Sample records for cell lines hct-116

  1. Resistin and Visfatin Expression in HCT-116 Colorectal Cancer Cell Line

    PubMed Central

    Ghaemmaghami, Sara; Mohaddes, Seyed Mojtaba; Hedayati, Mehdi; Gorgian Mohammadi, Masumeh; Dehbashi, Golnoosh

    2013-01-01

    Adipocytokines, hormones secreted from adipose tissue, have been shown to be associated with many cancers such as breast, prostate and colorectal cancer. Recent studies have indicated that resistin and visfatin, two of these adipokines have high level plasma concentrations in colorectal cancer patients and may be promising biomarkers for colorectal cancer. The aim of this study was to identify whether the colorectal cancer cell line, HCT-116, itself is the source of these two adipokines secretion. Resistin and visfatin expression were investigated in HCT-116 by RT – PCR at mRNA level and confirmed by ELISA at protein level. Visfatin showed a high expression at both mRNA and protein levels in HCT-116. Conversely, resistin was not expressed in either cell lysate or supernatant. These results showed that HCT-116 colorectal cancer cells secrete and express visfatin endogenously. However, they are not the main source of resistin and the high level of resistin in colorectal cancer may be due to monocytes and other inflammatory cells which increase in proinflammation status of cancer. Taken together, visfatin may act on colorectal cancer cell in an autocrine manner while resistin may act in a paracrine manner. PMID:24551805

  2. Resistin and Visfatin Expression in HCT-116 Colorectal Cancer Cell Line.

    PubMed

    Ghaemmaghami, Sara; Mohaddes, Seyed Mojtaba; Hedayati, Mehdi; Gorgian Mohammadi, Masumeh; Dehbashi, Golnoosh

    2013-01-01

    Adipocytokines, hormones secreted from adipose tissue, have been shown to be associated with many cancers such as breast, prostate and colorectal cancer. Recent studies have indicated that resistin and visfatin, two of these adipokines have high level plasma concentrations in colorectal cancer patients and may be promising biomarkers for colorectal cancer. The aim of this study was to identify whether the colorectal cancer cell line, HCT-116, itself is the source of these two adipokines secretion. Resistin and visfatin expression were investigated in HCT-116 by RT - PCR at mRNA level and confirmed by ELISA at protein level. Visfatin showed a high expression at both mRNA and protein levels in HCT-116. Conversely, resistin was not expressed in either cell lysate or supernatant. These results showed that HCT-116 colorectal cancer cells secrete and express visfatin endogenously. However, they are not the main source of resistin and the high level of resistin in colorectal cancer may be due to monocytes and other inflammatory cells which increase in proinflammation status of cancer. Taken together, visfatin may act on colorectal cancer cell in an autocrine manner while resistin may act in a paracrine manner. PMID:24551805

  3. Changes in Subcellular Localization of Visfatin in Human Colorectal HCT-116 Carcinoma cell Line After Cytochalasin-B Treatment

    PubMed Central

    Skonieczna, M.; Bu?dak, ?; Matysiak, N.; Miela?czyk, ?; Wyrobiec, G.; Kukla, M.; Michalski, M.; ?wirska-Korczala, K.

    2014-01-01

    The aim of the study was to assess the expression and subcellular localization of visfatin in HCT-116 colorectal carcinoma cells after cytokinesis failure using Cytochalasin B (CytB) and the mechanism of apoptosis of cells after CytB. We observed translocation of visfatin’s antigen in cytB treated colorectal carcinoma HCT-116 cells from cytosol to nucleus. Statistical and morphometric analysis revealed significantly higher area-related numerical density visfatin-bound nano-golds in the nuclei of cytB-treated HCT-116 cells compared to cytosol. Reverse relation to visfatin subcellular localization was observed in un-treated HCT-116 cells. The total amount of visfatin protein and visfatin mRNA level in HCT-116 cells was also decreased after CytB treatment. Additionally, CytB significantly decreased cell survival, increased levels of G2/M fractions, induced bi-nuclei formation as well as increased reactive oxygen species (ROS) level in HCT-116 cells. CytB treatment showed cytotoxic effect that stem from oxidative stress and is connected with the changes in the cytoplasmic/nuclear amount of visfatin in HCT-116 cells. PMID:25308845

  4. Sclareol induces apoptosis in human HCT116 colon cancer cells in vitro and suppression of HCT116 tumor growth in immunodeficient mice

    Microsoft Academic Search

    Konstantinos Dimas; Sophia Hatziantoniou; Sophia Tseleni; Humaira Khan; Aristidis Georgopoulos; Konstantinos Alevizopoulos; James H. Wyche; Panayotis Pantazis; Costas Demetzos

    2007-01-01

    Labd-14-ene-8, 13-diol (sclareol) is a labdane-type diterpene, which has demonstrated significant cytotoxic activity against\\u000a human leukemic cell lines, but its effect on solid tumor-derived cells is uknown. Here, we demonstrate that addition of sclareol\\u000a to cultures of human colon cancer HCT116 cells results in inhibition of DNA synthesis, arrest of cells at the G1 phase of the cell cycle, activation

  5. Effects of ghrelin, leptin and melatonin on the levels of reactive oxygen species, antioxidant enzyme activity and viability of the HCT 116 human colorectal carcinoma cell line.

    PubMed

    Bu?dak, Rafa? Jakub; Pilc-Gumu?a, Katarzyna; Bu?dak, ?ukasz; Witkowska, Daria; Kukla, Micha?; Polaniak, Renata; Zwirska-Korczala, Krystyna

    2015-08-01

    Obesity is associated with an increased risk of certain types of cancer, including colon cancer. Adipose tissue is an endocrine organ that produces biologically active substances, such as leptin and ghrelin. Recent research has suggested that adipose?derived hormones may be associated with mechanisms linked to tumorigenesis and cancer progression. Furthermore, previous studies have demonstrated that pineal gland?derived melatonin possesses important oncostatic and antioxidant properties. The present study aimed to determine the effects of the adipokines ghrelin and leptin, and the melatonin on intracellular levels of reactive oxygen species (ROS) and the activity of selected antioxidant enzymes, such as superoxide dismutase, catalase (CAT) and glutathione peroxidase. The effects of these compounds were also determined on the viability of HCT 116 human colorectal carcinoma cells in vitro. The pro?oxidant and growth inhibitory effects of melatonin resulted in an accumulation of ROS and decreased antioxidant capacity in melatonin?treated cells. Ghrelin administration alone caused a significant decrease in the levels of ROS, due to an increased activity of CAT in the HCT 116 cells. In addition, the present study observed increased lipid peroxidation following melatonin treatment, and decreased levels of malondialdehyde following ghrelin or leptin treatment. In conclusion, ghrelin, leptin and melatonin have various influences on the antioxidant capacity of HCT 116 cells. Compared with the adipokines, treatment with melatonin increased ROS levels and decreased cellular viability. PMID:25873273

  6. Structural Properties of Polyphenols Causing Cell Cycle Arrest at G1 Phase in HCT116 Human Colorectal Cancer Cell Lines

    PubMed Central

    Shin, Soon Young; Yoon, Hyuk; Ahn, Seunghyun; Kim, Dong-Wook; Bae, Dong-Ho; Koh, Dongsoo; Lee, Young Han; Lim, Yoongho

    2013-01-01

    Plant-derived polyphenols are being tested as chemopreventive agents; some polyphenols arrest the cell cycle at G1 phase, whereas others inhibit cell cycle proliferation at G2/M phase. Therefore, polyphenols have been proposed to inhibit cell cycle progression at different phases via distinct mechanisms. Indeed, our previous studies showed that small structural differences in polyphenols cause large differences in their biological activities; however, the details of the structural properties causing G1 cell cycle arrest remain unknown. In this study, we prepared 27 polyphenols, including eight different scaffolds, to gain insight into the structural conditions that arrest the cell cycle at G1 phase in a quantitative structure–activity relationship study. We used cell cycle profiles to determine the biophores responsible for G1 cell cycle arrest and believe that the biophores identified in this study will help design polyphenols that cause G1 cell cycle arrest. PMID:23965967

  7. Cardamonin induces autophagy and an antiproliferative effect through JNK activation in human colorectal carcinoma HCT116 cells.

    PubMed

    Kim, Young-Joo; Kang, Ki Sung; Choi, Kyung-Chul; Ko, Hyeonseok

    2015-06-15

    Cardamonin (2',4'-dihydroxy-6'-methoxychalcone) is derived from Alpinia katsumadai Hayata (Zingiberaceae), a plant that has been used in Traditional Chinese Medicine for thousands of years. Several anticancer agents have been reported to induce autophagy, which either protects cells or further sensitizes cells to drug treatment. However, the possible autophagic and antiproliferative effects of cardamonin on the human colorectal carcinoma HCT116 cell line are unclear. In the present study, experiments were conducted to determine the effects of cardamonin on cell proliferation, cell cycle distribution, and stimulation of autophagy in cultures of the HCT116 cell line. The results showed that cardamonin inhibited cell proliferation, induced G2/M phase cell cycle arrest, and enhanced autophagy in HCT116 cells. We found evidence that cardamonin-induced autophagic and antiproliferative effects are regulated by the tumor protein p53. We also found that the enhanced activation of c-Jun N-terminal kinase (JNK) by cardamonin was partially regulated by p53 and was critical for cardamonin-induced autophagic and antiproliferative effects in HCT116 cells. These findings suggest that cardamonin or other anticancer agents that increase p53/JNK-dependent stimulation of autophagy could be used to effectively treat patients with colorectal carcinoma. PMID:25959811

  8. Regulation of NF-kappaB responses by epigenetic suppression of IkappaBalpha expression in HCT116 intestinal epithelial cells.

    PubMed

    O'Gorman, Angela; Colleran, Amy; Ryan, Aideen; Mann, Jelena; Egan, Laurence John

    2010-07-01

    Intestinal epithelial cells play critical roles in regulating mucosal immunity. Since epigenetic factors such as DNA methylation and histone modifications are implicated in aging, carcinogenesis, and immunity, we set out to assess any role for epigenetic factors in the regulation of intestinal epithelial cell immune responses. Experiments were conducted using the HCT116 cell line, and a subclone was genetically engineered to lack DNA methyltransferases (DNMT). The induction of the chemokine interleukin-8 and the antiapoptotic protein cFLIP by tumor necrosis factor-alpha were markedly less in HCT116 cells lacking DNMT than in parental cells. These effects were accompanied by lower monocyte chemotaxis and higher caspase signaling in HCT116 cells lacking DNMT than parental cells. Tumor necrosis factor-alpha-induced NF-kappaB activation was blocked and IkappaBalpha expression was higher in HCT116 cells lacking DNMT than in parental cells. A CpG island in the IkappaBalpha gene promoter region was found to contain variable levels of methylation in parental HCT116 cells. Chromatin immunoprecipitation analysis of histone proteins bound to the IkappaBalpha gene promoter revealed that higher levels of IkappaBalpha expression in HCT116 cells lacking DNMT compared with parental cells were accompanied by more chromatin marks permissive to gene transcription. These findings show that epigenetic factors influence the NF-kappaB system in intestinal epithelial cells, resulting in a previously unrecognized mechanism of innate immune regulation. PMID:20378831

  9. 6-Acetonyldihydrochelerythrine Is a Potent Inducer of Apoptosis in HCT116 and SW620 Colon Cancer Cells.

    PubMed

    Mansoor, Tayyab A; Borralho, Pedro M; Luo, Xuan; Mulhovo, Silva; Rodrigues, Cecília M P; Ferreira, Maria-José U

    2014-07-28

    6-Acetonyldihydrochelerythrine (1), a benzophenanthridine alkaloid, isolated from the methanol extract of Zanthoxylum capense, displayed potent cytotoxic activity in human HCT116 and SW620 colon carcinoma cells, to a higher extent than 5-fluorouracil (5-FU), the cornerstone chemotherapeutic agent in colon cancer. Cytotoxicity of 1 was evaluated by MTS, lactate dehydrogenase (LDH), and Guava ViaCount assays. Interestingly, 1 significantly induced cytotoxicity in both cell lines, leading to a significant increase in LDH release, as compared to 5-FU. Further, Guava ViaCount flow cytometry assays demonstrated that 1 significantly increased cell death, as shown by the presence of a significantly higher population of apoptotic cells in both cell lines, as compared to cells exposed to 5-FU. Furthermore, evaluation of nuclear morphology by Hoechst staining of 1-treated HCT116 and SW620 cells confirmed flow cytometry results, demonstrating a marked induction of apoptotic cell death by 1, again to a further extent than that elicited by 5-FU. In addition, immunoblot analysis to ascertain the molecular events triggered by 1 exposure was performed. The results show that 1 exposure reduced the steady-state expression and activation of the pro-survival proteins ERK5 and Akt and increased the steady-state expression of p53 in both HCT116 and SW620 cells. Changes in ERK5 or Akt activation can be ascertained by evaluating the ratio of p-ERK5/ERK5 or p-Akt/Akt. In addition, exposure to 1 reduced expression of XIAP, Bcl-XL, and Bcl-2, while increasing the cleavage of poly(ADP-ribose) polymerase in both cell lines. Collectively, the data indicate that 6-acetonyldihydrochelerythrine (1) is a potent inducer of apoptosis in HCT116 and SW620 cell lines, highlighting its potential relevance in colon cancer. PMID:25066282

  10. Induction of apoptosis in HCT-116 colon cancer cells by polysaccharide of Larimichthys crocea swim bladder

    PubMed Central

    SUO, HUAYI; SONG, JIA-LE; ZHOU, YALIN; LIU, ZHENHU; YI, RUOKUN; ZHU, KAI; XIE, JIE; ZHAO, XIN

    2015-01-01

    Larimichthys crocea swim bladder is a traditional food and medicine widely used in China. The in vitro anticancer effects of polysaccharide of L. crocea swim bladder (PLCSB) in HCT-116 human colon cancer cells was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. At concentrations ranging between 0 and 800 ?g/ml PLCSB, cancer cell viability was decreased by PLCSB in a concentration-dependent manner. In particular, 400 ?g/ml PLCSB significantly (P<0.05) induced apoptosis, which was demonstrated by 4,6-diamidino-2-phenylindole staining and flow cytometry analysis. To elucidate the mechanisms underlying the anticancer effect of PLCSB in HCT-116 cancer cells, the expression of apoptosis and metastasis-associated genes was analyzed by reverse transcription-polymerase chain reaction and western blot analysis. A total of 400 ?g/ml PLCSB significantly induced apoptosis in HCT-116 cells (P<0.05) via the upregulation Bax, p53, p21, apoptotic protease activating factor 1, caspase-3, -8, and -9, as well as Fas and the downregulation of B-cell lymphoma 2 (Bcl-2), Bcl-extra large and Fas ligand (L). The results of this study demonstrated that PLCSB exhibits an anticancer effect on HCT-116 colon cancer cells, in vitro. PMID:25624917

  11. NCI60 Cancer Cell Line Panel Data and RNAi Analysis Help Identify EAF2 as a Modulator of Simvastatin and Lovastatin Response in HCT116 Cells

    Microsoft Academic Search

    Sevtap Savas; David O. Azorsa; Hamdi Jarjanazi; Irada Ibrahim-Zada; Irma M. Gonzales; Shilpi Arora; Meredith C. Henderson; Yun Hee Choi; Laurent Briollais; Hilmi Ozcelik; Sukru Tuzmen; Eric Bernhard

    2011-01-01

    Simvastatin and lovastatin are statins traditionally used for lowering serum cholesterol levels. However, there exists evidence indicating their potential chemotherapeutic characteristics in cancer. In this study, we used bioinformatic analysis of publicly available data in order to systematically identify the genes involved in resistance to cytotoxic effects of these two drugs in the NCI60 cell line panel. We used the

  12. p21{sup WAF1/CIP1} deficiency induces mitochondrial dysfunction in HCT116 colon cancer cells

    SciTech Connect

    Kim, Ae Jeong; Jee, Hye Jin; Song, Naree; Kim, Minjee [Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of) [Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of); Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan (Korea, Republic of); Jeong, Seon-Young [Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan (Korea, Republic of) [Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan (Korea, Republic of); Department of Medical Genetics, Ajou University School of Medicine (Korea, Republic of); Yun, Jeanho, E-mail: yunj@dau.ac.kr [Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of) [Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of); Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer p21{sup -/-} HCT116 cells exhibited an increase in mitochondrial mass. Black-Right-Pointing-Pointer The expression levels of PGC-1{alpha} and AMPK were upregulated in p21{sup -/-} HCT116 cells. Black-Right-Pointing-Pointer The proliferation of p21{sup -/-} HCT116 cells in galactose medium was significantly impaired. Black-Right-Pointing-Pointer p21 may play a role in maintaining proper mitochondrial mass and respiratory function. -- Abstract: p21{sup WAF1/CIP1} is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found that there was a significant increase in the mitochondrial mass of p21{sup -/-} HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53{sup -/-} cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1{alpha} and TFAM and AMPK activity were also elevated in p21{sup -/-} cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1{alpha} axis. However, the increase in mitochondrial biogenesis in p21{sup -/-} cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21{sup -/-} cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function.

  13. Apoptosis inducing activity of benzophenanthridine-type alkaloids and 2-arylbenzofuran neolignans in HCT116 colon carcinoma cells.

    PubMed

    Mansoor, Tayyab A; Borralho, Pedro M; Luo, Xuan; Mulhovo, Silva; Rodrigues, Cecília M P; Ferreira, Maria-José U

    2013-07-15

    Thirteen compounds belonging to different classes of alkaloids (1-9) and lignans (10-13), isolated from the methanol extract of roots of the African medicinal plant Zanthoxylum capense, were assayed for their ability as apoptosis inducers in HCT116 colon carcinoma cells. The cytotoxicity of these compounds was evaluated in HCT116 colon carcinoma cells by the MTS assay. Out of the tested compounds, three benzophenanthridine alkaloids (1, 4, and 7), a dibenzyl butyrolactone lignan (10), and two 2-arylbenzofuran neolignans (12 and 13) displayed significant cytotoxicity to HCT116 cells, confirmed by the Guava ViaCount viability assay. The selected compounds (1, 4, 7, 10, 12, and 13) were further tested for apoptosis induction activity in HCT116 cells, by evaluation of nuclear morphology following Hoechst staining, and by caspase-3 like activity assays. Morphologic evaluation of HCT116 nuclei following Hoechst staining and fluorescence microscopy revealed that compounds 1, 4, 7, 10, 12, and 13 induced apoptosis in HCT116 colon carcinoma cells, producing similar, or higher, apoptosis levels when compared with 5-fluorouracil (5-FU), the cornerstone cytotoxic used in colon cancer treatment for several decades. In fact, HCT116 cells developed morphological changes characteristic of apoptosis, including chromatin condensation, nuclear fragmentation and formation of apoptotic bodies. Importantly, compounds 4 and 13 at 20 ?M were the most promising in this study, inducing respectively ?11- and 7-fold increases in apoptotic cells as compared to vehicle control, whereas 5-FU increased apoptosis by ?2-fold. Apoptosis induction for compounds 4 and 13 was further confirmed by caspase-3-like activity assays, which showed respectively ?2- and 1.5-fold increases in caspase-3-like activity compared to vehicle control. These results suggested that specific benzophenanthridine alkaloids and 2-arylbenzofuran neolignans isolated from Zanthoxylum capense show strong anticancer activity in HCT116 colon carcinoma cells. PMID:23643093

  14. Balsalazide Potentiates Parthenolide-Mediated Inhibition of Nuclear Factor-?B Signaling in HCT116 Human Colorectal Cancer Cells

    PubMed Central

    Kim, Hyun-Young; Kim, Se-Lim; Park, Young-Ran; Liu, Yu-Chuan; Seo, Seung Young; Kim, Seong Hun; Kim, In Hee; Lee, Seung Ok; Lee, Soo Teik

    2015-01-01

    Background/Aims Balsalazide is an anti-inflammatory drug used in the treatment of inflammatory bowel disease. Balsalazide can reduce inflammatory responses via several mechanisms, including inhibition of nuclear factor-?B (NF-?B) activity. Parthenolide (PT) inhibits NF-?B and exerts promising anticancer effects by promoting apoptosis. The present investigated the antitumor effects of balsalazide, combined with PT, on NF-?B in a representative human colorectal carcinoma cell line, HCT116. Methods We counted cells and conducted annexin-V assays and cell cycle analysis to measure apoptotic cell death. Western blotting was used investigate the levels of proteins involved in apoptosis. Results PT and balsalazide produced synergistic anti-proliferative effects and induced apoptotic cell death. The combination of balsalazide and PT markedly suppressed nuclear translocation of the NF-?B p65 subunit and the phosphorylation of inhibitor of NF-?B. Moreover, PT and balsalazide dramatically enhanced NF-?B p65 phosphorylation. Apoptosis, through the mitochondrial pathway, was confirmed by detecting effects on Bcl-2 family members, cytochrome c release, and activation of caspase-3 and -8. Conclusions Combination treatment with PT and balsalazide may offer an effective strategy for the induction of apoptosis in HCT116 cells. PMID:26130998

  15. Knockdown of Slug by RNAi inhibits the proliferation and invasion of HCT116 colorectal cancer cells.

    PubMed

    Qian, Jiang; Liu, Hong; Chen, Wangsheng; Wen, Kunming; Lu, Weidong; Huang, Chun; Fu, Zhongxue

    2013-10-01

    Colorectal cancer is one of the most common alimentary malignancies. Slug has been shown to be an ideal target for cancer gene therapy by numerous studies due to its strong anti?apoptotic effect. The elevated expression of Slug is a frequent genetic abnormality observed in colorectal cancer. In the present study, a Slug short hairpin RNA (shRNA) expression vector that was able to efficiently inhibit the expression of Slug in HCT116 cells was prepared. Following transfection, the mRNA expression levels were detected by RT?PCR analysis. Western blotting detected a similar inhibition of the Slug protein levels in the cells transfected with the pGCsi?Slug plasmid. Downregulation of Slug resulted in a significant inhibition of cancer cell growth in vitro. Cell invasion and apoptosis were decreased concomitantly with the reduction in Slug protein expression. These results suggested that RNA interference (RNAi) was able to downregulate the Slug protein level in HCT116 cells and significantly inhibit tumor growth in vitro. These findings suggest that RNAi has therapeutic potential for the treatment of colorectal cancer, as well as other types of cancer, by targeting the overexpression of oncogenes, including Slug. PMID:23900394

  16. Stereospecific ligands and their complexes. Part XII. Synthesis, characterization and in vitro antiproliferative activity of platinum(IV) complexes with some O,O?-dialkyl esters of (S,S)-ethylenediamine-N,N?-di-2-propanoic acid against colon cancer (HCT-116) and breast cancer (MDA-MB-231) cell lines

    NASA Astrophysics Data System (ADS)

    Stojkovi?, Danijela Lj.; Jevti?, Verica V.; Radi?, Gordana P.; ?a?i?, Dragana S.; ?ur?i?, Milena G.; Markovi?, Snežana D.; Đinovi?, Vesna M.; Petrovi?, Vladimir P.; Trifunovi?, Sre?ko R.

    2014-03-01

    Synthesis of three new platinum(IV) complexes C1-C3, with bidentate N,N?-ligand precursors, O,O?-dialkyl esters (alkyl = propyl, butyl and pentyl), of (S,S)-ethylenediamine-N,N?-di-2-propanoic acid, H2-S,S-eddp were reported. The reported platinum(IV) complexes characterized by elemental analysis and their structures were discussed on the bases of their infrared, 1H and 13C NMR spectroscopy. In vitro antiproliferative activity was determined on tumor cell lines: human colon carcinoma HCT-116 and human breast carcinoma MDA-MB-231, using MTT test.

  17. Dibenzocyclooctadiene lignans, gomisins J and N inhibit the Wnt/{beta}-catenin signaling pathway in HCT116 cells

    SciTech Connect

    Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye; Lee, Hee Ju [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of)] [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); Kim, Chul Young [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of) [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); College of Pharmacy, Hanyang University, Ansan 426-791 (Korea, Republic of); Nho, Chu Won, E-mail: cwnho@kist.re.kr [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of)

    2012-11-16

    Graphical abstract: Schematic diagram of the possible molecular mechanism underlying the inhibition of the Wnt/{beta}-catenin signaling pathway and the induction of G0/G1-phase arrest by gomisins J and N, derived from the fruits of S. chinensis, in HCT116 human colon cancer cells. Highlights: Black-Right-Pointing-Pointer Gomisins J and N inhibited Wnt/{beta}-catenin signaling pathway in HCT116 cells. Black-Right-Pointing-Pointer Gomisins J and N disrupted the binding of {beta}-catenin to specific DNA sequences, TBE. Black-Right-Pointing-Pointer Gomisins J and N inhibited the HCT116 cell proliferation through G0/G1 phase arrest. Black-Right-Pointing-Pointer Gomisins J and N inhibited the expression of Cyc D1, a Wnt/{beta}-catenin target gene. -- Abstract: Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/{beta}-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/{beta}-catenin signaling by disrupting the interaction between {beta}-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the {beta}-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/{beta}-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/{beta}-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.

  18. Xanthorrhizol, a natural sesquiterpenoid, induces apoptosis and growth arrest in HCT116 human colon cancer cells.

    PubMed

    Kang, You-Jin; Park, Kwang-Kyun; Chung, Won-Yoon; Hwang, Jae-Kwan; Lee, Sang Kook

    2009-11-01

    Xanthorrhizol is a sesquiterpenoid from the rhizome of Curcuma xanthorrhiza. In our previous studies, xanthorrhizol suppressed cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, inhibited cancer cell growth, and exerted an anti-metastatic effect in an animal model. However, the exact mechanisms for its inhibitory effects against cancer cell growth have not yet been fully elucidated. In the present study, we investigated the growth inhibitory effect of xanthorrhizol on cancer cells. Xanthorrhizol dose-dependently exerted antiproliferative effects against HCT116 human colon cancer cells. Xanthorrhizol also arrested cell cycle progression in the G0/G1 and G2/M phase and induced the increase of sub-G1 peaks. Cell cycle arrest was highly correlated with the downregulation of cyclin A, cyclin B1, and cyclin D1; cyclin-dependent kinase 1 (CDK1), CDK2, and CDK4; proliferating cell nuclear antigen; and inductions of p21 and p27, cyclin-dependent kinase inhibitors. The apoptosis by xanthorrhizol was markedly evidenced by induction of DNA fragmentation, release of cytochrome c, activation of caspases, and cleavage of poly-(ADP-ribose) polymerase. In addition, xanthorrhizol increased the expression and promoter activity of pro-apoptotic non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1). These findings provide one plausible mechanism for the growth inhibitory activity of xanthorrhizol against cancer cells. PMID:19926935

  19. Anticancer Activity of MPT0E028, a Novel Potent Histone Deacetylase Inhibitor, in Human Colorectal Cancer HCT116 Cells In Vitro and In Vivo

    PubMed Central

    Tsai, An-Chi; Peng, Chieh-Yu; Lai, Mei-Jung; Wang, Jing-Chi; Pan, Shiow-Lin; Teng, Che-Ming; Liou, Jing-Ping

    2012-01-01

    Recently, histone deacetylase (HDAC) inhibitors have emerged as a promising class of drugs for treatment of cancers, especially subcutaneous T-cell lymphoma. In this study, we demonstrated that MPT0E028, a novel N-hydroxyacrylamide-derived HDAC inhibitor, inhibited human colorectal cancer HCT116 cell growth in vitro and in vivo. The results of NCI-60 screening showed that MPT0E028 inhibited proliferation in both solid and hematological tumor cell lines at micromolar concentrations, and was especially potent in HCT116 cells. MPT0E028 had a stronger apoptotic activity and inhibited HDACs activity more potently than SAHA, the first therapeutic HDAC inhibitor proved by FDA. In vivo murine model, the growth of HCT116 tumor xenograft was delayed and inhibited after treatment with MPT0E028 in a dose-dependent manner. Based on in vivo study, MPT0E028 showed stronger anti-cancer efficacy than SAHA. No significant body weight difference or other adverse effects were observed in both MPT0E028-and SAHA-treated groups. Taken together, our results demonstrate that MPT0E028 has several properties and is potential as a promising anti-cancer therapeutic drug. PMID:22928010

  20. Aloperine induces G2/M phase cell cycle arrest and apoptosis in HCT116 human colon cancer cells.

    PubMed

    Zhang, Li; Zheng, Yanxin; Deng, Hongzhu; Liang, Lei; Peng, Juan

    2014-06-01

    Aloperine (ALO) is a quinolizidine alkaloid extracted from the leaves of Sophora alopecuroides (S. alopecuroides) and possesses anti-inflammatory, anti-allergenic, antitumor, and antiviral effects. In this study, when compared with seven other types of alkaloids extracted from S. alopecuroides, ALO treatment produced the most potent effects against HCT116 colon cancer cell types. ALO inhibited proliferation and induced apoptosis in HCT116 cells in a dose- and time-dependent manner as detected by MTT, clonogenic survival, and flow cytometric assays. Results of the western blot analysis and qPCR revealed that ALO increased the protein and mRNA of Bax and decreased Bcl-2 via the mitochondrial death pathway. In addition, ALO induced cell cycle arrest at the G2/M phase with a concomitant increase in p21 and p53 and a decrease in cyclin D1 and B1. ALO also inhibited phosphatidylinositol 3-kinase/Akt and JAK/Stat3. Generally, ALO exerted a significant anti-proliferative effect via apoptotic and cell cycle arrest induction in HCT116 cells. These results suggested that ALO should be investigated further as an agent of chemotherapeutic activity in human colon cancer. PMID:24682388

  1. Preclinical Study of Treatment Response in HCT-116 Cells and Xenografts with 1H-decoupled 31P MRS

    PubMed Central

    Darpolor, Moses M.; Kennealey, Peter T.; Carl Le, H; Zakian, Kristen L.; Ackerstaff, Ellen; Rizwan, Asif; Chen, Jin-Hong; Sambol, Elliot B.; Schwartz, Gary K.; Singer, Samuel; Koutcher, Jason A.

    2011-01-01

    The topoisomerase I inhibitor, irinotecan, and its active metabolite SN-38 have been shown to induce G2/M cell cycle arrest without significant cell death in human colon carcinoma cells (HCT-116). Subsequent treatment of these G2/M-arrested cells with the cyclin-dependent kinase inhibitor, flavopiridol, induced these cells to undergo apoptosis. The goal of this study was to develop a noninvasive metabolic biomarker for early tumor response and target inhibition of irinotecan followed by flavopiridol treatment in a longitudinal study. A total of eleven mice bearing HCT-116 xenografts were separated into two cohorts where one cohort was administered saline and the other treated with a sequential course of irinotecan followed by flavopiridol. Each mouse xenograft was longitudinally monitored with proton (1H)-decoupled phosphorus (31P) magnetic resonance spectroscopy (MRS) before and after treatment. A statistically significant decrease in phosphocholine (p = 0.0004) and inorganic phosphate (p = 0.0103) levels were observed in HCT-116 xenografts following treatment, which were evidenced within twenty-four hours of treatment completion. Also, a significant growth delay was found in treated xenografts. To discern the underlying mechanism for the treatment response of the xenografts, in vitro HCT-116 cell cultures were investigated with enzymatic assays, cell cycle analysis, and apoptotic assays. Flavopiridol had a direct effect on choline kinase as measured by a 67% reduction in the phosphorylation of choline to phosphocholine. Cells treated with SN-38 alone underwent 83±5% G2/M cell cycle arrest compared to untreated cells. In cells, flavopiridol alone induced 5±1% apoptosis while the sequential treatment (SN-38 then flavopiridol) resulted in 39±10% apoptosis. In vivo 1H-decoupled 31P MRS indirectly measures choline kinase activity. The decrease in phosphocholine may be a potential indicator of early tumor response to the sequential treatment of irinotecan followed by flavopiridol in noninvasive and/or longitudinal studies. PMID:21994185

  2. Mild hyperthermia prior to electroporation increases transfection efficiency in HCT 116, HeLa S3 and SGC 7901 cells

    Microsoft Academic Search

    Zheng-Li Wei; Ryohei Ogawa; Ichiro Takasaki; Qing-Li Zhao; Hua-Chuan Zheng; Kanwal Ahmed; Mariame A. Hassan; Takashi Kondo

    2010-01-01

    The change in transfection efficiency of electroporation by the combined treatment with mild preheating (40°C for 30 min)\\u000a was investigated. HCT 116, HeLa S3 and SGC 7901 cells were treated with electroporation in medium containing pBKCMV-Luc plasmid\\u000a with or without preheating. After 24 h, luciferase activity was increased by 36, 28 and 77%; luciferase mRNA transcription\\u000a was increased by 45, 50 and

  3. Antiproliferative activity of O4-benzo[c]phenanthridine alkaloids against HCT-116 and HL-60 tumor cells.

    PubMed

    Hatae, Noriyuki; Fujita, Erina; Shigenobu, Saori; Shimoyama, Sayumi; Ishihara, Yuhsuke; Kurata, Yuhki; Choshi, Tominari; Nishiyama, Takashi; Okada, Chiaki; Hibino, Satoshi

    2015-07-15

    The O4-benzo[c]phenanthridine alkaloids exhibit potent antiproliferative activity against cancer cells, which is derived from their ability to inhibit of topoisomerase I and II. It has been reported that in the alkaloids a cationic quaternary ammonium atom, which results in resonance effects between ring A and B, is necessary for increased antiproliferative activity. These findings indicate the role of their substituents at ring A on inhibition of tumor cell proliferation. In the present study, we systematically assessed the cytotoxic activities of naturally occurring alkaloids and their derivatives containing various ring A substituents against two tumor cell lines, HCT-116 colon tumor cells and HL-60 promyelocytic leukemia cells. Among the cationic iminium alkaloids, which displayed more potent activity than the corresponding neutral derivatives, and the 7,8-oxygenated benzo[c]phenanthridine alkaloids, chelerythrine and NK109, exhibited stronger antiproliferative activity than the 8,9- and 9,10-oxygenated alkaloids. The activity of cationic iminium alkaloids could be correlated with the bond lengths of their ring A substituents and the electrostatic potentials of their ammonium molecules by DFT calculation. PMID:26026362

  4. Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells.

    PubMed

    Zeng, Huawei; Trujillo, Olivia N; Moyer, Mary P; Botnen, James H

    2011-01-01

    Sulforaphane (SFN) is a naturally occurring chemopreventive agent; the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon cancer and normal cells. In this study, we demonstrated that SFN (15 ?mol/L) exposure (72 h) inhibited cell proliferation by up to 95% in colon cancer cells (HCT116) and by 52% in normal colon mucosa-derived (NCM460) cells. Our data also showed that SFN exposure (5 and 10 ?mol/L) led to the reduction of G1 phase cell distribution and an induction of apoptosis in HCT116 cells, but to a much lesser extent in NCM460 cells. Furthermore, the examination of mitogen-activated protein kinase (MAPK) signaling status revealed that SFN upregulated the phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2) in NCM460 cells but not in HCT116 cells. In contrast, SFN enhanced the phosphorylation of stress-activated protein kinase (SAPK) and decreased cellular myelocytomatosis oncogene (c-Myc) expression in HCT116 cells but not NCM460 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic signaling in HCT116 cells may play a critical role in SFN's stronger potential of inhibiting cell proliferation in colon cancer cells than in normal colon cells. PMID:21271458

  5. Expression profiling of choline and ethanolamine kinases in MCF7, HCT116 and HepG2 cells, and the transcriptional regulation by epigenetic modification.

    PubMed

    Ling, Chua Siang; Yin, Khoo Boon; Cun, See Too Wei; Ling, Few Ling

    2015-01-01

    The function of choline kinase (CK) and ethanolamine kinase (EK) is to catalyse the phosphorylation of choline and ethanolamine, respectively, in order to yield phosphocholine (PCho) and phosphoethanolamine (PEtn). A high expression level of PCho, due to elevated CK activity, has previously been associated with malignant transformation. In the present study, a quantitative polymerase chain reaction was performed to determine the mRNA expression profiles of ck and ek mRNA variants in MCF7 breast, HCT116 colon and HepG2 liver cancer cells. The ck and ek mRNA expression profiles showed that total ck? was expressed most abundantly in the HepG2 cells. The HCT116 cells exhibited the highest ck? and ek1 mRNA expression levels, whereas the highest ek2? mRNA expression levels were detected in the MCF7 cells. The ck? variant had higher mRNA expression levels, as compared with total ck?, in both the MCF7 and HCT116 cells. Relatively low ek1 mRNA expression levels were detected, as compared with ek2? in the MCF7 cells; however, this was not observed in the HCT116 and HepG2 cells. Notably, the mRNA expression levels of ck?2 were markedly low, as compared with ck?1, in all three cancer cell lines. The effects of epigenetic modification on ck and ek mRNA expression, by treatment of the cells with the histone deacetylase inhibitor trichostatin A (TSA), were also investigated. The results of the present study showed that the mRNA expression levels of ck?, ck? and ek2? were affected by TSA. An increase >8-fold was observed in ek2? mRNA expression upon treatment with TSA, in a concentration- and time-dependent manner. In conclusion, the levels of ck and ek transcript variants in the three cancer cell lines were varied. The effects of TSA treatment on the mRNA expression levels of ck and ek imply that ck and ek mRNA expression may be regulated by epigenetic modification. PMID:25333818

  6. Methylselenol, a selenium metabolite, plays common and different roles in cancerous colon HCT116 cell and noncancerous NCM460 colon cell proliferation.

    PubMed

    Zeng, Huawei; Briske-Anderson, Mary; Wu, Min; Moyer, Mary P

    2012-01-01

    Methylselenol is hypothesized to be a critical selenium metabolite for anticancer action, and differential chemopreventive effects of methylselenol on cancerous and noncancerous cells may play an important role. In this study, the submicromolar concentrations of methylselenol were generated by incubating methionase with seleno-L methionine, and colon-cancer-derived HCT-116 cells and noncancerous colon NCM460 cells were exposed to methylselenol. Methylselenol exposure inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase and an induction of apoptosis in HCT116, but to a much lesser extent in NCM460 colon cells. Similarly, the examination of mitogen-activated protein kinase (MAPK) and cellular myelocytomatosis oncogene (c-Myc) signaling status revealed that methylselenol inhibited the phosphorylation of extracellular-regulated kinase1/2 and p38 mitogen-activated protein kinase and the expression of c-Myc in HCT116 cells, but also to a lesser extent in NCM460 cells. The other finding is that methylselenol inhibits sarcoma kinase phosphorylation in HCT116 cells. In contrast, methylselenol upregulated the phosphorylation of sarcoma and focal adhesion kinase survival signals in the noncancerous NCM460 cells. Collectively, methylselenol's stronger potential of inhibiting cell proliferation/survival signals in the cancerous HCT116 cells when compared with that in noncancerous NCM460 cells may partly explain the potential of methylselenol's anticancer action. PMID:22171558

  7. Mild hyperthermia prior to electroporation increases transfection efficiency in HCT 116, HeLa S3 and SGC 7901 cells.

    PubMed

    Wei, Zheng-Li; Ogawa, Ryohei; Takasaki, Ichiro; Zhao, Qing-Li; Zheng, Hua-Chuan; Ahmed, Kanwal; Hassan, Mariame A; Kondo, Takashi

    2010-03-01

    The change in transfection efficiency of electroporation by the combined treatment with mild preheating (40 degrees C for 30 min) was investigated. HCT 116, HeLa S3 and SGC 7901 cells were treated with electroporation in medium containing pBKCMV-Luc plasmid with or without preheating. After 24 h, luciferase activity was increased by 36, 28 and 77%; luciferase mRNA transcription was increased by 45, 50 and 68%; and fluorescein isothiocyanate-dextran accumulation was increased by 9, 35 and 15% in preheated groups, respectively. These results demonstrate that the transfection efficiency was enhanced by mild preheating. The mechanism partially involves increased macromolecular particle accumulation. PMID:19898781

  8. Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells.

    PubMed Central

    Powell, A A; LaRue, J M; Batta, A K; Martinez, J D

    2001-01-01

    Faecal bile acids have long been associated with colon cancer; highly hydrophobic bile acids, which induce apoptosis, have been implicated in the promotion of colon tumours. The moderately hydrophobic chemopreventive agent ursodeoxycholic acid (UDCA) does not induce apoptosis; rather, it causes colon-derived tumour cells to arrest their growth. To investigate the relationship between bile acid hydrophobicity and biological activity we examined 26 bile acids for their capacity to induce apoptosis or alter cell growth. We found that the rapidity with which, and the degree to which, bile acids could induce apoptosis or growth arrest was correlated with their relative hydrophobicities. Of the bile acids tested, only deoxycholic acid (DCA) and chenodeoxycholic acid, the most hydrophobic bile acids tested, could induce apoptosis in less than 12 h in the human colon cancer cell line HCT116. The moderately hydrophobic bile acids hyoDCA, lagoDCA, norDCA, homoUDCA and isoUDCA induced growth arrest at 12 h but longer incubations resulted in apoptosis. Conjugation of glycine or taurine to the bile acids decreased relative hydrophobicity and eliminated biological activity in our assays. In addition, we tested a subset of these bile acids for their ability to translocate across cell membranes. When (14)C-labelled and (3)H-labelled DCA, UDCA and lagoDCA were added to cell cultures, we found only minimal uptake by colon cells, whereas hepatocytes had considerably higher absorption. These experiments suggest that hydrophobicity is an important determinant of the biological activity exhibited by bile acids but that under our conditions these activities are not correlated with cellular uptake. PMID:11368775

  9. Methylselenol, a selenium metabolite, plays common and different roles in cancerous colon HCT116 cell and noncancerous NCM460 colon cell proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylselenol has been hypothesized to be a critical selenium (Se) metabolite for anticancer activity in vivo. To determine differential chemopreventive effects of methylselenol on colon cancer cells versus colon noncancerous cells, colon-cancer-derived HCT-116 cells and noncancerous colonic NCM460 ...

  10. Cochlioquinone derivatives with apoptosis-inducing effects on HCT116 colon cancer cells from the phytopathogenic fungus Bipolaris luttrellii L439.

    PubMed

    Qi, Qiu-Yue; Huang, Li; He, Lu-Wei; Han, Jun-Jie; Chen, Quan; Cai, Lei; Liu, Hong-Wei

    2014-12-01

    A new cochlioquinone derivative, cochlioquinone F (1), as well as three known compounds, anhydrocochlioquinone A (2), isocochlioquinone A (3), and isocochlioquinone C (4), were isolated from the PDB (potato dextrose broth) culture of the phytopathogenic fungus Bipolaris luttrellii. The structure of 1 was elucidated on the basis of NMR techniques. The apoptosis-inducing effects of compounds 1-4 were evaluated against HCT116 cancer cells. Compound?2 exhibited the strongest activity in inducing apoptosis on HCT116 cells within the range of 10-30??M. In addition, the caspase activation, the release of cytochrome c from mitochondria, and the downregulation of Bcl-2 protein in HCT116 cells treated with compound?2 were detected. PMID:25491333

  11. Synthesis of tetrahydrohonokiol derivates and their evaluation for cytotoxic activity against CCRF-CEM leukemia, U251 glioblastoma and HCT-116 colon cancer cells.

    PubMed

    Bernaskova, Marketa; Kretschmer, Nadine; Schuehly, Wolfgang; Huefner, Antje; Weis, Robert; Bauer, Rudolf

    2014-01-01

    Biphenyl neolignans such as honokiol and magnolol, which are the major active constituents of the Asian medicinal plant Magnolia officinalis, are known to exert a multitude of pharmacological and biological activities. Among these, cytotoxic and tumor growth inhibitory activity against various tumour cell lines are well-documented. To further elucidate the cytotoxic effects of honokiol derivatives, derivatizations were performed using tetrahydrohonokiol as a scaffold. The derivatizations comprised the introduction of functional groups, e.g., nitro and amino groups, as well as alkylation. This way, 18 derivatives, of which 13 were previously undescribed compounds, were evaluated against CCRF-CEM leukemia cells, U251 glioblastoma and HCT-116 colon cancer cells. The results revealed no significant cytotoxic effects in any of the three tested cell lines at a test concentration of 10 µM. PMID:24448063

  12. A Novel Topoisomerase Inhibitor, Daurinol, Suppresses Growth of HCT116 Cells with Low Hematological Toxicity Compared to Etoposide12

    PubMed Central

    Kang, Kyungsu; Oh, Seung Hyun; Yun, Ji Ho; Jho, Eun Hye; Kang, Ju-Hee; Batsuren, Dulamjav; Tunsag, Jigjidsuren; Park, Kwang Hwa; Kim, Minkyun; Nho, Chu Won

    2011-01-01

    We report that daurinol, a novel arylnaphthalene lignan, is a promising potential anticancer agent with adverse effects that are less severe than those of etoposide, a clinical anticancer agent. Despite its potent antitumor activity, clinical use of etoposide is limited because of its adverse effects, including myelosuppression and the development of secondary leukemia. Here, we comprehensively compared the mechanistic differences between daurinol and etoposide because they have similar chemical structures. Etoposide, a topoisomerase II poison, is known to attenuate cancer cell proliferation through the inhibition of DNA synthesis. Etoposide treatment induces G2/M arrest, severe DNA damage, and the formation of giant nuclei in HCT116 cells. We hypothesized that the induction of DNA damage and nuclear enlargement due to abnormal chromosomal conditions could give rise to genomic instability in both tumor cells and in actively dividing normal cells, resulting in the toxic adverse effects of etoposide. We found that daurinol is a catalytic inhibitor of human topoisomerase IIa, and it induces S-phase arrest through the enhanced expression of cyclins E and A and by activation of the ATM/Chk/Cdc25A pathway in HCT116 cells. However, daurinol treatment did not cause DNA damage or nuclear enlargement in vitro. Finally, we confirmed the in vivo antitumor effects and adverse effects of daurinol and etoposide in nude mice xenograft models. Daurinol displayed potent antitumor effects without any significant loss of body weight or changes in hematological parameters, whereas etoposide treatment led to decreased body weight and white blood cell, red blood cell, and hemoglobin concentration. PMID:22131880

  13. TP53 and Let-7a micro-RNA Regulate K-Ras Activity in HCT116 Colorectal Cancer Cells

    PubMed Central

    Luu, Carrie; Heinrich, Eileen L.; Duldulao, Marjun; Arrington, Amanda K.; Fakih, Marwan; Garcia-Aguilar, Julio; Kim, Joseph

    2013-01-01

    Recent reports have indicated that KRAS and TP53 mutations predict response to therapy in colorectal cancer. However, little is known about the relationship between these two common genetic alterations. Micro-RNAs (miRNAs), a class of noncoding RNA implicated in cellular processes, have been increasingly linked to KRAS and TP53. We hypothesized that lethal-7a (let-7a) miRNA regulates KRAS through TP53. To investigate the relationship between KRAS, TP53, and let-7a, we used HCT116 KRASmut human colorectal cancer cells with four different genotypic modifications in TP53 (TP53?/?, TP53+/?, TP53mut/+, and TP53mut/?). Using these cells we observed that K-Ras activity was higher in cells with mutant or knocked out TP53 alleles, suggesting that wild-type TP53 may suppress K-Ras activity. Let-7a was present in HCT116 KRASmut cells, though there was no correlation between let-7a level and TP53 genotype status. To explore how let-7a may regulate K-Ras in the different TP53 genotype cells we used let-7a inhibitor and demonstrated increased K-Ras activity across all TP53, thus corroborating prior reports that let-7a regulates K-Ras. To assess potential clinical implications of this regulatory network, we examined the influence of TP53 genotype and let-7a inhibition on colon cancer cell survival following chemoradiation therapy (CRT). We observed that cells with complete loss of wild-type TP53 alleles (?/? or ?/mut) were resistant to CRT following treatment with 5-fluorouracil and radiation. Further increase in K-Ras activity with let-7a inhibition did not impact survival in these cells. In contrast, cells with single or double wild-type TP53 alleles were moderately responsive to CRT and exhibited resistance when let-7a was inhibited. In summary, our results show a complex regulatory system involving TP53, KRAS, and let-7a. Our results may provide clues to understand and target these interactions in colorectal cancer. PMID:23936455

  14. NF-?B signaling inhibition and anticancer activities of LLDT-246 on human colorectal cancer HCT-116 cells in vitro.

    PubMed

    Li, Meng; Wang, Xiu'e; Liu, Ming; Qi, Xin; Li, Jing

    2014-06-01

    Triptolide attracts attention for its anti-inflammatory, immune modulation, anti-proliferative and pro-apoptotic activity, but the clinical application of triptolide is restricted by its serious toxicity. Here, we demonstrate LLDT-246, a new triptolide derivative, exhibited a little more potent activity of NF-?B inhibition and cytotoxicity whether acting alone or in combination with TNF-? on colorectal cancer HCT-116 cells than its maternal compound, and showed low toxic to non-cancer cells. Mechanism study revealed that LLDT-246 inhibited phosphorylation of AKT, p-GSK3? and p-mTOR, however, no significant effects were found on the level of p-ERK and p-JNK, along with HSP70, indicating LLDT-246 indirectly affects NF-?B and suppresses NF-?B signaling largely by interpreting AKT/GSK3?/mTOR pathway. Altogether, LLDT-246 is a promising anticancer derivative of triptolide, further studies in vivo and about detailed mechanism of LLDT-246 is required in the future. PMID:24986326

  15. Effect of the orthoquinone moiety in 9,10-phenanthrenequinone on its ability to induce apoptosis in HCT-116 and HL-60 cells.

    PubMed

    Hatae, Noriyuki; Nakamura, Jun; Okujima, Tetsuo; Ishikura, Minoru; Abe, Takumi; Hibino, Satoshi; Choshi, Tominari; Okada, Chiaki; Yamada, Hiroko; Uno, Hidemitsu; Toyota, Eiko

    2013-08-15

    9,10-Phenanthrenequinone (9,10-PQ) is one of the most abundant quinones among diesel exhaust particulates. Recent data have suggested that quinones induce apoptosis in immune, epithelial and tumor cells, leading to respirator illness; however, the mechanisms by which quinones induce apoptosis and the structure required for this remain unknown. We studied the antitumor activity of 9,10-PQ analogs against two human tumor cell lines, HCT-116 colon tumor cells and HL-60 promyelocytic leukemia cells. The loss of the cis-orthoquinone unit in 9,10-PQ abrogated its ability to induce apoptosis in the two tumor cell lines, and the LC50 values of these analogs were indicated over 10 ?M. An analog of 9,10-PQ in which the biaryl unit had been deleted displayed a reduced ability to induce tumor cell apoptosis, while the analogs 1,10-phenanthroline-5,6-dione (9) and pyrene-4,5-dione (10), which also had modified biaryl units, exhibited increased tumor cell apoptotic activity. The cis-orthoquinone unit in 9,10-PQ was identified as essential for its ability to induce apoptosis in tumor cells, and its biaryl unit is also considered to influence orthoquinone-mediated apoptotic activity. PMID:23816373

  16. Delphinidin, an Anthocyanidin in Pigmented Fruits and Vegetables, Induces Apoptosis and Cell Cycle Arrest in Human Colon Cancer HCT116 Cells

    PubMed Central

    Yun, Jung-Mi; Afaq, Farrukh; Khan, Naghma; Mukhtar, Hasan

    2010-01-01

    Because of unsatisfactory treatment options for colon cancer, there is a need to develop novel preventive approaches for this malignancy. One such strategy is through chemoprevention by the use of non-toxic dietary substances and botanical products. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, possesses strong antioxidant and anti-inflammatory properties. In the present study, we investigated the antiproliferative and proapoptotic properties of delphinidin in human colon cancer HCT116 cells. We found that treatment of cells with delphinidin (30–240 ?M; 48 h) resulted in (i) decrease in cell viability (ii) induction of apoptosis, (iii) cleavage of PARP, (iv) activation of caspases-3, -8, and -9, (v) increase in Bax with a concomitant decrease in Bcl-2 protein, and (vi) G2/M phase cell cycle arrest. NF-?B provides a mechanistic link between inflammation and cancer, and is a major factor controlling the ability of both pre-neoplastic and malignant cells to resist apoptosis-based tumor surveillance mechanisms. We therefore, determined the effect of delphinidin on NF-?B signaling pathway. The immunoblot, ELISA and EMSA analysis demonstrated that the treatment of HCT116 cells with delphinidin resulted in the inhibition of (i) IKK?, (ii) phosphorylation and degradation of I?B?, (iii) phosphorylation of NF-?B/p65 at Ser536, (iv) nuclear translocation of NF-?B/p65, (v) NF-?B/p65 DNA binding activity, and (vi) transcriptional activation of NF-?B. Our results suggest that delphinidin treatment of HCT116 cells suppressed NF-?B pathway, resulting in G2/M phase arrest and apoptosis. We suggest that delphinidin could have potential in inhibiting colon cancer growth. PMID:18729103

  17. Quilamine HQ1-44, an iron chelator vectorized toward tumor cells by the polyamine transport system, inhibits HCT116 tumor growth without adverse effect.

    PubMed

    Renaud, Stéphanie; Corcé, Vincent; Cannie, Isabelle; Ropert, Martine; Lepage, Sylvie; Loréal, Olivier; Deniaud, David; Gaboriau, François

    2015-08-01

    Tumor cell growth requires large iron quantities and the deprivation of this metal induced by synthetic metal chelators is therefore an attractive method for limiting the cancer cell proliferation. The antiproliferative effect of the Quilamine HQ1-44, a new iron chelator vectorized toward tumor cells by a polyamine chain, is related to its high selectivity for the Polyamine Transport System (PTS), allowing its preferential uptake by tumoral cells. The difference in PTS activation between healthy cells and tumor cells enables tumor cells to be targeted, whereas the strong dependence of these cells on iron ensures a secondary targeting. Here, we demonstrated in vitro that HQ1-44 inhibits DNA synthesis and cell proliferation of HCT116 cells by modulating the intracellular metabolism of both iron and polyamines. Moreover, in vivo, in xenografted athymic nude mice, we found that HQ1-44 was as effective as cis-platin in reducing HCT116 tumor growth, without its side effects. Furthermore, as suggested by in vitro data, the depletion in exogenous or endogenous polyamines, known to activate the PTS, dramatically enhanced the antitumor efficiency of HQ1-44. These data support the need for further studies to assess the value of HQ1-44 as an adjuvant treatment in cancer. PMID:26070250

  18. Pro-growth role of the JMJD2C histone demethylase in HCT-116 colon cancer cells and identification of curcuminoids as JMJD2 inhibitors

    PubMed Central

    Kim, Tae-Dong; Fuchs, James R; Schwartz, Eric; Abdelhamid, Dalia; Etter, Jonathan; Berry, William L; Li, Chenglong; Ihnat, Michael A; Li, Pui-Kai; Janknecht, Ralf

    2014-01-01

    Colon tumors are a major cause of cancer death, yet their molecular intricacies are not fully understood. We demonstrate that the histone demethylases JMJD2A, JMJD2B and JMJD2C are overexpressed in colon cancer cell lines, whereas another related protein, JMJD2D, is not. Interestingly, despite their high homology, the intracellular localization of JMJD2A-C is different in colon and other cancer cells, with JMJD2A being present comparably in the cytoplasm and nucleus, JMJD2B more prevalent in the nucleus and JMJD2C strongly associated with chromatin. This suggests that each of these three proteins performs different, non-redundant functions. Moreover, we show that JMJD2C (also called KDM4C) forms complexes with ?-catenin, an oncoprotein whose overexpression is crucial for the development of most colonic tumors. In addition, JMJD2C downregulation reduced both growth and clonogenic capacity of HCT-116 colon cancer cells. Further, JMJD2C was required for efficient expression of the growth stimulatory proteins FRA1 and cyclin D1 as well as the survival factor BCL2. Lastly, we identified derivatives of curcumin as in vitro inhibitors of JMJD2 enzymes, suggesting that these curcuminoids could be useful for decreasing JMJD2 activity in vivo. In conclusion, our data highlight that overexpression of JMJD2C confers a pro-growth effect on colon cancer cells and, therefore, its inhibition by curcuminoids or other small molecules could be beneficial as an adjuvant therapy for colon cancer patients. PMID:24936217

  19. Induction of intrinsic apoptosis pathway in colon cancer HCT-116 cells by novel 2-substituted-5,6,7,8-tetrahydronaphthalene derivatives.

    PubMed

    Gamal-Eldeen, Amira M; Hamdy, Nehal A; Abdel-Aziz, Hatem A; El-Hussieny, Enas A; Fakhr, Issa M I

    2014-04-22

    2-Acetyl tetralin (1) reacted with N,N-dimethylformamide dimethylacetal (DMF-DMA) to afford the enaminone 3. The reaction of 3 with piperidine and morpholine afforded the trans enaminone 5a,b, respectively. Compound 3 was treated with primary aromatic amines to give secondary enaminones 6a-e. The enaminone 3 reacted with acetylglycine and hippuric acid to yield pyranones 10a, b, respectively. The reaction of enaminone 3 with 1,4-benzoquinone and 1,4-naphthoquinone gave benzofuranyl tetralin derivatives 14a,b, respectively. Also, when 3 reacted with 5-amino-3-phenyl-1H-pyrazole 15a and 5-amino-1,2,3-triazole 15b, it afforded the new pyrazolo[1,5-a]pyrimidine 17a and 1,2,3-triazolo[1,5-a]pyrimidine 17b, respectively. While the reaction of 3 with pyrimidines 18a, b resulted in the formation of pyrido[2,3-d]pyrimidine derivatives 20a, b, respectively. Investigations of the cytotoxic effect of those compounds against different human cell lines indicated that some compounds showed high selective cytotoxicity against colon cancer HCT-116 cells. Some of these compounds led to DNA damaging and fragmentation that was associated with the induction of apoptosis via mitochondrial pathway. This pathway is initiated by the impairment of mitochondrial transmembrane potential (??m) and in response to that the mitochondria released cytochrome c increased, that in turn activated caspase-9 and caspase-3 and induced apoptosis. Compounds 17b and 20b were promising anti-cancer agents that induced intrinsic apoptosis pathway in colon cancer cells. PMID:24657569

  20. The flavonoid morin from Moraceae induces apoptosis by modulation of Bcl-2 family members and Fas receptor in HCT 116 cells.

    PubMed

    Hyun, Hwang-Bo; Lee, Won Sup; Go, Se-Il; Nagappan, Arulkumar; Park, Cheol; Han, Min Ho; Hong, Su Hyun; Kim, Gonsup; Kim, Gi Young; Cheong, Jaehun; Ryu, Chung Ho; Shin, Sung Chul; Choi, Yung Hyun

    2015-06-01

    It is evident based on literature that flavonoids from fruit can safely modulate cancer cell biology and induce apoptosis. Therefore, we investigated the anticancer activity of morin, a flavonoid which is plentiful in twigs of mulberry focusing on apoptosis, and its mechanisms. Morin upregulated the Fas receptor, and activates caspase-8, -9 and -3 in HCT-116 cells. Morin also activates Bid, and induced the loss of mitochondrial membrane potential (MMP, ??m) with Bax protein activation and cytochrome c release. In addition, morin induced ROS generation which was not blocked by N-acetylcysteine. Morin also suppressed Bcl-2 and cIAP-1, anti-apoptotic proteins, which may contribute to augmentation of morin-triggered apoptosis. As an upstream signaling pathway, suppressed Akt activity by morin was associated to apoptosis. This study suggests that morin induces caspase-dependent apoptosis through extrinsic pathway by upregulating Fas receptor as well as through the intrinsic pathway by modulating Bcl-2 and IAP family members, and ROS generation, and that Akt is the critical upstream signaling that regulates the apoptotic effect of morin in human colon cancer HCT-116 cells. PMID:25892545

  1. Chemoresistance to doxorubicin induces epithelial-mesenchymal transition via upregulation of transforming growth factor ? signaling in HCT116 colon cancer cells

    PubMed Central

    LI, JINPENG; LIU, HAO; YU, JIEPING; YU, HONGGANG

    2015-01-01

    Doxorubicin (Dox) is a commonly used chemotherapeutic drug in human colon cancer. However, it becomes increasingly ineffective with tumor progression, the underlying mechanism of which remains to be elucidated. Emerging evidence has led to the identification of an association between chemoresistance and the acquisition of epithelial-mesenchymal transition (EMT) in cancer. However, it remains to be elucidated whether this process is involved in the development of resistance to Dox in colon cancer. In HCT116 human colon cancer cells treated with Dox (50 nmol/l), EMT was induced, and transforming growth factor (TGF)? signaling and multi-drug resistant plasma membrane glycoprotein levels were significantly increased. By contrast, silencing of Smad4, using stable RNA interference, inhibited TGF? signaling, reversed the process of EMT and markedly increased the sensitivity of HCT116 cells to Dox. The results of the present study suggested that the combination of Dox with the downregulation of TGF? signaling may be a potential novel therapeutic strategy with which to overcome chemoresistance during colon cancer chemotherapy. PMID:25684678

  2. Antheraea pernyi Silk Fibroin-Coated PEI/DNA Complexes for Targeted Gene Delivery in HEK 293 and HCT 116 Cells

    PubMed Central

    Liu, Yu; You, Renchuan; Liu, Guiyang; Li, Xiufang; Sheng, Weihua; Yang, Jicheng; Li, Mingzhong

    2014-01-01

    Polyethylenimine (PEI) has attracted much attention as a DNA condenser, but its toxicity and non-specific targeting limit its potential. To overcome these limitations, Antheraea pernyi silk fibroin (ASF), a natural protein rich in arginyl-glycyl-aspartic acid (RGD) peptides that contains negative surface charges in a neutral aqueous solution, was used to coat PEI/DNA complexes to form ASF/PEI/DNA ternary complexes. Coating these complexes with ASF caused fewer surface charges and greater size compared with the PEI/DNA complexes alone. In vitro transfection studies revealed that incorporation of ASF led to greater transfection efficiencies in both HEK (human embryonic kidney) 293 and HCT (human colorectal carcinoma) 116 cells, albeit with less electrostatic binding affinity for the cells. Moreover, the transfection efficiency in the HCT 116 cells was higher than that in the HEK 293 cells under the same conditions, which may be due to the target bonding affinity of the RGD peptides in ASF for integrins on the HCT 116 cell surface. This result indicated that the RGD binding affinity in ASF for integrins can enhance the specific targeting affinity to compensate for the reduction in electrostatic binding between ASF-coated PEI carriers and cells. Cell viability measurements showed higher cell viability after transfection of ASF/PEI/DNA ternary complexes than after transfection of PEI/DNA binary complexes alone. Lactate dehydrogenase (LDH) release studies further confirmed the improvement in the targeting effect of ASF/PEI/DNA ternary complexes to cells. These results suggest that ASF-coated PEI is a preferred transfection reagent and useful for improving both the transfection efficiency and cell viability of PEI-based nonviral vectors. PMID:24776757

  3. Reconstitution of TGFBR2-Mediated Signaling Causes Upregulation of GDF-15 in HCT116 Colorectal Cancer Cells

    PubMed Central

    Lee, Jennifer; Fricke, Fabia; Warnken, Uwe; Schnölzer, Martina; Kopitz, Jürgen; Gebert, Johannes

    2015-01-01

    Although inactivating frameshift mutations in the Transforming growth factor beta receptor type 2 (TGFBR2) gene are considered as drivers of microsatellite unstable (MSI) colorectal tumorigenesis, consequential alterations of the downstream target proteome are not resolved completely. Applying a click-it chemistry protein labeling approach combined with mass spectrometry in a MSI colorectal cancer model cell line, we identified 21 de novo synthesized proteins differentially expressed upon reconstituted TGFBR2 expression. One candidate gene, the TGF-ß family member Growth differentiation factor-15 (GDF-15), exhibited TGFBR2-dependent transcriptional upregulation causing increased intracellular and extracellular protein levels. As a new TGFBR2 target gene it may provide a link between the TGF-ß branch and the BMP/GDF branch of SMAD-mediated signaling. PMID:26114631

  4. Polyamine depletion enhances the roscovitine-induced apoptosis through the activation of mitochondria in HCT116 colon carcinoma cells

    Microsoft Academic Search

    Elif Damla Ar?san; Ajda Çoker; Narçin Palavan-Ünsal

    Small molecule inhibitors of cyclin-dependent kinases (CDKs) show high therapeutic potential in various cancer types which\\u000a are characterized by the accumulation of transformed cells due to impaired apoptotic machinery. Roscovitine, a CDK inhibitor\\u000a showed to be a potent apoptotic inducer in several cancer cells. Polyamines, putrescine, spermidine and spermine, are biogenic\\u000a amines involved in many cellular processes, including apoptosis. In

  5. Cytotoxicity and metabolism of 4-methoxy-8-(beta-D-ribofuranosylamino)pyrimido[5,4-d]pyrimidine in HCT 116 colon cancer cells.

    PubMed

    Grem, J L; Daychild, P; Drake, J; Geoffroy, F; Trepel, J B; Pirnia, F; Allegra, C J

    1994-11-29

    We examined the cytotoxicity, biochemical effects and metabolism of 4-methoxy-8-(beta-D-ribofuranosylamino)pyrimido[5,4-d]pyrimidine (MRPP), a synthetic nucleoside inhibitor of phosphoribosylpyrophosphate synthetase, in HCT 116 human colorectal cancer cells. A 4-hr exposure to 1 and 10 microM MRPP inhibited cell growth over a 72-hr period by 76 and 89%, and inhibited clonogenic capacity by 36 and 65%, respectively. MRPP was avidly metabolized to the 5'-monophosphate derivative (MRPP-MP), and MRPP-MP formation increased with increasing MRPP exposure (microM.hr). MRPP-MP was stable, and the intracellular half-life was in excess of 48 hr. A 4-hr exposure to 10 microM MRPP resulted in significant decreases in ATP, UTP, GTP, CTP, dATP, dTTP, and PRPP pools. Near maximal ribonucleotide triphosphate depletion was achieved with > or = 24 microM.hr MRPP, and growth inhibition as a function of MRPP microM.hr closely reflected the biochemical effects. Ribonucleotide triphosphate pools remained depleted for up to 48 hr after drug removal, apparently as a consequence of the prolonged retention of MRPP-MP. MRPP (10 microM) inhibited the salvage of [3H]guanine, [3H]adenine and [3H]guanosine, and concurrent exposure to MRPP and either 100 microM adenine, hypoxanthine, or guanine did not reverse ATP or GTP depletion. Concurrent exposure to 10 microM MRPP and either 10 microM adenosine, uridine or thymidine was accompanied by repletion of ATP, UTP, and dTTP pools, respectively, but depletion of other nucleotide pools was not corrected. In contrast, 10 microM guanosine did not correct GTP depletion in the presence of MRPP. The combination of 10 microM each of thymidine, uridine, adenosine and guanosine during and following a 24-hr exposure to MRPP provided partial protection against 0.1 or 1 microM MRPP, but did not affect the cytotoxicity associated with 10 microM MRPP. MRPP is a novel antimetabolite that inhibits both de novo and salvage pathways for purine synthesis and de novo pyrimidine synthesis. PMID:7528507

  6. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells.

    PubMed

    Zeng, Huawei; Botnen, James H; Briske-Anderson, Mary

    2010-01-01

    The cell growth inhibition induced by bile acid deoxycholic acid (DCA) may cause compensatory hyperproliferation of colonic epithelial cells and consequently increase colon cancer risk. On the other hand, there is increasing evidence for the efficacy of certain forms of selenium (Se) as anticancer nutrients. Methylselenol has been hypothesized to be a critical Se metabolite for anticancer activity in vivo. In this study, we demonstrated that both DCA (75-300 micromol/l) and submicromolar methylselenol inhibited colon cancer cell proliferation by up to 64% and 63%, respectively. In addition, DCA and methylselenol each increased colon cancer cell apoptosis rate by up to twofold. Cell cycle analyses revealed that DCA induced an increase in only the G1 fraction with a concomitant drop in G2 and S-phase; in contrast, methylselenol led to an increase in the G1 and G2 fractions with a concomitant drop only in the S-phase. Although both DCA and methylselenol significantly promoted apoptosis and inhibited cell growth, examination of mitogen-activated protein kinase (MAPK) pathway activation showed that DCA, but not methylselenol, induced SAPK/JNK1/2, p38 MAPK, ERK1/2 activation. Thus, our data provide, for the first time, the molecular basis for opposite effects of methylselenol and DCA on colon tumorigenesis. PMID:20043263

  7. Macrophage inhibitory cytokine-1 (MIC-1) and subsequent urokinase-type plasminogen activator mediate cell death responses by ribotoxic anisomycin in HCT-116 colon cancer cells.

    PubMed

    Yang, Hyun; Choi, Hye Jin; Park, Seong Hwan; Kim, Jong Sik; Moon, Yuseok

    2009-11-01

    Ribosome-inactivating stresses possess a potent regulatory activity against tumor cell progression. In this study, we demonstrated that macrophage inhibitory cytokine-1 (MIC-1) and its associated signals determined the colon cancer cell response to the chemical ribotoxic stress. The ribotoxic stress agent anisomycin-induced MIC-1 gene expression which was involved in the ribotoxin-induced apoptotic pathway. MIC-1 was also a critical inducer of apoptosis-related gene products such as activated urokine-type plasminogen activator (PLAU) and PLAU receptor (uPAR). When MIC-1 or PLAU action was repressed in the tumor cells, the chemical ribotoxic stress triggered a survival-related MAP kinase such as ERK. Mechanistically, gene expression of apoptosis-mediator MIC-1 was enhanced by activating transcription factor 3 (ATF-3) via the p38 MAP kinase signaling pathway. Moreover, both promoter activity and mRNA stability of MIC-1 gene were up-regulated by ribotoxic anisomycin via the p38 MAP kinase signaling pathway. In conclusion, ribotoxic anisomycin-induced MIC-1 expression via p38-ATF3 pathway and subsequent apoptosis while suppressing survival ERK signal in the colon cancer cells. The results of this study provide mechanistic insight into tumor cell decision for death or survival pathways in response to ribosome-disrupting stresses from chemotherapeutics. PMID:19540205

  8. Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sulforaphane (SFN) is a naturally occurring member of the isothiocyanate family of chemopreventive agents and the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon c...

  9. Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer Cells

    PubMed Central

    Kim, Guen Tae; Lee, Se Hee; Kim, Young Min

    2013-01-01

    Background: The suppression of abnormal cell proliferation is therapeutic strategies for the treatment of cancer. In this study, we investigated the regulatory mechanism of quercetin-induced apoptosis through regulation of Sestrin 2 and AMPK signaling pathway. Methods: After treatment of quercetin to colon cancer cells, intracellular ROS was detected using by DCFH-DA. To examine how quercetin and H2O2 induced apoptosis, we analyzed the change of Sestrin 2, p53 expression and p-AMPK?1, p-mTOR levels by Western blotting. To evaluate the effect of intracellular ROS generated by quercetin on colon cancer cells, NAC, anti-oxidative agent, was co-treated. Results: Quercetin increased apoptotic cell death though generating intracellular reactive oxygen species (ROS), and it was responsible for Sestrin 2 expression. Increased Sestrin 2 expression was accompanied by AMPK activation. Interestingly, mTOR activity by Sestirn 2 expression was dependent on AMPK phosphorylation. On the other hand, the expression of Sestrin 2 by quercetin-generated intracellular ROS was independent of p53. Conclusions: We suggested that quercetin-induced apoptosis involved Sestrin 2/AMPK/mTOR pathway, which was regulated by increased intracellular ROS by quercetin. PMID:25337554

  10. Characterization of the N-methoxyindole-3-carbinol (NI3C)Induced Cell Cycle Arrest in Human Colon Cancer Cell Lines

    Microsoft Academic Search

    Antje S. Neave; Sussi M. Sarup; Michel Seidelin; Fritz Duus; Ole Vang

    2005-01-01

    Recent results have shown that indole-3-carbinol (I3C) inhibits the cellular growth of human cancer cell lines. In some cruciferous vegetables, another indole, N-methoxyindole-3-carbinol (NI3C), is foundbesideI3C.Knowledge aboutthe biologicaleffectsofNI3Cis limited.TheaimofthepresentstudywastoshowtheeffectofNI3C on cell growth of two human colon cancer cell lines, DLD-1 and HCT-116. For the first time it is shown that NI3C inhibits cellular growth of DLD-1 and HCT-116 and that

  11. p53 is important for the anti-proliferative effect of ibuprofen in colon carcinoma cells

    SciTech Connect

    Janssen, Astrid; Schiffmann, Susanne; Birod, Kerstin; Maier, Thorsten J.; Wobst, Ivonne; Geisslinger, Gerd [pharmazentrum frankfurt/ZAFES, Institut fuer Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universitaet Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt (Germany); Groesch, Sabine [pharmazentrum frankfurt/ZAFES, Institut fuer Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universitaet Frankfurt, Theodor Stern Kai 7, 60590 Frankfur (Germany)], E-mail: groesch@em.uni-frankfurt.de

    2008-01-25

    S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53{sup wt}) or being p(HCT-116 p53{sup -/-}), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53{sup -/-} xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53{sup wt} cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53{sup wt} cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75{sup NTR}, p53 and Bax.

  12. Cancer stem cells from colorectal cancer-derived cell lines

    PubMed Central

    Yeung, Trevor M.; Gandhi, Shaan C.; Wilding, Jennifer L.; Muschel, Ruth; Bodmer, Walter F.

    2010-01-01

    Cancer stem cells (CSCs) are the subpopulation of cells within a tumor that can self-renew, differentiate into multiple lineages, and drive tumor growth. Here we describe a two-pronged approach for the identification and characterization of CSCs from colorectal cancer cell lines, using a Matrigel-based differentiation assay, and cell surface markers CD44 and CD24. About 20 to 30% of cells from the SW1222 cell line form megacolonies in Matrigel that have complex 3D structures resembling colonic crypts. The megacolonies’ capacity to self-renew in vitro is direct evidence that they contain the CSCs. Furthermore, just 200 cells from SW1222 megacolonies initiate tumors in NOD/SCID mice. We also showed that CD44+CD24+ cells enriched for colorectal CSCs in the HT29 and SW1222 cell lines, which can self-renew and reform all four CD44/CD24 subpopulations, are the most clonogenic in vitro and can initiate tumors in vivo. A single SW1222 CD44+CD24+ CSC, when grown in Matrigel, can form large megacolonies that differentiate into enterocyte, enteroendocrine, and goblet cell lineages. The HCT116 line does not differentiate or express CDX1, nor does it contain subpopulations of cells with greater tumor-forming capacity, suggesting that HCT116 contains mainly CSCs. However, forced expression of CDX1 in HCT116 leads to reduced clonogenicity and production of differentiating crypt-containing colonies, which can explain the selection for reduced CDX1 expression in many colorectal cancers. In summary, colorectal cancer cell lines contain subpopulations of CSCs, characterized by their cell surface markers and colony morphology, which can self-renew and differentiate into multiple lineages. PMID:20133591

  13. Potent Vinblastine C20? Ureas Displaying Additionally Improved Activity Against a Vinblastine-Resistant Cancer Cell Line

    PubMed Central

    Barker, Timothy J.; Duncan, Katharine K.; Otrubova, Katerina; Boger, Dale L.

    2013-01-01

    A series of disubstituted C20?–urea derivatives of vinblastine were prepared from 20?-aminovinblastine that was made accessible through a unique Fe(III)/NaBH4- mediated alkene functionalization reaction of anhydrovinblastine. Three analogs were examined across a panel of 15 human tumor cell lines, displaying remarkably potent cell growth inhibition activity (avg. IC50 = 200–300 pM), being 10–200-fold more potent than vinblastine (avg. IC50 = 6.1 nM). Significantly, the analogs also display further improved activity against the vinblastine-resistant HCT116/VM46 cell line that bears the clinically relevant overexpression of Pgp, exhibiting IC50 values on par with that of vinblastine against the sensitive HCT116 cell line, 100–200-fold greater than the activity of vinblastine against the resistant HCT116/VM46 cell line, and display a reduced 10–20-fold activity differential between the matched sensitive and resistant cell lines (vs 100-fold for vinblastine). PMID:24223237

  14. Potent Vinblastine C20' Ureas Displaying Additionally Improved Activity Against a Vinblastine-Resistant Cancer Cell Line.

    PubMed

    Barker, Timothy J; Duncan, Katharine K; Otrubova, Katerina; Boger, Dale L

    2013-09-01

    A series of disubstituted C20'-urea derivatives of vinblastine were prepared from 20'-aminovinblastine that was made accessible through a unique Fe(III)/NaBH4- mediated alkene functionalization reaction of anhydrovinblastine. Three analogs were examined across a panel of 15 human tumor cell lines, displaying remarkably potent cell growth inhibition activity (avg. IC50 = 200-300 pM), being 10-200-fold more potent than vinblastine (avg. IC50 = 6.1 nM). Significantly, the analogs also display further improved activity against the vinblastine-resistant HCT116/VM46 cell line that bears the clinically relevant overexpression of Pgp, exhibiting IC50 values on par with that of vinblastine against the sensitive HCT116 cell line, 100-200-fold greater than the activity of vinblastine against the resistant HCT116/VM46 cell line, and display a reduced 10-20-fold activity differential between the matched sensitive and resistant cell lines (vs 100-fold for vinblastine). PMID:24223237

  15. PKM2 Subcellular Localization Is Involved in Oxaliplatin Resistance Acquisition in HT29 Human Colorectal Cancer Cell Lines

    PubMed Central

    Ginés, Alba; Bystrup, Sara; Ruiz de Porras, Vicenç; Guardia, Cristina; Musulén, Eva; Martínez-Cardús, Anna; Manzano, José Luis; Layos, Laura; Abad, Albert; Martínez-Balibrea, Eva

    2015-01-01

    Chemoresistance is the main cause of treatment failure in advanced colorectal cancer (CRC). However, molecular mechanisms underlying this phenomenon remain to be elucidated. In a previous work we identified low levels of PKM2 as a putative oxaliplatin-resistance marker in HT29 CRC cell lines and also in patients. In order to assess how PKM2 influences oxaliplatin response in CRC cells, we silenced PKM2 using specific siRNAs in HT29, SW480 and HCT116 cells. MTT test demonstrated that PKM2 silencing induced resistance in HT29 and SW480 cells and sensitivity in HCT116 cells. Same experiments in isogenic HCT116 p53 null cells and double silencing of p53 and PKM2 in HT29 cells failed to show an influence of p53. By using trypan blue stain and FITC-Annexin V/PI tests we detected that PKM2 knockdown was associated with an increase in cell viability but not with a decrease in apoptosis activation in HT29 cells. Fluorescence microscopy revealed PKM2 nuclear translocation in response to oxaliplatin in HCT116 and HT29 cells but not in OXA-resistant HTOXAR3 cells. Finally, by using a qPCR Array we demonstrated that oxaliplatin and PKM2 silencing altered cell death gene expression patterns including those of BMF, which was significantly increased in HT29 cells in response to oxaliplatin, in a dose and time-dependent manner, but not in siPKM2-HT29 and HTOXAR3 cells. BMF gene silencing in HT29 cells lead to a decrease in oxaliplatin-induced cell death. In conclusion, our data report new non-glycolytic roles of PKM2 in response to genotoxic damage and proposes BMF as a possible target gene of PKM2 to be involved in oxaliplatin response and resistance in CRC cells. PMID:25955657

  16. Chemical composition, anti-angiogenic and cytotoxicity activities of the essential oils of Cymbopogan citratus (lemon grass) against colorectal and breast carcinoma cell lines

    Microsoft Academic Search

    Suthagar Pillai Piaru; Shanmugapriya Perumal; Lee Wei Cai; Roziahanim Mahmud; Amin Malik Shah Abdul Majid; Sabariah Ismail; Che Nin Man

    2012-01-01

    The essential oil of Cymbopogan citratus (lemon grass) was isolated by steam distillation method and subjected to cytotoxicity activity using two different cell lines, human colon carcinoma (HCT-116), breast carcinoma cell lines (MCF-7) and anti-angiogenic activity. The cytotoxicity activity study was determined using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2,4-tetrazolium bromide] assay and anti-angiogenic activity using rat aortic ring model. The chemical composition of

  17. Allicin Purified From Fresh Garlic Cloves Induces Apoptosis in Colon Cancer Cells Via Nrf2

    Microsoft Academic Search

    Wolf Bat-Chen; Tal Golan; Irena Peri; Zvi Ludmer; Betty Schwartz

    2010-01-01

    Allicin (diallyl thiosulfinate) is the best-known biologically active component in freshly crushed garlic extract. We developed a novel, simple method to isolate active allicin, which yielded a stable compound in aqueous solution amenable for use in in vitro and in vivo studies. We focused on the in vitro effects of allicin on cell proliferation of colon cancer cell lines HCT-116,

  18. Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats

    PubMed Central

    Botcheva, Krassimira; McCorkle, Sean R.

    2014-01-01

    The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We report distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). Our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways. PMID:25415302

  19. Differential Modulation of Nods Signaling Pathways by Fatty Acids in Human Colonic Epithelial HCT116 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nucleotide-binding oligomerization domain containing proteins (Nods) are intracellular pattern recognition receptors (PRRs) recognizing conserved moieties of bacterial peptidoglycan through their leucine-rich repeats (LRR) domain. The agonists for Nods activate proinflammtory signaling pathways incl...

  20. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of DCA and...

  1. FOXM1-mediated downregulation of uPA and MMP9 by 3,3'-diindolylmethane inhibits migration and invasion of human colorectal cancer cells.

    PubMed

    Jin, Hua; Li, Xiu Juan; Park, Man Hee; Kim, Soo Mi

    2015-06-01

    Although 3,3'-diindolylmethane (DIM) has been suggested to reduce the risk of colorectal cancer, the underlying biological mechanism is not clearly understood. In the present study, we investigated the effect of DIM on the migratory and invasive activities of the human colorectal cancer cell lines DLD-1 and HCT116. DIM significantly inhibited the migration and invasion of colorectal cancer cells as assessed by wound healing and Matrigel invasion assays. The migratory ability of the DLD-1 and HCT116 cells was significantly reduced by DIM at 24 and 48 h. DIM also significantly inhibited the invasion rate of the DLD-1 and HCT116 cells in a dose-dependent manner. The mRNA expression levels of urokinase type plasminogen activator (uPA) and matrix metalloprotease 9 (MMP9) were significantly attenuated, whereas expression of E-cadherin mRNA was significantly enhanced, following DIM treatment. DIM also decreased the protein levels of uPA and MMP9, yet significantly increased E-cadherin protein expression. In addition, DIM significantly reduced the mRNA and protein levels of FOXM1 in the DLD-1 and HCT116 cells. Our results suggest that DIM can influence the cell migratory and invasive properties of human colorectal cancer cells and may decrease the invasive capacity of colorectal cancer through downregulation of uPA and MMP9 mediated by suppression of the transcription factor FOXM1. PMID:25962429

  2. A flow-­cytometry-­based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells

    E-print Network

    Forment, Josep V.; Jackson, Stephen P.

    2015-01-01

    ,  human  colon  carcinoma  HCT-­?116  cells,  human  leukaemia   HAP-­?1   cells,   human   immortalised   retinal   RPE-­?1   cells   and   primary   mouse  embryonic  fibroblasts  have  all  yielded  positive...

  3. Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-?-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro.

    PubMed

    Módis, Katalin; Coletta, Ciro; Asimakopoulou, Antonia; Szczesny, Bartosz; Chao, Celia; Papapetropoulos, Andreas; Hellmich, Mark R; Szabo, Csaba

    2014-09-15

    Recent data show that colon cancer cells selectively overexpress cystathionine-?-synthase (CBS), which produces hydrogen sulfide (H2S), to maintain cellular bioenergetics, support tumor growth and stimulate angiogenesis and vasorelaxation in the tumor microenvironment. The purpose of the current study was to investigate the effect of the allosteric CBS activator S-adenosyl-L-methionine (SAM) on the proliferation and bioenergetics of the CBS-expressing colon cancer cell line HCT116. The non-transformed, non-tumorigenic colon epithelial cell line NCM356 was used as control. For assessment of cell proliferation, the xCELLigence system was used. Bioenergetic function was measured by Extracellular Flux Analysis. Experiments using human recombinant CBS or HCT116 homogenates complemented the cell-based studies. SAM markedly enhanced CBS-mediated H2S production in vitro, especially when a combination of cysteine and homocysteine was used as substrates. Addition of SAM (0.1-3 mM) to HCT116 cells induced a concentration-dependent increase H2S production. SAM exerted time- and concentration-dependent modulatory effects on cell proliferation. At 0.1-1 mM SAM increased HCT116 proliferation between 0 and 12 h, while the highest SAM concentration (3 mM) inhibited proliferation. Over a longer time period (12-24 h), only the lowest concentration of SAM used (0.1 mM) stimulated cell proliferation; higher SAM concentrations produced a concentration-dependent inhibition. The short-term stimulatory effects of SAM were attenuated by the CBS inhibitor aminooxyacetic acid (AOAA) or by stable silencing of CBS. In contrast, the inhibitory effects of SAM on cell proliferation was unaffected by CBS inhibition or CBS silencing. In contrast to HCT116 cells, the lower rate of proliferation of the low-CBS expressor NCM356 cells was unaffected by SAM. Short-term (1 h) exposure of HCT116 cells to SAM induced a concentration-dependent increase in oxygen consumption and bioenergetic function at 0.1-1 mM, while 3 mM was inhibitory. Longer-term (72 h) exposure of HCT116 cells to all concentrations of SAM tested suppressed mitochondrial oxygen consumption rate, cellular ATP content and cell viability. The stimulatory effect of SAM on bioenergetics was attenuated in cells with stable CBS silencing, while the inhibitory effects were unaffected. In NCM356 cells SAM exerted smaller effects on cellular bioenergetics than in HCT116 cells. We have also observed a downregulation of CBS in response to prolonged exposure of SAM both in HCT116 and NCM356 cells. Taken together, the results demonstrate that H2S production in HCT116 cells is stimulated by the allosteric CBS activator, SAM. At low-to intermediate levels and early time periods the resulting H2S serves as an endogenous cancer cell growth and bioenergetic factor. In contrast, the inhibition of cell proliferation and bioenergetic function by SAM does not appear to relate to adverse autocrine effects of H2S resulting from CBS over-stimulation but, rather to CBS-independent pharmacological effects. PMID:24667534

  4. Functional characterization of the nitrogen permease regulator?like?2 candidate tumor suppressor gene in colorectal cancer cell lines.

    PubMed

    Liu, Ai-Yun; Liu, Ming-Na; Pei, Feng-Hua; Chen, Jing; Wang, Xin-Hong; Liu, Dan; Du, Ya-Ju; Liu, Bing-Rong

    2015-09-01

    The nitrogen permease regulator?like?2 (NPRL2) gene is a candidate tumor suppressor gene, which has been identified in the 3p21.3 human chromosome region. Decreased expression levels of NPRL2 have been observed in colorectal cancer (CRC) tissues, however, the function of NPRL2 in CRC progression remains to be fully elucidated. The present study investigated the biological characteristics of the HCT116 and HT29 CRC cell lines overexpressing exogenous NPRL2. NPRL2 recombinant lentiviral vectors were also constructed and transfected in the present study. Cell growth was determined using a Cell Counting Kit?8 assay and a colony formation assay. The cell cycle and rate of apoptosis were assessed using flow cytometric analysis. Transwell assays were used to evaluate cell invasion. The protein expression of phosphorylated (p)?AKT and caspase 3, B?cell lymphoma 2 (Bcl2) and Bcl?2?associated X protein apoptosis?associated genes, were detected using western blotting. The results revealed that NPRL2 overexpression inhibited cell growth, induced cell cycle G1 phase arrest, promoted apoptosis and inhibited invasion in the two human CRC cell lines. Furthermore, the protein expression levels of p?AKT and Bcl2 were significantly reduced in the NPRL2?transfected HCT116 and HT29 cells, compared with the mock?transfected group and control group, while the protein expression of caspase?3 was increased. Therefore, NPRL2 acted as a functional tumor suppressor in the CRC cell lines. PMID:26044952

  5. Cell diameter measurements obtained with a handheld cell counter could be used as a surrogate marker of G2/M arrest and apoptosis in colon cancer cell lines exposed to SN-38

    SciTech Connect

    Tahara, Makiko [Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya, Tochigi (Japan) [Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya, Tochigi (Japan); Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi (Japan); Inoue, Takeshi [Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya, Tochigi (Japan)] [Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya, Tochigi (Japan); Miyakura, Yasuyuki; Horie, Hisanaga; Yasuda, Yoshikazu [Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi (Japan)] [Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi (Japan); Fujii, Hirofumi [Division of Clinical Oncology, Jichi Medical University, Shimotsuke, Tochigi (Japan)] [Division of Clinical Oncology, Jichi Medical University, Shimotsuke, Tochigi (Japan); Kotake, Kenjiro [Department of Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi (Japan)] [Department of Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi (Japan); Sugano, Kokichi, E-mail: ksugano@tcc.pref.tochigi.lg.jp [Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya, Tochigi (Japan)] [Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya, Tochigi (Japan)

    2013-05-17

    Highlights: •Chemo-sensitivity to SN-38 was assayed by the automated cell counter. •Colon cancer cell line, HCT116 cells were more sensitive to SN-38 than HT29 cells. •Increase of cell size reflects G2/M arrest. •Appearance of small particles indicates cell apoptosis. -- Abstract: In vitro assessment of chemosensitivity are important for experiments evaluating cancer therapies. The Scepter 2.0 cell counter, an automated handheld device based on the Coulter principle of impedance-based particle detection, enables the accurate discrimination of cell populations according to cell size and volume. In this study, the effects of SN-38, the active metabolite of irinotecan, on the colon cancer cell lines HCT116 and HT29 were evaluated using this device. The cell count data obtained with the Scepter counter were compared with those obtained with the {sup 3}H-thymidine uptake assay, which has been used to measure cell proliferation in many previous studies. In addition, we examined whether the changes in the size distributions of these cells reflected alterations in the frequency of cell cycle arrest and/or apoptosis induced by SN-38 treatment. In our experiments using the Scepter 2.0 cell counter, the cell counts were demonstrated to be accurate and reproducible measure and alterations of cell diameter reflected G2/M cell cycle arrest and apoptosis. Our data show that easy-to-use cell counting tools can be utilized to evaluate the cell-killing effects of novel treatments on cancer cells in vitro.

  6. Oridonin triggers apoptosis in colorectal carcinoma cells and suppression of microRNA-32 expression augments oridonin-mediated apoptotic effects.

    PubMed

    Yang, Jie; Jiang, Hai; Wang, Chunyu; Yang, Bo; Zhao, Lijun; Hu, Dongling; Qiu, Guihua; Dong, Xiaolin; Xiao, Bin

    2015-05-01

    Oridonin, a bioactive diterpenoid isolated from Rabdosia rubescens, has been found to exhibit various anti-tumor effects. In this work, to investigate its pharmacological effects on human colorectal carcinoma HCT-116 and LoVo cells, cell proliferation and apoptosis were respectively evaluated by 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, annexin V-FITC, and propidium iodide (PI) staining. Western blotting was used to detect the expression levels of Bim, Bax, Bcl-2, cytosolic cytochrome c, procaspase-9, cleaved caspase-9, procaspase-3, and caspase-3 proteins. Caspase-Glo-9 and Caspase-Glo-3 assays were applied to determine caspase-9 and caspase-3 activity. MicroRNA-32 (miR-32) expression level was detected by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The in vivo anti-tumor effects of oridonin were evaluated using cell lines HCT-116 and LoVo xenograft model. The results indicated that oridonin effectively inhibited cell proliferation and induced apoptosis in HCT-116 and LoVo cells in a concentration-dependent manner. Oridonin treatment upregulated the expression levels of Bim, Bax, cytosolic cytochrome c, cleaved caspase-9 and cleaved caspase-3 proteins, downregulated the expression levels of Bcl-2, procaspase-9 and procaspase-3 proteins, and meanwhile obviously activated caspase-9 and caspase-3 in a dose-dependent manner in HCT-116 and LoVo cells. The results of qRT-PCR demonstrated that oridonin treatment significantly decreased miR-32 expression, and furthermore, suppression of miR-32 expression by miR-32 inhibitors augmented oridonin-mediated inhibitory and apoptotic effects in HCT-116 and LoVo cells. In vivo results indicated that oridonin administration through intraperitoneal injection suppressed tumor growth in nude mice. Therefore, these findings suggest that oridonin maybe is a potential candidate for colorectal cancer treatment. PMID:26054686

  7. Anti-proliferative effect of Melissa officinalis on human colon cancer cell line.

    PubMed

    Encalada, Manuel Alejandro; Hoyos, Kelly Melissa; Rehecho, Sheyla; Berasategi, Izaskun; de Ciriano, Mikel García-Íńiguez; Ansorena, Diana; Astiasarán, Iciar; Navarro-Blasco, Ińigo; Cavero, Rita Yolanda; Calvo, María Isabel

    2011-11-01

    Melissa officinalis L. (Lamiaceae) is consumed as a traditional herbal tea in the Mediterranean region. The cytotoxic effect of the 50% ethanolic and aqueous extract, determined by the MTT and NR assays, was evaluated in vitro on Human Colon Cancer Cell Line (HCT-116), using Triton 10% as positive control. The 50% ethanolic extract showed significant differences after 72 h of treatment, reducing cell proliferation to values close to 40%, even the lowest dose tested (5 ?g/ml). In the MTT assay, the same extract caused the lowest cell viability with 13% at a concentration of 1,000 ?g/ml after 72 h of treatment, being a value lower than Triton 10%. The antioxidant activity was also confirmed evaluating the capacity of the extracts to scavenge ABTS and DPPH radicals, and IC(50) values were highly correlated with the total phenolic and flavonoid content. Bioassay guided fractionation led to the isolation of an anti-proliferative compound, rosmarinic acid. Its structural elucidation was performed by HPLC/DAD/ESI/MS analysis. High dose of rosmarinic acid (1,000 ?g/ml) was clearly cytotoxic against HCT-116 cells, with a significant decrease in cell number since the earliest time point (24 h). PMID:21964875

  8. Regulation of Transforming Growth Factor ? Expression in a Growth Factor-Independent Cell Line

    PubMed Central

    Howell, Gillian M.; Humphrey, Lisa E.; Ziober, Barry L.; Awwad, Rana; Periyasamy, Basker; Koterba, Alan; Li, Wenhui; Willson, James K. V.; Coleman, Kevin; Carboni, Joan; Lynch, Mark; Brattain, Michael G.

    1998-01-01

    Aberrant transcriptional regulation of transforming growth factor ? (TGF?) appears to be an important contributor to the malignant phenotype and the growth factor independence with which malignancy is frequently associated. However, little is known about the molecular mechanisms responsible for dysregulation of TGF? expression in the malignant phenotype. In this paper, we report on TGF? promoter regulation in the highly malignant growth factor-independent cell line HCT116. The HCT116 cell line expresses TGF? and the epidermal growth factor receptor (EGFR) but is not growth inhibited by antibodies to EGFR or TGF?. However, constitutive expression of TGF? antisense RNA in the HCT116 cell line resulted in the isolation of clones with markedly reduced TGF? mRNA and which were dependent on exogenous growth factors for proliferation. We hypothesized that if TGF? autocrine activation is the major stimulator of TGF? expression in this cell line, TGF? promoter activity should be reduced in the antisense TGF? clones in the absence of exogenous growth factor. This was the case. Moreover, transcriptional activation of the TGF? promoter was restored in an antisense-TGF?-mRNA-expressing clone which had reverted to a growth factor-independent phenotype. Using this model system, we were able to identify a 25-bp element within the TGF? promoter which conferred TGF? autoregulation to the TGF? promoter in the HCT116 cell line. In the TGF?-antisense-RNA-expressing clones, this element was activated by exogenous EGF. This 25-bp sequence contained no consensus sequences of known transcription factors so that the TGF? or EGF regulatory element within this 25-bp sequence represents a unique element. Further characterization of this 25-bp DNA sequence by deletion analysis revealed that regulation of TGF? promoter activity by this sequence is complex, as both repressors and activators bind in this region, but the overall expression of the activators is pivotal in determining the level of response to EGF or TGF? stimulation. The specific nuclear proteins binding to this region are also regulated in an autocrine-TGF?-dependent fashion and by exogenous EGF in EGF-deprived TGF? antisense clone 33. This regulation is identical to that seen in the growth factor-dependent cell line FET, which requires exogenous EGF for optimal growth. Moreover, the time response of the stimulation of trans-acting factor binding by EGF suggests that the effect is directly due to growth factor and not mediated by changes in growth state. We conclude that this element appears to represent the major positive regulator of TGF? expression in the growth factor-independent HCT116 cell line and may represent the major site of transcriptional dysregulation of TGF? promoter activity in the growth factor-independent phenotype. PMID:9418877

  9. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    SciTech Connect

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)] [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)] [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  10. Oncolytic reovirus preferentially induces apoptosis in KRAS mutant colorectal cancer cells, and synergizes with irinotecan

    PubMed Central

    Maitra, Radhashree; Seetharam, Raviraja; Tesfa, Lydia; Augustine, Titto A.; Klampfer, Lidija; Coffey, Matthew C.; Mariadason, John M.; Goel, Sanjay

    2014-01-01

    Reovirus is a double stranded RNA virus, with an intrinsic preference for replication in KRAS mutant cells. As 45% of human colorectal cancers (CRC) harbor KRAS mutations, we sought to investigate its efficacy in KRAS mutant CRC cells, and examine its impact in combination with the topoisimerase-1 inhibitor, irinotecan. Reovirus efficacy was examined in the KRAS mutant HCT116, and the isogenic KRAS WT Hke3 cell line, and in the non-malignant rat intestinal epithelial cell line. Apoptosis was determined by flow cytometry and TUNEL staining. Combination treatment with reovirus and irintoecan was investigated in 15 CRC cell lines, including the HCT116 p21 isogenic cell lines. Reovirus preferentially induced apoptosis in KRAS mutant HCT116 cells compared to its isogenic KRAS WT derivative, and in KRAS mutant IEC cells. Reovirus showed a greater degree of caspase 3 activation with PARP 1 cleavage, and preferential inhibition of p21 protein expression in KRAS mutant cells. Reovirus synergistically induced growth inhibition when combined with irinotecan. This synergy was lost upon p21 gene knock out. Reovirus preferentially induces apoptosis in KRAS mutant colon cancer cells. Reovirus and irinotecan combination therapy is synergistic, p21 mediated, and represents a novel potential treatment for patients with CRC. PMID:24798549

  11. Spontaneous ?H2AX Foci in Human Solid Tumor-Derived Cell Lines in Relation to p21WAF1 and WIP1 Expression

    PubMed Central

    Mirzayans, Razmik; Andrais, Bonnie; Scott, April; Wang, Ying W.; Weiss, Robert H.; Murray, David

    2015-01-01

    Phosphorylation of H2AX on Ser139 (?H2AX) after exposure to ionizing radiation produces nuclear foci that are detectable by immunofluorescence microscopy. These so-called ?H2AX foci have been adopted as quantitative markers for DNA double-strand breaks. High numbers of spontaneous ?H2AX foci have also been reported for some human solid tumor-derived cell lines, but the molecular mechanism(s) for this response remains elusive. Here we show that cancer cells (e.g., HCT116; MCF7) that constitutively express detectable levels of p21WAF1 (p21) exhibit low numbers of ?H2AX foci (<3/nucleus), whereas p21 knockout cells (HCT116p21?/?) and constitutively low p21-expressing cells (e.g., MDA-MB-231) exhibit high numbers of foci (e.g., >50/nucleus), and that these foci are not associated with apoptosis. The majority (>95%) of cells within HCT116p21?/? and MDA-MB-231 cultures contain high levels of phosphorylated p53, which is localized in the nucleus. We further show an inverse relationship between ?H2AX foci and nuclear accumulation of WIP1, an oncogenic phosphatase. Our studies suggest that: (i) p21 deficiency might provide a selective pressure for the emergence of apoptosis-resistant progeny exhibiting genomic instability, manifested as spontaneous ?H2AX foci coupled with phosphorylation and nuclear accumulation of p53; and (ii) p21 might contribute to positive regulation of WIP1, resulting in dephosphorylation of ?H2AX. PMID:26006237

  12. Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines

    SciTech Connect

    Gestl, Erin E., E-mail: egestl@wcupa.edu [Department of Biology, West Chester University, 750 S Church Street, West Chester, PA 19383 (United States); Anne Boettger, S., E-mail: aboettger@wcupa.edu [Department of Biology, West Chester University, 750 S Church Street, West Chester, PA 19383 (United States)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated with p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53 gene expression levels compared to cell lines without p53 sequestration. Our data reveal the characteristic cytoplasmic sequestration of p53 by the heat shock protein mortalin in human colorectal adenocarcinoma cell lines, as is the case for other cancers, such as glioblastomas and hepatocellular carcinomas.

  13. Essential Oil Content of the Rhizome of Curcuma purpurascens Bl. (Temu Tis) and Its Antiproliferative Effect on Selected Human Carcinoma Cell Lines

    PubMed Central

    Hong, Sok-Lai; Lee, Guan-Serm; Ahmed Hamdi, Omer Abdalla; Awang, Khalijah; Aznam Nugroho, Nurfina

    2014-01-01

    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4??g/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3??g/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7??g/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death. PMID:25177723

  14. RFPL4A increases the G1 population and decreases sensitivity to chemotherapy in human colorectal cancer cells.

    PubMed

    Naito, Atsushi; Yamamoto, Hirofumi; Kagawa, Yoshinori; Naito, Yoko; Okuzaki, Daisuke; Otani, Keisuke; Iwamoto, Yoriko; Maeda, Sakae; Kikuta, Junichi; Nishikawa, Keizo; Uemura, Mamoru; Nishimura, Junichi; Hata, Taishi; Takemasa, Ichiro; Mizushima, Tsunekazu; Ishii, Hideshi; Doki, Yuichiro; Mori, Masaki; Ishii, Masaru

    2015-03-01

    Cell cycle-arrested cancer cells are resistant to conventional chemotherapy that acts on the mitotic phases of the cell cycle, although the molecular mechanisms involved in halting cell cycle progression remain unclear. Here, we demonstrated that RFPL4A, an uncharacterized ubiquitin ligase, induced G1 retention and thus conferred decreased sensitivity to chemotherapy in the human colorectal cancer cell line, HCT116. Long term time lapse observations in HCT116 cells bearing a "fluorescence ubiquitin-based cell cycle indicator" identified a characteristic population that is viable but remains in the G1 phase for an extended period of time (up to 56 h). Microarray analyses showed that expression of RFPL4A was significantly up-regulated in these G1-arrested cells, not only in HCT116 cells but also in other cancer cell lines, and overexpression of RFPL4A increased the G1 population and decreased sensitivity to chemotherapy. However, knockdown of RFPL4A expression caused the cells to resume mitosis and induced their susceptibility to anti-cancer drugs in vitro and in vivo. These results indicate that RFPL4A is a novel factor that increases the G1 population and decreases sensitivity to chemotherapy and thus may be a promising therapeutic target for refractory tumor conditions. PMID:25605732

  15. Zinc Finger Nuclease Mediated Knockout of ADP-Dependent Glucokinase in Cancer Cell Lines: Effects on Cell Survival and Mitochondrial Oxidative Metabolism

    PubMed Central

    Richter, Susan; Morrison, Shona; Connor, Tim; Su, Jiechuang; Print, Cristin G.; Ronimus, Ron S.; McGee, Sean L.; Wilson, William R.

    2013-01-01

    Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p?=?0.002) and 4.3±0.8% (p?=?0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines. PMID:23799003

  16. Roles of Atox1 and p53 in the trafficking of copper-64 to tumor cell nuclei: implications for cancer therapy

    PubMed Central

    Beaino, Wissam; Guo, Yunjun; Chang, Albert J.; Anderson, Carolyn J.

    2014-01-01

    Due to its cytotoxicity, free copper is chelated by protein side chains and does not exist in vivo. Several chaperones transport copper to various cell compartments, but none has been identified that traffic copper to the nucleus. Copper-64 decays by ?+ and ?- allowing for PET imaging and targeted radionuclide therapy of cancer. Because the delivery of 64Cu to the cell nucleus may enhance the therapeutic effect of copper radiopharmaceuticals, elucidation of the pathway(s) involved in transporting copper to the tumor cell nucleus is important for optimizing treatment. We identified Atox1 as one of the proteins that binds copper in the nucleus. Mouse embryonic fibroblast (MEF) cell lines, positive and negative for Atox1, were used to determine the role of Atox1 in 64Cu transport to the nucleus. MEF Atox1+/+ accumulated more 64Cu in the nucleus compared to Atox1-/- cells. HCT116 colorectal cancer cell lines expressing p53 (+/+) and non-expressing (-/-) were used to evaluate the role of this tumor suppressor protein in 64Cu transport. In cells treated with cisplatin (cisPt), the uptake of 64Cu in the nucleus of HCT116 p53+/+ was greater compared to p53-/- cells. Atox1 expression increased in p53 positive and negative HCT116 cells treated with cisPt; however, Atox1 localized to the nuclei of p53+/+ cells more than in the p53-/- cells. The data presented here indicate that Atox1 is involved in copper transport to the nucleus, and cisPt affects nuclear transport of 64Cu in HCT116 cells by up-regulating the expression and the nuclear localization of Atox1. PMID:24445997

  17. Ganoderma lucidum polysaccharides target a Fas/caspase dependent pathway to induce apoptosis in human colon cancer cells.

    PubMed

    Liang, Zengenni; Guo, Yu-Tong; Yi, You-Jin; Wang, Ren-Cai; Hu, Qiu-Long; Xiong, Xing-Yao

    2014-01-01

    Ganoderma lucidum polysaccharides (GLP) extracted from Ganoderma lucidum have been shown to induce cell death in some kinds of cancer cells. This study investigated the cytotoxic and apoptotic effect of GLP on HCT-116 human colon cancer cells and the molecular mechanisms involved. Cell proliferation, cell migration, lactate dehydrogenase (LDH) levels and intracellular free calcium levels ([Ca(2+)]i) were determined by MTT, wound-healing, LDH release and fluorescence assays, respectively. Cell apoptosis was observed by scanning and transmission electron microscopy. For the mechanism studies, caspase-8 activation, and Fas and caspase-3 expression were evaluated. Treatment of HCT-116 cells with various concentrations of GLP (0.625-5 mg/mL) resulted in a significant decrease in cell viability (P< 0.01). This study showed that the antitumor activity of GLP was related to cell migration inhibition, cell morphology changes, intracellular Ca(2+) elevation and LDH release. Also, increase in the levels of caspase-8 activity was involved in GLP-induced apoptosis. Western blotting indicated that Fas and caspase-3 protein expression was up-regulated after exposure to GLP. This investigation demonstrated for the first time that GLP shows prominent anticancer activities against the HCT-116 human colon cancer cell line through triggering intracellular calcium release and the death receptor pathway. PMID:24935584

  18. Hedgehog signaling pathway is inactive in colorectal cancer cell lines.

    PubMed

    Chatel, Guillaume; Ganeff, Corine; Boussif, Naima; Delacroix, Laurence; Briquet, Alexandra; Nolens, Gregory; Winkler, Rosita

    2007-12-15

    The Hedgehog (Hh) signaling pathway plays an important role in human development. Abnormal activation of this pathway has been observed in several types of human cancers, such as the upper gastro-intestinal tract cancers. However, activation of the Hh pathway in colorectal cancers is controversial. We analyzed the expression of the main key members of the Hh pathway in 7 colon cancer cell lines in order to discover whether the pathway is constitutively active in these cells. We estimated the expression of SHH, IHH, PTCH, SMO, GLI1, GLI2, GLI3, SUFU and HHIP genes by RT-PCR. Moreover, Hh ligand, Gli3 and Sufu protein levels were quantified by western blotting. None of the cell lines expressed the complete set of Hh pathway members. The ligands were absent from Colo320 and HCT116 cells, Smo from Colo205, HT29 and WiDr. GLI1 gene was not expressed in SW480 cells nor were GLI2/GLI3 in Colo205 or Caco-2 cells. Furthermore the repressive form of Gli3, characteristic of an inactive pathway, was detected in SW480 and Colo320 cells. Finally treatment of colon cancer cells with cyclopamine, a specific inhibitor of the Hh pathway, did not downregulate PTCH and GLI1 genes expression in the colorectal cells, whereas it did so in PANC1 control cells. Taken together, these results indicate that the aberrant activation of the Hh signaling pathway is not common in colorectal cancer cell lines. PMID:17683069

  19. Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells

    PubMed Central

    ZHANG, YUNYUAN; CHEN, XIAN; QIAO, MIN; ZHANG, BING-QIANG; WANG, NING; ZHANG, ZHONGLIN; LIAO, ZHAN; ZENG, LIYI; DENG, YOULIN; DENG, FANG; ZHANG, JUNHUI; YIN, LIANGJUN; LIU, WEI; ZHANG, QIAN; YAN, ZHENGJIAN; YE, JIXING; WANG, ZHONGLIANG; ZHOU, LAN; LUU, HUE H.; HAYDON, REX C.; HE, TONG-CHUAN; ZHANG, HONGYU

    2014-01-01

    Colorectal cancer (CRC) is one of the most deadly cancers worldwide. Significant progress has been made in understanding the molecular pathogenesis of CRC, which has led to successful early diagnosis, surgical intervention and combination chemotherapy. However, limited therapeutic options are available for metastatic and/or drug-resistant CRC. While the aberrantly activated Wnt/?-catenin pathway plays a critical initiating role in CRC development, disruption of the bone morphogenetic protein (BMP) pathway causes juvenile polyposis syndrome, suggesting that BMP signaling may play a role in CRC development. However, conflicting results have been reported concerning the possible roles of BMP signaling in sporadic colon cancer. Here, we investigated the effect of BMP2 on the proliferation, migration, invasiveness and tumor growth capability of human CRC cells. Using an adenovirus vector that overexpresses BMP2 and the piggyBac transposon-mediated stable BMP2 overexpression CRC line, we found that exogenous BMP2 effectively inhibited HCT116 cell proliferation and colony formation. BMP2 was shown to suppress colon cancer cell migration and invasiveness. Under a low serum culture condition, forced expression of BMP2 induced a significantly increased level of apoptosis in HCT116 cells. Using a xenograft tumor model, we found that forced expression of BMP2 in HCT116 cells suppressed tumor growth, accompanied by decreased cell proliferation activity. Taken together, our results strongly suggest that BMP2 plays an important inhibitory role in governing the proliferation and aggressive features of human CRC cells. PMID:24993644

  20. Optimizing photodynamic therapy by liposomal formulation of the photosensitizer pyropheophorbide-a methyl ester: in vitro and ex vivo comparative biophysical investigations in a colon carcinoma cell line.

    PubMed

    Guelluy, Pierre-Henri; Fontaine-Aupart, Marie-Pierre; Grammenos, Angeliki; Lécart, Sandrine; Piette, Jacques; Hoebeke, Maryse

    2010-09-24

    Photodynamic therapy (PDT), induced by a photosensitizer (PS) encapsulated in a nanostructure, has emerged as an appropriate treatment to cure a multitude of oncological and non-oncological diseases. Pyropheophorbide-a methyl ester (PPME) is a second-generation PS tested in PDT, and is a potential candidate for future clinical applications. The present study, carried out in a human colon carcinoma cell line (HCT-116), evaluates the improvement resulting from a liposomal formulation of PPME versus free-PPME. Absorption and fluorescence spectroscopies, fluorescence lifetime measurements, subcellular imaging and co-localization analysis have been performed in order to analyze the properties of PPME for each delivery mode. The benefit of drug encapsulation in DMPC-liposomes is clear from our experiments, with a 5-fold higher intracellular drug delivery than that observed with free-PPME at similar concentrations. The reactive oxygen species (ROSs) produced after PPME-mediated photosensitization have been identified and quantified by using electron spin resonance spectroscopy. Our results demonstrate that PPME-PDT-mediated ROSs are composed of singlet oxygen and a hydroxyl radical. The small amounts of PPME inside mitochondria, as revealed by fluorescence co-localization analysis, could maybe explain the very low apoptotic cell death measured in HCT-116 cells. PMID:20714673

  1. Cell death by the quinoxaline dioxide DCQ in human colon cancer cells is enhanced under hypoxia and is independent of p53 and p21

    PubMed Central

    2010-01-01

    Introduction We have shown that the radio sensitizer DCQ enhances sensitivity of HCT116 human colon cancer cells to hypoxia. However, it is not known whether the p53 or p21 genes influence cellular response to DCQ. In this study, we used HCT116 that are either wildtype for p53 and p21, null for p53 or null for p21 to understand the role of these genes in DCQ toxicity. Methods HCT116 cells were exposed to DCQ and incubated under normoxia or hypoxia and the viability, colony forming ability, DNA damage and apoptotic responses of these cells was determined, in addition to the modulation of HIF-1? and of p53, p21, caspase-2, and of the ataxia telangiectasia mutated (ATM) target PIDD-C. Results DCQ decreased colony forming ability and viability of all HCT116 cells to a greater extent under hypoxia than normoxia and the p21-/-cell line was most sensitive. Cells had different HIF-1? responses to hypoxia and/or drug treatment. In p53+/+, DCQ significantly inhibited the hypoxia-induced increases in HIF-1? protein, in contrast to the absence of a significant HIF-1? increase or modulation by DCQ in p21-/- cells. In p53-/- cells, 10 ?M DCQ significantly reduced HIF-1? expression, especially under hypoxia, despite the constitutive expression of this protein in control cells. Higher DCQ doses induced PreG1-phase increase and apoptosis, however, lower doses caused mitotic catastrophe. In p53+/+ cells, apoptosis correlated with the increased expression of the pro-apoptotic caspase-2 and inhibition of the pro-survival protein PIDD-C. Exposure of p53+/+ cells to DCQ induced single strand breaks and triggered the activation of the nuclear kinase ATM by phosphorylation at Ser-1981 in all cell cycle phases. On the other hand, no drug toxicity to normal FHs74 Int human intestinal cell line was observed. Conclusions Collectively, our findings indicate that DCQ reduces the colony survival of HCT116 and induces apoptosis even in cells that are null for p53 or p21, which makes it a molecule of clinical significance, since many resistant colon tumors harbor mutations in p53. PMID:21078189

  2. Cytotoxicity of probiotics from Philippine commercial dairy products on cancer cells and the effect on expression of cfos and cjun early apoptotic-promoting genes and Interleukin-1 ? and Tumor Necrosis Factor-? proinflammatory cytokine genes.

    PubMed

    Shyu, Peter T; Oyong, Glenn G; Cabrera, Esperanza C

    2014-01-01

    This study determined cytotoxicity of probiotic Lactobacillus spp. from Philippine dairy products on cancer cells and normal fibroblasts and their effects on expression of early apoptotic-promoting cfos, cjun and proinflammatory cytokine IL-1?, TNF-? genes. Cultures were from Yakult, Bear Brand Probiotic Drink, Nido3+ Powdered Milk. Filter-sterilized supernatants from cultures of Lactobacillus spp. were evaluated for cytotoxicity to colon cancer cells (HT-29 and HCT116), leukemia cells (THP-1), and normal human dermal fibroblasts (HDFn) using PrestoBlue. Bleomycin was the positive control. Absolute quantification of transcript levels was conducted using qRT-PCR. Cytotoxicity index profiles on HDFn, THP-1 of all probiotic supernatants and negative controls suggest nontoxicity to the cells when compared to bleomycin, whereas all probiotic supernatants were found to be cytotoxic to HT-29 and HCT-116 colon cancer cell lines. Expression of cfos, cjun transcripts was significantly upregulated in HT-29 and HCT116 cells treated with probiotic supernatants compared to untreated baseline levels (P < 0.05). Expression of IL-1? and TNF-? by lipopolysaccharide-treated macrophages was significantly downregulated in cells with probiotic supernatants compared to those exposed to MRS medium (P < 0.05). Results provide strong support for the role of Lactobacillus spp. studied in anticancer therapy and in prevention of inflammation that may act as precursor to carcinogenesis. PMID:25276792

  3. Effect of ?,?-Dimethylacrylshikonin on Inhibition of Human Colorectal Cancer Cell Growth in Vitro and in Vivo

    PubMed Central

    Fan, Yingying; Jin, Shaoju; He, Jun; Shao, Zhenjun; Yan, Jiao; Feng, Ting; Li, Hong

    2012-01-01

    In traditional Chinese medicine, shikonin and its derivatives, has been used in East Asia for several years for the prevention and treatment of several diseases, including cancer. We previously identified that ?,?-dimethylacrylshikonin (DA) could inhibit hepatocellular carcinoma growth. In the present study, we investigated the inhibitory effects of DA on human colorectal cancer (CRC) cell line HCT-116 in vitro and in vivo. A viability assay showed that DA could inhibit tumor cell growth in a time- and dose-dependent manner. Flow cytometry showed that DA blocks the cell cycle at G0/G1 phase. Western blotting results demonstrated that the induction of apoptosis by DA correlated with the induction of pro-apoptotic proteins Bax, and Bid, and a decrease in the expression of anti-apoptotic proteins Bcl-2 and Bcl-xl. Furthermore, treatment of HCT-116 bearing nude mice with DA significantly retarded the growth of xenografts. Consistent with the results in vitro, the DA-mediated suppression of HCT-116 xenografts correlated with Bax and Bcl-2. Taken together, these results suggest that DA could be a novel and promising approach to the treatment of CRC. PMID:22942759

  4. Targeting KRAS Oncogene in Colon Cancer Cells with 7-Carboxylate Indolo[3,2-b]quinoline Tri-Alkylamine Derivatives

    PubMed Central

    Brito, Hugo; Martins, Ana Cláudia; Lavrado, Joăo; Mendes, Eduarda; Francisco, Ana Paula; Santos, Sofia A.; Ohnmacht, Stephan A.; Kim, Nam-Soon; Rodrigues, Cecília M. P.; Moreira, Rui; Neidle, Stephen; Borralho, Pedro M.; Paulo, Alexandra

    2015-01-01

    Background A guanine-rich strand within the promoter of the KRAS gene can fold into an intra-molecular G-quadruplex structure (G4), which has an important role in the regulation of KRAS transcription. We have previously identified indolo[3,2-b]quinolines with a 7-carboxylate group and three alkylamine side chains (IQ3A) as effective G4 stabilizers and promising selective anticancer leads. Herein we investigated the anticancer mechanism of action of these compounds, which we hypothesized due to stabilization of the G4 sequence in the KRAS promoter and subsequent down-regulation of gene expression. Methodology/Principal Findings IQ3A compounds showed greater stabilization of G4 compared to duplex DNA structures and reduced KRAS promoter activity in a dual luciferase reporter assay. Moreover, IQ3A compounds showed high anti-proliferative activity in HCT116 and SW620 colon cancer cells (IC50 < 2.69 ?M), without eliciting cell death in non-malignant HEK293T human embryonic kidney, and human colon fibroblasts CCD18co. IQ3A compounds significantly reduced KRAS mRNA and protein steady-state levels at IC50 concentrations, and increased p53 protein steady-state levels and cell death by apoptosis in HCT116 cells (mut KRAS, wt p53). Furthermore, KRAS silencing in HCT116 p53 wild-type (p53(+/+)) and null (p53(-/-)) isogenic cell lines induced a higher level of cell death, and a higher IQ3A-induced cell death in HCT116 p53(+/+) compared to HCT116 p53(-/-). Conclusions Herein we provide evidence that G4 ligands such as IQ3A compounds can target G4 motifs present in KRAS promoter, down-regulate the expression of the mutant KRAS gene through inhibition of transcription and translation, and induce cell death by apoptosis in colon cancer cell lines. Thus, targeting KRAS at the genomic level with G4 ligands may be a new anticancer therapy strategy for colon cancer. PMID:26024321

  5. UDP-Glucuronosyltransferase 1A Compromises Intracellular Accumulation and Anti-Cancer Effect of Tanshinone IIA in Human Colon Cancer Cells

    PubMed Central

    Liu, Miao; Wang, Qiong; Liu, Fang; Cheng, Xuefang; Wu, Xiaolan; Wang, Hong; Wu, Mengqiu; Ma, Ying; Wang, Guangji; Hao, Haiping

    2013-01-01

    Background and Purpose NAD(P)H: quinone oxidoreductase 1 (NQO1) mediated quinone reduction and subsequent UDP-glucuronosyltransferases (UGTs) catalyzed glucuronidation is the dominant metabolic pathway of tanshinone IIA (TSA), a promising anti-cancer agent. UGTs are positively expressed in various tumor tissues and play an important role in the metabolic elimination of TSA. This study aims to explore the role of UGT1A in determining the intracellular accumulation and the resultant apoptotic effect of TSA. Experimental Approach We examined TSA intracellular accumulation and glucuronidation in HT29 (UGT1A positive) and HCT116 (UGT1A negative) human colon cancer cell lines. We also examined TSA-mediated reactive oxygen species (ROS) production, cytotoxicity and apoptotic effect in HT29 and HCT116 cells to investigate whether UGT1A levels are directly associated with TSA anti-cancer effect. UGT1A siRNA or propofol, a UGT1A9 competitive inhibitor, was used to inhibit UGT1A expression or UGT1A9 activity. Key Results Multiple UGT1A isoforms are positively expressed in HT29 but not in HCT116 cells. Cellular S9 fractions prepared from HT29 cells exhibit strong glucuronidation activity towards TSA, which can be inhibited by propofol or UGT1A siRNA interference. TSA intracellular accumulation in HT29 cells is much lower than that in HCT116 cells, which correlates with high expression levels of UGT1A in HT29 cells. Consistently, TSA induces less intracellular ROS, cytotoxicity, and apoptotic effect in HT29 cells than those in HCT116 cells. Pretreatment of HT29 cells with UGT1A siRNA or propofol can decrease TSA glucuronidation and simultaneously improve its intracellular accumulation, as well as enhance TSA anti-cancer effect. Conclusions and Implications UGT1A can compromise TSA cytotoxicity via reducing its intracellular exposure and switching the NQO1-triggered redox cycle to metabolic elimination. Our study may shed a light in understanding the cellular pharmacokinetic and molecular mechanism by which UGTs determine the chemotherapy effects of drugs that are UGTs’ substrates. PMID:24244442

  6. Cytotoxicity of Elaoephorbia drupifera and other Cameroonian medicinal plants against drug sensitive and multidrug resistant cancer cells

    PubMed Central

    2013-01-01

    Background Multidrug resistance (MDR) is a major hurdle for cancer treatment worldwide and accounts for chemotherapy failure in over 90% of patients with metastatic cancer. Evidence of the cytotoxicity of Cameroonian plants against cancer cell lines including MDR phenotypes is been intensively and progressively provided. The present work was therefore designed to evaluate the cytotoxicity of the methanol extracts of twenty-two Cameroonian medicinal plants against sensitive and MDR cancer cell lines. Methods The methanol maceration was used to obtain the crude plant extracts whilst the cytotoxicity of the studied extracts was determined using a resazurin reduction assay. Results A preliminary assay on leukemia CCRF-CEM cells at 40 ?g/mL shows that six of the twenty plant extract were able to enhance less than 50% of the growth proliferation of CCRF-CEM cells. These include Crinum zeylanicum (32.22%), Entada abyssinica (34.67%), Elaoephorbia drupifera (35.05%), Dioscorea bulbifera (45.88%), Eremomastax speciosa (46.07%) and Polistigma thonningii (45.11%). Among these six plants, E. drupifera showed the best activity with IC50 values below or around 30 ?g/mL against the nine tested cancer cell lines. The lowest IC50 value of 8.40 ?g/mL was recorded with the extract of E. drupifera against MDA-MB231 breast cancer cell line. The IC50 values below 10 ?g/mL were recorded with the extracts of E. drupifera against MDA-MB231 breast cancer cells, C. zeylanicum against HCT116 p53+/+ and HCT116p53-/- colon cancer cells and E. abyssinica against HCT116 p53+/+ cells. Conclusion The results of the present study provide evidence of the cytotoxic potential of some Cameroonian medicinal plants and a baseline information for the potential use of Elaoephorbia drupifera in the treatment of sensitive and drug-resistant cancer cell lines. PMID:24088184

  7. Crocin from Crocus Sativus Possesses Significant Anti-Proliferation Effects on Human Colorectal Cancer Cells

    PubMed Central

    Aung, H.H.; Wang, C.Z.; Ni, M.; Fishbein, A.; Mehendale, S.R.; Xie, J.T.; Shoyama, A.Y.; Yuan, C.S.

    2009-01-01

    Aim To investigate the anti-proliferative effects of Crocus sativus extract and its major constituent, crocin, on three colorectal cancer cell lines (HCT-116, SW-480, and HT-29). The cell growth inhibition effect was compared to that of non-small cell lung cancer (NSCLC) cells. In addition, Crocus sativus' effect on non-cancer cells was evaluated. Methods Using high performance liquid chromatography (HPLC), the purity of crocin and the content of crocin extract were determined. Anti-proliferative effects of Crocus sativus extract and crocin on test cells was evaluated by MTS assay. Results The purity of crocin was found to be 95.9% and the content of crocin in the extract was 22.9%. Significant concentration-related inhibition effects of the extract on all three colorectal cancer cell lines were observed (P < 0.01). The proliferation was reduced most significantly in HCT-116 cells, to 45.5% at 1.0 mg/ml and to 6.8 % at 3.0 mg/ml. Crocin at 1.0 mM, significantly reduced HCT-116, SW-480, and HT-29 cell proliferation to 2.8%, 52%, and 16.8%, respectively (P < 0.01). Since 3.0 mg/ml Crocus sativus extract contained approximately 0.6 mM crocin, the observed effects suggest that crocin is a major responsible constituent in the extract. Significant anti-proliferative effects were also observed in non-small cell lung cancer cells. However, Crocus sativus extract did not significantly affect the growth of non-cancer young adult mouse colon cells. Conclusion Data from this study demonstrated that Crocus sativus extract and its major constituent, crocin, significantly inhibited the growth of colorectal cancer cells while not affecting normal cells. Crocus sativus extract should be investigated further as a viable option in the treatment of colorectal cancer. PMID:18004240

  8. Cytometric profiling of CD133+ cells in human colon ?carcinoma cell lines identifies a common core phenotype ?and cell type-specific mosaics.

    PubMed

    Gemei, Marica; Di Noto, Rosa; Mirabelli, Peppino; Del Vecchio, Luigi

    2013-05-14

    In colorectal cancer, CD133+ cells from fresh biopsies proved to be more tumorigenic than their CD133- counterparts. Nevertheless, the function of CD133 protein in tumorigenic cells seems only marginal. Moreover, CD133 expression alone is insufficient to isolate true cancer stem cells, since only 1 out of 262 CD133+ cells actually displays stem-cell capacity. Thus, new markers for colorectal cancer stem cells are needed. Here, we show the extensive characterization of CD133+ cells in 5 different colon carcinoma continuous cell lines (HT29, HCT116, Caco2, GEO and LS174T), each representing a different maturation level of colorectal cancer cells. Markers associated with stemness, tumorigenesis and metastatic potential were selected. We identified 6 molecules consistently present on CD133+ cells: CD9, CD29, CD49b, CD59, CD151, and CD326. By contrast, CD24, CD26, CD54, CD66c, CD81, CD90, CD99, CD112, CD164, CD166, and CD200 showed a discontinuous behavior, which led us to identify cell type-specific surface antigen mosaics. Finally, some antigens, e.g. CD227, indicated the possibility of classifying the CD133+ cells into 2 subsets likely exhibiting specific features. This study reports, for the first time, an extended characterization of the CD133+ cells in colon carcinoma cell lines and provides a "dictionary" of antigens to be used in colorectal cancer research. PMID:23709346

  9. Butyrate suppresses expression of neuropilin I in colorectal cell lines through inhibition of Sp1 transactivation

    PubMed Central

    2010-01-01

    Background Neuropilin is a transmembrane receptor for vascular endothelial growth factor (VEGF) and is expressed in normal endothelial cells and upregulated in cancer cells. Neuropilin-1 (NRP-1) has been shown to promote tumour cell migration and survival in colon cancer in response to VEGF binding. The expression profiles of neuropilins, associated co-receptors and known ligands have been mapped in three colorectal cell lines: Caco-2, HCT116 & HT29. We have previously shown that butyrate, a naturally occurring histone deacetylase inhibitor (HDACi) produced by fermentation of fibre in the colon, causes apoptosis of colon cancer cell lines. Results Here we demonstrate that butyrate down-regulates NRP-1 and VEGF at the mRNA and protein level in colorectal cancer cell lines. NRP-1 is a known transcriptional target of Sp1, whose activity is regulated by acetylation. NRP-1 down-regulation by butyrate was associated with decreased binding affinity of Sp1 for canonical Sp-binding sites in the NRP-1 promoter. siRNA-mediated knock-down of Sp1 implied that Sp1 may have strong DNA binding activity but weak transactivation potential. Conclusion The downregulation of the key apoptotic and angiogenesis regulator NRP-1 by butyrate suggests a novel contributory mechanism to the chemopreventive effect of dietary fibre. PMID:20950431

  10. Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells

    PubMed Central

    Kwak, Youngeun

    2015-01-01

    BACKGROUND/OBJECTIVES Perilla frutescens Britton leaves are a commonly consumed vegetable in different Asian countries including Korea. Cancer is a major cause of human death worldwide. The aim of the current study was to investigate the inhibitory effects of ethanol extract of perilla leaf (PLE) against important characteristics of cancer cells, including unrestricted growth, resisted apoptosis, and activated metastasis, using human cancer cells. MATERIALS/METHODS Two human cancer cell lines were used in this study, HCT116 colorectal carcinoma cells and H1299 non-small cell lung carcinoma cells. Assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed for measurement of cell growth. Soft agar and wound healing assays were performed to determine colony formation and cell migration, respectively. Nuclear staining and cell cycle analysis were performed for assessment of apoptosis. Fibronectin-coated plates were used to determine cell adhesion. RESULTS Treatment of HCT116 and H1299 cells with PLE resulted in dose-dependent inhibition of growth by 52-92% (at the concentrations of 87.5, 175, and 350 µg/ml) and completely abolished the colony formation in soft agar (at the concentration of 350 µg/ml). Treatment with PLE at the 350 µg/ml concentration resulted in change of the nucleus morphology and significantly increased sub-G1 cell population in both cells, indicating its apoptosis-inducing activity. PLE at the concentration range of 87.5 to 350 µg/ml was also effective in inhibiting the migration of H1299 cells (by 52-58%) and adhesion of both HCT116 and H1299 cells (by 25-46%). CONCLUSIONS These results indicate that PLE exerts anti-cancer activities against colon and lung cancers in vitro. Further studies are needed in order to determine whether similar effects are reproduced in vivo. PMID:25671062

  11. Autocrine growth stimulation of human renal Wilms' tumour G401 cells by a gastrin-like peptide.

    PubMed

    Blackmore, M; Doherty, E; Manning, J E; Hirst, B H

    1994-05-01

    The role of gastrin in the control of growth of renal G401 cells isolated from a human nephroblastoma (Wilms' tumour) was investigated. G401 cell growth was enhanced in the presence of exogenous gastrin. Addition of anti-gastrin antibodies to serum-free medium significantly inhibited the growth of G401 cells. G401 cells contained the equivalent of 4.3 pg/10(6) cells of gastrin, and serum-free medium collected over 48 hr from G401 cells contained the equivalent of 38 ng/10(6) cells of gastrin, as determined by radioimmunoassay. Growth of G401 cells was inhibited in a concentration-related way by a variety of gastrin/CCK receptor antagonists. Devazepide and proglumide were, respectively, the most and the least potent inhibitors of G401 cell growth (potency order devazepide > L-365,260 = lorglumide > loxiglumide > benzotript > proglumide). These gastrin/CCK receptor antagonists had similar growth-inhibitory activities in human colonic adenocarcinoma HCT-116 cells. Growth of HCT-116 cells was stimulated to a lesser extent, as compared with G401 cells, by exogenous gastrin, and endogenous gastrin was not detectable in HCT-116 cells. The results are consistent with a role for a gastrin-like peptide in the control of growth of a renal cell line. The data suggest that gastrin/CCK receptor antagonists warrant further investigation as therapeutic agents for the control of gastrin-responsive tumours derived from outside, as well as inside, the gastrointestinal tract, including tumours derived from the kidney. PMID:8169000

  12. Overexpression and activation of the RON receptor tyrosine kinase in a panel of human colorectal carcinoma cell lines.

    PubMed

    Chen, Y Q; Zhou, Y Q; Angeloni, D; Kurtz, A L; Qiang, X Z; Wang, M H

    2000-11-25

    RON is a receptor tyrosine kinase belonging to the MET proto-oncogene family. The purposes of this study are to determine the expression and activation of RON in a panel of human colon carcinoma cell lines. Western blotting showed that RON is barely detectable in normal and SV-40-transformed colon epithelial cells, but highly expressed and constitutively activated in several colon carcinoma cell lines including Colo201, HT-29, HCT116, and SW837. Moreover, a novel RON variant with a molecular mass of 160 kDa (RONDelta160) was identified from HT-29 cells. The cDNA encoding RONDelta160 has an in-frame deletion of 109 amino acids in the extracellular domain of the RON beta chain, which is caused by splicing out of two exons in the RON mRNA. No mutations were found in the kinase domain of the RON gene in five carcinoma cell lines screened. By expressing RON in colon epithelial cells, we found that RON activation increases cell motile-invasive activities and protects cells against apoptotic death. These data suggest that RON expression and activation are deregulated in colon carcinoma cell lines. By abnormal activation of RON, this receptor and its variant may regulate motile-invasive phenotypes of certain colon carcinoma cells in vivo. PMID:11082293

  13. Antiproliferative effects of protopanaxadiol ginsenosides on human colorectal cancer cells.

    PubMed

    Zheng, Yan; Nan, Hongmei; Hao, Miao; Song, Chengcheng; Zhou, Yifa; Gao, Yufei

    2013-07-01

    Ginsenosides are the main biologically active components of ginseng. In this study, seven types of protopanaxadiol ginsenosides were assessed for their antiproliferative activity on the HCT-116 and HT-29 human colorectal cancer cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The experimental results indicated that the native protopanaxadiol ginsenosides Rb1 and Rb2 inhibited the proliferation of the colorectal cancer cells in a dose-dependent manner. The deglycosylation products F2 and CO (from ginsenosides Rb1 and Rb2, respectively) significantly inhibited the growth of the human colorectal cancer cell lines, whereas product C-K (from Rb1 and Rb2) exerted no antiproliferative effects on the cancer cell lines assessed in this study. HT-29 cells were more sensitive to these ginsenosides compared to HCT-116 cells. In addition, the antiproliferative activity of ginsenosides was found to be correlated with the number and type of sugar residues. The potent growth inhibitory effect of protopanaxadiol ginsenosides on cancer cells may be used in the pharmaceutical industry. PMID:24648985

  14. Antiproliferative effects of protopanaxadiol ginsenosides on human colorectal cancer cells

    PubMed Central

    ZHENG, YAN; NAN, HONGMEI; HAO, MIAO; SONG, CHENGCHENG; ZHOU, YIFA; GAO, YUFEI

    2013-01-01

    Ginsenosides are the main biologically active components of ginseng. In this study, seven types of protopanaxadiol ginsenosides were assessed for their antiproliferative activity on the HCT-116 and HT-29 human colorectal cancer cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The experimental results indicated that the native protopanaxadiol ginsenosides Rb1 and Rb2 inhibited the proliferation of the colorectal cancer cells in a dose-dependent manner. The deglycosylation products F2 and CO (from ginsenosides Rb1 and Rb2, respectively) significantly inhibited the growth of the human colorectal cancer cell lines, whereas product C-K (from Rb1 and Rb2) exerted no antiproliferative effects on the cancer cell lines assessed in this study. HT-29 cells were more sensitive to these ginsenosides compared to HCT-116 cells. In addition, the antiproliferative activity of ginsenosides was found to be correlated with the number and type of sugar residues. The potent growth inhibitory effect of protopanaxadiol ginsenosides on cancer cells may be used in the pharmaceutical industry. PMID:24648985

  15. MicroRNA-101 down-regulates sphingosine kinase 1 in colorectal cancer cells.

    PubMed

    Chen, Min-Bin; Yang, Lan; Lu, Pei-Hua; Fu, Xing-Li; Zhang, Yan; Zhu, Ya-Qun; Tian, Ye

    2015-08-01

    MicroRNAs (miRs) dysregulation is a general feature of colorectal cancer (CRC) and other solid tumors, and is associated cancer progression. In the current study, we demonstrate that microRNA-101 (miR-101) inhibits CRC cells probably through down-regulating sphingosine kinase 1 (SphK1). Our results showed that exogenously expressing miR-101 inhibited CRC cell (HT-29 and HCT-116 lines) growth in vitro. At the molecular level, miR-101 dramatically down-regulated SphK1 mRNA and protein expression, causing pro-apoptotic ceramide production in above CRC cells. On the other hand, inhibition of miR-101 through expressing antagomiR-101 increased SphK1 expression to down-regulate ceramide level in HT-29 cells. miR-101 expression increased the in vitro anti-CRC activity of conventional chemo-agents: paclitaxel and doxorubicin. CRC cells with SphK1-shRNA knockdown showed similar phenotypes as the miR-101-expressed CRC cells, presenting with elevated level of ceramide and high sensitivity to paclitaxel or doxorubicin. In vivo, HCT-116 xenograft growth in severe combined immuno-deficient (SCID) mice was dramatically inhibited by over-expressing miR-101. Further, miR-101 enhanced paclitaxel-induced anti-HCT-116 activity in vivo. Together, these results indicate that miR-101 exerts its anti-CRC activities probably through down-regulating SphK1. PMID:26071354

  16. Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues.

    PubMed

    Kim, Areum Daseul; Zhang, Rui; Han, Xia; Kang, Kyoung Ah; Piao, Mei Jing; Maeng, Young Hee; Chang, Weon Young; Hyun, Jin Won

    2015-09-01

    Reduced glutathione (GSH) is an abundant tripeptide present in the majority of cell types. GSH is highly reactive and is often conjugated to other molecules, via its sulfhydryl moiety. GSH is synthesized from glutamic acid, cysteine, and glycine via two sequential ATP?consuming steps, which are catalyzed by glutamate cysteine ligase (GCL) and GSH synthetase (GSS). However, the role of GSH in cancer remains to be elucidated. The present study aimed to determine the levels of GSH and GSH synthetic enzymes in human colorectal cancer. The mRNA and protein expression levels of GSH, the catalytic subunit of GCL (GCLC) and GSS were significantly higher in the following five colon cancer cell lines: Caco?2, SNU?407, SNU?1033, HCT?116, and HT?29, as compared with the normal colon cell line, FHC. Similarly, in 9 out of 15 patients with colon cancer, GSH expression levels were higher in tumor tissue, as compared with adjacent normal tissue. In addition, the protein expression levels of GCLC and GSS were higher in the tumor tissue of 8 out of 15, and 10 out of 15 patients with colon cancer respectively, as compared with adjacent normal tissue. Immunohistochemical analyses confirmed that GCLC and GSS were expressed at higher levels in colon cancer tissue, as compared with normal mucosa. Since GSH and GSH metabolizing enzymes are present at elevated levels in colonic tumors, they may serve as clinically useful biomarkers of colon cancer, and/or targets for anti-colon cancer drugs. PMID:26059756

  17. Zinc Finger Nuclease Knock-out of NADPH:Cytochrome P450 Oxidoreductase (POR) in Human Tumor Cell Lines Demonstrates That Hypoxia-activated Prodrugs Differ in POR Dependence*

    PubMed Central

    Su, Jiechuang; Gu, Yongchuan; Pruijn, Frederik B.; Smaill, Jeff B.; Patterson, Adam V.; Guise, Christopher P.; Wilson, William R.

    2013-01-01

    Hypoxia, a ubiquitous feature of tumors, can be exploited by hypoxia-activated prodrugs (HAP) that are substrates for one-electron reduction in the absence of oxygen. NADPH:cytochrome P450 oxidoreductase (POR) is considered one of the major enzymes responsible, based on studies using purified enzyme or forced overexpression in cell lines. To examine the role of POR in HAP activation at endogenous levels of expression, POR knock-outs were generated in HCT116 and SiHa cells by targeted mutation of exon 8 using zinc finger nucleases. Absolute quantitation by proteotypic peptide mass spectrometry of DNA sequence-confirmed multiallelic mutants demonstrated expression of proteins with residual one-electron reductase activity in some clones and identified two (Hko2 from HCT116 and S2ko1 from SiHa) that were functionally null by multiple criteria. Sensitivities of the clones to 11 HAP (six nitroaromatics, three benzotriazine N-oxides, and two quinones) were compared with wild-type and POR-overexpressing cells. All except the quinones were potentiated by POR overexpression. Knocking out POR had a marked effect on antiproliferative activity of the 5-nitroquinoline SN24349 in both genetic backgrounds after anoxic exposure but little or no effect on activity of most other HAP, including the clinical stage 2-nitroimidazole mustard TH-302, dinitrobenzamide mustard PR-104A, and benzotriazine N-oxide SN30000. Clonogenic cell killing and reductive metabolism of PR-104A and SN30000 under anoxia also showed little change in the POR knock-outs. Thus, although POR expression is a potential biomarker of sensitivity to some HAP, identification of other one-electron reductases responsible for HAP activation is needed for their rational clinical development. PMID:24196959

  18. Nur77 Agonists Induce Proapoptotic Genes and Responses in Colon Cancer Cells through Nuclear Receptor-Dependent and Nuclear Receptor-Independent Pathways

    Microsoft Academic Search

    Kyungsil Yoon; Sudhakar Chintharlapalli; Maen Abdelrahim; Shaheen Khan; Shashi K. Ramaiah; Stephen Safe

    2007-01-01

    Nerve growth factor-induced BA (NGFI-BA, Nur77) is an orphan nuclear receptor with no known endogenous ligands; however, recent studies on a series of methylene-substituted diindolylmethanes (C-DIM) have identified 1,1-bis(3¶-indolyl)- 1-(phenyl)methane (DIM-C-Ph) and 1,1-bis(3¶-indolyl)-1- (p-anisyl)methane (DIM-C-pPhOCH3 )a s Nur77 agonists. Nur77 is expressed in several colon cancer cell lines (RKO, SW480, HCT-116, HT-29, and HCT-15), and we also observed by immunostaining

  19. The effects of folic acid on global DNA methylation and colonosphere formation in colon cancer cell lines.

    PubMed

    Farias, Nathan; Ho, Nelson; Butler, Stacey; Delaney, Leanne; Morrison, Jodi; Shahrzad, Siranoush; Coomber, Brenda L

    2015-08-01

    Folate and its synthetic form, folic acid (FA), are essential vitamins for the regeneration of S-adenosyl methionine molecules, thereby maintaining adequate cellular methylation. The deregulation of DNA methylation is a contributing factor to carcinogenesis, as alterations in genetic methylation may contribute to stem cell reprogramming and dedifferentiation processes that lead to a cancer stem cell (CSC) phenotype. Here, we investigate the potential effects of FA exposure on DNA methylation and colonosphere formation in cultured human colorectal cancer (CRC) cell lines. We show for the first time that HCT116, LS174T, and SW480 cells grown without adequate FA demonstrate significantly impaired colonosphere forming ability with limited changes in CD133, CD166, and EpCAM surface expression. These differences were accompanied by concomitant changes to DNA methyltransferase (DNMT) enzyme expression and DNA methylation levels, which varied depending on cell line. Taken together, these results demonstrate an interaction between FA metabolism and CSC phenotype in vitro and help elucidate a connection between supplemental FA intake and CRC development. PMID:25804133

  20. Myotubularin-Related Phosphatase 3 Promotes Growth of Colorectal Cancer Cells

    PubMed Central

    Zheng, Bo'an; Yu, Xiaojun; Chai, Rui

    2014-01-01

    Due to changes in lifestyle, particularly changes in dietary habits, colorectal cancer (CRC) increased in recent years despite advances in treatment. Nearly one million new cases diagnosed worldwide and half a million deaths make CRC a leading cause of cancer mortality. In the present study, we aimed to investigate the role of myotubularin-related phosphatase 3 (MTMR3) in CRC cell growth via lentivirus-mediated small interfering RNA (siRNA) transduction in human colon cancer cell lines HCT116 and SW1116. The effect of MTMR3 knockdown on cell growth was evaluated by MTT, colony formation, and flow cytometry assays. The effect of MTMR3 knockdown on cell apoptosis was evaluated by flow cytometry with Annexin V/7-AAD double staining. The activation of apoptotic markers, Bad and PARP, was detected using Intracellular Signaling Array. Knockdown of MTMR3 resulted in a significant reduction in cell proliferation in both HCT116 and SW1116 cells. Moreover, knockdown of MTMR3 led to S phase cell cycle arrest. Furthermore, knockdown of MTMR3 induced cell apoptosis via phosphorylation of Bad and cleavage of PARP. These results indicate that MTMR3 may play an important role in the progression of CRC and suggest that siRNA mediated silencing of MTMR3 could be an effective tool in CRC treatment. PMID:25215329

  1. p53 is important for the anti-invasion of ganoderic acid T in human carcinoma cells.

    PubMed

    Chen, Nian-Hong; Zhong, Jian-Jiang

    2011-06-15

    The function of p53 induced by ganoderic acids (GAs) in anti-invasion was unknown, although our previous work reported the inhibition of tumor invasion and metastasis by Ganoderic acid T (GA-T). This work indicated that GA-T promoted cell aggregation, inhibited cell adhesion and surpressed cell migration with a dose-dependent manner in human colon tumor cell lines of HCT-116 p53(+/+) and p53(-/-). Furthermore, comparing the ratios of HCT-116 p53(+/+) and p53(-/-) cells, p53 modified GA-T inhibition of migration and adhesion and GA-T promotion of cell aggregation, and p53 also modified GA-T inhibition of NF-?B nuclear translocation, I?B? degradation, and down-regulation of urokinase-type plaminogen activator (uPA), matrix metalloproteinase-2/9 (MMP-2/9), inducible nitric oxide synthase (iNOS/NOS2) protein expression and inducible nitric oxide (NO) production. The results indicated that p53 played an important role in anti-invasion of GA-T in human carcinoma cells. p53 may be an important target for GA-T inhibiting human carcinoma cells anti-invasion. PMID:21353507

  2. The Indolic Diet-Derivative, 3,3?-Diindolylmethane, Induced Apoptosis in Human Colon Cancer Cells through Upregulation of NDRG1

    PubMed Central

    Lerner, A.; Grafi-Cohen, M.; Napso, T.; Azzam, N.; Fares, F.

    2012-01-01

    N-myc downstream regulated gene-1 participates in carcinogenesis, angiogenesis, metastases, and anticancer drug resistance. In the present study, we analyzed the expression pattern of N-myc downstream regulated gene-1 following treatment of human colonic cancer cell lines; HCT-116 (well differentiated with wild-type p53 gene) and Colo-320 (poorly differentiated with mutant p53 gene), with 3,3?-diindolylmethane, a well-established proapoptotic agent product derived from indole-3-carbinol. Treatment of Colo-320 and HCT-116 with 3,3?-diindolylmethane disclosed inhibition of cell viability in a dose-dependent manner, mediated through apoptosis induction. The increased expression of N-myc downstream regulated gene-1 was detected only in poorly differentiated colon cancer cells, Colo-320 cell line. Our results suggest that N-myc downstream regulated gene-1 expression is enhanced by 3,3?-diindolylmethane in poorly differentiated cells and followed by induction of apoptosis. 3,3?-diindolylmethane induced apoptosis may represent a new regulator of N-myc downstream regulated gene-1 in poorly differentiated colonic cancer cells. PMID:22187533

  3. Anti-Proliferative Effect of Naringenin through p38-Dependent Downregulation of Cyclin D1 in Human Colorectal Cancer Cells

    PubMed Central

    Song, Hun Min; Park, Gwang Hun; Eo, Hyun Ji; Lee, Jin Wook; Kim, Mi Kyoung; Lee, Jeong Rak; Lee, Man Hyo; Koo, Jin Suk; Jeong, Jin Boo

    2015-01-01

    Naringenin (NAR) as one of the flavonoids observed in grapefruit has been reported to exhibit an anti-cancer activity. However, more detailed mechanism by which NAR exerts anti-cancer properties still remains unanswered. Thus, in this study, we have shown that NAR down-regulates the level of cyclin D1 in human colorectal cancer cell lines, HCT116 and SW480. NAR inhibited the cell proliferation in HCT116 and SW480 cells and decreased the level of cyclin D1 protein. Inhibition of proteasomal degradation by MG132 blocked NAR-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with NAR. In addition, NAR increased the phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine blocked cyclin D1 downregulation by NAR. p38 inactivation attenuated cyclin D1 downregulation by NAR. From these results, we suggest that NAR-mediated cyclin D1 downregulation may result from proteasomal degradation through p38 activation. The current study provides new mechanistic link between NAR, cyclin D1 downregulation and cell growth in human colorectal cancer cells. PMID:26157550

  4. Anti-Proliferative Effect of Naringenin through p38-Dependent Downregulation of Cyclin D1 in Human Colorectal Cancer Cells.

    PubMed

    Song, Hun Min; Park, Gwang Hun; Eo, Hyun Ji; Lee, Jin Wook; Kim, Mi Kyoung; Lee, Jeong Rak; Lee, Man Hyo; Koo, Jin Suk; Jeong, Jin Boo

    2015-07-01

    Naringenin (NAR) as one of the flavonoids observed in grapefruit has been reported to exhibit an anti-cancer activity. However, more detailed mechanism by which NAR exerts anti-cancer properties still remains unanswered. Thus, in this study, we have shown that NAR down-regulates the level of cyclin D1 in human colorectal cancer cell lines, HCT116 and SW480. NAR inhibited the cell proliferation in HCT116 and SW480 cells and decreased the level of cyclin D1 protein. Inhibition of proteasomal degradation by MG132 blocked NAR-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with NAR. In addition, NAR increased the phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine blocked cyclin D1 downregulation by NAR. p38 inactivation attenuated cyclin D1 downregulation by NAR. From these results, we suggest that NAR-mediated cyclin D1 downregulation may result from proteasomal degradation through p38 activation. The current study provides new mechanistic link between NAR, cyclin D1 downregulation and cell growth in human colorectal cancer cells. PMID:26157550

  5. Expression analysis of secreted and cell surface genes of five transformed human cell lines and derivative xenograft tumors

    PubMed Central

    Stull, Robert A; Tavassoli, Roya; Kennedy, Scot; Osborn, Steve; Harte, Rachel; Lu, Yan; Napier, Cheryl; Abo, Arie; Chin, Daniel J

    2005-01-01

    Background Since the early stages of tumorigenesis involve adhesion, escape from immune surveillance, vascularization and angiogenesis, we devised a strategy to study the expression profiles of all publicly known and putative secreted and cell surface genes. We designed a custom oligonucleotide microarray containing probes for 3531 secreted and cell surface genes to study 5 diverse human transformed cell lines and their derivative xenograft tumors. The origins of these human cell lines were lung (A549), breast (MDA MB-231), colon (HCT-116), ovarian (SK-OV-3) and prostate (PC3) carcinomas. Results Three different analyses were performed: (1) A PCA-based linear discriminant analysis identified a 54 gene profile characteristic of all tumors, (2) Application of MANOVA (Pcorr < .05) to tumor data revealed a larger set of 149 differentially expressed genes. (3) After MANOVA was performed on data from individual tumors, a comparison of differential genes amongst all tumor types revealed 12 common differential genes. Seven of the 12 genes were identified by all three analytical methods. These included late angiogenic, morphogenic and extracellular matrix genes such as ANGPTL4, COL1A1, GP2, GPR57, LAMB3, PCDHB9 and PTGER3. The differential expression of ANGPTL4 and COL1A1 and other genes was confirmed by quantitative PCR. Conclusion Overall, a comparison of the three analyses revealed an expression pattern indicative of late angiogenic processes. These results show that a xenograft model using multiple cell lines of diverse tissue origin can identify common tumorigenic cell surface or secreted molecules that may be important biomarker and therapeutic discoveries. PMID:15836779

  6. The ganglioside GM3 is associated with cisplatin-induced apoptosis in human colon cancer cells.

    PubMed

    Chung, Tae-Wook; Choi, Hee-Jung; Kim, Seok-Jo; Kwak, Choong-Hwan; Song, Kwon-Ho; Jin, Un-Ho; Chang, Young-Chae; Chang, Hyeun Wook; Lee, Young-Choon; Ha, Ki-Tae; Kim, Cheorl-Ho

    2014-01-01

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is a well-known chemotherapeutic agent for the treatment of several cancers. However, the precise mechanism underlying apoptosis of cancer cells induced by CDDP remains unclear. In this study, we show mechanistically that CDDP induces GM3-mediated apoptosis of HCT116 cells by inhibiting cell proliferation, and increasing DNA fragmentation and mitochondria-dependent apoptosis signals. CDDP induced apoptosis within cells through the generation of reactive oxygen species (ROS), regulated the ROS-mediated expression of Bax, Bcl-2, and p53, and induced the degradation of the poly (ADP-ribosyl) polymerase (PARP). We also checked expression levels of different gangliosides in HCT116 cells in the presence or absence of CDDP. Interestingly, among the gangliosides, CDDP augmented the expression of only GM3 synthase and its product GM3. Reduction of the GM3 synthase level through ectopic expression of GM3 small interfering RNA (siRNA) rescued HCT116 cells from CDDP-induced apoptosis. This was evidenced by inhibition of apoptotic signals by reducing ROS production through the regulation of 12-lipoxigenase activity. Furthermore, the apoptotic sensitivity to CDDP was remarkably increased in GM3 synthase-transfected HCT116 cells compared to that in controls. In addition, GM3 synthase-transfected cells treated with CDDP exhibited an increased accumulation of intracellular ROS. These results suggest the CDDP-induced oxidative apoptosis of HCT116 cells is mediated by GM3. PMID:24829158

  7. Oyaksungisan, a Traditional Herbal Formula, Inhibits Cell Proliferation by Induction of Autophagy via JNK Activation in Human Colon Cancer Cells.

    PubMed

    Yim, Nam-Hui; Jung, Young Pil; Kim, Aeyung; Ma, Choong Je; Cho, Won-Kyung; Ma, Jin Yeul

    2013-01-01

    Oyaksungisan (OY) is a traditional herbal formula broadly used to treat beriberi, vomiting, diarrhea, and circulatory disturbance in Asian countries from ancient times. The effect of OY on cancer, however, was not reported until now. In this study, we have demonstrated that OY inhibits cell proliferation and induces cell death via modulating the autophagy on human colon cancer cells. In HCT116 cells, OY increased the ratio of LC3-II/LC3-I, a marker of autophagy, and treatment with 3-MA, an inhibitor of autophagy, and considerably reduced the formation of autophagosomes. In addition, OY regulated mitogen-activated protein kinase (MAPK) cascades; especially, JNK activation was closely related with autophagy effect by OY in HCT116 cells. Our results indicate that autophagy induction is responsible for the antiproliferative effect by OY, despite the weak apoptosis induction in HCT116 cells. In conclusion, OY might have a potential to be developed as an herbal anticancer remedy. PMID:23573119

  8. Oyaksungisan, a Traditional Herbal Formula, Inhibits Cell Proliferation by Induction of Autophagy via JNK Activation in Human Colon Cancer Cells

    PubMed Central

    Yim, Nam-Hui; Jung, Young Pil; Kim, Aeyung; Ma, Choong Je; Cho, Won-Kyung; Ma, Jin Yeul

    2013-01-01

    Oyaksungisan (OY) is a traditional herbal formula broadly used to treat beriberi, vomiting, diarrhea, and circulatory disturbance in Asian countries from ancient times. The effect of OY on cancer, however, was not reported until now. In this study, we have demonstrated that OY inhibits cell proliferation and induces cell death via modulating the autophagy on human colon cancer cells. In HCT116 cells, OY increased the ratio of LC3-II/LC3-I, a marker of autophagy, and treatment with 3-MA, an inhibitor of autophagy, and considerably reduced the formation of autophagosomes. In addition, OY regulated mitogen-activated protein kinase (MAPK) cascades; especially, JNK activation was closely related with autophagy effect by OY in HCT116 cells. Our results indicate that autophagy induction is responsible for the antiproliferative effect by OY, despite the weak apoptosis induction in HCT116 cells. In conclusion, OY might have a potential to be developed as an herbal anticancer remedy. PMID:23573119

  9. Growth inhibitory activities of crude extracts obtained from herbal plants in the Ryukyu Islands on several human colon carcinoma cell lines.

    PubMed

    Kaneshiro, Tatsuya; Suzui, Masumi; Takamatsu, Reika; Murakami, Akira; Ohigashi, Hajime; Fujino, Tetsuya; Yoshimi, Naoki

    2005-01-01

    There is increasing interest in the use of herbs for the treatment of human diseases including cancer. Therefore, the purpose of this study was to determine whether crude extracts obtained from 44 herbal plants in the Ryukyu Islands might contain components capable of inhibiting the growth of a variety of human colon carcinoma cell lines. Leaves, roots and other parts of the plants were extracted with chloroform, and the crude extracts were dissolved in dimethylsulfoxide and used for the experiments. Extracts of Hemerocallis fulva, Ipomoea batatas, Curcuma longa, and Nasturium officinale caused marked dose-dependent growth inhibition, with IC(50) values in the range of 10-80 mug/ml. With the HCT116 cell line, the extracts of Hemerocallis fulva and Ipomoea batatas induced G1 cell cycle arrest after 48 h of treatment. In addition, we found that extracts of Curcuma longa, and Nasturium officinale induced apoptosis in these cells after 48 h of treatment. The present studies are the first systematic examination of the growth inhibitory effects of crude extracts obtained from herbal plants in the Ryukyu Islands. The findings provide evidence that several plants in the Ryukyu Islands contain components that may have anticancer activity. PMID:16235999

  10. The Effect of Sulfated (1?3)-?-L-Fucan from the Brown Alga Saccharina cichorioides Miyabe on Resveratrol-Induced Apoptosis in Colon Carcinoma Cells

    PubMed Central

    Vishchuk, Olesia S.; Ermakova, Svetlana P.; Zvyagintseva, Tatyana N.

    2013-01-01

    Accumulating data clearly indicate that the induction of apoptosis by nontoxic natural compounds is a potent defense against the development and progression of many malignancies, including colon cancer. Resveratrol and the fucoidans have been shown to possess potent anti-tumor activity in vitro and in vivo. The aim of the present study was to examine whether the combination of a fucoidan from the brown alga Saccharina cichorioides Miyabe and resveratrol would be an effective preventive and/or therapeutic strategy against colon cancer. Based on NMR spectroscopy and MALDI-TOF analysis, the fucoidan isolated and purified from Saccharina cichorioides Miyabe was (1?3)-?-L-fucan with sulfate groups at C2 and C4 of the ?-L-fucopyranose residues. The fucoidan enhanced the antiproliferative activity of resveratrol at nontoxic doses and facilitated resveratrol-induced apoptosis in the HCT 116 human colon cancer cell line. Apoptosis was realized by the activation of initiator caspase-9 and effector caspase-7 and -3, followed by the cleavage of PARP. Furthermore, significant inhibition of HCT 116 colony formation was associated with the sensitization of cells to resveratrol by the fucoidan. Taken together, these results demonstrate that the combination of the algal fucoidan with resveratrol may provide a potential therapy against human colon cancer. PMID:23337253

  11. Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells.

    PubMed

    Akhtar Ali, Muhammad; Younis, Shady; Wallerman, Ola; Gupta, Rajesh; Andersson, Leif; Sjöblom, Tobias

    2015-06-23

    The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle-related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-?, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes. PMID:26056301

  12. Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells

    PubMed Central

    Akhtar Ali, Muhammad; Younis, Shady; Wallerman, Ola; Gupta, Rajesh; Andersson, Leif; Sjöblom, Tobias

    2015-01-01

    The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle–related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-?, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes. PMID:26056301

  13. Curcumin cytotoxicity is enhanced by PTEN disruption in colorectal cancer cells

    PubMed Central

    Chen, Lin; Li, Wen-Feng; Wang, Hong-Xiao; Zhao, Hai-Na; Tang, Jia-Jia; Wu, Chang-Jie; Lu, Li-Ting; Liao, Wan-Qin; Lu, Xin-Cheng

    2013-01-01

    AIM: To investigate the effects of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) deficiency on the cytotoxicity of chemotherapeutic agents toward colorectal cancer cells. METHODS: PTEN-deficient colorectal cancer (CRC) cells were generated by human somatic cell gene targeting using the adeno-associated virus system. The cytotoxic effects of compounds including curcumin, 5-fluorouracil (5-FU), dihydroartemisinin (DHA), irinotecan (CPT-11) and oxaliplatin (OXA) on cancer cells were determined using the MTT assay. Enhanced cytotoxicity of curcumin in PTEN-deficient CRC cells was observed, and this was confirmed using clonogenic assays. Apoptosis and cell cycle progression were analyzed by flow cytometry. Levels of apoptosis and cell cycle-related proteins were examined by Western blotting. RESULTS: We developed an isogenic set of CRC cell lines that differed only in their PTEN status. Using this set of cell lines, we found that disruption of the PTEN gene had no effect on the sensitivity of CRC cells to 5-FU, CPT-11, DHA, or OXA, whereas PTEN disruption increased the sensitivity of CRC cells to curcumin. Loss of PTEN did not alter the curcumin-induced apoptosis in CRC cells. However, PTEN deficiency led to an altered pattern of curcumin-mediated cell cycle arrest. In HCT116 PTEN+/+ cells, curcumin caused a G2/M phase arrest, whereas it caused a G0/G1 phase arrest in HCT116 PTEN-/- cells. Levels of cell cycle-related proteins were consistent with these respective patterns of cell cycle arrest. CONCLUSION: Curcumin shows enhanced cytotoxicity toward PTEN-deficient cancer cells, suggesting that it might be a potential chemotherapeutic agent for cancers harboring PTEN mutations. PMID:24187456

  14. Autophagy inhibition by chloroquine sensitizes HT-29 colorectal cancer cells to concurrent chemoradiation

    PubMed Central

    Schonewolf, Caitlin A; Mehta, Monal; Schiff, Devora; Wu, Hao; Haffty, Bruce G; Karantza, Vassiliki; Jabbour, Salma K

    2014-01-01

    AIM: To investigate whether the inhibition of autophagy by chloroquine (CQ) sensitizes rectal tumors to radiation therapy (RT) or concurrent chemoradiation (chemoRT). METHODS: In vitro, HCT-116 and HT-29 colorectal cancer (CRC) cell lines were treated as following: (1) PBS; (2) CQ; (3) 5-fluorouracil (5-FU); (4) RT; (5) CQ and RT; (6) 5-FU and RT; (7) CQ and 5-FU; and (8) 5-FU and CQ and RT. Each group was then exposed to various doses of radiation (0-8 Gy) depending on the experiment. Cell viability and proliferative capacity were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenic assays. Clonogenic survival curves were constructed and compared across treatment groups. Autophagy status was determined by assessing the LC3-II to LC3-I?ratio on western blot analysis, autophagosome formation on electron microscopy and identification of a perinuclear punctate pattern with GFP-labeled LC3 on fluorescence microscopy. Cell cycle arrest and cell death were evaluated by FACS and Annexin V analysis. All experiments were performed in triplicate and statistical analysis was performed by the student’s t test to compare means between treatment groups. RESULTS: RT (2-8 Gy) induced autophagy in HCT-116 and HT-29 CRC cell lines at 4 and 6 h post-radiation, respectively, as measured by increasing LC3-II to LC3-I?ratio on western blot. Additionally, electron microscopy demonstrated autophagy induction in HT-29 cells 24 h following irradiation at a dose of 8 Gy. Drug treatment with 5-FU (25 ?mol/L) induced autophagy and the combination of 5-FU and RT demonstrated synergism in autophagy induction. CQ (10 ?mol/L) alone and in combination with RT effectively inhibited autophagy and sensitized both HCT-116 and HT-29 cells to treatment with radiation (8 Gy; P < 0.001 and 0.00001, respectively). Significant decrease in clonogenic survival was seen only in the HT-29 cell line, when CQ was combined with RT at doses of 2 and 8 Gy (P < 0.5 and P = 0.05, respectively). There were no differences in cell cycle progression or Annexin V staining upon CQ addition to RT. CONCLUSION: Autophagy inhibition by CQ increases CRC cell sensitivity to concurrent treatment with 5-FU and RT in vitro, suggesting that addition of CQ to chemoRT improves CRC treatment response. PMID:24653797

  15. Preparation and characterization of lyophilised egg PC liposomes incorporating curcumin and evaluation of its activity against colorectal cancer cell lines.

    PubMed

    Pandelidou, Maria; Dimas, Konstantinos; Georgopoulos, Aristidis; Hatziantoniou, Sophia; Demetzos, Costas

    2011-02-01

    Curcumin has been associated with the treatment of various diseases in traditional medicine, among them cancer. The major problems that prevent its approval as therapeutic agent are its low water solubility and its relatively low in vivo bioavailability. Liposomes are considered as effective drug carriers because of their ability to solubilize hydrophobic compounds and to alter their pharmacokinetic properties. The purpose of this study was the development of lyophilised liposomal curcumin fully characterized in terms of its physical properties [(zeta-potential, size, size distribution and Polydispercity index (PI)], and to evaluate its in vitro cytotoxic against colorectal cancer cell lines in a short-term and in a long-term (clonogenic) assay. Curcumin was incorporated in egg-phosphatidylcholine (EPC) liposomes at a drug to lipid molar ratio 1:14 achieving high incorporation efficiency close to 85%. The liposomal curcumin was lyophilized preserving thus its stability. The reconstitution of the formulation resulted in the original liposomal suspension. The release in FBS showed a plateau near 14% at 96 hours of incubation. The in vitro studies against colorectal cancer cell lines have shown that liposomes improve the activity of curcumin especially in the long-term assay and the liposomal formulation found to be more potent against HCT116 and HCT15, cell lines which express the MDR phenotype. EPC liposomal curcumin in a molar ratio of curcumin/EPC 1:14 has shown improved cytotoxic activity versus free curcumin against colorectal cancer cell lines. In vivo studies based on the recent findings are in progress in our laboratory. PMID:21456169

  16. Syndecan-2 is upregulated in colorectal cancer cells through interactions with extracellular matrix produced by stromal fibroblasts

    PubMed Central

    2013-01-01

    Background The extracellular matrix (ECM) influences the structure, viability and functions of cells and tissues. Recent evidence indicates that tumor cells and stromal cells interact through direct cell-cell contact, the production of ECM components and the secretion of growth factors. Syndecans are a family of transmembrane heparan sulfate proteoglycans that are involved in cell adhesion, motility, proliferation and differentiation. Syndecan-2 has been found to be highly expressed in colorectal cancer cell lines and appears to be critical for cancer cell behavior. We have examined the effect of stromal fibroblast-produced ECM on the production of proteoglycans by colorectal cancer cell lines. Results Our results showed that in a highly metastatic colorectal cancer cell line, HCT-116, syndecan-2 expression is enhanced by fibroblast ECM, while the expression of other syndecans decreased. Of the various components of the stromal ECM, fibronectin was the most important in stimulating the increase in syndecan-2 expression. The co-localization of syndecan-2 and fibronectin suggests that these two molecules are involved in the adhesion of HCT-116 cells to the ECM. Additionally, we demonstrated an increase in the expression of integrins alpha-2 and beta-1, in addition to an increase in the expression of phospho-FAK in the presence of fibroblast ECM. Furthermore, blocking syndecan-2 with a specific antibody resulted in a decrease in cell adhesion, migration, and organization of actin filaments. Conclusions Overall, these results show that interactions between cancer cells and stromal ECM proteins induce significant changes in the behavior of cancer cells. In particular, a shift from the expression of anti-tumorigenic syndecans to the tumorigenic syndecan-2 may have implications in the migratory behavior of highly metastatic tumor cells. PMID:23705906

  17. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    SciTech Connect

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)] [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France); Mazella, Jean, E-mail: mazella@ipmc.cnrs.fr [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)] [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  18. Wild celery (Smyrnium olusatrum L.) oil and isofuranodiene induce apoptosis in human colon carcinoma cells.

    PubMed

    Quassinti, Luana; Maggi, Filippo; Barboni, Luciano; Ricciutelli, Massimo; Cortese, Manuela; Papa, Fabrizio; Garulli, Chiara; Kalogris, Cristina; Vittori, Sauro; Bramucci, Massimo

    2014-09-01

    Smyrnium olusatrum (Apiaceae), well known as wild celery, is a biennal celery-scented plant used for many centuries as a vegetable, then abandoned after the introduction of celery. In the present work, the essential oil obtained from inflorescences and the amounts of its main constituents isofuranodiene, curzerene and germacrone were analyzed by GC as well as by HPLC because of their degradation (Cope rearrangement) occurring at high temperatures. The oil and the main constituents were assayed for cytotoxic activity on the human colon cancer cell line (HCT116) by MTT assay. Flower oil and isofuranodiene showed noteworthy activity on tumor cells with IC50 of 10.71 and 15.06 ?g/ml, respectively. Analysis of the cytotoxic activity showed that wild celery oil and isofuranodiene are able to induce apoptosis in colon cancer cells in a time and concentration-dependent manner suggesting a potential role as models for the development of chemopreventive agents. PMID:24924290

  19. IL-1? promotes stemness and invasiveness of colon cancer cells through Zeb1 activation

    PubMed Central

    2012-01-01

    Background IL-1? is a pleiotropic pro-inflammatory cytokine and its up-regulation is closely associated with various cancers including gastrointestinal tumors. However, it remains unclear how IL-1? may contribute to the initiation and development of these inflammation-associated cancers. Here we investigated the role of IL-1? in colon cancer stem cell (CSC) development. Methods Using self-renewal assay, soft-agar assay, invasion assay, real-time PCR analysis, immunoblot assay and shRNA knockdown, we determined the effects of IL-1? on cancer stem cell development and epithelial-mesenchymal transition (EMT) in human primary colon cancer cells and colon cancer cell line HCT-116. Results We found that IL-1? can increase sphere-forming capability of colon cancer cells in serum-free medium. IL-1?-induced spheres displayed an up-regulation of stemness factor genes (Bmi1 and Nestin) and increased drug resistance, hallmarks of CSCs. Importantly, expression of EMT activator Zeb1 was increased in IL-1?-induced spheres, indicating that there might be a close association between EMT and IL-1?-induced CSC self-renewal. Indeed, IL-1? treatment led to EMT of colon cancer cells with loss of E-cadherin, up-regulation of Zeb1, and gain of the mesenchymal phenotype. Furthermore, shRNA-mediated knockdown of Zeb1 in HCT-116 cells reversed IL-1?-induced EMT and stem cell formation. Conclusion Our findings indicate that IL-1? may promote colon tumor growth and invasion through activation of CSC self-renewal and EMT, and Zeb1 plays a critical role in these two processes. Thus, IL-1? and Zeb1 might be new therapeutic targets against colon cancer stem cells. PMID:23174018

  20. PES1 regulates sensitivity of colorectal cancer cells to anticancer drugs

    SciTech Connect

    Xie, Wei [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China)] [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China); Qu, Like, E-mail: qulike@bjcancer.org [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China)] [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China); Meng, Lin; Liu, Caiyun; Wu, Jian [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China)] [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China); Shou, Chengchao, E-mail: scc@bjcancer.org [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China)] [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China)

    2013-02-15

    Highlights: ? PES1 was overexpressed in diverse cancer cell lines. ? PES1-ablation enhances DNA damage response by decreasing DNA repair. ? PES1-ablation increases the sensitivity of HCT116 cells to chemotherapeutic agents. ? PES1-ablation is associated with diminished nuclear entry of RAD51. -- Abstract: PES1 (also known as Pescadillo), a nucleolar protein, was involved in biogenesis of ribosomal RNA. Up-regulation of PES1 has been documented in some human cancers, indicating that PES1 may play some crucial roles in tumorigenesis. In our previous study, it was found that silencing of PES1 resulted in decreased proliferation of colorectal cancer cells. We also noticed that depletion of PES1 altered expression profiles of diverse genes. In the present study, we validated the expression changes of a subset of genotoxic stress-related genes in PES1-silenced HCT116 cells by quantitative RT-PCR. The steady and etoposide-induced phosphorylated H2AX (?-H2AX) were higher in PES1-silenced cells than in control cells. Besides, etoposide-induced ?-H2AX persisted longer in PES1-silenced cells after removing the etoposide. Next, results of comet assay revealed decreased DNA repair after PES1-ablation. PES1-ablated cells were more sensitive to chemotherapeutic agents, which could be reversed by reconstitution with exogenous PES1. Furthermore, deletion of PES1 diminished steady and DNA damage-induced levels of nuclear RAD51. Our results uncover a potential role of PES1 in chemoresistance by regulating DNA damage response in colorectal cancer cells.

  1. Depletion of Securin Induces Senescence After Irradiation and Enhances Radiosensitivity in Human Cancer Cells Regardless of Functional p53 Expression

    SciTech Connect

    Chen Wenshu; Yu Yichu [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China); Lee Yijang [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Chen, J.-H. [Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan (China); Hsu, H.-Y. [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China); Chiu, S.-J., E-mail: chiusj@mail.tcu.edu.t [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China); Institute of Radiation Sciences, Tzu Chi Technology College, Hualien, Taiwan (China)

    2010-06-01

    Purpose: Radiotherapy is one of the best choices for cancer treatment. However, various tumor cells exhibit resistance to irradiation-induced apoptosis. The development of new strategies to trigger cancer cell death besides apoptosis is necessary. This study investigated the role of securin in radiation-induced apoptosis and senescence in human cancer cells. Methods and Materials: Cell survival was determined using clonogenic assays. Western blot analysis was used to analyze levels of securin, caspase-3, PARP, p53, p21, Rb, gamma-H2AX, and phospho-Chk2. Senescent cells were analyzed using a beta-galactosidase staining assay. A securin-expressed vector (pcDNA-securin) was stably transfected into securin-null HCT116 cells. Securin gene knockdown was performed by small interfering RNA and small hairpin RNA in HCT116 and MDA-MB-231 cells, respectively. Results: Radiation was found to induce apoptosis in securin wild type HCT116 cells but induced senescence in securin-null cells. Restoration of securin reduced senescence and increased cell survival in securin-null HCT116 cells after irradiation. Radiation-induced gamma-H2AX and Chk2 phosphorylation were induced transiently in securin-wild-type cells but exhibited sustained activation in securin-null cells. Securin gene knockdown switches irradiation-induced apoptosis to senescence in both HCT116 p53-null and MDA-MB-231 cells. Conclusions: Our results demonstrated that the level of securin expression plays a determining role in the radiosensitivity and fate of cells. Depletion of securin impairs DNA repair after irradiation, increasing DNA damage and promoting senescence in the residual surviving cells regardless of functional p53 expression. The knockdown of securin may contribute to a novel radiotherapy protocol for the treatment of human cancer cells that are resistant to irradiation.

  2. TMPRSS4 correlates with colorectal cancer pathological stage and regulates cell proliferation and self-renewal ability

    PubMed Central

    Huang, Ao; Zhou, Houmin; Zhao, Hongchao; Quan, Yingjun; Feng, Bo; Zheng, Minhua

    2014-01-01

    Transmembrane protease/serine 4 (TMPRSS4) is a member of the type II transmembrane serine protease (TTSP) family and it was found highly expressed in several cancers. This study aims to evaluate the expression of TMPRSS4 in colorectal cancer (CRC) and investigate its role in proliferation and self-renewal of colon cancer cells. qRT-PCR and immunohistochemistry were used to detect the mRNA and protein expression level of TMRPSS4 in CRC samples respectively. Loss of function assay was conducted with RNAi technique. Cell proliferation was done with WST-8 assay; cell apoptosis and cell cycle analysis were performed with flow cytometry; invasion and migration were done with transwell assay. Plate and soft agarose clonogenic assays were used to detect clone-formation ability. CD44 and CD133 expressions were analyzed by flow cytometry and western blot. We found that TMPRSS4 was highly expressed in CRC tissues both at mRNA and protein level and correlated with pathological stage. Knockdown of TMPRSS4 in highly expressed colon cancer cell line HCT116 resulted in inhibition of cell proliferation, induction of cell apoptosis and suppression of invasion and migration; moreover, knockdown of TMPRSS4 suppressed the in vitro clone-formation ability of HCT116 and reduced the expressions of CD44 and CD133. The findings in this research showed that TMPRSS4 was associated with CRC stage and regulated the proliferation and self-renewal ability of colon cancer cells; TMRPSS4 was involved in the development and progression of CRC. PMID:24335200

  3. Defective autophagosome formation in p53-null colorectal cancer reinforces crocin-induced apoptosis.

    PubMed

    Amin, Amr; Bajbouj, Khuloud; Koch, Adrian; Gandesiri, Muktheshwar; Schneider-Stock, Regine

    2015-01-01

    Crocin, a bioactive molecule of saffron, inhibited proliferation of both HCT116 wild-type and HCT116 p53(-/-) cell lines at a concentration of 10 mM. Flow cytometric analysis of cell cycle distribution revealed that there was an accumulation of HCT116 wild-type cells in G1 (55.9%, 56.1%) compared to the control (30.4%) after 24 and 48 h of crocin treatment, respectively. However, crocin induced only mild G2 arrest in HCT116 p53(-/-) after 24 h. Crocin induced inefficient autophagy in HCT116 p53(-/-) cells, where crocin induced the formation of LC3-II, which was combined with a decrease in the protein levels of Beclin 1 and Atg7 and no clear p62 degradation. Autophagosome formation was not detected in HCT116 p53(-/-) after crocin treatment predicting a nonfunctional autophagosome formation. There was a significant increase of p62 after treating the cells with Bafilomycin A1 (Baf) and crocin compared to crocin exposure alone. Annexin V staining showed that Baf-pretreatment enhanced the induction of apoptosis in HCT116 wild-type cells. Baf-exposed HCT116 p53(-/-) cells did not, however, show any enhancement of apoptosis induction despite an increase in the DNA damage-sensor accumulation, ?H2AX indicating that crocin induced an autophagy-independent classical programmed cell death. PMID:25584615

  4. Tumor-derived hydrogen sulfide, produced by cystathionine-?-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer

    PubMed Central

    Szabo, Csaba; Coletta, Ciro; Chao, Celia; Módis, Katalin; Szczesny, Bartosz; Papapetropoulos, Andreas; Hellmich, Mark R.

    2013-01-01

    The physiological functions of hydrogen sulfide (H2S) include vasorelaxation, stimulation of cellular bioenergetics, and promotion of angiogenesis. Analysis of human colon cancer biopsies and patient-matched normal margin mucosa revealed the selective up-regulation of the H2S-producing enzyme cystathionine-?-synthase (CBS) in colon cancer, resulting in an increased rate of H2S production. Similarly, colon cancer-derived epithelial cell lines (HCT116, HT-29, LoVo) exhibited selective CBS up-regulation and increased H2S production, compared with the nonmalignant colonic mucosa cells, NCM356. CBS localized to the cytosol, as well as the mitochondrial outer membrane. ShRNA-mediated silencing of CBS or its pharmacological inhibition with aminooxyacetic acid reduced HCT116 cell proliferation, migration, and invasion; reduced endothelial cell migration in tumor/endothelial cell cocultures; and suppressed mitochondrial function (oxygen consumption, ATP turnover, and respiratory reserve capacity), as well as glycolysis. Treatment of nude mice with aminooxyacetic acid attenuated the growth of patient-derived colon cancer xenografts and reduced tumor blood flow. Similarly, CBS silencing of the tumor cells decreased xenograft growth and suppressed neovessel density, suggesting a role for endogenous H2S in tumor angiogenesis. In contrast to CBS, silencing of cystathionine-?-lyase (the expression of which was unchanged in colon cancer) did not affect tumor growth or bioenergetics. In conclusion, H2S produced from CBS serves to (i) maintain colon cancer cellular bioenergetics, thereby supporting tumor growth and proliferation, and (ii) promote angiogenesis and vasorelaxation, consequently providing the tumor with blood and nutritients. The current findings identify CBS-derived H2S as a tumor growth factor and anticancer drug target. PMID:23836652

  5. Tumor-derived hydrogen sulfide, produced by cystathionine-?-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer.

    PubMed

    Szabo, Csaba; Coletta, Ciro; Chao, Celia; Módis, Katalin; Szczesny, Bartosz; Papapetropoulos, Andreas; Hellmich, Mark R

    2013-07-23

    The physiological functions of hydrogen sulfide (H2S) include vasorelaxation, stimulation of cellular bioenergetics, and promotion of angiogenesis. Analysis of human colon cancer biopsies and patient-matched normal margin mucosa revealed the selective up-regulation of the H2S-producing enzyme cystathionine-?-synthase (CBS) in colon cancer, resulting in an increased rate of H2S production. Similarly, colon cancer-derived epithelial cell lines (HCT116, HT-29, LoVo) exhibited selective CBS up-regulation and increased H2S production, compared with the nonmalignant colonic mucosa cells, NCM356. CBS localized to the cytosol, as well as the mitochondrial outer membrane. ShRNA-mediated silencing of CBS or its pharmacological inhibition with aminooxyacetic acid reduced HCT116 cell proliferation, migration, and invasion; reduced endothelial cell migration in tumor/endothelial cell cocultures; and suppressed mitochondrial function (oxygen consumption, ATP turnover, and respiratory reserve capacity), as well as glycolysis. Treatment of nude mice with aminooxyacetic acid attenuated the growth of patient-derived colon cancer xenografts and reduced tumor blood flow. Similarly, CBS silencing of the tumor cells decreased xenograft growth and suppressed neovessel density, suggesting a role for endogenous H2S in tumor angiogenesis. In contrast to CBS, silencing of cystathionine-?-lyase (the expression of which was unchanged in colon cancer) did not affect tumor growth or bioenergetics. In conclusion, H2S produced from CBS serves to (i) maintain colon cancer cellular bioenergetics, thereby supporting tumor growth and proliferation, and (ii) promote angiogenesis and vasorelaxation, consequently providing the tumor with blood and nutritients. The current findings identify CBS-derived H2S as a tumor growth factor and anticancer drug target. PMID:23836652

  6. Construction of interference vector targeting Ep-CAM gene and its effects on colorectal cancer cell proliferation

    PubMed Central

    Qi, Yanmei; Zhou, Fengqiang; Zhang, Lu; Liu, Lei; Xu, Hong; Guo, Huiguang

    2015-01-01

    Background Prior study indicates that abnormal protein expression and functional changes in the development and progression of colorectal cancer is related to gene expression. The aim of this study was to construct an interference plasmid targeting the Ep-CAM gene and to investigate its effects on the proliferation of colorectal cancer cells. Methods In this study, HT-29 and HCT-116 colorectal cancer cell lines were selected as cell models. The double-stranded micro (mi)RNA oligo was inserted into the pcDNATM6.2-GW/EmGFPmiR vector, which is an expression of miRNA. Lipofectamine™ 2000 was used to transfer plasmid into the empty plasmid group (transfected pcDNATM6.2-GW/EmGFPmiR-neg) and the interference group (transfected pcDNATM6.2-GW/EmGFPmiR-Ep-CAM-1), respectively. Meanwhile, the nontransferred HT-29 and HCT-116 acts as the blank control group. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the transfection efficiency. Western blot was used to detect Ep-CAM protein expression. The cell proliferation in each group was detected by using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results The results indicated that the Ep-CAM messenger (m)RNA expression in the interference group was lower significantly compared with that of the empty plasmid group and control group (P<0.01). Western blot analysis results showed that Ep-CAM protein expression was significantly lower in interference group compared with that of the empty plasmid group and the control group (P<0.01). MTT assay results demonstrated that the proliferation ability of cells in the interference group was significantly inhibited compared with the two other groups (P<0.05). Conclusion Silencing of Ep-CAM can significantly inhibit the proliferation of colorectal cancer cells. PMID:26028961

  7. High mobility group box-1 is phosphorylated by protein kinase C zeta and secreted in colon cancer cells

    SciTech Connect

    Lee, Hanna; Park, Minhee; Shin, Nara; Kim, Gamin [Department of Pathology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of) [Department of Pathology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Kim, Yun Gi [Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of)] [Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Shin, Jeon-Soo [Department of Microbiology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of)] [Department of Microbiology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Kim, Hoguen, E-mail: hkyonsei@yuhs.ac [Department of Pathology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of) [Department of Pathology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Specific enzyme for HMGB1 phosphorylation and its secretion is proposed. Black-Right-Pointing-Pointer Inhibition of PKC-{zeta} leads to significant reduction of the secreted HMGB1. Black-Right-Pointing-Pointer Phosphorylation of specific site of HMGB1 redirects its secretion in cancer cells. Black-Right-Pointing-Pointer Activation of PKC-{zeta} in cancers explains the enhanced HMGB1 secretion. -- Abstract: High mobility group box-1 (HMGB1), a nuclear protein, is overexpressed and secreted in cancer cells. Phosphorylation on two different nuclear localization signal regions are known to be important for the nuclear-to-cytoplasmic transport and secretion of HMGB1. However, little is known about the biochemical mechanism of HMGB1 modifications and its subsequent secretion from cancer cells. To identify the specific enzyme and important sites for HMGB1 phosphorylation, we screened the protein kinase C (PKC) family in a colon cancer cell line (HCT116) for HMGB1 binding by pull-down experiments using a 3XFLAG-HMGB1 construct. Strong interactions between atypical PKCs (PKC-{zeta}, {lambda}, and {iota}) and cytoplasmic HMGB1 were observed in HCT116 cells. We further identified the most critical PKC isotype that regulates HMGB1 secretion is PKC-{zeta} by using PKC inhibitors and siRNA experiments. The serine residues at S39, S53 and S181 of HMGB1 were related to enhancing HMGB1 secretion. We also demonstrated overexpression and activation of PKC-{zeta} in colon cancer tissues. Our findings suggest that PKC-{zeta} is involved in the phosphorylation of HMGB1, and the phosphorylation of specific serine residues in the nuclear localization signal regions is related to enhanced HMGB1 secretion in colon cancer cells.

  8. Inhibition of ?-catenin signalling promotes DNA damage elicited by benzo[a]pyrene in a model of human colon cancer cells via CYP1 deregulation.

    PubMed

    Kabátková, Markéta; Zapletal, Ond?ej; Tylichová, Zuzana; Ne?a, Ji?í; Machala, Miroslav; Milcová, Alena; Topinka, Jan; Kozubík, Alois; Vondrá?ek, Jan

    2015-07-01

    Deregulation of Wnt/?-catenin signalling plays an important role in the pathogenesis of colorectal cancer. Interestingly, this pathway has been recently implicated in transcriptional control of cytochrome P450 (CYP) family 1 enzymes, which are responsible for bioactivation of a number of dietary carcinogens. In the present study, we investigated the impact of inhibition of Wnt/?-catenin pathway on metabolism and genotoxicity of benzo[a]pyrene (BaP), a highly mutagenic polycyclic aromatic hydrocarbon and an efficient ligand of the aryl hydrocarbon receptor, which is known as a primary regulator of CYP1 expression, in cellular models derived from colorectal tumours. We observed that a synthetic inhibitor of ?-catenin, JW74, significantly increased formation of BaP-induced DNA adducts in both colorectal adenoma and carcinoma-derived cell lines. Using the short interfering RNA (siRNA) targeting ?-catenin, we then found that ?-catenin knockdown in HCT116 colon carcinoma cells significantly enhanced formation of covalent DNA adducts by BaP and histone H2AX phosphorylation, as detected by (32)P-postlabelling technique and immunocytochemistry, respectively, and it also induced expression of DNA damage response genes, such as CDKN1A or DDB2. The increased formation of DNA adducts formed by BaP upon ?-catenin knockdown corresponded with enhanced production of major BaP metabolites, as well as with an increased expression/activity of CYP1 enzymes. Finally, using siRNA-mediated knockdown of CYP1A1, we confirmed that this enzyme plays a major role in formation of BaP-induced DNA adducts in HCT116 cells. Taken together, the present results indicated that the siRNA-mediated inhibition of ?-catenin signalling, which is aberrantly activated in a majority of colorectal cancers, modulated genotoxicity of dietary carcinogen BaP in colon cell model in vitro, via a mechanism involving up-regulation of CYP1 expression and activity. PMID:25805023

  9. Growth response of human colorectal tumour cell lines to treatment with afatinib (BIBW2992), an irreversible erbB family blocker, and its association with expression of HER family members.

    PubMed

    Khelwatty, Said Abdullah; Essapen, Sharadah; Seddon, Alan M; Modjtahedi, Helmout

    2011-08-01

    Despite the approval of the anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (mAbs), cetuximab and panitumumab, for the treatment of colorectal cancer patients, there is currently no reliable predictive marker for response to therapy. In addition, the duration of response is often limited. Therefore, this study aimed to investigate the effect of afatinib, an irreversible erbB family blocker, as a single agent or in combination with cytotoxic drugs (5-fluorouracil, irinotecan and oxaliplatin) or mAb ICR62 on the proliferation of a panel of human colorectal tumour cell lines and the association between the expression levels of the EGFR family members and response to treatment. Of the cells examined, EGFR-overexpressing DiFi cells were the most sensitive to treatment with both afatinib (IC50=45 nM) and ICR62 (IC50=4.33 nM). Afatinib also inhibited the growth of other tumour cell lines with IC50 values which ranged from 0.33 µM (CCL-221) to 1.62 µM (HCT-116). A significant association was found between the co-expression of EGFR, human epidermal growth factor receptor (HER)-2 and HER-3 and response to treatment with afatinib (R=0.915, P=0.021). Treat-ment with afatinib and cytotoxic drugs was accompanied by an increase in the proportion of these cells in the sub-G0/G1 and in the S and G2/M phase of the cell cycle, respectively. We conclude that afatinib as monotherapy or in combination with other drugs shows activity in colorectal tumour cells and that determination of the co-expression of HER family members should be conducted in clinical trials using drugs targeting erbB signaling. This approach could lead to the identification of a specific subpopulation of cancer patients more likely to benefit from erbB-directed therapy. PMID:21617858

  10. Colon Cancer Cell Separation by Dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Yang, Xiaoming; Jiang, H.; Wood, P.; Hrushesky, W.; Wang, Guiren

    2009-11-01

    Separation of cancer cells from the other biological cells can be useful for clinical cancer diagnosis and cancer treatment. In this presentation, conventional dielectrophoresis (c-DEP) is used in a microfluidic chip to manipulate and collect colorectal cancer HCT116 cell, which is doped with Human Embryonic Kidney 293 cells (HEK 293). It is noticed that, the HCT116 cell are deflected to a side channel from a main channel clearly by apply electric field at particular AC frequency band. This motion caused by negative DEP can be used to separate the cancer cell from others. In this manuscript, chip design, flow condition, the DEP spectrum of the cancer cell are reported respectively, and the separation and collection efficiency are investigated as well. The sorter is microfabricated using plastic laminate technology. -/abstract- This work has been financially supported by the NSF RII funding (EP

  11. In Vitro and In Vivo Enhancement of Chemoradiation Using the Oral PARP Inhibitor ABT-888 in Colorectal Cancer Cells

    SciTech Connect

    Shelton, Joseph W., E-mail: jwshelt@emory.edu [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Waxweiler, Timothy V.; Landry, Jerome; Gao, Huiying; Xu, Yanbo; Wang, Lanfang [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)] [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); El-Rayes, Bassel [Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)] [Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Shu, Hui-Kuo G. [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)] [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)

    2013-07-01

    Purpose: Poly(ADP-ribose) polymerase plays a critical role in the recognition and repair of DNA single-strand breaks and double-strand breaks (DSBs). ABT-888 is an orally available inhibitor of this enzyme. This study seeks to evaluate the use of ABT-888 combined with chemotherapy and radiation therapy (RT) in colorectal carcinoma models. Methods and Materials: RT clonogenic assays were performed on HCT116 and HT29 cells treated with 5-fluorouracil, irinotecan, or oxaliplatin with or without ABT. The surviving fraction at 2 Gy and dose-modifying factor at 10% survival were analyzed. Synergism was assessed by isobologram analysis for combination therapies. ?H2AX and neutral comet assays were performed to assess the effect of therapy on DSB formation/repair. In vivo assessments were made by use of HCT116 cells in a xenograft mouse model. Tumor growth delay was measured at a volume of 500 mm{sup 3}. Results: Both lines were radiosensitized by ABT alone, and ABT further increased chemotherapy dose-modifying factors to the 1.6 to 1.8 range. All combinations were synergistic (combination indices <0.9). ABT treatment significantly increased DSB after RT (?H2AX, 69% vs 43%; P=.017) and delayed repair. We found tumor growth delays of 7.22 days for RT; 11.90 days for RT and ABT; 13.5 days for oxaliplatin, RT, and ABT; 14.17 days for 5-fluorouracil, RT, and ABT; and 23.81 days for irinotecan, RT, and ABT. Conclusion: ABT-888 radiosensitizes at similar or higher levels compared with classic chemotherapies and acts synergistically with these chemotherapies to enhance RT effects. In vivo confirmation of these results indicates a potential role for combining its use with existing chemoradiation regimens.

  12. Synthetic Development of New 3-(4-Arylmethylamino)butyl-5-arylidene-rhodanines under Microwave Irradiation and Their Effects on Tumor Cell Lines and against Protein Kinases.

    PubMed

    Dago, Camille Déliko; Ambeu, Christelle N Ta; Coulibaly, Wacothon-Karime; Békro, Yves-Alain; Mamyrbékova, Janat; Defontaine, Audrey; Baratte, Blandine; Bach, Stéphane; Ruchaud, Sandrine; Guével, Rémy Le; Ravache, Myriam; Corlu, Anne; Bazureau, Jean-Pierre

    2015-01-01

    A new route to 3-(4-arylmethylamino)butyl-5-arylidene-2-thioxo-1,3-thiazolidine-4-one 9 was developed in six steps from commercial 1,4-diaminobutane 1 as starting material. The key step of this multi-step synthesis involved a solution phase "one-pot two-steps" approach assisted by microwave dielectric from N-(arylmethyl)butane-1,4-diamine hydrochloride 6a-f (as source of the first point diversity) and commercial bis-(carboxymethyl)-trithiocarbonate reagent 7 for construction of the rhodanine platform. This platform was immediately functionalized by Knoevenagel condensation under microwave irradiation with a series of aromatic aldehydes 3 as second point of diversity. These new compounds were prepared in moderate to good yields and the fourteen synthetic products 9a-n have been obtained with a Z-geometry about their exocyclic double bond. These new 5-arylidene rhodanines derivatives 9a-n were tested for their kinase inhibitory potencies against four protein kinases: Human cyclin-dependent kinase 5-p25, HsCDK5-p25; porcine Glycogen Synthase Kinase-3, GSK-3?/?; porcine Casein Kinase 1, SsCK1 and human HsHaspin. They have also been evaluated for their in vitro inhibition of cell proliferation (HuH7 D12, Caco 2, MDA-MB 231, HCT 116, PC3, NCI-H727, HaCat and fibroblasts). Among of all these compounds, 9j presented selective micromolar inhibition activity on SsCK1 and 9i exhibited antitumor activities in the HuH7 D12, MDA-MBD231 cell lines. PMID:26184130

  13. Interaction of celecoxib with different anti-cancer drugs is antagonistic in breast but not in other cancer cells

    SciTech Connect

    El-Awady, Raafat A., E-mail: relawady@sharjah.ac.ae [Pharmacology unit, Department of Cancer Biology, National, Cancer Institute, Cairo University, Fom El-Khalig, Cairo (Egypt); Department of Pharmacology and Pharmaceutics, College of Pharmacy, University of Sharjah, University City road, 27272 Sharjah (United Arab Emirates); Saleh, Ekram M. [Clinical Biochemistry and Molecular Biology unit, Department of Cancer Biology, National, Cancer Institute, Cairo University, Fom El-Khalig, Cairo (Egypt); Ezz, Marwa [College of Pharmacy, Cairo University, Cairo (Egypt); Elsayed, Abeer M. [Tissue Culture unit, Pathology Department, National Cancer Institute, Cairo University (Egypt)

    2011-09-15

    Celecoxib, an inhibitor of cyclooxygenase-2, is being investigated for enhancement of chemotherapy efficacy in cancer clinical trials. This study investigates the ability of cyclooxygenase-2 inhibitors to sensitize cells from different origins to several chemotherapeutic agents. The effect of the drug's mechanism of action and sequence of administration are also investigated. The sensitivity, cell cycle, apoptosis and DNA damage of five different cancer cell lines (HeLa, HCT116, HepG2, MCF7 and U251) to 5-FU, cisplatin, doxorubicin and etoposide {+-} celecoxib following different incubation schedules were analyzed. We found antagonism between celecoxib and the four drugs in the breast cancer cells MCF7 following all incubation schedules and between celecoxib and doxorubicin in all cell lines except for two combinations in HCT116 cells. Celecoxib with the other three drugs in the remaining four cell lines resulted in variable interactions. Mechanistic investigations revealed that celecoxib exerts different molecular effects in different cells. In some lines, it abrogates the drug-induced G2/M arrest enhancing pre-mature entry into mitosis with damaged DNA thus increasing apoptosis and resulting in synergism. In other cells, it enhances drug-induced G2/M arrest allowing time to repair drug-induced DNA damage before entry into mitosis and decreasing cell death resulting in antagonism. In some synergistic combinations, celecoxib-induced abrogation of G2/M arrest was not associated with apoptosis but permanent arrest in G1 phase. These results, if confirmed in-vivo, indicate that celecoxib is not a suitable chemosensitizer for breast cancer or with doxorubicin for other cancers. Moreover, combination of celecoxib with other drugs should be tailored to the tumor type, drug and administration schedule. - Graphical abstract: Display Omitted Highlights: > Celecoxib may enhance effects of anticancer drugs. > Its combination with four drugs was tested in five cancer cell lines. > It antagonized the effects of the four drugs in the breast cancer cell line MCF7. > Doxorubicin's cytotoxic effects were antagonized by celecoxib in four cell lines. > Cell cycle, apoptosis and DNA damage explain the different interactive effects.

  14. Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer.

    PubMed

    Cioffi, Michele; D'Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranň, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-01-01

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4(+)CD133(+) within ovarian cancer cell lines. The sorted population CD133(+)CXCR4(+) demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133(+)CXCR4(+) sorted OVCAR-5 cells. Most strikingly CXCR4(+)CD133(+) sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133(-)CXCR4(-), CD133(+)CXCR4(-), CD133(-)CXCR4(+) cells. CXCR4(+)CD133(+) OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target. PMID:26020117

  15. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53

    Microsoft Academic Search

    Binghui Li; Jiong Zhao; Chong-Zhi Wang; Jennifer Searle; Tong-Chuan He; Chun-Su Yuan; Wei Du

    2011-01-01

    Ginsenosides are the main bioactive components in American ginseng, a commonly used herb. In this study, we showed that the ginsenoside Rh2 exhibited significantly more potent cell death activity than the ginsenoside Rg3 in HCT116 and SW480 colorectal cancer cells. Cell death induced by Rh2 is mediated in part by the caspase-dependent apoptosis and in part by the caspase-independent paraptosis,

  16. CD133+CXCR4+ colon cancer cells exhibit metastatic potential and predict poor prognosis of patients

    PubMed Central

    2012-01-01

    Background Colorectal cancer (CRC), which frequently metastasizes to the liver, is one of the three leading causes of cancer-related deaths worldwide. Growing evidence suggests that a subset of cells exists among cancer stem cells. This distinct subpopulation is thought to contribute to liver metastasis; however, it has not been fully explored in CRC yet. Methods Flow cytometry analysis was performed to detect distinct subsets with CD133 and CXCR4 markers in human primary and metastatic CRC tissues. The 'stemness' and metastatic capacities of different subpopulations derived from the colon cancer cell line HCT116 were compared in vitro and in vivo. The roles of epithelial-mesenchymal transition (EMT) and stromal-cell derived factor-1 (SDF-1) in the metastatic process were also investigated. A survival curve was used to explore the correlation between the content of CD133+CXCR4+ cancer cells and patient survival. Results In human specimens, the content of CD133+CXCR4+ cells was higher in liver metastases than in primary colorectal tumors. Clonogenic and tumorigenic cells were restricted to CD133+ cells in the HCT116 cell line, with CXCR4 expression having no impact on the 'stemness' properties. We found that CD133+CXCR4+ cancer cells had a high metastatic capacity in vitro and in vivo. Compared with CD133+CXCR4- cells, CD133+CXCR4+ cancer cells experienced EMT, which contributed partly to their metastatic phenotype. We then determined that SDF-1/CXCL12 treatment could further induce EMT in CD133+CXCR4+ cancer cells and enhance their invasive behavior, while this could not be observed in CD133+CXCR4- cancer cells. Blocking SDF-1/CXCR4 interaction with a CXCR4 antagonist, AMD3100 (1,10-[1,4-phenylenebis(methylene)]bis-1,4,8,11 -tetraazacyclotetradecane octahydrochloride), inhibited metastatic tumor growth in a mouse hepatic metastasis model. Finally, a high percentage of CD133+CXCR4+ cells in human primary CRC was associated with a reduced two-year survival rate. Conclusions Strategies targeting the SDF-1/CXCR4 interaction may have important clinical applications in the suppression of colon cancer metastasis. Further investigations on how high expression of CXCR4 and EMT occur in this identified cancer stem cell subset are warranted to provide insights into our understanding of tumor biology. PMID:22871210

  17. The impact of ATRA on shaping human myeloid cell responses to epithelial cell-derived stimuli and on T-lymphocyte polarization.

    PubMed

    Chatterjee, Arunima; Gogolak, Péter; Blottičre, Hervé M; Rajnavölgyi, Éva

    2015-01-01

    Vitamin A plays an essential role in the maintenance of gut homeostasis but its interplay with chemokines has not been explored so far. Using an in vitro model system we studied the effects of human colonic epithelial cells (Caco2, HT-29, and HCT116) derived inflammatory stimuli on monocyte-derived dendritic cells and macrophages. Unstimulated Caco2 and HT-29 cells secreted CCL19, CCL21, and CCL22 chemokines, which could attract dendritic cells and macrophages and induced CCR7 receptor up-regulation by retinoic-acid resulting in dendritic cell migration. The chemokines Mk, CXCL16, and CXCL7 were secreted by all the 3 cell lines tested, and upon stimulation by IL-1? or TNF-? this effect was inhibited by ATRA but had no impact on CXCL1, CXCL8, and CCL20 secretion in response to IL-1?. In the presence of ATRA the supernatants of these cells induced CD103 expression on monocyte-derived dendritic cells and when conditioned by ATRA and cocultured with CD4(+) T-lymphocytes they reduced the proportion of Th17 T-cells. However, in the macrophage-T-cell cocultures the number of these effector T-cells was increased. Thus cytokine-activated colonic epithelial cells trigger the secretion of distinct combinations of chemokines depending on the proinflammatory stimulus and are controlled by retinoic acid, which also governs dendritic cell and macrophage responses. PMID:25944986

  18. The Impact of ATRA on Shaping Human Myeloid Cell Responses to Epithelial Cell-Derived Stimuli and on T-Lymphocyte Polarization

    PubMed Central

    Gogolak, Péter; Blottičre, Hervé M.; Rajnavölgyi, Éva

    2015-01-01

    Vitamin A plays an essential role in the maintenance of gut homeostasis but its interplay with chemokines has not been explored so far. Using an in vitro model system we studied the effects of human colonic epithelial cells (Caco2, HT-29, and HCT116) derived inflammatory stimuli on monocyte-derived dendritic cells and macrophages. Unstimulated Caco2 and HT-29 cells secreted CCL19, CCL21, and CCL22 chemokines, which could attract dendritic cells and macrophages and induced CCR7 receptor up-regulation by retinoic-acid resulting in dendritic cell migration. The chemokines Mk, CXCL16, and CXCL7 were secreted by all the 3 cell lines tested, and upon stimulation by IL-1? or TNF-? this effect was inhibited by ATRA but had no impact on CXCL1, CXCL8, and CCL20 secretion in response to IL-1?. In the presence of ATRA the supernatants of these cells induced CD103 expression on monocyte-derived dendritic cells and when conditioned by ATRA and cocultured with CD4+ T-lymphocytes they reduced the proportion of Th17 T-cells. However, in the macrophage-T-cell cocultures the number of these effector T-cells was increased. Thus cytokine-activated colonic epithelial cells trigger the secretion of distinct combinations of chemokines depending on the proinflammatory stimulus and are controlled by retinoic acid, which also governs dendritic cell and macrophage responses. PMID:25944986

  19. UDP-Glucuronosyltransferase 1A Determinates Intracellular Accumulation and Anti-Cancer Effect of ?-Lapachone in Human Colon Cancer Cells

    PubMed Central

    Liu, Huiying; Li, Qingran; Cheng, Xuefang; Wang, Hong; Wang, Guangji; Hao, Haiping

    2015-01-01

    ?-lapachone (?-lap), an NAD(P)H:quinone oxidoreductase 1 (NQO1) targeting antitumor drug candidate in phase II clinical trials, is metabolically eliminated via NQO1 mediated quinone reduction and subsequent UDP-glucuronosyltransferases (UGTs) catalyzed glucuronidation. This study intends to explore the inner link between the cellular glucuronidation and pharmacokinetics of ?-lap and its apoptotic effect in human colon cancer cells. HT29 cells S9 fractions exhibited high glucuronidation activity towards ?-lap, which can be inhibited by UGT1A9 competitive inhibitor propofol. UGT1A siRNA treated HT29 cells S9 fractions displayed an apparent low glucuronidation activity. Intracellular accumulation of ?-lap in HCT116 cells was much higher than that in HT29 cells, correlated with the absence of UGT1A in HCT116 cells. The cytotoxic and apoptotic effect of ?-lap in HT29 cells were much lower than that in HCT116 cells; moreover, ?-lap triggered activation of SIRT1-FOXO1 apoptotic pathway was observed in HCT116 cells but not in HT29 cells. Pretreatment of HT29 cells with UGT1A siRNA or propofol significantly decreased ?-lap’s cytotoxic and apoptotic effects, due to the repression of glucuronidation and the resultant intracellular accumulation. In conclusion, UGT1A is an important determinant, via switching NQO1-triggered redox cycle to metabolic elimination, in the intracellular accumulation of ?-lap and thereafter its cytotoxicity in human colon cancer cells. Together with our previous works, we propose that UGTs determined cellular pharmacokinetics is an important determinant in the apoptotic effects of NQO1 targeting substrates serving as chemotherapeutic drugs. PMID:25692465

  20. Role of specific endocytic pathways in electrotransfection of cells

    PubMed Central

    Chang, Chun-Chi; Wu, Mina; Yuan, Fan

    2014-01-01

    Electrotransfection is a technique utilized for gene delivery in both preclinical and clinical studies. However, its mechanisms are not fully understood. The goal of this study was to investigate specific pathways of endocytosis involved in electrotransfection. In the study, three different human cell lines (HEK293, HCT116, and HT29) were either treated with ice cold medium postelectrotransfection or endocytic inhibitors prior to electrotransfection. The inhibitors were pharmacological agents (chlorpromazine, genistein, and amiloride) or different small interfering RNA (siRNA) molecules that could knockdown expression of clathrin heavy chain (CLTC), caveolin-1, and Rab34, respectively. The reduction in gene expressions was confirmed with western blot analysis at 48-72h post-siRNA treatment. It was observed that treatments with either ice cold medium, chlorpromazine, or genistein resulted in significant reductions in electrotransfection efficiency (eTE) in all three cell lines, compared to the matched controls, but amiloride treatment had insignificant effects on eTE. For cells treated with siRNA, only CLTC knockdown resulted in eTE reduction for all three cell lines. Together, these data demonstrated that the clathrin-mediated endocytosis played an important role in electrotransfection. PMID:26052524

  1. Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells.

    PubMed

    Cha, Kwang Hyun; Koo, Song Yi; Lee, Dong-Un

    2008-11-26

    The antiproliferative activity of carotenoids separated from marine Chlorella ellipsoidea and freshwater Chlorella vulgaris has been evaluated. HPLC analysis revealed that the main carotenoid from C. ellipsoidea was composed of violaxanthin with two minor xanthophylls, antheraxanthin and zeaxanthin, whereas the carotenoid from C. vulgaris was almost completely composed of lutein. In an MTT assay, both semipurified extracts of C. ellipsoidea and C. vulgaris inhibited HCT116 cell growth in a dose-dependent manner, yielding IC(50) values of 40.73 +/- 3.71 and 40.31 +/- 4.43 microg/mL, respectively. In addition, treatment with both chlorella extracts enhanced the fluorescence intensity of the early apoptotic cell population in HCT116 cells. C. ellipsoidea extract produced an apoptosis-inducing effect almost 2.5 times stronger than that of the C. vulgaris extract. These results indicate that bioactive xanthophylls of C. ellipsoidea might be useful functional ingredients in the prevention of human cancers. PMID:18942838

  2. 5-Aminosalicylic acid inhibits TGF-?1 signalling in colorectal cancer cells

    Microsoft Academic Search

    Pim J. Koelink; Lukas J. A. C. Hawinkels; Eliza Wiercinska; Cornelis F. M. Sier; Peter ten Dijke; Cornelis B. H. W. Lamers; Daan W. Hommes; Hein W. Verspaget

    2010-01-01

    The transforming growth factor-? (TGF-?) pathway is an important pathway in the initiation and progression of colorectal cancer. We aimed to determine the effects of 5-aminosalicylic acid (5-ASA) on TGF-? signalling in colorectal cancer cells in vitro. 5-ASA inhibited TGF-?1 signalling in HCT116 cells and colonic fibroblasts, as judged by a TGF-?-specific reporter gene assay, plasminogen activator inhibitor-1 mRNA and

  3. Sasa quelpaertensis Leaf Extract Inhibits Colon Cancer by Regulating Cancer Cell Stemness in Vitro and in Vivo

    PubMed Central

    Min, Soo Jin; Lim, Ji Ye; Kim, Haeng Ran; Kim, Se-Jae; Kim, Yuri

    2015-01-01

    A rare subpopulation of cancer cells, termed cancer stem cells (CSCs), may be responsible for tumor relapse and resistance to conventional chemotherapy. The development of a non-toxic, natural treatment for the elimination of CSCs is considered a strategy for cancer treatment with minimal side effects. In the present study, the potential for Sasa quelpaertensis leaf extract (SQE) and its two bioactive compounds, tricin and p-coumaric acid, to exert anti-CSC effects by suppressing cancer stemness characteristics were evaluated in colon cancer cells. CD133+CD44+ cells were isolated from HT29 and HCT116 cell lines using flow-activated cell sorting (FACs). SQE treatment was found to significantly suppress the self-renewal capacity of both cell lines. SQE treatment was also associated with the down-regulation of ?-catenin and phosphorylated GSK3?, while significantly enhancing cell differentiation by up-regulating CK20 expression and blocking the expression of several stem cell markers, including DLK1, Notch1, and Sox-2. In vivo, SQE supplementation suppressed tumor growth in a xenograft model by down-regulating stem cell markers and ?-catenin as well as HIF-1? signaling. Compared with two bioactive compounds of SQE, SQE exhibited the most effective anti-CSC properties. Taken together, these results provide evidence that SQE inhibits colon cancer by regulating the characteristics of CSCs. PMID:25941936

  4. Synergistic apoptosis-inducing effect of aspirin and isosorbide mononitrate on human colon cancer cells.

    PubMed

    Wang, Xiaodong; Diao, Yuwen; Liu, Yu; Gao, Ningning; Gao, Dong; Wan, Yanyan; Zhong, Jingjing; Jin, Guangyi

    2015-09-01

    Aspirin and isosorbide mononitrate (ISMN) are two commonly used drugs, which are clinically applied for the treatment of inflammatory and cardiovascular diseases, respectively. Recently, aspirin has attracted interest due to its potential application for the treatment of cancer, particularly colon cancer. NO-aspirin, an aspirin derivative containing a covalently bound NO-donating moiety, has been proven to be an effective anti?tumor agent with apoptosis-inducing ability. In the present study, ISMN was used as an NO donor and its synergic effect with aspirin was assessed in human colon cancer cells. In vitro, an MTT assay demonstrated that ISMN had a synergistic effect on the growth inhibitory effects of aspirin on HCT116 and SW620 colon cancer cells, while the growth of EA.hy926 normal endothelial cells was unaffected. This synergistic anti?tumor effect was further validated in vivo using nude mouse HCT116 cell xenograft model. Observation of nuclear morphology, Annexin V-fluorescein isothiocyanate/propidium iodide double staining and a caspase-3 activity assay suggested that the combination of the two drugs induced apoptosis in HCT116 cells. Furthermore, the molecular mechanisms of the apoptotic effect of the drugs was assessed using an NO release assay, reverse transcription quantitative polymerase chain reaction analysis, western blot analysis and a luciferase reporter assay. It was certified that the increase in the amount of NO release, the decrease in the luciferase promoter activity and the expression of cyclin D1 and c-myc in HCT116 cells were affected by aspirin and ISMN in a synergistic manner. In conclusion, the present study was the first, to the best of our knowledge, to report on the synergistic apoptosis-inducing effects of aspirin and ISMN in human colon cancer cells, which were mediated via Wnt and NO signaling pathways. The results of the present study will facilitate the development of future therapeutic strategies. PMID:26094902

  5. HDAC5 promotes colorectal cancer cell proliferation by up-regulating DLL4 expression

    PubMed Central

    He, Ping; Liang, Jiexiong; Shao, Tiansong; Guo, Yang; Hou, Yingchen; Li, Yang

    2015-01-01

    The histone deacetylase (HDACs) family contains a family of enzymes, which are involved in modulating a wide range of cellular processes, such as proliferation, differentiation, apoptosis, and cell cycle progression. However, the biological function of HDAC5 in colorectal cancer has not been well established. In the current research, our data showed that the mRNA and protein levels of HDAC5 were up-regulated in human colorectal cancer cell lines. CCK-8 assay showed that overexpression of HDAC5 significantly promoted the proliferation of colorectal cancer cell lines including SW480 and HCT116. On the contrary, HDAC5 knockdown using small interfering RNA suppressed cell growth in colorectal tumor cells. At the molecular level, we demonstrated that HDAC5 promoted the expression of DLL4. In addition, down-regulation of DLL4 diminished the proliferative effects of HDAC5 in human colorectal cancer cells. Taken together, these results suggest that HDAC5 elevates the proliferation of colorectal cancer cells through up-regulation of DLL4. The current study might provide novel potential therapeutic targets in the treatment of colorectal cancer.

  6. Metabolism of [6]-Shogaol in Mice and in Cancer Cells

    PubMed Central

    Chen, Huadong; Lv, Lishuang; Soroka, Dominique; Warin, Renaud F.; Parks, Tiffany A.; Hu, Yuhui; Zhu, Yingdong; Chen, Xiaoxin

    2012-01-01

    Ginger has received extensive attention because of its antioxidant, anti-inflammatory, and antitumor activities. However, the metabolic fate of its major components is still unclear. In the present study, the metabolism of [6]-shogaol, one of the major active components in ginger, was examined for the first time in mice and in cancer cells. Thirteen metabolites were detected and identified, seven of which were purified from fecal samples collected from [6]-shogaol-treated mice. Their structures were elucidated as 1-(4?-hydroxy-3?-methoxyphenyl)-4-decen-3-ol (M6), 5-methoxy-1-(4?-hydroxy-3?-methoxyphenyl)-decan-3-one (M7), 3?,4?-dihydroxyphenyl-decan-3-one (M8), 1-(4?-hydroxy-3?-methoxyphenyl)-decan-3-ol (M9), 5-methylthio-1-(4?-hydroxy-3?-methoxyphenyl)-decan-3-one (M10), 1-(4?-hydroxy-3?-methoxyphenyl)-decan-3-one (M11), and 5-methylthio-1-(4?-hydroxy-3?-methoxyphenyl)-decan-3-ol (M12) on the basis of detailed analysis of their 1H, 13C, and two-dimensional NMR data. The rest of the metabolites were identified as 5-cysteinyl-M6 (M1), 5-cysteinyl-[6]-shogaol (M2), 5-cysteinylglycinyl-M6 (M3), 5-N-acetylcysteinyl-M6 (M4), 5-N-acetylcysteinyl-[6]-shogaol (M5), and 5-glutathiol-[6]-shogaol (M13) by analysis of the MSn (n = 1–3) spectra and comparison to authentic standards. Among the metabolites, M1 through M5, M10, M12, and M13 were identified as the thiol conjugates of [6]-shogaol and its metabolite M6. M9 and M11 were identified as the major metabolites in four different cancer cell lines (HCT-116, HT-29, H-1299, and CL-13), and M13 was detected as a major metabolite in HCT-116 human colon cancer cells. We further showed that M9 and M11 are bioactive compounds that can inhibit cancer cell growth and induce apoptosis in human cancer cells. Our results suggest that 1) [6]-shogaol is extensively metabolized in these two models, 2) its metabolites are bioactive compounds, and 3) the mercapturic acid pathway is one of the major biotransformation pathways of [6]-shogaol. PMID:22246389

  7. Multi-color fluorescence imaging of sub-cellular dynamics of cancer cells in live mice

    NASA Astrophysics Data System (ADS)

    Hoffman, Robert M.

    2006-02-01

    We have genetically engineered dual-color fluorescent cells with one color in the nucleus and the other in the cytoplasm that enables real-time nuclear-cytoplasmic dynamics to be visualized in living cells in the cytoplasm in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed of the cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Mitotic cells were visualized by whole-body imaging after injection in the mouse ear. Common carotid artery or heart injection of dual-color cells and a reversible skin flap enabled the external visualization of the dual-color cells in microvessels in the mouse where extreme elongation of the cell body as well as the nucleus occurred. The migration velocities of the dual-color cancer cells in the capillaries were measured by capturing individual images of the dual-color fluorescent cells over time. Human HCT-116-GFP-RFP colon cancer and mouse mammary tumor (MMT)-GFP-RFP cells were injected in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the HCT-116-GFP-RFP cells occurred within 6 hours. The data suggest rapid death of HCT-116-GFP-RFP cells in the portal vein. In contrast, MMT-GFP-RFP cells injected into the portal vein mostly survived and formed colonies in the liver. However, when the host mice were pretreated with cyclophosphamide, the HCT-116-GFP-RFP cells also survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the HCT-116-GFP-RFP cells but could not effectively kill the MMT-GFP-RFP cells. With the ability to continuously image cancer cells at the subcellular level in the live animal, our understanding of the complex steps of metastasis will significantly increase. In addition, new drugs can be developed to target these newly visible steps of metastasis.

  8. Knockdown of PAK4 or PAK1 inhibits the proliferation of mutant KRAS colon cancer cells independently of RAF/MEK/ERK and PI3K/AKT signaling.

    PubMed

    Tabusa, Hana; Brooks, Teresa; Massey, Andrew J

    2013-02-01

    The p21-activated kinase (PAK) serine/threonine kinases are important effectors of the small GTPases Rac and Cdc42, and play significant roles in controlling cell growth, motility, and transformation. Knockdown of PAK4 or PAK1 inhibited the proliferation of mutant KRAS or BRAF colon cancer cells in vitro. Dependence on PAK4 or PAK1 protein for colon cancer cell proliferation was independent of PAK4 or PAK1 protein expression levels. Mutant KRAS HCT116 colorectal cells were the most sensitive to PAK4 or PAK1 knockdown resulting in the potent inhibition of anchorage-dependent and -independent proliferation as well as the formation and proliferation of HCT116 colon cancer spheroids. This inhibition of proliferation did not correlate with inhibition of RAF/MEK/ERK or PI3K/AKT signaling. In HCT116 cells, knockdown of PAK4 or PAK1 caused changes to the actin cytoskeleton resulting in reduced basal spread and cell elongation and increased cell rounding. These cytoskeletal rearrangements seemed to be independent of LIMK/cofilin/paxillin phosphorylation. PAK4 or PAK1 knockdown initially induced growth arrest in HCT116 cells followed by cell death at later time points. Inhibition of the antiapoptotic proteins Bcl-2 and Bcl-X(L) with the pharmacologic inhibitor ABT-737 increased effector caspase activation and apoptosis, and reduced cell survival with PAK4 or PAK1 knockdown. These results support a role for the PAKs in the proliferation of mutant KRAS-driven colorectal carcinoma cells via pathways not involving RAF/MEK/ERK and PI3K/AKT signaling. PMID:23233484

  9. Anti-tumor activity of ESX1 on cancer cells harboring oncogenic K-ras mutation

    SciTech Connect

    Nakajima, Junta; Ishikawa, Susumu [Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815 (Japan); Hamada, Jun-Ichi [Division of Cancer-related Genes, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815 (Japan); Yanagihara, Masatomo [Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815 (Japan); Koike, Takao [Department of Medicine II, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638 (Japan); Hatakeyama, Masanori [Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815 (Japan)], E-mail: mhata@igm.hokudai.ac.jp

    2008-05-23

    Human ESX1 is a 65-kilodalton (kDa) paired-like homeoprotein that is proteolytically processed into N-terminal 45-kDa and C-terminal 20-kDa fragments. The N-terminal ESX1 fragment, which contains the homeodomain, localizes to the nucleus and represses mRNA transcription from the K-ras gene. When we inoculated human colorectal carcinoma HCT116 constitutive expressing N-terminal region of ESX1 (N-ESX1) into nude mice, transfectant cells uniformly showed decreased tumor-forming activity compared with that of the parental cells. Furthermore, pretreatment of HCT116 carcinoma cells with a fusion protein consisting of N-ESX1 and the protein-transduction domain derived from the human immunodeficiency virus type-1 TAT protein gave rise to a dramatic reduction in the tumorigenicity of HCT116 cells in nude mice. Our results provide first in vivo evidence for the molecular targeting therapeutic application of the K-ras repressor ESX1, especially TAT-mediated transduction of N-ESX1, in the treatment of human cancers having oncogenic K-ras mutations.

  10. Cell line characterization and authentication.

    PubMed

    Kaplan, J; Hukku, B

    1998-01-01

    Research and development involving the use of cell lines require precise knowledge of the purity and species of origin of the cell lines used. This can only be assured by periodic monitoring of cultured cell lines for possible contamination by other cells and for characteristics that authenticate the cell line identity. In the absence of such monitoring, inter- and intraspecies cell line contaminations are likely to occur in the laboratories of unsuspecting investigators and can result in the generation of mistaken conclusions with an attendant loss of investigators' time, effort, and resources. This chapter provides a history and an overview of the methods that have been developed for cell line authentication, the type of information each of these different methods provides, and how synthesis of that information can be used to characterize a cell line and confirm its identity. An effective cell line monitoring strategy is described that involves testing for a combination of genetic markers, including cell membrane species antigens, isoenzymes, chromosomes, and DNA fingerprints, and use of databases for each marker system to compare the results obtained with a test cell culture with results from an extensive panel of previously tested cell lines. PMID:9648106

  11. ETS1 suppresses tumorigenicity of human colon cancer cells.

    PubMed Central

    Suzuki, H; Romano-Spica, V; Papas, T S; Bhat, N K

    1995-01-01

    We have ectopically expressed transcription factor ETS1 in two different highly tumorigenic human colon cancer cell lines, DLD-1 and HCT116, that do not express endogenous ETS1 protein and have obtained several independent clones. The expression of wild-type ETS1 protein in these colon cancer cells reverses the transformed phenotype and tumorigenicity in a dose-dependent manner. By contrast, expression in DLD-1 cells of a variant form of ETS1, lacking transcriptional activity, did not alter the tumorigenic properties of the cells, suggesting that the reduction in tumorigenicity in these clones was specific for the wild-type ETS1 gene products. Since these colon cancer cells have multiple genetic alterations, the system described in this paper could be a good model to study the suppression of tumorigenicity at a transcriptional level, which could lead to the design and development of novel drugs for cancer treatment. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7753825

  12. Human cells deficient in p53 regulated p21(waf1/cip1) expression exhibit normal nucleotide excision repair of UV-induced DNA damage.

    PubMed

    Wani, Manzoor A; Wani, Gulzar; Yao, Jihonag; Zhu, Qianzheng; Wani, Altaf A

    2002-03-01

    Cancer development requires the accumulation of numerous genetic changes, which are believed to initiate through the presence of unrepaired lesions in the genome. In the absence of proficient repair, genotoxic agents can lead to crucial mutations of vital cellular genes via replication of damaged DNA. Many cell cycle regulatory proteins are known to modulate the repair capacity and consequently the fate of cells. We and others have recently shown that p53 tumor suppressor gene product is required for efficient global genomic repair (GGR) but not the transcription coupled repair (TCR) of the nucleotide excision repair (NER) sub-pathways. In order to discern the nature of the p53 modulation to be direct or indirect through a downstream mediator, we have investigated the processing of UV radiation induced lesions in human colon carcinoma, HCT116 cells expressing wild-type p53 but having different p21(waf1cip1) (hereafter p21) genotypes (p21+/+, p21+/-, p21-/-). Following 20 J/m(2) UV, all the three cell lines showed rapid increase in p53 protein but the accompanying increase in the expression of its downstream target protein p21 could only be seen in p21+/+ and p21+/- cells and not in p21-/- cells. Nevertheless, an absence of detectable p21 protein in deficient cells had no demonstrable effect on DNA repair response to UV irradiation, as measured by an immunoassay to detect removal of UV photoproducts from genomic DNA (GGR) and by individual strand specific removal of endonuclease-sensitive CPD from a target gene fragment (TCR). Introduction of cytomegalovirus (CMV)-driven luciferase reporter plasmid, UV damaged in vitro, into the un-irradiated cells of varying p21 background, revealed a relatively small but statistically significant decrease in the reporter expression in the host p21-/- as compared with p21+/+ and p21+/- HCT116 cells. Super-expression of p21 protein upon reintroduction of p21 expression construct, showed an enhanced recovery of UV damaged reporter activity that was not greatly different from a similar enhancement observed with undamaged plasmid reporter DNA. Taken together, the results indicate that (i) the p21 protein does not have a significant role in the repair of genomic DNA at chromosomal level; (ii) the well-established p53 dependent modulation of NER is distinct and independent of its cell cycle checkpoint function; and (iii) the reproducible enhancing effect of p21 expression observed through host cell reactivation (HCR) of extrachromosomal DNA is mainly attributable to an effect exerted on transcription rather than repair. PMID:11895854

  13. Autocrine Transforming Growth Factor b Suppresses Telomerase Activity and Transcription of Human Telomerase Reverse Transcriptase in Human Cancer Cells1

    Microsoft Academic Search

    Hua Yang; Satoru Kyo; Masahiro Takatura; LuZhe Sun

    2001-01-01

    Because autocrine transforming growth factor b (TGF-b) can suppress carcinogenesis, which is often associated with telomerase activation, we studied whether autocrine TGF-b inhibits telomerase activity. Restoration of autocrine TGF-b activity in human colon carcinoma HCT116 cells after reexpression of its type II receptor (RII) led to a significant reduction of telomerase activity and the mRNA level of telomerase reverse transcriptase

  14. Resveratrol induces DNA damage in colon cancer cells by poisoning topoisomerase II and activates the ATM kinase to trigger p53-dependent apoptosis.

    PubMed

    Demoulin, Benjamin; Hermant, Maryse; Castrogiovanni, Cédric; Staudt, Catherine; Dumont, Patrick

    2015-08-01

    Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural polyphenol synthesized by various plants such as grape vine. Resveratrol (RSV) is a widely studied molecule, largely for its chemopreventive effect in different mouse cancer models. We propose a mechanism underlying the cytotoxic activity of RSV on colon cancer cells. Our data show that resveratrol induces apoptosis, as observed by the cleavage of PARP-1 and chromatin condensation. We show that the tumor suppressor p53 is activated in response to RSV and participates to the apoptotic process. Additionally, we show that HCT-116 p53 wt colon carcinoma cells are significantly more sensitive than HCT-116 p53-/- cells to RSV. RSV induces DNA damage including double strand breaks, as evidenced by the presence of multiple ?-H2AX foci in 50% of cells after a 24h treatment with 25?M RSV. The formation of DNA damage does not appear to rely on a pro-oxidant effect of the molecule, inhibition of topoisomerase I, or DNA intercalation. Rather, we show that DNA damage is the consequence of type II topoisomerase poisoning. Exposure of HCT-116 cells to RSV leads to activation of the Ataxia Telangiectasia Mutated (ATM) kinase, and ATM is required to activate p53. PMID:25952326

  15. Black raspberry-derived anthocyanins demethylate tumor suppressor genes through the inhibition of DNMT1 and DNMT3B in colon cancer cells.

    PubMed

    Wang, Li-Shu; Kuo, Chieh-Ti; Cho, Seung-Ju; Seguin, Claire; Siddiqui, Jibran; Stoner, Kristen; Weng, Yu-I; Huang, Tim H-M; Tichelaar, Jay; Yearsley, Martha; Stoner, Gary D; Huang, Yi-Wen

    2013-01-01

    We previously reported that oral administration of black raspberry powder decreased promoter methylation of tumor suppressor genes in tumors from patients with colorectal cancer. The anthocyanins (ACs) in black raspberries are responsible, at least in part, for their cancer-inhibitory effects. In the present study, we asked if ACs are responsible for the demethylation effects observed in colorectal cancers. Three days of treatment of ACs at 0.5, 5, and 25 ?g/ml suppressed activity and protein expression of DNMT1 and DNMT3B in HCT116, Caco2 and SW480 cells. Promoters of CDKN2A, and SFRP2, SFRP5, and WIF1, upstream of Wnt pathway, were demethylated by ACs. mRNA expression of some of these genes was increased. mRNA expression of ?-catenin and c-Myc, downstream of Wnt pathway, and cell proliferation were decreased; apoptosis was increased. ACs were taken up into HCT116 cells and were differentially localized with DNMT1 and DNMT3B in the same cells visualized using confocal laser scanning microscopy. Although it was reported that DNMT3B is regulated by c-Myc in mouse lymphoma, DNMT3B did not bind with c-Myc in HCT116 cells. In conclusion, our results suggest that ACs are responsible, at least in part, for the demethylation effects of whole black raspberries in colorectal cancers. PMID:23368921

  16. Design, regioselective synthesis and cytotoxic evaluation of 2-aminoimidazole-quinoline hybrids against cancer and primary endothelial cells.

    PubMed

    Singh, Kuldeep; Verma, Vikas; Yadav, Kavita; Sreekanth, Vedagopuram; Kumar, Devinder; Bajaj, Avinash; Kumar, Vinod

    2014-11-24

    In search of new selective anti-cancer agents, a series of sixteen novel 2-aminoimidazole-quinoline hybrid compounds (5a-5p) have been designed and synthesized regioselectively. We have characterized the compounds extensively using IR, 1D and 2D NMR Spectroscopy and mass spectrometry. The cytotoxicity studies against different cancer cell lines showed that the compound 5a (Imd-Ph) emerged as a potent cytotoxic scaffold. Imd-Ph (5a) exhibited a selective anticancer activity against human colon cancer cell line (HCT-116, DLD-1) and was found relatively non-toxic to breast cancer cells (MDA-MB-231) as well as to normal primary endothelial cells (HUVEC). Structure-activity relationship of imidazole-quinoline hybrid scaffolds revealed differential and selective toxicities exerted by the different derivatives against cancer and normal cells. Structural modification of the scaffold with library of a wide variety of substituents may lead to the development of novel selective anti-cancer agents in the future. PMID:25247771

  17. Toxins VapC and PasB from Prokaryotic TA Modules Remain Active in Mammalian Cancer Cells

    PubMed Central

    Wieteska, ?ukasz; Skulimowski, Aleksander; Cybula, Magdalena; Szemraj, Janusz

    2014-01-01

    Among the great number of addictive modules which have been discovered, only a few have been characterized. However, research concerning the adoption of toxins from these systems shows their great potential as a tool for molecular biology and medicine. In our study, we tested two different toxins derived from class II addictive modules, pasAB from plasmid pTF-FC2 (Thiobacillus ferrooxidans) and vapBC 2829Rv (Mycobacterium tuberculosis), in terms of their usefulness as growth inhibitors of human cancer cell lines, namely KYSE 30, MCF-7 and HCT 116. Transfection of the pasB and vapC genes into the cells was conducted with the use of two different expression systems. Cellular effects, such as apoptosis, necrosis and changes in the cell cycle, were tested by applying flow cytometry with immunofluorescence staining. Our findings demonstrated that toxins VapC and PasB demonstrate proapoptotic activity in the human cancer cells, regardless of the expression system used. As for the toxin PasB, observed changes were more subtle than for the VapC. The level of expression for both the genes was monitored by QPCR and did not reveal statistically significant differences within the same cell line. PMID:25271785

  18. Nicotinamide Phosphoribosyl Transferase (Nampt) Is a Target of MicroRNA-26b in Colorectal Cancer Cells

    PubMed Central

    Huang, Gang

    2013-01-01

    A number of cancers show increased expression of Nicotinamide phosphoribosyl transferase (Nampt). However, the mechanism through which Nampt is upregulated is unclear. In our study, we found that the Nampt-specific chemical inhibitor FK866 significantly inhibited cell survival and reduced nicotinamide adenine dinucleotide (NAD) levels in LoVo and SW480 cell lines. Bioinformatics analyses suggested that miR-26b targets Nampt mRNA. We identified Nampt as a new target of miR-26b and demonstrated that miR-26b inhibits Nampt expression at the protein and mRNA levels by binding to the Nampt 3?-UTR. Moreover, we found that miR-26b was down regulated in cancer tissues relative to that in adjacent normal tissues in 18 colorectal cancer patients. A statistically significant inverse correlation between miR-26b and Nampt expression was observed in samples from colorectal cancer patients and in 5 colorectal cell lines (HT-29, SW480, SW1116, LoVo, and HCT116). In addition, over expression of miR-26b strongly inhibited LoVo cell survival and invasion, an effect partially abrogated by the addition of NAD. In conclusion, this study demonstrated that the NAD-salvaging biosynthesis pathway involving Nampt might play a role in colorectal cancer cell survival. MiR-26b may serve as a tumor suppressor by targeting Nampt. PMID:23922874

  19. Biology of SNU Cell Lines

    PubMed Central

    Ku, Ja-Lok

    2005-01-01

    SNU (Seoul National University) cell lines have been established from Korean cancer patients since 1982. Of these 109 cell lines have been characterized and reported, i.e., 17 colorectal carcinoma, 12 hepatocellular carcinoma, 11 gastric carcinoma, 12 uterine cervical carcinoma, 17 B-lymphoblastoid cell lines derived from cancer patients, 5 ovarian carcinoma, 3 malignant mixed Mllerian tumor, 6 laryngeal squamous cell carcinoma, 7 renal cell carcinoma, 9 brain tumor, 6 biliary tract, and 4 pancreatic carcinoma cell lines. These SNU cell lines have been distributed to biomedical researchers domestic and worldwide through the KCLB (Korean Cell Line Bank), and have proven to be of value in various scientific research fields. The characteristics of these cell lines have been reported in over 180 international journals by our laboratory and by many other researchers from 1987. In this paper, the cellular and molecular characteristics of SNU human cancer cell lines are summarized according to their genetic and epigenetic alterations and functional analysis. PMID:19956504

  20. Caspase-mediated pro-apoptotic interaction of panaxadiol and irinotecan in human colorectal cancer cells

    PubMed Central

    Du, Guang-Jian; Wang, Chong-Zhi; Zhang, Zhi-Yu; Wen, Xiao-Dong; Somogyi, Jacqueline; Calway, Tyler; He, Tong-Chuan; Du, Wei; Yuan, Chun-Su

    2012-01-01

    Objectives Panaxadiol (PD) is a purified sapogenin of ginseng saponins that exhibits anticancer activity. Irinotecan (IRN) is a second line anticancer drug, but clinical treatment with IRN is limited due to side effects. In this study, we investigated the possible synergistic anticancer effects of PD and IRN on human colorectal cancer cells and explored the potential role of apoptosis in the synergistic activities. Key findings The combination of PD and IRN significantly enhanced antiproliferative effects in HCT-116 cells (P < 0.05). Cell cycle analysis demonstrated that combining IRN treatment with PD significantly increased the G1-phase fractions of cells, compared with IRN treatment alone. In apoptotic assays, the combination of PD and IRN significantly increased the percentage of apoptotic cells compared with IRN alone (P < 0.01). Increased caspase 3 and caspase 9 activities were observed after treating with PD and IRN. The synergistic apoptotic effects were also supported by docking analysis, which demonstrated that PD and IRN bound two different chains of the caspase 3 protein. Conclusions Data from this study suggested that caspase 3- and caspase 9-mediated apoptosis may play an important role in the PD enhanced antiproliferative effects of IRN on human colorectal cancer cells. PMID:22471369

  1. Tussilagone suppresses colon cancer cell proliferation by promoting the degradation of ?-catenin

    SciTech Connect

    Li, Hua [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of)] [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of); Lee, Hwa Jin [Department of Natural Medicine Resources, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk 390-711 (Korea, Republic of)] [Department of Natural Medicine Resources, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk 390-711 (Korea, Republic of); Ahn, Yeon Hwa; Kwon, Hye Jin; Jang, Chang-Young; Kim, Woo-Young [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of)] [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of); Ryu, Jae-Ha, E-mail: ryuha@sookmyung.ac.kr [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of)] [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of)

    2014-01-03

    Highlights: •Tussilagone (TSL) was purified from plant as an inhibitor of Wnt/?-catenin pathway. •TSL suppressed the ?-catenin/T-cell factor transcriptional activity. •The proteasomal degradation of ?-catenin was induced by TSL. •TSL suppressed the Wnt/?-catenin target genes, cyclin D1 and c-myc. •TSL inhibit the proliferation of colon cancer cells. -- Abstract: Abnormal activation of the Wnt/?-catenin signaling pathway frequently induces colon cancer progression. In the present study, we identified tussilagone (TSL), a compound isolated from the flower buds of Tussilago farfara, as an inhibitor on ?-catenin dependent Wnt pathway. TSL suppressed ?-catenin/T-cell factor transcriptional activity and down-regulated ?-catenin level both in cytoplasm and nuclei of HEK293 reporter cells when they were stimulated by Wnt3a or activated by an inhibitor of glycogen synthase kinase-3?. Since the mRNA level was not changed by TSL, proteasomal degradation might be responsible for the decreased level of ?-catenin. In SW480 and HCT116 colon cancer cell lines, TSL suppressed the ?-catenin activity and also decreased the expression of cyclin D1 and c-myc, representative target genes of the Wnt/?-catenin signaling pathway, and consequently inhibited the proliferation of colon cancer cells. Taken together, TSL might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer.

  2. Glucose and insulin are needed for optimal defensin expression in human cell lines.

    PubMed

    Barnea, Maayan; Madar, Zecharia; Froy, Oren

    2008-03-01

    Many infections are associated with diabetes, as the ability of the body to fight pathogens is impaired. Recently, low levels of defensins have been found in diabetic rodents. However, whether hyperglycemia and/or insulin deficiency/insensitivity is the reason for the reduced defensin levels is still unknown. To study the functionality of the innate immune system during hyperglycemia, the expression levels of human beta-defensin-1 (hBD-1) was measured in human embryonic kidney (HEK-293) and colon adenocarcinoma (HCT-116) cells treated with different concentrations of glucose and insulin. Increasing concentrations of glucose enhanced hBD-1 expression and these levels were further elevated after insulin treatment. Insulin treatment also led to the up-regulation of human sodium/glucose transporter 1 (hSGLT1), which further increases intracellular glucose levels. Thus, our findings suggest for the first time that insulin signaling is important for hBD-1 optimal expression by elevating intracellular glucose levels and by mediating gene expression. PMID:18178160

  3. Synthetic lethal targeting of PTEN-deficient cancer cells using selective disruption of polynucleotide kinase/phosphatase

    PubMed Central

    Mereniuk, Todd R.; El Gendy, Mohamed A.M.; Mendes-Pereira, Ana M.; Lord, Christopher J.; Ghosh, Sunita; Foley, Edan; Ashworth, Alan; Weinfeld, Michael

    2013-01-01

    A recent screen of 6961 siRNAs to discover possible synthetic lethal partners of the DNA repair protein polynucleotide kinase/phosphatase (PNKP) led to the identification of the potent tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Here we have confirmed the PNKP/PTEN synthetic lethal partnership in a variety of different cell lines including the PC3 prostate cancer cell line, which is naturally deficient in PTEN. We provide evidence that co-depletion of PTEN and PNKP induces apoptosis. In HCT116 colon cancer cells the loss of PTEN is accompanied by an increased background level of DNA double strand breaks, which accumulate in the presence of an inhibitor of PNKP DNA 3?-phosphatase activity. Complementation of PC3 cells with several well-characterized mutated PTEN cDNAs indicated that the critical function of PTEN required to prevent toxicity induced by an inhibitor of PNKP is most likely associated with its cytoplasmic lipid phosphatase activity. Finally, we show that modest inhibition of PNKP in a PTEN knockout background enhances cellular radiosensitivity, suggesting that such a “synthetic sickness” approach involving the combination of PNKP inhibition with radiotherapy may be applicable to PTEN-deficient tumors. PMID:23883586

  4. Synthetic lethal targeting of PTEN-deficient cancer cells using selective disruption of polynucleotide kinase/phosphatase.

    PubMed

    Mereniuk, Todd R; El Gendy, Mohamed A M; Mendes-Pereira, Ana M; Lord, Christopher J; Ghosh, Sunita; Foley, Edan; Ashworth, Alan; Weinfeld, Michael

    2013-10-01

    A recent screen of 6,961 siRNAs to discover possible synthetic lethal partners of the DNA repair protein polynucleotide kinase/phosphatase (PNKP) led to the identification of the potent tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Here, we have confirmed the PNKP/PTEN synthetic lethal partnership in a variety of different cell lines including the PC3 prostate cancer cell line, which is naturally deficient in PTEN. We provide evidence that codepletion of PTEN and PNKP induces apoptosis. In HCT116 colon cancer cells, the loss of PTEN is accompanied by an increased background level of DNA double-strand breaks, which accumulate in the presence of an inhibitor of PNKP DNA 3'-phosphatase activity. Complementation of PC3 cells with several well-characterized mutated PTEN cDNAs indicated that the critical function of PTEN required to prevent toxicity induced by an inhibitor of PNKP is most likely associated with its cytoplasmic lipid phosphatase activity. Finally, we show that modest inhibition of PNKP in a PTEN knockout background enhances cellular radiosensitivity, suggesting that such a "synthetic sickness" approach involving the combination of PNKP inhibition with radiotherapy may be applicable to PTEN-deficient tumors. PMID:23883586

  5. The mechanisms responsible for the radiosensitizing effects of sorafenib on colon cancer cells.

    PubMed

    Kim, Eun Ho; Kim, Mi-Sook; Jung, Won-Gyun

    2014-12-01

    Colorectal cancer is one of the most common malignancies in the world, and is generally treated more effectively by chemoradiotherapy rather than radiotherapy or chemotherapy alone. Targeted radiosensitizers are often used in order to enhance the radiosensitivity of tumor cells. The aim of the present study was to identify the mechanism of radiosensitization by sorafenib in colorectal cancer. Three human colorectal adenocarcinoma cell lines (HCT116, HT29 and SW480) were treated with sorafenib alone or radiation followed by sorafenib. In vitro tests were performed using colony forming assays, FACS analysis, immunohistochemistry, tumor cell motility assays, invasion assays and endothelial tube formation assays. Sorafenib enhanced the anti-proliferative effects of radiation, reducing colony formation, increasing G2/M arrest and enhancing radiation-induced apoptosis by reactive oxygen species. Sorafenib also inhibited the repair of radiation-induced DNA damage by blocking the activation of DNA-dependent protein kinase. Combination treatment significantly inhibited tumor cell migration, tumor cell invasion and vascular endothelial growth factor-mediated angiogenesis in vitro. Taken together, our results provide a scientific rationale for the use of sorafenib with radiotherapy in colon cancer and suggest a clinical utility for this approach. PMID:25242034

  6. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production.

    PubMed

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling; Shen, Jie

    2015-08-01

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. PMID:26026677

  7. Anti-proliferative effect of horehound leaf and wild cherry bark extracts on human colorectal cancer cells

    PubMed Central

    YAMAGUCHI, KIYOSHI; LIGGETT, JASON L.; KIM, NAM-CHEOL; BAEK, SEUNG JOON

    2008-01-01

    Marubium vulgare (horehound) and Prunus serotina (wild cherry) have been traditionally used for the treatment of inflammatory-related symptoms such as cold, fever, and sore throat. In this report, we show that extracts of anti-inflammatory horehound leaves and wild cherry bark exhibit anti-proliferative activity in human colorectal cancer cells. Both horehound and wild cherry extracts cause suppression of cell growth as well as induction of apoptosis. We found that horehound extract up-regulates pro-apoptotic non-steroidal anti-inflammatory drug-activated gene (NAG-1) through trans-activation of the NAG-1 promoter. In contrast, wild cherry extract decreased cyclin D1 expression and increased NAG-1 expression in HCT-116 and SW480 cell lines. Treatment with wild cherry extract resulted in the suppression of ?-catenin/T cell factor transcription, as assessed by TOP/FOP reporter constructs, suggesting that suppressed ?-catenin signaling by wild cherry extract leads to the reduction of cyclin D1 expression. Our data suggest the mechanisms by which these extracts suppress cell growth and induce apoptosis involve enhanced NAG-1 expression and/or down-regulation of ?-catenin signaling, followed by reduced cyclin D1 expression in human colorectal cancer cells. These findings may provide mechanisms for traditional anti-inflammatory products as cancer chemopreventive agents. PMID:16328068

  8. Plant cell lines in cell morphogenesis research.

    PubMed

    Seifertová, Daniela; Klíma, Petr; Pa?ezová, Markéta; Petrášek, Jan; Zažímalová, Eva; Opatrný, Zden?k

    2014-01-01

    Plant organs and tissues consist of many various cell types, often in different phases of their development. Such complex structures do not allow direct studies on behavior of individual cells. In contrast, populations of in vitro-cultured plant cells represent valuable tool for studying processes on a single-cell level, including cell morphogenesis. Here we describe characteristics of well-established model tobacco and Arabidopsis cell lines and provide detailed protocol on their cultivation, characterization, and genetic transformation. PMID:24132432

  9. Saturated Fatty Acids Modulate Cell Response to DNA Damage: Implication for Their Role in Tumorigenesis

    PubMed Central

    Zeng, Li; Wu, Guang-Zhi; Goh, Kim Jee; Lee, Yew Mun; Ng, Chuo Chung; You, Ang Ben; Wang, Jianhe; Jia, Deyong; Hao, Aijun; Yu, Qiang; Li, Baojie

    2008-01-01

    DNA damage triggers a network of signaling events that leads to cell cycle arrest or apoptosis. This DNA damage response acts as a mechanism to prevent cancer development. It has been reported that fatty acids (FAs) synthesis is increased in many human tumors while inhibition of fatty acid synthase (FASN) could suppress tumor growth. Here we report that saturated fatty acids (SFAs) play a negative role in DNA damage response. Palmitic acid, as well as stearic acid and myristic acid, compromised the induction of p21 and Bax expression in response to double stranded breaks and ssDNA, while inhibition or knockdown of FASN enhanced these cellular events. SFAs appeared to regulate p21 and Bax expression via Atr-p53 dependent and independent pathways. These effects were only observed in primary mouse embryonic fibroblasts and osteoblasts, but not in immortalized murine NIH3T3, or transformed HCT116 and MCF-7 cell lines. Accordingly, SFAs showed some positive effects on proliferation of MEFs in response to DNA damage. These results suggest that SFAs, by negatively regulating the DNA damage response pathway, might promote cell transformation, and that increased synthesis of SFAs in precancer/cancer cells might contribute to tumor progression and drug resistance. PMID:18523653

  10. Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells.

    PubMed

    Sivasubramaniyan, Kavitha; Harichandan, Abhishek; Schilbach, Karin; Mack, Andreas F; Bedke, Jens; Stenzl, Arnulf; Kanz, Lothar; Niederfellner, Gerhard; Bühring, Hans-Jörg

    2015-08-01

    Stage-specific embryonic antigen-4 (SSEA-4) is a glycosphingolipid, which is overexpressed in some cancers and has been linked to disease progression. However, little is known about the functions of SSEA-4 and the characteristics of SSEA-4 expressing tumor cells. Our studies identified SSEA-4 expression on a subpopulation of cells in many solid tumor cell lines but not in leukemic cell lines. Fluorescence-activated cell sorting-sorted SSEA-4(+) prostate cancer cells formed fibroblast-like colonies with limited cell-cell contacts, whereas SSEA-4(-) cells formed cobblestone-like epithelial colonies. Only colonies derived from SSEA-4(+) cells were enriched for pluripotent embryonic stem cell markers. Moreover, major epithelial cell-associated markers Claudin-7, E-cadherin, ESRP1 and GRHL2 were down-regulated in the SSEA-4(+) fraction of DU145 and HCT-116 cells. Similar to cell lines, SSEA-4(+) primary prostate tumor cells also showed down-regulation of epithelial cell-associated markers. In addition, they showed up-regulation of epithelial-to-mesenchymal transition as well as mesenchymal markers. Furthermore, SSEA-4(+) cells escape from adhesive colonies spontaneously and form invadopodia-like migratory structures, in which SSEA-4, cortactin as well as active pPI3K, pAkt and pSrc are enriched and colocalized. Finally, SSEA-4(+) cells displayed strong tumorigenic ability and stable knockdown of SSEA-4 synthesis resulted in decreased cellular adhesion to different extracellular matrices. In conclusion, we introduce SSEA-4 as a novel marker to identify heterogeneous, invasive subpopulations of tumor cells. Moreover, increased cell-surface SSEA-4 expression is associated with the loss of cell-cell interactions and the gain of a migratory phenotype, suggesting an important role of SSEA-4 in cancer invasion by influencing cellular adhesion to the extracellular matrix. PMID:25978997

  11. Asymmetric triplex metallohelices with high and selective activity against cancer cells

    NASA Astrophysics Data System (ADS)

    Faulkner, Alan D.; Kaner, Rebecca A.; Abdallah, Qasem M. A.; Clarkson, Guy; Fox, David J.; Gurnani, Pratik; Howson, Suzanne E.; Phillips, Roger M.; Roper, David I.; Simpson, Daniel H.; Scott, Peter

    2014-09-01

    Small cationic amphiphilic ?-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 p53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli.

  12. Half-sandwich ruthenium(II) biotin conjugates as biological vectors to cancer cells.

    PubMed

    Babak, Maria V; Pla?uk, Damian; Meier, Samuel M; Arabshahi, Homayon John; Reynisson, Jóhannes; Rychlik, B?a?ej; B?au?, Andrzej; Szulc, Katarzyna; Hanif, Muhammad; Strobl, Sebastian; Roller, Alexander; Keppler, Bernhard K; Hartinger, Christian G

    2015-03-23

    Ruthenium(II)-arene complexes with biotin-containing ligands were prepared so that a novel drug delivery system based on tumor-specific vitamin-receptor mediated endocytosis could be developed. The complexes were characterized by spectroscopic methods and their in vitro anticancer activity in cancer cell lines with various levels of major biotin receptor (COLO205, HCT116 and SW620 cells) was tested in comparison with the ligands. In all cases, coordination of ruthenium resulted in significantly enhanced cytotoxicity. The affinity of Ru(II) -biotin complexes to avidin was investigated and was lower than that of unmodified biotin. Hill coefficients in the range 2.012-2.851 suggest strong positive cooperation between the complexes and avidin. To estimate the likelihood of binding to the biotin receptor/transporter, docking studies with avidin and streptavidin were conducted. These explain, to some extent, the in vitro anticancer activity results and support the conclusion that these novel half-sandwich ruthenium(II)-biotin conjugates may act as biological vectors to cancer cells, although no clear relationship between the cellular Ru content, the cytotoxicity, and the presence of the biotin moiety was observed. PMID:25676245

  13. Interleukin-17 induces CC chemokine receptor 6 expression and cell migration in colorectal cancer cells.

    PubMed

    Chin, Chih-Chien; Chen, Cheng-Nan; Kuo, Hsing-Chun; Shi, Chung-Sheng; Hsieh, Meng Chiao; Kuo, Yi-Hung; Tung, Shui-Yi; Lee, Kam-Fai; Huang, Wen-Shih

    2015-07-01

    The CC chemokine receptor 6 (CCR6) and its ligand CCL20 are involved in human colorectal cancer (CRC) carcinogenesis and can promote the progression of CRC. In addition, interleukin-17 (IL-17), produced by a T cell subset named "Th17," has been identified as an important player in inflammatory responses, and has emerged as a mediator in inflammation-associated cancer. However, the relevance of IL-17 in the development and progression of CRC still remains to be explored. This study aimed to investigate the effect of IL-17 on the cell migration of CRC cells. Human CRC HCT-116 cells were used to study the effect of IL-17 on CCR6 expression and cell migration in CRC cells. IL-17 treatment induced migration of HCT-116 cells across the Boyden chamber membrane and increased the expression level of the CCR6. Inhibition of CCR6 by small interfering RNA (siRNA) and neutralizing antibody inhibited IL-17-induced cell migration. By using specific inhibitors and short hairpin RNA (shRNA), we demonstrated that the activation of ERK and p38 pathways are critical for IL-17-induced CCR6 expression and cell migration. Promoter activity and transcription factor ELISA assays showed that IL-17 increased NF-?B-DNA binding activity in HCT-116 cells. Inhibition of NF-?B activation by specific inhibitors and siRNA blocked the IL-17-induced CCR6 expression. Our findings support the hypothesis that CCR6 up-regulation stimulated by IL-17 may play an active role in CRC cell migration. PMID:25201147

  14. Molecular size fractions of bay leaf (Laurus nobilis) exhibit differentiated regulation of colorectal cancer cell growth in vitro.

    PubMed

    Bennett, Louise; Abeywardena, Mahinda; Burnard, Sharon; Forsyth, Santina; Head, Richard; King, Kerryn; Patten, Glen; Watkins, Peter; Williams, Roderick; Zabaras, Dimitrios; Lockett, Trevor

    2013-01-01

    Numerous in vitro studies using solvent or aqueous extracts of raw dietary plant material have demonstrated modulation of colon cancer cell growth and apoptosis and effects on immune and nonimmune pathways of inflammation. We have developed a generic, 3-staged food-compatible process involving heating for conversion of dietary plants into food ingredients and report results on potential colon cancer-regulating properties of processed forms of Bay leaf (Laurus nobilis). In vitro studies demonstrated inhibition of cancer cell growth by processed Bay leaf products in HT-29, HCT-116, Caco-2, and SW-480 human cancer cell lines, which were accompanied by variable levels of elevated apoptosis. Bay leaf also exerted moderate inhibition of cycloxygenase 2 and 5 lipoxygenase enzymatic activity. In addition, these extracts significantly downregulated interferon-? production in T helper Type 1-stimulated whole blood from healthy donors. Furthermore, size fractionation of the extracts revealed that antiproliferative and proapoptotic activities were associated with low mass (primarily polyphenolics and essential oils) and high mass (primarily proteins including polyphenol oxidase) chemical classes, respectively. Bay leaf exerted in vitro bioactivity that might be relevant to protecting against early events in sporadic colorectal cancer, with potential for further optimization of bioactivity by size-based fractionation. PMID:23859043

  15. Inhibition of carbonic anhydrase activity modifies the toxicity of doxorubicin and melphalan in tumour cells in vitro.

    PubMed

    Gieling, Roben G; Parker, Catriona A; De Costa, Lisa A; Robertson, Naomi; Harris, Adrian L; Stratford, Ian J; Williams, Kaye J

    2013-04-01

    Carbonic anhydrase IX (CA IX) is a hypoxia-regulated enzyme, overexpressed in many types of human cancer. CA IX is involved in pH homeostasis, contributing to extracellular acidification and tumourigenesis. Acidification of the extracellular milieu can impact upon cellular uptake of chemotherapeutic drugs by favouring weak acids (e.g. melphalan), but limiting access of weak bases (e.g. doxorubicin). We investigated whether alterations of CA IX activity affected anti-cancer drug uptake and toxicity. CA inhibitor acetazolamide (AZM) enhanced doxorubicin toxicity but reduced melphalan toxicity in cell lines that highly expressed CA IX under anoxic conditions (HT29 and MDA435 CA9/18). The toxicity changes reflected modification of passive drug uptake. AZM did not alter toxicity or uptake in cells with low CA IX activity (HCT116 and MDA435 EV1). AZM lowered intracellular pH in HT29 and MDA435 CA9/18 cells under anoxic conditions. CA IX activity has chemomodulatory properties and is an attractive target for anti-cancer therapy. PMID:23163664

  16. Tumor cell alpha-N-acetylgalactosaminidase activity and its involvement in GcMAF-related macrophage activation.

    PubMed

    Mohamad, Saharuddin B; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-05-01

    Alpha-N-acetyl galactosaminidase (alpha-NaGalase) has been reported to accumulate in serum of cancer patients and be responsible for deglycosylation of Gc protein, which is a precursor of GcMAF-mediated macrophage activation cascade, finally leading to immunosuppression in advanced cancer patients. We studied the biochemical characterization of alpha-NaGalase from several human tumor cell lines. We also examined its effect on the potency of GcMAF to activate mouse peritoneal macrophage to produce superoxide in GcMAF-mediated macrophage activation cascade. The specific activity of alpha-NaGalases from human colon tumor cell line HCT116, human hepatoma cell line HepG2, and normal human liver cells (Chang liver cell line) were evaluated using two types of substrates; GalNAc-alpha-PNP (exo-type substrate) and Gal-beta-GalNAc-alpha-PNP (endo-type substrate). Tumor-derived alpha-NaGalase having higher activity than normal alpha-NaGalase, had higher substrate specificity to the exo-type substrate than to the endo-type substrate, and still maintained its activity at pH 7. GcMAF enhance superoxide production in mouse macrophage, and pre-treatment of GcMAF with tumor cell lysate reduce the activity. We conclude that tumor-derived alpha-NaGalase is different in biochemical characterization compared to normal alpha-NaGalase from normal Chang liver cells. In addition, tumor cell-derived alpha-NaGalase decreases the potency of GcMAF on macrophage activation. PMID:12062184

  17. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    SciTech Connect

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H., E-mail: grahamc@queensu.ca

    2010-11-15

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G{sub 1} phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}; and knockdown of p27{sup kip1} with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  18. Metabolites of Ginger Component [6]-Shogaol Remain Bioactive in Cancer Cells and Have Low Toxicity in Normal Cells: Chemical Synthesis and Biological Evaluation

    PubMed Central

    Zhu, Yingdong; Chen, Huadong; Sang, Shengmin

    2013-01-01

    Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4–M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC50 of 24.43 µM in HCT-116 human colon cancer cells and an IC50 of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC50 values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4–M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC50s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment. PMID:23382939

  19. Nitrogen permease regulator?like 2 enhances sensitivity to oxaliplatin in colon cancer cells.

    PubMed

    Liu, Ming-Na; Liu, Ai-Yun; Du, Ya-Ju; Pei, Feng-Hua; Wang, Xin-Hong; Chen, Jing; Liu, Dan; Liu, Bing-Rong

    2015-07-01

    Colorectal cancer (CRC) is the third most common cancer worldwide. Chemotherapeutic compounds used for the treatment of CRC include oxaliplatin (L?OHP). While L?OHP improves CRC survival, certain patients are resistant. The nitrogen permease regulator like?2 (NPRL2) gene is a candidate tumor suppressor gene that resides in a 120?kb homozygous deletion region on chromosome 3p21.3. In the present study, it was demonstrated that NPRL2 overexpression increases the sensitivity of HCT116 cells to L?OHP. The IC50 of L?OHP was decreased in cells transduced with NPRL2 compared with negative control (NC) cells and the effect of NPRL2 on L?OHP sensitivity was time dependent. Following NPRL2 transduction in HCT116 cells, the cell cycle was arrested in the G1 phase and a partial decrease in the S phase population was observed. Flow cytometric analysis revealed that NPRL2 transduction and L?OHP treatment increased apoptosis compared with NC cells. The mechanism through which NPRL2 overexpression enhances L?OHP sensitivity involves downregulation of the functions of the phosphatidylinositol 3?kinase/Akt/mammalian target of rapamycin network. Furthermore, L?OHP upregulated caspase?3 and caspase?9 to promote apoptosis in NPRL2?overexpressing cells compared with cells that were transduced with NPRL2 or treated with L?OHP and NC cells (P<0.01). NPRL2 overexpression led to the downregulation of CD24, which could significantly reduce tumor invasiveness and decrease the metastatic capacity of HCT116 cells. These mechanisms are likely active in other types of cancer and may be exploited for the development of novel cancer therapies. PMID:25777765

  20. Molluscan cells in culture: primary cell cultures and cell lines.

    PubMed

    Yoshino, T P; Bickham, U; Bayne, C J

    2013-06-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  1. Dual drug delivery of 5-fluorouracil (5-FU) and methotrexate (MTX) through random copolymeric nanomicelles of PLGA and polyethylenimine demonstrating enhanced cell uptake and cytotoxicity.

    PubMed

    Ashwanikumar, N; Kumar, Nisha Asok; Nair, S Asha; Kumar, G S Vinod

    2014-10-01

    We now report the synthesis of a random copolymer of poly-lactic-co-glycolic acid (PLGA) grafted branched polyethylenimine (BPEI) and the use of it as a multi drug delivery system (DDS). The methotrexate (MTX) was conjugated to BPEI through DCC/NHS chemistry. The copolymer-drug conjugate (PBP-MTX) was characterised by FT-IR and (1)H NMR spectroscopy. The PBP-MTX was converted into nanomicelles with entrapped 5-fluorouracil (5-FU) through nanoprecipitation technique. The size, shape, morphology and surface charge of the nanomicelles were confirmed using different techniques. The thermal behaviour and distribution of both conjugated and entrapped drug through the polymeric matrix were assessed by differential scanning calorimetry (DSC) and powder X-ray diffraction analysis (PXRD). In vitro drug release pattern of the nanomicelles was examined to ascertain the release pattern of two drugs namely 5-FU and MTX. The cellular uptake studies demonstrated higher uptake of the nanomicelles in colon cancer cell line HCT 116. Further the cytotoxicity evaluation of nanomicelles illustrated promising action which confirms the use of the system as a potential DDS to colon cancer. PMID:25108479

  2. The Sensitivity of Cancer Cells to Pheophorbide a-Based Photodynamic Therapy Is Enhanced by NRF2 Silencing

    PubMed Central

    Choi, Bo-hyun; Ryoo, In-geun; Kang, Han Chang; Kwak, Mi-Kyoung

    2014-01-01

    Photodynamic therapy (PDT) has emerged as an effective treatment for various solid tumors. The transcription factor NRF2 is known to protect against oxidative and electrophilic stress; however, its constitutive activity in cancer confers resistance to anti-cancer drugs. In the present study, we investigated NRF2 signaling as a potential molecular determinant of pheophorbide a (Pba)-based PDT by using NRF2-knockdown breast carcinoma MDA-MB-231 cells. Cells with stable NRF2 knockdown showed enhanced cytotoxicity and apoptotic/necrotic cell death following PDT along with increased levels of singlet oxygen and reactive oxygen species (ROS). A confocal microscopic visualization of fluorogenic Pba demonstrated that NRF2-knockdown cells accumulate more Pba than control cells. A subsequent analysis of the expression of membrane drug transporters showed that the basal expression of BCRP is NRF2-dependent. Among measured drug transporters, the basal expression of breast cancer resistance protein (BCRP; ABCG2) was only diminished by NRF2-knockdown. Furthermore, after incubation with the BCRP specific inhibitor, differential cellular Pba accumulation and ROS in two cell lines were abolished. In addition, NRF2-knockdown cells express low level of peroxiredoxin 3 compared to the control, which implies that diminished mitochondrial ROS defense system can be contributing to PDT sensitization. The role of the NRF2-BCRP pathway in Pba-PDT response was further confirmed in colon carcinoma HT29 cells. Specifically, NRF2 knockdown resulted in enhanced cell death and increased singlet oxygen and ROS levels following PDT through the diminished expression of BCRP. Similarly, PDT-induced ROS generation was substantially increased by treatment with NRF2 shRNA in breast carcinoma MCF-7 cells, colon carcinoma HCT116 cells, renal carcinoma A498 cells, and glioblastoma A172 cells. Taken together, these results indicate that the manipulation of NRF2 can enhance Pba-PDT sensitivity in multiple cancer cells. PMID:25226504

  3. The sensitivity of cancer cells to pheophorbide a-based photodynamic therapy is enhanced by Nrf2 silencing.

    PubMed

    Choi, Bo-hyun; Ryoo, In-geun; Kang, Han Chang; Kwak, Mi-Kyoung

    2014-01-01

    Photodynamic therapy (PDT) has emerged as an effective treatment for various solid tumors. The transcription factor NRF2 is known to protect against oxidative and electrophilic stress; however, its constitutive activity in cancer confers resistance to anti-cancer drugs. In the present study, we investigated NRF2 signaling as a potential molecular determinant of pheophorbide a (Pba)-based PDT by using NRF2-knockdown breast carcinoma MDA-MB-231 cells. Cells with stable NRF2 knockdown showed enhanced cytotoxicity and apoptotic/necrotic cell death following PDT along with increased levels of singlet oxygen and reactive oxygen species (ROS). A confocal microscopic visualization of fluorogenic Pba demonstrated that NRF2-knockdown cells accumulate more Pba than control cells. A subsequent analysis of the expression of membrane drug transporters showed that the basal expression of BCRP is NRF2-dependent. Among measured drug transporters, the basal expression of breast cancer resistance protein (BCRP; ABCG2) was only diminished by NRF2-knockdown. Furthermore, after incubation with the BCRP specific inhibitor, differential cellular Pba accumulation and ROS in two cell lines were abolished. In addition, NRF2-knockdown cells express low level of peroxiredoxin 3 compared to the control, which implies that diminished mitochondrial ROS defense system can be contributing to PDT sensitization. The role of the NRF2-BCRP pathway in Pba-PDT response was further confirmed in colon carcinoma HT29 cells. Specifically, NRF2 knockdown resulted in enhanced cell death and increased singlet oxygen and ROS levels following PDT through the diminished expression of BCRP. Similarly, PDT-induced ROS generation was substantially increased by treatment with NRF2 shRNA in breast carcinoma MCF-7 cells, colon carcinoma HCT116 cells, renal carcinoma A498 cells, and glioblastoma A172 cells. Taken together, these results indicate that the manipulation of NRF2 can enhance Pba-PDT sensitivity in multiple cancer cells. PMID:25226504

  4. Bim contributes to phenethyl isothiocyanate-induced apoptosis in breast cancer cells.

    PubMed

    Hahm, Eun-Ryeong; Singh, Shivendra V

    2012-06-01

    Phenethyl isothiocyanate (PEITC) is a highly promising cancer chemopreventive constituent of cruciferous vegetables (e.g., watercress) with in vivo efficacy in experimental rodent cancer models. Research thus far implicates apoptosis induction in cancer chemopreventive response to PEITC, but the mechanism of proapoptotic effect is not fully understood. The present study demonstrates that p53 upregulated modulator of apoptosis (PUMA)-independent apoptosis by PEITC is mediated by B-cell lymphoma 2 interacting mediator of cell death (Bim). Exposure of a cell line (BRI-JM04) derived from spontaneously developing mammary tumor of a MMTV-neu transgenic mouse to pharmacological concentrations of PEITC resulted in decreased cell viability coupled with apoptosis induction, characterized by release of histone-associated DNA fragments into the cytosol and cleavage of poly-(ADP-ribose)-polymerase and procaspase-3. The PEITC-induced apoptosis in BRI-JM04 cells was associated with up-regulation of Bak, PUMA, and Bim (long and short forms of Bim), increased S65 phosphorylation of BimEL (extra-long form), and down-regulation of Bcl-xL and Bcl-2. On the other hand, a non-tumorigenic human mammary epithelial cell line (MCF-10A) was significantly more resistant to PEITC-induced apoptosis compared with BRI-JM04 despite induction of Bax and PUMA due to concomitant overexpression of anti-apoptotic proteins, including Bcl-xL, Bcl-2, and Mcl-1. Wild-type HCT-116 cells and its isogenic PUMA knockout variant exhibited comparable sensitivity to PEITC-induced apoptosis. On the other hand, small interfering RNA knockdown of Bim protein imparted partial but statistically significant protection against PEITC-induced apoptosis in BRI-JM04, MCF-7, and MDA-MB-231 cells. In conclusion, the present study provides novel insight into the mechanism of PEITC-induced apoptosis involving Bim. PMID:21739479

  5. Chemotherapeutic agents in low noncytotoxic concentrations increase immunogenicity of human colon cancer cells

    Microsoft Academic Search

    Ramon Kaneno; Galina V. Shurin; Felipe M. Kaneno; Hiam Naiditch; Jianhua Luo; Michael R. Shurin

    2011-01-01

    Background  We have recently reported that chemotherapeutic agents in ultra low noncytotoxic concentrations may block the ability of tumor\\u000a cells to suppress functional activation of dendritic cells (DCs).\\u000a \\u000a \\u000a \\u000a \\u000a Methods  HCT-116 human colon cancer cells were treated with 0.5 nM paclitaxel (PAC) or 2 nM doxorubicin (DOX) with the aim of defining\\u000a the immunogenic changes induced by ultra low noncytotoxic concentrations of antineoplastic

  6. Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells.

    PubMed

    Chamberland, John P; Moon, Hyun-Seuk

    2015-03-01

    Omega-3 fatty acids (also called ?-3 fatty acis or n-3 fatty acid) are polyunsaturated fatty acids (PUFAs) with a double bond (C=C) at the third carbon atom from the end of the carbon chain. Numerous test tube and animal studies have shown that omega-3 fatty acids may prevent or inhibit the growth of cancers, suggesting that omega-3 fatty acids are important in cancer physiology. Alpha-linolenic acid (ALA) is one of an essential omega-3 fatty acid and organic compound found in seeds (chia and flaxseed), nuts (notably walnuts), and many common vegetable oils. ALA has also been shown to down-regulate cell proliferation of prostate, breast, and bladder cancer cells. However, direct evidence that ALA suppresses to the development of colon cancer has not been studied. Also, no previous studies have evaluated whether ALA may regulate malignant potential (adhesion, invasion and colony formation) in colon cancer cells. In order to address the questions above, we conducted in vitro studies and evaluated whether ALA may down-regulate malignant potential in human (HT29 and HCT116) and mouse (MCA38) colon cancer cell lines. We observed that treatment with 1-5 mM of ALA inhibits cell proliferation, adhesion and invasion in both human and mouse colon cancer cell lines. Interestingly, we observed that ALA did not decrease total colony numbers when compared to control. By contrast, we found that size of colony was significantly changed by ALA treatment when compared to control in all colon cancer cell lines. We suggest that our data enhance our current knowledge of ALA's mechanism and provide crucial information to further the development of new therapies for the management or chemoprevention of colon cancer. PMID:25336096

  7. Carbon-Ion Beam Irradiation Kills X-Ray-Resistant p53-Null Cancer Cells by Inducing Mitotic Catastrophe

    PubMed Central

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Ogiwara, Hideaki; Tsuchiya, Naoto; Yamauchi, Motohiro; Saitoh, Yuka; Sekine, Ryota; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2014-01-01

    Background and Purpose To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. Materials and Methods DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively) were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs) by immunostaining of phosphorylated H2AX (?H2AX), and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. Results The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. Conclusions Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment. PMID:25531293

  8. HDAC4 Promotes Growth of Colon Cancer Cells via Repression of p21

    PubMed Central

    Wilson, Andrew J.; Byun, Do-Sun; Nasser, Shannon; Murray, Lucas B.; Ayyanar, Kanyalakshmi; Arango, Diego; Figueroa, Maria; Melnick, Ari; Kao, Gary D.; Augenlicht, Leonard H.

    2008-01-01

    The class II Histone deacetylase (HDAC), HDAC4, is expressed in a tissue-specific manner, and it represses differentiation of specific cell types. We demonstrate here that HDAC4 is expressed in the proliferative zone in small intestine and colon and that its expression is down-regulated during intestinal differentiation in vivo and in vitro. Subcellular localization studies demonstrated HDAC4 expression was predominantly nuclear in proliferating HCT116 cells and relocalized to the cytoplasm after cell cycle arrest. Down-regulating HDAC4 expression by small interfering RNA (siRNA) in HCT116 cells induced growth inhibition and apoptosis in vitro, reduced xenograft tumor growth, and increased p21 transcription. Conversely, overexpression of HDAC4 repressed p21 promoter activity. p21 was likely a direct target of HDAC4, because HDAC4 down-regulation increased p21 mRNA when protein synthesis was inhibited by cycloheximide. The importance of p21 repression in HDAC4-mediated growth promotion was demonstrated by the failure of HDAC4 down-regulation to induce growth arrest in HCT116 p21-null cells. HDAC4 down-regulation failed to induce p21 when Sp1 was functionally inhibited by mithramycin or siRNA-mediated down-regulation. HDAC4 expression overlapped with that of Sp1, and a physical interaction was demonstrated by coimmunoprecipitation. Chromatin immunoprecipitation (ChIP) and sequential ChIP analyses demonstrated Sp1-dependent binding of HDAC4 to the proximal p21 promoter, likely directed through the HDAC4–HDAC3–N-CoR/SMRT corepressor complex. Consistent with increased transcription, HDAC4 or SMRT down-regulation resulted in increased histone H3 acetylation at the proximal p21 promoter locus. These studies identify HDAC4 as a novel regulator of colon cell proliferation through repression of p21. PMID:18632985

  9. Development and characterization of insect cell lines

    Microsoft Academic Search

    Dwight E. Lynn

    1996-01-01

    With the wide availability of insect cell culture media, it can generally be considered a routine process to develop new cell lines. Exceptions to this statement do exist, of course. Difficulties may arise when attempting to culture a specific cell type. For example, while there are a few cell lines from insect fat body and at least one from the

  10. Degradation of NF-?B, p53 and other regulatory redox-sensitive proteins by thiol-conjugating and -nitrosylating drugs in human tumor cells.

    PubMed

    Paranjpe, Ameya; Srivenugopal, Kalkunte S

    2013-05-01

    The ionized cysteines present on the surfaces of many redox-sensitive proteins play functionally essential roles and are readily targeted by the reactive oxygen and reactive nitrogen species. Using disulfiram (DSF) and nitroaspirin (NCX4016) as the model compounds that mediate thiol-conjugating and nitrosylating reactions, respectively, we investigated the fate of p53, nuclear factor-kappaB (NF-?B) and other redox-responsive proteins following the exposure of human cancer cell lines to the drugs. Both drugs induced glutathionylation of bulk proteins in tumor cells and cell-free extracts. A prominent finding of this study was a time- and dose-dependent degradation of the redox-regulated proteins after brief treatments of tumor cells with DSF or NCX4016. DSF and copper-chelated DSF at concentrations of 50-200 µM induced the disappearance of wild-type p53, mutant p53, NF-?B subunit p50 and the ubiquitin-activating enzyme E1 (UBE1) in tumor cell lines. DSF also induced the glutathionylation of p53. The recombinant p53 protein modified by DSF was preferentially degraded by rabbit reticulocyte lysates. The proteasome inhibitor PS341 curtailed the DSF-induced degradation of p53 in HCT116 cells. Further, the NCX4016 induced a dose-dependent disappearance of the UBE1 and NF-?B p50 proteins in cell lines, besides a time-dependent degradation of aldehyde dehydrogenase in mouse liver after a single injection of 150 mg/kg. The loss of p53 and NF-kB proteins correlated with decreases in their specific binding to DNA. Our results demonstrate the hitherto unrecognized ability of the non-toxic thiolating and nitrosylating agents to degrade regulatory proteins and highlight the exploitable therapeutic benefits. PMID:23354308

  11. Degradation of NF-?B, p53 and other regulatory redox-sensitive proteins by thiol-conjugating and -nitrosylating drugs in human tumor cells

    PubMed Central

    Srivenugopal, Kalkunte S.

    2013-01-01

    The ionized cysteines present on the surfaces of many redox-sensitive proteins play functionally essential roles and are readily targeted by the reactive oxygen and reactive nitrogen species. Using disulfiram (DSF) and nitroaspirin (NCX4016) as the model compounds that mediate thiol-conjugating and nitrosylating reactions, respectively, we investigated the fate of p53, nuclear factor-kappaB (NF-?B) and other redox-responsive proteins following the exposure of human cancer cell lines to the drugs. Both drugs induced glutathionylation of bulk proteins in tumor cells and cell-free extracts. A prominent finding of this study was a time- and dose-dependent degradation of the redox-regulated proteins after brief treatments of tumor cells with DSF or NCX4016. DSF and copper-chelated DSF at concentrations of 50–200 µM induced the disappearance of wild-type p53, mutant p53, NF-?B subunit p50 and the ubiquitin-activating enzyme E1 (UBE1) in tumor cell lines. DSF also induced the glutathionylation of p53. The recombinant p53 protein modified by DSF was preferentially degraded by rabbit reticulocyte lysates. The proteasome inhibitor PS341 curtailed the DSF-induced degradation of p53 in HCT116 cells. Further, the NCX4016 induced a dose-dependent disappearance of the UBE1 and NF-?B p50 proteins in cell lines, besides a time-dependent degradation of aldehyde dehydrogenase in mouse liver after a single injection of 150mg/kg. The loss of p53 and NF-kB proteins correlated with decreases in their specific binding to DNA. Our results demonstrate the hitherto unrecognized ability of the non-toxic thiolating and nitrosylating agents to degrade regulatory proteins and highlight the exploitable therapeutic benefits. PMID:23354308

  12. ABT-737 Induces Expression of the Death Receptor 5 and Sensitizes Human Cancer Cells to TRAIL-induced Apoptosis*S?

    PubMed Central

    Song, Jin H.; Kandasamy, Karthikeyan; Kraft, Andrew S.

    2008-01-01

    Because Bcl-2 family members inhibit the ability of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis, we investigated whether ABT-737, a small molecule Bcl-2 inhibitor, enhances TRAIL killing. We demonstrate that a combination of ABT-737 and TRAIL induced significant cell death in multiple cancer types, including renal, prostate, and lung cancers, although each agent individually had little activity in these tumor cells. All of these cell lines expressed the Mcl-1 protein that is known to block the activity of ABT-737 and TRAIL but did not block the synergy between these agents. However, Bax-deficient cell lines, including DU145 and HCT116 cells and those cell lines expressing low levels of TRAIL receptor, were resistant to apoptosis induced by these agents. To understand how ABT-737 functions to markedly increase TRAIL sensitivity, the levels of specific death-inducing signaling complex components were evaluated. Treatment with ABT-737 did not change the levels of c-FLIP, FADD, and caspase-8 but up-regulated the levels of the TRAIL receptor DR5. DR5 up-regulation induced by ABT-737 treatment occurred through a transcriptional mechanism, and mutagenesis studies demonstrated that the NF-?B site found in the DR5 promoter was essential for the ability of ABT-737 to increase the levels of this mRNA. Using luciferase reporter plasmids, ABT-737 was shown to stimulate NF-?B activity. Together, these results demonstrate that the ability of ABT-737 and TRAIL to induce apoptosis is mediated through activation of both the extrinsic and intrinsic pathways. Combinations of ABT-737 and TRAIL can be exploited therapeutically where antiapoptotic Bcl-2 family members drive tumor cell resistance to current anticancer therapies. PMID:18599488

  13. MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells

    PubMed Central

    2014-01-01

    Background Reprogramming energy metabolism has been an emerging hallmark of cancer cells. MicroRNAs play important roles in glucose metabolism. Methods The targets of microRNA-26a (miR-26a) were predicted by bioinformatics tools. The efficacy of miR-26a binding the 3?-untranslated region (UTR) of pyruvate dehydrogenase protein X component (PDHX) mRNA was evaluated using a dual-luciferase reporter assay. The PDHX expression at the mRNA and protein level in several colon cancer cell lines was quantified with real-time PCR and Western blot analysis respectively. The effects of miR-26a on glucose metabolism were determined by detecting the content of glucose consumption, production of lactate, pyruvate, and acetyl-coenzyme A. Results The expression of miR-26a is inversely associated with the level of its targeting protein PDHX in several colon cancer cell lines with different malignancy potentials. MiR-26a inhibits PDHX expression by direct targeting the 3?-UTR of PDHX mRNA. The glucose consumption and lactate concentration were both greatly increased in colon cancer cells than the normal colon mucosal epithelia under physiological conditions. The overexpression of miR-26a in HCT116 cells efficiently improved the accumulation of pyruvate and decreased the production of acetyl coenzyme A. Meanwhile the inhibition of miR-26a expression induced inverse biological effects. Conclusions MiR-26a regulates glucose metabolism of colorectal cancer cells by direct targeting the PDHX, which inhibits the conversion of pyruvate to acetyl coenzyme A in the citric acid cycle. PMID:24935220

  14. Gene expression profiles modulated by the human carcinogen aristolochic acid I in human cancer cells and their dependence on TP53

    SciTech Connect

    Simoes, Maria L.; Hockley, Sarah L. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton, Surrey SM2 5NG (United Kingdom); Schwerdtle, Tanja [Institute of Food Chemistry and Food Toxicology, Technical University of Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, D-13355 Berlin (Germany); Gamboa da Costa, Goncalo [Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton, Surrey SM2 5NG (United Kingdom); Schmeiser, Heinz H. [Division of Molecular Toxicology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120-Heidelberg (Germany); Phillips, David H. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton, Surrey SM2 5NG (United Kingdom); Arlt, Volker M. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton, Surrey SM2 5NG (United Kingdom)], E-mail: volker.arlt@icr.ac.uk

    2008-10-01

    Aristolochic acid (AA) is the causative agent of urothelial tumours associated with aristolochic acid nephropathy. These tumours contain TP53 mutations and over-express TP53. We compared transcriptional and translational responses of two isogenic HCT116 cell lines, one expressing TP53 (p53-WT) and the other with this gene knocked out (p53-null), to treatment with aristolochic acid I (AAI) (50-100 {mu}M) for 6-48 h. Modulation of 118 genes was observed in p53-WT cells and 123 genes in p53-null cells. Some genes, including INSIG1, EGR1, CAV1, LCN2 and CCNG1, were differentially expressed in the two cell lines. CDKN1A was selectively up-regulated in p53-WT cells, leading to accumulation of TP53 and CDKN1A. Apoptotic signalling, measured by caspase-3 and -7 activity, was TP53-dependent. Both cell types accumulated in S phase, suggesting that AAI-DNA adducts interfere with DNA replication, independently of TP53 status. The oncogene MYC, frequently over-expressed in urothelial tumours, was up-regulated by AAI, whereas FOS was down-regulated. Observed modulation of genes involved in endocytosis, e.g. RAB5A, may be relevant to the known inhibition of receptor-mediated endocytosis, an early sign of AA-mediated proximal tubule injury. AAI-DNA adduct formation was significantly greater in p53-WT cells than in p53-null cells. Collectively, phenotypic anchoring of the AAI-induced expression profiles to DNA adduct formation, cell-cycle parameters, TP53 expression and apoptosis identified several genes linked to these biological outcomes, some of which are TP53-dependent. These results strengthen the importance of TP53 in AA-induced cancer, and indicate that other alterations, e.g. to MYC oncogenic pathways, may also contribute.

  15. Triptolide abrogates growth of colon cancer and induces cell cycle arrest by inhibiting transcriptional activation of E2F.

    PubMed

    Oliveira, Amanda R; Beyer, Georg; Chugh, Rohit; Skube, Steven J; Majumder, Kaustav; Banerjee, Sulagna; Sangwan, Veena; Li, Lihua; Dawra, Rajinder K; Subramanian, Subbaya; Saluja, Ashok K; Dudeja, Vikas

    2015-06-01

    Despite significant progress in diagnostics and therapeutics, over 50 thousand patients die from colorectal cancer annually. Hence, there is urgent need for new lines of treatment. Triptolide, a natural compound isolated from the Chinese herb Tripterygium wilfordii, is effective against multiple cancers. We have synthesized a water soluble analog of triptolide, named Minnelide, which is currently in phase I trial against pancreatic cancer. The aims of the current study were to evaluate whether triptolide/Minnelide is effective against colorectal cancer and to elucidate the mechanism by which triptolide induces cell death in colorectal cancer. Efficacy of Minnelide was evaluated in subcutaneous xenograft and liver metastasis model of colorectal cancer. For mechanistic studies, colon cancer cell lines HCT116 and HT29 were treated with triptolide and the effect on viability, caspase activation, annexin positivity, lactate dehydrogenase release, and cell cycle progression was evaluated. Effect of triptolide on E2F transcriptional activity, mRNA levels of E2F-dependent genes, E2F1- retinoblastoma protein (Rb) binding, and proteins levels of regulator of G1-S transition was also measured. DNA binding of E2F1 was evaluated by chromatin immunoprecipitation assay. Triptolide decreased colon cancer cell viability in a dose- and time-dependent fashion. Minnelide markedly inhibited the growth of colon cancer in the xenograft and liver metastasis model of colon cancer and more than doubles the median survival of animals with liver metastases from colon cancer. Mechanistically, we demonstrate that at low concentrations triptolide induces apoptotic cell death but at higher concentrations it induces cell cycle arrest. Our data suggest that triptolide is able to induce G1 cell cycle arrest by inhibiting transcriptional activation of E2F1. Our data also show that triptolide downregulates E2F activity by potentially modulating events downstream of DNA binding. Therefore, we conclude that Triptolide and Minnelide are effective against colon cancer in multiple pre-clinical models. PMID:25893635

  16. IDO1 Metabolites Activate ?-catenin Signaling to Promote Cancer Cell Proliferation and Colon Tumorigenesis in Mice

    PubMed Central

    Thaker, Ameet I.; Rao, M Suprada; Bishnupuri, Kumar S.; Kerr, Thomas A; Foster, Lynne; Marinshaw, Jeffrey M.; Newberry, Rodney D.; Stenson, William F.; Ciorba, Matthew A

    2013-01-01

    BACKGROUND & AIMS Indoleamine 2,3 dioxygenase-1 (IDO1) catabolizes tryptophan along the kynurenine pathway. Though IDO1 is expressed in inflamed and neoplastic epithelial cells of the colon, its role in colon tumorigenesis is not well understood. We used genetic and pharmacologic approaches to manipulate IDO1 activity in mice with colitis-associated cancer and human colon cancer cell lines. METHODS C57Bl6 wild type (control), IDO1?/?, Rag1?/?, Rag1/IDO1 double knockout mice were exposed to azoxymethane and dextran sodium sulfate (DSS) to induce colitis and tumorigenesis. Colitis severity was assessed by measurements of disease activity, cytokine levels and histologic analysis. In vitro experiments were conducted using HCT116 and HT29 human colon cancer cells. 1-methyl tryptophan and small interfering RNA were used to inhibit IDO1. Kynurenine pathway metabolites were used to simulate IDO1 activity. RESULTS C57Bl6 mice given pharmacologic inhibitors of IDO1 and IDO1?/? mice had lower tumor burdens and reduced proliferation in the neoplastic epithelium following administration of DSS and azoxymethane than control mice. These reductions were also observed in Rag1/IDO1 double knockout mice compared to Rag1?/? mice (which lack mature adaptive immunity). In human colon cancer cells, blockade of IDO1 activity reduced nuclear and activated ?-catenin, transcription of its target genes (cyclin D1 and Axin2), and ultimately proliferation. Exogenous administration of IDO1 pathway metabolites kynurenine and quinolinic acid led to activation of ?-catenin and proliferation of human colon cancer cells, and increased tumor growth in mice. CONCLUSIONS IDO1, which catabolizes tryptophan, promotes colitis-associated tumorigenesis in mice, independent of its ability to limit T-cell mediated immune surveillance. The epithelial cell-autonomous survival advantage provided by IDO1 to colon epithelial cells indicate its potential as a therapeutic target. PMID:23669411

  17. How Embryonic Stem Cell Lines are Made

    NSDL National Science Digital Library

    Use of embryonic stem cells in research has been hotly debated for several years. This animation presents the basics on how stem cell lines are established. This animation from Cold Spring Harbor Laboratory's Dolan DNA Learning Center presents how embryonic stem cell lines are made through a series of illustrations of the processes involved.

  18. The pivotal role of intracellular calcium in oxaliplatin-induced inhibition of neurite outgrowth but not cell death in differentiated PC12 cells.

    PubMed

    Takeshita, Miki; Banno, Yoshiko; Nakamura, Mitsuhiro; Otsuka, Mayuko; Teramachi, Hitomi; Tsuchiya, Teruo; Itoh, Yoshinori

    2011-11-21

    The antineoplastic efficacy of oxaliplatin, a widely used anticancer drug, is restricted by its adverse effects such as peripheral neuropathy. Infusing a combination of calcium gluconate and magnesium sulfate (Ca/Mg) suppresses the acute neurotoxic side effects of oxaliplatin, although the mechanism is unclear. To elucidate the molecular mechanisms of oxaliplatin-induced neurotoxicity and the effects of Ca/Mg against this toxicity, we examined the effect of Ca/Mg on oxaliplatin-induced inhibition of neurite outgrowth in PC12 cells, a commonly used neuronal cell model. Oxaliplatin and oxalate suppressed nerve growth factor (NGF)-induced neurite outgrowth and reduced the NGF-mediated increase in the intracellular calcium concentration [Ca(2+)](i). A calcium-chelating agent, BAPTA/AM, also exhibited similar inhibitory effects on neurite outgrowth and [Ca(2+)](i). The addition of Ca/Mg attenuated these inhibitions induced by oxaliplatin and oxalate. The NGF-induced upregulation of growth-associated protein-43 (GAP-43) was suppressed by oxaliplatin and oxalate. Oxaliplatin, but not oxalate, suppressed NGF-stimulated extracellular signal-regulated kinase activation, and this inhibition was not affected by Ca/Mg. Ca/Mg did not modify the oxaliplatin-induced loss of cell viability or apoptosis in PC12 or HCT-116 cells, a human colorectal cancer cell line. These results suggest that the inhibition of neurite outgrowth but not tumor cell death induced by oxaliplatin is partly associated with reductions in [Ca(2+)](i) and GAP-43 expression, and this inhibition was suppressed by the addition of Ca/Mg. Therefore, it may be assumed that Ca/Mg is useful for protecting against oxaliplatin-induced neurotoxicity without reducing the antitumor activity of oxaliplatin. PMID:21981408

  19. Synthesis and Biological Evaluation of Neopeltolide and Analogs

    PubMed Central

    Cui, Yubo; Balachandran, Raghavan

    2012-01-01

    The synthesis of neopeltolide analogs that contain variations in the oxazole-containing side chain and in the macrolide core are reported along with the GI50 values for these compounds against MCF7, HCT-116, and p53 knockout HCT-116 cell lines. Although biological activity is sensitive to changes in the macrocycle and the side chain, several analogs displayed GI50 values of <25 nM. Neopeltolide and several of the more potent analogs were significantly less potent against p53 knockout cells, suggesting that p53 plays an auxiliary role in the activity of these compounds. PMID:22329423

  20. Disruption of thioredoxin metabolism enhances the toxicity of transforming growth factor ?-activated kinase 1 (TAK1) inhibition in KRAS-mutated colon cancer cells

    PubMed Central

    Hrabe, Jennifer E.; O’Leary, Brianne R.; Fath, Melissa A.; Rodman, Samuel N.; Button, Anna M.; Domann, Frederick E.; Spitz, Douglas R.; Mezhir, James J.

    2015-01-01

    Transforming growth factor ?-activated kinase 1 (TAK1) is critical for survival of many KRAS mutated colorectal cancer cells, and TAK1 inhibition with 5Z-7-oxozeaenol has been associated with oxidative stress leading to tumor cell killing. When SW 620 and HCT 116 human colon cancer cells were treated with 5 µM 5Z-7-oxozeaenol, cell viability, growth, and clonogenic survival were significantly decreased. Consistent with TAK1 inhibition being causally related to thiol-mediated oxidative stress, 10 mM N-acetylcysteine (NAC) partially reversed the growth inhibitory effects of 5Z-7-oxozeaenol. In addition, 5Z-7-oxozeaenol also increased steady-state levels of H2DCFDA oxidation as well as increased levels of total glutathione (GSH) and glutathione disulfide (GSSG). Interestingly, depletion of GSH using buthionine sulfoximine did not significantly potentiate 5Z-7-oxozeaenol toxicity in either cell line. In contrast, pre-treatment of cells with auranofin (Au) to inhibit thioredoxin reductase activity significantly increased levels of oxidized thioredoxin as well as sensitized cells to 5Z-7-oxozeaenol-induced growth inhibition and clonogenic cell killing. These results were confirmed in SW 620 murine xenografts, where treatment with 5Z-7-oxozeaenol or with Au plus 5Z-7-oxozeaenol significantly inhibited growth, with Au plus 5Z-7-oxozeaenol trending toward greater growth inhibition compared to 5Z-7-oxozeaenol alone. These results support the hypothesis that thiol-mediated oxidative stress is causally related to TAK1-induced colon cancer cell killing. In addition, these results support the hypothesis that thioredoxin metabolism is a critical target for enhancing colon cancer cell killing via TAK1 inhibition and could represent an effective therapeutic strategy in patients with these highly resistant tumors. PMID:26114584

  1. ?1, 4-N-acetylgalactosaminyltransferase III modulates cancer stemness through EGFR signaling pathway in colon cancer cells

    PubMed Central

    Hung, Ji-Shiang; Lin, Yo-Chuen; Huang, Miao-Juei; Lai, Hong-Shiee; Hsu, Wen-Ming; Liang, Jin-Tung; Huang, Min-Chuan

    2014-01-01

    Cancer stem cells are cancer cells characterized with tumor initiating capacity. ?1,4-N-acetylgalactosaminyltransferase III (B4GALNT3) synthesizes GalNAc?1-4GlcNAc (LacdiNAc) which contributes to self-renewal of mouse embryonic stem cells. We previously showed that B4GALNT3 overexpression enhances colon cancer cell malignant phenotypes in vitro and in vivo. However, the role of B4GALNT3 in cancer stemness remains unclear. We found that B4GALNT3 expression was positively correlated with advanced stages and poor survival in colorectal cancer patients. Knockdown of B4GALNT3 using small interfering (si) RNAs in colon cancer cell lines (HCT116, SW480, HCT15, and HT29 cells) decreased sphere formation and the expression of stem cell markers, OCT4 and NANOG. The expression of B4GALNT3 was upregulated in colonospheres. Interestingly, we found that B4GALNT3 primarily modified N-glycans of EGFR with LacdiNAc by Wisteria floribunda agglutinin (WFA) pull down assays. B4GALNT3 knockdown suppressed EGF-induced phosphorylation of EGFR and its downstream signaling molecules. Furthermore, EGF-induced degradation of EGFR was facilitated. In addition, EGF-induced migration and invasion were significantly suppressed by B4GALNT3 knockdown. Taken together, these data suggest B4GALNT3 regulates cancer stemness and the invasive properties of colon cancer cells through modifying EGFR glycosylation and signaling. Our results provide novel insights into the role of LacdiNAc in colorectal cancer development. PMID:25003232

  2. PTEN Deletion in Prostate Cancer Cells Does Not Associate With Loss of RAD51 Function: Implications for Radiotherapy and Chemotherapy

    PubMed Central

    Fraser, Michael; Zhao, Helen; Luoto, Kaisa R.; Lundin, Cecilia; Coackley, Carla; Chan, Norman; Joshua, Anthony M.; Bismar, Tarek A.; Evans, Andrew; Helleday, Thomas; Bristow, Robert G.

    2011-01-01

    Purpose PTEN deletions in prostate cancer are associated with tumor aggression and poor outcome. Recent studies have implicated PTEN as a determinant of homologous-recombination (HR) through defective RAD51 function. Similar to BRCA1/2-defective tumor cells, PTEN-null prostate and other cancer cells have been reported to be sensitive to PARP inhibitors (PARPi). To date, no direct comparison between PTEN and RAD51 expression in primary prostate tumors has been reported. Experimental Design Prostate cancer cell lines and xenografts with known PTEN status (22RV1-PTEN+/+; DU145-PTEN+/?; PC3-PTEN?/?) and H1299 and HCT116 cancer cells were used to evaluate how PTEN loss affects RAD51 expression and PARPi sensitivity. Primary prostate cancers with known PTEN status were analyzed for RAD51 expression. Results PTEN status is not associated with reduced RAD51 mRNA or protein expression in primary prostate cancers. Decreased PTEN expression did not reduce RAD51 expression or clonogenic survival following PARPi amongst prostate cancer cells that vary in TP53 and PTEN. PARPi sensitivity instead associated with a defect in MRE11 expression. PTEN-deficient cells had only mild PARPi sensitivity and no loss of HR or RAD51 recruitment. Clonogenic cell survival following a series of DNA-damaging agents was variable: PTEN-deficient cells were sensitive to ionizing radiation, mitomycin-C, UV, H2O2 and methyl-methanesulfonate; but not to cisplatin, camptothecin, or paclitaxel. Conclusions These data suggest that the relationship between PTEN status and survival following DNA damage is indirect and complex. It is unlikely that PTEN status will be a direct biomarker for HR status or PARPi response in prostate cancer clinical trials. PMID:22114138

  3. Characterization of gene expression regulated by American ginseng and ginsenoside Rg3 in human colorectal cancer cells.

    PubMed

    Luo, Xiaoji; Wang, Chong-Zhi; Chen, Jin; Song, Wen-Xin; Luo, Jinyong; Tang, Ni; He, Bai-Cheng; Kang, Quan; Wang, Yitao; Du, Wei; He, Tong-Chuan; Yuan, Chun-Su

    2008-05-01

    American ginseng (Panax quinquefolius L., Araliaceae) possesses anti-cancer potential and is one of the most commonly used herbal medicines in the United States. Ginsenoside Rg3, one of the saponins in American ginseng, has been shown to inhibit tumor growth. In this study, we sought to characterize the downstream genes targeted by American ginseng extracts in HCT-116 human colorectal cancer cells. We first demonstrated that the content of Rg3 in American ginseng steamed at 120 degrees C for 2 h (referred to as S2h) was significantly increased when compared with that of the unsteamed ginseng. Both S2h and Rg3 exhibited antiproliferative effects on HCT-116 cells. Using the Affymetrix high density genechips containing more than 40,000 genes and ESTs, the gene expression profiling of HCT-116 cells were assayed. Microarray data indicated that the expression levels of 76 genes were changed significantly after treatment with S2h or Rg3, whereby it was found that 52 of the 76 genes were up-regulated while the remaining 24 were down-regulated. Ingenuity pathways analysis of top functions affected by both S2h and Rg3 were carried out. The most effected pathway is the Ephrin receptor pathway. To validate the microarray data, quantitative real-time PCR of six candidate target genes was conducted, whereby it was found that three genes were up-regulated (AKAPA8L, PMPCB and PDE5A) and three were down-regulated (PITPNA, DUS2L and RIC8A). Although further studies are needed to elucidate the mechanisms of action, our findings should expand the understanding of the molecular framework of American ginseng as an anti-cancer agent. PMID:18425323

  4. Induction of calcium sensing receptor in human colon cancer cells by calcium, vitamin D and aquamin: Promotion of a more differentiated, less malignant and indolent phenotype.

    PubMed

    Singh, Navneet; Aslam, Muhammad N; Varani, James; Chakrabarty, Subhas

    2015-07-01

    The calcium sensing receptor (CaSR) is a robust promoter of differentiation in colonic epithelial cells and functions as a tumor suppressor. Cancer cells that do not express CaSR (termed CaSR null) are highly malignant while acquisition of CaSR expression in these cells circumvents the malignant phenotype. We hypothesize that chemopreventive agents mediate their action through the induction of CaSR. Here, we compare the effectiveness of Ca(2+), vitamin D, and Aquamin (a marine algae product containing Ca(2+), magnesium and detectable levels of 72 additional minerals) on the induction of CaSR in the CBS and HCT116 human colon carcinoma cell lines and the corresponding CaSR null cells isolated from these lines. All three agonists induced CaSR mRNA and protein expression and inhibited cellular proliferation in the parental and CaSR null cells. Aquamin was found to be most potent in this regard. Induction of CaSR expression by these agonists resulted in demethylation of the CaSR gene promoter with a concurrent increase in CaSR promoter reporter activity. However, demethylation per se did not induce CaSR transcription. Induction of CaSR expression resulted in a down-regulated expression of tumor inducers and up-regulated expression of tumor suppressors. Again, Aquamin was found to be most potent in these biologic effects. This study provides a rationale for the use of a multi-mineral approach in the chemoprevention of colon cancer and suggests that induction of CaSR may be a measure of the effectiveness of chemopreventive agents. © 2013 Wiley Periodicals, Inc. PMID:26076051

  5. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    SciTech Connect

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium)] [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium); De Ridder, Mark, E-mail: mark.deridder@uzbrussel.be [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium)

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.

  6. Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR).

    PubMed

    Hemmasi, Sarah; Czulkies, Bernd A; Schorch, Björn; Veit, Antonia; Aktories, Klaus; Papatheodorou, Panagiotis

    2015-05-29

    CDT (Clostridium difficile transferase) is a binary, actin ADP-ribosylating toxin frequently associated with hypervirulent strains of the human enteric pathogen C. difficile, the most serious cause of antibiotic-associated diarrhea and pseudomembranous colitis. CDT leads to the collapse of the actin cytoskeleton and, eventually, to cell death. Low doses of CDT result in the formation of microtubule-based protrusions on the cell surface that increase the adherence and colonization of C. difficile. The lipolysis-stimulated lipoprotein receptor (LSR) is the host cell receptor for CDT, and our aim was to gain a deeper insight into the interplay between both proteins. We show that CDT interacts with the extracellular, Ig-like domain of LSR with an affinity in the nanomolar range. We identified LSR splice variants in the colon carcinoma cell line HCT116 and disrupted the LSR gene in these cells by applying the CRISPR-Cas9 technology. LSR truncations ectopically expressed in LSR knock-out cells indicated that intracellular parts of LSR are not essential for plasma membrane targeting of the receptor and cellular uptake of CDT. By generating a series of N- and C-terminal truncations of the binding component of CDT (CDTb), we found that amino acids 757-866 of CDTb are sufficient for binding to LSR. With a transposon-based, random mutagenesis approach, we identified potential LSR-interacting epitopes in CDTb. This study increases our understanding about the interaction between CDT and its receptor LSR, which is key to the development of anti-toxin strategies for preventing cell entry of the toxin. PMID:25882847

  7. Activation of p53-Dependent Growth Suppression in Human Cells by Mutations in PTEN or PIK3CA?

    PubMed Central

    Kim, Jung-Sik; Lee, Carolyn; Bonifant, Challice L.; Ressom, Habtom; Waldman, Todd

    2007-01-01

    In an effort to identify genes whose expression is regulated by activated phosphatidylinositol 3-kinase (PI3K) signaling, we performed microarray analysis and subsequent quantitative reverse transcription-PCR on an isogenic set of PTEN gene-targeted human cancer cells. Numerous p53 effectors were upregulated following PTEN deletion, including p21, GDF15, PIG3, NOXA, and PLK2. Stable depletion of p53 led to reversion of the gene expression program. Western blots revealed that p53 was stabilized in HCT116 PTEN?/? cells via an Akt1-dependent and p14ARF-independent mechanism. Stable depletion of PTEN in untransformed human fibroblasts and epithelial cells also led to upregulation of p53 and senescence-like growth arrest. Simultaneous depletion of p53 rescued this phenotype, enabling PTEN-depleted cells to continue proliferating. Next, we tested whether oncogenic PIK3CA, like inactivated PTEN, could activate p53. Retroviral expression of oncogenic human PIK3CA in MCF10A cells led to activation of p53 and upregulation of p53-regulated genes. Stable depletion of p53 reversed these PIK3CA-induced expression changes and synergized with oncogenic PIK3CA in inducing anchorage-independent growth. Finally, targeted deletion of an endogenous allele of oncogenic, but not wild-type, PIK3CA in a human cancer cell line led to a reduction in p53 levels and a decrease in the expression of p53-regulated genes. These studies demonstrate that activation of PI3K signaling by mutations in PTEN or PIK3CA can lead to activation of p53-mediated growth suppression in human cells, indicating that p53 can function as a brake on phosphatidylinositol (3,4,5)-triphosphate-induced mitogenesis during human cancer pathogenesis. PMID:17060456

  8. Mechanism of Alternariol monomethyl ether-induced mitochondrial apoptosis in human colon carcinoma cells.

    PubMed

    Bensassi, Fatma; Gallerne, Cindy; el Dein, Ossama Sharaf; Hajlaoui, Mohamed Rabeh; Bacha, Hassen; Lemaire, Christophe

    2011-12-18

    Alternariol monomethyl ether (AME) is a major mycotoxin produced by fungi of the genus Alternaria and a common contaminant of food products such as fruits and cereals worldwide. AME can cause serious health problems for animals as well as for humans. In this study, human colon carcinoma cells (HCT116) were used to explore the mechanisms of cell death induced by AME. Exposure of HCT116 cells to AME resulted in significant cytotoxicity manifested by a loss in cell viability mainly mediated by activation of apoptotic process. AME activated the mitochondrial apoptotic pathway evidenced by the opening of the mitochondrial permeability transition pore (PTP), loss of the mitochondrial transmembrane potential (??m) downstream generation of O(2)(-), cytochrome c release and caspase 9 and 3 activation. Experiments conducted on isolated organelles indicated that AME does not directly target mitochondria to induce PTP-dependent permeabilization of mitochondrial membranes. Moreover, no difference was observed in Bax-KO cells in comparison to parental cells, suggesting that the pro-apoptotic protein Bax is not involved in AME-induced mitochondrial apoptosis. Our findings demonstrate for the first time that AME induces cell death in human colon carcinoma cells by activating the mitochondrial pathway of apoptosis. PMID:22001388

  9. Human enhancer of filamentation 1-induced colorectal cancer cell migration: Role of serine phosphorylation and interaction with the breast cancer anti-estrogen resistance 3 protein.

    PubMed

    Ibrahim, Rama; Lemoine, Antoinette; Bertoglio, Jacques; Raingeaud, Joël

    2015-07-01

    Human enhancer of filamentation 1 (HEF1) is a member of the p130Cas family of docking proteins involved in integrin-mediated cytoskeleton reorganization associated with cell migration. Elevated expression of HEF1 promotes invasion and metastasis in multiple cancer cell types. To date, little is known on its role in CRC tumor progression. HEF1 is phosphorylated on several Ser/Thr residues but the effects of these post-translational modifications on the functions of HEF1 are poorly understood. In this manuscript, we investigated the role of HEF1 in migration of colorectal adeno-carcinoma cells. First, we showed that overexpression of HEF1 in colo-carcinoma cell line HCT116 increases cell migration. Moreover, in these cells, HEF1 increases Src-mediated phosphorylation of FAK on Tyr-861 and 925. We then showed that HEF1 mutation on Ser-369 enhances HEF1-induced migration and FAK phosphorylation as a result of protein stabilization. We also, for the first time characterized a functional mutation of HEF1 on Arg-367 which mimics the effect of Ser-369 to Ala mutation. Finally through mass spectrometry experiments, we identified BCAR3 as an essential interactor and mediator of HEF1-induced migration. We demonstrated that single amino acid mutations that prevent formation of the HEF1-BCAR3 complex impair HEF1-mediated migration. Therefore, amino-acid substitutions that impede Ser-369 phosphorylation stabilize HEF1 which increases the migration of CRC cells and this latter effect requires the interaction of HEF1 with the NSP family adaptor protein BCAR3. Collectively, these data reveal the importance of HEF1 expression level in cancer cell motility and then support the utilization of HEF1 as a biomarker of tumor progression. PMID:25817040

  10. Review article Immortal porcine lymphoblastoid cell lines

    E-print Network

    Paris-Sud XI, Université de

    Review article Immortal porcine lymphoblastoid cell lines: interest for veterinary and medical (Received 18 January 1994; accepted 22 April 1994) Summary ― Immortal lymphoblastoid cell lines of B porcine breeds. The lymphoblast immortalization has been putatively attributed to an oncogenic virus

  11. Infectious mononucleosis: immunoglobulin synthesis by cell lines

    PubMed Central

    Glade, Philip R.; Chessin, Lawrence N.

    1968-01-01

    Immunoglobulin synthesis by 16 long-term suspension cultures of mononuclear cells derived from peripheral blood of nine patients with heterophile-positive infectious mononucleosis (IM) has been demonstrated by radioimmunoelectrophoretic techniques. All cell lines synthesized molecules with IgG (?) heavy chain specificity. 14 cell lines produced molecules with IgM (?) heavy chain specificity and 11 cell lines produced molecules with IgA (?) heavy chain specificity. No detectable synthesis of molecules with IgD (?) heavy chain specificity was observed by these cell lines derived from peripheral blood of patients with IM. 13 cell lines produced molecules with type K (?) light chain specificity and 6 cell lines produced molecules with type L (?) light chain specificity. Of interest, 9 of 16 lines produced IgG (?), IgA (?), and IgM (?) heavy chain molecules and 5 of these cell lines produced molecules with type K (?) and type L (?) light chain specificity as well. Further characterization by combined polyacrylamide gel filtration, immunodiffusion, and radioautography indicated the presence of newly synthesized immunoglobulin molecules with both heavy and light polypeptide chains in close association as well as free light polypeptide chain synthesis. Investigation of the localization of immunoglobulin in single cells by immunofluorescent techniques revealed that 5-22% of cells in these lines were strongly reactive with a fluorescein isothiocyanate-conjugated rabbit antisera directed against the antigenic determinants of human IgG and cross-reactive with the determinants common to IgA and IgM. No heterophile antibody, heteroagglutinin, or hemolytic antibody could be demonstrated in these cell lines derived from peripheral blood of patients with heterophile-positive infectious mononucleosis. Images PMID:4175543

  12. Anthracycline resistance mediated by reductive metabolism in cancer cells: the role of aldo-keto reductase 1C3.

    PubMed

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir

    2014-08-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2'-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. PMID:24832494

  13. Lactobacillus gasseri SF1183 Affects Intestinal Epithelial Cell Survival and Growth

    PubMed Central

    Baccigalupi, Loredana; Calabrň, Viola; Crescenzi, Elvira; Ricca, Ezio; Pollice, Alessandra

    2013-01-01

    It is now commonly accepted that the intestinal microbiota plays a crucial role in the gut physiology and homeostasis, and that both qualitative and quantitative alterations in the compositions of the gut flora exert profound effects on the host’s intestinal cells. In spite of this, the details of the interaction between commensal bacteria and intestinal cells are still largely unknown and only in few cases the molecular mechanisms have been elucidated. Here we analyze the effects of molecules produced and secreted by Lactobacillus gasseri SF1183 on human intestinal HCT116 cells. L. gasseri is a well known species of lactic acid bacteria, commonly associated to the human intestine and SF1183 is a human strain previously isolated from an ileal biopsy of an healthy volunteer. SF1183 produces and secretes, in a growth phase-dependent way, molecule(s) able to drastically interfere with HCT116 cell proliferation. Although several attempts to purify and identify the bioactive molecule(s) have been so far unsuccessful, a partial characterization has indicated that it is smaller than 3 kDa, thermostable and of proteinaceous nature. L. gasseri molecule(s) stimulate a G1-phase arrest of the cell cycle by up-regulation of p21WAF1 rendering cells protected from intrinsic and extrinsic apoptosis. A L. gasseri-mediated reduction of apoptosis and of cell proliferation could be relevant in protecting epithelial barrier integrity and helping in reconstituting tissutal homeostasis. PMID:23894414

  14. Elevated NIBP/TRAPPC9 mediates tumorigenesis of cancer cells through NF?B signaling.

    PubMed

    Zhang, Yonggang; Liu, Shu; Wang, Hong; Yang, Wensheng; Li, Fang; Yang, Fan; Yu, Daohai; Ramsey, Frederick V; Tuszyski, George P; Hu, Wenhui

    2015-03-20

    Regulatory mechanisms underlying constitutive and inducible NF?B activation in cancer remain largely unknown. Here we investigated whether a novel NIK- and IKK2-binding protein (NIBP) is required for maintaining malignancy of cancer cells in an NF?B-dependent manner. Real-time polymerase chain reaction analysis of a human cancer survey tissue-scan cDNA array, immunostaining of a human frozen tumor tissue array and immunoblotting of a high-density reverse-phase cancer protein lysate array showed that NIBP is extensively expressed in most tumor tissues, particularly in breast and colon cancer. Lentivirus-mediated NIBP shRNA knockdown significantly inhibited the growth/proliferation, invasion/migration, colony formation and xenograft tumorigenesis of breast (MDA-MB-231) or colon (HCT116) cancer cells. NIBP overexpression in HCT116 cells promoted cell proliferation, migration and colony formation. Mechanistically, NIBP knockdown in cancer cells inhibited cytokine-induced activation of NF?B luciferase reporter, thus sensitizing the cells to TNF?-induced apoptosis. Endogenous NIBP bound specifically to the phosphorylated IKK2 in a TNF?-dependent manner. NIBP knockdown transiently attenuated TNF?-stimulated phosphorylation of IKK2/p65 and degradation of I?B?. In contrast, NIBP overexpression enhanced TNF?-induced NF?B activation, thus inhibiting constitutive and TNF?-induced apoptosis. Collectively, our data identified important roles of NIBP in promoting tumorigenesis via NF?? signaling, spotlighting NIBP as a promising target in cancer therapeutic intervention. PMID:25704885

  15. Elevated NIBP/TRAPPC9 mediates tumorigenesis of cancer cells through NF?B signaling

    PubMed Central

    Wang, Hong; Yang, Wensheng; Li, Fang; Yang, Fan; Yu, Daohai; Ramsey, Frederick V.; Tuszyski, George P.; Hu, Wenhui

    2015-01-01

    Regulatory mechanisms underlying constitutive and inducible NF?B activation in cancer remain largely unknown. Here we investigated whether a novel NIK- and IKK2-binding protein (NIBP) is required for maintaining malignancy of cancer cells in an NF?B-dependent manner. Real-time polymerase chain reaction analysis of a human cancer survey tissue-scan cDNA array, immunostaining of a human frozen tumor tissue array and immunoblotting of a high-density reverse-phase cancer protein lysate array showed that NIBP is extensively expressed in most tumor tissues, particularly in breast and colon cancer. Lentivirus-mediated NIBP shRNA knockdown significantly inhibited the growth/proliferation, invasion/migration, colony formation and xenograft tumorigenesis of breast (MDA-MB-231) or colon (HCT116) cancer cells. NIBP overexpression in HCT116 cells promoted cell proliferation, migration and colony formation. Mechanistically, NIBP knockdown in cancer cells inhibited cytokine-induced activation of NF?B luciferase reporter, thus sensitizing the cells to TNF?-induced apoptosis. Endogenous NIBP bound specifically to the phosphorylated IKK2 in a TNF?-dependent manner. NIBP knockdown transiently attenuated TNF?-stimulated phosphorylation of IKK2/p65 and degradation of I?B?. In contrast, NIBP overexpression enhanced TNF?-induced NF?B activation, thus inhibiting constitutive and TNF?-induced apoptosis. Collectively, our data identified important roles of NIBP in promoting tumorigenesis via NF?? signaling, spotlighting NIBP as a promising target in cancer therapeutic intervention. PMID:25704885

  16. Spontaneous Cell Competition in Immortalized Mammalian Cell Lines

    PubMed Central

    Penzo-Méndez, Alfredo I.; Chen, Yi-Ju; Li, Jinyang; Witze, Eric S.; Stanger, Ben Z.

    2015-01-01

    Cell competition is a form of cell-cell interaction by which cells compare relative levels of fitness, resulting in the active elimination of less-fit cells, “losers,” by more-fit cells, “winners.” Here, we show that in three routinely-used mammalian cell lines – U2OS, 3T3, and MDCK cells – sub-clones arise stochastically that exhibit context-dependent competitive behavior. Specifically, cell death is elicited when winner and loser sub-clones are cultured together but not alone. Cell competition and elimination in these cell lines is caspase-dependent and requires cell-cell contact but does not require de novo RNA synthesis. Moreover, we show that the phenomenon involves differences in cellular metabolism. Hence, our study demonstrates that cell competition is a common feature of immortalized mammalian cells in vitro and implicates cellular metabolism as a mechanism by which cells sense relative levels of “fitness.” PMID:26200654

  17. Cytotoxicity of the bisphenolic honokiol from Magnolia officinalis against multiple drug-resistant tumor cells as determined by pharmacogenomics and molecular docking.

    PubMed

    Saeed, Mohamed; Kuete, Victor; Kadioglu, Onat; Börtzler, Jonas; Khalid, Hassan; Greten, Henry Johannes; Efferth, Thomas

    2014-10-15

    A main problem in oncology is the development of drug-resistance. Some plant-derived lignans are established in cancer therapy, e.g. the semisynthetic epipodophyllotoxins etoposide and teniposide. Their activity is, unfortunately, hampered by the ATP-binding cassette (ABC) efflux transporter, P-glycoprotein. Here, we investigated the bisphenolic honokiol derived from Magnolia officinalis. P-glycoprotein-overexpressing CEM/ADR5000 cells were not cross-resistant to honokiol, but MDA-MB-231 BRCP cells transfected with another ABC-transporter, BCRP, revealed 3-fold resistance. Further drug resistance mechanisms analyzed study was the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR). HCT116 p53(-/-) did not reveal resistance to honokiol, and EGFR-transfected U87.MG EGFR cells were collateral sensitive compared to wild-type cells (degree of resistance: 0.34). To gain insight into possible modes of collateral sensitivity, we performed in silico molecular docking studies of honokiol to EGFR and EGFR-related downstream signal proteins. Honokiol bound with comparable binding energies to EGFR (-7.30 ± 0.01 kcal/mol) as the control drugs erlotinib (-7.50 ± 0.30 kcal/mol) and gefitinib (-8.30 ± 0.10 kcal/mol). Similar binding affinities of AKT, MEK1, MEK2, STAT3 and mTOR were calculated for honokiol (range from -9.0 ± 0.01 to 7.40 ± 0.01 kcal/mol) compared to corresponding control inhibitor compounds for these signal transducers. This indicates that collateral sensitivity of EGFR-transfectant cells towards honokiol may be due to binding to EGFR and downstream signal transducers. COMPARE and hierarchical cluster analyses of microarray-based transcriptomic mRNA expression data of 59 tumor cell lines revealed a specific gene expression profile predicting sensitivity or resistance towards honokiol. PMID:25442261

  18. Impact of Phytolacca americana extracts on gene expression of colon cancer cells.

    PubMed

    Maness, L; Goktepe, I; Chen, H; Ahmedna, M; Sang, S

    2014-02-01

    Native Americans have used Phytolacca americana to treat breast ailments, gastrointestinal disorders, rashes, and inflammation. Some anti-cancer and anti-viral research has been reported on this perennial herb, but none has been published concerning the effects of its extracts on cancer cell genes. In this study, changes in gene expression at the transcription level were evaluated in HCT-116 colon cancer cells after exposure to P. americana ethanol extract and its water fraction using the Human Cancer Pathway Finder PCR Array. Of the genes significantly affected in HCT-116 cells exposed to the ethanol extract at 3200?µg/ml, changes in expression of MYC, PLAU, and TEK may benefit the treatment of colon cancer. Exposing the cells to 1600?µg/ml of the water fraction resulted in several gene changes that may also be beneficial in the treatment of colon cancer: NME4, TEK, and THBS1. A few genes on this array that are known to play a specific role in colon cancer had activities changed in a way that may be detrimental in the treatment of colon cancer. Further studies should be performed to understand how these changes would impact colon cancer treatment. PMID:23553997

  19. Synthesis and biological evaluation of piperamide analogues as HDAC inhibitors.

    PubMed

    Luo, Yu; Liu, Hao-Min; Su, Ming-Bo; Sheng, Li; Zhou, Yu-Bo; Li, Jia; Lu, Wei

    2011-08-15

    Two natural piperamides (piperlonguminine and refrofractamide A) and their derivatives were synthesized and evaluated for inhibitory activity against histone deacetylases, as well as the HCT-116 human colon cancer cell line. The preliminary structure activity relationship was discussed. Compounds featuring a hydroxamic acid moiety exhibited moderate HDAC activity and in vitro cytotoxicity. PMID:21745740

  20. Impacts of CD44 knockdown in cancer cells on tumor and host metabolic systems revealed by quantitative imaging mass spectrometry.

    PubMed

    Ohmura, Mitsuyo; Hishiki, Takako; Yamamoto, Takehiro; Nakanishi, Tsuyoshi; Kubo, Akiko; Tsuchihashi, Kenji; Tamada, Mayumi; Toue, Sakino; Kabe, Yasuaki; Saya, Hideyuki; Suematsu, Makoto

    2015-04-30

    CD44 expressed in cancer cells was shown to stabilize cystine transporter (xCT) that uptakes cystine and excretes glutamate to supply cysteine as a substrate for reduced glutathione (GSH) for survival. While targeting CD44 serves as a potentially therapeutic stratagem to attack cancer growth and chemoresistance, the impact of CD44 targeting in cancer cells on metabolic systems of tumors and host tissues in vivo remains to be fully determined. This study aimed to reveal effects of CD44 silencing on alterations in energy metabolism and sulfur-containing metabolites in vitro and in vivo using capillary electrophoresis-mass spectrometry and quantitative imaging mass spectrometry (Q-IMS), respectively. In an experimental model of xenograft transplantation of human colon cancer HCT116 cells in superimmunodeficient NOG mice, snap-frozen liver tissues containing metastatic tumors were examined by Q-IMS. As reported previously, short hairpin CD44 RNA interference (shCD44) in cancer cells caused significant regression of tumor growth in the host liver. Under these circumstances, the CD44 knockdown suppressed polyamines, GSH and energy charges not only in metastatic tumors but also in the host liver. In culture, HCT116 cells treated with shCD44 decreased total amounts of methionine-pool metabolites including spermidine and spermine, and reactive cysteine persulfides, suggesting roles of these metabolites for cancer growth. Collectively, these results suggest that CD44 expressed in cancer accounts for a key regulator of metabolic interplay between tumor and the host tissue. PMID:25461272

  1. Disruption of microRNA Biogenesis Confers Resistance to ER Stress-Induced Cell Death Upstream of the Mitochondrion

    PubMed Central

    Cawley, Karen; Logue, Susan E.; Gorman, Adrienne M.; Zeng, Qingping; Patterson, John; Gupta, Sanjeev; Samali, Afshin

    2013-01-01

    Global downregulation of microRNAs (miRNAs) is a common feature of human tumors and has been shown to enhance cancer progression. Several components of the miRNA biogenesis machinery (XPO5, DICER and TRBP) have been shown to act as haploinsufficient tumor suppressors. How the deregulation of miRNA biogenesis promotes tumor development is not clearly understood. Here we show that loss of miRNA biogenesis increased resistance to endoplasmic reticulum (ER) stress-induced cell death. We observed that HCT116 cells with a DICER hypomorphic mutation (Exn5/Exn5) or where DICER or DROSHA were knocked down were resistant to ER stress-induced cell death. Extensive analysis revealed little difference in the unfolded protein response (UPR) of WT compared to Exn5/Exn5 HCT116 cells upon ER stress treatment. However, analysis of the intrinsic apoptotic pathway showed that resistance occurred upstream of the mitochondria. In particular, BAX activation and dissipation of mitochondrial membrane potential was attenuated, and there was altered expression of BCL-2 family proteins. These observations demonstrate a key role for miRNAs as critical modulators of the ER stress response. In our model, downregulation of miRNA biogenesis delays ER stress-induced apoptosis. This suggests that disrupted miRNA biogenesis may contribute to cancer progression by inhibiting ER stress-induced cell death. PMID:23977393

  2. Helenalin-induced apoptosis is dependent on production of reactive oxygen species and independent of induction of endoplasmic reticulum stress in renal cell carcinoma.

    PubMed

    Jang, Ji Hoon; Iqbal, Taha; Min, Kyoung-Jin; Kim, Shin; Park, Jong-Wook; Son, Eun-Ik; Lee, Tae-Jin; Kwon, Taeg Kyu

    2013-03-01

    Helenalin, a sesquiterpene lactone, exhibits anti-inflammatory and anti-tumor activities. Here, we investigated whether helenalin could induce apoptosis in human renal carcinoma Caki cells. Helenalin increased apoptosis in dose dependent manner in Caki cells, and also induced apoptosis in other carcinoma cells, such as human renal carcinoma ACHN cells, human colon carcinoma HT29 and HCT116 cells. We found that helenalin markedly induced endoplasmic reticulum (ER) stress-related genes, such as regulated in development and DNA damage responses (REDD) 1, activating transcription factor-4 (ATF4) and/or the CCAAT enhancer-binding protein-homologous protein (CHOP). However, down-regulation of ATF4 and/or CHOP expression by siRNA had no effect on helenalin-induced apoptosis in Caki and HCT116 cells. Helenalin increased production of intracellular reactive oxygen species (ROS). Furthermore, ROS scavengers, N-acetylcystine (NAC), and glutathione ethyl ester (GEE), reduced helenalin-induced apoptosis. Taken together, helenalin induced apoptosis via ROS generation in human renal carcinoma Caki cells. PMID:23123298

  3. Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter.

    PubMed

    Kim, Joo Ae; Lee, Somyoung; Kim, Da-Eun; Kim, Moonil; Kwon, Byoung-Mog; Han, Dong Cho

    2015-06-01

    Heat shock factor 1 (HSF1) is a transcription factor for heat shock proteins (HSPs) expression that enhances the survival of cancer cells exposed to various stresses. HSF1 knockout suppresses carcinogen-induced cancer induction in mice. Therefore, HSF1 is a promising therapeutic and chemopreventive target. We performed cell-based screening with a natural compound collection and identified fisetin, a dietary flavonoid, as a HSF1 inhibitor. Fisetin abolished heat shock-induced luciferase activity with an IC50 of 14 ?M in HCT-116 cancer cells. The treatment of HCT-116 with fisetin inhibited proliferation with a GI50 of 23 ?M. When the cells were exposed to heat shock in the presence of fisetin, the induction of HSF1 target proteins, such as HSP70, HSP27 and BAG3 (Bcl-2-associated athanogene domain 3), were inhibited. HSP70/BAG3 complexes protect cancer cells from apoptosis by stabilizing anti-apoptotic Bcl-2 family proteins. The downregulation of HSP70/BAG3 by fisetin significantly reduced the amounts of Bcl-2, Bcl-xL and Mcl-1 proteins, subsequently inducing apoptotic cell death. Chromatin immunoprecipitation assays showed that fisetin inhibited HSF1 activity by blocking the binding of HSF1 to the hsp70 promoter. Intraperitoneal treatment of nude mice with fisetin at 30mg/kg resulted in a 35.7% (P < 0.001) inhibition of tumor growth. PMID:25840992

  4. Activation of the apoptosis signal-regulating kinase 1/c-Jun N-terminal kinase pathway is involved in the casticin-induced apoptosis of colon cancer cells

    PubMed Central

    QU, LIN; LIU, FENG-XIA; CAO, XIAO-CHENG; XIAO, QIAO; YANG, XIAOHONG; REN, KAI-QUN

    2014-01-01

    Casticin is one of the main components of the fruits of Vitex rotundifolia L. Studies have shown that casticin inhibits the growth of various cancer cells, including colon cancer. In the present study, the anti-carcinogenic effects of casticin on human colon cancer and the underlying mechanisms were investigated. The results revealed that casticin significantly induced apoptosis of HT-29, HCT-116, SW480 and Caco-2 cells, induced the accumulation of reactive oxygen species (ROS) and increased the protein levels of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK) and B-cell lymphoma 2-interacting mediator of cell death (Bim) in HT-29 cells. Pretreatment with N-acetylcysteine, an antioxidant chemical compound, inhibited the activation of ASK1, JNK and Bim, as well as the apoptosis induced by casticin. Small interfering RNA targeting ASK1 significantly attenuated the induction of JNK and Bim activation and apoptotic cell death by casticin treatment. SP600125, a specific JNK inhibitor, attenuated Bim activation and apoptosis, but did not alter ASK1 phosphorylation levels. In addition, casticin treatment resulted in apoptosis by the same mechanism in HCT-116, SW480 and Caco-2 cells. These results suggest that casticin significantly induced apoptosis by the activation of the ASK1-JNK-Bim signaling cascade and the accumulation of ROS in colon cancer cells. PMID:25289048

  5. Cell assessment by at-line microscopy.

    PubMed

    Babitzky, Alexander; Lindner, Patrick; Scheper, Thomas

    2014-01-01

    This protocol regards a microscopic application and software for image-guided monitoring of mammalian cells which grow in suspension cultures. It has been developed in order to establish an automated microscopic application for in situ and at-line cell monitoring in bioreactors (Akin et al., Biosens Bioelectron 26:4532-4537, 2011; Babitzky et al., At-line microscopic analysis of suspension cell cultures. In: ECCE/ECAB, the first joint European Congress of chemical engineering and applied biotechnology, September 25-29, 2011, Berlin, Germany, 2011. http://www.tci.uni-hannover.de, Poster). The application aims to assess the analysis of an appropriated sample volume of mammalian cell cultivation medium. The sample is injected into a microfluidic slide which is suitable for transmitted light microscopy and is attached to an automated microscope device, the at-line microscope. The major attribute of microscope automation ascribes to the camera software, which enables sequential image capturing and storing. Image analysis and cell detection are performed by the software that is based on the edge detection algorithm developed by Canny (IEEE Trans Pattern Anal Mach Intell 8:679-698, 1986; Finding edges and lines in images.Technical Report 720, MIT Artificial Intelligence Laboratory, 1983). The analysis results are cell count, morphological characteristics, and grayscale values of the detected cells. The presented setup can be applied to low-volume cultivations and has been successfully tested for monitoring CHO-K1 cell cultivation processes. PMID:24297425

  6. LZ-207, a Newly Synthesized Flavonoid, Induces Apoptosis and Suppresses Inflammation-Related Colon Cancer by Inhibiting the NF-?B Signaling Pathway

    PubMed Central

    Sun, Jie; Li, Fanni; Zhao, Yue; Zhao, Li; Qiao, Chen; Li, Zhiyu; Guo, Qinglong; Lu, Na

    2015-01-01

    Flavonoids and flavonoid derivatives, which have significant biological and pharmacological activities, including antitumor and anti-inflammatory activities, have been widely used in human healthcare. To design a more effective flavonoid antitumor agent, we altered the flavonoid backbone with substitutions of piperazine and methoxy groups to synthesize a novel flavonoid derivative, LZ-207. The anticancer effect of LZ-207 against HCT116 colon cancer cells and the underlying mechanism of this effect were explored in this study. Specifically, LZ-207 exhibited inhibitory effects on growth and viability in several human colon cancer cell lines and induced apoptosis in HCT116 cells both in vitro and in vivo. LZ-207 treatment also suppressed the nuclear translocation of NF-?B and the phosphorylation of I?B and IKK?/? in a dose-dependent manner in both HCT116 cells and human acute monocytic leukemia THP-1 cells. Moreover, LZ-207 also reduced the secretion of the pro-inflammatory cytokine interleukin-6 (IL-6) in LPS-induced THP-1 cells, and this effect was confirmed at the transcriptional level. Furthermore, LZ-207 significantly inhibited HCT116 cell proliferation that was elicited by LPS-induced THP-1 cells in a co-culture system. These findings elucidated some potential molecular mechanisms for preventing inflammation-driven colon cancer using the newly synthesized flavonoid LZ-207 and suggested the possibility of further developing novel therapeutic agents derived from flavonoids. PMID:26023926

  7. Mast cell and basophil cell lines: a compendium.

    PubMed

    Passante, Egle

    2014-01-01

    Mast cells and basophils play a crucial role during type I hypersensitivity reactions. However, despite efforts to elucidate their role in the pathogenesis of allergy and inflammation, our understanding of mast cell and basophil biology is still relatively scarce. The practical difficulty in obtaining a sufficient number of purified primary cells from biological samples has slowed down the process of reaching a full understanding of the physiological role of these functionally similar cell types. The establishment of several immortalized cell lines has been a useful tool to establish and perform sophisticated laboratory protocols that are impractical using primary cells. Continuous cell lines have been extensively used to investigate the allergen/IgE-mediated cell activation, to elucidate the degranulation dynamics, to investigate structural and functional properties of the high-affinity receptor (Fc?RI), and to test cell-stabilizing compounds. In this chapter we review the most widely used and better characterized mast cell and basophil cell lines, highlighting their advantages and drawbacks. It must be pointed out, however, that while cell lines represent a useful in vitro tool due to their easy manipulability and reduced culture costs, they often show aberrant characteristics which are not fully representative of primary cell physiology; results obtained with such cells therefore must be interpreted with due care. PMID:25149487

  8. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    SciTech Connect

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany) [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany)] [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany)] [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany)] [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany)] [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany)] [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany)] [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)] [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  9. In vitro antitumor effects of the cold-water extracts of Mediterranean species of genus Pleurotus (higher Basidiomycetes) on human colon cancer cells.

    PubMed

    Fontana, Simona; Flugy, Anna; Schillaci, Odessa; Cannizzaro, Alessandra; Gargano, Maria Letizia; Saitta, Alessandro; De Leo, Giacomo; Venturella, Giuseppe; Alessandro, Riccardo

    2014-01-01

    The aim of this study was to evaluate whether the cold-water extracts of Pleurotus eryngii var. ferulae (CWE-Pef) and Pleurotus nebrodensis (CWE-Pn), 2 of the most prized wild and cultivated edible mushrooms, can affect the tumor phenotype of human colon cancer HCT116 cells. Our results showed that treatment with CWE-Pef and CWE-Pn resulted in a significant inhibition of the viability of HCT116 cells and promoted apoptosis, as also demonstrated by the increase of Bax-to-Bcl-2 messenger RNA ratio. Moreover, we observed that both extracts were able to inhibit cell migration and to affect homotypic and heterotypic cell-cell adhesion. It also was found that treatment with CWE-Pef and CWE-Pn negatively modulated the phosphorylation of the protein tyrosine as well as the phosphorylation levels of extracellular signal-regulated kinase 1/2. In conclusion, the in vitro antitumor effects of CWE-Pef and CWE-Pn indicate that they can be considered as possible sources for new alternative therapeutic agents for cancer treatment. PMID:24940904

  10. Sage components enhance cell death through nuclear factor kappa-B signaling.

    PubMed

    Deeb, Sally Joseph; El-Baba, Chirine Omar; Hassan, Saadia Bashir; Larsson, Rolf Lennart; Gali-Muhtasib, Hala Uthman

    2011-01-01

    The sage components linalyl acetate (Ly) and alpha-terpineol (Te) exhibit synergistic anti-proliferative effects. We investigated the effects of Ly and Te on NF-kappaB signaling in HCT-116 colon cancer cells. Ly and Te combinations dose-dependently reduced HCT-116 viability at non-cytotoxic concentrations. Combination treatment induced 30%-60% increase in PreG1 through induction of apoptosis and necrosis. DNA binding assays revealed that combination treatment suppressed both basal and TNF-alpha-induced NF-kappaB activation. This suppression correlated with the inhibition of p65 nuclear translocation and IkappaB-alpha degradation. The lack of change in IKK expression levels or inhibition in IkappaB-alpha phosphorylation suggest the involvement of an IKK-independent mechanism. Ly and Te combination was found to downregulate the expression of NF-kappaB-regulated antiapoptotic and proliferative gene products. Separate treatments and drug combinations significantly decreased DNA binding activity of NF-kappaB which led to the potentiation of cell death induced by the colon cancer drugs oxaliplatin and 5-FU. These results indicate that Ly and Te anticancer activities are partly mediated through the suppression of NF-kappaB activation, suggesting their use in combination with chemotherapeutic agents to induce apoptosis. PMID:21196321

  11. Transitional cell cancer: establishment and characterization of cell lines.

    PubMed

    Elliott, A Y; Bronson, D L; Fraley, E E

    1978-12-01

    Eleven long-term (in culture more than 1 yr) cell lines were established from surgical specimens of human TCC. Characterization studies performed on the individual cell lines showed that each 1) demonstrated an abnormal human karyotype, 2) grew in soft agar, 3) exhibited rapid growth and multilayering 4) was free from microbial and HeLa cell contamination, 5) produced tumors in cheek pouches of immunosuppressed Syrian golden hamsters, 6) contained ultrastructural features consistently found in epithelial cells in culture, and 7) could be grown to high cell densities in roller-bottle cultures. PMID:748774

  12. Synergism from the combination of ulinastatin and curcumin offers greater inhibition against colorectal cancer liver metastases via modulating matrix metalloproteinase-9 and E-cadherin expression.

    PubMed

    Shen, Fei; Cai, Wen-Song; Li, Jiang-Lin; Feng, Zhe; Liu, Qi-Cai; Xiao, Huan-Qing; Cao, Jie; Xu, Bo

    2014-01-01

    Liver metastasis is a major cause of mortality in colorectal cancer (CRC). The current study was to investigate the ability of ulinastatin (UTI) and curcumin (CUR) to inhibit CRC liver metastases via modulating matrix metalloproteinase-9 (MMP-9) and E-cadherin expression. Human CRC HCT-116 cells were treated with compounds individually and in combination in order to understand the effect on cell migration and invasion. The HCT-116 cell line was established to stably express luciferase and green fluorescent protein (GFP) by lentiviral transduction (HCT-116-Luc-GFP). We identified an anti-metastasis effect of UTI and CUR on a CRC liver metastasis mouse model. Tumor development and therapeutic responses were dynamically tracked by bioluminescence imaging. Expression of MMP-9 and E-cadherin in metastatic tumors was detected by immunohistochemical assay. Results of wound healing and cell invasion assays suggest that treatment with UTI, CUR, and UTI plus CUR, respectively, significantly inhibit HCT-116 cell migration and invasion. Furthermore, results of CRC hepatic metastasis on a nude mouse model showed that treatment with UTI, CUR alone, and a combination notably inhibited hepatic metastases from CRC and prolonged survival of tumor-bearing mice, especially in the UTI plus CUR group. These results suggest that the combination of UTI and CUR together may offer greater inhibition against metastasis of CRC. PMID:24570592

  13. Synergism from the combination of ulinastatin and curcumin offers greater inhibition against colorectal cancer liver metastases via modulating matrix metalloproteinase-9 and E-cadherin expression

    PubMed Central

    Shen, Fei; Cai, Wen-Song; Li, Jiang-Lin; Feng, Zhe; Liu, Qi-cai; Xiao, Huan-qing; Cao, Jie; Xu, Bo

    2014-01-01

    Liver metastasis is a major cause of mortality in colorectal cancer (CRC). The current study was to investigate the ability of ulinastatin (UTI) and curcumin (CUR) to inhibit CRC liver metastases via modulating matrix metalloproteinase-9 (MMP-9) and E-cadherin expression. Human CRC HCT-116 cells were treated with compounds individually and in combination in order to understand the effect on cell migration and invasion. The HCT-116 cell line was established to stably express luciferase and green fluorescent protein (GFP) by lentiviral transduction (HCT-116-Luc-GFP). We identified an anti-metastasis effect of UTI and CUR on a CRC liver metastasis mouse model. Tumor development and therapeutic responses were dynamically tracked by bioluminescence imaging. Expression of MMP-9 and E-cadherin in metastatic tumors was detected by immunohistochemical assay. Results of wound healing and cell invasion assays suggest that treatment with UTI, CUR, and UTI plus CUR, respectively, significantly inhibit HCT-116 cell migration and invasion. Furthermore, results of CRC hepatic metastasis on a nude mouse model showed that treatment with UTI, CUR alone, and a combination notably inhibited hepatic metastases from CRC and prolonged survival of tumor-bearing mice, especially in the UTI plus CUR group. These results suggest that the combination of UTI and CUR together may offer greater inhibition against metastasis of CRC. PMID:24570592

  14. Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro.

    PubMed

    Wang, Ke; Fan, Hua; Chen, Qingsen; Ma, Guojian; Zhu, Ming; Zhang, Xiaomei; Zhang, Yuanying; Yu, Jun

    2015-01-01

    Curcumin, the major pigment of the dietary spice turmeric, has the potential for chemoprevention by promotion of apoptosis. Here, we investigated the molecular mechanisms of curcumin in glycolytic inhibition and apoptotic induction in human colorectal cancer HCT116 and HT29 cells. On the one hand, curcumin downregulated the expression and activity of hexokinase II (HKII) in HCT116 and HT29 cells in a concentration-dependent manner, but had little effect on the other key glycolytic enzymes (PFK, PGM, and LDH). On the other, curcumin induced dissociation of HKII from the mitochondria, resulting in mitochondrial-mediated apoptosis. Furthermore, the phosphorylation of mitochondrial HKII through AKT was responsible for the curcumin-induced dissociation of HKII, which was different from the mechanism of HKII inhibitor 3-BrPA. These results have important implications for the metabolism reprogramming effect and the susceptibility to curcumin-induced mitochondrial cytotoxicity through the regulation of HKII, and provide a molecular basis for the development of naturally compounds as novel anticancer agents for colorectal carcinoma. PMID:25229889

  15. UDP glucuronosyltransferase 1A expression levels determine the response of colorectal cancer cells to the heat shock protein 90 inhibitor ganetespib.

    PubMed

    Landmann, H; Proia, D A; He, S; Ogawa, L S; Kramer, F; Beißbarth, T; Grade, M; Gaedcke, J; Ghadimi, M; Moll, U; Dobbelstein, M

    2014-01-01

    HSP90 inhibition represents a promising route to cancer therapy, taking advantage of cancer cell-inherent proteotoxic stress. The HSP90-inhibitor ganetespib showed benefit in advanced clinical trials. This raises the need to identify the molecular determinants of treatment response. We tested the efficacy of ganetespib on a series of colorectal cancer (CRC)-derived cell lines and correlated their sensitivities with comprehensive gene expression analysis. Notably, the drug concentration required for 50% growth inhibition (IC50) varied up to 70-fold (from 36 to 2500 nM) between different cell lines. Correlating cell line-specific IC50s with the corresponding gene expression patterns revealed a strong association between ganetespib resistance (IC50>500 nM) and high expression of the UDP glucuronosyltransferase 1A (UGT1A) gene cluster. Moreover, CRC tumor samples showed a comparable distribution of UGT1A expression levels. The members of the UGT1A gene family are known as drug-conjugating liver enzymes involved in drug excretion, but their function in tumor cells is hardly understood. Chemically unrelated HSP90 inhibitors, for example, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), did not show correlation of drug sensitivities with UGT1A levels, whereas the ganetespib-related compound NVP-AUY922 did. When the most ganetespib-resistant cell line, HT29, was treated with ganetespib, the levels of HSP90 clients were unaffected. However, HT29 cells became sensitized to the drug, and HSP90 client proteins were destabilized by ganetespib upon siRNA-mediated UGT1A knockdown. Conversely, the most ganetespib-sensitive cell lines HCT116 and SW480 became more tolerant toward ganetespib upon UGT1A overexpression. Mechanistically, ganetespib was rapidly glucuronidated and excreted in resistant but not in sensitive CRC lines. We conclude that CRC cell-expressed UGT1A inactivates ganetespib and other resorcinolic Hsp90 inhibitors by glucuronidation, which renders the drugs unable to inhibit Hsp90 and thereby abrogates their biological activity. UGT1A levels in tumor tissues may be a suitable predictive biomarker to stratify CRC patients for ganetespib treatment. PMID:25210794

  16. Optimum 3D Matrix Stiffness for Maintenance of Cancer Stem Cells Is Dependent on Tissue Origin of Cancer Cells

    PubMed Central

    Jabbari, Esmaiel; Sarvestani, Samaneh K.; Daneshian, Leily; Moeinzadeh, Seyedsina

    2015-01-01

    Introduction The growth and expression of cancer stem cells (CSCs) depend on many factors in the tumor microenvironment. The objective of this work was to investigate the effect of cancer cells’ tissue origin on the optimum matrix stiffness for CSC growth and marker expression in a model polyethylene glycol diacrylate (PEGDA) hydrogel without the interference of other factors in the microenvironment. Methods Human MCF7 and MDA-MB-231 breast carcinoma, HCT116 colorectal and AGS gastric carcinoma, and U2OS osteosarcoma cells were used. The cells were encapsulated in PEGDA gels with compressive moduli in the 2-70 kPa range and optimized cell seeding density of 0.6x106 cells/mL. Micropatterning was used to optimize the growth of encapsulated cells with respect to average tumorsphere size. The CSC sub-population of the encapsulated cells was characterized by cell number, tumorsphere size and number density, and mRNA expression of CSC markers. Results The optimum matrix stiffness for growth and marker expression of CSC sub-population of cancer cells was 5 kPa for breast MCF7 and MDA231, 25 kPa for colorectal HCT116 and gastric AGS, and 50 kPa for bone U2OS cells. Conjugation of a CD44 binding peptide to the gel stopped tumorsphere formation by cancer cells from different tissue origin. The expression of YAP/TAZ transcription factors by the encapsulated cancer cells was highest at the optimum stiffness indicating a link between the Hippo transducers and CSC growth. The optimum average tumorsphere size for CSC growth and marker expression was 50 ?m. Conclusion The marker expression results suggest that the CSC sub-population of cancer cells resides within a niche with optimum stiffness which depends on the cancer cells’ tissue origin. PMID:26168187

  17. Antiproliferative efficacy of Tabernaemontana divaricata against HEP2 cell line and Vero cell line

    PubMed Central

    Kumar, Arvind; Selvakumar, S.

    2015-01-01

    Background: Laryngeal cancer may also be called cancer of the larynx or laryngeal carcinoma. Conventional plants are a precious source of novel anticancer agents and are still in performance better role in health concern. The study was intended to estimation of the anticancer activity of the chloroformic extract of Tabernaemontana divaricata on the human epidermoid larynx carcinoma cell line (Hep 2). Materials and Method: The aerial parts (leaves, stem, and flowers) of T. divaricata were tested for its inhibitory effect in 96 microplate formats against Hep 2 cell line. The anticancer activity of samples on Hep 2 and Vero was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and various enzymatic parameters like catalase, reduced glutathione (GSH), GSH peroxidase, and superoxide anion scavenging activity. Viable cells were determined by the absorbance at 540 nm. Measurements were performed, and the concentration required for a 50% inhibition of viability (IC50) was determined graphically. The effect of the samples on the proliferation of Hep 2 and Vero cells was expressed as the % cell viability. Results: The extract on Hep 2 cell line up to 7.8 ?g/ml and that IC50 value on Hep 2 cell line was 112 ?g whereas 94 ?g for Vero cell line. Hence, T. divaricata has lesser significant action on Vero cell line. Conclusion: Medicinal plant drug discovery continues to provide new and important leads against various pharmacological targets including cancer. Our results clearly indicate the anticancer property of the medicinal plant T. divaricata against the human laryngeal carcinoma cell lines (Hep 2 cell line).

  18. Triphala Extract Suppresses Proliferation and Induces Apoptosis in Human Colon Cancer Stem Cells via Suppressing c-Myc/Cyclin D1 and Elevation of Bax/Bcl-2 Ratio

    PubMed Central

    Vadde, Ramakrishna; Radhakrishnan, Sridhar; Reddivari, Lavanya; Vanamala, Jairam K. P.

    2015-01-01

    Colon cancer is the second leading cause of cancer related deaths in the USA. Cancer stem cells (CSCs) have the ability to drive continued expansion of the population of malignant cells. Therefore, strategies that target CSCs could be effective against colon cancer and in reducing the risk of relapse and metastasis. In this study, we evaluated the antiproliferative and proapoptotic effects of triphala, a widely used formulation in Indian traditional medicine, on HCT116 colon cancer cells and human colon cancer stem cells (HCCSCs). The total phenolic content, antioxidant activity, and phytochemical composition (LC-MS-MS) of methanol extract of triphala (MET) were also measured. We observed that MET contains a variety of phenolics including naringin, quercetin, homoorientin, and isorhamnetin. MET suppressed proliferation independent of p53 status in HCT116 and in HCCSCs. MET also induced p53-independent apoptosis in HCCSCs as indicated by elevated levels of cleaved PARP. Western blotting data suggested that MET suppressed protein levels of c-Myc and cyclin D1, key proteins involved in proliferation, and induced apoptosis through elevation of Bax/Bcl-2 ratio. Furthermore, MET inhibited HCCSCs colony formation, a measure of CSCs self-renewal ability. Anticancer effects of triphala observed in our study warrant future studies to determine its efficacy in vivo.

  19. TRANSFECTION OF INSECT CELL LINES USING POLYETHYLENIMINE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect cell lines have been widely used in recombinant baculovirus expression systems and transient gene expression studies. Critical to these applications have been the transfection of foreign DNA. This has been widely done using labor intensive and cytotoxic liposome-based transfection reagents....

  20. A mechanically-induced colon cancer cell population shows increased metastatic potential

    PubMed Central

    2014-01-01

    Background Metastasis accounts for the majority of deaths from cancer. Although tumor microenvironment has been shown to have a significant impact on the initiation and/or promotion of metastasis, the mechanism remains elusive. We previously reported that HCT-8 colon cancer cells underwent a phenotypic transition from an adhesive epithelial type (E-cell) to a rounded dissociated type (R-cell) via soft substrate culture, which resembled the initiation of metastasis. The objective of current study was to investigate the molecular and metabolic mechanisms of the E-R transition. Methods Global gene expressions of HCT-8 E and R cells were measured by RNA Sequencing (RNA-seq); and the results were further confirmed by real-time PCR. Reactive oxygen species (ROS), anoikis resistance, enzyme activity of aldehyde dehydrogenase 3 family, member A1 (ALDH3A1), and in vitro invasion assay were tested on both E and R cells. The deformability of HCT-8 E and R cells was measured by atomic force microscopy (AFM). To study the in vivo invasiveness of two cell types, athymic nude mice were intra-splenically injected with HCT-8 E or R cells and sacrificed after 9 weeks. Incidences of tumor development and metastasis were histologically evaluated and analyzed with Fisher’s exact test. Results Besides HCT-8, E-R transition on soft substrates was also seen in three other cancer cell lines (HCT116, SW480 colon and DU145 prostate cancer). The expression of some genes, such as ALDH3A1, TNS4, CLDN2, and AKR1B10, which are known to play important roles in cancer cell migration, invasion, proliferation and apoptosis, were increased in HCT-8 R cells. R cells also showed higher ALDH3A1 enzyme activity, higher ROS, higher anoikis resistance, and higher softness than E cells. More importantly, in vitro assay and in vivo animal models revealed that HCT-8 R cells were more invasive than E cells. Conclusions Our comprehensive comparison of HCT-8 E and R cells revealed differences of molecular, phenotypical, and mechanical signatures between the two cell types. To our knowledge, this is the first study that explores the molecular mechanism of E-R transition, which may greatly increase our understanding of the mechanisms of cancer mechanical microenvironment and initiation of cancer metastasis. PMID:24884630

  1. Investigating citrullinated proteins in tumour cell lines

    PubMed Central

    2013-01-01

    Background The conversion of arginine into citrulline, termed citrullination, has important consequences for the structure and function of proteins. Studies have found PADI4, an enzyme performing citrullination, to be highly expressed in a variety of malignant tumours and have shown that PADI4 participates in the process of tumorigenesis. However, as citrullinated proteins have not been systematically investigated in tumours, the present study aimed to identify novel citrullinated proteins in tumours by 2-D western blotting (2-D WB). Methods Two identical two-dimensional electrophoresis (2-DE) gels were prepared using extracts from ECA, H292, HeLa, HEPG2, Lovo, MCF-7, PANC-1, SGC, and SKOV3 tumour cell lines. The expression profiles on a 2-DE gel were trans-blotted to PVDF membranes, and the blots were then probed with an anti-citrulline antibody. By comparing the 2-DE profile with the parallel 2-D WB profile at a global level, protein spots with immuno-signals were collected from the second 2-DE gel and identified using mass spectrometry. Immunoprecipitation was used to verify the expression and citrullination of the targeted proteins in tumour cell lines. Results 2-D WB and mass spectrometry identified citrullinated ?-enolase (ENO1), heat shock protein 60 (HSP60), keratin 8 (KRT8), tubulin beta (TUBB), T cell receptor chain and vimentin in these cell lines. Immunoprecipitation analyses verified the expression and citrullination of ENO1, HSP60, KRT8, and TUBB in the total protein lysates of the tumour cell lines. Conclusions The citrullination of these proteins suggests a new mechanism in the tumorigenic process. PMID:24099319

  2. On the ontology based representation of cell lines.

    PubMed

    Ganzinger, Matthias; He, Shan; Breuhahn, Kai; Knaup, Petra

    2012-01-01

    Cell lines are frequently used as highly standardized and reproducible in vitro models for biomedical analyses and assays. Cell lines are distributed by cell banks that operate databases describing their products. However, the description of the cell lines' properties are not standardized across different cell banks. Existing cell line-related ontologies mostly focus on the description of the cell lines' names, but do not cover aspects like the origin or optimal growth conditions. The objective of this work is to develop an ontology that allows for a more comprehensive description of cell lines and their metadata, which should cover the data elements provided by cell banks. This will provide the basis for the standardized annotation of cell lines and corresponding assays in biomedical research. In addition, the ontology will be the foundation for automated evaluation of such assays and their respective protocols in the future. To accomplish this, a broad range of cell bank databases as well as existing ontologies were analyzed in a comprehensive manner. We identified existing ontologies capable of covering different aspects of the cell line domain. However, not all data fields derived from the cell banks' databases could be mapped to existing ontologies. As a result, we created a new ontology called cell culture ontology (CCONT) integrating existing ontologies where possible. CCONT provides classes from the areas of cell line identification, origin, cell line properties, propagation and tests performed. PMID:23144907

  3. On the Ontology Based Representation of Cell Lines

    PubMed Central

    Ganzinger, Matthias; He, Shan; Breuhahn, Kai; Knaup, Petra

    2012-01-01

    Cell lines are frequently used as highly standardized and reproducible in vitro models for biomedical analyses and assays. Cell lines are distributed by cell banks that operate databases describing their products. However, the description of the cell lines' properties are not standardized across different cell banks. Existing cell line-related ontologies mostly focus on the description of the cell lines' names, but do not cover aspects like the origin or optimal growth conditions. The objective of this work is to develop an ontology that allows for a more comprehensive description of cell lines and their metadata, which should cover the data elements provided by cell banks. This will provide the basis for the standardized annotation of cell lines and corresponding assays in biomedical research. In addition, the ontology will be the foundation for automated evaluation of such assays and their respective protocols in the future. To accomplish this, a broad range of cell bank databases as well as existing ontologies were analyzed in a comprehensive manner. We identified existing ontologies capable of covering different aspects of the cell line domain. However, not all data fields derived from the cell banks' databases could be mapped to existing ontologies. As a result, we created a new ontology called cell culture ontology (CCONT) integrating existing ontologies where possible. CCONT provides classes from the areas of cell line identification, origin, cell line properties, propagation and tests performed. PMID:23144907

  4. A role for XLF in DNA repair and recombination in human somatic cells

    PubMed Central

    Fattah, Farjana; Kweon, Junghun; Wang, Yongbao; Lee, Eu Han; Kan, Yinan; Lichter, Natalie; Weisensel, Natalie; Hendrickson, Eric A.

    2014-01-01

    Classic non-homologous end-joining (C-NHEJ) is required for the repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian cells and plays a critical role in lymphoid V(D)J recombination. A core C-NHEJ component is the DNA ligase IV co-factor, Cernunnos/XLF (hereafter XLF). In patients, mutations in XLF cause predicted increases in radiosensitivity and deficits in immune function, but also cause other less well-understood pathologies including neural disorders. To characterize XLF function(s) in a defined genetic system, we used a recombinant adeno-associated virus-mediated gene targeting strategy to inactivate both copies of the XLF locus in the human HCT116 cell line. Analyses of XLF-null cells (which were viable) showed that they were highly sensitive to ionizing radiation and a radiomimetic DNA damaging agent, etoposide. XLF-null cells had profound DNA DSB repair defects as measured by in vivo plasmid end-joining assays and were also dramatically impaired in their ability to form either V(D)J coding or signal joints on extrachromosomal substrates. Thus, our somatic XLF-null cell line recapitulates many of the phenotypes expected from XLF patient cell lines. Subsequent structure:function experiments utilizing the expression of wild-type and mutant XLF cDNAs demonstrated that all of the phenotypes of an XLF deficiency could be rescued by the overexpression of a wild-type XLF cDNA. Unexpectedly, mutant forms of XLF bearing point mutations at amino acid positions L115 and L179, also completely complemented the null phenotype suggesting, in contrast to predictions to the contrary, that these mutations do not abrogate XLF function. Finally, we demonstrate that the absence of XLF causes a small, but significant, increase in homologous recombination, implicating XLF in DSB pathway choice regulation. We conclude that human XLF is a non-essential, but critical, C-NHEJ-repair factor. PMID:24461734

  5. Metabolic profiling of insect cell lines: Unveiling cell line determinants behind system's productivity.

    PubMed

    Monteiro, Francisca; Bernal, Vicente; Saelens, Xavier; Lozano, Ana B; Bernal, Cristina; Sevilla, Angel; Carrondo, Manuel J T; Alves, Paula M

    2014-04-01

    Baculovirus infection boosts the host biosynthetic activity towards the production of viral components and the recombinant protein of interest, hyper-productive phenotypes being the result of a successful adaptation of the cellular network to that scenario. Spodoptera frugiperda derived Sf9 and Trichoplusia ni derived High Five cell lines have a major track record for the production of recombinant proteins, with High Five cells presenting higher productivities. A metabolic profiling of the two insect cell lines was pursued to underpin specific cellular traits behind productive phenotypes. Multivariate analysis identified cell-line dependent metabolic signatures linked to productivity. Pathway analysis highlighted cellular pathways of paramount importance in supporting infection and protein production. Moreover, better producer phenotypes proved to be correlated with the capacity of cells to shift their metabolism in favor of energy-generating pathways to fuel biosynthesis, a scenario observed in the High Five cell line. Metabolomic profiling allowed us to identify metabolic pathways involved in infection and recombinant protein production, which can be selected as targets for further improvement of the system. PMID:24258249

  6. Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells

    SciTech Connect

    Chiu, Shu-Jun, E-mail: chiusj@mail.tcu.edu.tw [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China) [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China); Institute of Radiation Sciences, Tzu Chi Technology College, Hualien, Taiwan (China); Hsaio, Ching-Hui; Tseng, Ho-Hsing; Su, Yu-Han [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China)] [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China); Shih, Wen-Ling [Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung, Taiwan (China)] [Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung, Taiwan (China); Lee, Jeng-Woei; Chuah, Jennifer Qiu-Yu [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China)] [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China)

    2010-04-09

    Combined-modality treatment has improved the outcome in cases of various solid tumors, and radiosensitizers are used to enhance the radiotherapeutic efficiency. Rosiglitazone, a synthetic ligand of peroxisome proliferator-activated receptors {gamma} used in the treatment of type-2 diabetes, has been shown to reduce tumor growth and metastasis in human cancer cells, and may have the potential to be used as a radiosensitizer in radiotherapy for human colorectal cancer cells. In this study, rosiglitazone treatment significantly reduced the cell viability of p53-wild type HCT116 cells but not p53-mutant HT-29 cells. Interestingly, rosiglitazone pretreatment enhanced radiosensitivity in p53-mutant HT-29 cells but not HCT116 cells, and prolonged radiation-induced G{sub 2}/M arrest and enhanced radiation-induced cell growth inhibition in HT-29 cells. Pretreatment with rosiglitazone also suppressed radiation-induced H2AX phosphorylation in response to DNA damage and AKT activation for cell survival; on the contrary, rosiglitazone pretreatment enhanced radiation-induced caspase-8, -9, and -3 activation and PARP cleavage in HT-29 cells. In addition, pretreatment with a pan-caspase inhibitor, zVAD-fmk, attenuated the levels of caspase-3 activation and PARP cleavage in radiation-exposed cancer cells in combination with rosiglitazone pretreatment. Our results provide proof for the first time that rosiglitazone suppresses radiation-induced survival signals and DNA damage response, and enhances the radiation-induced apoptosis signaling cascade. These findings can assist in the development of rosiglitazone as a novel radiosensitizer.

  7. Dovitinib synergizes with oxaliplatin in suppressing cell proliferation and inducing apoptosis in colorectal cancer cells regardless of RAS-RAF mutation status

    PubMed Central

    2014-01-01

    Background Cancer is the result of a multistep process of genomic alterations, including mutations in key regulatory proteins that result in loss of balanced gene expression and subsequent malignant transformation. Throughout the various stages of colorectal carcinoma (CRC), complex genetic alterations occur, of which over-expression of growth factors, such as vascular endothelial growth factor, fibroblast growth factor and platelet-derive growth factor and their corresponding receptor tyrosine kinases, have been shown to correlate with invasiveness, tumor angiogenesis, metastasis, recurrence, and poor prognosis of colorectal cancer. To evaluate the therapeutic effect, we combined Dovitinib, an orally bioavailable, potent inhibitor of class III-V receptor tyrosine kinases with chemotherapeutic drug, oxaliplatin in preclinical models of colon cancer. Methods Human colon cancer cells with different RAS-RAF mutation status (HCT-116, HT-29, SW-480, CaCO2 and LS174T) were treated with a combination of Dovitinib and Oxaliplatin at low dosage followed by assays to investigate the effect of the combination on cell proliferation, cell migration, cell apoptosis and signaling pathways involved in molecular mechanism of drug(s). The antitumor effects of either of the drugs were compared to the combination using human colon carcinoma cell line HT-29 xenograft model. Treated vs untreated tumor sections were also compared for proliferation and angiogenesis markers by immunohistochemistry. Results The combination of dovitinib and oxaliplatin showed higher in vitro cytotoxicity in colon cell lines irrespective of their RAS-RAF status as compared to either of the drugs alone. Simultaneous inhibition of MAP kinase and AKT pathways and induction of apoptosis via activation of caspases 9/caspases 3 contributed to the synergistic effect of this combination therapy. In the xenograft model, the combination showed a significantly higher antitumor activity. Immunohistochemistry of post treatment tumors showed a significant decrease in proliferation and angiogenesis as compared to either of the treatments alone. Conclusions This study demonstrates the synergistic antitumor activity of combination of dovitinib and oxaliplatin against colon cancer with different RAS-RAF status. The combination also showed its antitumor efficacy in a multidrug resistant phenotype xenograft model. This provides a basis for further investigation for its potential in clinical setting for colorectal cancer. PMID:24495750

  8. Personalized chemotherapy profiling using cancer cell lines from selectable mice

    PubMed Central

    Kamiyama, Hirohiko; Rauenzahn, Sherri; Shim, Joong Sup; Karikari, Collins A.; Feldmann, Georg; Hua, Li; Kamiyama, Mihoko; Schuler, F. William; Lin, Ming-Tseh; Beaty, Robert M.; Karanam, Balasubramanyam; Liang, Hong; Mullendore, Michael E.; Mo, Guanglan; Hidalgo, Manuel; Jaffee, Elizabeth; Hruban, Ralph H.; Jinnah, H. A.; Roden, Richard B. S.; Jimeno, Antonio; Liu, Jun O.; Maitra, Anirban; Eshleman, James R.

    2013-01-01

    Purpose High-throughput chemosensitivity testing of low-passage cancer cell lines can be used to prioritize agents for personalized chemotherapy. However, generating cell lines from primary cancers is difficult, because contaminating stromal cells overgrow the malignant cells. Experimental Design We produced a series of hypoxanthine phosphoribosyl transferase (hprt)-null immunodeficient mice. During growth of human cancers in these mice, hprt-null murine stromal cells replace their human counterparts. Results Pancreatic and ovarian cancers explanted from these mice were grown in selection media to produce pure human cancer cell lines. We screened one cell line with a 3,131-drug panel and identified seventy-seven FDA approved drugs with activity, including two novel drugs to which the cell line was uniquely sensitive. Xenografts of this carcinoma were selectively responsive to both drugs. Conclusion Chemotherapy can be personalized using patient-specific cell lines derived in biochemically selectable mice. PMID:23340293

  9. EXAFS studies of prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Czapla, J.; Kwiatek, W. M.; Lekki, J.; Kisiel, A.; Steininger, R.; Goettlicher, J.

    2013-04-01

    Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented.

  10. ESR technique for noninvasive way to quantify cyclodextrins effect on cell membranes.

    PubMed

    Grammenos, A; Mouithys-Mickalad, A; Guelluy, P H; Lismont, M; Piel, G; Hoebeke, M

    2010-07-30

    A new way to study the action of cyclodextrin was developed to quantify the damage caused on cell membrane and lipid bilayer. The Electron Spin Resonance (ESR) spectroscopy was used to study the action of Randomly methylated-beta-cyclodextrin (Rameb) on living cells (HCT-116). The relative anisotropy observed in ESR spectrum of nitroxide spin probe (5-DSA and cholestane) is directly related to the rotational mobility of the probe, which can be further correlated with the microviscosity. The use of ESR probes clearly shows a close correlation between cholesterol contained in cells and cellular membrane microviscosity. This study also demonstrates the Rameb ability to extract cholesterol and phospholipids in time- and dose-dependent ways. In addition, ESR spectra enabled to establish that cholesterol is extracted from lipid rafts to form stable aggregates. The present work supports that ESR is an easy, reproducible and noninvasive technique to study the effect of cyclodextrins on cell membranes. PMID:20599748

  11. Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells

    PubMed Central

    Lee, Dae-Hee; Kim, Clifford; Zhang, Lin; Lee, Yong J.

    2008-01-01

    We observed that treatment of prostate cancer cells for 24 h with wogonin, a naturally occurring monoflavonoid, induced cell death in a dose- and time-dependent manner. Exposure of wogonin to LNCaP cells was associated with increased intracellular levels of p21Cip-1, p27Kip-1, p53, and PUMA, oligomerization of Bax, release of cytochrome c from the mitochondria, and activation of caspases. We also confirmed the role of p53 by noting that knock-in in p53 expression by transfecting p53 DNA increased wogonin-induced apoptosis in p53-null PC-3 cells. To study the mechanism of PUMA upregulation, we determined the activities of PUMA promoter in the wogonin treated and untreated cells. Increase of the intracellular levels of PUMA protein was due to increase in transcriptional activity. Data from chromatin immunoprecipitation (ChIP) analyses revealed that wogonin activated the transcription factor p53 binding activity to the PUMA promoter region. We observed that the upregulation of PUMA mediated wogonin cytotoxicity. Further characterization of the transcriptional response to wogonin in HCT116 human colon cancer cells demonstrated that PUMA induction was p53-dependent; deficiency in either p53 or PUMA significantly protected HCT116 cells against wogonin-induced apoptosis. Also, wogonin promoted mitochondrial translocation and multimerization of Bax. Interestingly, wogonin (100 ?M) treatment did not affect the viability of normal human prostate epithelial cells (PrEC). Taken together, these results indicate that p53-dependent transcriptional induction of PUMA and oligomerization of Bax play important roles in the sensitivity of cancer cells to apoptosis induced by caspase activation through wogonin. PMID:18377871

  12. Characterization of a transformed rat retinal ganglion cell line

    Microsoft Academic Search

    R. R. Krishnamoorthy; P. Agarwal; G. Prasanna; K. Vopat; W. Lambert; H. J. Sheedlo; I.-H. Pang; D. Shade; R. J. Wordinger; T. Yorio; A. F Clark; N. Agarwal

    2001-01-01

    The purpose of the present study was to establish a rat retinal ganglion cell line by transformation of rat retinal cells. For this investigation, retinal cells were isolated from postnatal day 1 (PN1) rats and transformed with the ?2 E1A virus. In order to isolate retinal ganglion cells (RGC), single cell clones were chosen at random from the transformed cells.

  13. Characterization and Properties of Nine Human Ovarian Adenocarcinoma Cell Lines

    Microsoft Academic Search

    Simon P. Langdon; Sandra S. Lawrie; Frances G. Hay; Mary M. Hawkes; Amanda McDonald; Ian P. Hayward; Dick J. Schol; Jo Hilgers; Robert C. F. Leonard; John F. Smyth

    Four series of cell lines have been derived from patients with ovarian adenocarcinoma. Nine cell lines have been established at different stages of treatment: eight from malignant effusions and one from a solid metas tasis. Six lines were derived from the ascites or pleural effusion of patients with poorly differentiated adenocarcinoma: PEO1, PEO4, and PEO6 from one patient, PEA1 and

  14. Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination

    PubMed Central

    Elkady, Ayman I; Hussein, Rania Abd El Hamid; Abu-Zinadah, Osama A

    2014-01-01

    AIM: To investigate the effects of extracts from Rhazya stricta (R. stricta) and Zingiber officinale (Z. officinale) on human colorectal cancer cells. METHODS: Human colorectal cancer cells (HCT116) were subjected to increasing doses of crude alkaloid extracts from R. stricta (CAERS) and crude flavonoid extracts from Z. officinale (CFEZO). Cells were then harvested after 24, 48 or 72 h and cell viability was examined by trypan blue exclusion dye test; clonogenicity and soft agar colony-forming assays were also carried out. Nuclear stain (Hoechst 33342), acridine orange/ethidium bromide double staining, agarose gel electrophoresis and comet assays were performed to assess pro-apoptotic potentiality of the extracts. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), using gene-specific primers and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. RESULTS: Treatment with a combination of CAERS and CFEZO synergistically suppressed the proliferation, colony formation and anchorage-independent growth of HCT116 cells. Calculated IC50, after 24, 48 and 72 h, were 70, 90 and 130 ?g/mL for CAERS, 65, 85 and 120 ?g/mL for CFEZO and 20, 25 and 45 ?g/mL for both agents, respectively. CAERS- and CFEZO-treated cells exhibited morphologic and biochemical features of apoptotic cell death. The induction of apoptosis was associated with the release of mitochondrial cytochrome c, an increase in the Bax/Bcl-2 ratio, activation of caspases 3 and 9 and cleavage of poly ADP-ribose polymerase. CAERS and CFEZO treatments downregulated expression levels of anti-apoptotic proteins including Bcl-2, Bcl-X, Mcl-1, survivin and XIAP, and upregulated expression levels of proapoptotic proteins such as Bad and Noxa. CAERS and CFEZO treatments elevated expression levels of the oncosuppressor proteins, p53, p21 and p27, and reduced levels of the oncoproteins, cyclin D1, cyclin/cyclin-dependent kinase-4 and c-Myc. CONCLUSION: These data suggest that a combination of CAERS and CFEZO is a promising treatment for the prevention of colon cancer. PMID:25386076

  15. MIR106B and MIR93 Prevent Removal of Bacteria from Epithelial Cells by Disrupting ATG16L1-Mediated Autophagy

    PubMed Central

    Lu, Changming; Chen, Jianfeng; Xu, Hua-Guo; Zhou, Xianzheng; He, Qiongqiong; Li, Yu-Lin; Jiang, Guoqing; Shan, Yuxi; Xue, Boxin; Zhao, Rui-Xun; Wang, Yong; Werle, Kaitlin D.; Cui, Rutao; Liang, Jiyong; Xu, Zhi-Xiang

    2013-01-01

    BACKGROUND & AIMS Variants in genes that regulate autophagy have been associated with Crohn’s disease (CD). Defects in autophagy-mediated removal of pathogenic microbes could contribute to pathogenesis of CD. We investigated the role of the micro-RNAs (miRs) MIR106B and MIR93 in induction of autophagy and bacterial clearance in human cell lines, and the correlation between MIR106B and autophagy-related gene 16L1 (ATG16L1) expression in tissues from patients with CD. METHODS We studied the ability of MIR106B and MIR93 to regulate ATG transcripts in human cancer cell lines (HCT116, SW480, HeLa, and U2OS) using luciferase report assays and bioinformatics analyses; MIR106B and MIR93 mimics and antagonists were transfected into cells to modify levels of miRs. Cells were infected with LF82, a CD-associated adherent-invasive strain of Escherichia coli, and monitored by confocal microscopy and for colony-forming units. Colon tissues from 41 healthy individuals (controls), 22 with active CD, 16 with inactive CD, and 7 with chronic inflammation were assessed for levels of MIR106B and ATG16L1 by in situ hybridization and immunohistochemistry. RESULTS Silencing Dicer 1, an essential processor of miRs, increased levels of ATG protein and formation of autophagosomes in cells, indicating that miRs regulate autophagy. Luciferase reporter assays indicated that MIR106B and MIR93 targeted ATG16L1 mRNA. MIR106B and MIR93 reduced levels of ATG16L1 and autophagy; these increased following expression of ectopic ATG16L1. In contrast, MIR106B and MIR93 antagonists increased formation of autophagosomes. Levels of MIR106B were increased in intestinal epithelia from patients with active CD, whereas levels of ATG16L1 were reduced, compared with controls. Levels of CMYC were also increased in intestinal epithelia of patients with active CD, compared with controls. These alterations could impair removal of CD-associated bacteria by autophagy. CONCLUSIONS In human cell lines, MIR106B and MIR93 reduce levels of ATG16L1 and autophagy, and prevent autophagy-dependent eradication of intracellular bacteria. This process also appears to be altered in colon tissues from patients with active CD. PMID:24036151

  16. Induction of apoptosis in colon cancer cells by a novel topoisomerase I inhibitor TopIn

    SciTech Connect

    Bae, Soo Kyung [College of Pharmacy, The Catholic University of Korea, Bucheon 420-743 (Korea, Republic of)] [College of Pharmacy, The Catholic University of Korea, Bucheon 420-743 (Korea, Republic of); Gwak, Jungsug [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of)] [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of); Song, Im-Sook [PharmcoGenomics Research Center, Inje University College of Medicine, Busan 614-735 (Korea, Republic of)] [PharmcoGenomics Research Center, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Park, Hyung-Soon [Probiond Co., Ltd., Seoul 143-834 (Korea, Republic of)] [Probiond Co., Ltd., Seoul 143-834 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@kookmin.ac.kr [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of)] [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of)

    2011-05-27

    Highlights: {yields} TopIn activates p53-dependent transcription in colon cancer cells. {yields} TopIn induces apoptosis in colon cancer cells. {yields} TopIn selectively inhibits topoisomerase I activity. {yields} TopIn does not affect the activity of BCRP and MDR-1. -- Abstract: The tumor suppressor p53 plays an important role in cellular emergency mechanisms through regulating the genes involved in cell cycle arrest and apoptosis. To identify small molecules that can activate p53-responsive transcription, we performed chemical screening using genetically engineered HCT116 reporter cells. We found that TopIn (7-phenyl-6H-[1,2,5]oxadiazolo[3,4-e]indole 3-oxide) efficiently activated p53-mediated transcriptional activity and induced phosphorylation of p53 at Ser15, thereby stabilizing the p53 protein. Furthermore, TopIn upregulated the expression of p21{sup WAF1/CIP1}, a downstream target of p53, and suppressed cellular proliferation in various colon cancer cells. Additionally, TopIn induced DNA fragmentation, caspase-3/7 activation and poly ADP ribose polymerase cleavage, typical biochemical markers of apoptosis, in p53 wild-type and mutated colon cancer cells. Finally, we found that TopIn inhibited topoisomerase I activity, but not topoisomerase II, in vitro and induced the formation of the topoisomerase I-DNA complex in HCT116 colon cancer cells. Unlike camptothecin (CPT) and its derivative SN38, TopIn did not affect the activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP) or multidrug-resistant protein-1 (MDR-1). These results suggest that TopIn may present a promising new topoisomerase I-targeting anti-tumor therapeutics.

  17. The pursuit of ES cell lines of domesticated ungulates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In contrast to differentiated cells, embryonic stem cells (ESC) maintain an undifferentiated state, have the ability to self-renew, and exhibit pluripotency, i.e., they can give rise to most if not all somatic cell types and to the germ cells, egg and sperm. These characteristics make ES cell lines...

  18. miR-18a Inhibits CDC42 and Plays a Tumour Suppressor Role in Colorectal Cancer Cells

    PubMed Central

    Humphreys, Karen J.; McKinnon, Ross A.; Michael, Michael Z.

    2014-01-01

    The miR-17-92 cluster of microRNAs is elevated in colorectal cancer, and has a causative role in cancer development. Of the six miR-17-92 cluster members, miR-19a and b in particular are key promoters of cancer development and cell proliferation, while preliminary evidence suggests that miR-18a may act in opposition to other cluster members to decrease cell proliferation. It was hypothesised that miR-18a may have a homeostatic function in helping to contain the oncogenic effect of the entire miR-17-92 cluster, and that elevated miR-17-92 cluster activity without a corresponding increase in miR-18a may promote colorectal tumour progression. In colorectal cancer samples and corresponding normal colorectal mucosa, miR-18a displayed lower overall expression than other miR-17-92 cluster members. miR-18a was shown to have an opposing role to other miR-17-92 cluster members, in particular the key oncogenic miRNAs, miR-19a and b. Transfection of HCT116 and LIM1215 colorectal cancer cell lines with miR-18a mimics decreased proliferation, while a miR-18a inhibitor increased proliferation. miR-18a was also responsible for decreasing cell migration, altering cell morphology, inducing G1/S phase cell cycle arrest, increasing apoptosis, and enhancing the action of a pro-apoptotic agent. CDC42, a mediator of the PI3K pathway, was identified as a novel miR-18a target. Overexpression of miR-18a reduced CDC42 expression, and a luciferase assay confirmed that miR-18a directly targets the 3?UTR of CDC42. miR-18a mimics had a similar effect on proliferation as a small molecule inhibitor of CDC42. Inhibition of CDC42 expression is likely to be a key mechanism by which miR-18a impairs cancer cell growth, with a target protector experiment revealing miR-18a influences proliferation via direct inhibition of CDC42. Inhibition of CCND1 by miR-18a may also assist in this growth-suppression effect. The homeostatic function of miR-18a within the miR-17-92 cluster in colorectal cancer cells may be achieved through suppression of CDC42 and the PI3K pathway. PMID:25379703

  19. ASPP2 enhances Oxaliplatin (L-OHP)-induced colorectal cancer cell apoptosis in a p53-independent manner by inhibiting cell autophagy

    PubMed Central

    Shi, Ying; Han, Yue; Xie, Fang; Wang, Anna; Feng, Xiaokun; Li, Ning; Guo, Hongliang; Chen, Dexi

    2015-01-01

    Inactivation of p53-mediated cell death pathways is a central component of cancer progression. ASPP2 (apoptosis stimulated protein of p53-2) is a p53 binding protein that specially stimulates pro-apoptosis function of p53. Down-regulation of ASPP2 is observed in many human cancers and is associated with poor prognosis and metastasis. In this study, ASPP2 was found to enhance L-OHP-induced apoptosis in HCT116 p53?/? cells in a p53-independent manner. Such apoptosis-promoting effect of ASPP2 was achieved by inhibiting autophagy. Further experiments with ASPP2 RNA interference and autophagy inhibitor (3-methyladenine, 3-MA) confirmed that ASPP2 enhanced HCT116 p53?/? cell apoptosis via inhibiting the autophagy. The association of cell death and autophagy was also found in ASPP2+/? mice, where colon tissue with reduced ASPP2 expression displayed more autophagy and less cell death. Finally, colorectal tumours and their adjacent normal tissues from 20 colorectal cancer patients were used to examine ASPP2 expression, p53 expression and p53 mutation, to understand their relationships with the patients' outcome. Three site mutations were found in p53 transcripts from 16 of 20 patients. ASPP2 mRNA expressions were higher, and autophagy level was lower in the adjacent normal tissues, compared with the tumour tissues, which was independent of both p53 mutation and expression level. Taken together, ASPP2 increased tumour sensitivity to chemotherapy via inhibiting autophagy in a p53-independent manner, which was associated with the tumour formation, suggesting that both p53 inactivation and ASPP2 expression level were involved in the sensitivity of colorectal cancer to chemotherapy. PMID:25534115

  20. Butyrate induced changes in Wnt-signaling specific gene expression in colorectal cancer cells

    PubMed Central

    2014-01-01

    Background We have determined that butyrate, which is derived from the fermentation of dietary fiber in the colonic lumen, hyperactivates Wnt activity in colorectal (CRC) cells, and that this upregulation of Wnt signaling is causatively related to the induction of apoptosis. To better understand the genetic program regulated by butyrate-mediated Wnt hyperactivation, we performed total human genome microarray analyses on HCT-116 CRC cells in the presence or absence of a physiologically relevant concentration of butyrate. To evaluate changes in Wnt-specific gene expression, Wnt activity was suppressed with inducible dominant negative Tcf4 (DN-Tcf4). Six biological replicates of a full human genome microarray were performed, and the data deposited into the Gene Expression Omnibus database, according to Minimum Information About A Microarray Experiment standards. Results Reporter assay and western blot data confirm that DN-Tcf4 is expressed at high levels in stably transfected HCT-116 cells upon cotreatment with doxycycline and butyrate, and that these cells exhibit a marked repression of butyrate-mediated Wnt hyperactivation. Analysis of six biological replicates of microarray analyses indicated that 1008 genes are modulated by butyrate (>two-fold, P?cells, the total array of direct and indirect Wnt-target genes whose expression is modulated by butyrate. Knowledge of the molecular mechanisms determining the response of CRC cells to butyrate in vitro may assist in determining more effective preventive and therapeutic strategies against CRC. PMID:24716727

  1. Anticancer effects of Chinese red yeast rice versus monacolin K alone on colon cancer cells.

    PubMed

    Hong, Mee Young; Seeram, Navindra P; Zhang, Yanjun; Heber, David

    2008-07-01

    Chinese red yeast rice (RYR) is a food herb made by fermenting Monascus purpureus Went yeast with white rice. RYR contains a mixture of monacolins, one of which--monacolin K (MK)--is identical to lovastatin (LV). Epidemiological studies show that individuals taking statins have a reduced risk of colon cancer. In the present study, LV decreased cellular proliferation (P<.001) and induced apoptosis (P<.05) in HCT-116 and HT-29 human colon cancer cells. RYR inhibited both tumor cell growths (P<.001) and enhanced apoptosis (P<.05) in HCT-116 cells. Inhibition of proliferation was reversed by mevalonate (MV) in LV-treated cells, since LV is a 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR) inhibitor. However, RYR with MV did not reverse the observed inhibition of growth. MK-free RYR did not reverse the observed LV-mediated inhibition of cancer cell growth. These observations suggest that other components in RYR, including other monacolins, pigments or the combined matrix effects of multiple constituents, may affect intracellular signaling pathways differently from purified crystallized LV in colon cancer cells. RYR was purified into two fractions: pigment-rich fraction of Chinese red yeast rice (PF-RYR) and monacolin-rich fraction of Chinese red yeast rice (MF-RYR). The effect of MF-RYR was similar to that of LV, while the effect of PF-RYR was similar to the effect of the whole RYR extract on the proliferation, apoptosis and mRNA level of HMGCR and sterol response element binding protein-2. These results suggest that the matrix effects of RYR beyond MK alone may be active in inhibiting colon cancer growth. RYR with or without MK may be a botanical approach to colon cancer chemoprevention worthy of further investigation. PMID:17869085

  2. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, Martha R. (Oakland, CA)

    1989-01-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors.

  3. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells

    PubMed Central

    Abe, N; Hou, D-X; Munemasa, S; Murata, Y; Nakamura, Y

    2014-01-01

    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress ?-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in ?-catenin itself. Because nuclear factor-?B (NF-?B) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-?B p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of I?B kinase, I?B-? and p65, the degradation of I?B-?, the translocation of p65 to the nucleus and the upregulation of NF-?B transcriptional activity. BITC also decreased ?-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited ?-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and ?-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-?B pathway in p53-deficient colorectal cancer cells. PMID:25412312

  4. miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy in vitro by targeting FOXM1.

    PubMed

    Wan, Lu-Ying; Deng, Jun; Xiang, Xiao-Jun; Zhang, Ling; Yu, Feng; Chen, Jun; Sun, Zhe; Feng, Miao; Xiong, Jian-Ping

    2015-02-01

    miR-320 expression level is found to be down-regulated in human colon cancer. To date, however, its underlying mechanisms in the chemo-resistance remain largely unknown. In this study, we demonstrated that ectopic expression of miR-320 led to inhibit HCT-116 cell proliferation, invasion and hypersensitivity to 5-Fu and Oxaliplatin. Also, knockdown of miR-320 reversed these effects in HT-29 cells. Furthermore, we identified an oncogene, FOXM1, as a direct target of miR-320. In addition, miR-320 could inactive the activity of Wnt/?-catenin pathway. Finally, we found that miR-320 and FOXM1 protein had a negative correlation in colon cancer tissues and adjacent normal tissues. These findings implied that miR-320-FOXM1 axis may overcome chemo-resistance of colon cancer cells and provide a new therapeutic target for the treatment of colon cancer. PMID:25446103

  5. TRAIL Inactivates the Mitotic Checkpoint and Potentiates Death Induced by Microtubule-Targeting Agents in Human Cancer Cells

    Microsoft Academic Search

    Mijin Kim; Jessica Liao; Melissa L. Dowling; K. Ranh Voong; Sharon E. Parker; Shulin Wang; Wafik S. El-deiry; Gary D. Kao

    Abstract Tumor,necrosis,factor–related,apoptosis–inducing,ligand (TRAIL) has attracted interest as an anticancer treatment, when,used,in conjunction,with,standard,chemotherapy.,We investigated,the,mechanistic,basis for combining,low-dose TRAIL with,microtubule-targeting,agents,that,invoke,the mitotic checkpoint. Treatment,of T98G and,HCT116 cells with nocodazole,alone,resulted,in a robust,mitotic,block,with initially little cell death; low levels of cell death were also seen with TRAIL alone at 10 ng\\/mL final concentration. In contrast, the addition,of low-dose TRAIL to nocodazole,was,associated with maximally increased caspase-3, caspase-8,

  6. MiR-126 suppresses colon cancer cell proliferation and invasion via inhibiting RhoA/ROCK signaling pathway.

    PubMed

    Li, Nan; Tang, Anliu; Huang, Shuo; Li, Zeng; Li, Xiayu; Shen, Shourong; Ma, Jian; Wang, Xiaoyan

    2013-08-01

    Recent data strongly suggests the profound role of miRNAs in cancer progression. Here, we showed miR-126 expression was much lower in HCT116, SW620 and HT-29 colon cancer cells with highly metastatic potential and miR-126 downregulation was more frequent in colorectal cancers with metastasis. Restored miR-126 expression inhibited HT-29 cell growth, cell-cycle progression and invasion. Mechanically, microarray results combined with bioinformatic and experimental analysis demonstrated miR-126 exerted cancer suppressor role via inhibiting RhoA/ROCK signaling pathway. These results suggest miR-126 function as a potential tumor suppressor in colon cancer progression and miR-126/RhoA/ROCK may be a novel candidate for developing rational therapeutic strategies. PMID:23615712

  7. HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling

    PubMed Central

    Godman, Cassandra A.; Joshi, Rashmi; Tierney, Brendan R.; Greenspan, Emily; Rasmussen, Theodore P.; Wang, Hsin-wei; Shin, Dong-Guk; Rosenberg, Daniel W.; Giardina, Charles

    2008-01-01

    Histone deacetylase 3 (HDAC3) is over-expressed in approximately half of all colon adenocarcinomas. We took an RNAi approach to determine how HDAC3 influenced chromatin modifications and the expression of growth regulatory genes in colon cancer cells. A survey of histone modifications revealed that HDAC3 knockdown in SW480 cells significantly increased histone H4-K12 acetylation, a modification present during chromatin assembly that has been implicated in imprinting. This modification was found to be most prominent in proliferating cells in the intestinal crypt and in APCMin tumors, but was less pronounced in the tumors that over-express HDAC3. Gene expression profiling of SW480 revealed that HDAC3 shRNA impacted the expression of genes in the Wnt and vitamin D signaling pathways. The impact of HDAC3 on Wnt signaling was complex, with both positive and negative effects observed. However, long-term knockdown of HDAC3 suppressed ?-catenin translocation from the plasma membrane to the nucleus, and increased expression of Wnt inhibitors TLE1, TLE4 and SMO. HDAC3 knockdown also enhanced expression of the TLE1 and TLE4 repressors in HT-29 and HCT116 cells. HDAC3 shRNA enhanced expression of the vitamin D receptor in SW480 and HCT116 cells, and rendered SW480 cells sensitive to 1,25-dihydroxyvitamin D3. We propose that HDAC3 over-expression alters the epigenetic programming of colon cancer cells to impact intracellular Wnt signaling and their sensitivity to external growth regulation by vitamin D. PMID:18769117

  8. A novel trinuclear platinum complex overcomes cisplatin resistance in an osteosarcoma cell system.

    PubMed

    Perego, P; Caserini, C; Gatti, L; Carenini, N; Romanelli, S; Supino, R; Colangelo, D; Viano, I; Leone, R; Spinelli, S; Pezzoni, G; Manzotti, C; Farrell, N; Zunino, F

    1999-03-01

    Multinuclear platinum compounds have been designed to circumvent the cellular resistance to conventional platinum-based drugs. In an attempt to examine the cellular basis of the preclinical antitumor efficacy of a novel multinuclear platinum compound (BBR 3464) in the treatment of cisplatin-resistant tumors, we have performed a comparative study of cisplatin and BBR 3464 in a human osteosarcoma cell line (U2-OS) and in an in vitro selected cisplatin-resistant subline (U2-OS/Pt). A marked increase of cytotoxic potency of BBR 3464 in comparison with cisplatin in U2-OS cells and a complete lack of cross-resistance in U2-OS/Pt cells were found. A detailed analysis of the cisplatin-resistant phenotype indicated that it was associated with reduced cisplatin accumulation, reduced interstrand cross-link (ICL) formation and DNA platination, microsatellite instability, and reduced expression of the DNA mismatch repair protein PMS2. Despite BBR 3464 charge and molecular size, in U2-OS and U2-OS/Pt cells, BBR 3464 accumulation and DNA-bound platinum were much higher than those observed for cisplatin. In contrast, the frequency of ICLs after exposure to BBR 3464 was very low. The time course of ICL formation after drug removal revealed a low persistence of these types of DNA lesions induced by BBR 3464, in contrast to an increase of DNA lesions induced by cisplatin, suggesting that components of the DNA repair pathway handle the two types of DNA lesions differently. The cellular response of HCT116 mismatch repair-deficient cells was consistent with a lack of influence of mismatch repair status on BBR 3464 cytotoxicity. Because BBR 3464 produces high levels of lesions different from ICLs, likely including intra-strand cross-links and monoadducts, the ability of the triplatinum complex to overcome cisplatin resistance appears to be related to a different mechanism of DNA interaction (formation of different types of drug-induced DNA lesions) as compared with conventional mononuclear complexes rather than the ability to overcome specific cellular alterations. PMID:10051537

  9. Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls

    PubMed Central

    Hinson, Ashley R. P.; Jones, Rosanne; Crose, Lisa E. S.; Belyea, Brian C.; Barr, Frederic G.; Linardic, Corinne M.

    2013-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis. PMID:23882450

  10. Placenta Growth Factor Overexpression Inhibits Tumor Growth, Angiogenesis, and Metastasis by Depleting Vascular Endothelial Growth Factor Homodimers in Orthotopic Mouse Models

    Microsoft Academic Search

    Lei Xu; David M. Cochran; Ricky T. Tong; Frank Winkler; Satoshi Kashiwagi; Rakesh K. Jain; Dai Fukumura

    The role of placenta growth factor (PlGF) in pathologic angiogenesis is controversial. The effects of PlGF on growth, angiogenesis, and metastasis from orthotopic tumors are not known. To this end, we stably transfected three human cancer cell lines (A549 lung, HCT116 colon, and U87-MG glioblasto- ma) with human plgf-2 full-length cDNA. Overexpression of PlGF did not affect tumor cell proliferation

  11. GREG cells, a dysferlin-deficient myogenic mouse cell line

    SciTech Connect

    Humphrey, Glen W.; Mekhedov, Elena; Blank, Paul S. [Program in Physical Biology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 (United States)] [Program in Physical Biology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 (United States); Morree, Antoine de [Center for Human Genetics, Leiden University Medical Center, Leiden (Netherlands)] [Center for Human Genetics, Leiden University Medical Center, Leiden (Netherlands); Pekkurnaz, Gulcin [Program in Physical Biology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 (United States)] [Program in Physical Biology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 (United States); Nagaraju, Kanneboyina [Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010 (United States)] [Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010 (United States); Zimmerberg, Joshua, E-mail: zimmerbj@mail.nih.gov [Program in Physical Biology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 (United States)] [Program in Physical Biology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-01-15

    The dysferlinopathies (e.g. LGMD2b, Myoshi myopathy) are progressive, adult-onset muscle wasting syndromes caused by mutations in the gene coding for dysferlin. Dysferlin is a large ({approx} 200 kDa) membrane-anchored protein, required for maintenance of plasmalemmal integrity in muscle fibers. To facilitate analysis of dysferlin function in muscle cells, we have established a dysferlin-deficient myogenic cell line (GREG cells) from the A/J mouse, a genetic model for dysferlinopathy. GREG cells have no detectable dysferlin expression, but proliferate normally in growth medium and fuse into functional myotubes in differentiation medium. GREG myotubes exhibit deficiencies in plasma membrane repair, as measured by laser wounding in the presence of FM1-43 dye. Under the wounding conditions used, the majority ({approx} 66%) of GREG myotubes lack membrane repair capacity, while no membrane repair deficiency was observed in dysferlin-normal C2C12 myotubes, assayed under the same conditions. We discuss the possibility that the observed heterogeneity in membrane resealing represents genetic compensation for dysferlin deficiency.

  12. Polyamine synthesis in maize cell lines

    SciTech Connect

    Hiatt, A. (Scripps Clinic and Research Foundation, La Jolla, CA (USA))

    1989-08-01

    Uptake of ({sup 14}C)putrescine, ({sup 14}C)arginine, and ({sup 14}C)ornithine was measured in five separate callus cell lines of Zea mays. Each precursor was rapidly taken into the intracellular pool in each culture where, on the average 25 to 50% of the total putrescine was found in a conjugated form, detected after acid hydrolysis. Half-maximal labeling of each culture was achieved in less than 1 minute. Within this time frame of precursor incorporation, only putrescine derived from arginine was conjugated, indicating that putrescine pools derived from arginine may initially be sequestered from ornithine-derived putrescine. The decarboxylase activities were measured in each culture after addition of exogenous polyamine to the growth medium to assess differential regulation of the decarboxylases. Arginine and ornithine decarboxylase activities were augmented by added polyamine, the effect on arginine decarboxylase being eightfold greater than on ornithine decarboxylase. Levels of extractable ornithine decarboxylase were consistently 15- to 100-fold higher than arginine decarboxylase, depending on the titer of extracellular polyamine. Taken as whole the results support the idea that there are distinct populations of polyamine that are initially sequestered after the decarboxylase reactions and that give rise to separate end products and possibly have separate functions.

  13. Proteomics of cancer cell lines resistant to microtubule stabilizing agents

    PubMed Central

    Albrethsen, Jakob; Angeletti, Ruth H.; Horwitz, Susan Band; Yang, Chia-Ping Huang

    2013-01-01

    In spite of the clinical success of microtubule interacting agents (MIAs), a significant challenge for oncologists is the inability to predict the response of individual cancer patients to these drugs. In the present study, six cell lines were compared by 2D DIGE proteomics to investigate cellular resistance to the class of MIAs known as microtubule stabilizing agents (MSAs). The human lung cancer cell line A549 was compared to two drug-resistant daughter cell lines, a Taxol resistant cell line (AT12) and an epothilone B (EpoB) resistant cell line (EpoB40). The ovarian cancer cell line Hey was compared to two drug-resistant daughter cell lines, an EpoB resistant cell line (EpoB8) and an ixabepilone resistant cell line (Ixab80). All 2D DIGE results were validated by Western blot analyses. A variety of cytoskeletal and cytoskeleton-associated proteins were differentially expressed in drug resistant cells. Differential abundance of 14-3-3?, galectin-1 and phosphorylation of stathmin are worthy of further studies as candidate predictive biomarkers for MSAs. This is especially true for galectin-1, a ?-galactose-binding lectin that mediates tumor invasion and metastasis. Galectin-1 was greatly increased in EpoB- and ixabepilone-resistant cells and its suppression caused an increase in drug sensitivity in both drug-sensitive and -resistant Hey cells. Furthermore, the growth medium from resistant Hey cells contained higher levels of galectin-1, suggesting that galectin-1 could play a role in resistance to microtubule stabilizing agents. PMID:24252851

  14. Morphometric Subtyping for a Panel of Breast Cancer Cell Lines

    Microsoft Academic Search

    Ju Han; Hang Chang; Gerald Fontenay; Nicholas J. Wang; Joe W. Gray; Bahram Parvin

    2009-01-01

    A panel of cell lines of diverse molecular background offers an improved model system for high-content screening, comparative analysis, and cell systems biology. A computational pipeline has been developed to collect images from cell-based assays, segment individual cells and colonies, represent segmented objects in a multidimensional space, and cluster them for identifying distinct subpopulations. While each segmentation strategy can vary

  15. The effects of oncolytic reovirus in canine lymphoma cell lines.

    PubMed

    Hwang, C C; Umeki, S; Igase, M; Coffey, M; Noguchi, S; Okuda, M; Mizuno, T

    2014-10-15

    Reovirus is a potent oncolytic virus in many human neoplasms that has reached phase II and III clinical trials. Our laboratory has previously reported the oncolytic effects of reovirus in canine mast cell tumour (MCT). In order to further explore the potential of reovirus in veterinary oncology, we tested the susceptibility of reovirus in 10 canine lymphoma cell lines. Reovirus-induced cell death, virus replication and infectivity were confirmed in four cell lines with variable levels of susceptibility. The level of Ras activation varied among the cell lines with no correlation with reovirus susceptibility. Reovirus-susceptible cell lines underwent apoptosis as proven by propidium iodide (PI) staining, Annexin V-FITC/PI assay, cleavage of PARP and inhibition of cell death by caspase inhibitor. A single intratumoral injection of reovirus suppressed the growth of canine lymphoma subcutaneous tumour in NOD/SCID mice. Unlike canine MCT, canine lymphoma is less susceptible to reovirus. PMID:25319493

  16. Replicative Capacity of MERS Coronavirus in Livestock Cell Lines

    PubMed Central

    Eckerle, Isabella; Corman, Victor M.; Müller, Marcel A.; Lenk, Matthias; Ulrich, Rainer G.

    2014-01-01

    Replicative capacity of Middle East respiratory syndrome coronavirus (MERS-CoV) was assessed in cell lines derived from livestock and peridomestic small mammals on the Arabian Peninsula. Only cell lines originating from goats and camels showed efficient replication of MERS-CoV. These results provide direction in the search for the intermediate host of MERS-CoV. PMID:24457147

  17. T-cell and mast cell lines respond to B-cell stimulatory factor 1.

    PubMed

    Mosmann, T R; Bond, M W; Coffman, R L; Ohara, J; Paul, W E

    1986-08-01

    The murine lymphokine B-cell stimulatory factor 1 (BSF-1) has been described previously in terms of its action on B lymphocytes. We now provide evidence that BSF-1 is also responsible for two additional biological activities. The first of these is the stimulation or maintenance of a state of activation in mouse T-cell lines. The second activity is the increase in the proliferative rate of certain mast cell lines costimulated with interleukin 3. The T-cell and mast cell activities are mediated by purified BSF-1 and copurify with BSF-1 from supernatants of certain T-cell lines. Each of these activities is inhibited by monoclonal anti-BSF-1 but not by monoclonal anti-interleukin 2 antibody. The antibody inhibition results also indicate that BSF-1 is the major or only source of these two activities in the activated T-cell supernatants that we have tested. PMID:3090545

  18. Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines

    Microsoft Academic Search

    Ernst Heinmöller; Rolf J. Weinel; Hans H. Heidtmann; Ursula Salge; Reiner Seitz; Inge Schmitz; Klaus M. Müller; Hubert Zirngibl

    1996-01-01

    We investigated the ability of human lung cancer cells of different histological subtypes to cause platelet aggregation. Tumor-cell-induced platelet aggregation (TCIPA) was studied in vitro in 13 human lung cancer cell lines [small-cell lung cancer (SCLC), squamous-cell lung cancer, large-cell lung cancer, adenocarcinoma and alveolar-cell lung cancer]. Three tumor cell lines failed to aggregate platelets in plateletrich plasma, whereas platelet

  19. Identification of a Novel Rhabdovirus in Spodoptera frugiperda Cell Lines

    PubMed Central

    Ma, Hailun; Galvin, Teresa A.; Glasner, Dustin R.; Shaheduzzaman, Syed

    2014-01-01

    ABSTRACT The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. IMPORTANCE The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell line. This paper reports on the identification and characterization of a novel rhabdovirus in Sf9 cells. This was accomplished through the use of next-generation sequencing platforms, de novo assembly tools, and extensive bioinformatics analysis. Rhabdovirus identification was further confirmed by transmission electron microscopy. Infectivity studies showed the lack of replication of Sf-rhabdovirus in human cell lines. The overall study highlights the use of a combinatorial testing approach including conventional methods and new technologies for evaluation of cell lines for unexpected viruses and use of comprehensive bioinformatics strategies for obtaining confident next-generation sequencing results. PMID:24672045

  20. Anti-Cancer Effects of Chinese Red Yeast Rice beyond Monacolin K alone in Colon Cancer Cells

    PubMed Central

    Hong, Mee Young; Seeram, Navindra P.; Zhang, Yanjun; Heber, David

    2008-01-01

    Chinese Red Yeast Rice (RYR) is a food herb made by fermenting Monascus purpureus Went yeast on white rice. RYR contains a mixture of monacolins, one of which, Monacolin K (MK), is identical to lovastatin. Epidemiological studies show that individuals taking statins have a reduced risk of colon cancer. In the present study, lovastatin decreased cellular proliferation (P<.001) and induced apoptosis (P <.05) in HCT-116 and HT-29 human colon cancer cells. RYR inhibited both tumor cell growth (P <.001) and enhanced apoptosis (P <.05) in HCT-116. The inhibition of proliferation was reversed by mevalonate in lovastatin-treated cells, since lovastatin is a 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR) inhibitor. However, RYR with mevalonate did not reverse the observed inhibition of growth. MK-free RYR did not reverse the observed lovastatin-mediated inhibition of cancer cell growth These observations suggest that other components in RYR, including other monacolins, pigments, or the combined matrix effects of multiple constituents may affect intracellular signaling pathways differently than purified crystallized lovastatin in colon cancer cells. RYR was purified into two fractions: pigment-rich (PF-RYR) and monacolin-rich (MF-RYR) fractions. The effect of MF-RYR was similar to that of lovastatin, while the effect of PF-RYR was similar to that of the whole RYR extract in proliferation, apoptosis and mRNA level of HMGCR and sterol response element binding protein-2. These results suggest that matrix effects of RYR beyond MK alone may be active in inhibiting colon cancer growth. RYR with/without MK may be a botanical approach to colon cancer chemoprevention worthy of further investigation. PMID:17869085

  1. Respiratory epithelial cell lines exposed to anoxia produced inflammatory mediator.

    PubMed

    Shahriary, Cyrus M; Chin, Terry W; Nussbaum, Eliezer

    2012-12-01

    Human epithelial cell lines were utilized to examine the effects of anoxia on cellular growth and metabolism. Three normal human epithelial cells lines (A549, NHBE, and BEAS-2B) as well as a cystic fibrosis cell line (IB3-1) and its mutation corrected cell line (C38) were grown in the presence and absence of oxygen for varying periods of time. Interleukin-8 (IL-8) levels were measured by enzyme-linked immunosorbent assay technique. Cellular metabolism and proliferation were assayed by determining mitochondrial oxidative burst activity by tetrazolium compound reduction. The viability of cells was indirectly measured by lactate dehydrogenase release. A549, NHBE, and BEAS-2B cells cultured in the absence of oxygen showed a progressive decrease in metabolic activity and cell proliferation after one to three days. There was a concomitant increase in IL-8 production. Cell lines from cystic fibrosis (CF) patients did not show a similar detrimental effect of anoxia. However, the IL-8 level was significantly increased only in IB3-1 cells exposed to anoxia after two days. Anoxia appears to affect certain airway epithelial cell lines uniquely with decreased cellular proliferation and a concomitant increased production of a cytokine with neutrophilic chemotactic activity. The increased ability of the CF cell line to respond to anoxia with increased secretion of inflammatory cytokines may contribute to the inflammatory damage seen in CF bronchial airway. This study indicates the need to use different cell lines in in vitro studies investigating the role of epithelial cells in airway inflammation and the effects of environmental influences. PMID:23301190

  2. DNA Mismatch Binding and Antiproliferative Activity of Rhodium Metalloinsertors

    PubMed Central

    Ernst, Russell J.; Song, Hang; Barton, Jacqueline K.

    2009-01-01

    Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 104 to 108 M?1 for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo. PMID:19175313

  3. Development of a conditionally immortalized human pancreatic ? cell line

    PubMed Central

    Scharfmann, Raphaël; Pechberty, Severine; Hazhouz, Yasmine; von Bülow, Manon; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Guez, Fanny; Rachdi, Latif; Lohmann, Matthias; Czernichow, Paul; Ravassard, Philippe

    2014-01-01

    Diabetic patients exhibit a reduction in ? cells, which secrete insulin to help regulate glucose homeostasis; however, little is known about the factors that regulate proliferation of these cells in human pancreas. Access to primary human ? cells is limited and a challenge for both functional studies and drug discovery progress. We previously reported the generation of a human ? cell line (EndoC-?H1) that was generated from human fetal pancreas by targeted oncogenesis followed by in vivo cell differentiation in mice. EndoC-?H1 cells display many functional properties of adult ? cells, including expression of ? cell markers and insulin secretion following glucose stimulation; however, unlike primary ? cells, EndoC-?H1 cells continuously proliferate. Here, we devised a strategy to generate conditionally immortalized human ? cell lines based on Cre-mediated excision of the immortalizing transgenes. The resulting cell line (EndoC-?H2) could be massively amplified in vitro. After expansion, transgenes were efficiently excised upon Cre expression, leading to an arrest of cell proliferation and pronounced enhancement of ? cell–specific features such as insulin expression, content, and secretion. Our data indicate that excised EndoC-?H2 cells are highly representative of human ? cells and should be a valuable tool for further analysis of human ? cells. PMID:24667639

  4. Establishment and characterization of a bovine rectal myxoma cell line.

    PubMed

    Sahoo, Aditya P; Tiwari, Ashok K; Ravi Kumar, G; Chaturvedi, U; Veer Singh, Lakshya; Saxena, Shikha; Palia, S K; Jadon, N S; Singh, R; Singh, K P; Brahmaprakash, B S; Maiti, S K; Das, A K

    2015-02-01

    A new bovine cell line was developed from tumor biopsy material of rectum obtained from clinical case of 7 years old cattle with tumor mass obliterating the rectal opening. Histopathology of tumor revealed scattered stellate cells arranged singly or in clusters in loose mucinous ground substance, simulating myxoma. The cells obtained from tumor mass have been cultured for more than 36 months in DMEM supplemented with 10% fetal bovine serum (FBS). The population doubling time of this cell line was about 20.64 h. The cytogenetic analysis revealed several chromosomal abnormalities with bizarre karyotype. The origin of the cell line was confirmed by PCR amplification of 1086 bp fragment of 16s rRNA using bovine species specific primers. The new cell line would act as in vitro model to study many aspect of cancer biology such as tumor development, differentiation and therapeutics regimen to combat cancer. PMID:25441618

  5. Epithelial mesenchymal transition traits in human breast cancer cell lines

    Microsoft Academic Search

    T. Blick; E. Widodo; H. Hugo; M. Waltham; M. E. Lenburg; R. M. Neve; E. W. Thompson

    2008-01-01

    Epithelial mesenchymal transition (EMT) has long been associated with breast cancer cell invasiveness and evidence of EMT\\u000a processes in clinical samples is growing rapidly. Genome-wide transcriptional profiling of increasingly larger numbers of\\u000a human breast cancer (HBC) cell lines have confirmed the existence of a subgroup of cell lines (termed Basal B\\/Mesenchymal)\\u000a with enhanced invasive properties and a predominantly mesenchymal gene

  6. Coitinuous cell lines from embryonic tissues of ticks (Acari: Ixodidae)

    Microsoft Academic Search

    C. E. Yunker; J. Cory; H. Meibos

    1981-01-01

    Summary  Six new cell lines were established in continous culture from embryonic tissues of ixodid ticks. Four were fromDermacentor variabilis and two fromD. parumapertus. The cells are mostly fibroblastic and diploid. Mosquito-borne viruses (Chikungunya, O'nyong, yellow fever, and St. Louis\\u000a encephalitis) as well as tick-borne ones (Langat, Powassan, Colorado tick fever, Kemerovo, and Sawgrass) replicated in certain\\u000a of these cell lines,

  7. Cyclopentadienyl-Ruthenium(II) and Iron(II) Organometallic Compounds with Carbohydrate Derivative Ligands as Good Colorectal Anticancer Agents.

    PubMed

    Florindo, Pedro R; Pereira, Diane M; Borralho, Pedro M; Rodrigues, Cecília M P; Piedade, M F M; Fernandes, Ana C

    2015-05-28

    New ruthenium(II) and iron(II) organometallic compounds of general formula [(?(5)-C5H5)M(PP)Lc][PF6], bearing carbohydrate derivative ligands (Lc), were prepared and fully characterized and the crystal structures of five of those compounds were determined by X-ray diffraction studies. Cell viability of colon cancer HCT116 cell line was determined for a total of 23 organometallic compounds and SAR's data analysis within this library showed an interesting dependency of the cytotoxic activity on the carbohydrate moiety, linker, phosphane coligands, and metal center. More importantly, two compounds, 14Ru and 18Ru, matched oxaliplatin IC50 (0.45 ?M), the standard metallodrug used in CC chemotherapeutics, and our leading compound 14Ru was shown to be significantly more cytotoxic than oxaliplatin to HCT116 cells, triggering higher levels of caspase-3 and -7 activity and apoptosis in a dose-dependent manner. PMID:25923600

  8. Optimization of 6,6-dimethyl pyrrolo[3,4- c]pyrazoles: Identification of PHA793887, a potent CDK inhibitor suitable for intravenous dosing

    Microsoft Academic Search

    Maria Gabriella Brasca; Clara Albanese; Rachele Alzani; Raffaella Amici; Nilla Avanzi; Dario Ballinari; James Bischoff; Daniela Borghi; Elena Casale; Valter Croci; Francesco Fiorentini; Antonella Isacchi; Ciro Mercurio; Marcella Nesi; Paolo Orsini; Wilma Pastori; Enrico Pesenti; Paolo Pevarello; Patrick Roussel; Mario Varasi; Daniele Volpi; Anna Vulpetti; Marina Ciomei

    2010-01-01

    We have recently reported CDK inhibitors based on the 6-substituted pyrrolo[3,4-c]pyrazole core structure. Improvement of inhibitory potency against multiple CDKs, antiproliferative activity against cancer cell lines and optimization of the physico-chemical properties led to the identification of highly potent compounds. Compound 31 (PHA-793887) showed good efficacy in the human ovarian A2780, colon HCT-116 and pancreatic BX-PC3 carcinoma xenograft models and

  9. Cytochalasin derivatives from a jellyfish-derived fungus Phoma sp.

    PubMed

    Kim, Eun La; Wang, Haibo; Park, Ju Hee; Hong, Jongki; Choi, Jae Sue; Im, Dong Soon; Chung, Hae Young; Jung, Jee H

    2015-05-15

    Four new cytochalasin derivatives (1-4), together with proxiphomin (5), were isolated from a jellyfish-derived fungus Phoma sp. The planar structures and relative stereochemistry were established by analysis of 1D and 2D NMR data. The absolute configuration was defined by the modified Mosher's method. The compounds showed moderate cytotoxicity against a small panel of human solid tumor cell lines (A549, KB, and HCT116). PMID:25881821

  10. Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana

    Microsoft Academic Search

    Bolleddula Jayaprakasam; Navindra P. Seeram; Muraleedharan G. Nair

    2003-01-01

    Bioassay-guided purification of an extract of Cucurbitaandreana fruits yielded cucurbitacins B (1), D (2), E (3), and I (4). These cucurbitacins were evaluated for their inhibitory effects on the growth of human colon (HCT-116), breast (MCF-7), lung (NCI-H460), and central nervous system (CNS) (SF-268) cancer cell lines, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes and on lipid peroxidation. Inhibitory activities of

  11. [Decontamination of continual cell lines spontaneously infected with mycoplasmas].

    PubMed

    Machatková, M; Jurmanová, K; Snejdar, V

    1986-07-01

    The continual cell lines of bovine kidneys MDBK and AUBEK, and porcine kidneys RPD and IBRS, spontaneously infected with Mycoplasma arginini and Acholeplasma laidlawii, were decontaminated by the method of selective elimination. Two elimination procedures were modified to be used for the decontamination: one based on the reduction of infection by the light treatment of the cultures, the other based on the selection of mycoplasma-free cell population through cell clonation. On the basis of a long-continued control of the cell clones a methodical procedure of the preparation of mycoplasma-free cell lines was worked out. PMID:3090766

  12. Radiosensitivity of hepatoma cell lines and human normal liver cell lines exposed to 12C6+ ions

    NASA Astrophysics Data System (ADS)

    Jing, X.; Yang, J.; Li, W.; Guo, C.; Dang, B.; Wang, J.; Zhou, L.; Wei, W.; Gao, Q.

    AIM To investigate the radiosensitivity of hepatoma cell lines and human normal liver cell lines METHODS Accelerated carbon ions by heavy ion research facility in Lanzhou HIRFL have high LET We employed it to study the radiosensitivity of hepatoma cell lines SMMC-7721 and human normal liver cell lines L02 using premature chromosome condensation technique PCC Cell survive was documented by a colony assay Chromatid breaks were measured by counting the number of chromatid breaks and isochromatid breaks immediately after prematurely chromosome condensed by Calyculin-A RESULTS The survival curve of the two cell lines presented a good linear relationship and the survival fraction of L02 is higher than that of SMMC-7721 Additionally the two types of G 2 phase chromosome breaks chromatid breaks and isochromatid breaks of L02 are lower than that of SMMC-7721 CONCLUSION Human normal liver cell line have high radioresistance than that of hepatoma cell line It imply that it is less damage to normal organs when radiotherapy to hepatoma

  13. Clonal cell lines from the rat central nervous system

    Microsoft Academic Search

    D. Schubert; S. Heinemann; W. Carlisle; H. Tarikas; B. Kimes; J. Patrick; J. H. Steinbach; W. Culp; B. L. Brandt

    1974-01-01

    Five neuronal and a large collection of putative glial cell lines from the rat central nervous system have been established in clonal cell culture and partially characterised. These cells shed new light on the distribution of neurotransmitter synthesis and brain-specific antigens among nerve and glia.

  14. A cell line (HBL-100) established from human breast milk

    Microsoft Academic Search

    Edwin V. Gaffney

    1982-01-01

    A continuous cell line (HBL-100) was obtained from primary cultures of cells derived from an early lactation sample of human milk. There was no evidence of a breast lesion in the milk donor. Karyotype analysis showed that all metaphases contained human chromosomes including a large acrocentric marker chromosome. Both desmosomes and cytoplasmic tonofibrils were observed during early passage. HBL-100 cells

  15. Development and characterization of a largemouth bass cell line.

    PubMed

    Getchell, Rodman G; Groocock, Geoffrey H; Cornwell, Emily R; Schumacher, Vanessa L; Glasner, Lindsay I; Baker, Barry J; Frattini, Stephen A; Wooster, Gregory A; Bowser, Paul R

    2014-09-01

    Abstract The development and characterization of a new cell line, derived from the ovary of Largemouth Bass Micropterus salmoides, is described. Gonad tissue was collected from Largemouth Bass that were electrofished from Oneida Lake, New York. The tissue was processed and grown in culture flasks at approximately 22°C for more than 118 passages during an 8-year period from 2004 to 2011. The identity of these cells as Largemouth Bass origin was confirmed by sequencing a portion of the cytochrome b gene. Growth rate at three different temperatures was documented. The cell line was susceptible to Largemouth Bass virus (LMBV) and its replication was compared with that of Bluegill Lepomis macrochirus fry (BF-2), one of the cell lines recommended for LMBV isolation by the American Fisheries Society Fish Health Section Blue Book. Quantitative PCR results from the replication trial showed the BF-2 cell line produced approximately 10-fold more LMBV copies per cell than the new Largemouth Bass cell line after 6 d, while the titration assay showed similar quantities in each cell line after 1 week. Received February 18, 2014; accepted April 16, 2014. PMID:25229492

  16. The effect of desferrioxamine on cell proliferation in human tumour cell lines.

    PubMed

    Siegers, C P; Bumann, D; Baretton, G

    1991-01-01

    Iron is known to have a stimulatory effect on cell proliferation whereas the iron-complexing agent desferrioxamine (DFO) has an inhibitory influence on the growth of cultured cells. The effect of iron salts and DFO on cell proliferation and DNA synthesis was studied on two established human tumour cell lines, a colon carcinoma (Caco-2) and a hepatoma-derived cell line (Hep.G2). Cell proliferation was estimated by the neutral red method, DNA synthesis by measuring the [(3)H]thymidine incorporation into the cells. For the analysis of the cell cycle the cells were marked with bromodeoxyuridine for S-phase cells and the monoclonal antibody Ki-67 for all proliferating cells. Ferric chloride stimulated cell proliferation in the Caco-2 line whereas there was no effect in the Hep.G2 line. DFO inhibited cell proliferation and DNA synthesis in both cell lines. Cell cycle analysis revealed a prolongation of the cell cycle by DFO, thereby reducing the number of cells entering the proliferating phases of the cell cycle in both cell lines. The data support the essential role of iron in cell proliferation and tumour growth. PMID:20732049

  17. Ginger compound [6]-shogaol and its cysteine-conjugated metabolite (M2) activate Nrf2 in colon epithelial cells in vitro and in vivo.

    PubMed

    Chen, Huadong; Fu, Junsheng; Chen, Hao; Hu, Yuhui; Soroka, Dominique N; Prigge, Justin R; Schmidt, Edward E; Yan, Feng; Major, Michael B; Chen, Xiaoxin; Sang, Shengmin

    2014-09-15

    In this study, we identified Nrf2 as a molecular target of [6]-shogaol (6S), a bioactive compound isolated from ginger, in colon epithelial cells in vitro and in vivo. Following 6S treatment of HCT-116 cells, the intracellular GSH/GSSG ratio was initially diminished but was then elevated above the basal level. Intracellular reactive oxygen species (ROS) correlated inversely with the GSH/GSSG ratio. Further analysis using gene microarray showed that 6S upregulated the expression of Nrf2 target genes (AKR1B10, FTL, GGTLA4, and HMOX1) in HCT-116 cells. Western blotting confirmed upregulation, phosphorylation, and nuclear translocation of Nrf2 protein followed by Keap1 decrease and upregulation of Nrf2 target genes (AKR1B10, FTL, GGTLA4, HMOX1, and MT1) and glutathione synthesis genes (GCLC and GCLM). Pretreatment of cells with a specific inhibitor of p38 (SB202190), PI3K (LY294002), or MEK1 (PD098059) attenuated these effects of 6S. Using ultra-high-performance liquid chromatography-tandem mass spectrometry, we found that 6S modified multiple cysteine residues of Keap1 protein. In vivo 6S treatment induced Nrf2 nuclear translocation and significantly upregulated the expression of MT1, HMOX1, and GCLC in the colon of wild-type mice but not Nrf2(-/-) mice. Similar to 6S, a cysteine-conjugated metabolite of 6S (M2), which was previously found to be a carrier of 6S in vitro and in vivo, also activated Nrf2. Our data demonstrated that 6S and its cysteine-conjugated metabolite M2 activate Nrf2 in colon epithelial cells in vitro and in vivo through Keap1-dependent and -independent mechanisms. PMID:25148906

  18. Ginsenoside compound K, not Rb1, possesses potential chemopreventive activities in human colorectal cancer.

    PubMed

    Wang, Chong-Zhi; Du, Guang-Jian; Zhang, Zhiyu; Wen, Xiao-Dong; Calway, Tyler; Zhen, Zhong; Musch, Mark W; Bissonnette, Marc; Chang, Eugene B; Yuan, Chun-Su

    2012-06-01

    Ginsenoside compound K (C-K) is an intestinal microbiota metabolite of ginsenoside Rb1, a major constituent in American ginseng. However, previous ginseng anti-cancer observations were largely focused on ginseng parent compounds but not metabolites, and anti-colorectal cancer studies on C-K were limited. This study investigated the anti-proliferative effects of C-K when compared to those of Rb1, and the related mechanisms of action, in HCT-116 and SW-480 colorectal cancer cells. The effects of Rb1 and C-K on the proliferation of HCT-116 and SW-480 human colorectal cancer cells were compared using an MTS assay. Cell cycle and cell apoptosis were assayed using flow cytometry. Enzymatic activities of caspases were determined by colorimetric assay, and interactions of C-K and caspases were explored by docking analysis. C-K showed significant anti-proliferative effects in HCT-116 and SW-480 cells at concentrations of 30-50 µM. At the same concentrations, Rb1 did not show any effects, while C-K arrested the cells in the G1 phase, and significantly induced cell apoptosis. Compared to HCT-116 (p53 wild-type), the p53 mutant cell line SW-480 was more sensitive to C-K as assessed by cell cycle regulation and apoptosis induction. C-K activated expression of caspases 8 and 9, consistent with docking analysis. The docking data suggested that C-K forms hydrogen bonds with Lys253, Thr904 and Gly362 in caspase 8, and with Thr62, Ser63 and Arg207 in caspase 9. C-K, but not its parent ginsenoside Rb1, showed significant anti-proliferative and pro-apoptotic effects in human colorectal cancer cells. These results suggest that C-K could be a potentially effective anti-colorectal cancer agent. PMID:22426808

  19. A Stable Cranial Neural Crest Cell Line from Mouse

    PubMed Central

    Ishii, Mamoru; Arias, Athena C.; Liu, Liqiong; Chen, Yi-Bu; Bronner, Marianne E.

    2012-01-01

    Cranial neural crest cells give rise to ectomesenchymal derivatives such as cranial bones, cartilage, smooth muscle, dentin, as well as melanocytes, corneal endothelial cells, and neurons and glial cells of the peripheral nervous system. Previous studies have suggested that although multipotent stem-like cells may exist during the course of cranial neural crest development, they are transient, undergoing lineage restriction early in embryonic development. We have developed culture conditions that allow cranial neural crest cells to be grown as multipotent stem-like cells. With these methods, we obtained 2 independent cell lines, O9-1 and i10-1, which were derived from mass cultures of Wnt1-Cre; R26R-GFP-expressing cells. These cell lines can be propagated and passaged indefinitely, and can differentiate into osteoblasts, chondrocytes, smooth muscle cells, and glial cells. Whole-genome expression profiling of O9-1 cells revealed that this line stably expresses stem cell markers (CD44, Sca-1, and Bmi1) and neural crest markers (AP-2?, Twist1, Sox9, Myc, Ets1, Dlx1, Dlx2, Crabp1, Epha2, and Itgb1). O9-1 cells are capable of contributing to cranial mesenchymal (osteoblast and smooth muscle) neural crest fates when injected into E13.5 mouse cranial tissue explants and chicken embryos. These results suggest that O9-1 cells represent multipotent mesenchymal cranial neural crest cells. The O9-1 cell line should serve as a useful tool for investigating the molecular properties of differentiating cranial neural crest cells. PMID:22889333

  20. DEVELOPMENT OF A BRAIN METASTATIC CANINE PROSTATE CANCER CELL LINE

    PubMed Central

    Thudi, Nanda K.; Shu, Sherry T.; Martin, Chelsea K.; Lanigan, Lisa G.; Nadella, Murali V.P.; Van Bokhoven, Adrie; Werbeck, Jillian L.; Simmons, Jessica K.; Murahari, Sridhar; Kisseberth, William C.; Breen, Matthew; Williams, Christina; Chen, Ching-Shih; McCauley, Laurie K.; Keller, Evan T.; Rosol, Thomas J.

    2010-01-01

    Background Prostate cancer in men has a high mortality and morbidity due to metastatic disease. The pathobiology of prostate cancer metastasis is not well understood and cell lines and animal models that recapitulate the complex nature of the disease are needed. Therefore, the goal of the study was to establish and characterize a new prostate cancer line derived from a dog with spontaneous prostate cancer. Methods A new cell line (Leo) was derived from a dog with spontaneous prostate cancer. Immunohistochemistry and PCR were used to characterize the primary prostate cancer and xenografts in nude mice. Subcutaneous tumor growth and metastases in nude mice were evaluated by bioluminescent imaging, radiography and histopathology. In vitro chemosensitivity of Leo cells to therapeutic agents was measured. Results Leo cells expressed the secretory epithelial cytokeratins (CK) 8, 18 and ductal cell marker, CK7. The cell line grew in vitro (over 75 passages) and was tumorigenic in the subcutis of nude mice. Following intracardiac injection, Leo cells metastasized to the brain, spinal cord, bone, and adrenal gland. The incidence of metastases was greatest to the central nervous system (80%) with a lower incidence to bone (20%) and the adrenal glands (16%). In vitro chemosensitivity assays demonstrated that Leo cells were sensitive to velcade and an HDAC-42 inhibitor with IC50 concentrations of 1.9 nM and 0.95 ?M respectively. Conclusion The new prostate cancer cell line (Leo) will be a valuable model to investigate the mechanisms of the brain and bone metastases. PMID:21321976

  1. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines

    Microsoft Academic Search

    Allan Bradley; Martin Evans; Matthew H. Kaufman; Elizabeth Robertson

    1984-01-01

    The recent availability in culture of embryo-derived pluripotential cells which exhibit both a normal karyotype and a high differentiative ability1-3 has encouraged us to assess the potential of these cells to form functional germ cells following their incorporation into chimaeric mice. We report here the results of blastocyst injection studies using three independently isolated XY embryo-derived cell lines (EK.CP1, EK.CC1.1

  2. Transport of paraquat by a renal epithelial cell line, MDCK.

    PubMed

    Chan, B S; Lazzaro, V A; Seale, J P; Duggin, G G

    1997-11-01

    Transport of paraquat (PQ), a herbicidal cation, was previously investigated in a proximal (LLC-PK1), renal epithelial cell line using permeable collagen-coated filters. PQ was actively transported from the basolateral side via a cation transport system by the LLC-PK1 cells. In the present study, the transport of PQ was investigated in a distal renal epithelial cell line, MDCK. PQ was predominantly transported from the basolateral to apical (B to A) side. The basolateral transport of PQ in MDCK cells was not saturable with increasing concentrations and not energy dependent. The flux and uptake of PQ was much lower in the MDCK than LLC-PK1 cells. It is concluded that MDCK, a distal renal tubular cell line, does not have an active transport system for PQ. PMID:9415931

  3. Neurectoderm markers retained in phenotypical skeletal muscle cells arising from a glial cell line

    Microsoft Academic Search

    Vanda A. Lennon; Susan Peterson; David Schubert

    1979-01-01

    Differentiation in vitro of striated muscle from apparently non-muscle precursor cells has been reported in thymus reticulum1, a fibroblast-like mouse embryo line2 and in a neuronelike cell line derived from a rat brain tumour3. Also Tomozawa and Sueko reported the differentiation of a peripheral neurotumour clonal stem cell line into separate neuronal and glial cell types4. We report here the

  4. Establishment of the DU.528 human lymphohemopoietic stem cell line

    PubMed Central

    1985-01-01

    We have established the DU.528 cell line from the pretreatment leukemia cells of a patient who underwent a T lymphoblastic-to-promyelocytic phenotype conversion during treatment with the adenosine deaminase inhibitor, deoxycoformycin. The cell line and clones obtained from it by limiting dilution have the same karyotype previously found in the patient's pretreatment T lymphoblasts and post-deoxycoformycin treatment promyelocytes. DU.528 cells in continuous culture for greater than 2 yr display a predominant undifferentiated T lymphoblastoid phenotype. These cells spontaneously generate progeny of at least three lineages, T lymphoid, granulocytic/monocytic, and erythroid. The surface marker most consistently expressed by DU.528 cells in the undifferentiated state is the 3A1 antigen, which has been found on prothymocytes in the embryonic thymus. Some undifferentiated DU.528 cells also expressed the IL-2 receptor, but no other T cell differentiation antigens. Exposure of DU.528 cells to a variety of agents induced myeloid maturation; adenosine and deoxyadenosine, in the presence of deoxycoformycin, induced expression of myeloid differentiation antigens. Our results suggest that DU.528 is a lymphohematopoietic stem cell line and support the hypothesis that differentiation of pluripotent stem cells may be altered by genetic deficiency of adenosine deaminase. DU.528 cells may provide a useful model for examining factors that regulate stem cell proliferation and differentiation. PMID:4056659

  5. Effects of small interfering RNAs targeting fascin on human esophageal squamous cell carcinoma cell lines

    Microsoft Academic Search

    Cristian M Ortiz; Tetsuo Ito; Yosuke Hashimoto; Satoshi Nagayama; Akira Iwai; Shigeru Tsunoda; Fumiaki Sato; Miguel Martorell; Jose Garcia; Ana Perez; Yutaka Shimada

    2010-01-01

    BACKGROUND: Fascin induces membrane protrusions and cell motility. Fascin overexpression was associated with poor prognosis, and its downregulation reduces cell motility and invasiveness in esophageal squamous cell carcinoma (ESCC). Using a stable knockdown cell line, we revealed the effect of fascin on cell growth, cell adhesion and tumor formation. METHODS: We examined whether fascin is a potential target in ESCC

  6. The natural compound cantharidin induces cancer cell death through inhibition of heat shock protein 70 (HSP70) and Bcl-2-associated athanogene domain 3 (BAG3) expression by blocking heat shock factor 1 (HSF1) binding to promoters.

    PubMed

    Kim, Joo Ae; Kim, Youngmi; Kwon, Byoung-Mog; Han, Dong Cho

    2013-10-01

    Heat shock factor 1 (HSF1) enhances the survival of cancer cells under various stresses. The knock-out of HSF1 impairs cancer formation and progression, suggesting that HSF1 is a promising therapeutic target. To identify inhibitors of HSF1 activity, we performed cell-based screening with a library of marketed and experimental drugs and identified cantharidin as an HSF1 inhibitor. Cantharidin is a potent antitumor agent from traditional Chinese medicine. Cantharidin inhibited heat shock-induced luciferase activity with an IC50 of 4.2 ?m. In contrast, cantharidin did not inhibit NF-?B luciferase reporter activity, demonstrating that cantharidin is not a general transcription inhibitor. When the HCT-116 colorectal cancer cells were exposed to heat shock in the presence of cantharidin, the induction of HSF1 downstream target proteins, such as HSP70 and BAG3 (Bcl-2-associated athanogene domain 3), was suppressed. HSP70 and its co-chaperone BAG3 have been reported to protect cells from apoptosis by stabilizing anti-apoptotic Bcl-2 family proteins. As expected, treating HCT-116 cancer cells with cantharidin significantly decreased the amounts of BCL-2, BCL-xL, and MCL-1 protein and induced apoptotic cell death. Chromatin immunoprecipitation analysis showed that cantharidin inhibited the binding of HSF1 to the HSP70 promoter and subsequently blocked HSF1-dependent p-TEFb recruitment. Therefore, the p-TEFb-dependent phosphorylation of the C-terminal domain of RNA polymerase II was blocked, arresting transcription at the elongation step. Protein phosphatase 2A inhibition with PP2CA siRNA or okadaic acid did not block HSF1 activity, suggesting that cantharidin inhibits HSF1 in a protein phosphatase 2A-independent manner. We show for the first time that cantharidin inhibits HSF1 transcriptional activity. PMID:23983126

  7. A sub-40-ns chain FRAM architecture with 7-ns cell-plate-line drive

    Microsoft Academic Search

    Daisaburo Takashima; Susumu Shuto; Iwao Kunishima; Hiroyuki Takenaka; Yukihito Oowaki; Shin-ichi Tanaka

    1999-01-01

    A nonvolatile chain FRAM adopting a new cell-plate-line drive technique was demonstrated. Two key circuit techniques, a two-way metal cell-plate line and a cell-plate line shared with 16 cells, reduce cell-plate-line delay to 7 ns and reduce plate drive area to 1\\/5. The total cell-plate-line delay, including cell transistor delay due to eight cells in series, is reduced to 15

  8. Subcutaneous preconditioning increases invasion and metastatic dissemination in mouse colorectal cancer models

    PubMed Central

    Alamo, Patricia; Gallardo, Alberto; Pavón, Miguel A.; Casanova, Isolda; Trias, Manuel; Mangues, Maria A.; Vázquez, Esther; Villaverde, Antonio; Mangues, Ramon; Céspedes, Maria V.

    2014-01-01

    Mouse colorectal cancer (CRC) models generated by orthotopic microinjection of human CRC cell lines reproduce the pattern of lymphatic, haematological and transcoelomic spread but generate low metastatic efficiency. Our aim was to develop a new strategy that could increase the metastatic efficiency of these models. We used subcutaneous implantation of the human CRC cell lines HCT116 or SW48 prior to their orthotopic microinjection in the cecum of nude mice (SC+ORT). This subcutaneous preconditioning significantly enhanced metastatic dissemination. In the HCT116 model it increased the number and size of metastatic foci in lymph nodes, lung, liver and peritoneum, whereas, in the SW48 model, it induced a shift from non-metastatic to metastatic. In both models the number of apoptotic bodies in the primary tumour in the SC+ORT group was significantly reduced compared with that in the direct orthotopic injection (ORT) group. Moreover, in HCT116 tumours the number of keratin-positive tumour buddings and single epithelial cells increased at the invasion front in SC+ORT mice. In the SW48 tumour model, we observed a trend towards a higher number of tumour buds and single cells in the SC+ORT group but this did not reach statistical significance. At a molecular level, the enhanced metastatic efficiency observed in the HCT116 SC+ORT model was associated with an increase in AKT activation, VEGF-A overexpression and downregulation of ?1 integrin in primary tumour tissue, whereas, in SW48 SC+ORT mice, the level of expression of these proteins remained unchanged. In summary, subcutaneous preconditioning increased the metastatic dissemination of both orthotopic CRC models by increasing tumour cell survival and invasion at the tumour invasion front. This approach could be useful to simultaneously study the mechanisms of metastases and to evaluate anti-metastatic drugs against CRC. PMID:24487410

  9. Metronidazole decreases viability of DLD-1 colorectal cancer cell line.

    PubMed

    Sadowska, Anna; Kr?towski, Rafa?; Szynaka, Beata; Cechowska-Pasko, Marzanna; Car, Halina

    2013-10-01

    The aim of our study was to evaluate the impact of metronidazole (MTZ) on DLD-1 colorectal cancer cell (CRC) line. Toxicity of MTZ was determined by MTT test. Cells were incubated with MTZ used in different concentrations for 24, 48, and 72 hours. The effect of MTZ on DNA synthesis was measured as [3H]-thymidine incorporation. The morphological changes in human DLD-1 cell line were defined by transmission electron microscope OPTON 900. The influence of MTZ on the apoptosis of DLD-1 cell lines was detected by flow cytometry and fluorescence microscopy, while cell concentration, volume, and diameter were displayed by Scepter Cell Counter from Millipore. Our results show that cell viability was diminished in all experimental groups in comparison with the control, and the differences were statistically significant. We did not find any significant differences in [3H]-thymidine incorporation in all experimental groups and times of observation. Cytofluorimetric assays demonstrated a statistically significant increase of apoptotic rate in MTZ concentrations 10 and 50??g/mL after 24 hours; 0.1, 10, 50, and 250??g/mL after 48 hours; and in all concentrations after 72 hours compared with control groups. In the ultrastructural studies, necrotic or apoptotic cells were occasionally seen. In conclusion, MTZ affects human CRC cell line viability. The reduction of cell viability was consistent with the apoptotic test. PMID:23777253

  10. Transcription profiles of non-immortalized breast cancer cell lines

    Microsoft Academic Search

    Mariana Fernandez-Cobo; James F Holland; Beatriz GT Pogo

    2006-01-01

    BACKGROUND: Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related

  11. Variation in Hematopoietic Potential of Induced Pluripotent Stem Cell Lines

    Microsoft Academic Search

    Kasem Kulkeaw; Yuka Horio; Chiyo Mizuochi; Minetaro Ogawa; Daisuke Sugiyama

    2010-01-01

    Induced pluripotent stem (iPS) cells were originally generated from somatic cells by ectopic expression of four transcription\\u000a factor genes: Oct3\\/4, Sox2, Klf4 and c-Myc. Currently, iPS cell lines differ in tissue origin, the combination of factors used to construct them, the method of gene\\u000a delivery and expression of pluripotency markers. Thus to evaluate iPS cells for haematotherapy, the hematopoietic potential

  12. Isolation of two chloroethylnitrosourea-sensitive Chinese hamster cell lines

    SciTech Connect

    Hata, H.; Numata, M.; Tohda, H.; Yasui, A.; Oikawa, A. (Tohoku Univ., Sendai (Japan))

    1991-01-01

    1-((4-Amino-2-methylpyrimidin-5-yl)methyl)-3-(2-chloroethyl)-3- nitrosourea hydrochloride (ACNU), a cancer chemotherapeutic bifunctional alkylating agent, causes chloroethylation of DNA and subsequent DNA strand cross-linking through an ethylene bridge. We isolated and characterized two ACNU-sensitive mutants from mutagenized Chinese hamster ovary cells and found them to be new drug-sensitive recessive Chinese hamster mutants. Both mutants were sensitive to various monofunctional alkylating agents in a way similar to that of the parental cell lines CHO9. One mutant (UVS1) was cross-sensitive to UV and complemented the UV sensitivity of all Chinese hamster cell lines of 7 established complementation groups. Since UV-induced unscheduled DNA synthesis was very low, a new locus related to excision repair is thought to be defective in this cell line. Another ACNU-sensitive mutant, CNU1, was slightly more sensitive to UV than the parent cell line. CNU1 was cross-sensitive to 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea and slightly more sensitive to mitomycin C. No increased accumulation of ACNU and a low level of UV-induced unscheduled DNA synthesis in this cell as compared with the parental cell line suggest that there is abnormality in a repair response of this mutant cell to some types of DNA cross-links.

  13. Modulation of melphalan cytotoxic activity in human melanoma cell lines.

    PubMed

    Supino, R; Caserini, C; Orlandi, L; Zaffaroni, N; Silvestrini, R; Vaglini, M; Zunino, F

    1996-07-01

    The aim of the present study was to potentiate the cytotoxic effects of melphalan through pharmacological and physical modulators. The combination of the cytotoxic agent with ethacrynic acid, a glutathione-S-transferase pi (GST pi) inhibitor, or topotecan, a topoisomerase I inhibitor, or mild hyperthermia was investigated. The selected cell lines exhibited variable levels of expression of GST pi, DNA topoisomerase I and heat-shock proteins. Mild hyperthermia (42 degrees C) alone potentiated melphalan cytotoxicity, especially in the two cell lines exhibiting low basal levels of HSP70 expression. The combination of the GST inhibitor with melphalan resulted in a potentiation of drug cytotoxicity only in JR8 cells, one of the two cell lines which expressed high levels of GST pi mRNA and which were the less responsive to ethacrinic acid alone. A synergistic interaction between topotecan and melphalan was observed only in the cell lines expressing low levels of topoisomerase I even if all cell lines exhibited a comparable sensitivity to this agent. The results support an involvement of GST and DNA topoisomerase in cell defense and response to the alkylating agent. However, the variable potentiation of the cytotoxic effects of melphalan achieved in different cell systems suggests that factors other than the level of expression of the modulation target are responsible of such potentiation. PMID:8862730

  14. Screening Services – NCI-60 DTP Human Tumor Cell Line Screen

    Cancer.gov

    The In Vitro Cell Line Screening Project (IVCLSP) is a dedicated service providing direct support to the DTP anticancer drug discovery program. The in vitro cell line screen was implemented in fully operational form in April of 1990. It required approximately five years (1985 - 1990) to develop, and persistence in the effort reflected dissatisfaction with the performance of prior in vivo primary screens. This project is designed to screen up to 3,000 compounds per year for potential anticancer activity.

  15. PI Control of Gene Expression in Tumorous Cell Lines 

    E-print Network

    Mendonca, Rouella J.

    2010-01-16

    PI CONTROL OF GENE EXPRESSION IN TUMOROUS CELL LINES A Thesis by ROUELLA JOAN MENDONCA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 2009 Major Subject: Electrical Engineering PI CONTROL OF GENE EXPRESSION IN TUMOROUS CELL LINES A Thesis by ROUELLA JOAN MENDONCA Submitted to the Office of Graduate Studies of Texas A&M University in partial...

  16. Baculovirus studies in new, indigenous lepidopteran cell lines.

    PubMed

    Pant, U; Sudeep, A B; Athawale, S S; Vipat, V C

    2002-01-01

    Eight lepidopteran cell lines were established recently and their susceptibility to different insect viruses was studied. Two Spodoptera litura cell lines from the larval and pupal ovaries, were found highly susceptible to S. litura nuclear polyhedrosis virus (SLNPV, 5-6 x 10(6) NPV/ml). The Helicoverpa armigera cell line from the embryonic tissue was highly susceptible to H. armigera NPV (HaNPV, 6.3 x 10(6) NPV/ml). These in vitro grown SLNPV and HaNPV caused 100% mortality to respective 2nd instar larvae. The susceptibility of the cryo-preserved cell lines to respective baculoviruses (SLNPV/HaNPV) was studied and no significant difference in their susceptibility status was observed. The cultures could grow as suspension culture on shakers and may find application for in vitro production of wild type/recombinant baculoviruses as bio-insecticides. S. litura and Bombyx mori cell lines from larval ovaries, were highly susceptible to Autographa californica NPV (5.5 x 10(6) NPV/ml) and Bombyx mori NPV (BmNPV, 6.1 x 10(6) NPV/ml) respectively. These cell lines may find application in baculovirus expression vector studies for the production of recombinant proteins, useful in the development of diagnostic kits or as vaccines. PMID:12561971

  17. Transcription profiles of non-immortalized breast cancer cell lines

    PubMed Central

    Fernandez-Cobo, Mariana; Holland, James F; Pogo, Beatriz GT

    2006-01-01

    Background Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. Methods Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs) were used in addition to commercially-available normal breast epithelial cells (HMECs), established breast cancer cell lines (T-est) and established normal breast cells (N-est). The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. Results According to Significance Analysis of Microarray (SAM) and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p < 0.01). Some of these genes have already been directly linked with breast cancer, metastasis and malignant progression, whilst others encode receptors linked to signal transduction pathways or are otherwise related to cell proliferation. Fifty genes showed at least a 2.5-fold difference between MSSMs and T-est cells according to AtlasImage, 2-fold according to SAM. Most of these classified as genes related to metabolism and cell communication. Conclusion The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research. PMID:16626496

  18. Induction of cytotoxicity of Pelagia noctiluca venom causes reactive oxygen species generation, lipid peroxydation induction and DNA damage in human colon cancer cells

    PubMed Central

    2011-01-01

    Background The long-lasting and abundant blooming of Pelagia noctiluca in Tunisian coastal waters compromises both touristic and fishing activities and causes substantial economic losses. Determining their molecular mode of action is, important in order to limit or prevent the subsequent damages. Thus, the aim of the present study was to investigate the propensity of Pelagia noctiluca venom to cause oxidative damage in HCT 116 cells and its associated genotoxic effects. Results Our results indicated an overproduction of ROS, an induction of catalase activity and an increase of MDA generation. We looked for DNA fragmentation by means of the comet assay. Results indicated that venom of Pelagia noctiluca induced DNA fragmentation. SDS-PAGE analysis of Pelagia noctiluca venom revealed at least 15 protein bands of molecular weights ranging from 4 to 120 kDa. Conclusion Oxidative damage may be an initiating event and contributes, in part, to the mechanism of toxicity of Pelagia noctiluca venom. PMID:22151830

  19. Rabeprazole exhibits antiproliferative effects on human gastric cancer cell lines.

    PubMed

    Gu, Mengli; Zhang, Yan; Zhou, Xinxin; Ma, Han; Yao, Hangping; Ji, Feng

    2014-10-01

    Intracellular proton extrusion in gastric cancer cells has been reported to promote cancer cell survival under acidic conditions via hydrogen/potassium adenosine triphosphatase (H(+)/K(+)-ATPase). Rabeprazole is a frequently used second-generation proton pump inhibitor (PPI) that irreversibly inactivates gastric H(+)/K(+)-ATPase. Therefore, we hypothesized that rabeprazole could reduce the viability of gastric cancer cells. In the present study, four human gastric cancer cell lines and one non-cancer gastric cell line were cultured. Cell viability, the ?- and ?-subunits of H(+)/K(+)-ATPase and cellular apoptosis were analyzed by dye exclusion assay, reverse transcription-polymerase chain reaction and annexin V-fluorescein isothiocyanate/propidium iodide staining, respectively. The expression level of total extracellular signal-regulated protein kinase 1/2 (ERK 1/2) and phosphorylated-ERK protein was detected by western blot analysis. Gastric cancer cell lines were more tolerant of the acidic culture media than non-cancer cells. Administration of rabeprazole led to a marked decrease in the viability of MKN-28 cells. Exposure to rabeprazole induced significant apoptosis in AGS cells. Rabeprazole completely inhibited the phosphorylation of ERK 1/2 in the MKN-28 cells, whereas the same effect was not observed in either the KATO III or MKN-45 cells. The ERK 1/2 inhibitor, PD98059, attenuated the viability of the AGS cells. A similar antiproliferative effect was observed in the rabeprazole treatment group. In addition, PD98059 and rabeprazole were able to efficaciously inhibit the phosphorylation of ERK 1/2 in the gastric cancer cells. Therefore, it was concluded that rabeprazole can attenuate the cell viability of human gastric cancer cells through inactivation of the ERK1/2 signaling pathway. The results of the present study demonstrate that rabeprazole inhibits the viability of gastric cancer cells in vitro and may serve as a novel antineoplastic agent. PMID:25202402

  20. Impact of cadmium on hOGG1 and APE1 as a function of the cellular p53 status.

    PubMed

    Hamann, Ingrit; König, Charlotte; Richter, Constanze; Jahnke, Gunnar; Hartwig, Andrea

    2012-08-01

    The tumor suppressor protein p53, often called the guardian of the genome, is involved in important cellular processes, such as cell cycle control, apoptosis and DNA repair. With respect to BER, p53 might physically interact with and affect the transcription of different BER proteins such as hOGG1, APE1 or Pol?. In studies in HCT116 p53(-/-) cells previously published, activity and mRNA expression of hOGG1 were found to be significantly decreased, while down-regulation of APE1 mRNA and protein levels in response to genotoxic stress were only described in HCT116 p53(+/+) cells, but not in the isogenic p53 knockout cell line. The predominantly indirect genotoxic carcinogen cadmium inhibits the BER pathway and potentially interferes with zinc binding proteins such as p53. Therefore, this study was accomplished to investigate whether p53 is involved in the cadmium-induced inhibition of BER activity. To address this issue we applied a non-radioactive cleavage test system based on a Cy5-labeled oligonucleotide. We present evidence that p53 is not essential for hOGG1 and APE1 gene expression as well as OGG and APE activity in unstressed HCT116 cells; however, it plays an important role in the cellular response to cadmium treatment. Here, a direct involvement of p53 was only observed with respect to APE1 gene expression contributing to an altered APE activity, while OGG activity was presumably affected indirectly due to a stronger accumulation of cadmium in HCT116 p53(+/+) cells. In summary, p53 indeed affects the BER pathway directly and indirectly in response to cadmium treatment. PMID:21605570

  1. Epigenetic-Mediated Downregulation of ?-Protocadherin in Colorectal Tumours

    PubMed Central

    Mateusz, Bujko; Paulina, Kober; Ma?gorzata, Statkiewicz; Michal, Mikula; Marcin, Ligaj; Lech, Zwierzchowski; Jerzy, Ostrowski; Aleksander, Siedlecki Janusz

    2015-01-01

    Carcinogenesis involves altered cellular interaction and tissue morphology that partly arise from aberrant expression of cadherins. Mucin-like protocadherin is implicated in intercellular adhesion and its expression was found decreased in colorectal cancer (CRC). This study has compared MUPCDH (CDHR5) expression in three key types of colorectal tissue samples, for normal mucosa, adenoma, and carcinoma. A gradual decrease of mRNA levels and protein expression was observed in progressive stages of colorectal carcinogenesis which are consistent with reports of increasing MUPCDH 5? promoter region DNA methylation. High MUPCDH methylation was also observed in HCT116 and SW480 CRC cell lines that revealed low gene expression levels compared to COLO205 and HT29 cell lines which lack DNA methylation at the MUPCDH locus. Furthermore, HCT116 and SW480 showed lower levels of RNA polymerase II and histone H3 lysine 4 trimethylation (H3K4me3) as well as higher levels of H3K27 trimethylation at the MUPCDH promoter. MUPCDH expression was however restored in HCT116 and SW480 cells in the presence of 5-Aza-2?-deoxycytidine (DNA methyltransferase inhibitor). Results indicate that ?-protocadherin downregulation occurs during early stages of tumourigenesis and progression into the adenoma-carcinoma sequence. Epigenetic mechanisms are involved in this silencing. PMID:25972897

  2. Sorafenib overcomes irinotecan resistance in colorectal cancer by inhibiting the ABCG2 drug-efflux pump.

    PubMed

    Mazard, Thibault; Causse, Annick; Simony, Joelle; Leconet, Wilhem; Vezzio-Vie, Nadia; Torro, Adeline; Jarlier, Marta; Evrard, Alexandre; Del Rio, Maguy; Assenat, Eric; Martineau, Pierre; Ychou, Marc; Robert, Bruno; Gongora, Celine

    2013-10-01

    Despite recent advances in the treatment of colorectal cancer (CRC), tumor resistance is a frequent cause of chemotherapy failure. Therefore, new treatment options are needed to improve survival of patients with irinotecan-refractory CRCs, particularly those bearing KRAS mutations that preclude the use of anti-EGFR therapies. In this study, we investigated whether sorafenib could reverse irinotecan resistance, thereby enhancing the therapeutic efficacy of routinely used irinotecan-based chemotherapy. We used both in vitro (the HCT116, SW48, SW620, and HT29 colon adenocarcinoma cell lines and four SN-38-resistant HCT-116 and SW48 clones) and in vivo models (nude mice xenografted with SN-38-resistant HCT116 cells) to test the efficacy of sorafenib alone or in combination with irinotecan or its active metabolite, SN-38. We have shown that sorafenib improved the antitumoral activity of irinotecan in vitro, in both parental and SN-38-resistant colon adenocarcinoma cell lines independently of their KRAS status, as well as in vivo, in xenografted mice. By inhibiting the drug-efflux pump ABCG2, sorafenib favors irinotecan intracellular accumulation and enhances its toxicity. Moreover, we found that sorafenib improved the efficacy of irinotecan by inhibiting the irinotecan-mediated p38 and ERK activation. In conclusion, our results show that sorafenib can suppress resistance to irinotecan and suggest that sorafenib could be used to overcome resistance to irinotecan-based chemotherapies in CRC, particularly in KRAS-mutated tumors. PMID:23960095

  3. Establishment and Characterization of Four New Human Non-Small Cell Lung Cancer Cell Lines1

    Microsoft Academic Search

    Pao-Min Loh; Gerald H. Clamori; Robert A. Robinson; Mark L. White; Bharati Hukku; Nicholas P. Rossi; Ward D. Peterson

    1984-01-01

    Four new human non-small cell lung cancer cell lines have been established in vitro. These cell lines have been character ized by (a) growth of a tumor in nude mice with histopathology similar to that of the primary, (b) isoenzyme patterns phenotypi- cally human and distinct from each other, (c) distinguishing karyotypic findings, (d) growth rate determinations, and (e) pres

  4. Design, microwave-mediated synthesis and biological evaluation of novel 4-aryl(alkyl)amino-3-nitroquinoline and 2,4-diaryl(dialkyl)amino-3-nitroquinolines as anticancer agents.

    PubMed

    Chauhan, Monika; Rana, Anil; Alex, Jimi Marin; Negi, Arvind; Singh, Sandeep; Kumar, Raj

    2015-02-01

    Design, microwave-assisted synthesis of novel 4-aryl (alkyl)amino-3-nitroquinoline (1a-1l) and 2,4-diaryl (dialkyl)amino-3-nitroquinolines (2a-2k and 3a) via regioselective and complete nucleophilic substitution of 2,4-dichloro-3-nitroquinoline, respectively in water are presented. The newly synthesized compounds were evaluated for the first time for antiproliferative activity against EGFR overexpressing human lung (A-549 and H-460) and colon (HCT-116-wild type and HCT-116-p53 null) cancer cell lines. Some notions about structure-activity relationships (SAR) are presented. Compounds 2e, 2f, 2j and 3a overall exhibited excellent anticancer activity comparable to erlotinib which was used as a positive control. Molecular modeling studies disclosed the recognition pattern of the compounds and also supported the observed SAR. PMID:25462621

  5. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    SciTech Connect

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  6. p53 is frequently mutated in Burkitt's lymphoma cell lines.

    PubMed Central

    Farrell, P J; Allan, G J; Shanahan, F; Vousden, K H; Crook, T

    1991-01-01

    A panel of 12 Burkitt's lymphoma cell lines and four other B cell lines were tested for the presence of mutations in p53. Protein analysis using a mutant-specific antibody and sequencing of both cDNA and genomic DNA revealed changes relative to the standard p53 protein sequence in 12 of the 16 lines studied, including 10 of the BL lines. Mutation of p53 in the BL lines was usually accompanied by loss of the other allele of p53. Testing of the mutated p53 cDNAs for gain of transforming activity or loss of growth suppression activity showed that several of the BL mutants were functionally altered from wild-type p53. Images PMID:1915267

  7. Novel cell lines established from pediatric brain tumors

    PubMed Central

    Xu, Jingying; Erdreich-Epstein, Anat; Gonzalez-Gomez, Ignacio; Melendez, Elizabeth Y.; Smbatyan, Goar; Moats, Rex A.; Rosol, Michael; Biegel, Jaclyn A.

    2012-01-01

    The paucity of cell culture models for childhood brain tumors prompted us to establish pediatric cell lines for use in biological experiments and preclinical developmental therapeutic studies. Three cell lines were established, CHLA-200 (GBM), CHLA-259 (anaplastic medulloblastoma) and CHLA-266 (atypical teratoid rhabdoid tumor, AT/RT). Consistent with an AT/RT origin, CHLA-266 lacked INI1 expression and had monosomy 22. All lines had unique DNA short tandem repeat “fingerprints” matching that of the patient’s tumor tissue and were adherent on tissue culture plastic, but differed in morphology and doubling times. CHLA-200 had a silent mutation in TP53. CHLA-259 and CHLA-266 had wild-type TP53. All three lines were relatively resistant to multiple drugs when compared to the DAOY medulloblastoma cell line, using the DIMSCAN fluorescence digital image microscopy cytotoxicity assay. RNA expression of MYC and MYCN were quantified using RT-PCR (Taqman). CHLA-200 expressed MYC, DAOY and CHLA-259 expressed MYCN, and CHLA-266 expressed both MYCN and MYC. CHLA-200 was only tumorigenic subcutaneously, but CHLA-259 and CHLA-266 were tumorigenic both subcutaneously and in brains of NOD/SCID mice. Immunohistochemistry of the xenografts revealed GFAP staining in CHLA-200 and PGP 9.5 staining in CHLA-259 and CHLA-266 tumors. As expected, INI1 expression was lacking in CHLA-266 (AT/RT). These three new cell lines will provide useful models for research of pediatric brain tumors. PMID:22120608

  8. Novel cell lines established from pediatric brain tumors.

    PubMed

    Xu, Jingying; Erdreich-Epstein, Anat; Gonzalez-Gomez, Ignacio; Melendez, Elizabeth Y; Smbatyan, Goar; Moats, Rex A; Rosol, Michael; Biegel, Jaclyn A; Reynolds, C Patrick

    2012-04-01

    The paucity of cell culture models for childhood brain tumors prompted us to establish pediatric cell lines for use in biological experiments and preclinical developmental therapeutic studies. Three cell lines were established, CHLA-200 (GBM), CHLA-259 (anaplastic medulloblastoma) and CHLA-266 (atypical teratoid rhabdoid tumor, AT/RT). Consistent with an AT/RT origin, CHLA-266 lacked INI1 expression and had monosomy 22. All lines had unique DNA short tandem repeat "fingerprints" matching that of the patient's tumor tissue and were adherent on tissue culture plastic, but differed in morphology and doubling times. CHLA-200 had a silent mutation in TP53. CHLA-259 and CHLA-266 had wild-type TP53. All three lines were relatively resistant to multiple drugs when compared to the DAOY medulloblastoma cell line, using the DIMSCAN fluorescence digital image microscopy cytotoxicity assay. RNA expression of MYC and MYCN were quantified using RT-PCR (Taqman). CHLA-200 expressed MYC, DAOY and CHLA-259 expressed MYCN, and CHLA-266 expressed both MYCN and MYC. CHLA-200 was only tumorigenic subcutaneously, but CHLA-259 and CHLA-266 were tumorigenic both subcutaneously and in brains of NOD/SCID mice. Immunohistochemistry of the xenografts revealed GFAP staining in CHLA-200 and PGP 9.5 staining in CHLA-259 and CHLA-266 tumors. As expected, INI1 expression was lacking in CHLA-266 (AT/RT). These three new cell lines will provide useful models for research of pediatric brain tumors. PMID:22120608

  9. Generation and characterization of a mouse lymphatic endothelial cell line

    Microsoft Academic Search

    Marina Sironi; Annarita Conti; Sergio Bernasconi; Anna M. Fra; Fabio Pasqualini; Manuela Nebuloni; Eleonora Lauri; Maida De Bortoli; Alberto Mantovani; Elisabetta Dejana; Annunciata Vecchi

    2006-01-01

    Lymphatic vessels, by channeling fluid and leukocytes from the periphery into lymph nodes, play a central role in the development of the immune response. Despite their importance in homeostasis and disease, the difficulties in enriching and culturing lymphatic endothelial cells limit studies of their biology. Here, we report the isolation, stabilization, and characterization of a mouse lymphatic endothelial cell line

  10. Retinal ganglion cell line apoptosis induced by hydrostatic pressure

    Microsoft Academic Search

    Ashish Agar; Shaojuan Li; Neeraj Agarwal; Minas T. Coroneo; Mark A. Hill

    2006-01-01

    Cellular responses to changes in pressure are implicated in numerous disease processes. In glaucoma apoptosis of retinal ganglion cells (RGCs) is associated with elevated intra-ocular pressure, however, the exact cellular mechanisms remain unclear. We have previously shown that pressure can induce apoptosis in B35 and PC12 neuronal cell lines, using an in vitro model for pressure elevation. A novel RGC

  11. MOLECULAR AND CYTOGENETIC ANALYSIS OF LUNG TUMOR CELL LINES

    EPA Science Inventory

    We have measured the levels of amplification of oncogenes and tumor marker genes or other genes of interest in nine human lung tumor cell lines in comparison to normal human bronchial epithelial cells or normal blood lymphocytes to test the hypothesis that aberrant amplification ...

  12. Drug resistance in malignant rhabdoid tumor cell lines

    Microsoft Academic Search

    Gary B. Rosson; Timothy S. Vincent; Betty W. Oswald; Cynthia F. Wright

    2002-01-01

    Purpose: We evaluated the in vitro sensitivity of four malignant rhabdoid tumor (MRT) cell lines to six chemotherapeutic agents: 5-fluororuacil, vincristine, carboplatin, doxorubicin, etoposide, and paclitaxel. We also sought to determine whether a defect in the p53 signaling pathway may contribute to the pronounced drug resistance of MRT. Methods: MRT cells were treated with various concentrations of each drug and

  13. Anti-tumour activity in RAS-driven tumours by blocking AKT and MEK

    E-print Network

    Tolcher, Anthony W.; Khan, Khurum; Ong, Michael; Banerji, Udai; Papadimitrakopoulou, Vassiliki; Gandara, David; Patnaik, Amita; Baird, Richard D.; Olmos, David; Garrett, Christopher R.; Skolnik, Jeffrey M.; Rubin, Eric; Smith, Paul; Huang, Pearl; Learoyd, Maria; Shannon, Keith; Morosky, Anne; Tetteh, Ernestina; Jou, Ying-Ming; Papadopoulos, Kyriakos P.; Moreno, Victor; Kaiser, Brianne; Yap, Timothy A.; Yan, Li; de Bono, Johann S.

    2014-12-16

    colon cancer cell lines (HCT116, HCT15, and HT29), 3 pancreatic cancer cell lines (AsPC-1, BxPC-3, and MIA-Pa-Ca2), 2 lung 7 cancer cell lines (Calu-6, NCI-H460), and 1 melanoma (A2058) cell line. Human cell lines were purchased from American Type... -old patient of Asian ethnicity with chemotherapy-refractory KRAS-mutant lung adenocarcinoma also had a 45% RECIST response and remained on study for 20 weeks (Fig. 3). One additional patient with pancreatic cancer achieved a RECIST partial response...

  14. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells

    Microsoft Academic Search

    Junying Yu; Maxim A. Vodyanik; Kim Smuga-Otto; Jessica Antosiewicz-Bourget; Jennifer L. Frane; Shulan Tian; Jeff Nie; Gudrun A. Jonsdottir; Victor Ruotti; Ron Stewart; Igor I. Slukvin; James A. Thomson

    2007-01-01

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal

  15. Genotypic and phenotypic characterization of two newly established renal cell carcinoma cell lines

    Microsoft Academic Search

    Ulf S. R. Bergerheim; Mats Söderhäll; Eugene Zabarovsky; Bo Franzén; Agneta Manneborg-Sandlund; Chunde Li; Stefan H. Jacobson; Gert Auer; Georg Klein; V. Peter Collins

    1996-01-01

    Two new cell lines from human renal cell carcinoma are reported. Primary cell cultures from 75 consecutive cases of nephrectomy and metastatic surgery due to different stages of RCC during 4 years were studied. Two cell cultures could be propagated for more than 50 passages in vitro. HN4 was derived from a grade III clear cell carcinoma. HN51 originated from

  16. Differential effects of monastrol in two human cell lines.

    PubMed

    Leizerman, I; Avunie-Masala, R; Elkabets, M; Fich, A; Gheber, L

    2004-08-01

    The kinesin-related protein HsEg5 plays essential roles in mitotic spindle dynamics. Although inhibition of HsEg5 has been suggested as an aid in cancer treatment, the effects of such inhibition on human cells have not been characterized. Here we studied the effects of monastrol, an allosteric HsEg5 inhibitor, on AGS and HT29 cell lines and compared them to those of taxol. While both cell lines were similarly sensitive to taxol, AGS cells were more sensitive to monastrol. The differences in sensitivity were determined by the degree of inhibitory effect on cell proliferation, reversibility of monastrol-induced G2/M arrest, intracellular phenotypes and induction of apoptosis. In both cell lines, monastrol-induced apoptosis was accompanied by mitochondrial membrane depolarization and poly-ADP-ribose polymerase 1 cleavage. In AGS, but not HT29 cells, monastrol-induced apoptosis involved a prominent cleavage of procaspases 8 and 3. While in AGS cells, monastrol induced the formation of symmetric microtubule asters only, in HT29 cells, asymmetric asters were also formed, which may be related to specific HsEg5 functions in HT29 cells. PMID:15316655

  17. Genetic design of an optimized packaging cell line for gene vectors transducing human B cells

    Microsoft Academic Search

    E Hettich; A Janz; R Zeidler; D Pich; E Hellebrand; B Weissflog; A Moosmann; W Hammerschmidt

    2006-01-01

    Viral gene vectors often rely on packaging cell lines, which provide the necessary factors in trans for the formation of virus-like particles. Previously, we reported on a first-generation packaging cell line for gene vectors, which are based on the B-lymphotropic Epstein–Barr virus (EBV), a human ?-herpesvirus. This 293HEK-derived packaging cell line harbors a helper virus genome with a genetic modification

  18. Germ line development: lessons learned from pluripotent stem cells.

    PubMed

    Martínez-Arroyo, Ana M; Medrano, Jose V; Remohí, José; Simón, Carlos

    2014-10-01

    Current knowledge about mammalian germ line development is mainly based on the mouse model and little is known about how this fundamental process occurs in humans. This review summarizes our current knowledge of genetic and epigenetic germ line development in mammals, mainly focusing on primordial germ cell (PGC) specification events, comparing the differences between mouse and human models. We also emphasize the knowledge derived from the most successful strategies used to generate germ cell-like cells in vitro in both models and major obstacles to obtaining bona fide in vitro-derived gametes are considered. PMID:25461452

  19. Generation of islet-like cell aggregates from human non-pancreatic cancer cell lines.

    PubMed

    Kanafi, Mohammad Mahboob; Mamidi, Murali Krishna; Sureshbabu, Shalini Kashipathi; Shahani, Pradnya; Bhawna, Chandravanshi; Warrier, Sudha R; Bhonde, Ramesh

    2015-01-01

    To explore a novel source for the derivation of islets, we examined the differentiation potential of human non-pancreatic cancer cell lines, HeLa (cervical carcinoma cell line) and MCF-7 (breast cancer cell line). These cells were subjected to a serum-free, three-step sequential differentiation protocol which gave two distinct cell populations: single cells and cellular aggregates. Subsequent analysis confirmed their identity as pancreatic acinar cells and islet-like cell aggregates (ICAs), as evidenced by amylase secretion and diphenylthiocarbazone staining respectively. Reverse transcriptase-PCR and immunocytochemistry assessment of the ICAs revealed the expression of pancreatic specific markers Ngn-3, Glut-2, Pax-6 and Isl-1. These ICAs secreted insulin in response to glucose challenge, confirming their functionality. We propose that ICAs generated from HeLa and MCF-7 cell lines could form a promising in vitro platform of human islet equivalents (hIEQs) for diabetes research. PMID:25257585

  20. Guidelines for the use of cell lines in biomedical research

    PubMed Central

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-01-01

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise. PMID:25117809

  1. Establishment, Immortalisation and Characterisation of Pteropid Bat Cell Lines

    PubMed Central

    Crameri, Gary; Todd, Shawn; Grimley, Samantha; McEachern, Jennifer A.; Marsh, Glenn A.; Smith, Craig; Tachedjian, Mary; De Jong, Carol; Virtue, Elena R.; Yu, Meng; Bulach, Dieter; Liu, Jun-Ping; Michalski, Wojtek P.; Middleton, Deborah; Field, Hume E.; Wang, Lin-Fa

    2009-01-01

    Background Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. Methodology/Findings Black flying foxes (Pteropus alecto) were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. Conclusions/Significance The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study. PMID:20011515

  2. Phosphoproteomic analysis of AML cell lines identifies leukemic oncogenes

    Microsoft Academic Search

    Denise K. Walters; Valerie L. Goss; Eric P. Stoffregen; Ting-Lei Gu; Kimberly Lee; Julie Nardone; Laura McGreevey; Michael C. Heinrich; Michael W. Deininger; Roberto Polakiewicz; Brian J. Druker

    2006-01-01

    STAT5 is constitutively phosphorylated in leukemic cells in approximately 70% of acute myeloid leukemia (AML) patients. To identify kinase candidates potentially responsible for STAT5 phosphorylation, we used liquid chromatography–tandem mass spectrometry (LC–MS\\/MS) mass spectrometry to detect phosphoproteins in AML cell lines. We established TEL-ARG and BCR-ABL fusion proteins as the mechanism underlying STAT5 phosphorylation in HT-93 and KBM-3 cells, respectively.

  3. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts

    Microsoft Academic Search

    Qingyun Mai; Yang Yu; Tao Li; Liu Wang; Mei-jue Chen; Shu-zhen Huang; Canquan Zhou; Qi Zhou

    2007-01-01

    Parthenogenesis is one of the main, and most useful, methods to derive embryonic stem cells (ESCs), which may be an important source of histocompatible cells and tissues for cell therapy. Here we describe the derivation and characterization of two ESC lines (hPES-1 and hPES-2) from in vitro developed blastocysts following parthenogenetic activation of human oocytes. Typical ESC morphology was seen,

  4. Argininosuccinate synthetase 1 suppression and arginine restriction inhibit cell migration in gastric cancer cell lines

    PubMed Central

    Shan, Yan-Shen; Hsu, Hui-Ping; Lai, Ming-Derg; Yen, Meng-Chi; Chen, Wei-Ching; Fang, Jung-Hua; Weng, Tzu-Yang; Chen, Yi-Ling

    2015-01-01

    Gastric cancer metastasis remains a major cause of cancer-related deaths. There is an urgent need to develop new therapeutic approaches targeting metastatic gastric cancer. Argininosuccinate synthetase 1 (ASS1) expression is increased in gastric cancer. We detected the protein expression of ASS1 in human gastric cancer cell lines (AGS, NCI-N87, and MKN45) and in murine gastric cancer cell lines (3I and 3IB2). We used vector-mediated short hairpin RNA (shRNA) expression to silence ASS1 expression in the MKN45 and 3IB2 cell lines, and analyzed the effects of this protein on cell migration and metastasis. We demonstrated that ASS1 silencing suppressed cell migration in the MKN45 and 3IB2 cell lines. ASS1 knockdown significantly reduced liver metastasis in mice after the intrasplenic implantation of 3IB2 cancer cell clones. To determine whether arginine restriction may represent a therapeutic approach to treat gastric cancer, the sensitivity of tumor cells to arginine depletion was determined in gastric cancer cells. Arginine depletion significantly inhibited cell migration in the gastric cancer cell line. The silencing of ASS1 expression in MKN45 and 3IB2 gastric cancer cells markedly decreased STAT3 protein expression. In conclusion, our results indicate that the ASS1 protein is required for cell migration in gastric cancer cell lines. PMID:25928182

  5. Argininosuccinate synthetase 1 suppression and arginine restriction inhibit cell migration in gastric cancer cell lines.

    PubMed

    Shan, Yan-Shen; Hsu, Hui-Ping; Lai, Ming-Derg; Yen, Meng-Chi; Chen, Wei-Ching; Fang, Jung-Hua; Weng, Tzu-Yang; Chen, Yi-Ling

    2015-01-01

    Gastric cancer metastasis remains a major cause of cancer-related deaths. There is an urgent need to develop new therapeutic approaches targeting metastatic gastric cancer. Argininosuccinate synthetase 1 (ASS1) expression is increased in gastric cancer. We detected the protein expression of ASS1 in human gastric cancer cell lines (AGS, NCI-N87, and MKN45) and in murine gastric cancer cell lines (3I and 3IB2). We used vector-mediated short hairpin RNA (shRNA) expression to silence ASS1 expression in the MKN45 and 3IB2 cell lines, and analyzed the effects of this protein on cell migration and metastasis. We demonstrated that ASS1 silencing suppressed cell migration in the MKN45 and 3IB2 cell lines. ASS1 knockdown significantly reduced liver metastasis in mice after the intrasplenic implantation of 3IB2 cancer cell clones. To determine whether arginine restriction may represent a therapeutic approach to treat gastric cancer, the sensitivity of tumor cells to arginine depletion was determined in gastric cancer cells. Arginine depletion significantly inhibited cell migration in the gastric cancer cell line. The silencing of ASS1 expression in MKN45 and 3IB2 gastric cancer cells markedly decreased STAT3 protein expression. In conclusion, our results indicate that the ASS1 protein is required for cell migration in gastric cancer cell lines. PMID:25928182

  6. Implantation of Vascular Grafts Lined with Genetically Modified Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Wilson, James M.; Birinyi, Louis K.; Salomon, Robert N.; Libby, Peter; Callow, Allan D.; Mulligan, Richard C.

    1989-06-01

    The possibility of using the vascular endothelial cell as a target for gene replacement therapy was explored. Recombinant retroviruses were used to transduce the lacZ gene into endothelial cells harvested from mongrel dogs. Prosthetic vascular grafts seeded with the genetically modified cells were implanted as carotid interposition grafts into the dogs from which the original cells were harvested. Analysis of the graft 5 weeks after implantation revealed genetically modified endothelial cells lining the luminal surface of the graft. This technology could be used in the treatment of atherosclerosis disease and the design of new drug delivery systems.

  7. Non-targeted radiation effects in vertebrate cell lines

    NASA Astrophysics Data System (ADS)

    Ryan, Lorna

    Radiation effects, such as bystander effects, hyper radiosensitivity/induced radioresistance (HRS/IRR) and adaptive response that are not related to direct DNA damage are now accepted. However the inter-relationship between them and the possible impact on the scientific basis for radiation protection are highly controversial. This thesis attempts to elucidate the mechanisms of some of these well known but little understood effects. Each paper examines some aspect of bystander effects, adaptive responses and HRS/IRR in an effort to understand how they vary with cell type, dose and time of exposure to single or multiple doses. All the effects involve non-linear dose effect curves and are mainly evident following low doses. Overall findings of the thesis include (1) A clear difference was observed between radioresistant, tumorigenic cell lines with mutant p53 gene expression, and radiosensitive, more normal, cell lines with wild type p53. In general death inducing bystander responses are induced in normal cell populations exposed to low doses of radiation while survival inducing IRR and adaptive responses are seen in the radioresistant tumorigenic cell lines. (2) A cohort of fish cell lines which demonstrated survival promoting bystander effects, also did not show a protective adaptive responses. (3) Adaptive responses traditionally occur when a large challenge dose is given 4--6hrs following low (10--100mGy) priming doses but this thesis shows that for the epithelial cell lines tested, the size of the priming dose (range 0.1--2Gy) does not appear to alter the size of the recovery response. Additionally increased survival could be detected in some cases when the challenge dose was given within one hour of the priming dose. The overall conclusion is that cell lines induce either a bystander response or a protective/adaptive response depending on genetic background and other factors. Care is needed in the interpretation of data generated from only one or two cell lines and in the extrapolation of mechanistic ideas based on one or two cell lines to other cell types or to the in vivo situation.

  8. Epstein-Barr Virus Infection of Human Astrocyte Cell Lines

    PubMed Central

    Menet, Anne; Speth, Cornelia; Larcher, Clara; Prodinger, Wolfgang M.; Schwendinger, Michael G.; Chan, Philippe; Jäger, Michael; Schwarzmann, Fritz; Recheis, Heidrun; Fontaine, Marc; Dierich, Manfred P.

    1999-01-01

    Epstein-Barr virus (EBV) is implicated in different central nervous system syndromes. The major cellular receptor for EBV, complement receptor type 2 (CR2) (CD21), is expressed by different astrocyte cell lines and human fetal astrocytes, suggesting their susceptibility to EBV infection. We demonstrated the infection of two astrocyte cell lines, T98 and CB193, at low levels. As infection was mediated by CR2, we used two stable CR2 transfectant astrocyte cell lines (T98CR2 and CB193CR2) to achieve a more efficient infection. We have monitored EBV gene expression for 2 months and observed the transient infection of T98 and T98CR2 cells and persistent infection of CB193 and CB193CR2 cells. The detection of BZLF1, BALF2, and BcLF1 mRNA expression suggests that the lytic cycle is initiated at early time points postinfection. At later time points the pattern of mRNA expressed (EBER1, EBNA1, EBNA2, and LMP1) differs from latency type III in the absence of LMP2A transcription and in the expression of BALF2 and BcLF1 but not BZLF1. A reactivation of the lytic cycle was achieved in CB193CR2 cells by the addition of phorbol esters. These studies identify astrocyte cell lines as targets for EBV infection and suggest that this infection might play a role in the pathology of EBV in the brain. PMID:10438862

  9. Modeling Adenovirus Latency in Human Lymphocyte Cell Lines ? †

    PubMed Central

    Zhang, Yange; Huang, Wen; Ornelles, David A.; Gooding, Linda R.

    2010-01-01

    Species C adenovirus establishes a latent infection in lymphocytes of the tonsils and adenoids. To understand how this lytic virus is maintained in these cells, four human lymphocytic cell lines that support the entire virus life cycle were examined. The T-cell line Jurkat ceased proliferation and died shortly after virus infection. BJAB, Ramos (B cells), and KE37 (T cells) continued to divide at nearly normal rates while replicating the virus genome. Viral genome numbers peaked and then declined in BJAB cells below one genome per cell at 130 to 150 days postinfection. Ramos and KE37 cells maintained the virus genome at over 100 copies per cell over a comparable period of time. BJAB cells maintained the viral DNA as a monomeric episome. All three persistently infected cells lost expression of the cell surface coxsackie and adenovirus receptor (CAR) within 24 h postinfection, and CAR expression remained low for at least 340 days postinfection. CAR loss proceeded via a two-stage process. First, an initial loss of cell surface staining for CAR required virus late gene expression and a CAR-binding fiber protein even while CAR protein and mRNA levels remained high. Second, CAR mRNA disappeared at around 30 days postinfection and remained low even after virus DNA was lost from the cells. At late times postinfection (day 180), BJAB cells could not be reinfected with adenovirus, even when CAR was reintroduced to the cells via retroviral transduction, suggesting that the expression of multiple genes had been stably altered in these cells following infection. PMID:20573817

  10. The effects of 20-hydroxyecdysone on cell surface proteins and cell interactions in Drosophila melanogaster cell lines 

    E-print Network

    Stachowiak, Janice Ann

    1986-01-01

    THE EFFECTS OF 20-HYDROXYECDYSONE ON CELL SURFACE PROTEINS AND CELL INTERACTIONS IN DROSOPHILA MEIANOGASTER CELL LINES A Thesrs JANICE ANN STACHOWIAK Submitted to the Graduate College of Texas ASM Unrversz. ty rn partial fulfillment... (20-HOE), causes changes in intercellular adhesion resulting in evagination in Drosophila imaginal discs and ir. aggregation in Drosophila tissue culture cells by affecting the synthesis of cell surface proteins. The DrosophDa cell lines, L3 and S3...

  11. Heterogeneity of Tie2 Expression in Tumor Microcirculation

    PubMed Central

    Fathers, Kelly E.; Stone, Courtney M.; Minhas, Kanwal; Marriott, Jason J.A.; Greenwood, Janice D.; Dumont, Daniel J.; Coomber, Brenda L.

    2005-01-01

    To evaluate the expression of the Tie2/Tek tyrosine kinase receptor in tumor blood vessels, we examined Tie2lacZ+/RAG1? mice. There was considerable heterogeneity (Tie2-negative, Tie2-positive, or Tie2-composite blood vessels) in subcutaneous xenografts of human colorectal carcinoma (HCT116; 97.5% Tie2-positive vessels) versus human melanoma (WM115; 75.9% Tie2-positive vessels). Similar patterns of Tie2 expression occurred in abdominal metastases derived from the same cell lines. Immunostaining for endothelial markers and Tie2 revealed that endogenous protein levels corresponded with transgene activity. Endothelial cells were confirmed to be of mouse origin through triple immunofluorescence staining with mouse antiserum to human nuclei, isolectin GS-IB4, and anti-Tie2. Similar Tie2 heterogeneity was observed in clinical specimens from a variety of human cancers, including malignant melanoma and colorectal carcinoma. We also examined the effect of Tek-Delta Fc anti-angiogenic therapy on tumor growth and Tie2 expression patterns in HCT116 and WM115 subcutaneous xenografts. Tek-Delta induced extensive tumor regression in HCT116 tumors and concomitant reductions in Tie2-expressing blood vessels. However, no significant responses were seen in Tek-Delta-treated WM115 tumors. Thus, vascular heterogeneity of Tie2 expression is cancer-type specific, suggesting that the tumor microenvironment and/or direct cancer cell interactions influence Tie2 endothelial expression. PMID:16314485

  12. Solid Oxide Fuel Cell Systems PVL Line

    SciTech Connect

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to test fuel cell components at a scale and under conditions that can be accurately extrapolated to full system performance. This requires specially designed equipment that replicates the pressure (up to 6.5 bara), temperature (about 910 C), anode and cathode gas compositions, flows and power generation density of the full scale design. The SBTS fuel cell anode gas is produced through the reaction of pipeline natural gas with a mixture of steam, CO2, and O2 in a catalytic partial oxidation (CPOX) reactor. Production of the fuel cell anode gas in this manner provides the capability to test a fuel cell with varying anode gas compositions ranging from traditional reformed natural gas to a coal-syngas surrogate fuel. Stark State College and RRFCS have a history of collaboration. This is based upon SSCAs commitment to provide students with skills for advanced energy industries, and RRFCS need for a workforce that is skilled in high temperature fuel cell development and testing. A key to this approach is the access of students to unique SOFC test and evaluation equipment. This equipment is designed and developed by RRFCS, with the participation of SSC interns. In the near-term, the equipment will be used by RRFCS for technology development. When this stage is completed, and RRFCS has moved to commercial products, SSC will utilize this equipment for workforce training. The RRFCS fuel cell design is based upon a unique ceramic substrate architecture in which a porous, flat substrate (tube) provides the support structure for a network of solid oxide fuel cells that are electrically connected in series. These tubes are grouped into a {approx}350-tube repeat configuration, called a stack/block. Stack/block testing, performed at system conditions, provides data that can be confidently scaled to full scale performance. This is the basis for the specially designed and developed test equipment that is required for advancing and accelerating the RRFCS SOFC power system development program. All contract DE-EE0003229 objectives were achieved and deliverables completed during the peri

  13. ScanningElectronMicroscopicObservationof Two RetinoblastomaCell Lines

    Microsoft Academic Search

    Rosemary C. McFall; Rose Marie Nagy; Barbara T. Nagle; Loily M. McGreevy

    Two continuousretinoblastomacell lines were ob served by scanning electron microscopy. Both cell lines spontaneously grow as a suspensionof roundcells in clusters,chains, and unique ring (rosette)formations. Scanningelectronmicroscopy ofsuspension cellsreveals somevariationin the numberand frequencyof surface adornmentssuch as blebs, lamellipodia,and microvibli. Although thecelllinesare nonadherent to substratum and thereforeassumea sphericalform,highlyvillouscellsare notcharacteristic of the entirecellpopulations. WhenWERI-Rbl and Y79 are seededontoa polyorni thine-treatedsubstrate,aftachmentandgrowthas adher ent culturesare

  14. Molecular cytogenetic analysis of breast cancer cell lines

    PubMed Central

    Davidson, J M; Gorringe, K L; Chin, S-F; Orsetti, B; Besret, C; Courtay-Cahen, C; Roberts, I; Theillet, C; Caldas, C; Edwards, P A W

    2000-01-01

    The extensive chromosome rearrangements of breast carcinomas must contribute to tumour development, but have been largely intractable to classical cytogenetic banding. We report here the analysis by 24-colour karyotyping and comparative genomic hybridization (CGH) of 19 breast carcinoma cell lines and one normal breast epithelial cell line, which provide model examples of karyotype patterns and translocations present in breast carcinomas. The CGH was compared with CGH of 106 primary breast cancers. The lines varied from perfectly diploid to highly aneuploid. Translocations were very varied and over 98% were unbalanced. The most frequent in the carcinomas were 8;11 in five lines; and 8;17, 1;4 and 1;10 in four lines. The most frequently involved chromosome was 8. Several lines showed complex multiply-translocated chromosomes. The very aneuploid karyotypes appeared to fall into two groups that evolved by different routes: one that steadily lost chromosomes and at one point doubled their entire karyotype; and another that steadily gained chromosomes, together with abnormalities. All karyotypes fell within the range seen in fresh material and CGH confirmed that the lines were broadly representative of fresh tumours. The karyotypes provide a resource for the cataloguing and analysis of translocations in these tumours, accessible at http://www.path.cam.ac.uk/~pawefish. © 2000 Cancer Research Campaign PMID:11044355

  15. The role of calcium in differentiation of leukemic cell lines.

    PubMed

    Rephaeli, A; Aviram, A; Rabizadeh, E; Englender, T; Shaklai, M

    1990-04-01

    Increased calcium influx associated with differentiation of four human myeloid leukemic cell lines: HL-60, KG-1, U-937 and K-562, to either monocytic or granulocytic direction was demonstrated. Calcium influx was measured employing two methods; measurement of radioactive calcium influx rate at 4 degrees C and employing the fluorescent probe, fura-2 acetoxymethyl ester. The increase in Ca2+ influx was demonstrated with three chemically unrelated differentiation inducers: retinoic acid, 1 alpha, 25 dihydroxy vitamin D3 and dimethyl sulfoxide. Inhibitors of calcium uptake such as verapamil diltiazem and cromolyn, partially reduced differentiation, suggesting that differentiation of myeloid leukemic cell lines is dependent on the availability of extracellular calcium. PMID:2383856

  16. Osmotic stress affects functional properties of human melanoma cell lines

    E-print Network

    La Porta, Caterina A M; Pasini, Maria; Laurson, Lasse; Alava, Mikko J; Zapperi, Stefano; Amar, Martine Ben

    2015-01-01

    Understanding the role of microenvironment in cancer growth and metastasis is a key issue for cancer research. Here, we study the effect of osmotic pressure on the functional properties of primary and metastatic melanoma cell lines. In particular, we experimentally quantify individual cell motility and transmigration capability. We then perform a circular scratch assay to study how a cancer cell front invades an empty space. Our results show that primary melanoma cells are sensitive to a low osmotic pressure, while metastatic cells are less. To better understand the experimental results, we introduce and study a continuous model for the dynamics of a cell layer and a stochastic discrete model for cell proliferation and diffusion. The two models capture essential features of the experimental results and allow to make predictions for a wide range of experimentally measurable parameters.

  17. Mouse DRG Cell Line with Properties of Nociceptors

    PubMed Central

    Doran, Ciara; Chetrit, Jonathan; Holley, Matthew C.; Grundy, David; Nassar, Mohammed A.

    2015-01-01

    In vitro cell lines from DRG neurons aid drug discovery because they can be used for early stage, high-throughput screens for drugs targeting pain pathways, with minimal dependence on animals. We have established a conditionally immortal DRG cell line from the Immortomouse. Using immunocytochemistry, RT-PCR and calcium microfluorimetry, we demonstrate that the cell line MED17.11 expresses markers of cells committed to the sensory neuron lineage. Within a few hours under differentiating conditions, MED17.11 cells extend processes and following seven days of differentiation, express markers of more mature DRG neurons, such as NaV1.7 and Piezo2. However, at least at this time-point, the nociceptive marker NaV1.8 is not expressed, but the cells respond to compounds known to excite nociceptors, including the TRPV1 agonist capsaicin, the purinergic receptor agonist ATP and the voltage gated sodium channel agonist, veratridine. Robust calcium transients are observed in the presence of the inflammatory mediators bradykinin, histamine and norepinephrine. MED17.11 cells have the potential to replace or reduce the use of primary DRG culture in sensory, pain and developmental research by providing a simple model to study acute nociception, neurite outgrowth and the developmental specification of DRG neurons. PMID:26053673

  18. Mouse DRG Cell Line with Properties of Nociceptors.

    PubMed

    Doran, Ciara; Chetrit, Jonathan; Holley, Matthew C; Grundy, David; Nassar, Mohammed A

    2015-01-01

    In vitro cell lines from DRG neurons aid drug discovery because they can be used for early stage, high-throughput screens for drugs targeting pain pathways, with minimal dependence on animals. We have established a conditionally immortal DRG cell line from the Immortomouse. Using immunocytochemistry, RT-PCR and calcium microfluorimetry, we demonstrate that the cell line MED17.11 expresses markers of cells committed to the sensory neuron lineage. Within a few hours under differentiating conditions, MED17.11 cells extend processes and following seven days of differentiation, express markers of more mature DRG neurons, such as NaV1.7 and Piezo2. However, at least at this time-point, the nociceptive marker NaV1.8 is not expressed, but the cells respond to compounds known to excite nociceptors, including the TRPV1 agonist capsaicin, the purinergic receptor agonist ATP and the voltage gated sodium channel agonist, veratridine. Robust calcium transients are observed in the presence of the inflammatory mediators bradykinin, histamine and norepinephrine. MED17.11 cells have the potential to replace or reduce the use of primary DRG culture in sensory, pain and developmental research by providing a simple model to study acute nociception, neurite outgrowth and the developmental specification of DRG neurons. PMID:26053673

  19. Chloroquine synergizes with FTS to enhance cell growth inhibition and cell death.

    PubMed

    Schmukler, Eran; Wolfson, Eya; Haklai, Roni; Elad-Sfadia, Galit; Kloog, Yoel; Pinkas-Kramarski, Ronit

    2014-01-15

    The Ras family of small GTPases transmits extracellular signals that regulate cell growth, differentiation, motility and death. Ras signaling is constitutively active in a large number of human cancers. Ras can also regulate autophagy by affecting several signaling pathways including the mTOR pathway. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. It is important for normal growth control, but may be defective in diseases. Previously, we have shown that Ras inhibition by FTS induces autophagy, which partially protects cancer cells and may limit the use of FTS as an anti-cancer drug. Since FTS is a non toxic drug we hypothesized that FTS and chloroquine (an autophagy inhibitor) will synergize in cell growth inhibition and cell death. Thus, in the present study, we explored the mechanism of each individual drug and their combined action. Our results demonstrate that in HCT-116 and in Panc-1 cells, FTS induces autophagy, which can be inhibited by chloroquine. Furthermore, the combined treatment synergistically decreased the number of viable cells. Interestingly, the combined treatment enhanced apoptotic cell death as indicated by increased sub-G1 cell population, increased Hoechst staining, activation of caspase 3, decrease in survivin expression and release of cytochrome c. Thus, chloroquine treatment may promote FTS-mediated inhibition of tumor cell growth and may stimulate apoptotic cell death. PMID:24368422

  20. Hypoxic cell turnover in different solid tumor lines

    SciTech Connect

    Ljungkvist, Anna S.E. [Department of Radiation Oncology, Radboud University Medical Center Nijmegen, Nijmegen (Netherlands) and Department of Radiation Sciences, Umeaa University, Umeaa (Sweden)]. E-mail: a.ljungkvist@rther.umcn.nl; Bussink, Johan [Department of Radiation Oncology, Radboud University Medical Center Nijmegen, Nijmegen (Netherlands); Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Medical Center Nijmegen, Nijmegen (Netherlands); Rijken, Paulus F.J.W. [Department of Radiation Oncology, Radboud University Medical Center Nijmegen, Nijmegen (Netherlands); Begg, Adrian C. [Division of Experimental Therapy, Netherlands Cancer Institute, Amsterdam (Netherlands); Raleigh, James A. [Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC (United States); Kogel, Albert J. van der [Department of Radiation Oncology, Radboud University Medical Center Nijmegen, Nijmegen (Netherlands)

    2005-07-15

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h.

  1. Cytolytic cells induce HMGB1 release from melanoma cell lines.

    PubMed

    Ito, Norimasa; DeMarco, Richard A; Mailliard, Robbie B; Han, Jie; Rabinowich, Hannah; Kalinski, Pawel; Stolz, Donna Beer; Zeh, Herbert J; Lotze, Michael T

    2007-01-01

    High mobility group box 1 (HMGB1) is one of the recently defined damage-associated molecular pattern molecules, passively released from necrotic cells and secreted by activated macrophage/monocytes. Whether cytolytic cells induce HMGB1 release from tumor cells is not known. We developed a highly sensitive method for detecting intracellular HMGB1 in tumor cells, allowing analysis of the type of cell death and in particular, necrosis. We induced melanoma cell death with cytolytic lymphokine-activated killing (LAK) cells, tumor-specific cytolytic T lymphocytes, TRAIL, or granzyme B delivery and assessed intracellular HMGB1 retention or release to investigate the mechanism of HMGB1 release by cytolytic cells. HMGB1 release from melanoma cells (451Lu, WM9) was detected within 4 h and 24 h following incubation with IL-2-activated PBMC (LAK activity). HLA-A2 and MART1 or gp100-specific cytolytic T lymphocytes induced HMGB1 release from HLA-A2-positive and MART1-positive melanoma cells (FEM X) or T2 cell-loaded, gp100-specific peptides. TRAIL treatment, however, induced HMGB1 release, and it is interesting that this extrinsic pathway-mediated cell death was blocked with the pancaspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Conversely, granzyme B delivery did not induce HMGB1 release. HMGB1, along with other intracellular factors released from tumor cells induced by cytolysis, may be important components of the disordered tumor microenvironment. This has important implications for the immunotherapy of patients with cancer. Specifically, HMGB1 may promote healing or immune reactivity, depending on the nature of the local inflammatory response and the presence (or absence) of immune effectors. PMID:16968820

  2. Bryostatin analogue-induced apoptosis in mantle cell lymphoma cell lines.

    PubMed

    Lopez-Campistrous, Ana; Song, Xiaohua; Schrier, Adam J; Wender, Paul A; Dower, Nancy A; Stone, James C

    2012-08-01

    The anti-cancer effects of bryostatin-1, a potent diacylglycerol analogue, have traditionally been attributed to its action on protein kinase C. However, we previously documented apoptosis in a B non-Hodgkin lymphoma cell line involving diacylglycerol analogue stimulation of Ras guanyl-releasing protein, a Ras activator, and Bim, a proapoptotic Bcl-2 family protein. To further explore the role of Bim, we examined several Bim-deficient B non-Hodgkin lymphoma cells for their responses to pico, a synthetic bryostatin-1-like compound. The Bim(-) mantle cell lymphoma cell lines Jeko-1, Mino, Sp53, UPN1, and Z138 and the Bim(+) cell line Rec-1, as well as the Burkitt lymphoma cells lines BL2 (Bim(-)) and Daudi (Bim(+)), were examined for their response to pico using assays for proliferation and apoptosis as well as biochemical methods for Ras guanyl-releasing proteins and Bcl-2 family members. With the exception of UPN1, mantle cell lymphoma cell lines underwent pico-induced apoptosis, as did BL2. In some cases, hallmarks of apoptosis were substantially diminished in the presence of mitogen-activated protein kinase kinase inhibitors. Pico treatment generally led to increased expression of proapoptotic Bik, although the absolute levels of Bik varied considerably between cell lines. A pico-resistant variant of Z138 exhibited decreased Bik induction compared to parental Z138 cells. Pico also generally decreased expression of anti-apoptotic Bcl-XL and Mcl1. Although, these changes in Bcl-2 family members seem unlikely to fully account for the differential behavior of the cell lines, our demonstration of a potent apoptotic process in most cell lines derived from mantle cell lymphoma encourages a re-examination of diacylglycerol analogues in the treatment of this subset of B non-Hodgkin lymphoma cases. PMID:22465296

  3. Bryostatin analogue-induced apoptosis in mantle cell lymphoma cell lines

    PubMed Central

    Lopez-Campistrous, Ana; Song, Xiaohua; Schrier, Adam J.; Wender, Paul A.; Dower, Nancy A.; Stone, James C.

    2014-01-01

    The anti-cancer effects of bryostatin-1, a potent diacylglycerol analogue, have traditionally been attributed to its action on protein kinase C. However, we previously documented apoptosis in a B non-Hodgkin lymphoma cell line involving diacylglycerol analogue stimulation of Ras guanyl-releasing protein, a Ras activator, and Bim, a proapoptotic Bcl-2 family protein. To further explore the role of Bim, we examined several Bim-deficient B non-Hodgkin lymphoma cells for their responses to pico, a synthetic bryostatin-1-like compound. The Bim? mantle cell lymphoma cell lines Jeko-1, Mino, Sp53, UPN1, and Z138 and the Bim+ cell line Rec-1, as well as the Burkitt lymphoma cells lines BL2 (Bim?) and Daudi (Bim+), were examined for their response to pico using assays for proliferation and apoptosis as well as biochemical methods for Ras guanyl-releasing proteins and Bcl-2 family members. With the exception of UPN1, mantle cell lymphoma cell lines underwent pico-induced apoptosis, as did BL2. In some cases, hallmarks of apoptosis were substantially diminished in the presence of mitogen-activated protein kinase kinase inhibitors. Pico treatment generally led to increased expression of proapoptotic Bik, although the absolute levels of Bik varied considerably between cell lines. A pico-resistant variant of Z138 exhibited decreased Bik induction compared to parental Z138 cells. Pico also generally decreased expression of anti-apoptotic Bcl-XL and Mcl1. Although, these changes in Bcl-2 family members seem unlikely to fully account for the differential behavior of the cell lines, our demonstration of a potent apoptotic process in most cell lines derived from mantle cell lymphoma encourages a re-examination of diacylglycerol analogues in the treatment of this subset of B non-Hodgkin lymphoma cases. PMID:22465296

  4. THP-1 cell line: an in vitro cell model for immune modulation approach.

    PubMed

    Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J

    2014-11-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. PMID:25130606

  5. Continuous porcine cell lines developed from alveolar macrophages

    Microsoft Academic Search

    H. M Weingartl; M Sabara; J Pasick; E van Moorlehem; L Babiuk

    2002-01-01

    Porcine monomyeloid cell lines were established following transfection of primary porcine alveolar macrophage cultures with plasmid pSV3neo, carrying genes for neomycin resistance and SV40 large T antigen. The parental clone 3D4 exhibited a relatively rapid doubling time (25.5 h), high plating efficiency and mixed phenotype with respect to growth on a solid support. Single cell cloning of the 3D4 parent

  6. Feeder-independent continuous culture of the PICM-19 pig liver stem cell line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The PICM-19 pig liver stem cell line is a bipotent cell line, i.e., capable of forming either bile ductules or hepatocyte monolayers in vitro, that was derived from the primary culture of pig embryonic stem cells. The cell line has been strictly feeder-dependent in that cell replication morphology,...

  7. 76 FR 16609 - Proposed Information Collection; Comment Request; Identification of Human Cell Lines Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ...ASN-0002 Authentication of Human Cell Lines: Standardization...Development Organization Workgroup. Human cell line samples are cells taken from a human being that can be grown in...can be used for scientific experiments, as examples of the...

  8. What is the nature of the RGC-5 cell line?

    PubMed

    Sippl, C; Tamm, E R

    2014-01-01

    The immortalized RGC-5 cell line has been widely used as a cell culture model to study the neurobiology of retinal ganglion cells (RGCs). The cells were originally introduced as derived from rat RGC showing expression of various neuronal markers, in particular the RGC-characteristic proteins Brn3 and Thy1. Recent data gave rise to concerns regarding the origin and nature of the cells. RGC-5 cells were identified to be of mouse origin and their expression of RGC characteristics was questioned by some laboratories. This article summarizes the available data on the properties of RGC-5, discusses common protocols for their differentiation and is aimed at providing researchers some guidelines on the benefits and limitations of RGC-5 for research. PMID:24664692

  9. Studies on BrdU labeling of hematopoietic cells: stem cells and cell lines.

    PubMed

    Pang, Lizhen; Reddy, Prem Veer; McAuliffe, Christina I; Colvin, Gerald; Quesenberry, Peter J

    2003-11-01

    Studies using chronic in vivo BrdU exposure, isolating primitive stem cells, and determining BrdU labeling, indicate that stem cells cycle. BrdU is also incorporated into DNA during damage/repair. DNA, which has incorporated BrdU due to cycle transit is heavier than normal, while the density of DNA with damage/repair incorporation is intermediate. DNA density of purified lineage-rhodamine low (rho(low)) Hoechst low (Ho(low)) stem cells or FDC-P1 cell line cells-was assessed in vitro, after exposure to cytokines and BrdU (cycling model) or cytokines and BrdU with bleomycin to induce strand breaks and hydroxyurea to halt cycle progression (damage/repair model). We determined DNA density using cesium chloride (CsCl) gradients and either fluorometry or dot blot chemiluminesence. DNA from BrdU labeled cycling Lin-rho(lo)Ho(lo) or FDC-P1 cells was heavier than normal DNA, while damage repair DNA had an intermediate density. We then assessed BrdU labeling of Lin-rho(lo)Ho(lo) cells in vivo. We found that 70.9% of lin-rho(lo)Ho(lo) cells labeled at 5 weeks. DNA density of these cells was low, in the damage/repair range, but similar results were obtained with stem cells, which had proliferated in vivo. Dilution of BrdU in in vitro culture of proliferating FDC-P1 cells also resulted in damage/repair density. We conclude that in vitro BrdU labeling models can distinguish between proliferation and damage/repair, but that we cannot obtain high enough in vivo levels to address this issue. All together, while we cannot absolutely exclude damage/repair as contributing to stem cell BrdU labeling, the data indicate that primitive bone marrow stem cells are probably a cycling population. PMID:14502565

  10. Immortality of cell lines: challenges and advantages of establishment.

    PubMed

    Maqsood, Muhammad Irfan; Matin, Maryam M; Bahrami, Ahmad Reza; Ghasroldasht, Mohammad M

    2013-10-01

    Cellular immortality happens upon impairment of cell-cycle checkpoint pathways (p53/p16/pRb), reactivation or up-regulation of telomerase enzyme, or upregulation of some oncogenes or oncoproteins leading to a higher rate of cell division.There are also some other factors and mechanisms involved in immortalisation, which need to be discovered. Immortalisation of cells derived from different sources and establishment of immortal cell lines has proven useful in understanding the molecular pathways governing cell developmental cascades in eukaryotic, especially human, cells. After the breakthrough of achieving the immortal cells and understanding their critical importance in the field of molecular biology, intense efforts have been dedicated to establish cell lines useful for elucidating the functions of telomerase, developmental lineage of progenitors, self-renewal potency, cellular transformation, differentiation patterns and some bioprocesses, like odontogenesis. Meanwhile, discovering the exact mechanisms of immortality, a major challenge for science yet, is believed to open new gateways toward understanding and treatment of cancer in the long term. This review summarises the methods involved in establishing immortality, its advantages and the challenges still being faced in this field. PMID:23723166

  11. Induced pluripotent stem cell lines derived from equine fibroblasts.

    PubMed

    Nagy, Kristina; Sung, Hoon-Ki; Zhang, Puzheng; Laflamme, Simon; Vincent, Patrick; Agha-Mohammadi, Siamak; Woltjen, Knut; Monetti, Claudio; Michael, Iacovos Prodromos; Smith, Lawrence Charles; Nagy, Andras

    2011-09-01

    The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure. Equine iPS (EiPS) cells, in addition to bringing promises to the veterinary field, open up the opportunity to utilize horses for the validation of stem cell based therapies before moving into the human clinical setting. In this study, we report the generation of iPS cells from equine fibroblasts using a piggyBac (PB) transposon-based method to deliver transgenes containing the reprogramming factors Oct4, Sox2, Klf4 and c-Myc, expressed in a temporally regulated fashion. The established iPS cell lines express hallmark pluripotency markers, display a stable karyotype even during long-term culture, and readily form complex teratomas containing all three embryonic germ layer derived tissues upon in vivo grafting into immunocompromised mice. Our EiPS cell lines hold the promise to enable the development of a whole new range of stem cell-based regenerative therapies in veterinary medicine, as well as aid the development of preclinical models for human applications. EiPS cell could also potentially be used to revive recently extinct or currently threatened equine species. PMID:21347602

  12. A cell line model for the differentiation of human dendritic cells

    Microsoft Academic Search

    Carsten Berges; Cord Naujokat; Sarah Tinapp; Hubert Wieczorek; Alexandra Höh; Mahmoud Sadeghi; Gerhard Opelz; Volker Daniel

    2005-01-01

    We have identified human monocytic (THP-1) and myelogenous CD34+ (KG-1) leukemia cell lines that can be differentiated rapidly into mature dendritic cells (DCs) when cultured in serum-free medium containing GM-CSF, TNF-?, and ionomycin. These hematopoietic cell line-derived DCs are highly pure and monotypic, and display the morphologic, phenotypic, molecular, and functional properties of DCs generated from human donor-derived monocytes or

  13. Human cystic fibrosis embryonic stem cell lines derived on placental mesenchymal stromal cells

    Microsoft Academic Search

    S Deleu; E Gonzalez-Merino; N Gaspard; TMU Nguyen; P Vanderhaeghen; L Lagneaux; M Toungouz; Y Englert; F Devreker

    2009-01-01

    This study describes the production of two new human embryonic stem cell (hESC) lines affected by cystic fibrosis. These cell lines are heterozygous compounds, each a carrier of the DF508 mutations associated either with E585X or with 3849+10 kb C?T. The derivation process was performed on irradiated human placental mesenchymal stromal cells and designed to minimize contact with xeno-components. This

  14. A process-line for large area organic solar cells

    Microsoft Academic Search

    Jan Alstrup; Frederik C. Krebs; Torben Kjćr; Matteo Biancardo; Holger Spanggaard

    2005-01-01

    In this paper we would like to address the key role of fabrication in the performance and lifetime of organic photovoltaics. The realization of a complete process line for the construction of large area organic photovoltaics (250 x 400 mm) is described. Among many of the factors that influence organic solar cell lifetime, oxygen and water exposure is the most

  15. DIVERSITY OF ARSENIC METABOLISM IN CULTURED HUMAN CANCER CELL LINES

    EPA Science Inventory

    Diversity of arsenic metabolism in cultured human cancer cell lines. Arsenic has been known to cause a variety of malignancies in human. Pentavalent As (As 5+) is reduced to trivalent As (As3+) which is further methylated by arsenic methyltransferase(s) to monomethylarson...

  16. USING NEUROBLASTOMA CELL LINES TO EXAMINE ORGANOPHOSPHATE NEUROTOXICITY

    EPA Science Inventory

    The need to deploy IN VITRO models to test neurotoxic scribes the use of by industry and government regulatory agencies. his research describes the neuroblastoma cell lines to address the relationship between esterase inhibition and neurotoxic outcome following exposure to organo...

  17. Differential Sensitivity in the Survival of Oligodendrocyte Cell Lines to

    E-print Network

    Bongarzone, Ernesto R.

    Differential Sensitivity in the Survival of Oligodendrocyte Cell Lines to Overexpression of Myelin in oligodendrocyte survival by overexpression studies in vitro and in vivo. The classic and sr proteolipids are targeted to different cellular com- partments in the oligodendrocyte, suggesting different cellular

  18. Selection of endosulfan-tolerant gram cell line

    Microsoft Academic Search

    R. P. Saxena; M. U. Beg

    1988-01-01

    Three alternate exposures of Cicer arietinum (gram) root callus to lethal (1 ppm) endosulfan-containing selective medium (SM) and non-selective medium (NSM) yielded a tolerant cell line (1 ESR). Such an induced resistance was retained during subculture on NSM for 15 generations tested so far. Higher soluble proteins and peroxidase activity were found in 1 ESR compared to mother tissue.

  19. Expression of melatoninergic receptors in human placental choriocarcinoma cell lines

    Microsoft Academic Search

    Dave Lanoix; Rodney Ouellette; Cathy Vaillancourt

    2006-01-01

    BACKGROUND: Melatonin crosses the placenta and enters the fetal circulation. Moreover, experimental data sug- gest a possible influence of melatonin on placental function and fetal development in humans. To date, the expression and role of melatonin receptors in human placenta choriocarcinoma cell lines and in human term placental tissues remain to be elucidated. METHODS AND RESULTS: Results from RT-PCR, western

  20. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition

    PubMed Central

    Flatmark, Kjersti; Nome, Ragnhild V; Folkvord, Sigurd; Bratland, Ĺse; Rasmussen, Heidi; Ellefsen, Mali Strand; Fodstad, Řystein; Ree, Anne Hansen

    2006-01-01

    Background The tumor response to preoperative radiotherapy of locally advanced rectal cancer varies greatly, warranting the use of experimental models to assay the efficacy of molecular targeting agents in rectal cancer radiosensitization. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby remodeling of chromatin structure, may override cell cycle checkpoint responses to DNA damage and amplify radiation-induced tumor cell death. Methods Human colorectal carcinoma cell lines were exposed to ionizing radiation and HDAC inhibitors, and cell cycle profiles and regulatory factors, as well as clonogenicity, were analyzed. Results In addition to G2/M phase arrest following irradiation, the cell lines displayed cell cycle responses typical for either intact or defective p53 function (the presence or absence, respectively, of radiation-induced expression of the cell cycle inhibitor p21 and subsequent accumulation of G1 phase cells). In contrast, histone acetylation was associated with complete depletion of the G1 population of cells with functional p53 but accumulation of both G1 and G2/M populations of cells with defective p53. The cellular phenotypes upon HDAC inhibition were consistent with the observed repression of Polo-like kinase-1, a regulatory G2/M phase kinase. Following pre-treatment with HDAC inhibitors currently undergoing clinical investigation, the inhibitory effect of ionizing radiation on clonogenicity was significantly amplified. Conclusion In these experimental models, HDAC inhibition sensitized the tumor cells to ionizing radiation, which is in accordance with the concept of increased probability of tumor cell death when chromatin structure is modified. PMID:16887021

  1. Endogenously produced nitric oxide inhibits endothelial cell growth as demonstrated using novel antisense cell lines

    PubMed Central

    Cartwright, Judith E; Johnstone, Alan P; Whitley, Guy St J

    2000-01-01

    Proliferation of endothelial cells is a vital component of vascular repair and angiogenesis. The endothelial cell mediator, nitric oxide (NO) has been reported both to inhibit and to promote endothelial cell proliferation. In this study we have generated cell lines which constitutively express antisense RNA to a region of inducible nitric oxide synthase (iNOS) from a murine endothelial cell line, sEnd-1. In response to stimulation with lipopolysaccharide (LPS) and interferon-? (IFN-?) these antisense cells had no detectable RNA for endogenous iNOS, barely detectable iNOS protein and produced 82% less NO than did the control transfected line. Stimulation of the control transfected line caused significant NO production and inhibition of cell growth whereas for the antisense line, producing little NO in response to stimulation, proliferation remained the same as for unstimulated cells. No differences in cell death were observed between unstimulated and LPS/IFN-? stimulated cells. The data presented in this study directly demonstrate that NO derived endogenously from iNOS inhibits proliferation of endothelial cells. This approach overcomes problems in other studies where NO donors or non-isoform specific inhibitors of NO synthase have been used. PMID:10960079

  2. Metal mutagenesis in transgenic Chinese hamster cell lines.

    PubMed

    Klein, C B; Kargacin, B; Su, L; Cosentino, S; Snow, E T; Costa, M

    1994-09-01

    Metals are toxic agents for which genotoxic effects are often difficult to demonstrate. To study metal mutagenesis, we have used two stable hprt/gpt+ transgenic cell lines that were derived from Chinese hamster V79 cells. Both the G12 and G10 cell lines are known to be very sensitive to clastogens such as X-rays and bleomycin, with the mutagenic response of the integrated xanthine guanine phosphoribosyl transferase (gpt) gene in G10 usually exceeding that of the same gene in the transgenic G12 cells. In studies with carcinogenic insoluble nickel compounds, a high level of mutagenesis was found at the gpt locus of G12 cells but not at the endogenous hypoxanthine phosphoribosyl transferase (hprt) locus of V79 cells. We have since demonstrated the similar recovery of a high frequency of viable G12 mutants with other insoluble nickel salts including nickel oxides (black and green). The relative mutant yield for the insoluble nickel compounds (G12 > G10) is the opposite of that obtained with nonmetal clastogens (G10 > G12). In the G12 cells, nickel mutagenesis may be related to the integration of the gpt sequence into a heterochromatic region of the genome. For some of the insoluble nickel compounds, significant inhibition of both cytotoxicity and mutant yield resulted when the G12 cells were pretreated with vitamin E. In comparison with the nickel studies, the mutagenic responses to chromium compounds in these cell lines were not as dramatic. Mutagenesis of the gpt target could not be demonstrated with other metals such as mercury or vanadium. PMID:7843139

  3. Cytotoxicity and genotoxicity of phenazine in two human cell lines.

    PubMed

    McGuigan, Claire F; Li, Xing-Fang

    2014-06-01

    Phenazine was recently identified as a drinking water disinfection byproduct (DBP), but little is known of its toxic effects. We examined in vitro cytotoxicity and genotoxicity of phenazine (1.9-123 ?M) in HepG2 and T24 cell lines. Cytotoxicity was determined by an impedance-based real-time cell analysis instrument. The BrdU (5-bromo-2'-deoxyuridine) proliferation and MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) viability assays were used to examine mechanisms of cytotoxicity. Genotoxicity was determined using the alkaline comet assay. Concentration-dependent cytotoxicity was observed in HepG2 cells, primarily due to an antiproliferative effect (BrdU 24 h IC50: 11 ?M; 48 h IC50: 7.8 ?M) observed as low as 1.9 ?M. T24 cells experienced a minor antiproliferative effect (BrdU 24 h IC50: 47 ?M; 48 h IC50: 17 ?M). IC50 values for HepG2 proliferation and viability were 54-77% lower compared to T24 cells. In both cell lines, IC50 values for proliferation were 66-90% lower than those for viability. At phenazine concentrations producing equivalent cytotoxicity, HepG2 cells (1.9-30.8 ?M) experienced no significant genotoxic effects, while T24 cells (7.7-123 ?M) experienced significant genotoxicity at ?61.5 ?M. While these effects were seen at phenazine concentrations above those found in disinfected water, the persistence of the antiproliferative effect and the differential toxicity in each cell line deserves further study. PMID:24380821

  4. Reversal of diabetes following transplantation of an insulin-secreting human liver cell line: Melligen cells

    PubMed Central

    Lawandi, Janet; Tao, Chang; Ren, Binhai; Williams, Paul; Ling, Dora; Swan, M Anne; Nassif, Najah T; Torpy, Fraser R; O’Brien, Bronwyn A; Simpson, Ann M

    2015-01-01

    As an alternative to the transplantation of islets, a human liver cell line has been genetically engineered to reverse type 1 diabetes (TID). The initial liver cell line (Huh7ins) commenced secretion of insulin in response to a glucose concentration of 2.5 mmol/l. After transfection of the Huh7ins cells with human islet glucokinase, the resultant Melligen cells secreted insulin in response to glucose within the physiological range; commencing at 4.25 mmol/l. Melligen cells exhibited increased glucokinase enzymatic activity in response to physiological glucose concentrations, as compared with Huh7ins cells. When transplanted into diabetic immunoincompetent mice, Melligen cells restored normoglycemia. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that both cell lines expressed a range of ?-cell transcription factors and pancreatic hormones. Exposure of Melligen and Huh7ins cells to proinflammatory cytokines (TNF-?, IL-1?, and IFN-?) affected neither their viability nor their ability to secrete insulin to glucose. Gene expression (microarray and qRT-PCR) analyses indicated the survival of Melligen cells in the presence of known ?-cell cytotoxins was associated with the expression of NF-?B and antiapoptotic genes (such as BIRC3). This study describes the successful generation of an artificial ?-cell line, which, if encapsulated to avoid allograft rejection, may offer a clinically applicable cure for T1D. PMID:26029722

  5. Establishment and characterization of two divergent cell lines derived from a human chromophobe renal cell carcinoma.

    PubMed Central

    Gerharz, C. D.; Moll, R.; Störkel, S.; Ramp, U.; Hildebrandt, B.; Molsberger, G.; Koldovsky, P.; Gabbert, H. E.

    1995-01-01

    The chromophobe renal cell carcinoma is a distinct type of renal cancer presumably derived from the intercalated cell of the collecting duct system and exhibiting a better prognosis than other types of renal cell carcinoma. Chromophobe carcinomas can be separated from other types of renal cell carcinoma by their characteristic cytomorphology, ultrastructural appearance, cytoskeletal architecture, and cytogenetic aberrations. As no permanent cell line of the chromophobe tumor type has previously been described, we are the first to report on the successful establishment and characterization of two divergent permanent cell lines, ie, chrompho-A and chrompho-B, derived from the same chromophobe renal cell carcinoma. With immunocytochemistry, two-dimensional gel electrophoresis, and Western blot, chrompho-A and chrompho-B exclusively exhibited cytokeratins (Nos. 7, 8, 18, and 19) but not vimentin. Ultrastructural studies revealed numerous cytoplasmic microvesicles as well as coated vesicles that are known to be characteristic features of the intercalated cell. Chrompho-B cells exhibited a shorter mean population doubling time (tD = 43 hours) than chrompho-A cells (tD = 51 hours). Both cell lines failed to produce tumors in nude mice with the subrenal capsule assay. Cytogenetic analyses revealed hyperdiploid chromosome numbers in both cell lines with telomeric associations as well as numeric aberrations known from chromophobe renal cell carcinomas in vivo. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 PMID:7717462

  6. Off-line test of the KISS gas cell

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoshikazu; Watanabe, Yutaka; Imai, Nobuaki; Ishiyama, Hironobu; Jeong, Sun-Chan; Miyatake, Hiroari; Oyaizu, Michihiro; Kim, Yung Hee; Mukai, Momo; Matsuo, Yukari; Sonoda, Tetsu; Wada, Michiharu; Huyse, Mark; Kudryavtsev, Yuri; Van Duppen, Piet

    2013-12-01

    The KEK Isotope Separation System (KISS) has been constructed at RIKEN to study the ?-decay properties of neutron-rich isotopes with neutron numbers around N = 126 for application to astrophysics. A key component of KISS is a gas cell filled with argon gas at a pressure of 50 kPa to stop and collect the unstable nuclei, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off-line tests to study the basic properties of the gas cell and of KISS using nickel and iron filaments placed in the gas cell.

  7. Isolation and Characterization of Spheroid Cells from Human Malignant Melanoma Cell Line WM266-4

    Microsoft Academic Search

    Y. R. Na; S. H. Seok; D. J. Kim; J. H. Han; T. H. Kim; H. Jung; B. H. Lee; J. H. Park

    2009-01-01

    Background\\/Aims: Spheroid cells which can grow as nonattached spheroids in vitro culture condition are considered as tumor-initiating cells that have properties similar to those of stem cells. However, the existence of spheroid cells in WM-266-4, a human malignant metastatic melanoma cell line, has not yet been reported. Methods: Accordingly, we investigated whether WM-266-4 can form spheroids, and characterized these spheroids

  8. Human Fucci Pancreatic Beta Cell Lines: New Tools to Study Beta Cell Cycle and Terminal Differentiation

    PubMed Central

    Carlier, Géraldine; Maugein, Alicia; Cordier, Corinne; Pechberty, Séverine; Garfa-Traoré, Meriem; Martin, Patrick; Scharfmann, Raphaël; Albagli, Olivier

    2014-01-01

    Regulation of cell cycle in beta cells is poorly understood, especially in humans. We exploited here the recently described human pancreatic beta cell line EndoC-?H2 to set up experimental systems for cell cycle studies. We derived 2 populations from EndoC-?H2 cells that stably harbor the 2 genes encoding the Fucci fluorescent indicators of cell cycle, either from two vectors, or from a unique bicistronic vector. In proliferating non-synchronized cells, the 2 Fucci indicators revealed cells in the expected phases of cell cycle, with orange and green cells being in G1 and S/G2/M cells, respectively, and allowed the sorting of cells in different substeps of G1. The Fucci indicators also faithfully red out alterations in human beta cell proliferative activity since a mitogen-rich medium decreased the proportion of orange cells and inflated the green population, while reciprocal changes were observed when cells were induced to cease proliferation and increased expression of some beta cell genes. In the last situation, acquisition of a more differentiated beta cell phenotype correlates with an increased intensity in orange fluorescence. Hence Fucci beta cell lines provide new tools to address important questions regarding human beta cell cycle and differentiation. PMID:25259951

  9. Cetuximab enhances the efficacy of bortezomib in squamous cell carcinoma cell lines

    Microsoft Academic Search

    Jens Wagenblast; Mehran Baghi; Christoph Arnoldner; Sotirios Bisdas; Wolfgang Gstöttner; Hanns Ackermann; Angelika May; Markus Hambek; Rainald Knecht

    2009-01-01

    Purpose  Proteasome inhibition has been shown to be effective in multiple myeloma and solid tumor models. In this in vitro study, we\\u000a investigated the antitumor effect of bortezomib (Velcade®) in combination with cetuximab in squamous cell carcinoma cell lines (SCC).\\u000a \\u000a \\u000a \\u000a Methods  Dose-escalation studies were performed in five squamous cell carcinoma cell lines using bortezomib or cetuximab alone or in\\u000a combination. Cell survival

  10. Plasmids and packaging cell lines for use in phage display

    DOEpatents

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  11. Carbon nanoparticles for gene transfection in eukaryotic cell lines.

    PubMed

    Zanin, H; Hollanda, L M; Ceragioli, H J; Ferreira, M S; Machado, D; Lancellotti, M; Catharino, R R; Baranauskas, V; Lobo, A O

    2014-06-01

    For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed ?-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests. PMID:24863237

  12. Ecdysone and the cell cycle: investigations in a mosquito cell line.

    PubMed

    Fallon, Ann M; Gerenday, Anna

    2010-10-01

    Cell lines provide a tool for investigating basic biological processes that underlie the complex interactions among the tissues and organs of an intact organism. We compare the evolution of insect and mammalian populations as they progress from diploid cell strains to continuous cell lines, and review the history of the well-characterized Aedes albopictus mosquito cell line, C7-10. Like Kc and S3 cells from Drosophila melanogaster, C7-10 cells are sensitive to the insect steroid hormone, 20-hydroxyecdysone (20E), and express 20E-inducible proteins as well as the EcR and USP components of the ecdysteroid receptor. The decrease in growth associated with 20E treatment results in an accumulation of cells in the G1 phase of the cycle, and a concomitant decrease in levels of cyclin A. In contrast, 20E induces a G2 arrest in a well-studied imaginal disc cell line from the moth, Plodia interpunctella. We hypothesize that 20E-mediated events associated with molting and metamorphosis include effects on regulatory proteins that modulate the mitotic cell cycle and that differences between the 20E response in diverse insect cell lines reflect an interplay between classical receptor-mediated effects on gene expression and non-classical effects on signaling pathways similar to those recently described for the vertebrate steroid hormone, estrogen. PMID:20303973

  13. Identification of cell surface antigen expression in canine hepatocellular carcinoma cell lines.

    PubMed

    Fujimoto, Ayumi; Neo, Sakurako; Ishizuka, Chinatsu; Kato, Takashi; Segawa, Kazuhito; Kawarai, Shinpei; Ogihara, Kikumi; Hisasue, Masaharu; Tsuchiya, Ryo

    2013-01-01

    The characteristics of surface antigens in canine hepatocellular carcinoma (cHCC) have not been clarified. The objective of this study was to investigate surface antigens, which are considered as stem/progenitor or cancer cell markers, in cHCC cell lines. Expression of various antigens including CD29, CD34, CD44, CD90, CD133 and Dlk-1 was assessed in four cHCC cell lines by flow cytometry. CD44, CD133 and Dlk-1 expression was detectable in all cell lines, and three cell lines expressed CD29. These results indicate that CD29, CD44, CD133 and Dlk-1 have potential as suitable markers in cHCC identification, suggesting that these findings will contribute to the establishment of an early diagnostic tool for the identification of hepatocellular maturation processes. PMID:23412833

  14. Establishment and characterization of four new human non-small cell lung cancer cell lines.

    PubMed

    Loh, P M; Clamon, G H; Robinson, R A; White, M L; Hukku, B; Rossi, N P; Peterson, W D

    1984-08-01

    Four new human non-small cell lung cancer cell lines have been established in vitro. These cell lines have been characterized by (a) growth of a tumor in nude mice with histopathology similar to that of the primary, (b) isoenzyme patterns phenotypically human and distinct from each other, (c) distinguishing karyotypic findings, (d) growth rate determinations, and (e) presence of epidermal growth factor receptors. Each of the cell lines will form colonies when directly seeded into a flask without soft agar. The development and availability of the four cell lines may facilitate in vitro studies of the biology of this common cancer. Their clonogenic potential may be of value in the study of sensitivity to antineoplastic agents. Their low passage level may mean that their antigens still resemble those of the primary tumor. PMID:6744280

  15. Fluorescence Assay 2. http://www.tgrbio.com/cancer-cell-lines-primary-cell-

    E-print Network

    Collins, Gary S.

    Fluorescence Assay References 1. 2. http://www.tgrbio.com/cancer-cell-lines-primary-cell- cultures-therapies in cancer patients. This makes the study of both agonist and antagonist ligands important as the knowledge kidney cells (HEK-293) using cDNA prepared from plasmid cDNA expressed in E.coli The pcDNA then underwent

  16. Bilirubin and light induced cell death in a murine lymphoma cell line

    Microsoft Academic Search

    Terje Christensen; Ellen B. Roll; Alicja Jaworska; Gunnar Kinn

    2000-01-01

    Cells from the mouse lymphoma cell line L5178Y-R were exposed to blue light from phototherapy lamps in the presence of solutions of 160 ?M bilirubin supplemented with serum albumin. HPLC analysis showed that the bilirubin solution was photooxidised as a function of increasing light dose. The cells were stained with trypan blue to score necrosis, and apoptosis was assayed by

  17. Aberrant autophosphorylation of c-Kit receptor in canine mast cell tumor cell lines.

    PubMed

    Takeuchi, Yoshinori; Fujino, Yasuhito; Watanabe, Manabu; Nakagawa, Takayuki; Ohno, Koichi; Sasaki, Nobuo; Sugano, Sumio; Tsujimoto, Hajime

    2010-10-15

    Several studies indicated that KIT mutation could cause ligand-independent activation of c-Kit receptor in canine mast cell tumor (MCT). The objective of this study was to investigate mechanisms of c-Kit receptor activation in various canine MCT cell lines. Four cell lines, HRMC (derived from cutaneous MCT), VIMC1 (visceral MCT), CoMS1 (visceral MCT) and CMMC1 (cutaneous MCT), were cultured in stem cell factor (SCF, a ligand of c-Kit receptor)-free medium and subjected to analyses of KIT mutation, c-Kit receptor phosphorylation, SCF expression and the effects of SCF stimulation. In addition, the SCF/c-Kit receptor autocrine mechanism was verified in HRMC cells. HRMC cells expressed wild type c-Kit receptor. Both VIMC1 and CoMS1 cells had the same one amino acid (AA) substitution in the extracellular domain of c-Kit receptor. CMMC1 cells had at least three variants of c-Kit receptor such as one AA deletion in the extracellular domain (variant A), one AA substitution in the extracellular domain as well as an internal tandem duplication in the juxtamembrane domain (variant B), and a nonsense mutation (variant C). Both mature and immature forms of c-Kit receptor were observed and the c-Kit receptors were phosphorylated in all cell lines. While both mature and immature forms of c-Kit receptor were substantially phosphorylated in CMMC1 cells, the immature form was slightly phosphorylated in other cell lines. Phosphorylation of c-Kit receptor in HRMC, VIMC1 and CoMS1 cells were enhanced by SCF stimulation whereas no enhancement was observed in CMMC1 cells. There was no effect of SCF stimulation on proliferation of all the cell lines. SCF protein was detectable in only HRMC cells although mRNA expression of SCF was detected in all the cell lines. A tyrosine kinase inhibitor Dasatinib (internal inhibitor) inhibited c-Kit receptor phosphorylation in HRMC cells whereas anti-canine SCF antibody (external inhibitor) had no inhibitory effect. Thus there could be no external SCF/c-Kit receptor autocrine mechanism whereas there could be an internal autocrine mechanism within HRMC cells. The results indicated that consistent c-Kit receptor phosphorylation could be caused by the stimulation with autocrine SCF in HRMC cells while it could be caused by functional mutations of KIT in VIMC1, CoMS1 and CMMC1 cells. As the four canine MCT cell lines had various aberrations associated with c-Kit receptor phosphorylation, KIT mutation and SCF expression, such molecular biological diversity might reflect the different biological behavior in canine MCT. PMID:20591500

  18. Comparative proteomic profiling of pancreatic ductal adenocarcinoma cell lines.

    PubMed

    Kim, Yikwon; Han, Dohyun; Min, Hophil; Jin, Jonghwa; Yi, Eugene C; Kim, Youngsoo

    2014-12-31

    Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and - sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines. PMID:25518923

  19. Cysteine modified polyaniline films improve biocompatibility for two cell lines.

    PubMed

    Yslas, Edith I; Cavallo, Pablo; Acevedo, Diego F; Barbero, César A; Rivarola, Viviana A

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using l-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV-visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86°±1 to 90°±1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. PMID:25842107

  20. Toxicity of Calcium Hydroxide Nanoparticles on Murine Fibroblast Cell Line

    PubMed Central

    Dianat, Omid; Azadnia, Sina; Mozayeni, Mohammad Ali

    2015-01-01

    Introduction: One of the major contributing factors, which may cause failure of endodontic treatment, is the presence of residual microorganisms in the root canal system. For years, most dentists have been using calcium hydroxide (CH) as the intracanal medicament between treatment sessions to eliminate remnant microorganisms. Reducing the size of CH particles into nanoparticles enhances the penetration of this medicament into dentinal tubules and increases their antimicrobial efficacy. This in vitro study aimed to compare the cytotoxicity of CH nanoparticles and conventional CH on fibroblast cell line using the Mosmann’s Tetrazolium Toxicity (MTT) assay. Methods and Materials: This study was conducted on L929 murine fibroblast cell line by cell culture and evaluation of the direct effect of materials on the cultured cells. Materials were evaluated in two groups of 10 samples each at 24, 48 and 72 h. At each time point, 10 samples along with 5 positive and 5 negative controls were evaluated. The samples were transferred into tubes and exposed to fibroblast cells. The viability of cells was then evaluated. The Two-way ANOVA was used for statistical analysis and the level of significance was set at 0.05. Results: Cytotoxicity of both materials decreased over time and for conventional CH was lower than that of nanoparticles. However, this difference was not statistically significant (P>0.05). Conclusion: The cytotoxicity of CH nanoparticles was similar to that of conventional CH. PMID:25598810

  1. A New Peptide Ligand for Targeting Human Carbonic Anhydrase IX, Identified through the Phage Display Technology

    PubMed Central

    Askoxylakis, Vasileios; Garcia-Boy, Regine; Rana, Shoaib; Krämer, Susanne; Hebling, Ulrike; Mier, Walter; Altmann, Annette; Markert, Annette; Debus, Jürgen; Haberkorn, Uwe

    2010-01-01

    Carbonic anhydrase IX (CAIX) is a transmembrane enzyme found to be overexpressed in various tumors and associated with tumor hypoxia. Ligands binding this target may be used to visualize hypoxia, tumor manifestation or treat tumors by endoradiotherapy. Methods Phage display was performed with a 12 amino acid phage display library by panning against a recombinant extracellular domain of human carbonic anhydrase IX. The identified peptide CaIX-P1 was chemically synthesized and tested in vitro on various cell lines and in vivo in Balb/c nu/nu mice carrying subcutaneously transplanted tumors. Binding, kinetic and competition studies were performed on the CAIX positive human renal cell carcinoma cell line SKRC 52, the CAIX negative human renal cell carcinoma cell line CaKi 2, the human colorectal carcinoma cell line HCT 116 and on human umbilical vein endothelial cells (HUVEC). Organ distribution studies were carried out in mice, carrying SKRC 52 tumors. RNA expression of CAIX in HCT 116 and HUVEC cells was investigated by quantitative real time PCR. Results In vitro binding experiments of 125I-labeled-CaIX-P1 revealed an increased uptake of the radioligand in the CAIX positive renal cell carcinoma cell line SKRC 52. Binding of the radioligand in the colorectal carcinoma cell line HCT 116 increased with increasing cell density and correlated with the mRNA expression of CAIX. Radioligand uptake was inhibited up to 90% by the unlabeled CaIX-P1 peptide, but not by the negative control peptide octreotide at the same concentration. No binding was demonstrated in CAIX negative CaKi 2 and HUVEC cells. Organ distribution studies revealed a higher accumulation in SKRC 52 tumors than in heart, spleen, liver, muscle, intestinum and brain, but a lower uptake compared to blood and kidney. Conclusions These data indicate that CaIX-P1 is a promising candidate for the development of new ligands targeting human carbonic anhydrase IX. PMID:21209841

  2. Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines

    E-print Network

    Dennis, Robert G.

    Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines of skeletal muscle engineered from primary cultures and cell lines. Am J Physiol Cell Physiol 280: C288­C295-dimensional skeletal muscle constructs, termed myooids, engineered from C2C12 myoblast and 10T1/2 fibroblast cell lines

  3. Detection of circulating tumour cells on mRNA levels with established breast cancer cell lines.

    PubMed

    Zebisch, Michael; Kölbl, Alexandra C; Andergassen, Ulrich; Hutter, Stephan; Neugebauer, Julia; Engelstädter, Verena; Günthner-Biller, Maria; Jeschke, Udo; Friese, Klaus; Rack, Brigitte

    2013-03-01

    Circulating tumour cells were detected and quantified by real-time polymerase chain reaction (PCR) in peripheral blood, based on the fact that the expression of certain genes is upregulated in tumour tissues in comparison to surrounding blood cells. Calibration curves showing gene expression as functions of the number of tumour cells within a blood sample were prepared. Blood samples were therefore spiked with cells of breast cancer cell lines, RNA was extracted, transcribed to complementary DNA (cDNA) and used in real-time PCR reaction on the Cytokeratins (CK) 8, 18 and 19. Calibration curves were generated by Microsoft™ Excel®. Relative quantification curves of gene expression in different breast cancer cell lines showed no unitary tendencies. The oscillations in the relative quantification curves of gene expression suggested an occurrence of immunological effects, leading to an apparent agglutination of added tumour cells together with the blood cells of the sample. Thus, strategies to obtain evaluable results should be considered. PMID:24648925

  4. Single-walled carbon nanohorn (SWNH) aggregates inhibited proliferation of human liver cell lines and promoted apoptosis, especially for hepatoma cell lines

    PubMed Central

    Zhang, Jinqian; Sun, Qiang; Bo, Jian; Huang, Rui; Zhang, Mengran; Xia, Zhenglin; Ju, Lili; Xiang, Guoan

    2014-01-01

    Single-walled carbon nanohorns (SWNHs) may be useful as carriers for anticancer drugs due to their particular structure. However, the interactions between the material itself and cancerous or normal cells have seldom been studied. To address this problem, the effects of raw SWNH material on the biological functions of human liver cell lines were studied. Our results showed that unmodified SWNHs inhibited mitotic entry, growth, and proliferation of human liver cell lines and promoted their apoptosis, especially in hepatoma cell lines. Individual spherical SWNH particles were found inside the nuclei of human hepatoma HepG2 cells and the lysosomes of normal human liver L02 cells, implying that SWNH particles could penetrate into human liver cells_and the different interacted mechanisms on human normal cell lines compared to hepatoma cell lines. Further research on the mechanisms and application in treatment of hepatocellular carcinoma with SWNHs is needed. PMID:24523586

  5. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

    PubMed

    Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C

    2012-04-01

    Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (?2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was significantly increased, as indicated by the large reduction of non-producing and low-producing cells after 25?µM L-MSX selection, and resulted in a six-fold efficiency improvement in identifying similar numbers of high-productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS-knockout cells on recombinant protein quality is also discussed. PMID:22068567

  6. Melatonin decreases cell proliferation, impairs myogenic differentiation and triggers apoptotic cell death in rhabdomyosarcoma cell lines.

    PubMed

    Codenotti, Silvia; Battistelli, Michela; Burattini, Sabrina; Salucci, Sara; Falcieri, Elisabetta; Rezzani, Rita; Faggi, Fiorella; Colombi, Marina; Monti, Eugenio; Fanzani, Alessandro

    2015-07-01

    Melatonin is a small indole produced by the pineal gland and other tissues, and has numerous functions that aid in the maintenance of the whole body homeostasis, ranging from the regulation of circadian rhythms and sleep to protection from oxidative stress. Melatonin has also been reported to counteract cell growth and chemoresistance in different types of cancer. In the present study, we investigated the effects of exogenous melatonin administration on different human cell lines and primary mouse tumor cultures of rhabdomyosarcoma (RMS), the most frequent soft tissue sarcoma affecting childhood. The results showed that melatonin significantly affected the behavior of RMS cells, leading to inhibition of cell proliferation and impairment of myogenic differentiation followed by increased apoptotic cell death, as observed by immunoblotting analysis of apoptosis-related markers including Bax, Bcl-2 and caspase-3. Similar findings were observed using a combination of microscopy techniques, including scanning/transmission electron and confocal microscopy. Furthermore, melatonin in combination with doxorubicin or cisplatin, two compounds commonly used for the treatment of solid tumors, increased the sensitivity of RMS cells to apoptosis. These data indicated that melatonin may be effective in counteracting RMS tumor growth and chemoresistance. PMID:25998836

  7. Characterization of a human stromal cell line supporting hematopoietic progenitor cell proliferation: Effect of HIV expression

    Microsoft Academic Search

    Joseph D. Mosca; Sumesh Kaushal; Suzanne Gartner; Stephen W. Kessler; Vince F. La Russa; Ernest F. Terwilliger; Jerome H. Kim; Richard G. Carroll; Eric R. Hall; Liyanage P. Perera; Zhipeng Yu; David W. Ritchey; Jin Xu; Daniel C. St. Louis; Douglas L. Mayers

    1995-01-01

    Our objective was to determine the role that bone marrow-derived stromal cells have on human hematopoiesis in HIV infection. In particular, we dissected the heterogeneous bone marrow microenvironment to study the effect HIV expression might have on the cell population capable of producing the cytokines which will support human CD34+ cell differentiation. A stromal cell line, Lof(11-10), was established from

  8. Inhibition of lymphokine-activated killer cell generation by cultured tumor cell lines in vitro

    Microsoft Academic Search

    Pierre J. Guillou; Peter C. Sedman; Carol W. Ramsden

    1989-01-01

    The co-culture of human peripheral blood mononuclear cells (PBMC) with high concentrations of interleukin 2 normally generates lymphokine-activated killer (LAK) cells capable of indiscriminate lysis of tumor targets. However, the addition of certain cell-line-derived tumor cells to the LAK generation cultures within the first 48 h of culture initiation resulted in the suppression of the LAK cytotoxicity measured after 3–4

  9. Destabilization of Akt Promotes the Death of Myeloma Cell Lines

    PubMed Central

    Zhang, Yanan; Fu, Yunfeng; Zhang, Fan; Liu, Jing

    2014-01-01

    Constitutive activation of Akt is believed to be an oncogenic signal in multiple myeloma and is associated with poor patient prognosis and resistance to available treatment. The stability of Akt proteins is regulated by phosphorylating the highly conserved turn motif (TM) of these proteins and the chaperone protein HSP90. In this study we investigate the antitumor effects of inhibiting mTORC2 plus HSP90 in myeloma cell lines. We show that chronic exposure of cells to rapamycin can inhibit mTORC2 pathway, and AKT will be destabilized by administration of the HSP90 inhibitor 17-allylamino-geldanamycin (17-AAG). Finally, we show that the rapamycin synergizes with 17-AAG and inhibits myeloma cells growth and promotes cell death to a greater extent than either drug alone. Our studies provide a clinical rationale of use mTOR inhibitors and chaperone protein inhibitors in combination regimens for the treatment of human blood cancers. PMID:25243120

  10. Boldine: a potential new antiproliferative drug against glioma cell lines.

    PubMed

    Gerhardt, Daniéli; Horn, Ana Paula; Gaelzer, Mariana Maier; Frozza, Rudimar Luiz; Delgado-Cańedo, Andrés; Pelegrini, Alessandra Luiza; Henriques, Amélia T; Lenz, Guido; Salbego, Christianne

    2009-12-01

    Malignant gliomas are the most common and devastating primary tumors of the central nervous system. Currently no efficient treatment is available. This study evaluated the effect and underlying mechanisms of boldine, an aporphine alkaloid of Peumus boldus, on glioma proliferation and cell death. Boldine decreased the cell number of U138-MG, U87-MG and C6 glioma lines at concentrations of 80, 250 and 500 muM. We observed that cell death caused by boldine was cell-type specific and dose-dependent. Exposure to boldine for 24 h did not activate key mediators of apoptosis. However, it induced alterations in the cell cycle suggesting a G(2)/M arrest in U138-MG cells. Boldine had no toxic effect on non-tumor cells when used at the same concentrations as those used on tumor cells. Based on these results, we speculate that boldine may be a promising compound for evaluation as an anti-cancer agent. PMID:19050827

  11. Choosing the right cell line for breast cancer research.

    PubMed

    Holliday, Deborah L; Speirs, Valerie

    2011-01-01

    Breast cancer is a complex and heterogeneous disease. Gene expression profiling has contributed significantly to our understanding of this heterogeneity at a molecular level, refining taxonomy based on simple measures such as histological type, tumour grade, lymph node status and the presence of predictive markers like oestrogen receptor and human epidermal growth factor receptor 2 (HER2) to a more sophisticated classification comprising luminal A, luminal B, basal-like, HER2-positive and normal subgroups. In the laboratory, breast cancer is often modelled using established cell lines. In the present review we discuss some of the issues surrounding the use of breast cancer cell lines as experimental models, in light of these revised clinical classifications, and put forward suggestions for improving their use in translational breast cancer research. PMID:21884641

  12. Designing of promiscuous inhibitors against pancreatic cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Chaudhary, Kumardeep; Singla, Deepak; Gautam, Ankur; Raghava, Gajendra P. S.

    2014-04-01

    Pancreatic cancer remains the most devastating disease with worst prognosis. There is a pressing need to accelerate the drug discovery process to identify new effective drug candidates against pancreatic cancer. We have developed QSAR models for predicting promiscuous inhibitors using the pharmacological data. Our models achieved maximum Pearson correlation coefficient of 0.86, when evaluated on 10-fold cross-validation. Our models have also successfully validated the drug-to-oncogene relationship and further we used these models to screen FDA approved drugs and tested them in vitro. We have integrated these models in a webserver named as DiPCell, which will be useful for screening and designing novel promiscuous drug molecules. We have also identified the most and least effective drugs for pancreatic cancer cell lines. On the other side, we have identified resistant pancreatic cancer cell lines, which need investigative scanner on them to put light on resistant mechanism in pancreatic cancer.

  13. Choosing the right cell line for breast cancer research

    PubMed Central

    2011-01-01

    Breast cancer is a complex and heterogeneous disease. Gene expression profiling has contributed significantly to our understanding of this heterogeneity at a molecular level, refining taxonomy based on simple measures such as histological type, tumour grade, lymph node status and the presence of predictive markers like oestrogen receptor and human epidermal growth factor receptor 2 (HER2) to a more sophisticated classification comprising luminal A, luminal B, basal-like, HER2-positive and normal subgroups. In the laboratory, breast cancer is often modelled using established cell lines. In the present review we discuss some of the issues surrounding the use of breast cancer cell lines as experimental models, in light of these revised clinical classifications, and put forward suggestions for improving their use in translational breast cancer research. PMID:21884641

  14. Pseudoislet of hybrid cellular spheroids from commercial cell lines.

    PubMed

    Jo, Y H; Nam, B M; Kim, B Y; Nemeno, J G; Lee, S; Yeo, J E; Yang, W; Park, S H; Kim, Y S; Lee, J I

    2013-10-01

    Investigators conducting diabetes-related research have focused on islet transplantation as a radical therapy for type 1 diabetes mellitus. Pancreatic islet isolation, an essential process, is a very demanding work because of the proteolytic enzymes, species, treatment time, and individual difference. Replacement of primary isolated pancreatic islets must be carried out continuously for various in vitro tests, making primary isolated islets a useful tool for cell transplantation research. Hence, we sought to develop pseudoislets from commercial pancreas-derived cell lines. In this study, we used RIN-5F and RIN-m cells, which secrete insulin, somatostatin, or glucagon. To manufacture hybrid cellular spheroids, the cells were cultured under hanging drop plate and nonadhesive plate methods. We observed that hybrid cellular pseudoislets exhibited an oval shape, with sizes ranging from 590 to 1200 ?m. Their morphology was similar to naďve islets. Cell line pseudoislets secreted and expressed insulin, glucagon, and somatostatin, as confirmed by reverse transcriptase polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry analyses. Thus, the current artificially manufactured biomimetic pseudoislets resembled pancreatic islets of the endocrine system, appearing as cellular aggregates that secreted insulin, glucagon, and somatostatin. Enhanced immunoisolation techniques may lead to the development of new islet sources for pancreatic transplantation through this pseudoislet strategy. PMID:24157046

  15. New Model for Gastroenteropancreatic Large-Cell Neuroendocrine Carcinoma: Establishment of Two Clinically Relevant Cell Lines

    PubMed Central

    Krieg, Andreas; Mersch, Sabrina; Boeck, Inga; Dizdar, Levent; Weihe, Eberhard; Hilal, Zena; Krausch, Markus; Möhlendick, Birte; Topp, Stefan A.; Piekorz, Roland P.; Huckenbeck, Wolfgang; Stoecklein, Nikolas H.; Anlauf, Martin; Knoefel, Wolfram T.

    2014-01-01

    Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) according to their proliferation index into G1- or G2-neuroendocrine tumors (NET) and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC). Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1) or lymph node metastases (NEC-DUE2) from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup. PMID:24551139

  16. Characteristics of rhabdomyosarcoma cell lines derived from uterine carcinosarcomas

    Microsoft Academic Search

    M. Emoto; H. Iwasaki; K. Oshima; M. Kikuchi; Y. Kaneko; T. Kawarabayashi

    1997-01-01

    Rhabdomyosarcoma (RMS) is occasionally found in the female genital tract, and mostly appears as one of the heterologous mesenchymal\\u000a components in uterine carcinosarcoma designated as malignant mixed müllerian tumour (MMMT). We examined the biological properties\\u000a of a pure rhabdomyosarcoma (RMS) cell line designated FU-MMT-3, which was newly established from a surgical specimen taken\\u000a from a patient with uterine MMMT. We

  17. Cytotoxic effects of curcumin on osteosarcoma cell lines

    Microsoft Academic Search

    Denise K. Walters; Roman Muff; Bettina Langsam; Walter Born; Bruno Fuchs

    2008-01-01

    Summary  Curcumin (diferuloylmethane), one of the main components of the Indian spice turmeric, is known to possess potent anti-inflammatory\\u000a and anti-oxidant properties. In addition, curcumin has also been shown to have in vitro and in vivo efficacy against a variety of malignancies. In the current study we examined the cytotoxic effect of curcumin on seven osteosarcoma\\u000a (OS) cell lines with varying

  18. Gypsy moth cell lines divergent in viral susceptibility

    Microsoft Academic Search

    R. H. Goodwin; G. J. Tompkins; P. McCawley

    1978-01-01

    Summary  A series of cell lines unique in insect virus susceptibility pattern have been isolated from the ovaries of the gypsy moth\\u000a (Lymantria dispar: Lepidoptera: Lymantriidae) on a synthetic medium with mammalian and avian serum supplementation. Growth curves showed the\\u000a poorest growth occurring on peptone-based media with somewhat better growth on amino-acid-based media. The best growth was\\u000a obtained with combined media.

  19. Role of the p53 Tumor Suppressor Gene in Cell Cycle Arrest and Radiosensitivity of Burkitt's Lymphoma Cell Lines

    Microsoft Academic Search

    Patrick M. O'Connor; Joany Jackman; Daniel Jondle; Kishor Bhatia; Ian Magrath; Kurt W. Kohn

    We have assessed the role of the p5ĂŚ tumor suppressor gene in cell cycle arrest and cytotoxicity of ionizing radiation in 17 Burkitt's lymphoma and Ivmphoblastoid cell lines. Cell cycle arrest was assessed by flow cytometry of cells 16 h following irradiation. In addition to the usual G2 arrest, the cell lines exhibited three types of responses in I.,: Class

  20. Porcine Endogenous Retrovirus Infects but Does Not Replicate in Nonhuman Primate Primary Cells and Cell Lines

    PubMed Central

    Ritzhaupt, Armin; van der Laan, Luc J. W.; Salomon, Daniel R.; Wilson, Carolyn A.

    2002-01-01

    Porcine endogenous retroviruses (PERV) can infect human cell lines in vitro; hence, there is a presumed risk of viral exposure to a recipient when pig cells are transplanted into humans (xenotransplantation). Nonhuman primates (NHP) are considered a potential permissive animal model to study the risk of in vivo infection of PERV after xenotransplantation. We set out to determine whether PERV can infect and replicate in NHP primary cells or established cell lines from African green monkey, rhesus macaque, and baboon. We confirm that the NHP cell lines under investigation were infected with PERV as measured by detection of viral DNA and RNA by PCR and reverse transcription (RT)-PCR, respectively, indicating that a functional receptor must be present on the cell surface. However, the load of detectable viral DNA in infected NHP cells declined over time, and the cells never had detectable reverse transcriptase activity. Utilizing quantitative real-time TaqMan PCR we found detectable levels of unintegrated DNA intermediates, but the levels were approximately 100-fold lower compared to HEK 293 cells infected with PERV. Virions released from infected NHP cells could productively infect naďve human cell lines, HEK 293 and HeLa, as shown by RT-PCR and RT assay. However, naďve NHP cells remained negative in RT-PCR and RT assay after exposure to virions from infected NHP cells. Together our data demonstrate that NHP cells are not permissive to productive replication by PERV, presumably due to inefficient cell entry and replication. In light of these observations, the appropriateness of NHP as suitable animal models to study PERV infection in vivo needs to be reevaluated. PMID:12388691

  1. Radiosensitization of uterine cancer cell lines by cytotoxic agents.

    PubMed

    Nguyen, H N; Sevin, B U; Averette, H E; Gottlieb, C; Perras, J; Donato, D; Penalver, M

    1993-01-01

    Radiotherapy remains an integral part of uterine cancer therapy. Overcoming radioresistant tumors by sensitizers continues to be a prime objective in radiotherapy research. In this study, the effects of five cytotoxic agents on two radiosensitive and four radioresistant uterine cancer cell lines were investigated. The ATP bioluminescence was used to measure surviving fractions. Data analysis was done using the linear quadratic model and radiosensitivity index D. Both AN3 and SKUT1B were radiosensitive with Ds of 1.73 and 1.72 Gy, respectively. The resistant cell lines had the following D values: AE7, 3.50; ECC, 6.61; HEC1A, 4.59; and HEC1B, 13.49 Gy. The average radiosensitization effects for various drugs were measured by reduction of D: DXR 45 +/- 7, DDP 40 +/- 9, 5FU 55 +/- 10, MITO 59 +/- 14, and HU 1.7 +/- 7%. Except for HU, Wilcoxon analyses revealed that these sensitizing effects were significant with P < 0.02. In summary, Adriamycin, 5-fluorouracil, cisplatin, and mitomycin-C have the potential to be radiosensitizers in uterine cancer cell lines. PMID:8423017

  2. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53.

    PubMed

    Li, Binghui; Zhao, Jiong; Wang, Chong-Zhi; Searle, Jennifer; He, Tong-Chuan; Yuan, Chun-Su; Du, Wei

    2011-02-28

    Ginsenosides are the main bioactive components in American ginseng, a commonly used herb. In this study, we showed that the ginsenoside Rh2 exhibited significantly more potent cell death activity than the ginsenoside Rg3 in HCT116 and SW480 colorectal cancer cells. Cell death induced by Rh2 is mediated in part by the caspase-dependent apoptosis and in part by the caspase-independent paraptosis, a type of cell death that is characterized by the accumulation of cytoplasmic vacuoles. Treatment of cells with Rh2 activated the p53 pathway and significantly increased the levels of the pro-apoptotic regulator, Bax, while decreasing the levels of anti-apoptosis regulator Bcl-2. Removal of p53 significantly blocked Rh2-induced cell death as well as vacuole formation, suggesting that both types of cell death induced by Rh2 are mediated by p53 activity. Furthermore, we show that Rh2 increased ROS levels and activated the NF-?B survival pathway. Blockage of ROS by NAC or catalase inhibited the activation of NF-?B signaling and enhanced Rh2-induced cell death, suggesting that the anti-cancer effect of Rh2 can be enhanced by antioxidants. PMID:21194832

  3. Diverse hematopoietic potentials of five human embryonic stem cell lines

    PubMed Central

    Chang, Kai-Hsin; Nelson, Angelique M.; Fields, Paul A.; Hesson, Jennifer L.; Ulyanova, Tatiana; Cao, Hua; Nakamoto, Betty; Ware, Carol B.; Papayannopoulou, Thalia

    2009-01-01

    Despite a growing body of literature concerning the hematopoietic differentiation of human embryonic stem cells (hESCs), the full hematopoietic potential of the majority of existing hESC lines remains unknown. In this study, the hematopoietic response of five NIH-approved hESC lines (H1, hSF6, BG01, BG02, and BG03) was compared. Our data show that despite expressing similar hESC markers under self-renewing conditions and initiating mesodermal differentiation under spontaneous differentiation conditions, marked differences in subsequent hematopoietic differentiation potential among these lines existed. A high degree of hematopoietic differentiation was attained only by H1 and BG02, whereas this process appeared to be abortive in nature for hSF6, BG01, and BG03. This difference in hematopoietic differentiation predisposition was readily apparent during spontaneous differentiation, and further augmented under hematopoietic-inducing conditions. This predisposition appeared to be intrinsic to the specific hESC line and independent of passage number or gender karyotype. Interestingly, H1 and BG02 displayed remarkable similarities in their kinetics of hematopoietic marker expression, hematopoietic colony formation, erythroid differentiation, and globin expression, suggesting that a similar, predetermined differentiation sequence is followed. The identific