiomyocytes, and that the M-phase inhibitory system and p21(Cip1) inhibit M-phase entry of cardiomyocytes which have entered the additional cell cycle. PMID:26363457

  1. Characterization of the growth-inhibitory and apoptosis-inducing activities of a triterpene saponin, securioside B against BAC1.2F5 macrophages.

    PubMed Central

    Yui, Satoru; Kudo, Tomoya; Hodono, Kazumi; Mimaki, Yoshihiro; Kuroda, Minpei; Sashida, Yutaka; Yamazaki, Masatoshi

    2003-01-01

    BACKGROUND: Since the growth state of macrophages in local pathological sites is considered a factor that regulates the processes of many disease, such as tumors, inflammation, and atherosclerosis, the substances that regulate macrophage growth or survival may be useful for disease control. We previously reported that securiosides A and B, novel triterpene saponins, exerted macrophage-oriented cytotoxicity in the presence of a L-cell-conditioned medium containing macrophage colony-stimulating factor (M-CSF), while the compounds did not exhibit an effect on macrophages in the absence of the growth-stimulating factors. AIM: This study was undertaken to characterize the growth-inhibitory and the apoptosis-inducing activities of securioside B, focusing on the effects of the macrophage-growth factor(s), and to examine the implication of a mitochondria pathway in apoptosis induction. METHODS: The effect of securioside B on a murine macrophage cell line (BAC1.2F5) was examined by MTT assay and lactose dehydrogenase release assay in the presence of L-cell-conditioned medium, M-CSF, or granulocyte-macrophage CSF (GM-CSF). RESULT: Securioside B inhibited the growth of the cells stimulated by recombinant M-CSF or GM-CSF, but it scarcely induced cytolysis of the cells under the same conditions. Moreover, securioside B did not induce cell death when the compound only was added to the cells. On the other hand, the compound extensively induced apoptotic cell death in the presence of L-cell-conditioned medium, suggesting that apoptosis induction by securioside B requires the additional factor(s) present in L-cell-conditioned medium. Securioside B plus L-cell-conditioned medium induced the activation of caspase-3 and caspase-9, but not caspase-8. In addition, cytochrome c release from the mitochondria into the cytosol, and disrupted mitochondria membrane potential, was also observed in the apoptotic BAC1.2F5 cells. CONCLUSION: These data suggest that securioside B has growth-inhibitory

  2. Leukemia inhibitory factor promotes tumor growth and metastasis in human osteosarcoma via activating STAT3.

    PubMed

    Liu, Bin; Lu, Yi; Li, Jinzhi; Liu, Yanping; Liu, Jian; Wang, Weiguo

    2015-10-01

    The leukemia inhibitory factor (LIF) has been demonstrated to be an oncogene and participated in multiple procedures during the initiation and progression of many human malignancies. However, the role of LIF in osteosarcoma is still largely unknown. Here, we performed a series of in vitro and in vivo experiments to investigate the expression and biological functions of LIF in osteosarcoma. Compared to that in the non-cancerous tissues, LIF was significantly overexpressed in a panel of 68 osteosarcoma samples (p < 0.0001). Moreover, the overexpression of LIF was significantly correlated with advanced tumor stage, larger tumor size, and shorter overall survival. In addition, knockdown of LIF notably suppressed the proliferation and invasion of osteosarcoma via blocking the STAT3 signal pathway; in contrast, treatment with the recombinant LIF protein significantly promoted the growth and invasion of osteosarcoma through enhancing the phosphorylation of STAT3, which can be partially neutralized by the STAT3 inhibitor, HO-3867. In conclusion, we demonstrated that LIF was frequently overexpressed in osteosarcoma, which could promote the growth and invasion through activating the STAT3 pathway. Our findings proposed that LIF might be a potent therapeutic target for osteosarcoma. PMID:26271643

  3. Regio- and stereoselective synthesis of pregnane-fused isoxazolines by nitril-oxide/alkene 1,3-dipolar cycloaddition and an evaluation of their cell-growth inhibitory effect in vitro

    NASA Astrophysics Data System (ADS)

    Mótyán, Gergő; Baji, Ádám; Zupkó, István; Frank, Éva

    2016-04-01

    Efficient syntheses of some pregnane-fused isoxazolines from 16-dehydropregnenolone acetate with different arylnitrile oxides were carried out by 1,3-dipolar cycloadditions. The intermolecular ring-closures occurred in a highly regio- and stereoselective manner permitting the formation of a single 16α,17α-condensed diastereomer in which the O terminus of the nitrile oxide dipole is attached to C-17 of the sterane core. The conversions were found to be affected significantly by the electronic character of the substituents on the aromatic moiety of the 1,3-dipoles. Deacetylation of the primary products resulted in the corresponding 3β-OH analogs. All of the synthesized compounds were subjected to in vitro pharmacological studies for the determination of their antiproliferative effects on four breast cancer cell lines (MCF7, T47D, MDA-MB-231 and MDA-MB-361).

  4. Inhibition of breast cancer cell motility with a non-cyclooxygenase inhibitory derivative of sulindac by suppressing TGFβ/miR-21 signaling

    PubMed Central

    Ma, Ruixia; Feng, Xiangling; Li, Wei; Piazza, Gary A.; Xi, Yaguang

    2016-01-01

    Compelling efficacy on intervention of tumorigenesis by nonsteroidal anti-inflammatory drugs (NSAIDs) has been documented intensively. However, the toxicities related to cyclooxygenase (COX) inhibition resulting in suppression of physiologically important prostaglandins limit their clinical use for human cancer chemoprevention. A novel derivative of the NSAID sulindac sulfide (SS), referred as sulindac sulfide amide (SSA), was recently developed, which lacks COX inhibitory activity, yet shows greater suppressive effect than SS on growth of various cancer cells. In this study, we focus on the inhibitory activity of SSA on breast tumor cell motility, which has not been studied previously. Our results show that SSA treatment at non-cytotoxic concentrations can specifically reduce breast tumor cell motility without influencing tumor cell growth, and the mechanism of action involves the suppression of TGFβ signaling by directly blocking Smad2/3 phosphorylation. Moreover, miR-21, a well-documented oncogenic miRNA for promoting tumor cell metastasis, was also found to be involved in inhibitory activity of SSA in breast tumor cell motility through the modulation of TGFβ pathway. In conclusion, we demonstrate that a non-COX inhibitory derivative of sulindac can inhibit breast tumor metastasis by a mechanism involving the TGFβ/miR-21 signaling axis. PMID:26769851

  5. Inhibitory Effect of the Noncamptothecin Topoisomerase I Inhibitor LMP-400 on Female Mice Models and Human Pheochromocytoma Cells.

    PubMed

    Schovanek, Jan; Bullova, Petra; Tayem, Yasin; Giubellino, Alessio; Wesley, Robert; Lendvai, Nikoletta; Nölting, Svenja; Kopacek, Juraj; Frysak, Zdenek; Pommier, Yves; Kummar, Shivaani; Pacak, Karel

    2015-11-01

    Metastatic pheochromocytoma continues to be an incurable disease, and treatment with conventional cytotoxic chemotherapy offers limited efficacy. In the present study, we evaluated a novel topoisomerase I inhibitor, LMP-400, as a potential treatment for this devastating disease. We found a high expression of topoisomerase I in human metastatic pheochromocytoma, providing a basis for the evaluation of a topoisomerase 1 inhibitor as a therapeutic strategy. LMP-400 inhibited the cell growth of established mouse pheochromocytoma cell lines and primary human tumor tissue cultures. In a study performed in athymic female mice, LMP-400 demonstrated a significant inhibitory effect on tumor growth with two drug administration regimens. Furthermore, low doses of LMP-400 decreased the protein levels of hypoxia-inducible factor 1 (HIF-1α), one of a family of factors studied as potential metastatic drivers in these tumors. The HIF-1α decrease resulted in changes in the mRNA levels of HIF-1 transcriptional targets. In vitro, LMP-400 showed an increase in the growth-inhibitory effects in combination with other chemotherapeutic drugs that are currently used for the treatment of pheochromocytoma. We conclude that LMP-400 has promising antitumor activity in preclinical models of metastatic pheochromocytoma and its use should be considered in future clinical trials. PMID:26267380

  6. Mobilizing dendritic cells for tolerance by engagement of immune inhibitory receptors for HLA-G.

    PubMed

    Liang, Siyuan; Horuzsko, Anatolij

    2003-11-01

    The presence of dendritic cells (DC) in the maternal decidua has pointed to a biologic role of antigen-presenting cell in maternal-fetal interaction. The expression of immune inhibitory receptors on DC opens the intriguing possibility that these types of receptors are directly involved in maturation/activation of DC and modulate their function. We show that the triggering of the murine inhibitory receptor paired immunoglobulin-like receptor-B by cross-linking or by human leukocyte antigen (HLA)-G tetramer resulted in the modulation of DC function and prolongation of allogeneic graft survival. In addition, we found that the engagement of human inhibitory receptor ILT4 by its natural ligand, HLA-G, alters maturation of human DC. In this study, we examined the mechanisms for the modulation of antigen-presenting cells by HLA-G. These findings have established an important link between HLA-G and immune inhibitory receptor regulation in vivo and in vitro, thereby placing HLA-G in the inhibitory pathway. PMID:14602231

  7. How inhibitory cues can both constrain and promote cell migration.

    PubMed

    Bronner, Marianne E

    2016-06-01

    Collective cell migration is a common feature in both embryogenesis and metastasis. By coupling studies of neural crest migration in vivo and in vitro with mathematical modeling, Szabó et al. (2016, J. Cell Biol., http://dx.doi.org/10.1083/jcb.201602083) demonstrate that the proteoglycan versican forms a physical boundary that constrains neural crest cells to discrete streams, in turn facilitating their migration. PMID:27269064

  8. Inhibitory effects of Arhgap6 on cervical carcinoma cells.

    PubMed

    Li, Junping; Liu, Yang; Yin, Yihua

    2016-02-01

    Ras homology GTPase activation protein 6 (Arhgap6), as a member of the rhoGAP family of proteins, performs vital functions on the regulation of actin polymerization at the plasma membrane during several cellular processes. The role of Arhgap6 in the progression and development of cancer remains nearly unknown. This study aimed at exploring the effects of Arhgap6 on cervical carcinoma. Human cervical cancer cells HeLa and SiHa were transduced with a lentivirus targeting Arhgap6 (Arhgap6+), while CaSki and C4-1 cells were transfected with miRNA. Cell proliferation was identified by Cell Counting Kit-8 (CCK-8). Cell cycle distribution and cell apoptosis were identified by flow cytometry. The capacity of cell migration, invasion, and adhesion were detected by Transwell assay. Further, quantitative real-time PCR (qRT-PCR) and western blot were used to analyze the expression levels of Arhgap6 and several tumor-related genes. Co-immunoprecipitation assay was performed to validate the interaction between Arhgap6 and Rac3 (Ras-related C3 botulinum toxin substrate 3). Results showed that Arhgap6 inhibited cell proliferation, migration, invasion, and adhesion of cervical carcinoma, induced cell apoptosis, and caused cell cycle arrest in the G0/G1 phase (n = 3, p < 0.05). Expression of the tumor suppressor genes and oncogenes were up- and down-regulated respectively by Arhgap6, and Rac3 was proved to be the target of Arhgap6. Besides, in in vivo assays, tumor size and weight were destructed in Arhgap6+ athymic nude mouse. This study indicated that Arhgap6 may play a role in the treatment of cervical cancer as a tumor supressor. PMID:26628301

  9. Inhibitory effects of 3-bromopyruvate in human nasopharyngeal carcinoma cells.

    PubMed

    Zou, Xue; Zhang, Mengxiao; Sun, Yiming; Zhao, Surong; Wei, Yingmei; Zhang, Xudong; Jiang, Chenchen; Liu, Hao

    2015-10-01

    Tumor cells depend on aerobic glycolysis for adenosine triphosphate (ATP) production, which is therefore targeted by therapeutic agents. The compound 3-bromopyruvate (3-BrPA), a strong alkylating agent and hexokinase inhibitor, inhibits tumor cell glycolysis and the production of ATP, causing apoptosis. 3-BrPA induces apoptosis of nasopharyngeal carcinoma (NPC) cell lines HNE1 and CNE-2Z, which may be related to its molecular mechanisms. In the present study, we investigated the effects of 3-BrPA on the viability, reactive oxygen species (ROS), apoptosis and other types of programmed cell death in NPC cells in vitro and in vivo. PI staining showed significant apoptosis in NPC cells accompanied by the overproduction of ROS and downregulation of mitochondrial membrane potential (MMP, ΔΨm) by 3-BrPA. However, the ROS scavenger N-acetyl-L-cysteine (NAC) significantly reduced 3-BrPA-induced apoptosis by decreasing ROS and facilitating the recovery of MMP. We elucidated the molecular mechanisms underlying 3-BrPA activity and found that it caused mitochondrial dysfunction and ROS production, leading to necroptosis of NPC cells. We investigated the effects of the caspase inhibitor z-VAD-fmk, which inhibits apoptosis but promotes death domain receptor (DR)-induced NPC cell necrosis. Necrostatin-1 (Nec-1) inhibits necroptosis, apparently via a DR signaling pathway and thus abrogates the effects of z-VAD‑fmk. In addition, we demonstrated the effective attenuation of 3-BrPA-induced necrotic cell death by Nec-1. Finally, animal studies proved that 3-BrPA exhibited significant antitumor activity in nude mice. The present study is the first demonstration of 3-BrPA-induced non-apoptotic necroptosis and ROS generation in NPC cells and provides potential strategies for developing agents against apoptosis‑resistant cancers. PMID:26239511

  10. Liver tumors escape negative control of proliferation via PI3K/Akt-mediated block of C/EBPα growth inhibitory activity

    PubMed Central

    Wang, Guo-Li; Iakova, Polina; Wilde, Margie; Awad, Samir; Timchenko, Nikolai A.

    2004-01-01

    Liver tumor cells arise from normal hepatocytes that escape negative control of proliferation. The transcription factor C/EBPα maintains quiescence of hepatocytes through two pathways: inhibition of cdks and repression of E2F. Nevertheless, liver tumors and cultured hepatoma cell lines proliferate in the presence of C/EBPα. In this paper, we present evidence that the activation of the PI3K/Akt pathway in liver tumor cells blocks the growth inhibitory activity of C/EBPα through the PP2A-mediated dephosphorylation of C/EBPα on Ser 193, leading to a failure of C/EBPα to interact with and inhibit cdks and E2F. Mutation of Ser 193 to Ala also abolishes the ability of C/EBPα to cause growth arrest because of a lack of interactions with cdk2 and E2F–Rb complexes. These data provide a molecular basis for the development of liver tumors in which the activation of PI3K/Akt pathway neutralizes C/EBPα growth inhibitory activity. PMID:15107404

  11. The C/EBPbeta isoform, liver-inhibitory protein (LIP), induces autophagy in breast cancer cell lines

    SciTech Connect

    Abreu, Maria M.; Sealy, Linda

    2010-11-15

    Autophagy is a process involving the bulk degradation of cellular components in the cytoplasm via the lysosomal degradation pathway. Autophagy manifests a protective role in stressful conditions such as nutrient or growth factor depletion; however, extensive degradation of regulatory molecules or organelles essential for survival can lead to the demise of the cell, or autophagy-mediated cell death. The role of autophagy in cancer is complex with roles in both tumor suppression and tumor promotion proposed. Here we report that an isoform of the C/EBPbeta transcription factor, liver-enriched inhibitory protein (LIP), induces cell death in human breast cancer cells and stimulates autophagy. Overexpression of LIP is incompatible with cell growth and when cell cycle analysis was performed, a DNA profile of cells undergoing apoptosis was not observed. Instead, LIP expressing cells appeared to have large autophagic vesicles when examined via electron microscopy. Autophagy was further assessed in LIP expressing cells by monitoring the development of acidic vesicular organelles and conversion of LC3 from the cytoplasmic form to the membrane-bound form. Our work shows that C/EBPbeta isoform, LIP, is another member of the group of transcription factors, including E2F1 and p53, which are capable of playing a role in autophagy.

  12. PID1 (NYGGF4), a new growth-inhibitory gene in embryonal brain tumors and gliomas

    PubMed Central

    Erdreich-Epstein, Anat; Robison, Nathan; Ren, Xiuhai; Zhou, Hong; Xu, Jingying; Davidson, Tom B.; Schur, Mathew; Gilles, Floyd H.; Ji, Lingyun; Malvar, Jemily; Shackleford, Gregory M.; Margol, Ashley S.; Krieger, Mark D.; Judkins, Alexander R.; Jones, David T.W.; Pfister, Stefan; Kool, Marcel; Sposto, Richard; Asgharazadeh, Shahab

    2014-01-01

    Purpose We present here the first report of PID1 (Phosphotyrosine Interaction Domain containing 1; NYGGF4) in cancer. PID1 was identified in 2006 as a gene that modulates insulin signaling and mitochondrial function in adipocytes and muscle cells. Experimental Design and Results Using four independent medulloblastoma datasets, we show that mean PID1 mRNA levels were lower in unfavorable medulloblastomas (Groups 3 and 4, and anaplastic histology) compared with favorable medulloblastomas (SHH and WNT groups, and desmoplastic/nodular histology) and with fetal cerebellum. In two large independent glioma datasets PID1 mRNA was lower in glioblastomas (GBMs), the most malignant gliomas, compared to other astrocytomas, oligodendrogliomas and non-tumor brains. Neural and proneural GBM subtypes had higher PID1 mRNA compared to classical and mesenchymal GBM. Importantly, overall survival and radiation-free progression-free survival were longer in medulloblastoma patients with higher PID1 mRNA (univariate and multivariate analyses). Higher PID1 mRNA also correlated with longer overall survival in glioma and GBM patients. In cell culture, overexpression of PID1 inhibited colony formation in medulloblastoma, atypical teratoid rhabdoid tumor (ATRT) and GBM cell lines. Increasing PID1 also increased cell death and apoptosis, inhibited proliferation, induced mitochondrial depolarization, and decreased serum-mediated phosphorylation of AKT and ERK in medulloblastoma, ATRT and/or GBM cell lines, whereas siRNA to PID1 diminished mitochondrial depolarization. Conclusions These data are the first to link PID1 to cancer and suggest that PID1 may have a tumor inhibitory function in these pediatric and adult brain tumors. PMID:24300787

  13. Growth inhibitory actions of prothrombin on normal hepatocytes: influence of matrix.

    PubMed

    Carr, Brian I; Kar, Siddhartha; Wang, Meifang; Wang, Ziqiu

    2007-09-01

    Most hepatomas have a defect in prothrombin carboxylation, and can secrete under-carboxylated prothrombin or des-gamma-carboxy-prothrombin (DCP), the function of which is unknown. We considered that the prothrombin-DCP axis might also be involved in growth control. Hepatocytes and hepatoma cells were treated with prothrombin and DNA synthesis and cytoskeletal changes were studied. Prothrombin inhibited DNA synthesis in hepatocytes on fibronectin, but not collagen matrix. Hepatoma cell lines were not inhibited. We found that hepatoma cell matrix conferred resistance to hepatocytes. Prothrombin decreased fibronectin but not collagen amounts, but only in the presence of hepatocytes and not hepatoma cells, indicating that it has a differential action on matrix proteins. It also caused changes in cell shape and actin depolymerization. In vivo, there was a decrease in plasma prothrombin activity after a partial hepatectomy (PH), concomitant with the peak of DNA synthesis in the hepatocytes at 24h after PH. Injection of warfarin at the time of PH, further inhibited PT activity and enhanced this 24h peak of DNA synthesis. Furthermore, repeated injection of prothrombin lowered the peak DNA synthesis after PH. The data support the hypothesis that prothrombin can act as a hepatocyte growth inhibitor, likely at the level of fibronectin loss and result in cytoskeletal changes. Hepatomas resist this action, possibly due to their different matrix proteins. This represents a novel mechanism for growth regulation and provides a possible biological significance for the tumor marker DCP. PMID:17490900

  14. Identification of octanal as plant growth inhibitory volatile compound released from Heracleum sosnowskyi fruit.

    PubMed

    Mishyna, Maryia; Laman, Nikolai; Prokhorov, Valery; Maninang, John Solomon; Fujii, Yoshiharu

    2015-05-01

    Heracleum sosnowskyi Manden of the Apiaceae family is a malignant invasive plant in Eastern Europe, Belarus and Russia. The species is known for its prolific seed production, which has been linked to the plant's invasive success. The fruit also has a strong aroma, but the contribution of the fruit's volatile constituent to out-compete neighboring plants has not been fully established. In this study, fruit volatiles of H. sosnowskyi and conspecifics (i.e. H. asperum, H. lescovii, H. dissectum, H. hirtum) were identified by headspace gas chromatography-mass spectrometry (HS-GC-MS). Octyl acetate, octanol, octanal, hexyl isobutyrate, and hexyl-2-methyl butyrate were found to be the principal volatiles. Using authentic standards, the growth-inhibitory property of the individual compounds was assayed by the novel Cotton swab method. Assay results with lettuce (Lactuca sativa) showed that octanal strongly inhibited seed germination and radicle elongation of seedlings. The results suggest that octanal may be the main contributor to the allelopathic activity of H. sosnowksyi fruits. Furthermore, the mixture of fruit volatiles from the invasive H. sosnowskyi more strongly delayed lettuce seedling elongation than the volatiles from fruits of the non-invasive H. asperum, H. lescovii, H. dissectum and H. hirtum. Thus, the present study is the first to demonstrate the possible involvement of fruit volatiles of Heracleum species in plant-plant interaction. PMID:26058155

  15. Combining epitope-distinct antibodies to HER2: cooperative inhibitory effects on invasive growth

    PubMed Central

    Emde, A.; Pradeep, C-R.; Ferraro, DA.; Ben-Chetrit, N.; Sela, M.; Ribba, B.; Kam, Z.; Yarden, Y.

    2013-01-01

    Monoclonal antibodies (mAbs) to HER2 are currently used to treat breast cancer, but low clinical efficacy, along with primary and acquired resistance to therapy, commonly limit clinical applications. We previously reported that combinations of antibodies directed at non-overlapping epitopes of HER2 are endowed with enhanced antitumor effects, probably due to accelerated receptor degradation. Here, we extend these observations to three-dimensional mammary cell models, and compare the effects of single mAbs with the effects of antibody combinations. Collectively, our in vitro assays and computational image analyses indicate that combining mAbs against different epitopes of HER2 better inhibits invasive growth. Importantly, while growth factors are able to reduce intraluminal apoptosis and induce an invasive phenotype, combinations of mAbs better than single mAbs can reverse the growth factor-induced phenotypes of HER2-overexpressing spheroids. In conclusion, our studies propose that mAb combinations negate the biological effects of growth factors on invasive growth of HER2-overexpressing cells. Hence, combining mAbs offers a therapeutic strategy, potentially able to enhance clinical efficacy of existing antireceptor immuno-therapeutics. PMID:21132012

  16. Inhibitory mechanism of tranilast in human coronary artery smooth muscle cells proliferation, due to blockade of PDGF-BB-receptors

    PubMed Central

    Watanabe, Shinji; Matsuda, Akihisa; Suzuki, Yasuhiro; Kondo, Kazunao; Ikeda, Yasuhiko; Hashimoto, Hisakuni; Umemura, Kazuo

    2000-01-01

    We have previously reported that tranilast, an anti-allergic drug, prevented the experimental intimal thickening in the rat and mouse femoral arteries and its effect may be exerted through the inhibition of vascular smooth muscle cell proliferation. However, its inhibitory mechanism has yet to be understood. In this study, we investigated the inhibitory effect of tranilast on platelet-derived growth factor BB-homodimer (PDGF-BB) mediated signal transduction pathways in cultured human coronary artery smooth muscle cells (CASMCs). Growth responses to PDGF-BB were measured by [3H]-thymidine incorporation or cell counting. Activation of DNA synthesis and augmentation of cell proliferation stimulated by PDGF-BB in quiescent cultures of CASMCs were inhibited by tranilast in a concentration-dependent manner. Western blot analysis of lysates from CASMCs with an anti-activated mitogen-activated protein (MAP) kinase antibody revealed that tranilast (10–300 μM) inhibited MAP kinase activation by PDGF-BB in a concentration-dependent manner. Tranilast also reduced PDGF-BB-stimulated tyrosine phosphorylation of a 180 kDa band, corresponding in mass to the PDGF β-receptor, as shown by immunoblots using an anti-phosphotyrosine antibody. Receptor-binding study with [125I]-PDGF-BB on CASMCs showed that tranilast (10–1000 μM) inhibited the specific binding of PDGF-BB to cell surface receptors in a concentration-dependent manner. Scatchard analysis revealed that pretreatment with 300 μM tranilast decreased the maximum binding capacity (Bmax) from 27.6 to 18.0 fmol 106 cells−1 without affecting binding affinity (Kd≈0.15 nM), indicating a non-competitive inhibition of the receptor binding. These results suggest that the suppression of human CASMC growth by tranilast might be at least partly due to blockade of PDGF-BB-receptor binding. PMID:10807667

  17. Inhibitory role of ERβ on anterior pituitary cell proliferation by controlling the expression of proteins related to cell cycle progression.

    PubMed

    Pérez, Pablo A; Petiti, Juan P; Wagner, Ignacio A; Sabatino, Maria E; Sasso, Corina V; De Paul, Ana L; Torres, Alicia I; Gutiérrez, Silvina

    2015-11-01

    Considering that the role of ERβ in the growth of pituitary cells is not well known, the aim of this work was to determine the expression of ERβ in normal and tumoral cells and to investigate its implications in the proliferative control of this endocrine gland, by analyzing the participation of cyclin D1, Cdk4 and p21. Our results showed that the expression of ERβ decreased during pituitary tumoral development induced by chronic E2 stimulation. The 20 ± 1.6% of normal adenohypophyseal cells expressed ERβ, with this protein being reduced in the hyperplastic/adenomatous pituitary: at 20 days the ERβ+ population was 10.7 ± 2.2%, while after 40 and 60 days of treatment an almost complete loss in the ERβ expression was observed (40 d: 1 ± 0.6%; 60 d: 2 ± 0.6%). The ERα/β ratio increased starting from tumors at 40 days, mainly due to the loss of ERβ expression. The cell proliferation was analyzed in normal and hyperplastic pituitary and also in GH3β- and GH3β+ which contained different levels of ERβ expression, and therefore different ERα/β ratios. The over-expression of ERβ inhibited the GH3 cell proliferation and expression of cyclin D1 and ERα. Also, the ERβ activation by its agonist DPN changed the subcellular localization of p21, inducing an increase in the p21 nuclear expression, where it acts as a tumoral suppressor. These results show that ERβ exerts an inhibitory role on pituitary cell proliferation, and that this effect may be partially due to the modulation of some key regulators of the cell cycle, such as cyclin D1 and p21. These data contribute significantly to the understanding of the ER effects in the proliferative control of pituitary gland, specifically related to the ERβ function in the E2 actions on this endocrine gland. PMID:26282612

  18. Natural Killer Cell Immunomodulation: Targeting Activating, Inhibitory, and Co-stimulatory Receptor Signaling for Cancer Immunotherapy

    PubMed Central

    Chester, Cariad; Fritsch, Katherine; Kohrt, Holbrook E.

    2015-01-01

    There is compelling clinical and experimental evidence to suggest that natural killer (NK) cells play a critical role in the recognition and eradication of tumors. Efforts at using NK cells as antitumor agents began over two decades ago, but recent advances in elucidating NK cell biology have accelerated the development of NK cell-targeting therapeutics. NK cell activation and the triggering of effector functions is governed by a complex set of activating and inhibitory receptors. In the early phases of cancer immune surveillance, NK cells directly identify and lyse cancer cells. Nascent transformed cells elicit NK cell activation and are eliminated. However, as tumors progress, cancerous cells develop immunosuppressive mechanisms that circumvent NK cell-mediated killing, allowing for tumor escape and proliferation. Therapeutic intervention aims to reverse tumor-induced NK cell suppression and sustain NK cells’ tumorlytic capacities. Here, we review tumor–NK cell interactions, discuss the mechanisms by which NK cells generate an antitumor immune response, and discuss NK cell-based therapeutic strategies targeting activating, inhibitory, and co-stimulatory receptors. PMID:26697006

  19. NKG2A Complexed with CD94 Defines a Novel Inhibitory Natural Killer Cell Receptor

    PubMed Central

    Brooks, Andrew G.; Posch, Phillip E.; Scorzelli, Christopher J.; Borrego, Francisco; Coligan, John E.

    1997-01-01

    CD94 is a C-type lectin expressed by natural killer (NK) cells and a subset of T cells. Blocking studies using anti-CD94 mAbs have suggested that it is a receptor for human leukocyte antigen class I molecules. CD94 has recently been shown to be a 26-kD protein covalently associated with an unidentified 43-kD protein(s). This report shows that NKG2A, a 43-kD protein, is covalently associated with CD94 on the surface of NK cells. Cell surface expression of NKG2A is dependent on the association with CD94 as glycosylation patterns characteristic of mature proteins are found only in NKG2A that is associated with CD94. Analysis of NK cell clones showed that NKG2A was expressed in all NK cell clones whose CD16-dependent killing was inhibited by cross-linking CD94. The induction of an inhibitory signal is consistent with the presence of two immunoreceptor tyrosine-based inhibitory motifs (V/LXYXXL) on the cytoplasmic domain of NKG2A. Similar motifs are found on Ly49 and killer cell inhibitory receptors, which also transmit negative signals to NK cells. PMID:9034158

  20. Nodal Promotes Glioblastoma Cell Growth

    PubMed Central

    De Silva, Tanya; Ye, Gang; Liang, Yao-Yun; Fu, Guodong; Xu, Guoxiong; Peng, Chun

    2012-01-01

    Nodal is a member of the transforming growth factor-β (TGF-β) superfamily that plays critical roles during embryogenesis. Recent studies in ovarian, breast, prostate, and skin cancer cells suggest that Nodal also regulates cell proliferation, apoptosis, and invasion in cancer cells. However, it appears to exert both tumor-suppressing and tumor-promoting effects, depending on the cell type. To further understand the role of Nodal in tumorigenesis, we examined the effect of Nodal in glioblastoma cell growth and spheroid formation using U87 cell line. Treatment of U87 with recombinant Nodal significantly increased U87 cell growth. In U87 cells stably transfected with the plasmid encoding Nodal, Smad2 phosphorylation was strongly induced and cell growth was significantly enhanced. Overexpression of Nodal also resulted in tight spheroid formation. On the other hand, the cells stably transfected with Nodal siRNA formed loose spheroids. Nodal is known to signal through activin receptor-like kinase 4 (ALK4) and ALK7 and the Smad2/3 pathway. To determine which receptor and Smad mediate the growth promoting effect of Nodal, we transfected siRNAs targeting ALK4, ALK7, Smad2, or Smad3 into Nodal-overexpressing cells and observed that cell growth was significantly inhibited by ALK4, ALK7, and Smad3 siRNAs. Taken together, these findings suggest that Nodal may have tumor-promoting effects on glioblastoma cells and these effects are mediated by ALK4, ALK7, and Smad3. PMID:22645523

  1. Inhibitory Effects of Gallic Acid Isolated from Caesalpinia mimosoides Lamk on Cholangiocarcinoma Cell Lines and Foodborne Pathogenic Bacteria.

    PubMed

    Rattanata, Narintorn; Klaynongsruang, Sompong; Daduang, Sakda; Tavichakorntrakool, Ratree; Limpaiboon, Temduang; Lekphrom, Ratsami; Boonsiri, Patcharee; Daduang, Jureerut

    2016-01-01

    Gallic acid was isolated from Caesalpinia mimosoides Lamk and the structure s identified based on spectroscopic analysis and comparison with authentic compound. In this study we compared the ability of natural gallic acid (nGA) and commercial gallic acid (cGA) to inhibit the proliferation of cholangiocarcinoma cell lines (M213, M214) and foodborne pathogenic bacteria (Salmonella spp. and Plesiomonas shigelloides). Both nGA and cGA had the same inhibitory effects on cell proliferation by inducing apoptosis of cholangiocarcinoma cell lines. In addition, nGA inhibited growth of foodborne pathogenic bacteria in the same manner as cGA. Our results suggest that nGA from Caesalpinia mimosoides Lamk is a potential anticancer and antibacterial compound. However, in vivo studies are needed to elucidate the specific mechanisms involved. PMID:27039769

  2. Improvement of vitamin B(12) fermentation by reducing the inhibitory metabolites by cell recycle system and a mixed culture.

    PubMed

    Miyano; Ye; Shimizu

    2000-12-01

    The major problem in vitamin B(12) production using Propionibacterium is the growth inhibition of the cell due to the accumulation of inhibitory metabolites such as propionic acid and acetic acid. In the present paper, we considered several approaches of controlling the propionic acid concentration at low level. Namely: (1) the periodic cultivation of Propionibacterium where dissolved oxygen (DO) concentration was alternatively changed between 0 and 1ppm; (2) cell recycle system using hollow fiber module; and (3) mixed culture using Propionibacterium and Ralstonia eutropha where the latter microorganism assimilates the propionic acid produced by the former. It was found that the productivity of vitamin B(12) was the highest for the cell recycle system, while if the performance was evaluated based on the amount of vitamin B(12) produced per medium used, the mixed culture system gave the far highest value. PMID:11080651

  3. Inhibitory action of two zinc oxide sources on the ex vivo growth of porcine small intestine bacteria.

    PubMed

    Vahjen, W; Zentek, J; Durosoy, S

    2012-12-01

    Pharmacological dosage of zinc oxide in piglet weaning diets is a common practice to improve growth performance and gut health. However, high zinc excretion in animal wastes poses environmental challenges. Alternatives to current practice are studied. In this study, the inhibitory action of 2 zinc oxide sources on the ex vivo growth of small intestinal bacteria from weaned piglets was studied. Lag time was higher (P < 0.05) in media supplemented with a new zinc oxide preparation in stomach samples, but not in jejunum samples. Bacterial growth reduction (P < 0.05) was more drastic and more rapid in media supplemented with the new zinc oxide preparation. PMID:23365371

  4. Continuous-release beads of natural allelochemicals for the long-term control of cyanobacterial growth: Preparation, release dynamics and inhibitory effects.

    PubMed

    Huang, Haomin; Xiao, Xi; Lin, Fang; Grossart, Hans-Peter; Nie, Zeyu; Sun, Lijuan; Xu, Chen; Shi, Jiyan

    2016-05-15

    The effects of allelochemicals on cyanobacterial blooms have been observed for more than 20 years; however, the use of these compounds, usually involving a "direct-added" mode, has clear disadvantages, such as a short activity period or temporarily excessive localized concentration. Here, a simulated-allelopathy mode to facilitate the application of allelochemicals was proposed and tested on Microcystis aeruginosa. The continuous-release beads of 5,4'-dihydroxyflavone (DHF) were constitutive of a polymer matrix and showed a high drug-loading rate (47.18%) and encapsulation efficiency (67.65%) with a theoretical release time of approximately 120 d. Cyanobacterial growth tests showed that the DHF beads had long-term inhibition effects (>30 d), whereas those of "direct-added" DHF to cells lasted a maximum of 10 d. The beads also continuously affected the superoxide dismutase, catalase, and lipid peroxidation of M. aeruginosa. The inhibitory effects of DHF beads on cyanobacterial growth increased as initial cell densities of M. aeruginosa decreased, suggesting that the beads inhibit cyanobacterial activity more effectively in the early bloom phase. Consequently, the anti-cyanobacterial beads represent a novel application mode of allelochemicals with long-term inhibitory effects on cyanobacterial growth. Our study demonstrates that the successful application of allelochemicals offers great potential to control harmful cyanobacterial blooms, especially at the initial stage of development. PMID:26986500

  5. Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis.

    PubMed

    Franden, Mary Ann; Pienkos, Philip T; Zhang, Min

    2009-12-01

    Overcoming the effects of hydrolysate toxicity towards ethanologens is a key technical barrier in the biochemical conversion process for biomass feedstocks to ethanol. Despite its importance, the complexity of the hydrolysate toxicity phenomena and the lack of systematic studies, analysis and tools surrounding this issue have blocked a full understanding of relationships involving toxic compounds in hydrolysates and their effects on ethanologen growth and fermentation. In this study, we developed a quantitative, high-throughput biological growth assay using an automated turbidometer to obtain detailed inhibitory kinetics for individual compounds present in lignocellulosic biomass hydrolysate. Information about prolonged lag time and final cell densities can also be obtained. The effects of furfural, hydroxymethylfurfural (HMF), acetate and ethanol on growth rate and final cell densities of Zymomonas mobilis 8b on glucose are presented. This method was also shown to be of value in toxicity studies of hydrolysate itself, despite the highly colored nature of this material. Using this approach, we can generate comprehensive inhibitory profiles with many individual compounds and develop models that predict and examine toxic effects in the complex mixture of hydrolysates, leading to the development of improved pretreatment and conditioning processes as well as fermentation organisms. PMID:19683550

  6. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    SciTech Connect

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying; Wu, Jianguo

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  7. Aberrant Promoter Methylation of the Tumour Suppressor RASSF10 and Its Growth Inhibitory Function in Breast Cancer

    PubMed Central

    Richter, Antje M.; Walesch, Sara K.; Dammann, Reinhard H.

    2016-01-01

    Breast cancer is the most common cancer in women, with 1.7 million new cases each year. As early diagnosis and prognosis are crucial factors in cancer treatment, we investigated potential DNA methylation biomarkers of the tumour suppressor family Ras-association domain family (RASSF). Promoter hypermethylation of tumour suppressors leads to their inactivation and thereby promotes cancer development and progression. In this study we analysed the tumour suppressors RASSF1A and RASSF10. Our study shows that RASSF10 is expressed in normal breast but inactivated by methylation in breast cancer. We observed a significant inactivating promoter methylation of RASSF10 in primary breast tumours. RASSF10 is inactivated in 63% of primary breast cancer samples but only 4% of normal control breast tissue is methylated (p < 0.005). RASSF1A also shows high promoter methylation levels in breast cancer of 56% vs. 8% of normal tissue (p < 0.005). Interestingly more than 80% of breast cancer samples harboured a hypermethylation of RASSF10 and/or RASSF1A promoter. Matching samples exhibited a strong tumour specific promoter methylation of RASSF10 in comparison to the normal control breast tissue. Demethylation treatment of breast cancer cell lines MCF7 and T47D reversed RASSF10 promoter hypermethylation and re-established RASSF10 expression. In addition, we could show the growth inhibitory potential of RASSF10 in breast cancer cell lines MCF7 and T47D upon exogenous expression of RASSF10 by colony formation. We could further show, that RASSF10 induced apoptotic changes in MCF7 and T47D cells, which was verified by a significant increase in the apoptotic sub G1 fraction by 50% using flow cytometry for MCF7 cells. In summary, our study shows the breast tumour specific inactivation of RASSF10 and RASSF1A due to DNA methylation of their CpG island promoters. Furthermore RASSF10 was characterised by the ability to block growth of breast cancer cell lines by apoptosis induction. PMID

  8. Common reduction of the Raf kinase inhibitory protein in clear cell renal cell carcinoma

    PubMed Central

    Hill, Brianne; Melo, Jason De; Yan, Judy; Kapoor, Anil; He, Lizhi; Cutz, Jean-Claude; Feng, Xingchang; Bakhtyar, Nazihah; Tang, Damu

    2014-01-01

    Despite the recent progress in our understanding of clear cell renal cell carcinomas (ccRCCs), the etiology of ccRCC remains unclear. We reported here a prevailing reduction of the raf kinase inhibitory protein (RKIP) in ccRCC. In our examination of more than 600 ccRCC patients by western blot and immunohistochemistry, RKIP was significantly reduced in 80% of tumors. Inhibition of RKIP transcription in ccRCC occurs to greater levels than VHL transcription based on the quantification analysis of their transcripts in six large datasets of DNA microarray available in Oncomine™ with the median rank of suppression being 582 and 2343 for RKIP and VHL, respectively. Collectively, the magnitude of RKIP reduction and the levels of its downregulation match those of VHL. Furthermore, RKIP displays tumor suppressing activity in ccRCC. While modulation of RKIP expression did not affect the proliferation of A498 and 786-0 ccRCC cells and neither their ability to form xenograft tumors in NOD/SCID mice, ectopic expression or knockdown of RKIP inhibited or enhanced A498 and 786-0 ccRCC cell invasion, respectively. This was associated with robust changes in vimentin expression, a marker of EMT. Taken together, we demonstrate here that downregulation of RKIP occurs frequently at a rate that reaches that of VHL, suggesting RKIP being a critical tumor suppressor for ccRCC. This is consistent with RKIP being a tumor suppressor for other cancers. PMID:25277181

  9. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth

    PubMed Central

    Haque, Farazul; Alfatah, Md.; Ganesan, K.; Bhattacharyya, Mani Shankar

    2016-01-01

    Candida albicans causes superficial and life-threatening systemic infections. These are difficult to treat often due to drug resistance, particularly because C. albicans biofilms are inherently resistant to most antifungals. Sophorolipid (SL), a glycolipid biosurfactant, has been shown to have antimicrobial and anticancer properties. In this study, we investigated the effect of SL on C. albicans biofilm formation and preformed biofilms. SL was found to inhibit C. albicans biofilm formation as well as reduce the viability of preformed biofilms. Moreover, SL, when used along with amphotericin B (AmB) or fluconazole (FLZ), was found to act synergistically against biofilm formation and preformed biofilms. Effect of SL on C. albicans biofilm formation was further visualized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), which revealed absence of hyphae, typical biofilm architecture and alteration in the morphology of biofilm cells. We also found that SL downregulates the expression of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4, which possibly explains the inhibitory effect of SL on hyphae and biofilm formation. PMID:27030404

  10. Inhibitory effects of stilbenes on the growth of three soybean pathogens in culture.

    PubMed

    Lygin, Anatoliy V; Hill, Curtis B; Pawlowski, Michelle; Zernova, Olga V; Widholm, Jack M; Hartman, Glen L; Lozovaya, Vera V

    2014-08-01

    either pterostilbene or resveratrol compared with the control during the course of the experiment; however, S. sclerotiorum appeared to recover from the effects of pterostilbene between days 2 and 4. Results of biochemical analyses of the PDB over time indicated that the three fungi degraded resveratrol, with nearly 75% reduction in concentration in M. phaseolina, 80% in S. sclerotiorum, and 60% in R. solani PDB cultures by day 4 of fungal growth. M. phaseolina and S. sclerotiorum were able to resume growth after early inhibition by resveratrol after its concentration was reduced in the cultures through degradation, whereas R. solani was less efficient in resveratrol degradation and was not able to overcome its inhibitory effects on growth. The capacity to degrade pterostilbene was lowest in M. phaseolina compared with S. sclerotiorum and R. solani and the recovery of M. phaseolina cultures after initial growth inhibition by pterostilbene was minimal. The potential products of resveratrol and pterostilbene degradation by fungi were identified to be dimers and various oxidation products. PMID:24502206

  11. Inhibition of growth and induction of differentiation of colon cancer cells by peach and plum phenolic compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The action of extracts from anthocyanin-enriched plums and peaches on growth and differentiation was studied with human colon cancer cells. Growth inhibitory effects were observed in Caco-2, SW1116, HT29 and NCM460 cells. In Caco-2 cells but not in the other cells studied there was evidence for incr...

  12. T Cells Expressing Constitutively Active Akt Resist Multiple Tumor-associated Inhibitory Mechanisms

    PubMed Central

    Sun, Jiali; Dotti, Gianpietro; Huye, Leslie E; Foster, Aaron E; Savoldo, Barbara; Gramatges, Maria M; Spencer, David M; Rooney, Cliona M

    2010-01-01

    Adoptive transfer of antigen-specific cytotoxic T lymphocytes has shown promise for the therapy of cancer. However, tumor-specific T cells are susceptible to diverse inhibitory signals from the tumor microenvironment. The Akt/protein kinase B plays a central role in T-cell proliferation, function, and survival and we hypothesized that expression of constitutively active Akt (caAkt) in T cells could provide resistance to many of these tumor-associated inhibitory mechanisms. caAkt expression in activated human T cells increased proliferation and cytokine production, a likely result of their sustained expression of nuclear factor-κB (NF-κB) and provided resistance to apoptosis by upregulating antiapoptotic molecules. caAkt expressing T cells (caAkt-T-cells) were also relatively resistant to suppression by and conversion into regulatory T cells (Tregs). These characteristics provided a survival advantage to T cells cocultured with tumor cells in vitro; CD3/28-stimulated T cells expressing a chimeric antigen receptor (CAR) specific for disialoganglioside (GD2) that redirected their activity to the immunosuppressive, GD2-expressing neuroblastoma cell line, LAN-1, resisted tumor-induced apoptosis when co-expressing transgenic caAkt. In conclusion, caAkt-transduced T cells showed resistance to several evasion strategies employed by tumors and may therefore enhance the antitumor activity of adoptively transferred T lymphocytes. PMID:20842106

  13. Mycobacterium-Specific γ9δ2 T Cells Mediate Both Pathogen-Inhibitory and CD40 Ligand-Dependent Antigen Presentation Effects Important for Tuberculosis Immunity

    PubMed Central

    Spencer, Charles T.; Hamzabegovic, Fahreta; Blazevic, Azra; Xia, Mei

    2015-01-01

    Numerous pathogens, including Mycobacterium tuberculosis, can activate human γ9δ2 T cells to proliferate and express effector mechanisms. γ9δ2 T cells can directly inhibit the growth of intracellular mycobacteria and may also act as antigen-presenting cells (APC). Despite evidence for γδ T cells having the capacity to function as APC, the mechanisms involved and importance of these effects on overall tuberculosis (TB) immunity are unknown. We prepared M. tuberculosis-specific γ9δ2 T cell lines to study their direct protective effects and APC functions for M. tuberculosis-specific αβ T cells. The direct inhibitory effects on intracellular mycobacteria were measured, and the enhancing effects on proliferative and effector responses of αβ T cells assessed. Furthermore, the importance of cell-to-cell contact and soluble products for γ9δ2 T cell effector responses and APC functions were investigated. We demonstrate, in addition to direct inhibitory effects on intracellular mycobacteria, the following: (i) γ9δ2 T cells enhance the expansion of M. tuberculosis-specific αβ T cells and increase the ability of αβ T cells to inhibit intracellular mycobacteria; (ii) although soluble mediators are critical for the direct inhibitory effects of γ9δ2 T cells, their APC functions do not require soluble mediators; (iii) the APC functions of γ9δ2 T cells involve cell-to-cell contact that is dependent on CD40-CD40 ligand (CD40L) interactions; and (iv) fully activated CD4+ αβ T cells and γ9δ2 T cells provide similar immune enhancing/APC functions for M. tuberculosis-specific T cells. These effector and helper effects of γ9δ2 T cells further indicate that these T cells should be considered important new targets for new TB vaccines. PMID:26644385

  14. Characterization of inhibitory anti-insulin-like growth factor receptor antibodies with different epitope specificity and ligand-blocking properties: implications for mechanism of action in vivo.

    PubMed

    Doern, Adam; Cao, Xianjun; Sereno, Arlene; Reyes, Christopher L; Altshuler, Angelina; Huang, Flora; Hession, Cathy; Flavier, Albert; Favis, Michael; Tran, Hon; Ailor, Eric; Levesque, Melissa; Murphy, Tracey; Berquist, Lisa; Tamraz, Susan; Snipas, Tracey; Garber, Ellen; Shestowsky, William S; Rennard, Rachel; Graff, Christilyn P; Wu, Xiufeng; Snyder, William; Cole, Lindsay; Gregson, David; Shields, Michael; Ho, Steffan N; Reff, Mitchell E; Glaser, Scott M; Dong, Jianying; Demarest, Stephen J; Hariharan, Kandasamy

    2009-04-10

    Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 microm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism

  15. Growth inhibitory effects of three miR-129 family members on gastric cancer.

    PubMed

    Yu, Xiuchong; Song, Haojun; Xia, Tian; Han, Shuang; Xiao, Bingxiu; Luo, Lin; Xi, Yang; Guo, Junming

    2013-12-10

    Reduced expression of microRNA-129 (miR-129) has been reported in several types of tumor cell lines as well as in primary tumor tissues. However, little is known about how miR-129 affects cell proliferation in gastric cancer. Here, we show that all miR-129 family members, miR-129-1-3p, miR-129-2-3p, and miR-129-5p, are down-regulated in gastric cancer cell lines compared with normal gastric epithelial cells. Furthermore, using the real-time cell analyzer assay to observe the growth effects of miR-129 on gastric cancer cells, we found that all three mature products of miR-129 showed tumor suppressor activities. To elucidate the molecular mechanisms underlying down-regulation of miR-129 in gastric cancer, we analyzed the effects of miR-129 mimics on the cell cycle. We found that increased miR-129 levels in gastric cancer cells resulted in significant G0/G1 phase arrest. Interestingly, we showed that cyclin dependent kinase 6 (CDK6), a cell cycle-associated protein involved in G1-S transition, was a target of miR-129. We also found that expression of the sex determining region Y-box 4 (SOX4) was inversely associated with that of miR-129-2-3p and miR-129-5p but not of miR-129-1-3p. Together, our data indicate that all miR-129 family members, not only miR-129-5p, as previously thought, play an important role in regulating cell proliferation in gastric cancer. PMID:24055727

  16. Effects of the tumor inhibitory triterpenoid avicin G on cell integrity, cytokinesis, and protein ubiquitination in fission yeast

    PubMed Central

    Gutterman, Jordan U.; Lai, Hong T.; Yang, Peirong; Haridas, Valsala; Gaikwad, Amos; Marcus, Stevan

    2005-01-01

    Avicins comprise a class of triterpenoid compounds that exhibit tumor inhibitory activity. Here we show that avicin G is inhibitory to growth of the fission yeast Schizosaccharomyces pombe. S. pombe cells treated with a lethal concentration of avicin G (20 μM) exhibited a shrunken morphology, indicating that avicin G adversely affects cell integrity. Cells treated with a sublethal concentration of avicin G (6.5 μM) exhibited a strong cytokinesis-defective phenotype (multiseptated cells), as well as cell morphology defects. These phenotypes bear resemblance to those resulting from loss of Rho1 GTPase function in S. pombe. Indeed, Rho1-deficient S. pombe cells were strongly hypersensitive to avicin G, suggesting that the compound may perturb Rho1-dependent processes. Consistent with previously observed effects in human Jurkat T cells, avicin G treatment resulted in hyperaccumulation of ubiquitinated proteins in S. pombe cells. Interestingly, proteasome-defective S. pombe mutants were not markedly hypersensitive to avicin G, whereas an anaphase-promoting complex (mitotic ubiquitin ligase) mutant exhibited avicin G resistance, suggesting that the increase in levels of ubiquitinated proteins resulting from avicin G treatment may be due to increased protein ubiquitination, rather than inhibition of 26S proteasome activity. Mutants defective in the cAMP/PKA pathway also exhibited resistance to avicin G. Our results suggest that S. pombe will be a useful model organism for elucidating molecular targets of avicin G and serve as a guide to clinical application where dysfunctional aspects of Rho and/or ubiquitination function have been demonstrated as in cancer, fibrosis, and inflammation. PMID:16118282

  17. Modulation of gamma-aminobutyric acid-mediated inhibitory synaptic currents in dissociated cortical cell cultures.

    PubMed Central

    Vicini, S; Alho, H; Costa, E; Mienville, J M; Santi, M R; Vaccarino, F M

    1986-01-01

    Inhibitory gamma-aminobutyric acid-mediated synaptic currents were studied in dissociated primary cultures of neonatal rat cortex with the whole-cell patch-clamp technique. Immunocytochemical staining of the cultures showed the presence of a large number of glutamic acid decarboxylase-containing neurons, and electrical stimulation of randomly selected neurons produced in many cases chloride-mediated and bicuculline-sensitive inhibitory synaptic currents in postsynaptic cells. The amplitude and decay time of the inhibitory synaptic currents were increased by flunitrazepam and decreased by the beta-carboline derivative methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate, two high-affinity ligands for the allosteric regulatory sites of gamma-aminobutyric acid receptors. The imidazobenzodiazepine Ro 15-1788, another high-affinity ligand of the gamma-aminobutyric acid receptor regulatory sites that has negligible intrinsic activity, blocked the action of flunitrazepam and beta-carboline. However, Ro 15-1788 also increased the decay rate of the inhibitory synaptic currents. This might suggest that an endogenous ligand for the benzodiazepine-beta-carboline binding site is operative in gamma-aminobutyric acid-mediated synaptic transmission. Images PMID:3097650

  18. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion

    PubMed Central

    Tang, Nan-Hong; Chen, Yan-Ling; Wang, Xiao-Qian; Li, Xiu-Jin; Yin, Feng-Zhi; Wang, Xiao-Zhong

    2004-01-01

    AIM: To explore the cooperative effects of antisense oligonucleotide (ASON) of cell adhesion molecules and cimetidine on the expression of E-selectin and ICAM-1 in endothelial cells and their adhesion to tumor cells. METHODS: After treatment of endothelial cells with ASON and/or cimetidine and induction with TNF-α, the protein and mRNA changes of E-selectin and ICAM-1 in endothelial cells were examined by flow cytometry and RT-PCR, respectively. The adhesion rates of endothelial cells to tumor cells were measured by cell adhesion experiment. RESULTS: In comparison with TNF-α inducing group, lipo-ASON and lipo-ASON/cimetidine could significantly decrease the protein and mRNA levels of E-selectin and ICAM-1 in endothelial cells, and lipo-ASON/cimetidine had most significant inhibitory effect on E-selectin expression (from 36.37 ± 1.56% to 14.23 ± 1.07%, P < 0.001). Meanwhile, cimetidine alone could inhibit the expression of E-selectin (36.37 ± 1.56% vs 27.2 ± 1.31%, P < 0.001), but not ICAM-1 (69.34 ± 2.50% vs 68.07 ± 2.10%, P > 0.05)and the two kinds of mRNA, either. Compared with TNF-α inducing group, the rate of adhesion was markedly decreased in lipo-E-selectin ASON and lipo-E-selectin ASON/cimetidine treated groups(P < 0.05), and lipo-E-selectin ASON/cimetidine worked better than lipo-E-selectin ASON alone except for HepG2/ECV304 group (P < 0.05). However, the decrease of adhesion was not significant in lipo-ICAM-1 ASON and lipo-ICAM-1 ASON/cimetidine treated groups except for HepG2/ECV304 group (P > 0.05). CONCLUSION: These data demonstrate that ASON in combination with cimetidine in vitro can significantly reduce the adhesion between endothelial cells and hepatic or colorectal cancer cells, which is stronger than ASON or cimetidine alone. This study provides some useful proofs for gene therapy of antiadhesion. PMID:14695770

  19. Inhibitory effect of aminoethyl-chitooligosaccharides on invasion of human fibrosarcoma cells.

    PubMed

    Hong, Sugyeong; Ngo, Dai-Nghiep; Kim, Moon-Moo

    2016-07-01

    Chitooligosaccharides (COS) have been reported to show a variety of biological efficacies such as anti-bacterial activity, anti-tumor activity and immune activity. The purpose of this study is to investigate the inhibitory effect of aminoethyl-chitooligosaccharides (AE-COS) synthesized from COS that were substituted hydroxyl groups with aminoethyl group at C-6 position on cell invasion of human fibrosarcoma cells. First of all, the effect of AE-COS on cell viability was observed using MTT assay. The cytotoxicity of AE-COS was increased in a dose dependent manner. The inhibitory effects of AE-COS on the activity and expression level of MMP-2 and MMP-9 related to invasion of cancer cells were examined using gelatin zymography and western blot. It was found that AE-COS above 20μg/ml showed the inhibitory effect on the activity and expression of MMP-9. Furthermore, AE-COS at 20μg/ml reduced the expression level of p50, a part of NF-κB, compared with phorbol-12- myristate-13- acetate (PMA) group. The available data let us hypothesize that AE-COS could provide chemoprevention as an inhibitor against cell invasion associated with metastasis. PMID:27348727

  20. SR16388: a steroidal antiangiogenic agent with potent inhibitory effect on tumor growth in vivo.

    PubMed

    Chao, Wan-Ru; Amin, Khalid; Shi, Yihui; Hobbs, Peter; Tanabe, Mas; Tanga, Mary; Jong, Ling; Collins, Nathan; Peters, Richard; Laderoute, Keith; Dinh, Dominic; Yean, Dawn; Hou, Carol; Sato, Barbara; Alt, Carsten; Sambucetti, Lidia

    2011-03-01

    Angiogenesis is one of the major processes controlling growth and metastasis of tumors. Angiogenesis inhibitors have been targeted for the treatment of various cancers for more than 2 decades. We have developed a novel class of steroidal compounds aimed at blocking the angiogenic process in cancerous tissues. Our lead compound, SR16388, is a potent antiangiogenic agent with binding affinity to estrogen receptor-α (ER-α) and -β (ER-β) at the nanomolar range. This compound inhibited the proliferation of human microvascular endothelial cells (HMVEC) and various types of human cancer cells in vitro. SR16388 inhibited embryonic angiogenesis as measured in the chick chorioallantoic membrane (CAM) assay. The blood vessel density in the CAM was greatly reduced after the embryos were treated with 3 μg/CAM of SR16388 for 24 h. SR16388 at a dose of 2 μM prevented tube formation in Matrigel after HMVEC cells were treated for 8 h. In a modified Boyden chamber assay, SR16388 inhibited the migration of HMVECs by 80% at 500 nM. Using a novel in vivo Fibrin Z-chamber model, we demonstrated that SR16388 at a single daily oral dose of 3 mg/kg for 12 days significantly inhibited the granulation tissue (GT) thickness and the microvessel density of the GT as compared to control. More importantly, SR16388 down-regulated the pro-angiogenic transcription factors, hypoxia inducible factor 1α (HIF-1α) and signal transducer and activator of transcription 3 (STAT3) in non-small cell lung cancer (NSCLC) cells. Together, these effects of SR16388 can lead to the reduction of vascularization and tumor growth in vivo. PMID:21104121

  1. Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia.

    PubMed

    Properzi, Francesca; Carulli, Daniela; Asher, Richard A; Muir, Elizabeth; Camargo, Luiz M; van Kuppevelt, Toin H; ten Dam, Gerdy B; Furukawa, Yoko; Mikami, Tadishima; Sugahara, Kazuyuki; Toida, Toshihiko; Geller, Herbert M; Fawcett, James W

    2005-01-01

    Chondroitin sulphate proteoglycans (CSPGs) are up-regulated in the CNS after injury and inhibit axon regeneration mainly through their glycosaminoglycan (CS-GAG) chains. We have analysed the mRNA levels of the CS-GAG synthesizing enzymes and measured the CS-GAG disaccharide composition by chromatography and immunocytochemistry. Chondroitin 6-sulfotransferase 1 (C6ST1) is up-regulated in most glial types around cortical injuries, and its sulphated product CS-C is also selectively up-regulated. Treatment with TGFalpha and TGFbeta, which are released after brain injury, promotes the expression of C6ST1 and the synthesis of 6-sulphated CS-GAGs in primary astrocytes. Oligodendrocytes, oligodendrocyte precursors and meningeal cells are all inhibitory to axon regeneration, and all express high levels of CS-GAG, including high levels of 6-sulphated GAG. In axon growth-inhibitory Neu7 astrocytes C6ST1 and 6-sulphated GAGs are expressed at high levels, whereas in permissive A7 astrocytes they are not detectable. These results suggest that the up-regulation of CSPG after CNS injury is associated with a specific sulphation pattern on CS-GAGs, mediating the inhibitory properties of proteoglycans on axonal regeneration. PMID:15673437

  2. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species.

    PubMed

    Avila, Marta; Gómez-Torres, Natalia; Hernández, Marta; Garde, Sonia

    2014-02-17

    The butyric acid fermentation, responsible for late blowing of cheese, is caused by the outgrowth in cheese of some species of Clostridium, resulting in texture and flavor defects and economical losses. The aim of this study was to evaluate the effectiveness of different antimicrobial compounds against vegetative cells and spores of C. tyrobutyricum, C. butyricum, C. beijerinckii and C. sporogenes strains isolated from cheeses with late blowing defect. Minimal inhibitory concentration (MIC) for reuterin, nisin, lysozyme and sodium nitrite were determined against Clostridium strains in milk and modified RCM (mRCM) after 7d exposure. Although the sensitivity of Clostridium to the tested antimicrobials was strain-dependent, C. sporogenes and C. beijerinckii generally had higher MIC values than the rest of Clostridium species. The majority of Clostridium strains were more resistant to antimicrobials in milk than in mRCM, and vegetative cells exhibited higher sensitivity than spores. Reuterin (MIC values 0.51-32.5 mM) and nisin (MIC values 0.05-12.5 μg/ml) were able to inhibit the growth of vegetative cells and spores of all assayed Clostridium strains in milk and mRCM. Strains of C. tyrobutyricum exhibited the highest sensitivity to lysozyme (MIC values<0.20-400 μg/ml) and sodium nitrite (MIC values 18.75-150 μg/ml). These results suggest that reuterin and nisin, with a broad inhibitory activity spectrum against Clostridium spp. spores and vegetative cells, may be the best options to control Clostridium growth in dairy products and to prevent associated spoilage, such as late blowing defect of cheese. However, further studies in cheese would be necessary to validate this hypothesis. PMID:24361835

  3. Characterization of inhibitory postsynaptic currents in rod bipolar cells of the mouse retina.

    PubMed

    Frech, Moritz J; Backus, Kurt H

    2004-01-01

    The synaptic terminals of mammalian rod bipolar cells are the targets of multiple presynaptic inhibitory inputs arriving from glycinergic and GABAergic amacrine cells. To investigate the contribution of these different inhibitory receptor types, we have applied the patch-clamp technique in acutely isolated slices of the adult mouse retina. By using the whole-cell configuration, we measured and analyzed the spontaneous postsynaptic currents (PSCs) in rod bipolar cells. The spontaneous synaptic activity of rod bipolar cells was very low. However, when amacrine cells were depolarized by AMPA or kainate, the PSC frequency in rod bipolar cells increased significantly. These PSCs comprised several types that could be distinguished by pharmacological and kinetic criteria. Strychnine-sensitive, glycinergic PSCs were characterized by a mean peak amplitude of -43.5 pA and a weighted decay time constant (tauw) of 10.9 ms. PSCs that persisted in the presence of strychnine, but were completely inhibited by bicuculline, were mediated by GABAARs. They had a mean peak amplitude of -20.0 pA and a significantly faster tauw of 5.8 ms. Few PSCs remained in the presence of strychnine and bicuculline, suggesting that they were mediated by GABACRs. These PSCs were characterized by much smaller amplitudes (-6.2 pA) and a significantly slower decay kinetics (tauw=51.0 ms). We conclude that rod bipolar cells express at least three types of functionally different inhibitory receptors, namely GABAARs, GABACRs, and GlyRs that may ultimately regulate the Ca2+ influx into rod bipolar cell terminals, thereby modulating their glutamate release. PMID:15579227

  4. Inhibitory effect of berberine on human skin squamous cell carcinoma A431 cells.

    PubMed

    Li, D X; Zhang, J; Zhang, Y; Zhao, P W; Yang, L M

    2015-01-01

    Berberine (BBR) is a natural alkaloid with significant anti-tumor activity against many types of cancer cells. In this study, we investigated the molecular mechanisms employed by BBR to repress the proliferation and growth of skin squamous cell carcinoma A431 cells. Berberine was reported to inhibit the proliferation of A431 cells in a dose- and time-dependent manner and was observed to induce a series of biochemical events, including the loss of mitochondrial membrane potential, release of cytochrome-c to cytosol, induction of proteins of the Bcl-2 family and caspases, and the cleavage of poly(ADP)-ribose polymerase. This suggested its ability to induce apoptosis. The results of a wound healing test revealed that berberine inhibited the migration of A431 cells. Ezrin was transfected into A431 cells by RNA interference. The level of expression of Ezrin in the transfected A431 cells was observed to decrease with berberine treatment, which suggested that berberine might inhibit the invasion of A431 cells through Ezrin. The results of this study demonstrated that berberine could potentially inhibit proliferation, induce apoptosis, and inhibit the invasion of A431 cells. PMID:26400287

  5. Inhibitory effect of the substance P and its derivative on erythropoietin-independent growth of erythroid progenitors in polycythemia vera.

    PubMed

    Le Gall, Christelle; Ianotto, Jean-Christophe; Hardy, Elisabeth; Ugo, Valérie; Eveillard, Jean-Richard; Ngo-Sack, Françoise; Bourquard, Pascal; Morice, Patrick; Berthou, Christian

    2008-05-01

    Regulation of normal hematopoiesis by neuropeptide substance P (SP) and its amino terminal fragment, SP(1-4), has been reported. Endogenous erythroid colony (EEC) formation without erythropoietin is characteristic of polycythemia vera (PV), a chronic myeloproliferative disorder. We investigated the effect(s) of SP and SP(1-4) on EEC formation from PV BM mononuclear cells (BMMCs) and purified CD36+ erythroid progenitors. We found a potent in vitro inhibitory effect of SP and SP(1-4) on PV EEC formation for both BMMCs and CD36+ erythroid progenitors. The influence of SP and SP(1-4) on PV progenitor erythroid differentiation and cell viability was also investigated, and the impact of neurokinin receptors and G proteins in the inhibition were analyzed by quantitative PCR and with specific inhibitors. This progenitor inhibition was: (1) not mediated by accessory cells; (2) characterized by an increase in cell death and inhibition of the EPOindependent terminal erythroid differentiation; and (3) not mediated by the same neurokinin receptor. NK-1R and NK-2R antagonists completely abrogated the SP inhibitory effect but not SP(1-4)-induced inhibition. Furthermore, the truncated form of the NK-1R was predominant over the full-length mRNA and could mediated the SP inhibitory effect on PV CD36+ erythroid progenitors. Different G proteins were also implicated according to the erythroid differentiation stage of the PV cells. The observation of an inhibitory effect of SP and its related peptide, SP(1-4), on PV EEC formation at physiological concentrations (10-8M) suggests that neuropeptides represent a way to downregulate pathologic expansion of PV progenitors. PMID:17980427

  6. FH535 inhibited metastasis and growth of pancreatic cancer cells

    PubMed Central

    Wu, Meng-Yao; Liang, Rong-Rui; Chen, Kai; Shen, Meng; Tian, Ya-Li; Li, Dao-Ming; Duan, Wei-Ming; Gui, Qi; Gong, Fei-Ran; Lian, Lian; Li, Wei; Tao, Min

    2015-01-01

    FH535 is a small-molecule inhibitor of the Wnt/β-catenin signaling pathway, which a substantial body of evidence has proven is activated in various cancers, including pancreatic cancer. Activation of the Wnt/β-catenin pathway plays an important role in tumor progression and metastasis. We investigated the inhibitory effect of FH535 on the metastasis and growth of pancreatic cancer cells. Western blotting and luciferase reporter gene assay indicated that FH535 markedly inhibited Wnt/β-catenin pathway viability in pancreatic cancer cells. In vitro wound healing, invasion, and adhesion assays revealed that FH535 significantly inhibited pancreatic cancer cell metastasis. We also observed the inhibitory effect of FH535 on pancreatic cancer cell growth via the tetrazolium and plate clone formation assays. Microarray analyses suggested that changes in the expression of multiple genes could be involved in the anti-cancer effect of FH535 on pancreatic cancer cells. Our results indicate for the first time that FH535 inhibits pancreatic cancer cell metastasis and growth, providing new insight into therapy of pancreatic cancer. PMID:26185454

  7. THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN

    EPA Science Inventory

    THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN.
    Harland and Liburdy (1) reported that 1.2-uT, 60-Hz magnetic fields could significantly block the inhibitory action of pharmacological levels of tamoxifen (10-7 M) on the growth of MCF-7 human br...

  8. Targeting ADAM-17 with an inhibitory monoclonal antibody has antitumour effects in triple-negative breast cancer cells

    PubMed Central

    Caiazza, F; McGowan, P M; Mullooly, M; Murray, A; Synnott, N; O'Donovan, N; Flanagan, L; Tape, C J; Murphy, G; Crown, J; Duffy, M J

    2015-01-01

    Background: Identification and validation of a targeted therapy for triple-negative breast cancer (TNBC), that is, breast cancers negative for oestrogen receptors, progesterone receptors and HER2 amplification, is currently one of the most urgent problems in breast cancer treatment. EGFR is one of the best-validated driver genes for TNBC. EGFR is normally activated following the release of ligands such as TGFα, mediated by the two MMP-like proteases ADAM (a disintegrin and metalloproteinase)-10 and ADAM-17. The aim of this study was to investigate the antitumour effects of a monoclonal antibody against ADAM-17 on an in vitro model of TNBC. Methods: We investigated an inhibitory cross-domain humanised monoclonal antibody targeting both the catalytic domain and the cysteine-rich domain of ADAM17-D1(A12) in the HCC1937 and HCC1143 cell lines. Results: D1(A12) was found to significantly inhibit the release of TGFα, and to decrease downstream EGFR-dependent cell signalling. D1(A12) treatment reduced proliferation in two-dimensional clonogenic assays, as well as growth in three-dimensional culture. Furthermore, D1(A12) reduced invasion of HCC1937 cells and decreased migration of HCC1143 cells. Finally, D1(A12) enhanced cell death in HCC1143 cells. Conclusion: Our in vitro findings suggest that targeting ADAM-17 with D1(A12) may have anticancer activity in TNBC cells. PMID:26010411

  9. Prediction of Inhibitory Activity of Epidermal Growth Factor Receptor Inhibitors Using Grid Search-Projection Pursuit Regression Method

    PubMed Central

    Du, Hongying; Hu, Zhide; Bazzoli, Andrea; Zhang, Yang

    2011-01-01

    The epidermal growth factor receptor (EGFR) protein tyrosine kinase (PTK) is an important protein target for anti-tumor drug discovery. To identify potential EGFR inhibitors, we conducted a quantitative structure–activity relationship (QSAR) study on the inhibitory activity of a series of quinazoline derivatives against EGFR tyrosine kinase. Two 2D-QSAR models were developed based on the best multi-linear regression (BMLR) and grid-search assisted projection pursuit regression (GS-PPR) methods. The results demonstrate that the inhibitory activity of quinazoline derivatives is strongly correlated with their polarizability, activation energy, mass distribution, connectivity, and branching information. Although the present investigation focused on EGFR, the approach provides a general avenue in the structure-based drug development of different protein receptor inhibitors. PMID:21811593

  10. Tracking Inhibitory Alterations during Interstrain Clostridium difficile Interactions by Monitoring Cell Envelope Capacitance

    PubMed Central

    2016-01-01

    Global threats arising from the increasing use of antibiotics coupled with the high recurrence rates of Clostridium difficile (C. difficile) infections (CDI) after standard antibiotic treatments highlight the role of commensal probiotic microorganisms, including nontoxigenic C. difficile (NTCD) strains in preventing CDI due to highly toxigenic C. difficile (HTCD) strains. However, optimization of the inhibitory permutations due to commensal interactions in the microbiota requires probes capable of monitoring phenotypic alterations to C. difficile cells. Herein, by monitoring the field screening behavior of the C. difficile cell envelope with respect to cytoplasmic polarization, we demonstrate that inhibition of the host-cell colonization ability of HTCD due to the S-layer alterations occurring after its co-culture with NTCD can be quantitatively tracked on the basis of the capacitance of the cell envelope of co-cultured HTCD. Furthermore, it is shown that effective inhibition requires the dynamic contact of HTCD cells with freshly secreted extracellular factors from NTCD because contact with the cell-free supernatant causes only mild inhibition. We envision a rapid method for screening the inhibitory permutations to arrest C. difficile colonization by routinely probing alterations in the HTCD dielectrophoretic frequency response due to variations in the capacitance of its cell envelope.

  11. A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum

    SciTech Connect

    Yu Da; Liang Jiangguo; Yu Haining; Wu Haifeng; Xu Chunhua; Liu Jingze . E-mail: jzliu21@heinfo.net; Lai Ren . E-mail: rlai72@njau.edu.cn

    2006-05-05

    Some studies done to date suggest that B-cell inhibitory factor occurred in tick saliva. In this study, a novel protein having B-cell inhibitory activity was purified and characterized from the salivary glands of the hard tick, Hyalomma asiaticum asiaticum. This protein was named B-cell inhibitory factor (BIF). The cDNA encoding BIF was cloned by cDNA library screening. The predicted protein from the cDNA sequence is composed of 138 amino acids including the mature BIF. No similarity was found by Blast search. The lipopolysaccharide-induced B-cell proliferation was inhibited by BIF. This is First report of the identification and characterization of B-cell inhibitory protein from tick. The current study facilitates the study of identifying the interaction among tick, Borrelia burgdorferi, the causative agent of Lyme disease, and host.

  12. The inhibitory effect of disulfiram encapsulated PLGA NPs on tumor growth: Different administration routes.

    PubMed

    Fasehee, Hamidreza; Zarrinrad, Ghazaleh; Tavangar, Seyed Mohammad; Ghaffari, Seyed Hamidollah; Faghihi, Shahab

    2016-06-01

    The strong anticancer activity of disulfiram is hindered by its rapid degradation in blood system. A novel folate-receptor-targeted poly (lactide-co-glycolide) (PLGA)-polyethylene glycol (PEG) nanoparticle (NP) is developed for encapsulation and delivery of disulfiram into breast cancer tumor using passive (EPR effect) and active (folate receptor) targeting. The anticancer activity of disulfiram and its effect on caspase-3 activity and cell cycle are studied. The administration of encapsulated PLGA NPs using intra-peritoneal, intravenous and intra-tumor routes is investigated using animal model. Disulfiram shows strong cytotoxicity against MCF7 cell line. The activity of caspase-3 inhibited with disulfiram via dose dependent manner while the drug causes cell cycle arrest in G0/G1 and S phase time-dependently. The encapsulated disulfiram shows higher activity in apoptosis induction as compared to free drug. In nontoxic dose of encapsulated disulfiram, the highest and lowest efficacy of NPs in tumor growth inhibition is observed for intravenous injection and intraperitoneal injection. It is suggested that administration of disulfiram by targeted PLGA nanoparticles using intravenous injection would present an alternative therapeutic approach for solid tumor treatment. PMID:27040254

  13. Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth

    PubMed Central

    Wang, Jin Dao; Chen, Xiao Ying; Ji, Ke Wei; Tao, Feng

    2016-01-01

    Bruton’s tyrosine kinase (Btk) is a member of the Tec-family non-receptor tyrosine kinases family. It has previously been reported to be expressed in B cells and has an important role in B-cell malignancies. While the roles of Btk in the pathogenesis of certain B-cell malignancies are well established, the functions of Btk in gastric carcinoma have never been investigated. Herein, we found that Btk is over-expressed in gastric carcinoma tissues and gastric cancer cells. Knockdown of Btk expression selectively inhibits the growth of gastric cancer cells, but not that of the normal gastric mucosa epithelial cell, which express very little Btk. Inhibition of Btk by its inhibitor ibrutinib has an additive inhibitory effect on gastric cancer cell growth. Treatment of gastric cancer cells, but not immortalized breast epithelial cells with ibrutinib results in effective cell killing, accompanied by the attenuation of Btk signals. Ibrutinib also induces apoptosis in gastric carcinoma cells as well as is a chemo-sensitizer for docetaxel (DTX), a standard of care for gastric carcinoma patients. Finally, ibrutinib markedly reduces tumor growth and increases tumor cell apoptosis in the tumors formed in mice inoculated with the gastric carcinoma cells. Given these promising preclinical results for ibrutinib in gastric carcinoma, a strategy combining Btk inhibitor warrants attention in gastric cancer. PMID:27508020

  14. Discovery of Diverse Small Molecule Chemotypes with Cell-Based PKD1 Inhibitory Activity

    PubMed Central

    Sharlow, Elizabeth R.; Mustata Wilson, Gabriela; Close, David; Leimgruber, Stephanie; Tandon, Manuj; Reed, Robyn B.; Shun, Tong Ying; Wang, Q. Jane; Wipf, Peter; Lazo, John S.

    2011-01-01

    Protein kinase D (PKD) is a novel family of serine/threonine kinases regulated by diacylglycerol, which is involved in multiple cellular processes and various pathological conditions. The limited number of cell-active, selective inhibitors has historically restricted biochemical and pharmacological studies of PKD. We now markedly expand the PKD1 inhibitory chemotype inventory with eleven additional novel small molecule PKD1 inhibitors derived from our high throughput screening campaigns. The in vitro IC50s for these eleven compounds ranged in potency from 0.4 to 6.1 µM with all of the evaluated compounds being competitive with ATP. Three of the inhibitors (CID 1893668, (1Z)-1-(3-ethyl-5-methoxy-1,3-benzothiazol-2-ylidene)propan-2-one; CID 2011756, 5-(3-chlorophenyl)-N-[4-(morpholin-4-ylmethyl)phenyl]furan-2-carboxamide; CID 5389142, (6Z)-6-[4-(3-aminopropylamino)-6-methyl-1H-pyrimidin-2-ylidene]cyclohexa-2,4-dien-1-one) inhibited phorbol ester-induced endogenous PKD1 activation in LNCaP prostate cancer cells in a concentration-dependent manner. The specificity of these compounds for PKD1 inhibitory activity was supported by kinase assay counter screens as well as by bioinformatics searches. Moreover, computational analyses of these novel cell-active PKD1 inhibitors indicated that they were structurally distinct from the previously described cell-active PKD1 inhibitors while computational docking of the new cell-active compounds in a highly conserved ATP-binding cleft suggests opportunities for structural modification. In summary, we have discovered novel PKD1 inhibitors with in vitro and cell-based inhibitory activity, thus successfully expanding the structural diversity of small molecule inhibitors available for this important pharmacological target. PMID:21998636

  15. Inhibitory effect of bone morphogenetic protein-2 on the proliferation of giant cell tumor of bone stromal cells in vitro

    PubMed Central

    HE, BAOHUA; HE, GUANPING; ZHENG, XIAOFEI; LI, LIHUA; LI, MEI; XIA, HONG

    2016-01-01

    The inhibitory effect of bone morphogenetic protein-2 (BMP-2) on the proliferation of giant cell tumor of bone stromal cells (GCTSCs) has not been fully elucidated. Therefore, the aim of this study was to evaluate the role of recombinant human BMP-2 (rhBMP-2) in the growth of GCTSCs. The effects of exposure to different concentrations of rhBMP-2 (0, 10, 100 and 300 ng/ml) for 1, 3, 5 and 7 days on GCTSC proliferation were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, the effect of treatment with rhBMP-2 (0 or 10 ng/ml) for 48 h on the cell cycle pattern of GCTSCs was examined by flow cytometry. The apoptosis-inducing effect of rhBMP-2 (0 or 10 ng/ml) in GCTSCs was also determined by flow cytometry after 48 and 72 h. In addition, western blot assays were conducted to determine whether rhBMP-2 acts on non-Smad mitogen-activated protein kinase (MAPK) signaling pathways, namely extracellular signal-regulated kinase (ERK1/2), p38 and c-jun-N-terminal kinase (JNK) pathways. The proliferation of GCTSCs treated with rhBMP-2 (10, 100 or 300 ng/ml) for 5 or 7 days was significantly inhibited in a non dose-dependent and non-time-dependent manner (P<0.05). The treatment of GCTSCs with rhBMP-2 (10 ng/ml) for 48 h had no effect on cell cycle distribution. The apoptosis of GCTSCs induced by exposure to rhBMP-2 (10 ng/ml) for 48 or 72 h was significant (P<0.05). Expression levels of phospho-ERK1/2, phospho-p38 and phospho-JNK increased significantly when GCTSCs were treated with rhBMP-2 (10 ng/ml) for 72 h (P<0.05). The results indicate that rhBMP-2 has no stimulatory effect on GCTSC growth. However, it may lead to the apoptosis of GCTSCs by non-Smad MAPK signaling pathways. PMID:26889259

  16. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors

    PubMed Central

    Voron, Thibault; Colussi, Orianne; Marcheteau, Elie; Pernot, Simon; Nizard, Mevyn; Pointet, Anne-Laure; Latreche, Sabrina; Bergaya, Sonia; Benhamouda, Nadine; Tanchot, Corinne; Stockmann, Christian; Combe, Pierre; Berger, Anne; Zinzindohoue, Franck; Yagita, Hideo; Tartour, Eric; Terme, Magali

    2015-01-01

    Immune escape is a prerequisite for tumor development. To avoid the immune system, tumors develop different mechanisms, including T cell exhaustion, which is characterized by expression of immune inhibitory receptors, such as PD-1, CTLA-4, Tim-3, and a progressive loss of function. The recent development of therapies targeting PD-1 and CTLA-4 have raised great interest since they induced long-lasting objective responses in patients suffering from advanced metastatic tumors. However, the regulation of PD-1 expression, and thereby of exhaustion, is unclear. VEGF-A, a proangiogenic molecule produced by the tumors, plays a key role in the development of an immunosuppressive microenvironment. We report in the present work that VEGF-A produced in the tumor microenvironment enhances expression of PD-1 and other inhibitory checkpoints involved in CD8+ T cell exhaustion, which could be reverted by anti-angiogenic agents targeting VEGF-A–VEGFR. In view of these results, association of anti-angiogenic molecules with immunomodulators of inhibitory checkpoints may be of particular interest in VEGF-A-producing tumors. PMID:25601652

  17. Inhibitory effect of genistein on mouse colon cancer MC-26 cells involved TGF-{beta}1/Smad pathway

    SciTech Connect

    Yu Zengli . E-mail: zengliy@yahoo.com.cn; Tang Yunan; Hu Dongsheng; Li Juan

    2005-08-05

    TGF-{beta}1/signaling has been shown to be associated with proapoptotic and antimitotic activities in epithelial tissues. Genistein, a major component of soybean isoflavone, has multiple functions resulting in anticancer proliferation. We herein showed that genistein dose-dependently increased TGF-{beta}1 mRNA expression in mouse colon cancer MC-26 cells. A mouse monoclonal anti-TGF-{beta}1 neutralizing antibody partially, but not completely, blocked the growth inhibition by genistein. By using adenoviral vector, we demonstrated that Smad7 overexpression attenuated genistein-induced growth inhibition and apoptosis as determined by MTT and apoptosis ELISA. Smad7 overexpression also inhibited upregulation of p21 and caspase-3 activity by geinistein. To further confirm inhibitory effect of genistein in MC-26 cells require TGF-{beta}1/Smad signaling, we employed Western blot and electrophoretic mobility shift assay to detect formation of Smad-DNA complexes and phosphorylation of Smad2 and Smad3, respectively. Data revealed that genistein induced an evident formation of Smad-DNA complexes and phosphorylation of Smad2 and Smad3, indicating increased TGF-{beta}1 signaling. Taken together, these findings first provided insights into possible molecular mechanisms of growth inhibition by genistein that required Smad signaling, which could aid in its evaluation for colon tumor prevention.

  18. Translaminar Inhibitory Cells Recruited by Layer 6 Cortico-Thalamic Neurons Suppress Visual Cortex

    PubMed Central

    Bortone, Dante S.; Olsen, Shawn R.; Scanziani, Massimo

    2014-01-01

    Summary In layer 6 (L6), a principal output layer of the mammalian cerebral cortex, a population of excitatory neurons defined by the NTSR1-Cre mouse line inhibit cortical responses to visual stimuli. Here we show that of the two major types of excitatory neurons existing in L6, the NTSR1-Cre line selectively targets those whose axon innervate both cortex and thalamus and not those whose axons remain within the cortex. These cortico-thalamic neurons mediate widespread inhibition across all cortical layers by recruiting fast-spiking inhibitory neurons whose cell-body resides in deep cortical layers yet whose axons arborize throughout all layers. This study reveals a circuit by which L6 modulates cortical activity and identifies an inhibitory neuron able to regulate the strength of cortical responses throughout cortical depth. PMID:24656931

  19. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia

    PubMed Central

    Selin, Carrie; Stietz, Maria S.; Blanchard, Jan E.; Hall, Dennis G.; Brown, Eric D.; Cardona, Silvia T.

    2015-01-01

    Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery. PMID:26053039

  20. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia.

    PubMed

    Selin, Carrie; Stietz, Maria S; Blanchard, Jan E; Gehrke, Sebastian S; Bernard, Sylvain; Hall, Dennis G; Brown, Eric D; Cardona, Silvia T

    2015-01-01

    Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery. PMID:26053039

  1. Leptin Enhances Cholangiocarcinoma Cell Growth

    PubMed Central

    Fava, Giammarco; Alpini, Gianfranco; Rychlicki, Chiara; Saccomanno, Stefania; DeMorrow, Sharon; Trozzi, Luciano; Candelaresi, Cinzia; Venter, Julie; Di Sario, Antonio; Marzioni, Marco; Bearzi, Italo; Glaser, Shannon; Alvaro, Domenico; Marucci, Luca; Francis, Heather; Svegliati-Baroni, Gianluca; Benedetti, Antonio

    2008-01-01

    Cholangiocarcinoma is a strongly aggressive malignancy with a very poor prognosis. Effective therapeutic strategies are lacking because molecular mechanisms regulating cholangiocarcinoma cell growth are unknown. Furthermore, experimental in vivo animal models useful to study the pathophysiologic mechanisms of malignant cholangiocytes are lacking. Leptin, the hormone regulating caloric homeostasis, which is increased in obese patients, stimulates the growth of several cancers, such as hepatocellular carcinoma. The aim of this study was to define if leptin stimulates cholangiocarcinoma growth. We determined the expression of leptin receptors in normal and malignant human cholangiocytes. Effects on intrahepatic cholangiocarcinoma (HuH-28) cell proliferation, migration, and apoptosis of the in vitro exposure to leptin, together with the intracellular pathways, were then studied. Moreover, cholangiocarcinoma was experimentally induced in obese fa/fa Zucker rats, a genetically established animal species with faulty leptin receptors, and in their littermates by chronic feeding with thioacetamide, a potent carcinogen. After 24 weeks, the effect of leptin on cholangiocarcinoma development and growth was assessed. Normal and malignant human cholangiocytes express leptin receptors. Leptin increased the proliferation and the metastatic potential of cholangiocarcinoma cells in vitro through a signal transducers and activators of transcription 3–dependent activation of extracellular signal-regulated kinase 1/2. Leptin increased the growth and migration, and was antiapoptotic for cholangiocarcinoma cells. Moreover, the loss of leptin function reduced the development and the growth of cholangiocarcinoma. The experimental carcinogenesis model induced by thioacetamide administration is a valid and reproducible method to study cholangiocarcinoma pathobiology. Modulation of the leptin-mediated signal could be considered a valid tool for the prevention and treatment of

  2. Inhibitory effect of succinic acid on epithelial cell proliferation of colonic mucosa in rats.

    PubMed

    Inagaki, Akiko; Ichikawa, Hirofumi; Sakata, Takashi

    2007-08-01

    Microbial breakdown of carbohydrates in the large intestine mainly produces short-chain fatty acids (SCFA). SCFA stimulate epithelial cell proliferation of the digestive tract in vivo. Succinic acid sometimes accumulates in the colonic lumen. However, the effect of succinic acid on colonic epithelial cell proliferation is unknown. Thus, we planned to clarify the influence of succinic acid on colonic epithelial cell proliferation in vivo. We continuously administered infusate with or without succinic acid (100 mM) into the distal colon of rats for 6 d and measured accumulated mitosis per crypt of distal colon of these rats. Succinic acid infused into rat colons significantly inhibited colonic cell proliferation and reduced crypt size. These results clearly indicated the inhibitory effects of succinic acid on colonic epithelial cell proliferation in vivo. PMID:17934246

  3. Effects of flavonoids on the growth and cell cycle of cancer cells.

    PubMed

    Choi, S U; Ryu, S Y; Yoon, S K; Jung, N P; Park, S H; Kim, K H; Choi, E J; Lee, C O

    1999-01-01

    In this study, we investigated the cytotoxicities of flavone (F01), 3-hydroxyflavone (F02), 6- hydroxyflavone (F03), 7-hydroxyflavone (F04), 3,6-dihydroxyflavone (F05), 5,7-dihydroxyflavone (F06) and 5,6,7-trihydroxyflavone (F07) to human cancer cells including P- glycoprotein (Pgp)-expressing HCT15 cells and its multidrug resistant subline, HCT15/CL02 cells. We also examined the effects of those flavonoids on the cell cycle of these cancer cells. HCT15/CL02 cells did not reveal resistance to all the flavonoids tested in comparison with HCT15 cells. In cell cycle analysis, all the flavonoids tested, except F01 and F04, reduced the G0/G1 population of SF295 cells at growth inhibitory concentrations, and increased G2/M (F02, F03 and F06) or S (F05 and F07) populations. In addition, F02 and F03 decreased the G2/M and G0/G1 population, and increased the S and G2/M population in HCT15 cells, respectively. Meanwhile, in HCT15/CL02 cells, F02 and F03 decreased the G0/G1 populations and increased the S population. In conclusion, we deemed that the flavonoids tested had diverse cytotoxic mechanisms, and exerted their cell growth inhibitory or killing activity by distinctive ways in different cells. PMID:10697540

  4. Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer

    PubMed Central

    Li, Tianshu; Lu, Heng; Mukherjee, Debarati; Lahiri, Satadru K.; Shen, Chao; Yu, Lin; Zhao, Jihe

    2015-01-01

    Krüppel-like factor 8 (KLF8) is a dual transcriptional factor critical for breast cancer progression. Epidermal growth factor receptor (EGFR) is frequently overexpressed in aggressive such as triple-negative breast cancer and associated with poor clinical outcomes. Here we report a novel KLF8-EGFR signaling axis in breast cancer. We identified a highly correlated co-overexpression between KLF8 and EGFR in invasive breast cancer cells and patient tumor samples. Overexpression of KLF8 in the non-tumorigenic MCF-10A cells induced the expression of EGFR, whereas knockdown of KLF8 from the MDA-MB-231 cells decreased it. Promoter activation and binding assays indicated that KLF8 promotes the EGFR expression by directly binding its gene promoter. We also revealed that KLF8 directly represses the promoter of miR141 and miR141 targets the 3′-untranslational region of EGFR transcript to inhibit EGFR translation. Treatment with the EGFR inhibitor AG1478 or overexpression of miR141 blocked the activity of ERK downstream of EGFR and inhibited KLF8-depndent cell invasiveness, proliferation and viability in cell culture and invasive growth and lung metastasis in nude mice. Conversely, overexpression of an inhibitory sponge of miR141 led to the opposite phenotypes. Taken together, these findings demonstrate a novel KLF8 to miR141/EGFR signaling pathway potentially crucial for breast cancer malignancy. PMID:26025929

  5. Rhodamine-123 Selectively Reduces Clonal Growth of Carcinoma Cells in vitro

    NASA Astrophysics Data System (ADS)

    1982-12-01

    Rhodamine-123, a cationic laser dye, markedly reduced the clonal growth of carcinoma cells but had little effect on nontumorigenic epithelial cells in vitro. This selective inhibitory effect of Rhodamine-123 on some carcinomas is unusual since known anticancer drugs, such as arabinosyl cytosine and methotrexate, have not been shown to exhibit such selectivity in vitro.

  6. Synaptic Connectivity between Renshaw Cells and Motoneurons in the Recurrent Inhibitory Circuit of the Spinal Cord

    PubMed Central

    Moore, Niall J.; Bhumbra, Gardave S.; Foster, Joshua D.

    2015-01-01

    Renshaw cells represent a fundamental component of one of the first discovered neuronal circuits, but their function in motor control has not been established. They are the only central neurons that receive collateral projections from motor outputs, yet the efficacy of the excitatory synapses from single and converging motoneurons remains unknown. Here we present the results of dual whole-cell recordings from identified, synaptically connected Renshaw cell-motoneuron pairs in the mouse lumbar spinal cord. The responses from single Renshaw cells demonstrate that motoneuron synapses elicit large excitatory conductances with few or no failures. We show that the strong excitatory input from motoneurons results from a high probability of neurotransmitter release onto multiple postsynaptic contacts. Dual current-clamp recordings confirm that single motoneuron inputs were sufficient to depolarize the Renshaw cell beyond threshold for firing. Reciprocal connectivity was observed in approximately one-third of the paired recordings tested. Ventral root stimulation was used to evoke currents from Renshaw cells or motoneurons to characterize responses of single neurons to the activation of their corresponding presynaptic cell populations. Excitatory or inhibitory synaptic inputs in the recurrent inhibitory loop induced substantial effects on the excitability of respective postsynaptic cells. Quantal analysis estimates showed a large number of converging inputs from presynaptic motoneuron and Renshaw cell populations. The combination of considerable synaptic efficacy and extensive connectivity within the recurrent circuitry indicates a role of Renshaw cells in modulating motor outputs that may be considerably more important than has been previously supposed. SIGNIFICANCE STATEMENT We have recently shown that Renshaw cells mediate powerful shunt inhibition on motoneuron excitability. Here we complete a quantitative description of the recurrent circuit using recordings of

  7. Acetylcholinesterase and insect growth inhibitory activities of Gutierrezia microcephala on fall armyworm Spodoptera frugiperda J.E. Smith.

    PubMed

    Calderón, J S; Céspedes, C L; Rosas, R; Gómez-Garibay, F; Salazar, J R; Lina, L; Aranda, E; Kubo, I

    2001-01-01

    From the aerial parts of Gutierrezia microcephala (Asteraceae), four oxyflavones were isolated, namely 5,7,2'-trihydroxy-3,6,8,4',5'-pentamethoxyflavone (1); 5,7,4'-trihydroxy-3,6,8-trimethoxyflavone (2); 5,7,2',4'-tetrahydroxy-3,6,8,5'-tetramethoxyflavone (3); 5,2'-dihydroxy-3,6,7,8,4',5'-hexamethoxyflavone (4), and an ent-clerodane, bacchabolivic acid (5). Compounds 1-5, the synthetic methyl ester (6), n-hexane and MeOH extracts were evaluated against the fall armyworm (Spodoptera frugiperda). Gedunin, a known insect growth regulator isolated from Cedrela spp. was used as a positive control. When tested for activity on neonate larvae into the no-choice artificial diet bioassay, flavone (1), clerodane (5), its methyl ester (6), MeOH and n-hexane extracts caused significant larval mortality with MC50 of 3.9, 10.7, 3.46, 7.95 and 7.5 ppm at 7 days, respectively, as well as growth reduction. They also increased the development time of surviving larvae and a significant delay in time to pupation and adult emergence. Acute toxicity against adults of S. frugiperda was also found, 5, 6, gedunin and n-hexane extract had the most potent activity with LD50 value of 6.59, 15.05, 10.78, and 12.79 ppm, respectively. In addition, MeOH, n-hexane extracts, 5, 6 and gedunin caused acetylcholinesterase inhibition with 93.7, 100, 90.2, 62.0 and 100% at 50.0 ppm, respectively; whereas 1-4 exhibited only moderate inhibitory activity. Compounds 1, 5 and 6 showed inhibitory activities comparable with gedunin. These compounds could be responsible of the insect growth inhibitory activity of this plant. PMID:11421454

  8. Single-cell growth analysis in a mixed cell culture

    NASA Astrophysics Data System (ADS)

    Ando, Jun; Bato, Mary Grace P.; Daria, Vincent Ricardo

    2008-06-01

    We perform single cell analysis of cell growth in a mixed cell culture. Two species of yeast cells: Saccharomyces cerevisiae and Candida albicans, are optically trapped using focused continuous-wave near infrared laser. Cell growth for both cells is inhibited only when the two species of cells are in contact with each other. This indicates cell-cell interaction mediated cell growth inhibition mechanism. Single cell level analysis of cell growth studied here contributes to the further understanding of yeast growth arrest in a mixed yeast culture.

  9. [Analysis of the inhibitory capacity against bacterial growth of several materials of dental use. Preliminar].

    PubMed

    Canivell, M; Lopez, J L; Teresa, V; Salas, E J; Ciordia, M V

    2011-01-01

    Dental plaque is one of the reasons for odontogenic infection. Although multiple bacteria are involved in these processes, A.actinomycetemcomitans and S.mutans are considered directly responsible for localized aggressive periodontitis and caries respectively. On the other hand, it seems clear that the oral flora utilizes especially not well polished surfaces or without bacteriastatic capacity in order to obtain better adhesion. Based on those facts we expect to prove the inhibitory capacity "in vitro" of some materials used for teeth restoration and for the cementation of accessories against one common bacterium in the human flora and two pathogenic bacteria of the oral cavity. We prepared, following the manufacturer's instructions, 18 discs for each one of the materials used in the study (2 composites and 2 ionomeros of glass). 6 discs of each material are incubated with A. actinomycetemcomitans, S. mutans and E. coli. 3 of them are incubated directly on the discs and the other 3 are incubated previously in an artificial saliva for 24 days. From the results, should be highlighted that only one of the materials demonstrated inhibitory capacity against A. actinomycetemcomitans and E. coli. None of them demonstrated inhibitory capacity against S. mutans. PMID:21716233

  10. Two macrophage migration inhibitory factors regulate starfish larval immune cell chemotaxis.

    PubMed

    Furukawa, Ryohei; Tamaki, Kana; Kaneko, Hiroyuki

    2016-04-01

    Immune cell recruitment is critical step in the inflammatory response and associated diseases. However, the underlying regulatory mechanisms are poorly understood in invertebrates. Mesenchyme cells of the starfish larvae, which allowed Metchnikoff to complete his landmark experiments, are important model for analysis of immune cell migration. The present study investigated the role of macrophage migration inhibitory factor (MIF)-an evolutionarily conserved cytokine that is functionally similar to chemokines-in the larvae of the starfish Patiria (Asterina) pectinifera, which were found to possess two orthologs, ApMIF1 and ApMIF2. ApMIF1 and ApMIF2 clustered with mammalian MIF and its homolog D-dopachrome tautomerase (DDT), respectively, in the phylogenetic analysis. In contrast to the functional similarity between mammalian MIF and DDT, ApMIF1 knockdown resulted in the excessive recruitment of mesenchyme cells in vivo, whereas ApMIF2 deficiency inhibited the recruitment of these cells to foreign bodies. Mesenchyme cells migrated along a gradient of recombinant ApMIF2 in vitro, whereas recombinant ApMIF1 completely blocked ApMIF2-induced directed migration. Moreover, the expression patterns of ApMIF1 and ApMIF2 messenger RNA in bacteria-challenged mesenchyme cells were consistent with in vivo observations of cell behaviors. These results indicate that ApMIF1 and ApMIF2 act as chemotactic inhibitory and stimulatory factors, respectively, and coordinately regulate mesenchyme cell recruitment during the immune response in starfish larvae. This is the first report describing opposing functions for MIF- and DDT-like molecules. Our findings provide novel insight into the mechanisms underlying immune regulation in invertebrates. PMID:26833025

  11. NK Cell Responsiveness is Tuned Commensurate with the Number of Inhibitory Receptors for Self MHC Class I: the Rheostat Model

    PubMed Central

    Joncker, Nathalie T.; Fernandez, Nadine C.; Treiner, Emmanuel; Vivier, Eric; Raulet, David H.

    2010-01-01

    Inhibitory receptors that engage self-MHC class I molecules enable NK cells to detect disease-associated loss of MHC class I on surrounding cells. Previous studies showed that some NK cells lack all receptors for self-MHC class I, yet fail to exhibit autoimmunity because they are generally hyporesponsive to stimulation. We asked whether NK cells exist in only two states, responsive and hyporesponsive, corresponding to cells that express or fail to express inhibitory receptors for self-MHC class I. The alternative model is that NK cells vary continuously in their responsiveness, based on variations in the number of different inhibitory and stimulatory receptors they express, which is known to vary. Here we show in the murine system that NK cell responsiveness increases quantitatively with each added self MHC-specific inhibitory receptor. Genetic analysis demonstrated that interactions of each of the receptors with self-MHC class I were necessary to observe augmented responsiveness. These findings suggest that NK cell responsiveness is comparable to a rheostat: it is tuned to an optimal set point depending on the inhibitory and stimulatory interactions encountered in the normal environment, so as to ensure self-tolerance and yet optimize sensitivity to changes in normal cells. PMID:19342631

  12. Inhibitory effects of epigallocatechin-3-O-gallate on serum-stimulated rat aortic smooth muscle cells via nuclear factor-{kappa}B down-modulation

    SciTech Connect

    Han, Dong-Wook; Lim, Hye Ryeon; Baek, Hyun Sook; Lee, Mi Hee; Lee, Seung Jin; Hyon, Suong-Hyu; Park, Jong-Chul . E-mail: parkjc@yumc.yonsei.ac.kr

    2006-06-23

    The abnormal growth of vascular smooth muscle cells (VSMCs) plays an important role in vascular diseases, including atherosclerosis and restenosis after angioplasty. Although (-)-epigallocatechin-3-O-gallate (EGCG) has antiproliferative effects on various cells, relatively a little is known about precise mechanisms of the inhibitory effects of EGCG on SMCs. In this study, the inhibitory effects of EGCG on attachment, proliferation, migration, and cell cycle of rat aortic SMCs (RASMCs) with serum stimulation were investigated. Also, the involvement of nuclear factor-{kappa}B (NF-{kappa}B) during these inhibitions by EGCG was examined. EGCG treatment resulted in significant (p < 0.05) inhibition in attachment and proliferation of RASMCs induced by serum. While non-treated RASMCs migrated into denuded area in response to serum and showed essentially complete closure after 36 h, EGCG-treated cells covered only 31% of the area even after 48 h of incubation. Furthermore, EGCG treatment resulted in an appreciable cell cycle arrest at both G0/G1- and G2/M-phases. The immunoblot analysis revealed that the constitutive expression of NF-{kappa}B/p65 nuclear protein in RASMCs was lowered by EGCG in both the cytosol and the nucleus in a dose-dependent manner. These results suggest that the EGCG-caused inhibitory effects on RASMCs may be mediated through NF-{kappa}B down-modulation.

  13. Only a Minority of the Inhibitory Inputs to Cerebellar Golgi Cells Originates from Local GABAergic Cells123

    PubMed Central

    2016-01-01

    Abstract Cerebellar Golgi cells (GoCs) efficiently control the spiking activity of granule cells through GABAA receptor-mediated tonic and phasic inhibition. Recent experiments provided compelling evidence for the extensive interconnection of GoCs through electrical synapses, but their chemical inhibitory synaptic inputs are debated. Here, we investigated the GABAergic synaptic inputs of GoCs using in vitro electrophysiology and quantitative light microscopy (LM) and electron microscopy (EM). We characterized GABAA receptor-mediated IPSCs in GoCs and Lugaro cells (LuCs), and found that IPSCs in GoCs have lower frequencies, smaller amplitudes, and much slower decay kinetics. Pharmacological and LM immunolocalization experiments revealed that GoCs express α3, whereas LuCs express α1 subunit-containing GABAA receptors. The selective expression and clustered distribution of the α3 subunit in GoCs allowed the quantitative analysis of GABAergic synapses on their dendrites in the molecular layer (ML). EM and LM experiments in rats, and wild-type and GlyT2-GFP transgenic mice revealed that only one third of axon terminals establishing GABAergic synapses on GoC dendrites contain GlyT2, ruling out LuCs, globular cells, and any noncortical glycinergic inputs as major inhibitory sources. We also show that axon terminals of stellate/basket cells very rarely innervate GlyT2-GFP-expressing GoCs, indicating that only a minority of the inhibitory inputs to GoCs in the ML originates from local interneurons, and the majority of their inhibitory inputs exclusively releases GABA. PMID:27257627

  14. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells.

    PubMed

    Ujhelyi, Zoltán; Kalantari, Azin; Vecsernyés, Miklós; Róka, Eszter; Fenyvesi, Ferenc; Póka, Róbert; Kozma, Bence; Bácskay, Ildikó

    2015-01-01

    The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations. PMID:26197311

  15. Induction of Inhibitory Receptors on T Cells During Plasmodium vivax Malaria Impairs Cytokine Production.

    PubMed

    Costa, Pedro A C; Leoratti, Fabiana M S; Figueiredo, Maria M; Tada, Mauro S; Pereira, Dhelio B; Junqueira, Caroline; Soares, Irene S; Barber, Daniel L; Gazzinelli, Ricardo T; Antonelli, Lis R V

    2015-12-15

    The function and regulation of the immune response triggered during malaria is complex and poorly understood, and there is a particular paucity of studies conducted in humans infected with Plasmodium vivax. While it has been proposed that T-cell-effector responses are crucial for protection against blood-stage malaria in mice, the mechanisms behind this in humans remain poorly understood. Experimental models of malaria have shown that the regulatory molecules, cytotoxic T-lymphocyte attenuator-4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), and programmed death-1 (PD-1) are involved in the functional impairment of T cells during infection. Our goal was to define the role of these molecules during P. vivax malaria. We demonstrate that infection triggers the expression of regulatory molecules on T cells. The pattern of expression differs in CD4(+) and CD8(+) T cells. Higher frequencies of CD4(+) express more than 1 regulatory molecule compared to CD8(+) T cells. Moreover, lower proportions of CD4(+) T cells coexpress regulatory molecules, but are still able to proliferate. Importantly, simultaneously blockade of the CLTA-4, PD-1, and T-cell immunoglobulin and mucin-3 signaling restores the cytokine production by antigen-specific cells. These data support the hypothesis that upregulation of inhibitory receptors on T cells during P. vivax malaria impairs parasite-specific T-cell effector function. PMID:26019284

  16. Crystal structure of the HLA-Cw3 allotype-specific killer cell inhibitory receptor KIR2DL2

    PubMed Central

    Snyder, Greg A.; Brooks, Andrew G.; Sun, Peter D.

    1999-01-01

    Killer cell inhibitory receptors (KIR) protect class I HLAs expressing target cells from natural killer (NK) cell-mediated lysis. To understand the molecular basis of this receptor-ligand recognition, we have crystallized the extracellular ligand-binding domains of KIR2DL2, a member of the Ig superfamily receptors that recognize HLA-Cw1, 3, 7, and 8 allotypes. The structure was determined in two different crystal forms, an orthorhombic P212121 and a trigonal P3221 space group, to resolutions of 3.0 and 2.9 Å, respectively. The overall fold of this structure, like KIR2DL1, exhibits K-type Ig topology with cis-proline residues in both domains that define β-strand switching, which sets KIR apart from the C2-type hematopoietic growth hormone receptor fold. The hinge angle of KIR2DL2 is approximately 80°, 14° larger than that observed in KIR2DL1 despite the existence of conserved hydrophobic residues near the hinge region. There is also a 5° difference in the observed hinge angles in two crystal forms of 2DL2, suggesting that the interdomain hinge angle is not fixed. The putative ligand-binding site is formed by residues from several variable loops with charge distribution apparently complementary to that of HLA-C. The packing of the receptors in the orthorhombic crystal form offers an intriguing model for receptor aggregation on the cell surface. PMID:10097129

  17. Inhibitory effect of oestradiol on activation of rat hepatic stellate cells in vivo and in vitro

    PubMed Central

    Shimizu, I; Mizobuchi, Y; Yasuda, M; Shiba, M; Ma, Y; Horie, T; Liu, F; Ito, S

    1999-01-01

    Background—Hepatic stellate cells play a key role in the pathogenesis of hepatic fibrosis. 
Aims—To examine the inhibitory effect of oestradiol on stellate cell activation. 
Methods—In vivo, hepatic fibrosis was induced in rats by dimethylnitrosamine or pig serum. In vitro, rat stellate cells were activated by contact with plastic dishes resulting in their transformation into myofibroblast-like cells. 
Results—In the dimethylnitrosamine and pig serum models, treatment with oestradiol at gestation related doses resulted in a dose dependent suppression of hepatic fibrosis with restored content of hepatic retinyl palmitate, reduced collagen content, lower areas of stellate cells which express α smooth muscle actin (α-SMA) and desmin, and lower procollagen type I and III mRNA levels in the liver. In cultured stellate cells, oestradiol inhibited type I collagen production, α-SMA expression, and cell proliferation. These findings suggest that oestradiol is a potent inhibitor of stellate cell transformation. 
Conclusion—The antifibrogenic role of oestradiol in the liver may contribute to the sex associated differences in the progression from hepatic fibrosis to cirrhosis. 

 Keywords: hepatic stellate cells; hepatic fibrosis; oestradiol; α smooth muscle actin; retinyl palmitate PMID:9862839

  18. [Inhibitory effect of gefitinib and lapatinib on proliferation of HEL cells].

    PubMed

    He, Xiang-Meng; Zhang, Ling-Yan; Li, Ying

    2012-04-01

    This study was aimed to investigate the therapeutic effect of two molecular targeted therapeutic drugs, tyrosine kinase inhibitors gefitinib and lapatinib, on JAK2 V617F positive myeloproliferative disorders (MPD). The human leukemia cell line (HEL cell line) carrying JAK2 V617F mutation was treated with gefitinib (0.5, 1, 5, 10, 25 µmol/L) and lapatinib (0.5, 1, 2, 4, 8, 16 µmol/L) respectively. MTT method was used to detect HEL cell proliferation. The apoptotic rate and cell cycle were measured by flow cytometry. The results showed that gefitinib could significantly inhibit the proliferation of HEL cells in a dose-dependent manner, it's correlation coefficients for 24 and 48 h were 0.991 and 0.895 respectively. IC(50) at 48 h was 5.4 µmol/L. Gefitinib could effectively induce apoptosis of HEL cells in a dose-dependent manner (r = 0.896). Otherwise, gefitinib could arrest HEL cells at G(0)/G(1) phase. The inhibitory effect of lapatinib was less than gefitinib, it's IC(50) of inhibiting proliferation of HEL cells was 19.6 µmol/L. It is concluded that both gefitinib and lapatinib can inhibit the proliferation of HEL cells. These two tyrosine kinase inhibitors can be used for researching of targeted therapy of JAK2 V617 positive MPD. PMID:22541101

  19. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds

    PubMed Central

    2011-01-01

    Background Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using softwoods, which is particularly acute with pine, is that the pretreatment process produces inhibitory compounds detrimental to the growth and metabolic activity of fermenting organisms. To overcome the challenge of bioconversion in the presence of inhibitory compounds, especially at high solids loading, a strain of Saccharomyces cerevisiae was subjected to evolutionary engineering and adaptation for fermentation of pretreated pine wood (Pinus taeda). Results An industrial strain of Saccharomyces, XR122N, was evolved using pretreated pine; the resulting daughter strain, AJP50, produced ethanol much more rapidly than its parent in fermentations of pretreated pine. Adaptation, by preculturing of the industrial yeast XR122N and the evolved strains in 7% dry weight per volume (w/v) pretreated pine solids prior to inoculation into higher solids concentrations, improved fermentation performance of all strains compared with direct inoculation into high solids. Growth comparisons between XR122N and AJP50 in model hydrolysate media containing inhibitory compounds found in pretreated biomass showed that AJP50 exited lag phase faster under all conditions tested. This was due, in part, to the ability of AJP50 to rapidly convert furfural and hydroxymethylfurfural to their less toxic alcohol derivatives, and to recover from reactive oxygen species damage more quickly than XR122N. Under industrially relevant conditions of 17.5% w/v pretreated pine solids loading, additional evolutionary engineering was required to decrease the pronounced lag phase. Using a combination of adaptation by inoculation first into a solids loading of 7% w/v for 24 hours, followed by a 10% v/v inoculum (approximately equivalent to 1 g/L dry cell weight) into 17.5% w/v solids, the final

  20. Metformin inhibits salivary adenocarcinoma growth through cell cycle arrest and apoptosis

    PubMed Central

    Guo, Yuqi; Yu, Tao; Yang, Jian; Zhang, Tianqing; Zhou, Yang; He, Fan; Kurago, Zoya; Myssiorek, David; Wu, Yingjie; Lee, Peng; Li, Xin

    2015-01-01

    The inhibitory effects of metformin have been observed in many types of cancer. However, its effect on human salivary gland carcinoma is unknown. The effect of metformin alone or in combination with pp242 (an mTOR inhibitor) on salivary adenocarcinoma cells growth were determined in vitro and in vivo. We found that metformin suppressed HSY cell growth in vitro in a time and dose dependent manner associated with a reduced expression of MYC onco-protein, and the same inhibitory effect of metformin was also confirmed in HSG cells. In association with the reduction of MYC onco-protein, metformin significantly restored p53 tumor suppressor gene expression. The distinctive effects of metformin and PP242 on MYC reduction and P53 restoration suggested that metformin inhibited cell growth through a different pathway from PP242 in salivary carcinoma cells. Furthermore, the anti-tumor efficacy of metformin was confirmed in vivo as indicated by the increases of tumor necrosis and reduced proliferation in xenograft tumors from metformin treated group. For the first time, the inhibitory effect of metformin on human salivary gland tumor cells was documented. Moreover, metformin inhibitory effects were enhanced by mTOR inhibitor suggesting that metformin and mTOR inhibitor utilize distinctive signaling pathways to suppress salivary tumor growth. PMID:26885449

  1. Inhibitory effect of interferon gamma on frequency of Ehrlichia canis-infected cells in vitro.

    PubMed

    Tajima, Tomoko; Wada, Makoto

    2013-12-15

    Ehrlichia canis is an obligate intracellular bacterium that infects the macrophage-monocyte cells of dogs, causing canine monocytic ehrlichiosis. Interferon-γ (IFN-γ), along with other cytokines, mediates the immune response to such intracellular bacterial invasions. To determine the role of IFN-γ in the immunity of dogs to E. canis infection, peripheral blood mononuclear cells (PBMC) and white blood cells (WBC) were collected from E. canis-infected dogs and added to a culture of E. canis in DH82 cells. The number of E. canis inclusion-positive cells was significantly reduced in cultures containing PBMC and WBC from E. canis-infected dogs compared to uninfected dogs. However, this resistance was inhibited by the addition of an anti-dog IFN-γ antibody. Resistance was also observed when PBMC were added to the Cell Culture Inserts, which prohibited contact of PBMC to DH82 cells, while allowed the diffusion of soluble cell products. The results of this study indicate that resistance was not dependent on cell to cell contact, but was associated with soluble cell products, such as IFN-γ. The addition of recombinant canine IFN-γ to the E. canis culture also reduced the number of infected cells. A commercial recombinant canine IFN-γ, which is sold in Japan, was also effective at reducing E. canis-infected cell number. These results indicate that IFN-γ has an inhibitory effect on the frequency of E. canis-infected cells in vitro and that contact between effector and target cells is not necessary for the resistance. PMID:24148826

  2. Stromal cell-derived factor-1α and macrophage migration-inhibitory factor induce metastatic behavior in CXCR4-expressing colon cancer cells.

    PubMed

    Shin, Han-Na; Moon, Hyun-Hye; Ku, Ja-Lok

    2012-12-01

    Metastasis of cancer cells is a major cause of death in cancer patients. The process of cancer metastasis includes the proliferation of primary cancer cells, local invasion, intravasation and cancer cell survival in blood flow, extravasation and attachment to secondary organs and metastatic growth in a new environment. In these mechanisms of cancer metastasis, CXC chemokine receptor 4 (CXCR4) and its ligand play an important role. Stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is well known as a ligand of CXCR4, and macrophage migration-inhibitory factor (MIF) has recently become known as a ligand of CXCR4. In many types of cancers including breast, pancreatic and colorectal cancer (CRC), CXCR4/SDF-1α has been investigated in metastasis-related cancer behavior, which include cell proliferation, adhesion, migration and invasion. However, CXCR4/MIF has rarely been investigated in the metastatic behavior of colon cancer cells. In this report, the effect of SDF-1α or MIF was studied on cell cycle, cell proliferation, adhesion and migration of the CXCR4-expressing colon cancer cell line SW480. SDF-1α or MIF caused a decrease in the number of cells in G0/G1 phase and an increase in the numbers of cells in S and G2/M phases. In addition, SDF-1α or MIF caused an increase in cell proliferation, cell adhesion to fibronectin and migration. AMD3100, a CXCR4 antagonist, attenuated these effects, which included increased cell proliferation, adhesion and migration due to treatment of CXCR4-expressing colon cancer cells with SDF-1α or MIF. In conclusion, SDF-1α or MIF affects the metastasis-related behaviors of CXCR4-expressing colon cancer cells. PMID:23023114

  3. Macrophage Migration Inhibitory Factor Is Involved in Ectopic Endometrial Tissue Growth and Peritoneal-Endometrial Tissue Interaction In Vivo: A Plausible Link to Endometriosis Development

    PubMed Central

    Rakhila, Halima; Girard, Karine; Leboeuf, Mathieu; Lemyre, Madeleine

    2014-01-01

    Pelvic inflammation is a hallmark of endometriosis pathogenesis and a major cause of the disease's symptoms. Abnormal immune and inflammatory changes may not only contribute to endometriosis-major symptoms, but also contribute to ectopic endometrial tissue growth and endometriosis development. A major pro-inflammatory factors found elevated in peritoneal fluid of women with endometriosis and to be overexpressed in peritoneal fluid macrophages and active, highly vascularized and early stage endometriotic lesions, macrophage migration inhibitory factor (MIF) appeared to induce angiogenic and inflammatory and estrogen producing phenotypes in endometriotic cells in vitro and to be a possible therapeutic target in vivo. Using a mouse model where MIF-knock out (KO) mice received intra-peritoneal injection of endometrial tissue from MIF-KO or syngeneic wild type (WT) mice and vice versa, our current study revealed that MIF genetic depletion resulted in a marked reduction ectopic endometrial tissue growth, a disrupted tissue structure and a significant down regulation of the expression of major inflammatory (cyclooxygenease-2), cell adhesion (αv and β3 integrins), survival (B-cell lymphoma-2) and angiogenic (vascular endothelial cell growth) factorsrelevant to endometriosis pathogenesis, whereas MIF add-back to MIF-KO mice significantly restored endometriosis-like lesions number and size. Interestingly, cross-experiments revealed that MIF presence in both endometrial and peritoneal host tissues is required for ectopic endometrial tissue growth and pointed to its involvement in endometrial-peritoneal interactions. This study provides compelling evidence for the role of MIF in endometriosis development and its possible interest for a targeted treatment of endometriosis. PMID:25329068

  4. Inhibitory effects of low molecular weight polyphenolics from Inonotus obliquus on human DNA topoisomerase activity and cancer cell proliferation.

    PubMed

    Kuriyama, Isoko; Nakajima, Yuki; Nishida, Hiroshi; Konishi, Tetsuya; Takeuchi, Toshifumi; Sugawara, Fumio; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2013-08-01

    Low molecular weight (LMW) polyphenolics containing a polyhydroxylated benzyl moiety are abundant in medicinal plants. In the present study, we report on the activities of seven LMW polyphenolics isolated from Inonotus obliquus, a medicinal mushroom. The isolated compounds included caffeic acid (CA), 3,4-dihydroxybenzalacetone (DBL), gallic acid, syringic acid, protocatechuic acid, 3,4-dihydroxybenzaldehyde and 2,5-dihydroxyterephthalic acid. We analyzed their inhibitory effects on DNA polymerase (pol) and DNA topoisomerase (topo), and their effects on human cancer cell growth. All isolated compounds inhibited human topo II activity; the most potent were DBL and CA, which contain a catechol propanoid moiety. CA and DBL inhibited the activity of human topo I, whereas other compounds had no effect. No compound modulated the activities of 11 mammalian pol species or other DNA metabolic enzymes, including T7 RNA polymerase, mouse IMP dehydrogenase (type II), T4 polynucleotide kinase and bovine deoxyribonuclease I. CA and DBL markedly suppressed the proliferation of human colon HCT116 carcinoma cells with an LD50 of 70.0 and 49.4 µM, respectively, and halted the cell cycle in the G2/M phase. The suppressive effect of these compounds on cancer cell growth correlated with their ability to inhibit topo II. These results suggest that CA- and DBL-dependent decreases in cell proliferation are due to the inhibition of cellular topo II. The mechanism of action of these catechol propanoid compounds and the implication for their use as anticancer agents are discussed. PMID:23799608

  5. Synergistic Inhibitory Effect of Hyperbaric Oxygen Combined with Sorafenib on Hepatoma Cells

    PubMed Central

    Peng, Hai-Shan; Liao, Ming-Bin; Zhang, Mei-Yin; Xie, Yin; Xu, Li; Zhang, Yao-Jun; Zheng, X. F. Steven; Wang, Hui-Yun; Chen, Yi-Fei

    2014-01-01

    Objectives Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO) therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC) but effective in only a small portion of patients and can induce hypoxia. The purpose of this study is to investigate the effect of HBO in combination with sorafenib on hepatoma cells. Methods Hepatoma cell lines (BEL-7402 and SK-Hep1) were treated with HBO at 2 atmosphere absolute pressure for 80 min per day or combined with sorafenib or cisplatin. At different time points, cells were tested for cell growth, colony formation, apoptosis, cell cycle and migration. Finally, miRNA from the hepatoma cells was detected by microRNA array and validated by qRT-PCR. Results Although HBO, sorafenib or cisplatin alone could inhibit growth of hepatoma cells, HBO combined with sorafenib or cisplatin resulted in much greater synergistic growth inhibition (cell proliferation and colony formation) in hepatoma cells. Similarly, the synergistic effect of HBO and sorafenib on induction of apoptosis was also observed in hepatoma cells. HBO induced G1 arrest in SK-Hep1 not in BEL-7402 cells, but enhanced cell cycle arrest induced by sorafenib in BEL-7402 treated cells. However, HBO had no obvious effect on the migration of hepatoma cells, and microRNA array analysis showed that hepatoma cells with HBO treatment had significantly different microRNA expression profiles from those with blank control. Conclusions We show for the first time that HBO combined with sorafenib results in synergistic growth inhibition and apoptosis in hepatoma cells, suggesting a potential application of HBO combined with sorafenib in HCC patients. Additionally, we also show that HBO significantly altered microRNA expression in hepatoma cells

  6. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation.

    PubMed Central

    Bacher, M; Metz, C N; Calandra, T; Mayer, K; Chesney, J; Lohoff, M; Gemsa, D; Donnelly, T; Bucala, R

    1996-01-01

    The protein known as macrophage migration inhibitory factor (MIF) was one of the first cytokines to be discovered and was described 30 years ago to be a T-cell-derived factor that inhibited the random migration of macrophages in vitro. A much broader role for MIF has emerged recently as a result of studies that have demonstrated it to be released from the anterior pituitary gland in vivo. MIF also is the first protein that has been identified to be secreted from monocytes/macrophages upon glucocorticoid stimulation. Once released, MIF acts to "override" or counter-regulate the suppressive effects of glucocorticoids on macrophage cytokine production. We report herein that MIF plays an important regulatory role in the activation of T cells induced by mitogenic or antigenic stimuli. Activated T cells produce MIF and neutralizing anti-MIF antibodies inhibit T-cell proliferation and interleukin 2 production in vitro, and suppress antigen-driven T-cell activation and antibody production in vivo. T cells also release MIF in response to glucocorticoid stimulation and MIF acts to override glucocorticoid inhibition of T-cell proliferation and interleukin 2 and interferon gamma production. These studies indicate that MIF acts in concert with glucocorticoids to control T-cell activation and assign a previously unsuspected but critical role for MIF in antigen-specific immune responses. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8755565

  7. Progression of Lung Cancer Is Associated with Increased Dysfunction of T Cells Defined by Coexpression of Multiple Inhibitory Receptors.

    PubMed

    Thommen, Daniela S; Schreiner, Jens; Müller, Philipp; Herzig, Petra; Roller, Andreas; Belousov, Anton; Umana, Pablo; Pisa, Pavel; Klein, Christian; Bacac, Marina; Fischer, Ozana S; Moersig, Wolfgang; Savic Prince, Spasenija; Levitsky, Victor; Karanikas, Vaios; Lardinois, Didier; Zippelius, Alfred

    2015-12-01

    Dysfunctional T cells present in malignant lesions are characterized by a sustained and highly diverse expression of inhibitory receptors, also referred to as immune checkpoints. Yet, their relative functional significance in different cancer types remains incompletely understood. In this study, we provide a comprehensive characterization of the diversity and expression patterns of inhibitory receptors on tumor-infiltrating T cells from patients with non-small cell lung cancer. In spite of the large heterogeneity observed in the amount of PD-1, Tim-3, CTLA-4, LAG-3, and BTLA expressed on intratumoral CD8(+) T cells from 32 patients, a clear correlation was established between increased expression of these inhibitory coreceptors and progression of the disease. Notably, the latter was accompanied by a progressively impaired capacity of T cells to respond to polyclonal activation. Coexpression of several inhibitory receptors was gradually acquired, with early PD-1 and late LAG-3/BTLA expression. PD-1 blockade was able to restore T-cell function only in a subset of patients. A high percentage of PD-1(hi) T cells was correlated with poor restoration of T-cell function upon PD-1 blockade. Of note, PD-1(hi) expression marked a particularly dysfunctional T-cell subset characterized by coexpression of multiple inhibitory receptors and thus may assist in identifying patients likely to respond to inhibitory receptor-specific antibodies. Overall, these data may provide a framework for future personalized T-cell-based therapies aiming at restoration of tumor-infiltrating lymphocyte effector functions. PMID:26253731

  8. NK cells expressing inhibitory KIR for non-self-ligands remain tolerant in HLA-matched sibling stem cell transplantation.

    PubMed

    Björklund, Andreas T; Schaffer, Marie; Fauriat, Cyril; Ringdén, Olle; Remberger, Mats; Hammarstedt, Christina; Barrett, A John; Ljungman, Per; Ljunggren, Hans-Gustaf; Malmberg, Karl-Johan

    2010-04-01

    Natural killer (NK)-cell alloreactivity in recipients of hematopoietic stem cell grafts from HLA-identical siblings is intriguing and has suggested breaking of NK-cell tolerance during the posttransplantation period. To examine this possibility, we analyzed clinical outcomes in a cohort of 105 patients with myeloid malignancies who received T cell-replete grafts from HLA-matched sibling donors. Presence of inhibitory killer cell immunoglobulin-like receptors (KIRs) for nonself HLA class I ligands had no effect on disease-free survival, incidence of relapse, or graft-versus-host disease. A longitudinal analysis of the NK-cell repertoire and function revealed a global hyporesponsiveness of NK cells early after transplantation. Functional responses recovered at approximately 6 months after transplantation. Importantly, NKG2A(-) NK cells expressing KIRs for nonself HLA class I ligands remained tolerant at all time points. Furthermore, a direct comparison of NK-cell reconstitution in T cell-replete and T cell-depleted HLA-matched sibling stem cell transplantation (SCT) revealed that NKG2A(+) NK cells dominated the functional repertoire early after transplantation, with intact tolerance of NKG2A(-) NK cells expressing KIRs for nonself ligands in both settings. Our results provide evidence against the emergence of alloreactive NK cells in HLA-identical allogeneic SCT. PMID:20097883

  9. Inhibitory effects of H-Ras/Raf-1-binding affibody molecules on synovial cell function.

    PubMed

    Shibasaki, Seiji; Karasaki, Miki; Gräslund, Torbjörn; Nygren, Per-Åke; Sano, Hajime; Iwasaki, Tsuyoshi

    2014-12-01

    Affibody molecules specific for H-Ras and Raf-1 were evaluated for their ability to inhibit synovial cell function. Affibody molecules targeting H-Ras (Zras122, Zras220, and Zras521) or Raf-1 (Zraf322) were introduced into the MH7A synovial cell line using two delivery methods: transfection with plasmids encoding the affibody molecules or direct introduction of affibody protein using a cell-penetrating peptide reagent. Interleukin-6 (IL-6) and prostaglandin E2 (PGE2) production by MH7A cells were analyzed by enzyme-linked immunosorbent assay after stimulation with tumor necrosis factor-alpha (TNF-α). Cell proliferation was also analyzed. Phosphorylation of extracellular signal-regulated kinase (ERK) was analyzed by western blot. All affibody molecules could inhibit IL-6 and PGE2 production in TNF-α-stimulated MH7A cells. The inhibitory effect was stronger when affibody molecules were delivered as proteins via a cell-penetrating peptide reagent than when plasmid-DNA encoding the affibody moelcules was transfected into the cells. Plasmid-expressed Zras220 inhibited phosphorylation of ERK in TNF-α-stimulated MH7A cells. Protein-introduced Zraf322 inhibited the production of IL-6 and PGE2 and inhibited cell proliferation in MH7A cells. These findings suggest that affibody molecules specific for H-Ras and Raf-1 can affect intracellular signal transduction through the MAP kinase pathway to inhibit cell proliferation and production of inflammatory mediators by synovial cells. PMID:26267111

  10. Protein Tyrosine Phosphatase PTPRS Is an Inhibitory Receptor on Human and Murine Plasmacytoid Dendritic Cells.

    PubMed

    Bunin, Anna; Sisirak, Vanja; Ghosh, Hiyaa S; Grajkowska, Lucja T; Hou, Z Esther; Miron, Michelle; Yang, Cliff; Ceribelli, Michele; Uetani, Noriko; Chaperot, Laurence; Plumas, Joel; Hendriks, Wiljan; Tremblay, Michel L; Häcker, Hans; Staudt, Louis M; Green, Peter H; Bhagat, Govind; Reizis, Boris

    2015-08-18

    Plasmacytoid dendritic cells (pDCs) are primary producers of type I interferon (IFN) in response to viruses. The IFN-producing capacity of pDCs is regulated by specific inhibitory receptors, yet none of the known receptors are conserved in evolution. We report that within the human immune system, receptor protein tyrosine phosphatase sigma (PTPRS) is expressed specifically on pDCs. Surface PTPRS was rapidly downregulated after pDC activation, and only PTPRS(-) pDCs produced IFN-α. Antibody-mediated PTPRS crosslinking inhibited pDC activation, whereas PTPRS knockdown enhanced IFN response in a pDC cell line. Similarly, murine Ptprs and the homologous receptor phosphatase Ptprf were specifically co-expressed in murine pDCs. Haplodeficiency or DC-specific deletion of Ptprs on Ptprf-deficient background were associated with enhanced IFN response of pDCs, leukocyte infiltration in the intestine and mild colitis. Thus, PTPRS represents an evolutionarily conserved pDC-specific inhibitory receptor, and is required to prevent spontaneous IFN production and immune-mediated intestinal inflammation. PMID:26231120