Sample records for cell lung cancer

  1. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  2. Intersections of lung progenitor cells, lung disease and lung cancer.

    PubMed

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  3. Stages of Small Cell Lung Cancer

    MedlinePlus

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key ...

  4. Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-08-28

    Extensive Stage Small Cell Lung Carcinoma; Lung Adenocarcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  5. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer

    PubMed Central

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J.; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R.; Dougall, William

    2017-01-01

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D-driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D-driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. PMID:29118048

  6. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.

    PubMed

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R; Dougall, William; Penninger, Josef M

    2017-10-15

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRas G12D in mouse lung epithelial cells markedly impairs the progression of KRas G12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRas G12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. © 2017 Rao et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Stages of Non-Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key ...

  8. Role of natural killer cells in lung cancer.

    PubMed

    Aktaş, Ozge Nur; Öztürk, Ayşe Bilge; Erman, Baran; Erus, Suat; Tanju, Serhan; Dilege, Şükrü

    2018-06-01

    One of the key immune cells involved in the pathogenesis of lung cancer is natural killer (NK) cells and these cells are novel targets for therapeutic applications in lung cancer. The purpose of this review is to summarize the current literature on lung cancer pathogenesis with a focus on the interaction between NK cells and smoking, how these factors are related to the pathogenesis of lung cancer and how NK cell-based immunotherapy effect lung cancer survival. The relevant literature from PubMed and Medline databases is reviewed in this article. The cytolytic potential of NK cells are reduced in lung cancer and increasing evidence suggests that improving NK cell functioning may induce tumor regression. Recent clinical trials on NK cell-based novel therapies such as cytokines including interleukin (IL)-15, IL-12 and IL-2, NK-92 cell lines and allogenic NK cell immunotherapy showed promising results with less adverse effects on the lung cancer survival. The NK cell targeting strategy has not yet been approved for lung cancer treatment. More clinical studies focusing on the role of NK cells in lung cancer pathogenesis are warranted to develop novel NK cell-based therapeutic approaches for the treatment of lung cancer.

  9. Treatment Options by Stage (Small Cell Lung Cancer)

    MedlinePlus

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key ...

  10. Expression of pleiotrophin in small cell lung cancer.

    PubMed

    Wang, H Q; Wang, J

    2015-01-01

    Pleiotrophin (PTN) is a kind of heparin binding growth factor closely related to tumor progression. This study aimed to discuss the significance of the expression of PTN in benign and malignant lung cancer tissues, especially small cell lung cancer. Lung cancer samples were collected for study and lung tissue samples with benign lesions were taken as controls. The expression of PTN was detected using tissue chip combined with the immunohistochemical method, and the differences of small cell lung cancer with non-small cell lung cancer and benign lesion tissue were compared. It was found that PTN expression was mainly located in the cytoplasm and membrane of cells; PTN expression in the lung cancer group was higher than that in the control group (p < 0.01), and PTN expression in the small cell cancer group was higher than that in the squamous carcinoma group and glandular cancer group (p < 0.05). In addition, PTN expression quantity in patients with lung cancer were in close correlation with TNM staging, pathological type and tumor differentiation degree (p < 0.05). PTN was found to express abnormally high in lung cancer, especially small cell lung cancer tissue. PTN is most likely to be a new tumor marker for diagnosis and prognosis of lung cancer.

  11. Cell-surface marker discovery for lung cancer

    PubMed Central

    Cohen, Allison S.; Khalil, Farah K.; Welsh, Eric A.; Schabath, Matthew B.; Enkemann, Steven A.; Davis, Andrea; Zhou, Jun-Min; Boulware, David C.; Kim, Jongphil; Haura, Eric B.; Morse, David L.

    2017-01-01

    Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients. PMID:29371917

  12. Treatment Options by Stage (Non-Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key ...

  13. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    PubMed Central

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839

  14. General Information about Small Cell Lung Cancer

    MedlinePlus

    ... Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  15. Lung cancer

    MedlinePlus

    Cancer - lung ... lung cancer than of breast, colon, and prostate cancers combined. Lung cancer is more common in older adults. It ... Horn L, Eisenberg R, Gius D, et al. Cancer of the lung: non-small cell lung cancer and small cell ...

  16. CD24 negative lung cancer cells, possessing partial cancer stem cell properties, cannot be considered as cancer stem cells.

    PubMed

    Xu, Haineng; Mu, Jiasheng; Xiao, Jing; Wu, Xiangsong; Li, Maolan; Liu, Tianrun; Liu, Xinyuan

    2016-01-01

    Cancer stem cells (CSCs) play vital role in lung cancer progression, resistance, metastasis and relapse. Identifying lung CSCs makers for lung CSCs targeting researches are critical for lung cancer therapy. In this study, utilizing previous identified lung CSCs as model, we compared the expression of CD24, CD133 and CD44 between CSCs and non-stem cancer cells. Increased ratio of CD24- cells were found in CSCs. CD24- cells were then sorted by flow cytometry and their proliferative ability, chemo-resistance property and in vivo tumor formation abilities were detected. A549 CD24- cells formed smaller colonies, slower proliferated in comparison to A549 CD24+ cells. Besides, A549 CD24- exhibited stronger resistance to chemotherapy drug. However, A549 CD24- didn't exert any stronger tumor formation ability in vivo, which is the gold standard of CSCs. These results showed that CD24- A549 cells showed some properties of CSCs but not actually CSCs. This study provides evidence that CD24 cannot be considered as lung CSCs marker.

  17. Danshen improves survival of patients with advanced lung cancer and targeting the relationship between macrophages and lung cancer cells

    PubMed Central

    Wu, Ching-Yuan; Cherng, Jong-Yuh; Yang, Yao-Hsu; Lin, Chun-Liang; Kuan, Feng-Che; Lin, Yin-Yin; Lin, Yu-Shih; Shu, Li-Hsin; Cheng, Yu-Ching; Liu, Hung Te; Lu, Ming-Chu; Lung, Jthau; Chen, Pau-Chung; Lin, Hui Kuan; Lee, Kuan-Der; Tsai, Ying-Huang

    2017-01-01

    In traditional Chinese medicine, Salvia miltiorrhiza Bunge (danshen) is widely used in the treatment of numerous cancers. However, its clinical effort and mechanism in the treatment of advanced lung cancer are unclear. In our study, the in vivo protective effort of danshen in patients with advanced lung cancer were validated using data from the National Health Insurance Research Database in Taiwan. We observed in vitro that dihydroisotanshinone I (DT), a bioactive compound in danshen, exerts anticancer effects through many pathways. First, 10 μM DT substantially inhibited the migration ability of lung cancer cells in both macrophage and macrophage/lung cancer direct mixed coculture media. Second, 10 μM DT repressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3), the protein expression of S-phase kinase associated protein-2 (Skp2), and the mRNA levels of STAT3-related genes, including chemokine (C–C motif) ligand 2 (CCL2). In addition, 10 μM DT suppressed the macrophage recruitment ability of lung cancer cells by reducing CCL2 secretion from both macrophages and lung cancer cells. Third, 20 μM DT induced apoptosis in lung cancer cells. Furthermore, DT treatment significantly inhibited the final tumor volume in a xenograft nude mouse model. In conclusion, danshen exerts protective efforts in patients with advanced lung cancer. These effects can be attributed to DT-mediated interruption of the cross talk between lung cancer cells and macrophages and blocking of lung cancer cell proliferation. PMID:29207614

  18. Overexpression of TRIM25 in Lung Cancer Regulates Tumor Cell Progression.

    PubMed

    Qin, Ying; Cui, He; Zhang, Hua

    2016-10-01

    Lung cancer is one of the most common causes of cancer-related deaths worldwide. Although great efforts and progressions have been made in the study of the lung cancer in the recent decades, the mechanism of lung cancer formation remains elusive. To establish effective therapeutic methods, new targets implied in lung cancer processes have to be identified. Tripartite motif-containing 25 has been associated with ovarian and breast cancer and is thought to positively promote cell growth by targeting the cell cycle. However, whether tripartite motif-containing 25 has a function in lung cancer development remains unknown. In this study, we found that tripartite motif-containing 25 was overexpressed in human lung cancer tissues. Expression of tripartite motif-containing 25 in lung cancer cells is important for cell proliferation and migration. Knockdown of tripartite motif-containing 25 markedly reduced proliferation of lung cancer cells both in vitro and in vivo and reduced migration of lung cancer cells in vitro Meanwhile, tripartite motif-containing 25 silencing also increased the sensitivity of doxorubicin and significantly increased death and apoptosis of lung cancer cells by doxorubicin were achieved with knockdown of tripartite motif-containing 25. We also observed that tripartite motif-containing 25 formed a complex with p53 and mouse double minute 2 homolog (MDM2) in both human lung cancer tissues and in lung cancer cells and tripartite motif-containing 25 silencing increased the expression of p53. These results provide evidence that tripartite motif-containing 25 contributes to the pathogenesis of lung cancer probably by promoting proliferation and migration of lung cancer cells. Therefore, targeting tripartite motif-containing 25 may provide a potential therapeutic intervention for lung cancer. © The Author(s) 2015.

  19. Identification and Characterization of Cells with Cancer Stem Cell Properties in Human Primary Lung Cancer Cell Lines

    PubMed Central

    Suo, Zhenhe; Munthe, Else; Solberg, Steinar; Ma, Liwei; Wang, Mengyu; Westerdaal, Nomdo Anton Christiaan; Kvalheim, Gunnar; Gaudernack, Gustav

    2013-01-01

    Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90− cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population. PMID:23469181

  20. Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts.

    PubMed

    Koukourakis, Michael I; Kalamida, Dimitra; Mitrakas, Achilleas G; Liousia, Maria; Pouliliou, Stamatia; Sivridis, Efthimios; Giatromanolaki, Alexandra

    2017-11-01

    Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a 'metastasis-like' phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell's migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.

  1. General Information about Non-Small Cell Lung Cancer

    MedlinePlus

    ... Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  2. Lung cancer - non-small cell

    MedlinePlus

    ... do develop lung cancer. Research shows that smoking marijuana may help cancer cells grow. But there is no direct link ... LoCicero, MD, private practice specializing in Hematology and Medical Oncology, Longsteet Cancer Center, Gainesville, GA. Review provided by VeriMed Healthcare ...

  3. Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells

    PubMed Central

    Peters, Haley L.; Tripathi, Satyendra C.; Kerros, Celine; Katayama, Hiroyuki; Garber, Haven R.; St. John, Lisa S.; Federico, Lorenzo; Meraz, Ismail M.; Roth, Jack A.; Sepesi, Boris; Majidi, Mourad; Ruisaard, Kathryn; Clise-Dwyer, Karen; Roszik, Jason; Gibbons, Don L.; Heymach, John V.; Swisher, Stephen G.; Bernantchez, Chantale; Alatrash, Gheath; Hanash, Samir; Molldrem, Jeffrey J.

    2017-01-01

    Immunotherapies targeting immune checkpoints have proven efficacious in reducing the burden of lung cancer in patients; however, the antigenic targets of these re-invigorated T cells remain poorly defined. Lung cancer tumors contain tumor-associated macrophages (TAM) and neutrophils, which release the serine proteases neutrophil elastase (NE) and proteinase 3 (P3) into the tumor microenvironment. NE and P3 shape the antitumor adaptive immune response in breast cancer and melanoma. In this report, we demonstrate that lung cancer cells cross-presented the tumor-associated antigen PR1, derived from NE and P3. Additionally, NE and P3 enhanced the expression of human leukocyte antigen (HLA) class I molecules on lung cancer cells and induced unique, endogenous peptides in the immunopeptidome, as detected with mass spectrometry sequencing. Lung cancer patient tissues with high intratumoral TAM were enriched for MHC class I genes and T-cell markers, and patients with high TAM and cytotoxic T lymphocyte (CTL) infiltration had improved overall survival. We confirmed the immunogenicity of unique, endogenous peptides with cytotoxicity assays against lung cancer cell lines, using CTL from healthy donors that had been expanded against select peptides. Finally, CTL specific for serine proteases–induced endogenous peptides were detected in lung cancer patients using peptide/HLA-A2 tetramers and were elevated in tumor-infiltrating lymphocytes. Thus, serine proteases in the tumor microenvironment of lung cancers promote the presentation of HLA class I immunogenic peptides that are expressed by lung cancer cells, thereby increasing the antigen repertoire that can be targeted in lung cancer. PMID:28254787

  4. Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells.

    PubMed

    Peters, Haley L; Tripathi, Satyendra C; Kerros, Celine; Katayama, Hiroyuki; Garber, Haven R; St John, Lisa S; Federico, Lorenzo; Meraz, Ismail M; Roth, Jack A; Sepesi, Boris; Majidi, Mourad; Ruisaard, Kathryn; Clise-Dwyer, Karen; Roszik, Jason; Gibbons, Don L; Heymach, John V; Swisher, Stephen G; Bernatchez, Chantale; Alatrash, Gheath; Hanash, Samir; Molldrem, Jeffrey J

    2017-04-01

    Immunotherapies targeting immune checkpoints have proven efficacious in reducing the burden of lung cancer in patients; however, the antigenic targets of these reinvigorated T cells remain poorly defined. Lung cancer tumors contain tumor-associated macrophages (TAM) and neutrophils, which release the serine proteases neutrophil elastase (NE) and proteinase 3 (P3) into the tumor microenvironment. NE and P3 shape the antitumor adaptive immune response in breast cancer and melanoma. In this report, we demonstrate that lung cancer cells cross-presented the tumor-associated antigen PR1, derived from NE and P3. Additionally, NE and P3 enhanced the expression of human leukocyte antigen (HLA) class I molecules on lung cancer cells and induced unique, endogenous peptides in the immunopeptidome, as detected with mass spectrometry sequencing. Lung cancer patient tissues with high intratumoral TAMs were enriched for MHC class I genes and T-cell markers, and patients with high TAM and cytotoxic T lymphocyte (CTL) infiltration had improved overall survival. We confirmed the immunogenicity of unique, endogenous peptides with cytotoxicity assays against lung cancer cell lines, using CTLs from healthy donors that had been expanded against select peptides. Finally, CTLs specific for serine proteases-induced endogenous peptides were detected in lung cancer patients using peptide/HLA-A2 tetramers and were elevated in tumor-infiltrating lymphocytes. Thus, serine proteases in the tumor microenvironment of lung cancers promote the presentation of HLA class I immunogenic peptides that are expressed by lung cancer cells, thereby increasing the antigen repertoire that can be targeted in lung cancer. Cancer Immunol Res; 5(4); 319-29. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Survivorship Care Planning in Patients With Colorectal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-12-16

    Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  6. Pulmonary Rehabilitation in Improving Lung Function in Patients With Locally Advanced Non-Small Cell Lung Cancer Undergoing Chemoradiation

    ClinicalTrials.gov

    2017-04-12

    Cachexia; Fatigue; Pulmonary Complications; Radiation Toxicity; Recurrent Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  7. Lung Cancer Cell Lines as Tools for Biomedical Discovery and Research

    PubMed Central

    Girard, Luc; Lockwood, William W.; Lam, Wan L.; Minna, John D.

    2010-01-01

    Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non–small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel. PMID:20679594

  8. Lung cancer stem cells and implications for future therapeutics.

    PubMed

    Wang, Jing; Li, Ze-hong; White, James; Zhang, Lin-bo

    2014-07-01

    Lung cancer is the most dreaded of all cancers because of the higher mortality rates associated with it worldwide. The various subtypes of lung cancer respond differently to a particular treatment regime, which makes the therapeutic interventions all the more complicated. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. The CSCs may have significant role in the development of lung tumorigenesis based on the identification of the CSCs which respond during injury. The properties of multi-potency and self-renewal are shared in common by the lung CSCs with the normal pluripotent stem cells which can be isolated using the similar markers. This review deals with the origin and characteristics of the lung cancer stem cells. The role of different markers used to isolate lung CSCs like CD44, ALDH (aldehyde dehydrogenase), CD133 and ABCG2 (ATP binding cassette sub family G member 2) have been discussed in detail. Analysis of the developmental signaling pathways such as Wnt/β-catenin, Notch, hedgehog in the regulation and maintenance of the lung CSCs have been done. Finally, before targeting the lung CSC biomarkers for potential therapeutics, challenges faced in lung cancer stem cell research need to be taken into account. With the accepted notion that the CSCs are to blame for cancer relapse and drug resistance, targeting them can be an important aspect of lung cancer therapy in the future.

  9. Microscopic FTIR studies of lung cancer cells in pleural fluid.

    PubMed

    Wang, H P; Wang, H C; Huang, Y J

    1997-10-01

    Structural changes associated with lung cancer and tuberculous cells in pleural fluid were studied by microscopic FTIR spectroscopy. Infrared spectra demonstrate significant spectral differences between normal, lung cancer and tuberculous cells. The ratio of the peak intensities of the 1030 and 1080 cm-1 bands (originated mainly in glycogen and phosphodiester groups of nucleic acids) differs greatly between normal and lung cancer samples. Such findings prompt the consideration that recording infrared spectra from lung cancer and tuberculous cells may be of diagnostic value. Since measurements of IR spectra of lung cancer cells in the pleural fluid can be a very rapid inexpensive process, our finding warrant exploration of this possibility in the investigation of the mechanism whereby the environmental pollution related cancers develop.

  10. Inactivation of LLC1 gene in nonsmall cell lung cancer

    PubMed Central

    Hong, Kyeong-Man; Yang, Sei-Hoon; Chowdhuri, Sinchita R.; Player, Audrey; Hames, Megan; Fukuoka, Junya; Meerzaman, Daoud; Dracheva, Tatiana; Sun, Zhifu; Yang, Ping; Jen, Jin

    2007-01-01

    Serial analysis of gene expression studies led us to identify a previously unknown gene, c20orf85, that is present in the normal lung epithelium, but absent or downregulated in most primary non-small cell lung cancers and lung cancer cell lines. We named this gene LLC1 for Low in Lung Cancer 1. LLC1 is located on chromosome 20q13.3 and has a 70% GC content in the promoter region. It has 4 exons and encodes a protein containing 137 amino acids. By in situ hybridization, we observed that LLC1 message is localized in normal lung bronchial epithelial cells, but absent in 13 of 14 lung adenocarcinoma and 9 out of 10 lung squamous carcinoma samples. Methylation at CpG sites of the LLC1 promoter was frequently observed in lung cancer cell lines and in a fraction of primary lung cancer tissues. Treatment with 5-aza deoxycytidine resulted in a reduced methylation of the LLC1 promoter concomitant with the increase of LLC1 expression. These results suggest that inactivation of LLC1 by means of promoter methylation is a frequent event in nonsmall cell lung cancer and may play a role in lung tumorigenesis. PMID:17304513

  11. Serum HDL cholesterol concentration in patients with squamous cell and small cell lung cancer.

    PubMed

    Siemianowicz, K; Gminski, J; Stajszczyk, M; Wojakowski, W; Goss, M; Machalski, M; Telega, A; Brulinski, K; Magiera-Molendowska, H

    2000-09-01

    Cancer patients often present altered serum lipid profile including changes of HDL cholesterol level. The aim of our work was to evaluate serum level of HDL cholesterol in patients with squamous cell and small cell lung cancer and its dependence on histological type and clinical stage of lung cancer. Fasting serum level of HDL cholesterol was analysed in 135 patients with newly diagnosed lung cancer and compared to a control group of healthy men. All lung cancer patients, as well as subgroups of squamous cell and small cell lung cancer had statistically significantly lower HDL cholesterol concentration than controls. There were no statistically significant differences of HDL cholesterol level between the histological types or between clinical stages of each histological type of lung cancer.

  12. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition ofmore » cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC

  13. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LCmore » cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the

  14. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    ClinicalTrials.gov

    2017-09-14

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer

  15. Advances in immunotherapy for non-small cell lung cancer.

    PubMed

    Reckamp, Karen L

    2015-12-01

    In most patients, lung cancer presents as advanced disease with metastases to lymph nodes and/or distant organs, and survival is poor. Lung cancer is also a highly immune-suppressing malignancy with numerous methods to evade antitumor immune responses, including deficiencies in antigen processing and presentation, release of immunomodulatory cytokines, and inhibition of T-cell activation. Advances in understanding the complex interactions of the immune system and cancer have led to novel therapies that promote T-cell activation at the tumor site, resulting in prolonged clinical benefit. Immune checkpoint inhibitors, specifically programmed death receptor 1 pathway antibodies, have demonstrated impressively durable responses and improved survival in patients with non-small cell lung cancer. This article will review the recent progress made in immunotherapy for lung cancer with data from trials evaluating programmed death receptor 1 and cytotoxic T-lymphocyte-associated protein 4 monoclonal antibodies in addition to cancer vaccines. The review will focus on studies that have been published and the latest randomized trials exploring immune therapy in lung cancer. These results form the framework for a new direction in the treatment of lung cancer toward immunotherapy.

  16. Lung excision of non-small-cell lung cancer leaves cancer cells in residual lobe: cytological detection using pulmonary vein blood.

    PubMed

    Sawabata, Noriyoshi; Funaki, Soichiro; Shintani, Yasushi; Okumura, Meinosin

    2016-02-01

    Lung excision to treat non-small-cell lung cancer (NSCLC) is associated with a worse prognosis when compared with a lobectomy. Cancer relapse may be caused by tumour cells remaining in the residual lobe, the possibility of dislodged cancer cells in the residual lobe is assessed using pulmonary vein blood (PVB) from the resected lung. Twenty-eight patients with pathological stage I NSCLC who underwent lung excision followed by a lobectomy were evaluated according to the status of isolated tumour cells (ITCs) (origin of circulating tumour cells) in PVB from the resected lobe. Survival was also assessed according to the status of ITCs. The rate of ITC presence was 60.7% and depended on margin distance/tumour size (M/T) with a threshold of 1.0-30.8% (4/13) in M/T greater than or equal to 1.0 and 86.7% (13/15) in M/T smaller than 1.0 (P = 0.001). PVB-ITC status was no ITCs (N) in 11 (39.3%), only singular cells (S) in 13 (50.0%) and clustered cells (C) in 4 (14.3%). In addition, the survival status of patients with clustered cells was exclusively wrong. After pulmonary excision for lung cancer, tumour cells remain in the residual lobe and the morphology of which may indicate recurrence. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Cell signaling molecules as drug targets in lung cancer: an overview.

    PubMed

    Mukherjee, Tapan K; Paul, Karan; Mukhopadhyay, Srirupa

    2011-07-01

    Lung being one of the vital and essential organs in the body, lung cancer is a major cause of mortality in the modern human society. Lung cancer can be broadly subdivided into nonsmall cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Although NSCLC is sometimes treated with surgery, the advanced and metastatic NSCLC and SCLC usually respond better to chemotherapy and radiation. The most important targets of these chemotherapeutic agents are various intracellular signaling molecules. The primary focus of this review article is to summarize the description of various cell signaling molecules involved in lung cancer development and their regulation by chemotherapeutic agents. Extensive research work in recent years has identified several cellular signaling molecules that may be intricately involved in the complexity of lung cancer. Some of these cell signaling molecules are epidermal growth factor receptors, vascular endothelial growth factor receptors, mammalian target of rapamycin, mitogen-activated protein kinase phosphatase-1, peroxisome proliferator-activated receptor-gamma, matrix metalloproteinases and receptor for advanced glycation end-products. The present review will strengthen our current knowledge regarding the efficacy of the above-mentioned cell signaling molecules as potential beneficial drug targets against lung cancer.

  18. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    PubMed

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Squamous Cell Cancer of The Lung with Synchronous Renal Cell Carcinoma

    PubMed Central

    Ateş, İhsan; Yazıcı, Ozan; Ateş, Hale; Yazılıtaş, Doğan; Özcan, Ayşe Naz; Ağaçkıran, Yetkin; Zengin, Nurullah

    2016-01-01

    Coexistence of two or more primary cancers is a relatively rare case. Not with standing that the coexistence of multiple primary cancers is often discussed in the literature, there is a small number of publications concerning the coexistence of squamous cell lung carcinoma and renal cancer. In this case report, detection of both squamous cell lung carcinoma and primary renal cancer in one male patient is going to be discussed. PMID:29404140

  20. Low-Dose Acetylsalicylic Acid in Treating Patients With Stage I-III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-06-29

    Adenocarcinoma of the Lung; Recurrent Non-small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  1. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    PubMed

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  2. S100A4 is frequently overexpressed in lung cancer cells and promotes cell growth and cell motility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Na; Sato, Daisuke; Saiki, Yuriko

    2014-05-09

    Highlights: • We observed frequent overexpression of S100A4 in lung cancer cell lines. • Knockdown of S100A4 suppressed proliferation in lung cancer cells. • Forced expression of S100A4 accelerated cell motility in lung cancer cells. • PRDM2 was found to be one of the downstream suppressed genes of S100A4. - Abstract: S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In thismore » study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.« less

  3. [Small-cell lung cancer: epidemiology, diagnostics and therapy].

    PubMed

    Pešek, Miloš; Mužík, Jan

    Authors present actual overview of information on diagnostic and therapeutic procedures in small-cell lung cancer (SCLC). This highly aggressive type of lung cancer is diagnosed in 14.8 % of Czech lung cancer patients. Vast majority of those patients (87 %) suffer from advanced and metastatic disease in the time of diagnosis. In this issue are presented prognostic factors, staging diagnostic procedures and therapeutic recommendations. The backbone of actual SCLC treatment is combined chemotherapy and radiotherapy and less frequently, carefully in selected cases, surgical procedures. SCLC should be have as chemosensitive, chemoresistent or chemorefractory disease. Actual cytostatic combinations used in 1st line treatment, different schedules of chemoradiotherapy, drugs used in second line treatment and schedules and timing of prophylactic brain irradiation are presented. In near future, perspectively, there are some promissible data on antitumour immunotherapy based on anti CTLA-4 and anti PD-1/PE-L1 antibodies also in SCLC patients.Key words: cancer immunotherapy - concomitant chemoradiotherapy - chemotherapy - chest radiotherapy - lung resections - prophylactic brain irradiation - small cell lung cancer.

  4. Adherence to Survivorship Care Guidelines in Health Care Providers for Non-Small Cell Lung Cancer and Colorectal Cancer Survivor Care

    ClinicalTrials.gov

    2017-04-05

    Adenocarcinoma of the Lung; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Squamous Cell Lung Cancer; Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  5. S0536: Cetuximab, Paclitaxel, Carboplatin, and Bevacizumab in Treating Patients With Advanced Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2015-08-11

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  6. The mechanisms for lung cancer risk of PM2.5 : Induction of epithelial-mesenchymal transition and cancer stem cell properties in human non-small cell lung cancer cells.

    PubMed

    Wei, Hongying; Liang, Fan; Cheng, Wei; Zhou, Ren; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2017-11-01

    Fine particulate matter (PM 2.5 ) is a major component of air pollutions that are closely associated with increased risk of lung cancer. However, the role of PM 2.5 in the etiology of lung cancer is largely unknown. In this study, we performed acute (24 hours) and chronic (five passages) exposure models to investigate the carcinogenetic mechanisms of PM 2.5 by targeting the induction of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) properties in human non-small cell lung cancer cell line A549. We found that both acute and chronic PM 2.5 exposure enhanced cell migration and invasion, decreased mRNA expression of epithelial markers and increased mRNA expression of mesenchymal markers. Chronic PM 2.5 exposure further induced notable EMT morphology and CSC properties, indicating the developing process of cell malignant behaviors from acute to chronic PM 2.5 exposure. CSC properties induced by chronic PM 2.5 exposure characterized with increased cell-surface markers (CD44, ABCG2), self-renewal genes (SOX2 and OCT4), side population cells and neoplastic capacity. Furthermore, the levels of three stemness-associated microRNAs, Let-7a, miR-16 and miR-34a, were found to be significantly downregulated by chronic PM 2.5 exposure, with microarray data analysis from TCGA database showing their lower expression in human lung adenocarcinoma tissues than that in the adjacent normal lung tissues. These data revealed that the induction of EMT and CSC properties were involved in the lung cancer risk of PM 2.5 , and implicated CSC properties and related microRNAs as possible biomarkers for carcinogenicity prediction of PM 2.5 . © 2017 Wiley Periodicals, Inc.

  7. Integrated quantitative fractal polarimetric analysis of monolayer lung cancer cells

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman; Zhang, Lin; Quang, Tri; Farrahi, Tannaz; Narayan, Chaya; Deshpande, Aditi; Na, Ying; Blinzler, Adam; Ma, Junyu; Liu, Bo; Giakos, George C.

    2014-05-01

    Digital diagnostic pathology has become one of the most valuable and convenient advancements in technology over the past years. It allows us to acquire, store and analyze pathological information from the images of histological and immunohistochemical glass slides which are scanned to create digital slides. In this study, efficient fractal, wavelet-based polarimetric techniques for histological analysis of monolayer lung cancer cells will be introduced and different monolayer cancer lines will be studied. The outcome of this study indicates that application of fractal, wavelet polarimetric principles towards the analysis of squamous carcinoma and adenocarcinoma cancer cell lines may be proved extremely useful in discriminating among healthy and lung cancer cells as well as differentiating among different lung cancer cells.

  8. Effects of aspirin on small-cell lung cancer mortality and metastatic presentation.

    PubMed

    Maddison, Paul

    2017-04-01

    Although meta-analysis data have shown that taking regular aspirin may reduce lung cancer mortality, individual trial data results are conflicting, and the data on the effects of aspirin on different histological subtypes of lung tumours, in particular small-cell lung cancer, are sparse. We conducted a prospective observational study of 313 patients with a new diagnosis of small-cell lung cancer and recorded use of aspirin before and after tumour diagnosis. Seventy-one (23%) patients were taking regular daily aspirin for more than 2 years at the time of tumour diagnosis. We found that regular use of aspirin had no effect on survival nor metastatic presentation compared to data from small-cell lung cancer patients not taking aspirin. The lack of survival benefit in patients with small-cell lung cancer taking long-term aspirin may be due to the low expression of cyclooxygenase-2 in small-cell lung cancer tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Anetumab Ravtansine and Atezolizumab in Treating Participants With Advanced Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-06-12

    Mesothelin Positive; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  10. HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer.

    PubMed

    Hwang, Jung-Ah; Lee, Bo Bin; Kim, Yujin; Hong, Seung-Hyun; Kim, Young-Ho; Han, Joungho; Shim, Young Mog; Yoon, Chae-Yeong; Lee, Yeon-Su; Kim, Duk-Hwan

    2015-06-01

    This study was aimed at understanding the clinicopathological significance of HOXA9 hypermethylation in non-small cell lung cancer (NSCLC). HOXA9 hypermethylation was characterized in six lung cancer cell lines, and its clinicopathological significance was analyzed using methylation-specific PCR in 271 formalin-fixed paraffin-embedded tissues and 27 fresh-frozen tumor and matched normal tissues from 298 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA9 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA9 into H23 lung cancer cells resulted in the inhibition of cell migration but not proliferation. Conversely, sequence-specific siRNA-mediated knockdown of HOXA9 enhanced cell migration. The mRNA levels of HOXA9 in 27 fresh-frozen tumor tissues were significantly lower than in matched normal tissues (P<0.0001; Wilcoxon signed-rank test). HOXA9 hypermethylation was found in 191 (70%) of 271 primary NSCLCs. HOXA9 hypermethylation was not associated with tumor size (P=0.12) and Ki-67 proliferation index (P=0.15). However, patients with HOXA9 hypermethylation had poor recurrence-free survival (hazard ratio=3.98, 95% confidence interval = 1.07-17.09, P=0.01) in never-smokers, after adjusting for age, sex, tumor size, adjuvant therapy, pathologic stage, and histology. In conclusion, the present study suggests that HOXA9 inhibits migration of lung cancer cells and its hypermethylation is an independent prognostic factor for recurrence-free survival in never-smokers with NSCLC. © 2014 Wiley Periodicals, Inc.

  11. Combination Chemotherapy, Radiation Therapy, and Gefitinib in Treating Patients With Stage III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-06-04

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  12. Bone marrow-derived fibrocytes promote stem cell-like properties of lung cancer cells.

    PubMed

    Saijo, Atsuro; Goto, Hisatsugu; Nakano, Mayuri; Mitsuhashi, Atsushi; Aono, Yoshinori; Hanibuchi, Masaki; Ogawa, Hirohisa; Uehara, Hisanori; Kondo, Kazuya; Nishioka, Yasuhiko

    2018-05-01

    Cancer stem cells (CSCs) represent a minor population that have clonal tumor initiation and self-renewal capacity and are responsible for tumor initiation, metastasis, and therapeutic resistance. CSCs reside in niches, which are composed of diverse types of stromal cells and extracellular matrix components. These stromal cells regulate CSC-like properties by providing secreted factors or by physical contact. Fibrocytes are differentiated from bone marrow-derived CD14 + monocytes and have features of both macrophages and fibroblasts. Accumulating evidence has suggested that stromal fibrocytes might promote cancer progression. However, the role of fibrocytes in the CSC niches has not been revealed. We herein report that human fibrocytes enhanced the CSC-like properties of lung cancer cells through secreted factors, including osteopontin, CC-chemokine ligand 18, and plasminogen activator inhibitor-1. The PIK3K/AKT pathway was critical for fibrocytes to mediate the CSC-like functions of lung cancer cells. In human lung cancer specimens, the number of tumor-infiltrated fibrocytes was correlated with high expression of CSC-associated protein in cancer cells. These results suggest that fibrocytes may be a novel cell population that regulates the CSC-like properties of lung cancer cells in the CSC niches. Copyright © 2018. Published by Elsevier B.V.

  13. Small Cell Lung Cancer Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Small cell lung cancer treatment options include surgery, chemotherapy and radiation therapy, laser therapy, targeted therapy, and palliative care. Get detailed treatment information for newly diagnosed and recurrent small cell lung cancer in this summary for clinicians.

  14. Sirolimus and Gold Sodium Thiomalate in Treating Patients With Advanced Squamous Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2012-12-13

    Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  15. Differentially expressed genes in nonsmall cell lung cancer: expression profiling of cancer-related genes in squamous cell lung cancer.

    PubMed

    Kettunen, Eeva; Anttila, Sisko; Seppänen, Jouni K; Karjalainen, Antti; Edgren, Henrik; Lindström, Irmeli; Salovaara, Reijo; Nissén, Anna-Maria; Salo, Jarmo; Mattson, Karin; Hollmén, Jaakko; Knuutila, Sakari; Wikman, Harriet

    2004-03-01

    The expression patterns of cancer-related genes in 13 cases of squamous cell lung cancer (SCC) were characterized and compared with those in normal lung tissue and 13 adenocarcinomas (AC), the other major type of nonsmall cell lung cancer (NSCLC). cDNA array was used to screen the gene expression levels and the array results were verified using a real-time reverse-transcriptase-polymerase chain reaction (RT-PCR). Thirty-nine percent of the 25 most upregulated and the 25 most downregulated genes were common to SCC and AC. Of these genes, DSP, HMGA1 (alias HMGIY), TIMP1, MIF, CCNB1, TN, MMP11, and MMP12 were upregulated and COPEB (alias CPBP), TYROBP, BENE, BMPR2, SOCS3, TIMP3, CAV1, and CAV2 were downregulated. The expression levels of several genes from distinct protein families (cytokeratins and hemidesmosomal proteins) were markedly increased in SCC compared with AC and normal lung. In addition, several genes, overexpressed in SCC, such as HMGA1, CDK4, IGFBP3, MMP9, MMP11, MMP12, and MMP14, fell into distinct chromosomal loci, which we have detected as gained regions on the basis of comparative genomic hybridization data. Our study revealed new candidate genes involved in NSCLC.

  16. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  17. Hedgehog pathway inhibition radiosensitizes non-small cell lung cancers.

    PubMed

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T; Aftab, Blake T; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M; Wong, John; Rudin, Charles M; Tran, Phuoc T; Hales, Russell K

    2013-05-01

    Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras(G12D)-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntagmore » and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.« less

  19. Radiation Therapy, Chemotherapy, and Soy Isoflavones in Treating Patients With Stage IIIA-IIIB Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-05-23

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  20. Genetically Modified T Cells in Treating Patients With Stage III-IV Non-small Cell Lung Cancer or Mesothelioma

    ClinicalTrials.gov

    2018-06-07

    Advanced Pleural Malignant Mesothelioma; HLA-A*0201 Positive Cells Present; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Pleural Malignant Mesothelioma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Pleural Malignant Mesothelioma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Pleural Malignant Mesothelioma AJCC v7; WT1 Positive

  1. Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung

    DOE PAGES

    Robinson, Lary A.; Jaing, Crystal J.; Campbell, Christine Pierce; ...

    2016-07-14

    Although ~20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFRmore » expression. Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Lastly, most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.« less

  2. Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Lary A.; Jaing, Crystal J.; Campbell, Christine Pierce

    Although ~20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFRmore » expression. Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Lastly, most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.« less

  3. Enhanced expression of PKM2 associates with the biological properties of cancer stem cells from A549 human lung cancer cells.

    PubMed

    Guo, Chang-Ying; Yan, Chen; Luo, Lan; Goto, Shinji; Urata, Yoshishige; Xu, Jian-Jun; Wen, Xiao-Ming; Kuang, Yu-Kang; Tou, Fang-Fang; Li, Tao-Sheng

    2017-04-01

    Cancer cells express the M2 isoform of glycolytic enzyme pyruvate kinase (PKM2) for favoring the survival under a hypoxic condition. Considering the relative low oxygen microenvironment in stem cell niche, we hypothesized that an enhanced PKM2 expression associates with the biological properties of cancer stem cells. We used A549 human lung cancer cell line and surgical resected lung cancer tissue samples from patients for experiments. We confirmed the co-localization of PKM2 and CD44, a popular marker for cancer stem cells in lung cancer tissue samples from patients. The expression of PKM2 was clearly observed in approximately 80% of the A549 human lung cancer cells. Remarkably, enhanced expression of PKM2 was specially observed in these cells that also positively expressed CD44. Downregulation of PKM2 in CD44+ cancer stem cells by siRNA significantly impaired the potency for spheroid formation, decreased the cell survival under fetal bovine serum deprivation and hypoxic conditions, but increased their sensitivity to anti-cancer drug of cisplatin and γ-ray. The enhanced expression of PKM2 seems to associate with the biological properties of cancer stem cells from A549 human lung cancer cells. Selective targeting of PKM2 may provide a new strategy for cancer therapy, especially for patients with therapeutic resistance.

  4. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    PubMed

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  5. [Recent Advances in Immunotherapy for Non-Small Cell Lung Cancer].

    PubMed

    Muto, Satoshi; Suzuki, Hiroyuki

    2018-02-01

    Cancer immunotherapy for non-small cell lung cancer began around 1970 with nonspecific immunomodulators and cytokine therapies. This has since developed into cell therapy including lymphokine-activated killer cells(LAK)and tumor infiltrating lymphocytes(TIL), as well as cancer vaccine therapy. However, no clear indication of effectiveness has been reported. Despite the high expectation over the effectiveness of cancer vaccine therapy, the treatment strategy was deemed unsuccessful, and focus turned to the study of immune escape mechanism, which is now regarded as standard treatment for non-small cell lung cancer. With the advent of immune checkpoint inhibitors, cancer immunotherapy has finally become a standard treatment for non-small cell lung cancer. There are still several obstacles to overcome including the identification of a predictive biomarker for improved efficacy, as well as the establishment of multidrug or multimodality combination therapy. PD-L1 expression is currently used as a predictive biomarker for anti-PD-1 therapy, but does not meet the expectations of the aimed results. Although tumor mutation burden is considered another promising biomarker, there remain clinical problems, for example the need of next generation sequencer. It was reported that combination therapy of immune checkpoint inhibitor after chemoradiation therapy was also effective. However, it remains unclear of what is required to further improve the clinical effects. In this article, we will review the history of cancer immunotherapy for non-small cell lung cancer and discuss the future prospects.

  6. CXCL16 and CXCR6 are coexpressed in human lung cancer in vivo and mediate the invasion of lung cancer cell lines in vitro.

    PubMed

    Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang

    2014-01-01

    Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis.

  7. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer

    PubMed Central

    Song, Wenqiang; Ma, Yufang; Wang, Jialiang; Brantley-Sieders, Dana; Chen, Jin

    2014-01-01

    Recent genome-wide analyses in human lung cancer revealed that EPHA2 receptor tyrosine kinase is overexpressed in non-small cell lung cancer (NSCLC), and high levels of EPHA2 correlate with poor clinical outcome. However, the mechanistic basis for EPHA2-mediated tumor promotion in lung cancer remains poorly understood. Here we show that the JNK/c-JUN signaling mediates EPHA2-dependent tumor cell proliferation and motility. A screen of phospho-kinase arrays revealed a decrease in phospho-c-JUN levels in EPHA2 knockdown cells. Knockdown of EPHA2 inhibited p-JNK and p-c-JUN levels in approximately 50% of NSCLC lines tested. Treatment of parental cells with SP600125, a JNK inhibitor, recapitulated defects in EPHA2-deficient tumor cells; whereas constitutively activated JNK mutants were sufficient to rescue phenotypes. Knockdown of EPHA2 also inhibited tumor formation and progression in xenograft animal models in vivo. Furthermore, we investigated the role of EPHA2 in cancer stem-like cells. RNAi-mediated depletion of EPHA2 in multiple NSCLC lines decreased the ALDH positive cancer stem-like population and tumor spheroid formation in suspension. Depletion of EPHA2 in sorted ALDH positive populations markedly inhibited tumorigenicity in nude mice. Furthermore, analysis of a human lung cancer tissue microarray revealed a significant, positive association between EPHA2 and ALDH expression, indicating an important role for EPHA2 in human lung cancer stem-like cells. Collectively, these studies revealed a critical role of JNK signaling in EPHA2-dependent lung cancer cell proliferation and motility and a role for EPHA2 in cancer stem-like cell function, providing evidence for EPHA2 as a potential therapeutic target in NSCLC. PMID:24607842

  8. CCDC106 promotes non-small cell lung cancer cell proliferation.

    PubMed

    Zhang, Xiupeng; Zheng, Qin; Wang, Chen; Zhou, Haijing; Jiang, Guiyang; Miao, Yuan; Zhang, Yong; Liu, Yang; Li, Qingchang; Qiu, Xueshan; Wang, Enhua

    2017-04-18

    Coiled-coil domain containing (CCDC) family members enhance tumor cell proliferation, and high CCDC protein levels correlate with unfavorable prognoses. Limited research demonstrated that CCDC106 may promote the degradation of p53/TP53 protein and inhibit its transactivity. The present study demonstrated that CCDC106 expression correlates with advanced TNM stage (P = 0.008), positive regional lymph node metastasis (P < 0.001), and poor overall survival (P < 0.001) in 183 non-small cell lung cancer cases. A549 and H1299 cells were selected as representative of CCDC106-low and CCDC106-high expressing cell lines, respectively. CCDC106 overexpression promoted A549 cell proliferation and xenograft tumor growth in nude mice, while siRNA-mediated CCDC106 knockdown inhibited H1299 cell proliferation. CCDC106 promoted AKT phosphorylation and upregulated the cell cycle-regulating proteins Cyclin A2 and Cyclin B1. Cell proliferation promoted by CCDC106 via Cyclin A2 and Cyclin B1 was rescued by treatment with the AKT inhibitor, LY294002. Our studies revealed that CCDC106 is associated with non-small cell lung cancer progression and unfavorable prognosis. CCDC106 enhanced Cyclin A2 and Cyclin B1 expression and promoted A549 and H1299 cell proliferation, which depended on AKT signaling. These results suggest that CCDC106 may be a novel target for lung cancer treatment.

  9. The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells.

    PubMed

    Shao, Genbao; Wang, Ranran; Sun, Aiqin; Wei, Jing; Peng, Ke; Dai, Qian; Yang, Wannian; Lin, Qiong

    2018-02-19

    EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4

  10. WNT7a induces E-cadherin in lung cancer cells.

    PubMed

    Ohira, Tatsuo; Gemmill, Robert M; Ferguson, Kevin; Kusy, Sophie; Roche, Joëlle; Brambilla, Elisabeth; Zeng, Chan; Baron, Anna; Bemis, Lynne; Erickson, Paul; Wilder, Elizabeth; Rustgi, Anil; Kitajewski, Jan; Gabrielson, Edward; Bremnes, Roy; Franklin, Wilbur; Drabkin, Harry A

    2003-09-02

    E-cadherin loss in cancer is associated with de-differentiation, invasion, and metastasis. Drosophila DE-cadherin is regulated by Wnt/beta-catenin signaling, although this has not been demonstrated in mammalian cells. We previously reported that expression of WNT7a, encoded on 3p25, was frequently downregulated in lung cancer, and that loss of E-cadherin or beta-catenin was a poor prognostic feature. Here we show that WNT7a both activates E-cadherin expression via a beta-catenin specific mechanism in lung cancer cells and is involved in a positive feedback loop. Li+, a GSK3 beta inhibitor, led to E-cadherin induction in an inositol-independent manner. Similarly, exposure to mWNT7a specifically induced free beta-catenin and E-cadherin. Among known transcriptional suppressors of E-cadherin, ZEB1 was uniquely correlated with E-cadherin loss in lung cancer cell lines, and its inhibition by RNA interference resulted in E-cadherin induction. Pharmacologic reversal of E-cadherin and WNT7a losses was achieved with Li+, histone deacetylase inhibition, or in some cases only with combined inhibitors. Our findings provide support that E-cadherin induction by WNT/beta-catenin signaling is an evolutionarily conserved pathway operative in lung cancer cells, and that loss of WNT7a expression may be important in lung cancer development or progression by its effects on E-cadherin.

  11. Inhibition of mTOR enhances radiosensitivity of lung cancer cells and protects normal lung cells against radiation.

    PubMed

    Zheng, Hang; Wang, Miao; Wu, Jing; Wang, Zhi-Ming; Nan, Hai-Jun; Sun, He

    2016-06-01

    Radiotherapy has been used for a long time as a standard therapy for cancer; however, there have been no recent research breakthroughs. Radioresistance and various side-effects lead to the unexpected outcomes of radiation therapy. Specific and accurate targeting as well as reduction of radioresistance have been major challenges for irradiation therapy. Recent studies have shown that rapamycin shows promise for inhibiting tumorigenesis by suppressing mammalian target of rapamycin (mTOR). We found that the combination of rapamycin with irradiation significantly diminished cell viability and colony formation, and increased cell apoptosis, as compared with irradiation alone in lung cancer cell line A549, suggesting that rapamycin can enhance the effectiveness of radiation therapy by sensitizing cancer cells to irradiation. Importantly, we observed that the adverse effects of irradiation on a healthy lung cell line (WI-38) were also offset. No enhanced protein expression of mTOR signaling was observed in WI-38 cells, which is normally elevated in lung cancer cells. Moreover, DNA damage was significantly less with the combination therapy than with irradiation therapy alone. Our data suggest that the incorporation of rapamycin during radiation therapy could be a potent way to improve the sensitivity and effectiveness of radiation therapy as well as to protect normal cells from being damaged by irradiation.

  12. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    PubMed Central

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  13. CXCL16 and CXCR6 Are Coexpressed in Human Lung Cancer In Vivo and Mediate the Invasion of Lung Cancer Cell Lines In Vitro

    PubMed Central

    Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang

    2014-01-01

    Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis. PMID:24897301

  14. Docetaxel, Cisplatin, Pegfilgrastim, and Erlotinib Hydrochloride in Treating Patients With Stage IIIB or Stage IV Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2018-02-01

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  15. [Inhibitive effect of LAK cells induced by dendritic cells on implanted lung cancer in nude mice].

    PubMed

    Gao, Qiu; Li, Jintian; Wang, Siyu; Chen, Shiping; Liu, Wei; Wu, Yilong

    2004-10-20

    To study the inhibitive effect of LAK cells induced by dendritic cells (DCs) on implanted lung adenocarcinoma in nude mice. The lung adenocarcinoma model was constructed in nude mice using the resected samples of lung cancer patient. The lung cancer cell lysate was obtained by free-zing and thrawing cycles. Peripheral blood mononuclear cells (PBMNC) were obtained from venous blood of the same patient, in which the adherent PBMNC fraction was cultured with DCGF, and the non-adherent PBMNC fraction was cultured with rhIL-2. DCs were pulsed with lung cancer cell lysates. And then mature DCs were incubated with LAK cells and the mixed cells were named DC-LAK cells. DC-LAK cells were injected into lung cancer-bearing nude mice to observe the inhibitive effect. The lung adenocarcinoma mo-del was successfully constructed. The average tumor weights of DC-LAK, LAK, DC and saline control groups were 0.47, 1.05, 1.30 and 1.58 g respectively, and the inhibitive rates of DC-LAK, LAK and DC were 70.3%, 33.5% and 17.9% respectively. The antitumor activity of DC-LAK cells was significantly stronger than that of LAK cells (P < 0.05). The results of in vivo experiment show that the antitumor activity of DC-LAK cells is stronger than that of LAK cells, so DC-LAK cells treatment may be a more efficient approach of lung cancer biological therapy. This experiment may provide a foundation for clinical application of DC vaccine.

  16. Characterization of the cell of origin for small cell lung cancer

    PubMed Central

    Park, Kwon-Sik; Liang, Mei-Chih; Raiser, David M; Zamponi, Raffaella; Roach, Rebecca R; Curtis, Stephen J; Walton, Zandra; Schaffer, Bethany E; Roake, Caitlin M; Zmoos, Anne-Flore; Kriegel, Christina; Wong, Kwok-Kin

    2011-01-01

    Small cell lung carcinoma (SCLC) is a neuroendocrine subtype of lung cancer that affects more than 200,000 people worldwide every year with a very high mortality rate. Here, we used a mouse genetics approach to characterize the cell of origin for SCLC; in this mouse model, tumors are initiated by the deletion of the Rb and p53 tumor suppressor genes in the lung epithelium of adult mice. We found that mouse SCLCs often arise in the lung epithelium, where neuroendocrine cells are located, and that the majority of early lesions were composed of proliferating neuroendocrine cells. In addition, mice in which Rb and p53 are deleted in a variety of non-neuroendocrine lung epithelial cells did not develop SCLC. These data indicate that SCLC likely arises from neuroendocrine cells in the lung. PMID:21822053

  17. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  18. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  19. Msi2 Regulates the Aggressiveness of Non Small Cell Lung Cancer (NSCLC)

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0192 TITLE: Msi2 Regulates the Aggressiveness of Non -Small Cell Lung Cancer (NSCLC) PRINCIPAL INVESTIGATOR: Yanis...Annual 3. DATES COVERED (From - To) 15 Sep 2015 - 14 Sep 2016 4. TITLE AND SUBTITLE Msi2 Regulates the Aggressiveness of Non -Small Cell Lung Cancer...in vitro and in vivo are ongoing, while immunohistochemistry studies are starting Fall 2016. 15. SUBJECT TERMS Non -small cell lung cancer

  20. Peptide ligands targeting integrin alpha3beta1 in non-small cell lung cancer.

    PubMed

    Lau, Derick; Guo, Linlang; Liu, Ruiwu; Marik, Jan; Lam, Kit

    2006-06-01

    Lung cancer is one of the most common cancers and is the leading cause of cancer death. We wish to identify peptide ligands for unique cell surface receptors of non-small lung cancer with the hope of developing these ligands as diagnostic and therapeutic agents. Using the method of 'one-bead one-peptide' combinatorial chemistry, a library of random cyclic octapeptides was synthesized on polystyrene beads. This library was used to screen for peptides that promoted attachment of lung adenocarcinoma cells employing a 'cell-growth-on-bead' assay. Consensus peptide sequences of cNGXGXXc were identified. These peptides promoted cell adhesion by targeting integrin alpha3beta1 over-expressed in non-small lung cancer cells. These peptide beads can be applied to capture cancer cells in malignant pleural fluid for purpose of diagnosis of lung cancer.

  1. PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Lee, Yeon Kyung; Lee, Jong Yeon; Hong, Jeong Hee; Khang, Dongwoo

    2017-11-01

    Although activating apoptosis in cancer cells by targeting the mitochondria is an effective strategy for cancer therapy, insufficient targeting of the mitochondria in cancer cells restricts the availability in clinical treatment. Here, we report on a polyethylene glycol-coated carbon nanotube (CNT)-ABT737 nanodrug that improves the mitochondrial targeting of lung cancer cells. The polyethylene glycol-coated CNT-ABT737 nanodrug internalized into the early endosomes via macropinocytosis and clathrin-mediated endocytosis in advance of early endosomal escape and delivered into the mitochondria. Cytosol release of the nanodrug led to apoptosis of lung cancer cells by abruption of the mitochondrial membrane potential, inducing Bcl-2-mediated apoptosis and generating intracellular reactive oxygen species. As such, this study provides an effective strategy for increasing the anti-lung cancer efficacy by increasing mitochondria accumulation rate of cytosol released anticancer nanodrugs.

  2. Knockdown of cullin 4A inhibits growth and increases chemosensitivity in lung cancer cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; You, Liang; Jablons, David M; Li, Ya-Chin; Mao, Jian-Hua; Xu, Zhidong; Lung, Jr-Hau; Yang, Cheng-Ta; Liu, Shih-Tung

    2016-07-01

    Cullin 4A (Cul4A) has been observed to be overexpressed in various cancers. In this study, the role of Cul4A in the growth and chemosensitivity in lung cancer cells were studied. We showed that Cul4A is overexpressed in lung cancer cells and tissues. Knockdown of the Cul4A expression by shRNA in lung cancer cells resulted in decreased cellular proliferation and growth in lung cancer cells. Increased sensitivity to gemcitabine, a chemotherapy drug, was also noted in those Cul4A knockdown lung cancer cells. Moreover, increased expression of p21, transforming growth factor (TGF)-β inducible early gene-1 (TIEG1) and TGF beta-induced (TGFBI) was observed in lung cancer cells after Cul4A knockdown, which may be partially related to increased chemosensitivity to gemcitabine. G0/G1 cell cycle arrest was also noted after Cul4A knockdown. Notably, decreased tumour growth and increased chemosensitivity to gemcitabine were also noted after Cul4A knockdown in lung cancer xenograft nude mice models. In summary, our study showed that targeting Cul4A with RNAi or other techniques may provide a possible insight to the development of lung cancer therapy in the future. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. A novel anticancer agent SNG1153 inhibits growth of lung cancer stem/progenitor cells

    PubMed Central

    Wang, Jing; Zhu, Hai; Han, Yuqing; Jin, Mingji; Wang, Jun; Zhou, Congya; Ma, Junfeng; Lin, Qingcong; Wang, Zhaoyi; Meng, Kun; Fu, Xueqi

    2016-01-01

    Lung cancer is the leading cause of cancer-related death in both men and women. Lung cancer contains a small population of cancer cells with stem-like features known as cancer stem cells (CSCs). CSCs are often more resistant to current therapeutic treatments. Thus, it is urgent to develop a novel agent that is able to inhibit CSCs growth. In this study, we examined the ability of SNG1153, a novel chemical agent to inhibit the growth of lung CSCs. We found that SNG1153 inhibited growth and induced apoptosis in established lung cancer cells. We also found that SNG1153 inhibited the tumorsphere formation and decreased CD133-positive (lung CSC marker) cancer cells. SNG1153 was able to attenuate tumor formation in NOD/SCID (non-obese diabetic/severe combined immunodeficient) mice injected with lung tumorsphere cells. We further demonstrated that SNG1153 induced β-catenin phosphorylation and down-regulated β-catenin. Our results thus demonstrate that SNG1153 effectively inhibits the growth of lung CSCs and suggest that SNG1153 may be a novel therapeutic agent to treat human lung cancer. PMID:27281614

  4. Single-Cell RNA Sequencing of the Bronchial Epithelium in Smokers With Lung Cancer

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0234 TITLE: Single-Cell RNA Sequencing of the Bronchial Epithelium in Smokers With Lung Cancer PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Single-Cell RNA Sequencing of the Bronchial Epithelium in Smokers With Lung Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...single cell RNA sequencing on airway epithelial cells obtained from smokers with and without lung cancer to identify cell-type dependent gene expression

  5. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    PubMed Central

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Olive Ngalame, Ntube N.; Waalkes, Michael P.

    2013-01-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell’s ability to adapt to chronic cadmium exposure. PMID:23811327

  6. Increased hydrostatic pressure enhances motility of lung cancer cells.

    PubMed

    Kao, Yu-Chiu; Lee, Chau-Hwang; Kuo, Po-Ling

    2014-01-01

    Interstitial fluid pressures within most solid tumors are significantly higher than that in the surrounding normal tissues. Therefore, cancer cells must proliferate and migrate under the influence of elevated hydrostatic pressure while a tumor grows. In this study, we developed a pressurized cell culture device and investigated the influence of hydrostatic pressure on the migration speeds of lung cancer cells (CL1-5 and A549). The migration speeds of lung cancer cells were increased by 50-60% under a 20 mmHg hydrostatic pressure. We also observed that the expressions of aquaporin in CL1-5 and A549 cells were increased under the hydrostatic pressure. Our preliminary results indicate that increased hydrostatic pressure plays an important role in tumor metastasis.

  7. Coiled-coil domain-containing protein 8 inhibits the invasiveness and migration of non-small cell lung cancer cells.

    PubMed

    Jiang, Gui-Yang; Zhang, Xiu-Peng; Zhang, Yong; Xu, Hong-Tao; Wang, Liang; Li, Qing-Chang; Wang, En-Hua

    2016-10-01

    Lung cancer has always been the leading cause of death among patients with malignant tumors, and the majority of these patients die because of cancer cell invasion and metastasis. Previous studies have implicated coiled-coil domain-containing protein 8 (CCDC8) as a tumor suppressor in several types of cancer, such as breast and prostate cancers. However, the expression levels or functions of CCDC8 in lung cancer have not been elucidated. Here, we used immunohistochemical staining to measure CCDC8 expression in 147 samples from tumors and 30 samples from the adjacent normal lung tissues of patients with non-small cell lung cancer. CCDC8 was shown to be located predominantly in the cytoplasm and partially on the cell membrane, and its expression level was significantly lower in lung cancer samples than that in the adjacent normal lung tissues (P=.001). CCDC8 expression was closely related to tumor differentiation (P=.039), tumor-node-metastasis stage (P=.009), lymph node metastasis (P=.038), and prognosis (P=.043) of lung cancer. Transfection of A549 cells with CCDC8 significantly reduced cell invasion and migration (P<.05), whereas the invasiveness and migration capacity in CCDC8-knockdown A549 cells were significantly increased in comparison with the control cells (P<.05). Furthermore, we demonstrated that CCDC8 can downregulate the expression of Snail and upregulate the expression of E-cadherin by inhibiting p-P38 and p-IκBα. Collectively, CCDC8 may suppress the invasion and metastasis of lung cancer cells, and it may represent a promising therapeutic target for non-small cell lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  9. The bisphosphonate zoledronic acid effectively targets lung cancer cells by inhibition of protein prenylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fan; Li, Pengcheng; Gong, Jianhua

    Aberrant activation of oncoproteins such as members of the Ras family is common in human lung cancers. The proper function of Ras largely depends on a post-translational modification termed prenylation. Bisphosphonates have been shown to inhibit prenylation in cancer cells. In this study, we show that zoledronic acid, a third generation bisphosphonate, is effective in targeting lung cancer cells. This is achieved by the induction of apoptosis and inhibition of proliferation, through suppressing the activation of downstream Ras and EGFR signalling by zoledronic acid. The combination of zoledronic acid and paclitaxel or cisplatin (commonly used chemotherapeutic drugs for lung cancer)more » augmented the activity of either drug alone in in vitro lung cancer cellular system and in vivo lung xenograft mouse model. Importantly, zoledronic acid inhibits protein prenylation as shown by the increased levels of unprenylated Ras and Rap1A. In addition, the effects of zoledronic acid were reversed in the presence of geranylgeraniol and farnesol, further confirming that mechanism of zoledroinc acid's action in lung cancer cells is through prenylation inhibition. Since zoledronic acid is already available for clinic use, these results suggest that it may be an effective addition to the armamentarium of drugs for the treatment of lung cancer. - Highlights: • Zoledronic acid (ZA) is effectively against lung cancer cells in vitro and in vivo. • ZA acts on lung cancer cells through inhibition of protein prenylation. • ZA suppresses global downstream phosphorylation of Ras signalling. • ZA enhances the effects of chemotherapeutic drugs in lung cancer cells.« less

  10. Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties

    PubMed Central

    Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik

    2010-01-01

    Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify

  11. Radiation Therapy and MK-3475 for Patients With Recurrent/Metastatic Head and Neck Cancer, Renal Cell Cancer, Melanoma, and Lung Cancer

    ClinicalTrials.gov

    2017-10-25

    Head and Neck Squamous Cell Carcinoma; Metastatic Renal Cell Cancer; Recurrent Head and Neck Carcinoma; Recurrent Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IV Lung Cancer; Stage IV Skin Melanoma

  12. Erlotinib in Treating Patients With Advanced Non-Small Cell Lung Cancer, Ovarian Cancer, or Squamous Cell Carcinoma of the Head and Neck

    ClinicalTrials.gov

    2013-01-08

    Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx

  13. Reverse of non-small cell lung cancer drug resistance induced by cancer-associated fibroblasts via a paracrine pathway.

    PubMed

    Zhang, Quanhui; Yang, Junping; Bai, Jie; Ren, Jianzhuang

    2018-04-01

    The tumor microenvironment orchestrates the sustained growth, metastasis and recurrence of cancer. As an indispensable component of the tumor microenvironment, cancer-associated fibroblasts (CAF) are considered as an essential synthetic machine producing various tumor components, leading to cancer sustained stemness, drug resistance and tumor recurrence. Here, we developed a sustainable primary culture of lung cancer cells fed with lung cancer-associated fibroblasts, resulting in enrichment and acquisition of drug resistance in cancer cells. Moreover, IGF2/AKT/Sox2/ABCB1 signaling activation in cancer cells was observed in the presence of CAF, which induces upregulation of P-glycoprotein expression and the drug resistance of non-small cell lung cancer cells. Our results demonstrated that CAF cells constitute a mechanism for cancer drug resistance. Thus, traditional chemotherapy combined with insulin-like growth factor 2 (IGF2) signaling inhibitor may present an innovative therapeutic strategy for non-small cell lung cancer therapy. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy

    PubMed Central

    Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena

    2017-01-01

    High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient’s against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers. PMID:28187172

  15. Perioperative detection of circulating tumour cells in patients with lung cancer.

    PubMed

    Chudasama, Dimple; Burnside, Nathan; Beeson, Julie; Karteris, Emmanouil; Rice, Alexandra; Anikin, Vladimir

    2017-08-01

    Lung cancer is a leading cause of mortality and despite surgical resection a proportion of patients may develop metastatic spread. The detection of circulating tumour cells (CTCs) may allow for improved prediction of metastatic spread and survival. The current study evaluates the efficacy of the ScreenCell® filtration device, to capture, isolate and propagate CTCs in patients with primary lung cancer. Prior to assessment of CTCs, the present study detected cancer cells in a proof-of-principle- experiment using A549 human lung carcinoma cells as a model. Ten patients (five males and five females) with pathologically diagnosed primary non-small cell lung cancer undergoing surgical resection, had their blood tested for CTCs. Samples were taken from a peripheral vessel at the baseline, from the pulmonary vein draining the lobe containing the tumour immediately prior to division, a further central sample was taken following completion of the resection, and a final peripheral sample was taken three days post-resection. A significant increase in CTCs was observed from baseline levels following lung manipulation. No association was able to be made between increased levels of circulating tumour cells and survival or the development of metastatic deposits. Manipulation of the lung during surgical resection for non-small cell lung carcinoma results in a temporarily increased level of CTCs; however, no clinical impact for this increase was observed. Overall, the study suggests the ScreenCell® device has the potential to be used as a CTC isolation tool, following further work, adaptations and improvements to the technology and validation of results.

  16. Circulating tumor cells in lung cancer.

    PubMed

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. Copyright © 2012 S. Karger AG, Basel.

  17. USP7 promotes cell proliferation through the stabilization of Ki-67 protein in non-small cell lung cancer cells.

    PubMed

    Zhang, Chao; Lu, Jing; Zhang, Quan-Wu; Zhao, Wei; Guo, Jia-Hui; Liu, Shan-Ling; Wu, Ying-Li; Jiang, Bin; Gao, Feng-Hou

    2016-10-01

    The Ki-67 antigen (Ki-67) is the most reliable immunohistochemical marker for evaluation of cell proliferation in non-small cell lung cancer. However, the mechanisms underlying the regulation of protein levels of Ki-67 in non-small cell lung cancer have remained elusive. In this study, we found that Ki-67 and ubiquitin-specific processing protease 7 (USP7) protein were highly expressed in the nucleus of non-small cell lung cancer cells. Furthermore, statistical analysis uncovered the existence of a strong correlation between Ki-67 and USP7 levels. We could also show that the protein levels of Ki-67 in non-small cell lung cancer cells significantly decreased after treatment with P22077, a selective chemical inhibitor of USP7, while the Ki-67 mRNA levels were unperturbed. Similar results were obtained by knocking down USP7 using short hairpin RNA (shRNA) in lung cancer cells. Interestingly, we noticed that ubiquitination levels of Ki-67 increased dramatically in USP7-silenced cells. The tests in vitro and vivo showed a significant delay in tumor cell growth upon knockdown of USP7. Additionally, drug sensitivity tests indicated that USP7-silenced A549 cells had enhanced sensitivity to paclitaxel and docetaxel, while there was no significant change in sensitivity toward carboplatin and cisplatin. Taken together, these data strongly suggest that the overexpression of USP7 might promote cell proliferation by deubiquitinating Ki-67 protein, thereby maintaining its high levels in the non-small cell lung cancer. Our study also hints potential for the development of deubiquitinase-based therapies, especially those targeting USP7 to improve the condition of patients diagnosed with non-small cell lung cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Gefitinib in Treating Patients With Stage IB, II, or IIIA Non-small Cell Lung Cancer That Was Completely Removed by Surgery

    ClinicalTrials.gov

    2014-12-19

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer

  19. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    PubMed

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  20. Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress.

    PubMed

    Lu, Jun; Chen, Jian; Xu, Nianjun; Wu, Jun; Kang, Yani; Shen, Tingting; Kong, Hualei; Ma, Chao; Cheng, Ming; Shao, Zhifeng; Xu, Ling; Zhao, Xiaodong

    2016-09-06

    Application of cisplatin (DDP) for treating lung cancer is restricted due to its toxicity and lung cancer's drug resistance. In this study, we examined the effect of Jinfukang (JFK), an effective herbal medicine against lung cancer, on DDP-induced cytotoxicity in lung cancer cells. Morphologically, we observed that JFK increases DDP-induced pro-apoptosis in A549 cells in a synergistic manner. Transcriptome profiling analysis indicated that the combination of JFK and DDP regulates genes involved in apoptosis-related signaling pathways. Moreover, we found that the combination of JFK and DDP produces synergistic pro-apoptosis effect in other lung cancer cell lines, such as NCI-H1975, NCI-H1650, and NCI-H2228. Particularly, we demonstrated that AIFM2 is activated by the combined treatment of JFK and DDP and partially mediates the synergistic pro-apoptosis effect. Collectively, this study not only offered the first evidence that JFK promotes DDP-induced cytotoxicity, and activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress, but also provided a novel insight for improving cytotoxicity by combining JFK with DDP to treat lung cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Impacts of Exercise on Prognostic Biomarkers in Lung Cancer Patients

    ClinicalTrials.gov

    2016-02-18

    Extensive Stage Small Cell Lung Cancer; Healthy, no Evidence of Disease; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  2. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration.

    PubMed

    Karki, Surya B; Yildirim-Ayan, Eda; Eisenmann, Kathryn M; Ayan, Halim

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.

  3. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells

    PubMed Central

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-01-01

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter −223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors. PMID:28099148

  4. Correlation of cancer stem cell markers and immune cell markers in resected non-small cell lung cancer.

    PubMed

    Huang, Zhaoqin; Yu, Haining; Zhang, Jianbo; Jing, Haiyan; Zhu, Wanqi; Li, Xiaolin; Kong, Lingling; Xing, Ligang; Yu, Jinming; Meng, Xiangjiao

    2017-01-01

    Background: Recent studies confirmed that immunotherapy showed prominent efficacy in non-small cell lung cancer (NSCLC). Cancer stem cells/cancer initiating cells are resistant to anticancer treatment. The purpose of the study was to analyze the correlation of cancer stem cells/cancer initiating cells and tumor-infiltrating immune cells in NSCLC. Methods: CD133, octamer 4 (OCT-4), CD8, CD56, human leukocyte antigen (HLA) class I and programmed death ligand-1 (PD-L1) were assessed in 172 resected NSCLC samples. The staining was analyzed and scored by the pathologist who was blinded to the clinical pathological data of the patients. Results: High CD8+ T cell infiltration was correlated significantly with squamous cell carcinoma histology (p=0.008). High PD-L1 expression (≥10%) was associated with high tumor status (p=0.043). Pearson's correlation test showed that CD56+ cells were negatively correlated with CD133 expression (r=-0.361, p<0.001) and weakly correlated with negative OCT-4 expression (r=-0.180, p=0.018). There was a strong positive correlation between CD8 and HLA class I (r=0.573, p<0.001). In the survival analysis, high CD8+ T cell infiltration is an independent predictor of improved disease-free survival and overall survival. Patients with low CD133 expression and high CD56 expression had a longer overall survival than those with high CD133 expression and/or low CD56 expression (p=0.013). Conclusion: There is a negative correlation between CD56+ cells and cancer stem cell markers. This correlation may confirm the possibility that natural killer cells can target CD133+ cancer stem cells/cancer initiating cells in non-small cell lung cancer.

  5. Reduced survival in patients with early-stage non-small-cell lung cancer is associated with high pleural endothelial progenitor cell levels.

    PubMed

    Pirro, Matteo; Cagini, Lucio; Mannarino, Massimo R; Andolfi, Marco; Potenza, Rossella; Paciullo, Francesco; Bianconi, Vanessa; Frangione, Maria Rosaria; Bagaglia, Francesco; Puma, Francesco; Mannarino, Elmo

    2016-12-01

    Endothelial progenitor cells are capable of contributing to neovascularization in tumours. In patients with either malignant or transudative pleural effusion, we tested the presence of pleural endothelial progenitor cells. We also measured the number of endothelial progenitor cells in post-surgery pleural drainage of either patients with early non-small-cell lung cancer or control patients with benign lung disease undergoing pulmonary resection. The prospective influence of post-surgery pleural-drainage endothelial progenitor cells on cancer recurrence/survival was investigated. Pleural endothelial progenitor cell levels were quantified by fluorescence-activated cell sorting analysis in pleural effusion of 15 patients with late-stage non-small-cell lung cancer with pleural involvement and in 15 control patients with congestive heart failure. Also, pleural-drainage endothelial progenitor cells were measured in pleural-drainage fluid 48 h after surgery in 64 patients with early-stage non-small-cell lung cancer and 20 benign lung disease patients undergoing pulmonary resection. Cancer recurrence and survival was evaluated in patients with high pleural-drainage endothelial progenitor cell levels. The number of pleural endothelial progenitor cells was higher in non-small-cell lung cancer pleural effusion than in transudative pleural effusion. Also, pleural-drainage endothelial progenitor cell levels were higher in patients with non-small-cell lung cancer than in patients with benign lung disease undergoing pulmonary resection (P < 0.05). Non-small-cell lung cancer patients with high pleural-drainage endothelial progenitor cell levels had a significantly 4.9 higher rate of cancer recurrence/death than patients with lower pleural-drainage endothelial progenitor cell levels, irrespective of confounders. Endothelial progenitor cells are present in the pleural effusion and are higher in patients with late-stage non-small-cell lung cancer with pleural involvement than in

  6. EF5 in Measuring Tumor Hypoxia in Patients With Stage I-III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2015-04-10

    Stage IA Non-Small Cell Lung Carcinoma; Stage IB Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  7. Activated Raf-1 causes growth arrest in human small cell lung cancer cells.

    PubMed Central

    Ravi, R K; Weber, E; McMahon, M; Williams, J R; Baylin, S; Mal, A; Harter, M L; Dillehay, L E; Claudio, P P; Giordano, A; Nelkin, B D; Mabry, M

    1998-01-01

    Small cell lung cancer (SCLC) accounts for 25% of all lung cancers, and is almost uniformly fatal. Unlike other lung cancers, ras mutations have not been reported in SCLC, suggesting that activation of ras-associated signal transduction pathways such as the raf-MEK mitogen-activated protein kinases (MAPK) are associated with biological consequences that are unique from other cancers. The biological effects of raf activation in small cell lung cancer cells was determined by transfecting NCI-H209 or NCI-H510 SCLC cells with a gene encoding a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the estrogen receptor (DeltaRaf-1:ER), which can be activated with estradiol. DeltaRaf-1:ER activation resulted in phosphorylation of MAPK. Activation of this pathway caused a dramatic loss of soft agar cloning ability, suppression of growth capacity, associated with cell accumulation in G1 and G2, and S phase depletion. Raf activation in these SCLC cells was accompanied by a marked induction of the cyclin-dependent kinase (cdk) inhibitor p27(kip1), and a decrease in cdk2 protein kinase activities. Each of these events can be inhibited by pretreatment with the MEK inhibitor PD098059. These data demonstrate that MAPK activation by DeltaRaf-1:ER can activate growth inhibitory pathways leading to cell cycle arrest. These data suggest that raf/MEK/ MAPK pathway activation, rather than inhibition, may be a therapeutic target in SCLC and other neuroendocrine tumors. PMID:9421477

  8. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance.

    PubMed

    Lobb, Richard J; van Amerongen, Rosa; Wiegmans, Adrian; Ham, Sunyoung; Larsen, Jill E; Möller, Andreas

    2017-08-01

    Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes. © 2017 UICC.

  9. Osimertinib in Treating Participants With Stage I-IIIA EGFR-mutant Non-small Cell Lung Cancer Before Surgery

    ClinicalTrials.gov

    2018-04-27

    EGFR (Epidermal Growth Factor Receptor) Exon 19 Deletion Mutation; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.T790M; Stage I Non-Small Cell Lung Cancer AJCC (American Joint Committee on Cancer) v7; Stage IA Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  10. Non-small cell lung cancer: current treatment and future advances

    PubMed Central

    Zappa, Cecilia

    2016-01-01

    Lung cancer has a poor prognosis; over half of people diagnosed with lung cancer die within one year of diagnosis and the 5-year survival is less than 18%. Non-small cell lung cancer (NSCLC) accounts for the majority of all lung cancer cases. Risk factors for developing NSCLC have been identified, with cigarette smoking being a major factor along with other environmental and genetic risk factors. Depending on the staging of lung cancer, patients are eligible for certain treatments ranging from surgery to radiation to chemotherapy as well as targeted therapy. With the advancement of genetics and biomarkers testing, specific mutations have been identified to better target treatment for individual patients. This review discusses current treatments including surgery, chemotherapy, radiotherapy, and immunotherapy as well as how biomarker testing has helped improve survival in patients with NSCLC. PMID:27413711

  11. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study

    PubMed Central

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201’s cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201. PMID:27626799

  12. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study.

    PubMed

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201's cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201.

  13. The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yuzhou; Pan, Xufeng; Zhao, Heng, E-mail: hengzhao1966@sina.com

    2014-08-15

    Highlights: • PHF8 overexpresses in human NSCLC and predicts poor survival. • PHF8 regulates lung cancer cell growth and transformation. • PHF8 regulates apoptosis in human lung cancer cells. • PHF8 promotes miR-21 expression in human lung cancer. • MiR-21 is critically essential for PHF8 function in human lung cancer cells. - Abstract: PHF8 is a JmjC domain-containing protein and erases repressive histone marks including H4K20me1 and H3K9me1/2. It binds to H3K4me3, an active histone mark usually located at transcription start sites (TSSs), through its plant homeo-domain, and is thus recruited and enriched in gene promoters. PHF8 is involved inmore » the development of several types of cancer, including leukemia, prostate cancer, and esophageal squamous cell carcinoma. Herein we report that PHF8 is an oncogenic protein in human non-small cell lung cancer (NSCLC). PHF8 is up-regulated in human NSCLC tissues, and high PHF8 expression predicts poor survival. Our in vitro and in vivo evidence demonstrate that PHF8 regulates lung cancer cell proliferation and cellular transformation. We found that PHF8 knockdown induces DNA damage and apoptosis in lung cancer cells. PHF8 promotes miR-21 expression in human lung cancer, and miR-21 knockdown blocks the effects of PHF8 on proliferation and apoptosis of lung cancer cells. In summary, PHF8 promotes lung cancer cell growth and survival by regulating miR-21.« less

  14. TG4010 and Nivolumab in Patients With Lung Cancer

    ClinicalTrials.gov

    2018-03-01

    Recurrent Non-Small Cell Lung Carcinoma; Stage I Non-Small Cell Lung Cancer; Stage II Non-Small Cell Lung Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  15. Enterolactone alters FAK-Src signaling and suppresses migration and invasion of lung cancer cell lines.

    PubMed

    Chikara, Shireen; Lindsey, Kaitlin; Borowicz, Pawel; Christofidou-Solomidou, Melpo; Reindl, Katie M

    2017-01-09

    Systemic toxicity of chemotherapeutic agents and the challenges associated with targeting metastatic tumors are limiting factors for current lung cancer therapeutic approaches. To address these issues, plant-derived bioactive components have been investigated for their anti-cancer properties because many of these agents are non-toxic to healthy tissues. Enterolactone (EL) is a flaxseed-derived mammalian lignan that has demonstrated anti-migratory properties for various cancers, but EL has not been investigated in the context of lung cancer, and its anticancer mechanisms are ill-defined. We hypothesized that EL could inhibit lung cancer cell motility by affecting the FAK-Src signaling pathway. Non-toxic concentrations of EL were identified for A549 and H460 human lung cancer cells by conducting 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Dephenyltetrazolium Bromide (MTT) assays. The anti-migratory and anti-invasive potential of EL for lung cancer cell lines was determined by scratch wound healing and Matrigel® invasion assays. Changes in filamentous actin (F-actin) fiber density and length in EL-treated cells were determined using phalloidin-conjugated rhodamine dye and fluorescent microscopy. Vinculin expression in focal adhesions upon EL treatment was determined by immunocytochemistry. Gene and protein expression levels of FAK-Src signaling molecules in EL-treated lung cancer cells were determined using PCR arrays, qRT-PCR, and western blotting. Non-toxic concentrations of EL inhibited lung cancer cell migration and invasion in a concentration- and time-dependent manner. EL treatment reduced the density and number of F-actin fibers in lung cancer cell lines, and reduced the number and size of focal adhesions. EL decreased phosphorylation of FAK and its downstream targets, Src, paxillin, and decreased mRNA expression of cell motility-related genes, RhoA, Rac1, and Cdc42 in lung cancer cells. Our data suggest that EL suppresses lung cancer cell motility and invasion by

  16. Evaluation of the Role of Invadopodia in Lung Cancer Cell Growth and Invasion

    DTIC Science & Technology

    2014-11-01

    NSCLC cell lines. We obtained eight such lines: H1975 and H1650 ( non - smoker , mutant EGFr); H1395 and H1573 ( non - smoker , wildtype EGFr); H23 and H1792...Invadopodia are actin-based cellular protrusions found in many invasive cancer cell types. Non small cell lung cancers (NSCLCs) are highly invasive and...Abstract: Invadopodia are actin-based cellular protrusions found in many invasive cancer cell types. Non small cell lung cancers (NSCLCs) are highly

  17. Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer | Office of Cancer Genomics

    Cancer.gov

    Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding.

  18. Immunotherapy for non-small cell lung cancer: current concepts and clinical trials

    PubMed Central

    Mayor, Marissa; Yang, Neng; Sterman, Daniel; Jones, David R.; Adusumilli, Prasad S.

    2016-01-01

    Recent successes in immunotherapeutic strategies are being investigated to combat cancers that have less than ideal responses to standard of care treatment, such as non-small-cell lung cancer. In this paper, we summarize concepts and the current status of immunotherapy for non-small cell lung cancer, including salient features of the major categories of immunotherapy—monoclonal antibody therapy, immune checkpoint blockade, immunotoxins, anticancer vaccines, and adoptive cell therapy. PMID:26516195

  19. Current and future molecular diagnostics in non-small-cell lung cancer.

    PubMed

    Li, Chun Man; Chu, Wing Ying; Wong, Di Lun; Tsang, Hin Fung; Tsui, Nancy Bo Yin; Chan, Charles Ming Lok; Xue, Vivian Wei Wen; Siu, Parco Ming Fai; Yung, Benjamin Yat Ming; Chan, Lawrence Wing Chi; Wong, Sze Chuen Cesar

    2015-01-01

    The molecular investigation of lung cancer has opened up an advanced area for the diagnosis and therapeutic management of lung cancer patients. Gene alterations in cancer initiation and progression provide not only information on molecular changes in lung cancer but also opportunities in advanced therapeutic regime by personalized targeted therapy. EGFR mutations and ALK rearrangement are important predictive biomarkers for the efficiency of tyrosine kinase inhibitor treatment in lung cancer patients. Moreover, epigenetic aberration and microRNA dysregulation are recent advances in the early detection and monitoring of lung cancer. Although a wide range of molecular tests are available, standardization and validation of assay protocols are essential for the quality of the test outcome. In this review, current and new advancements of molecular biomarkers for non-small-cell lung cancer will be discussed. Recommendations on future development of molecular diagnostic services will also be explored.

  20. Squamous cell lung cancer in a male with pulmonary tuberculosis.

    PubMed

    Skowroński, Marcin; Iwanik, Katarzyna; Halicka, Anna; Barinow-Wojewódzki, Aleksander

    2015-01-01

    Lung cancer and pulmonary tuberculosis (TB) are highly prevalent and representing major public health issues. They share common risk factors and clinical manifestations. It is also suggested that TB predicts raised lung cancer risk likely related to chronic inflammation in the lungs. However, it does not seem to influence the clinical course of lung cancer provided that it is properly treated. We present a case report of a 57-year old male with concurrent TB and lung cancer. He was diagnosed with positive sputum smear for acid fast bacilli (AFB) and subsequent culture of Mycobacterium tuberculosis. Besides, his comorbid conditions were chronic hepatitis C virus (HCV) infection and peripheral artery disease (PAD). Later while on anti-tuberculous treatment (ATT) squamous cell lung cancer (SCC) was confirmed with computed tomography (CT) guided biopsy. Due to poor general condition the patient was not fit for either surgery or radical chemo- and radiotherapy. He was transferred to hospice for palliative therapy. We want to emphasize that both TB and lung cancer should be actively sought for in patients with either disorder. In addition, there is no doubt that these patients with lung cancer and with good response to TB treatment should be promptly considered for appropriate anticancer therapy.

  1. Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1.

    PubMed

    Haustein, Maria; Ramer, Robert; Linnebacher, Michael; Manda, Katrin; Hinz, Burkhard

    2014-11-15

    Cannabinoids have been shown to promote the expression of the intercellular adhesion molecule 1 (ICAM-1) on lung cancer cells as part of their anti-invasive and antimetastatic action. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study addressed the impact of cannabinoid-induced ICAM-1 on cancer cell adhesion to lymphokine-activated killer (LAK) cells and LAK cell-mediated cytotoxicity. Cannabidiol (CBD), a non-psychoactive cannabinoid, enhanced the susceptibility of cancer cells to adhere to and subsequently be lysed by LAK cells, with both effects being reversed by a neutralizing ICAM-1 antibody. Increased cancer cell lysis by CBD was likewise abrogated when CBD-induced ICAM-1 expression was blocked by specific siRNA or by antagonists to cannabinoid receptors (CB1, CB2) and to transient receptor potential vanilloid 1. In addition, enhanced killing of CBD-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen-1 (LFA-1) suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. ICAM-1-dependent pro-killing effects were further confirmed for the phytocannabinoid Δ(9)-tetrahydrocannabinol (THC) and R(+)-methanandamide (MA), a hydrolysis-stable endocannabinoid analogue. Finally, each cannabinoid elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less pronounced (CBD, THC) or absent (MA) ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate cannabinoid-induced upregulation of ICAM-1 on lung cancer cells to be responsible for increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of cannabinoids. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non–Small Cell Lung Cancer Cells

    PubMed Central

    He, Jiantao; Zhang, Shenghui; Yang, Qingbo; Wang, Bo; Liu, Zhiyu; Wu, Xintian

    2016-01-01

    Non–small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non–small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non–small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle–associated proteins by Western blot analysis and found immature colon carcinoma transcript 1–mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non–small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non–small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non–small cell lung cancer. PMID:27413166

  3. Nicotine prevents the apoptosis induced by menadione in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Tao; Lu Heng; Shang Xuan

    Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role ofmore » anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-{kappa}B was up-regulated. Interference analysis of NF-{kappa}B in A549 cells showed that knock down of NF-{kappa}B resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-{kappa}B inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer.« less

  4. Personalizing Therapy in Advanced Non–Small Cell Lung Cancer

    PubMed Central

    Villaruz, Liza C.; Burns, Timothy F.; Ramfidis, Vasilis S.; Socinski, Mark A.

    2016-01-01

    The recognition that non–small cell lung cancer (NSCLC) is not a single disease entity, but rather a collection of distinct molecularly driven neoplasms, has permanently shifted the therapeutic landscape of NSCLC to a personalized approach. This personalization of NSCLC therapy is typified by the dramatic response rates seen in EGFR mutant NSCLC when treated with targeted tyrosine kinase inhibitor therapy and in ALK translocation–driven NSCLC when treated with ALK inhibitors. Targeted therapeutic approaches in NSCLC necessitate consideration of more invasive biopsy techniques aimed at providing sufficient tissue for both histological determination and molecular profiling in all patients with stage IV disease both at the time of diagnosis and at the time of disease progression. Comprehensive genotyping efforts have identified oncogenic drivers in 62% lung adenocarcinomas and an increasing proportion of squamous cell carcinomas of the lung. The identification of these oncogenic drivers and the triage of patients to clinical trials evaluating novel targeted therapeutic approaches will increasingly mold a landscape of personalized lung cancer therapy where each genotype has an associated targeted therapy. This review outlines the state of personalized lung cancer therapy as it pertains to individual NSCLC genotypes. PMID:24258572

  5. GTI-2040 and Docetaxel in Treating Patients With Recurrent, Metastatic, or Unresectable Locally Advanced Non-Small Cell Lung Cancer, Prostate Cancer, or Other Solid Tumors

    ClinicalTrials.gov

    2013-01-23

    Recurrent Non-small Cell Lung Cancer; Recurrent Prostate Cancer; Stage III Prostate Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Prostate Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  6. Methoxyamine, Pemetrexed Disodium, Cisplatin, and Radiation Therapy in Treating Patients With Stage IIIA-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-04-24

    Non-Squamous Non-Small Cell Lung Carcinoma; Stage III Large Cell Lung Carcinoma AJCC v7; Stage III Lung Adenocarcinoma AJCC v7; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Large Cell Lung Carcinoma AJCC v7; Stage IIIA Lung Adenocarcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Large Cell Lung Carcinoma AJCC v7; Stage IIIB Lung Adenocarcinoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Large Cell Lung Carcinoma AJCC v7; Stage IV Lung Adenocarcinoma AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  7. Serum LDL cholesterol concentration and lipoprotein electrophoresis pattern in patients with small cell lung cancer.

    PubMed

    Siemianowicz, K; Gminski, J; Stajszczyk, M; Wojakowski, W; Goss, M; Machalski, M; Telega, A; Brulinski, K; Magiera-Molendowska, H

    2000-01-01

    Epidemiological studies show that people with low level of total cholesterol have a greater risk of death due to cancer, predominantly lung cancer. The aim of our study was to evaluate serum level of LDL cholesterol and lipoprotein electrophoresis pattern in patients with small cell lung cancer and their dependence on clinical stage of the neoplasm. The studied group consisted of 34 patients with newly diagnosed small cell lung cancer and 39 healthy controls. Fasting level of LDL cholesterol was analyzed and lipoprotein electrophoresis was performed. There were no statistically significant differences of evaluated serum lipid parameters between lung cancer patients and controls, and between the clinical stages of small cell lung cancer.

  8. Zinc suppresses stem cell properties of lung cancer cells through protein kinase C-mediated β-catenin degradation.

    PubMed

    Ninsontia, Chuanpit; Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2017-04-01

    Highly tumorigenic cancer stem cells (CSCs) residing in most cancers are responsible for cancer progression and treatment failure. Zinc is an element regulator of several cell functions; however, its role in regulation of stem cell program in lung cancer has not been demonstrated. The present study reveals for the first time that zinc can suppress stem cell properties of lung cancer cells. Such findings were proved in different lung cancer cell lines (H460, H23, and H292) and it was found that CSC markers (CD133 and ALDH1A1), stem cell-associated transcription factors (Oct4, Nanog, and Sox-2), and the ability to form tumor spheroid were dramatically suppressed by zinc treatments. Zinc was found to activate protein kinase C-α (PKCα) that further phosphorylated and mediated β-catenin degradation through the ubiquitin-proteasomal pathway. Zinc was found to increase the β-catenin-ubiquitin complex, which can be inhibited by a specific PKC inhibitor, bisindolylmaleimide I. Using specific reactive oxygen species detection and antioxidants, we have demonstrated that superoxide anions generated by zinc are a key upstream mechanism for PKCα activation leading to the subsequent suppression of stem cell features of lung cancer. Zinc increased cellular superoxide anions and the addition of superoxide anion scavenger prevented the activation of PKCα and β-catenin degradation. These findings indicate a novel role for zinc regulation in the PKCα/β-catenin pathway and explain an important mechanism for controlling of stem cell program in lung cancer cells. Copyright © 2017 the American Physiological Society.

  9. Msi2 Regulates the Aggressiveness of Non-Small Cell Lung Cancer (NSCLC)

    DTIC Science & Technology

    2016-12-01

    Non-small cell lung cancer, invasion, metastasis, pro-invasive signaling, RNA binding proteins, Musashi, TGF-beta, epithelial mesenchymal transition...Non-small cell lung cancer, invasion, metastasis, pro-invasive signaling, RNA binding proteins, Musashi, TGF- beta, epithelial mesenchymal...NOTCH-1 RNA and protein expression in 344SQ and 531LN2 cells (NICD protein level was tested in 344SQ cells as well), Fig. 2 D-F. Surprisingly

  10. Postoperative Management of Multiple Primary Cancers Associated with Non-small Cell Lung Cancer.

    PubMed

    Shoji, Fumihiro; Yamazaki, Koji; Miura, Naoko; Katsura, Masakazu; Oku, Yuka; Takeo, Sadanori; Maehara, Yoshihiko

    2018-06-01

    Modern treatment for primary cancers has improved survival. Therefore, increased numbers of patients with multiple primary cancers (MPC) associated with lung cancer may be expected. The aim of the present study was to report MPC associated with lung cancer and discuss patients' characteristics and postoperative management. Overall, 973 consecutive patients who underwent surgery for non-small cell lung cancer (NSCLC) were retrospectively studied. NSCLC with MPC was observed in 148 patients (15.2%). MPC comprised 24 synchronous (2.5%) and 124 metachronous (12.7%) diseases. Of the 124 metachronous patients, NSCLC was detected before cancers were detected in other organs (lung cancer first (LCF)) in 25 (20.2%) patients and subsequently in other organs after treatment (other organs, primary cancer-first (OCF)) in 99 (79.8%) patients. MPC was significantly associated with advanced age (p<0.0001) and chronic obstructive pulmonary disease (COPD) (p=0.0040). The leading sites of MPC in patients with synchronous tumors and those with OCF were the digestive organs. In contrast, the leading site of MPC in patients with LCF was the lung. In the latter, at least two primary lung cancers were detected within 5 years as well as 5 years after surgery for the treatment of the first detected lung cancer, while primary cancers of other organs were detected within 5 years. Advanced age and COPD may represent a high-risk of MPCs. Therefore, we recommend careful follow-up to detect MPC in the lung as well as the digestive organs beyond 5 years after treatment of the first cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. An overview of mortality & predictors of small-cell and non-small cell lung cancer among Saudi patients.

    PubMed

    Alghamdi, Hatim I; Alshehri, Ali F; Farhat, Ghada N

    2018-03-01

    Lung cancer ranks as the top cancer worldwide in terms of incidence and constitutes a major health problem. About 90% of lung cancer cases are diagnosed at advance stage where treatment is not available. Despite evidence that lung cancer screening improves survival, guidelines for lung cancer screening are still a subject for debate. In Saudi Arabia, only 14% of lung cancers are diagnosed at early stage and researches on survival and its predictors are lacking. This overview analysis was conducted on predictors of lung cancer mortality according to the two major cancer types, small-cell lung cancers (SCLCs) and non-small cell lung cancers (NSCLCs) in Saudi Arabia. A secondary data analysis was performed on small-cell lung cancers (SCLCs) and Non-small cell lung cancers (NSCLCs) registered in the Saudi Cancer Registry (SCR) for the period 2009-2013 to estimate predictors of mortality for both lung cancer types. A total of 404 cases (197 SCLC and 207 NSCLC) were included in the analysis, all Saudi nationals. A total of 213 (52.75%) deaths occurred among lung cancer patients, 108 (54.82%) among SCLCs and 105 (50.72%) among NCSLCs. Three quarter of patients are diagnosis with advance stage for both SCLC & NSCLC. Univariate analysis revealed higher mean age at diagnosis in dead patients compared to alive patients for SCLCs (p=0.04); but not NSCLCs, a lower mortality for NSCLCs diagnosed in 2013 (p=0.025) and a significant difference in stage of tumor (p=0.006) and (p=0.035) for both SCLC and NSCLC respectively. In multiple logistic regression, stage of tumor was a strong predictor of mortality, where distant metastasis increased morality by 6-fold (OR=5.87, 95% CI: 2.01 - 17.19) in SCLC and by 3-fold (OR=3.29, 95% CI: 1.22 - 8.85) in NSCLC, compared to localized tumors. Those with NSCLC who were diagnosed in 2013 were less likely to die by 64% compared to NSCLC diagnosed in 2009 (OR=0.36, 95% CI: 0.14 - 0.93). Age, sex, topography and laterality were not associated with

  12. Inhibition of human lung cancer cell proliferation and survival by wine

    PubMed Central

    2014-01-01

    Background Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events. Methods Human NSCLC adenocarcinoma A549 and H1299 cells were used. Cell proliferation was assessed by thymidine incorporation. Clonogenic assays were used to assess cell survival. Immunoblotting was used to examine total and phosphorylated levels of Akt, Erk and p53. Results In A549 cells red wine inhibited cell proliferation and reduced clonogenic survival at doses as low as 0.02%. Red wine significantly reduced basal and EGF-stimulated Akt and Erk phosphorylation while it increased the levels of total and phosphorylated p53 (Ser15). Control experiments indicated that the anti-proliferative effects of wine were not mediated by the associated contents of ethanol or the polyphenol resveratrol and were independent of glucose transport into cancer cells. White wine also inhibited clonogenic survival, albeit at a higher doses (0.5-2%), and reduced Akt phosphorylation. The effects of both red and white wine on Akt phosphorylation were also verified in H1299 cells. Conclusions Red wine inhibits proliferation of lung cancer cells and blocks clonogenic survival at low concentrations. This is associated with inhibition of basal and EGF-stimulated Akt and Erk signals and enhancement of total and phosphorylated levels of p53. White wine mediates similar effects albeit at higher concentrations. Our data suggest that wine may have considerable anti-tumour and chemoprevention properties in lung cancer and deserves further

  13. Targeted therapies and immunotherapy in non-small-cell lung cancer

    PubMed Central

    Cortinovis, D; Abbate, M; Bidoli, P; Capici, S; Canova, S

    2016-01-01

    Non-small-cell lung cancer is still considered a difficult disease to manage because of its aggressiveness and resistance to common therapies. Chemotherapy remains the gold standard in nearly 80% of lung cancers, but clinical outcomes are discouraging, and the impact on median overall survival (OS) barely reaches 12 months. At the end of the last century, the discovery of oncogene-driven tumours completely changed the therapeutic landscape in lung cancers, harbouring specific gene mutations/translocations. Epidermal growth factors receptor (EGFR) common mutations first and anaplastic lymphoma kinase (ALK) translocations later led new insights in lung cancer biology knowledge. The use of specific tyrosine kinases inhibitors overturned the biological behaviour of EGFR mutation positive tumours and became a preclinical model to understand the heterogeneity of lung cancers and the mechanisms of drug resistance. In this review, we summarise the employment of targeted agents against the most representative biomolecular alterations and provide some criticisms of the therapeutic strategies. PMID:27433281

  14. Immune checkpoint inhibitors in small cell lung cancer.

    PubMed

    Pakkala, Suchita; Owonikoko, Taofeek K

    2018-02-01

    Small cell lung cancer (SCLC) is a rapidly progressive cancer that often debilitates patients within months of detection and quickly becomes refractory to the limited options of therapy. While SCLC is not generally considered an immunogenic tumor, clinical experience suggests that patients with robust immune response manifesting as paraneoplastic syndrome are more likely to present with limited stage of the disease and tend to have a better prognosis. Monoclonal antibodies targeting critical negative regulators of immune response, so called immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD-1) have expanded the application of immune-based therapies to increasing number of advanced stage cancers. These agents overcome the inhibitory immune signals leading to a heightened immune response against cancer cells. These immune checkpoint inhibitors have established efficacy leading to regulatory approval for their use in many cancer types including non-small cell lung cancer (NSCLC). Evaluation of the CTLA-4 inhibitor, ipilimumab and PD-1 inhibitors, nivolumab and pembrolizumab in SCLC have shown encouraging signal but definitive studies are still ongoing. In this review, we discuss the rationale behind the use of checkpoint inhibitors in SCLC, contextualize the results of early trials of immunotherapy agents in SCLC and project the future evolution of this strategy.

  15. Monoclonal antibodies targeting non-small cell lung cancer stem-like cells by multipotent cancer stem cell monoclonal antibody library.

    PubMed

    Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang

    2017-02-01

    Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.

  16. Identification of Novel Targets for Lung Cancer Therapy Using an Induced Pluripotent Stem Cell Model.

    PubMed

    Shukla, Vivek; Rao, Mahadev; Zhang, Hongen; Beers, Jeanette; Wangsa, Darawalee; Wangsa, Danny; Buishand, Floryne O; Wang, Yonghong; Yu, Zhiya; Stevenson, Holly; Reardon, Emily; McLoughlin, Kaitlin C; Kaufman, Andrew; Payabyab, Eden; Hong, Julie A; Zhang, Mary; Davis, Sean R; Edelman, Daniel C; Chen, Guokai; Miettinen, Markku; Restifo, Nicholas; Ried, Thomas; Meltzer, Paul S; Schrump, David S

    2018-04-01

    Despite extensive studies, the genetic and epigenetic mechanisms that mediate initiation and progression of lung cancers have not been fully elucidated. Previously, we have demonstrated that via complementary mechanisms, including DNA methylation, polycomb repressive complexes, and noncoding RNAs, cigarette smoke induces stem-like phenotypes that coincide with progression to malignancy in normal respiratory epithelia as well as enhanced growth and metastatic potential of lung cancer cells. To further investigate epigenetic mechanisms contributing to stemness/pluripotency in lung cancers and potentially identify novel therapeutic targets in these malignancies, induced pluripotent stem cells were generated from normal human small airway epithelial cells. Lung induced pluripotent stem cells were generated by lentiviral transduction of small airway epithelial cells of OSKM (Yamanaka) factors (octamer-binding transcription factor 4 [Oct4], sex-determining region Y box 2 [SOX2], Kruppel-like factor 4 [KLF4], and MYC proto-oncogene, bHLH transcription factor [MYC]). Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation sequencing analysis were performed. The lung induced pluripotent stem cells exhibited hallmarks of pluripotency, including morphology, surface antigen and stem cell gene expression, in vitro proliferation, and teratoma formation. In addition, lung induced pluripotent stem cells exhibited no chromosomal aberrations, complete silencing of reprogramming transgenes, genomic hypermethylation, upregulation of genes encoding components of polycomb repressive complex 2, hypermethylation of stem cell polycomb targets, and modulation of more than 15,000 other genes relative to parental small airway epithelial cells. Additional sex combs like-3 (ASXL3), encoding a polycomb repressive complex 2-associated protein not previously described in reprogrammed cells, was markedly upregulated in lung induced pluripotent stem cell as well as human

  17. Singapore Cancer Network (SCAN) Guidelines for Adjuvant Chemotherapy in Resected Non-Small Cell Lung Cancer.

    PubMed

    2015-10-01

    The SCAN lung cancer workgroup aimed to develop Singapore Cancer Network (SCAN) clinical practice guidelines for the use of adjuvant systemic therapy for non-small cell lung cancer in Singapore. The workgroup utilised a modified ADAPTE process to calibrate high quality international evidence-based clinical practice guidelines to our local setting. Five international guidelines were evaluated- those developed by the National Comprehensive Cancer Network (2014), European Society of Medical Oncology (2014), National Institute of Clinical Excellence (2012), Scottish Intercollegiate Guidelines Network (2014), and the Cancer Care Council Australia (2012). Recommendations on the selection of patients, chemotherapy regimen, treatment for stage I disease, treatment for positive margins and treatment options for pN2 disease with negative margins were produced. These adapted guidelines form the SCAN Guidelines 2015 for adjuvant systemic therapy of non-small cell lung cancer.

  18. Dinaciclib Induces Anaphase Catastrophe in Lung Cancer Cells via Inhibition of Cyclin-Dependent Kinases 1 and 2.

    PubMed

    Danilov, Alexey V; Hu, Shanhu; Orr, Bernardo; Godek, Kristina; Mustachio, Lisa Maria; Sekula, David; Liu, Xi; Kawakami, Masanori; Johnson, Faye M; Compton, Duane A; Freemantle, Sarah J; Dmitrovsky, Ethan

    2016-11-01

    Despite advances in targeted therapy, lung cancer remains the most common cause of cancer-related mortality in the United States. Chromosomal instability is a prominent feature in lung cancer and, because it rarely occurs in normal cells, it represents a potential therapeutic target. Our prior work discovered that lung cancer cells undergo anaphase catastrophe in response to inhibition of cyclin-dependent kinase 2 (CDK2), followed by apoptosis and reduced growth. In this study, the effects and mechanisms of the multi-CDK inhibitor dinaciclib on lung cancer cells were investigated. We sought to determine the specificity of CDK-dependent induction of anaphase catastrophe. Live cell imaging provided direct evidence that dinaciclib caused multipolar cell divisions resulting in extensive chromosome missegregation. Genetic knockdown of dinaciclib CDK targets revealed that repression of CDK2 and CDK1, but not CDK5 or CDK9, triggered anaphase catastrophe in lung cancer cells. Overexpression of CP110, which is a mediator of CDK2 inhibitor-induced anaphase catastrophe (and a CDK1 and 2 phosphorylation substrate), antagonized anaphase catastrophe and apoptosis following dinaciclib treatment. Consistent with our previous findings, acquisition of activated KRAS sensitized lung cancer cells to dinaciclib-mediated anaphase catastrophe and cell death. Combining dinaciclib with the mitotic inhibitor taxol augmented anaphase catastrophe induction and reduced cell viability of lung cancer cells. Thus, the multi-CDK inhibitor dinaciclib causes anaphase catastrophe in lung cancer cells and should be investigated as a potential therapeutic for wild-type and KRAS-mutant lung cancer, individually or in combination with taxanes. Mol Cancer Ther; 15(11); 2758-66. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Excited state proton transfer in the lysosome of live lung cells: normal and cancer cells.

    PubMed

    Chowdhury, Rajdeep; Saha, Abhijit; Mandal, Amit Kumar; Jana, Batakrishna; Ghosh, Surajit; Bhattacharyya, Kankan

    2015-02-12

    Dynamics of excited state proton transfer (ESPT) in the lysosome region of live lung cells (normal and cancer) is studied by picosecond time-resolved confocal microscopy. For this, we used a fluorescent probe, pyranine (8-hydroxy-pyrene-1,3,6-trisulfonate, HPTS). From the colocalization of HPTS with a lysotracker dye (lysotracker yellow), we confirmed that HPTS resides in the lysosome for both of the cells. The diffusion coefficient (Dt) in the lysosome region was obtained from fluorescence correlation spectroscopy (FCS). From Dt, the viscosity of lysosome is estimated to be ∼40 and ∼30 cP in the cancer and normal cells, respectively. The rate constants of the elementary steps of ESPT in a normal lung cell (WI38) are compared with those in a lung cancer cell (A549). It is observed that the time constant of the initial proton transfer process in a normal cell (τ(PT) = 40 ps) is similar to that in a cancer cell. The recombination of the geminate ion pair is slightly faster (τ(rec) = 25 ps) in the normal cell than that (τ(rec) = 30 ps) in a cancer cell. The time constant of the dissociation (τ(diss)) of the geminate ion pair for the cancer cell (τ(diss) = 80 ps) is 1.5 times faster compared to that (τ(diss) = 120 ps) in a normal cell.

  20. Lung Cancer: Glossary

    MedlinePlus

    ... effects of radiation therapy Randomized Clinical Trial: Trial design in which participants are assigned by chance to ... effect caused by treatment. Small Cell Lung Cancer: One of the two main categories of lung cancer; ...

  1. Constitutive Androstane Receptor Ligands Modulate the Anti-Tumor Efficacy of Paclitaxel in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Fukumasu, Heidge; Rochetti, Arina L.; Pires, Pedro R. L.; Silva, Edson R.; Mesquita, Ligia G.; Strefezzi, Ricardo F.; De Carvalho, Daniel D.; Dagli, Maria L.

    2014-01-01

    Background Lung tumors are the leading cause of cancer deaths worldwide and paclitaxel has proven to be useful for patients with lung cancer, however, acquired resistance is a major problem. To overcome this problem, one promising option is the use of Constitutive Androstane Receptor (CAR) ligands in combination with chemotherapeutics against cancer cells. Therefore, we wish to elucidate the effects of CAR ligands on the antineoplastic efficacy of paclitaxel in lung cancer cells. Methodology/Principal Findings Our results from cell viability assays exposing CAR agonist or inverse-agonist to mouse and human lung cancer cells modulated the antineoplastic effect of paclitaxel. The CAR agonists increased the effect of Paclitaxel in 6 of 7 lung cancer cell lines, whereas the inverse-agonist had no effect on paclitaxel cytotoxicity. Interestingly, the mCAR agonist TCPOBOP enhanced the expression of two tumor suppressor genes, namely WT1 and MGMT, which were additively enhanced in cells treated with CAR agonist in combination with paclitaxel. Also, in silico analysis showed that both paclitaxel and CAR agonist TCPOBOP docked into the mCAR structure but not the inverse agonist androstenol. Paclitaxel per se increases the expression of CAR in cancer cells. At last, we analyzed the expression of CAR in two public independent studies from The Cancer Genome Atlas (TCGA) of Non Small Cell Lung Cancer (NSCLC). CAR is expressed in variable levels in NSCLC samples and no association with overall survival was noted. Conclusions/Significance Taken together, our results demonstrated that CAR agonists modulate the antineoplastic efficacy of paclitaxel in mouse and human cancer cell lines. This effect was probably related by the enhanced expression of two tumor suppressor genes, viz. WT1 and MGMT. Most of NSCLC cases present CAR gene expression turning it possible to speculate the use of CAR modulation by ligands along with Paclitaxel in NSCLC therapy. PMID:24959746

  2. The Use of Apatinib in Treating Nonsmall-Cell Lung Cancer

    PubMed Central

    Ding, Lin; Li, Qing-Jian; You, Kai-Yun; Jiang, Zhi-Min; Yao, He-Rui

    2016-01-01

    Abstract Apatinib is a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor-2, which has been proved to be effective and safe in treating heavily pretreated patients with gastric cancer. The aim of the study was to explore the use of apatinib in treatment of nonsmall cell lung cancer and its side effects. We report 2 patients presented with advanced nonsmall-cell lung cancer, who received apatinib after failure in the first- or third-line chemotherapy. They are treated with apatinib in daily dose of 850 mg, 28 days per cycle. Favorable oncologic outcomes were achieved in the 2 cases after the treatment of apatinib. Patient I's progression-free-survival has increased to 4.6 months after palliative therapy of apatinib, whereas Patient II nearly 6 months. The common side effects of apatinib were hypertension and hand-foot syndrome; however, the toxicity of apatinib was controllable and tolerable. Apatinib may be an option for advanced nonsmall cell lung cancer after failure of chemotherapy or other targeted therapy. But that still warrants further investigation in the prospective study. PMID:27196461

  3. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomousmore » growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells

  4. Driver genes in non-small cell lung cancer: Characteristics, detection methods, and targeted therapies

    PubMed Central

    He, Bing; Zhang, Hu-Qin

    2017-01-01

    Lung cancer is one of the most common causes of cancer-related death in the world. The large number of lung cancer cases is non-small cell lung cancer (NSCLC), which approximately accounting for 75% of lung cancer. Over the past years, our comprehensive knowledge about the molecular biology of NSCLC has been rapidly enriching, which has promoted the discovery of driver genes in NSCLC and directed FDA-approved targeted therapies. Of course, the targeted therapies based on driver genes provide a more exact option for advanced non-small cell lung cancer, improving the survival rate of patients. Now, we will review the landscape of driver genes in NSCLC including the characteristics, detection methods, the application of target therapy and challenges. PMID:28915704

  5. CDDO-Me protects normal lung and breast epithelial cells but not cancer cells from radiation.

    PubMed

    El-Ashmawy, Mariam; Delgado, Oliver; Cardentey, Agnelio; Wright, Woodring E; Shay, Jerry W

    2014-01-01

    Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs). In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF) = 1.3), and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs) with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients.

  6. CDDO-Me Protects Normal Lung and Breast Epithelial Cells but Not Cancer Cells from Radiation

    PubMed Central

    El-Ashmawy, Mariam; Delgado, Oliver; Cardentey, Agnelio; Wright, Woodring E.; Shay, Jerry W.

    2014-01-01

    Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs). In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF) = 1.3), and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs) with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients. PMID:25536195

  7. Bmi-1 expression modulates non-small cell lung cancer progression

    PubMed Central

    Xiong, Dan; Ye, Yunlin; Fu, Yujie; Wang, Jinglong; Kuang, Bohua; Wang, Hongbo; Wang, Xiumin; Zu, Lidong; Xiao, Gang; Hao, Mingang; Wang, Jianhua

    2015-01-01

    Previous studies indicate that the role of B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) is responsible for multiple cancer progression. However, Bmi-1 in controlling gene expression in non-small cell lung cancer (NSCLC) development is not well explored. Here we report that the Bmi-1 level is highly increased in primary NSCLC tissues compared to matched adjacent non-cancerous tissues and required for lung tumor growth in xenograft model. Furthermore, we also demonstrate that Bmi-1 level is lower in matched involved lymph node cancerous tissues than the respective primary NSCLC tissues. We find that Bmi-1 does not affect cell cycle and apoptosis in lung cancer cell lines as it does not affect the expression of p16/p19, Pten, AKT and P-AKT. Mechanistic analyses note that reduction of Bmi-1 expression inversely regulates invasion and metastasis of NSCLC cells in vitro and in vivo, followed by induction of epithelial-mesenchymal transition (EMT). Using genome microarray assays, we find that RNAi-mediated silence of Bmi-1 modulates some important molecular genetics or signaling pathways, potentially associated with NSCLC development. Taken together, our findings disclose for the first time that Bmi-1 level accumulates strongly in early stage and then declines in late stage, which is potentially important for NSCLC cell invasion and metastasis during progression. PMID:25880371

  8. [Arf6, RalA and BIRC5 protein expression in non small cell lung cancer].

    PubMed

    Knizhnik, A V; Kovaleva, O B; Laktionov, K K; Mochal'nikova, V V; Komel'kov, A V; Chevkina, E M; Zborovskaia, I B

    2011-01-01

    Evaluation of tumor markers expression pattern which determines individual progression parameters is one of the major topics in molecular oncopathology research. This work presents research on expression analysis of several Ras-Ral associated signal transduction pathway proteins (Arf6, RalA and BIRC5) in accordance with clinical criteria in non small cell lung cancer patients. Using Western-blot analysis and RT-PCR Arf6, RalA and BIRC5 expression has been analyzed in parallel in 53 non small cell lung cancer samples of different origin. Arf6 protein expression was elevated in 55% non small cell lung cancer tumor samples in comparison with normal tissue. In the group of squamous cell lung cancer Arf6 expression elevation was observed more often. RalA protein expression was decreased in comparison to normal tissue samples in 64% of non small cell lung cancer regardless to morphological structure. Correlation between RalA protein expression decrease and absence of regional metastases was revealed for squamous cell lung cancer. BIRC5 protein expression in tumor samples versus corresponding normal tissue was 1.3 times more often elevated in the squamous cell lung cancer group (in 76% tumor samples). At the same time elevation of BIRC5 expression was fixed only in 63% of adenocarcinoma tumor samples. A statistically significant decrease (p = 0.0158) of RalA protein expression and increase (p = 0.0498) of Arf6 protein expression in comparison with normal tissue was found for T1-2N0M0 and T1-2N1-2M0 groups of squamous cell lung cancer correspondingly.

  9. Genetic and Epigenetic Determinants of Lung Cancer Subtype: Adenocarcinoma to Small Cell Conversion

    DTIC Science & Technology

    2015-08-01

    better understand critical molecular alterations in non -small cell lung cancer (NSCLC) which may lead to the identification of effective therapies...Program Official: Email: kimke@mail.nih.gov; Phone: 301-496-8639; Fax: 301-402-7819 EGFR Mutations in Non Small Cell Lung Cancer The aims of the study...forryscs@mail.nih.gov; Phone: (301) 435-9147; Fax: 301-402-5200 Protein Kinase Therapeutic Targets for Non Small Cell Lung Carcinoma The overall goal

  10. Pathobiological implications of MUC4 in non-small-cell lung cancer.

    PubMed

    Majhi, Prabin Dhangada; Lakshmanan, Imayavaramban; Ponnusamy, Moorthy P; Jain, Maneesh; Das, Srustidhar; Kaur, Sukhwinder; Shimizu, Su Tomohiro; West, William W; Johansson, Sonny L; Smith, Lynette M; Yu, Fang; Rolle, Cleo E; Sharma, Poonam; Carey, George B; Batra, Surinder K; Ganti, Apar Kishor

    2013-04-01

    Altered expression of MUC4 plays an oncogenic role in various cancers, including pancreatic, ovarian, and breast. This study evaluates the expression and role of MUC4 in non-small-cell lung cancer (NSCLC). We used a paired system of MUC4-expressing (H292) and MUC4-nonexpressing (A549) NSCLC cell lines to analyze MUC4-dependent changes in growth rate, migration, and invasion using these sublines. We also evaluated the alterations of several tumor suppressor, proliferation, and metastasis markers with altered MUC4 expression. Furthermore, the association of MUC4 expression (by immunohistochemistry) in lung cancer samples with patient survival was evaluated. MUC4-expressing lung cancer cells demonstrated a less proliferative and metastatic phenotype. Up-regulation of p53 in MUC4-expressing lung cancer cells led to the accumulation of cells at the G2/M phase of cell cycle progression. MUC4 expression attenuated Akt activation and decreased the expression of Cyclins D1 and E, but increased the expression of p21 and p27. MUC4 expression abrogated cancer cell migration and invasion by altering N- & E-cadherin expression and FAK phosphorylation. A decrease in MUC4 expression was observed with increasing tumor stage (mean composite score: stage I, 2.4; stage II, 1.8; stage III, 1.4; and metastatic, 1.2; p = 0.0093). Maximal MUC4 expression was associated with a better overall survival (p = 0.042). MUC4 plays a tumor-suppressor role in NSCLC by altering p53 expression in NSCLC. Decrease in MUC4 expression in advanced tumor stages also seems to confirm the novel protective function of MUC4 in NSCLC.

  11. Emerging science and therapies in non-small-cell lung cancer: targeting the MET pathway.

    PubMed

    Kris, Mark G; Arenberg, Douglas A; Herbst, Roy S; Riely, Gregory J

    2014-11-01

    During this enduring, learner-driven, interactive CME webseries, lung cancer specialists will address the science and targeted therapies for the MET pathway in non-small cell lung cancer. Over the past decade, research has evolved in the science of identifying targeted biological changes in DNA and individual cancer cells. Along with the advanced understanding of lung cancer mutations, has come the development of specific targeted therapies that improve patient outcomes. The first step in treating a patient with lung cancer is proper diagnosis and staging, applying to the principles of personalize medicine. Our current understanding of lung cancer is that of a collection of diseases individualized through specific mutations. This CME activity reviews the role of the pulmonologist and pathologist in proper tissue acquisition and analysis. This new era of personalized medicine and clinical research advances has changed the way clinicians evaluate and treat patients with lung cancer. The data on lung cancer cell mutations and newer targeted therapies have improved the progression free survival and quality of life of lung cancer patients. This CME activity is designed to present a practical overview of recent evidenced based data of MET targeted therapies for patients with lung cancer. As research continues to evolve, we continue to advance our understanding in the science of lung cancers involving the MET pathway. Evidenced based data supporting newer targeted therapeutics provides insight on applying treatment for optimal outcomes. This CME activity will focus on the individualized treatment strategies using practical decision making for patients with MET expression. This activity has been designed to meet the educational needs of medical oncologists, pathologists, radiation oncologists, surgeons, pulmonologists, internists, and other healthcare clinicians responsible for the care of patients with lung cancer. Online access:http://www.elseviercme.com/516/.

  12. MicroRNA-196b Inhibits Cell Growth and Metastasis of Lung Cancer Cells by Targeting Runx2.

    PubMed

    Bai, Xiaoxue; Meng, Lin; Sun, Huijie; Li, Zhuo; Zhang, Xiufang; Hua, Shucheng

    2017-01-01

    Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer. The Author(s). Published by S. Karger AG, Basel.

  13. Stereotactic Body Radiation Therapy Followed by Surgery in Treating Patients With Stage I-IIIA Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2017-12-28

    Stage I Non-Small Cell Lung Cancer AJCC v7; Stage IA Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  14. CUL4A overexpression enhances lung tumor growth and sensitizes lung cancer cells to Erlotinib via transcriptional regulation of EGFR

    DOE PAGES

    Wang, Yunshan; Zhang, Pengju; Liu, Ziming; ...

    2014-11-21

    CUL4A has been proposed as oncogene in several types of human cancer, but its clinical significance and functional role in human non-small cell lung cancer (NSCLC) remain unclear. Expression level of CUL4A was examined by RT-PCR and Western blot. Forced expression of CUL4A was mediated by retroviruses, and CUL4A silencing by shRNAs expressing lentiviruses. Growth capacity of lung cancer cells was measured by MTT in vitro and tumorigenesis in vivo, respectively. We found that CUL4A was highly expressed in human lung cancer tissues and lung cancer cell lines, and this elevated expression positively correlated with disease progression and prognosis. Overexpressionmore » of CUL4A in human lung cancer cell lines increased cell proliferation, inhibited apoptosis, and subsequently conferred resistance to chemotherapy. On other hand, silencing CUL4A expression in NSCLC cells reduced proliferation, promoted apoptosis and resulted in tumor growth inhibition in cancer xenograft model. Mechanistically, we revealed CUL4A regulated EGFR transcriptional expression and activation, and subsequently activated AKT. Targeted inhibition of EGFR activity blocked these CUL4A induced oncogenic activities. In conclusion, our results highlight the significance of CUL4A in NSCLC and suggest that CUL4A could be a promising therapy target and a potential biomarker for prognosis and EGFR target therapy in NSCLC patients.« less

  15. Carfilzomib demonstrates broad anti-tumor activity in pre-clinical non-small cell and small cell lung cancer models.

    PubMed

    Baker, Amanda F; Hanke, Neale T; Sands, Barbara J; Carbajal, Liliana; Anderl, Janet L; Garland, Linda L

    2014-12-31

    Carfilzomib (CFZ) is a proteasome inhibitor that selectively and irreversibly binds to its target and has been approved in the US for treatment of relapsed and refractory multiple myeloma. Phase 1B studies of CFZ reported signals of clinical activity in solid tumors, including small cell lung cancer (SCLC). The aim of this study was to investigate the activity of CFZ in lung cancer models. A diverse panel of human lung cancer cell lines and a SHP77 small cell lung cancer xenograft model were used to investigate the anti-tumor activity of CFZ. CFZ treatment inhibited both the constitutive proteasome and the immunoproteasome in lung cancer cell lines. CFZ had marked anti-proliferative activity in A549, H1993, H520, H460, and H1299 non-small cell lung cancer (NSCLC) cell lines, with IC50 values after 96 hour exposure from <1.0 nM to 36 nM. CFZ had more variable effects in the SHP77 and DMS114 SCLC cell lines, with IC50 values at 96 hours from <1 nM to 203 nM. Western blot analysis of CFZ-treated H1993 and SHP77 cells showed cleavage of poly ADP ribose polymerase (PARP) and caspase-3, indicative of apoptosis, and induction of microtubule-associated protein-1 light chain-3B (LC3B), indicative of autophagy. In SHP77 flank xenograft tumors, CFZ monotherapy inhibited tumor growth and prolonged survival, while no additive or synergistic anti-tumor efficacy was observed for CFZ + cisplatin (CDDP). CFZ demonstrated anti-proliferative activity in lung cancer cell lines in vitro and resulted in a significant survival advantage in mice with SHP77 SCLC xenografts, supporting further pre-clinical and clinical investigations of CFZ in NSCLC and SCLC.

  16. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1.

    PubMed

    Schellhorn, Melina; Haustein, Maria; Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard

    2015-11-17

    The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib.

  17. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1

    PubMed Central

    Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard

    2015-01-01

    The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib. PMID:26513172

  18. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ting; Han, Shuai; Wu, Zhipeng

    Bone metastasis occurs in approximately 30–40% patients with advanced non-small cell lung cancer (NSCLC), but the mechanism underlying this bone metastasis remains poorly understood. The chemokine super family is believed to play an important role in tumor metastasis in lung cancer. The chemokine receptor XCR1 has been identified to promote cell proliferation and migration in oral cancer and ovarian carcinoma, but the role of XCR1 in lung cancer has not been reported. In this study, we demonstrated for the first time that XCR1 was overexpressed in lung cancer bone metastasis as compared with that in patients with primary lung cancer.more » In addition, the XCR1 ligand XCL1 promoted the proliferation and migration of lung cancer cells markedly, and knockdown of XCR1 by siRNA abolished the effect of XCL1 in cell proliferation and migration. Furthermore, we identified JAK2/STAT3 as a novel downstream pathway of XCR1, while XCL1/XCR1 increased the mRNA level of the downstream of JAK2/STAT3 including PIM1, JunB, TTP, MMP2 and MMP9. These results indicate that XCR1 is a new potential therapeutic target for the treatment of lung cancer bone metastasis. - Highlights: • XCR1 is overexpressed in bone metastasis compared with primary NSCLC. • XCR1 activation by XCL1 promotes lung cancer cell proliferation and migration. • JAK2/STAT3 is a novel potential downstream pathway of XCR1.« less

  19. Pyruvate carboxylase is critical for non–small-cell lung cancer proliferation

    PubMed Central

    Sellers, Katherine; Fox, Matthew P.; Bousamra, Michael; Slone, Stephen P.; Higashi, Richard M.; Miller, Donald M.; Wang, Yali; Yan, Jun; Yuneva, Mariia O.; Deshpande, Rahul; Lane, Andrew N.; Fan, Teresa W.-M.

    2015-01-01

    Anabolic biosynthesis requires precursors supplied by the Krebs cycle, which in turn requires anaplerosis to replenish precursor intermediates. The major anaplerotic sources are pyruvate and glutamine, which require the activity of pyruvate carboxylase (PC) and glutaminase 1 (GLS1), respectively. Due to their rapid proliferation, cancer cells have increased anabolic and energy demands; however, different cancer cell types exhibit differential requirements for PC- and GLS-mediated pathways for anaplerosis and cell proliferation. Here, we infused patients with early-stage non–small-cell lung cancer (NSCLC) with uniformly 13C-labeled glucose before tissue resection and determined that the cancerous tissues in these patients had enhanced PC activity. Freshly resected paired lung tissue slices cultured in 13C6-glucose or 13C5,15N2-glutamine tracers confirmed selective activation of PC over GLS in NSCLC. Compared with noncancerous tissues, PC expression was greatly enhanced in cancerous tissues, whereas GLS1 expression showed no trend. Moreover, immunohistochemical analysis of paired lung tissues showed PC overexpression in cancer cells rather than in stromal cells of tumor tissues. PC knockdown induced multinucleation, decreased cell proliferation and colony formation in human NSCLC cells, and reduced tumor growth in a mouse xenograft model. Growth inhibition was accompanied by perturbed Krebs cycle activity, inhibition of lipid and nucleotide biosynthesis, and altered glutathione homeostasis. These findings indicate that PC-mediated anaplerosis in early-stage NSCLC is required for tumor survival and proliferation. PMID:25607840

  20. ALK-rearranged squamous cell lung carcinoma responding to crizotinib: A missing link in the field of non-small cell lung cancer?

    PubMed

    Vergne, Florence; Quéré, Gilles; Andrieu-Key, Sophie; Descourt, Renaud; Quintin-Roué, Isabelle; Talagas, Matthieu; De Braekeleer, Marc; Marcorelles, Pascale; Uguen, Arnaud

    2016-01-01

    ALK-rearrangements are mainly encountered in lung adenocarcinomas and allow treating patients with anti-ALK targeted therapy. ALK-rearranged squamous cell lung carcinomas are rare tumors that can also respond to anti-ALK-targeted therapy. Nevertheless, ALK screening is not always performed in patients with squamous cell lung carcinomas making the identification and treatment of this molecular tumor subtype challenging. We intend to report a rare case of ALK-rearranged lung squamous cell carcinoma with response to crizotinib therapy. We report clinical, pathological, immunohistochemical and fluorescent in situ hybridization data concerning a patient having an ALK-rearranged squamous cell lung cancer diagnosed in our institution. The patient was a 58-year old woman with a metastatic-stage lung cancer. Histopathological and immunohistochemical analyses were performed on a bronchial biopsy sample and concluded in a non-keratinizing squamous cell lung carcinoma expressing strongly cytokeratin 5/6, p63 and p40, which are classic hallmarks of lung squamous cell carcinomas, but also cytokeratin 7 which is more commonly expressed in lung adenocarcinomas. The tumor did not express thyroid transcription factor-1. ALK rearrangement was searched because of the never-smoker status of the patient and resulted in strong positive fluorescent in situ hybridization test and ALK/p80 immunohistochemistry. The patient responded to crizotinib therapy during 213 days. Our observation points out the interest of considering ALK screening in patients with metastatic lung squamous cell carcinomas, especially in patients lacking a usual heavy-smoker clinical history. The histopathological and immunohistochemical features of this particular tumor highlighting the overlapping criteria between lung adenocarcinomas and rare ALK-rearranged squamous cell lung carcinomas could also be relevant to extend ALK screening to tumors with intermediate phenotypes between squamous cell carcinomas and

  1. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells

    PubMed Central

    Song, Shanshan; Jacobson, Krista N.; McDermott, Kimberly M.; Reddy, Sekhar P.; Cress, Anne E.; Tang, Haiyang; Dudek, Steven M.; Black, Stephen M.; Garcia, Joe G. N.; Makino, Ayako

    2015-01-01

    Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca2+ signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca2+] ([Ca2+]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca2+ eliminated the plateau phase increase of [Ca2+]cyt in lung cancer cells, indicating that the plateau phase of [Ca2+]cyt increase is due to Ca2+ influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca2+ or chelating intracellular Ca2+ with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca2+]cyt through Ca2+ influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression. PMID:26491047

  2. FGFR1 promotes the stem cell-like phenotype of FGFR1-amplified non-small cell lung cancer cells through the Hedgehog pathway.

    PubMed

    Ji, Wenxiang; Yu, Yongfeng; Li, Ziming; Wang, Guan; Li, Fan; Xia, Weiliang; Lu, Shun

    2016-03-22

    Cancer stem cell-like phenotype is critical for tumor formation and treatment resistance. FGFR1 is found to be amplified in non-small cell lung cancer, particularly in the lung squamous cell cancer (LSCC). Whether FGFR1 contributes to the maintenance of stem cell-like phenotype of FGFR1-amplified lung cancer cells remains elusive. In this study, treatment with FGFR1 inhibitor AZD4547 suppressed the growth of tumor spheres and reduced ALDH positive proportion in FGFR1-amplified lung cancer cells in vitro, as well as inhibited the growth of oncospheres and parental cells in xenograft models. Knockdown of FGFR1 recaptured the similar effect as AZD4547 in vitro. Furthermore, activation of FGFR1 and subsequently its downstream ERK signaling enhanced the expression and transcriptional activity of GLI2, which could be blocked by FGFR1 inhibitor/silencing or ERK inhibitor. Knockdown of GLI2 directly inhibited the stem-like phenotype of FGFR1-amilified cells, whereas overexpression of GLI2 sufficiently rescued the phenotype caused by FGFR1 knockdown. Notably we also identified a correlation between FGFR1 and GLI2 expressions from clinical data, as well as an inverse relationship with progression free survival (PFS). Together our study suggests that the FGFR1/GLI2 axis promotes the lung cancer stem cell-like phenotype. These results support a rational strategy of combination of FGFR1 and GLI inhibitors for treatment of FGFR1-amplified lung cancers, especially LSCC.

  3. Molecular profiling of single circulating tumor cells from lung cancer patients.

    PubMed

    Park, Seung-Min; Wong, Dawson J; Ooi, Chin Chun; Kurtz, David M; Vermesh, Ophir; Aalipour, Amin; Suh, Susie; Pian, Kelsey L; Chabon, Jacob J; Lee, Sang Hun; Jamali, Mehran; Say, Carmen; Carter, Justin N; Lee, Luke P; Kuschner, Ware G; Schwartz, Erich J; Shrager, Joseph B; Neal, Joel W; Wakelee, Heather A; Diehn, Maximilian; Nair, Viswam S; Wang, Shan X; Gambhir, Sanjiv S

    2016-12-27

    Circulating tumor cells (CTCs) are established cancer biomarkers for the "liquid biopsy" of tumors. Molecular analysis of single CTCs, which recapitulate primary and metastatic tumor biology, remains challenging because current platforms have limited throughput, are expensive, and are not easily translatable to the clinic. Here, we report a massively parallel, multigene-profiling nanoplatform to compartmentalize and analyze hundreds of single CTCs. After high-efficiency magnetic collection of CTC from blood, a single-cell nanowell array performs CTC mutation profiling using modular gene panels. Using this approach, we demonstrated multigene expression profiling of individual CTCs from non-small-cell lung cancer (NSCLC) patients with remarkable sensitivity. Thus, we report a high-throughput, multiplexed strategy for single-cell mutation profiling of individual lung cancer CTCs toward minimally invasive cancer therapy prediction and disease monitoring.

  4. Liquid Biopsy in Non-Small Cell Lung Cancer

    PubMed Central

    Molina-Vila, Miguel A.; Mayo-de-las-Casas, Clara; Giménez-Capitán, Ana; Jordana-Ariza, Núria; Garzón, Mónica; Balada, Ariadna; Villatoro, Sergi; Teixidó, Cristina; García-Peláez, Beatriz; Aguado, Cristina; Catalán, María José; Campos, Raquel; Pérez-Rosado, Ana; Bertran-Alamillo, Jordi; Martínez-Bueno, Alejandro; Gil, María-de-los-Llanos; González-Cao, María; González, Xavier; Morales-Espinosa, Daniela; Viteri, Santiago; Karachaliou, Niki; Rosell, Rafael

    2016-01-01

    Liquid biopsy analyses are already incorporated in the routine clinical practice in many hospitals and oncology departments worldwide, improving the selection of treatments and monitoring of lung cancer patients. Although they have not yet reached its full potential, liquid biopsy-based tests will soon be as widespread as “standard” biopsies and imaging techniques, offering invaluable diagnostic, prognostic, and predictive information. This review summarizes the techniques available for the isolation and analysis of circulating free DNA and RNA, exosomes, tumor-educated platelets, and circulating tumor cells from the blood of cancer patients, presents the methodological challenges associated with each of these materials, and discusses the clinical applications of liquid biopsy testing in lung cancer. PMID:28066769

  5. A Novel Model for Squamous Cell Carcinoma of the Lung | Center for Cancer Research

    Cancer.gov

    In the U.S. lung cancer remains the most deadly cancer type with less than one in five patients alive five years after diagnosis. The majority of lung cancer deaths are due to tobacco smoke, and the squamous cell carcinoma (SCC) subtype of lung cancer is strongly associated with smoking. Researchers have identified a number of mutations in lung SCC tumors but have failed to

  6. Osimertinib and Navitoclax in Treating Patients With EGFR-Positive Previously Treated Advanced or Metastatic Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-05-23

    EGFR Activating Mutation; EGFR NP_005219.2:p.T790M; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  7. Combining Cell Type-Restricted Adenoviral Targeting with Immunostaining and Flow Cytometry to Identify Cells-of-Origin of Lung Cancer.

    PubMed

    Best, Sarah A; Kersbergen, Ariena; Asselin-Labat, Marie-Liesse; Sutherland, Kate D

    2018-01-01

    Lung cancers display considerable intertumoral heterogeneity, leading to the classification of distinct tumor subtypes. Our understanding of the genetic aberrations that underlie tumor subtypes has been greatly enhanced by recent genomic sequencing studies and state-of-the-art gene targeting technologies, highlighting evidence that distinct lung cancer subtypes may be derived from different "cells-of-origin". Here, we describe the intra-tracheal delivery of cell type-restricted Ad5-Cre viruses into the lungs of adult mice, combined with immunohistochemical and flow cytometry strategies for the detection of lung cancer-initiating cells in vivo.

  8. Conditionally reprogrammed cells (CRC) methodology does not allow the in vitro expansion of patient-derived primary and metastatic lung cancer cells.

    PubMed

    Sette, Giovanni; Salvati, Valentina; Giordani, Ilenia; Pilozzi, Emanuela; Quacquarini, Denise; Duranti, Enrico; De Nicola, Francesca; Pallocca, Matteo; Fanciulli, Maurizio; Falchi, Mario; Pallini, Roberto; De Maria, Ruggero; Eramo, Adriana

    2018-07-01

    Availability of tumor and non-tumor patient-derived models would promote the development of more effective therapeutics for non-small cell lung cancer (NSCLC). Recently, conditionally reprogrammed cells (CRC) methodology demonstrated exceptional potential for the expansion of epithelial cells from patient tissues. However, the possibility to expand patient-derived lung cancer cells using CRC protocols is controversial. Here, we used CRC approach to expand cells from non-tumoral and tumor biopsies of patients with primary or metastatic NSCLC as well as pulmonary metastases of colorectal or breast cancers. CRC cultures were obtained from both tumor and non-malignant tissues with extraordinary high efficiency. Tumor cells were tracked in vitro through tumorigenicity assay, monitoring of tumor-specific genetic alterations and marker expression. Cultures were composed of EpCAM+ lung epithelial cells lacking tumorigenic potential. NSCLC biopsies-derived cultures rapidly lost patient-specific genetic mutations or tumor antigens. Similarly, pulmonary metastases of colon or breast cancer generated CRC cultures of lung epithelial cells. All CRC cultures examined displayed epithelial lung stem cell phenotype and function. In contrast, brain metastatic lung cancer biopsies failed to generate CRC cultures. In conclusion, patient-derived primary and metastatic lung cancer cells were negatively selected under CRC conditions, limiting the expansion to non-malignant lung epithelial stem cells from either tumor or non-tumor tissue sources. Thus, CRC approach cannot be applied for direct therapeutic testing of patient lung tumor cells, as the tumor-derived CRC cultures are composed of (non-tumoral) airway basal cells. © 2018 UICC.

  9. Chemotherapy and Radiation Therapy With or Without Metformin Hydrochloride in Treating Patients With Stage III Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-04-30

    Adenosquamous Lung Carcinoma; Bronchioloalveolar Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Non-Small Cell Lung Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  10. Enterolactone Induces G1-phase Cell Cycle Arrest in Nonsmall Cell Lung Cancer Cells by Downregulating Cyclins and Cyclin-dependent Kinases.

    PubMed

    Chikara, Shireen; Lindsey, Kaitlin; Dhillon, Harsharan; Mamidi, Sujan; Kittilson, Jeffrey; Christofidou-Solomidou, Melpo; Reindl, Katie M

    2017-01-01

    Flaxseed is a rich source of the plant lignan secoisolariciresinol diglucoside (SDG), which is metabolized into mammalian lignans enterodiol (ED) and enterolactone (EL) in the digestive tract. The anticancer properties of these lignans have been demonstrated for various cancer types, but have not been studied for lung cancer. In this study, we investigated the anticancer effects of EL for several nonsmall cell lung cancer (NSCLC) cell lines of various genetic backgrounds. EL inhibited the growth of A549, H441, and H520 lung cancer cells in concentration- and time-dependent manners. The antiproliferative effects of EL for lung cancer cells were not due to enhanced cell death, but rather due to G 1 -phase cell cycle arrest. Molecular studies revealed that EL decreased mRNA or protein expression levels of the G 1 -phase promoters cyclin D1, cyclin E, cyclin-dependent kinases (CDK)-2, -4, and -6, and p-cdc25A; decreased phosphorylated retinoblastoma (p-pRb) protein levels; and simultaneously increased levels of p21 WAF1/CIP1 , a negative regulator of the G 1 phase. The results suggest that EL inhibits the growth of NSCLC cell lines by downregulating G 1 -phase cyclins and CDKs, and upregulating p21 WAF1/CIP1 , which leads to G 1 -phase cell cycle arrest. Therefore, EL may hold promise as an adjuvant treatment for lung cancer therapy.

  11. Epidermal growth factor receptor in non-small cell lung cancer

    PubMed Central

    2015-01-01

    Following the identification of a group of patients in the initial tyrosine kinase inhibitor (TKI) trials for lung cancer, there has been detailed focus on which patients may benefit from inhibitor therapy. This article reviews the background, genetics and prevalence of epidermal growth factor mutations in non-small cell lung cancer (NSCLC). Additionally, the prevalence in unselected patients is compared against various other reviews. PMID:25870793

  12. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer.

    PubMed

    Li, Xiaolei; Zhang, Qianhui; Fan, Kai; Li, Baiyan; Li, Huifeng; Qi, Hanping; Guo, Jing; Cao, Yonggang; Sun, Hongli

    2016-03-24

    (1) BACKGROUND: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca(2+)-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) METHODS: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca(2+)]i). Flow cytometry was used to analyze cell cycle; (3) RESULTS: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca(2+)]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) CONCLUSIONS: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC.

  13. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer

    PubMed Central

    Li, Xiaolei; Zhang, Qianhui; Fan, Kai; Li, Baiyan; Li, Huifeng; Qi, Hanping; Guo, Jing; Cao, Yonggang; Sun, Hongli

    2016-01-01

    (1) Background: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca2+-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) Methods: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca2+]i). Flow cytometry was used to analyze cell cycle; (3) Results: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca2+]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) Conclusions: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC. PMID:27023518

  14. Gemcitabine sensitizes lung cancer cells to Fas/FasL system-mediated killing

    PubMed Central

    Siena, Liboria; Pace, Elisabetta; Ferraro, Maria; Di Sano, Caterina; Melis, Mario; Profita, Mirella; Spatafora, Mario; Gjomarkaj, Mark

    2014-01-01

    Gemcitabine is a chemotherapy agent commonly used in the treatment of non-small cell lung cancer (NSCLC) that has been demonstrated to induce apoptosis in NSCLC cells by increasing functionally active Fas expression. The aim of this study was to evaluate the Fas/Fas ligand (FasL) system involvement in gemcitabine-induced lung cancer cell killing. NSCLC H292 cells were cultured in the presence or absence of gemcitabine. FasL mRNA and protein were evaluated by real-time PCR, and by Western blot and flow cytometry, respectively. Apoptosis of FasL-expressing cells was evaluated by flow cytometry, and caspase-8 and caspase-3 activation by Western blot and a colorimetric assay. Cytotoxicity of lymphokine-activated killer (LAK) cells and malignant pleural fluid lymphocytes against H292 cells was analysed in the presence or absence of the neutralizing anti-Fas ZB4 antibody, by flow cytometry. Gemcitabine increased FasL mRNA and total protein expression, the percentage of H292 cells bearing membrane-bound FasL (mFasL) and of mFasL-positive apoptotic H292 cells, as well as caspase-8 and caspase-3 cleavage. Moreover, gemcitabine increased CH11-induced caspase-8 and caspase-3 cleavage and proteolytic activity. Cytotoxicity of LAK cells and pleural fluid lymphocytes was increased against gemcitabine-treated H292 cells and was partially inhibited by ZB4 antibody. These results demonstrate that gemcitabine: (i) induces up-regulation of FasL in lung cancer cells triggering cell apoptosis via an autocrine/paracrine loop; (ii) induces a Fas-dependent apoptosis mediated by caspase-8 and caspase-3 activation; (iii) enhances the sensitivity of lung cancer cells to cytotoxic activity of LAK cells and malignant pleural fluid lymphocytes, partially via Fas/FasL pathway. Our data strongly suggest an active involvement of the Fas/FasL system in gemcitabine-induced lung cancer cell killing. PMID:24128051

  15. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  16. Frequent and Focal FGFR1 Amplification Associates With Therapeutically Tractable FGFR1 Dependency in Squamous-cell Lung Cancer

    PubMed Central

    Weiss, Jonathan; Sos, Martin L.; Seidel, Danila; Peifer, Martin; Zander, Thomas; Heuckmann, Johannes M.; Ullrich, Roland T.; Menon, Roopika; Maier, Sebastian; Soltermann, Alex; Moch, Holger; Wagener, Patrick; Fischer, Florian; Heynck, Stefanie; Koker, Mirjam; Schöttle, Jakob; Leenders, Frauke; Gabler, Franziska; Dabow, Ines; Querings, Silvia; Heukamp, Lukas C.; Balke-Want, Hyatt; Ansén, Sascha; Rauh, Daniel; Baessmann, Ingelore; Altmüller, Janine; Wainer, Zoe; Conron, Matthew; Wright, Gavin; Russell, Prudence; Solomon, Ben; Brambilla, Elisabeth; Brambilla, Christian; Lorimier, Philippe; Sollberg, Steinar; Brustugun, Odd Terje; Engel-Riedel, Walburga; Ludwig, Corinna; Petersen, Iver; Sänger, Jörg; Clement, Joachim; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Daniëlle; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Hallek, Michael; Beroukhim, Rameen; Pao, William; Klebl, Bert; Baumann, Matthias; Buettner, Reinhard; Ernestus, Karen; Stoelben, Erich; Wolf, Jürgen; Nürnberg, Peter; Perner, Sven; Thomas, Roman K.

    2014-01-01

    Lung cancer remains one of the leading causes for cancer-related death in developed countries. In lung adenocarcinomas, EGFR mutations and EML4-ALK fusions are associated with response to EGFR and ALK inhibition. By contrast, therapeutically exploitable genetic alterations have been lacking in squamous-cell lung cancer. We conducted a systematic search for alterations that are therapeutically amenable and performed high-resolution gene-copy number analyses in a set of 232 lung cancer specimens. We identified frequent and focal FGFR1 amplification in squamous-cell lung cancer (n=155), but not in other lung cancer subtypes, and confirmed its presence in an independent cohort of squamous-cell lung cancer samples employing FISH (22% of cases). Using cell-based screening with the FGFR inhibitor (PD173074) in a large (n=83) panel of lung cancer cell lines, we demonstrated that this compound inhibited growth (p=0.0002) and induced apoptosis (p=0.008) specifically in those lung cancer cells carrying amplified FGFR1. We validated the dependency on FGFR1 of FGFR1-amplified cell lines by knockdown of FGFR1 and by ectopic expression of a resistance allele of FGFR1 (FGFR1V561M), which rescued FGFR1-amplified cells from PD173074-mediated cytotoxicity. Finally we showed that inhibition of FGFR1 with a small molecule led to significant tumor shrinkage in vivo. Focal FGFR1 amplification is common in squamous-cell lung cancer and associated with tumor growth and survival, suggesting that FGFR inhibitors may be a viable therapeutic option in this cohort of patients. PMID:21160078

  17. Veliparib, Cisplatin, and Gemcitabine Hydrochloride in Treating Patients With Advanced Biliary, Pancreatic, Urothelial, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-07-01

    Advanced Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Stage III Pancreatic Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Bladder Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Transitional Cell Carcinoma of the Bladder; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  18. Antibiotic drug rifabutin is effective against lung cancer cells by targeting the eIF4E-β-catenin axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ji; Huang, Yijiang; Gao, Yunsuo

    The essential roles of overexpression of eukaryotic translation initiation factor 4E (eIF4E) and aberrant activation of β-catenin in lung cancer development have been recently identified. However, whether there is a direct connection between eIF4E overexpression and β-catenin activation in lung cancer cells is unknown. In this study, we show that antibiotic drug rifabutin targets human lung cancer cells via inhibition of eIF4E-β-catenin axis. Rifabutin is effectively against lung cancer cells in in vitro cultured cells and in vivo xenograft mouse model through inhibiting proliferation and inducing apoptosis. Mechanistically, eIF4E regulates β-catenin activity in lung cancer cells as shown by the increased β-cateninmore » phosphorylation and activity in cells overexpressing eIF4E, and furthermore that the regulation is dependent on phosphorylation at S209. Rifabutin suppresses eIF4E phosphorylation, leads to decreased β-catenin phosphorylation and its subsequent transcriptional activities. Depletion of eIF4E abolishes the inhibitory effects of rifabutin on β-catenin activities and overexpression of β-catenin reverses the inhibitory effects of rifabutin on cell growth and survival, further confirming that rifabutin acts on lung cancer cells via targeting eIF4E- β-catenin axis. Our findings identify the eIF4E- β-catenin axis as a critical regulator of lung cancer cell growth and survival, and suggest that its pharmacological inhibition may be therapeutically useful in lung cancer. - Highlights: • Rifabutin targets EGFR-mutated lung cancer cells in vitro and in vivo. • eIF4E phosphorylation regulates β-catenin activity in lung cancer cells. • Rifabutin acts on lung cancer cells via eIF4E- β-catenin axis. • Rifabutin can be repurposed for lung cancer treatment.« less

  19. Enrichment and characterization of cancer stem cells from a human non-small cell lung cancer cell line.

    PubMed

    Zhao, Changhong; Setrerrahmane, Sarra; Xu, Hanmei

    2015-10-01

    Tumor cells from the same origin comprise different cell populations. Among them, cancer stem cells (CSCs) have higher tumorigenicity. It is necessary to enrich CSCs to determine an effective way to suppress and eliminate them. In the present study, using the non-adhesive culture system, tumor spheres were successfully generated from human A549 non-small cell lung cancer (NSCLC) cell line within 2 weeks. Compared to A549 adherent cells, sphere cells had a higher self-renewal ability and increased resistance to cytotoxic drugs. Sphere cells were more invasive and expressed stem cell markers including octamer‑binding transcription factor 4 (Oct4) and sex-determining region Y-box 2 (Sox2) at high levels. CD133, a disputed marker of lung CSCs, was also upregulated. Tumor sphere cells showed higher tumorigenic ability in vivo, indicating that more CSCs were enriched in the sphere cells. More blood vessels were formed in the tumor generated by sphere cells suggesting the interaction between CSCs and blood vessel. A reliable model of enriching CSCs from the human A549 NSCLC cell line was established that was simple and cost-effective compared to other methods.

  20. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion

    PubMed Central

    Long, Weiwen; Foulds, Charles E.; Qin, Jun; Liu, Jian; Ding, Chen; Lonard, David M.; Solis, Luisa M.; Wistuba, Ignacio I.; Qin, Jun; Tsai, Sophia Y.; Tsai, Ming-Jer; O’Malley, Bert W.

    2012-01-01

    In contrast to the well-studied classic MAPKs, such as ERK1/2, little is known concerning the regulation and substrates of the atypical MAPK ERK3 signaling cascade and its function in cancer progression. Here, we report that ERK3 interacted with and phosphorylated steroid receptor coactivator 3 (SRC-3), an oncogenic protein overexpressed in multiple human cancers at serine 857 (S857). This ERK3-mediated phosphorylation at S857 was essential for interaction of SRC-3 with the ETS transcription factor PEA3, which promotes upregulation of MMP gene expression and proinvasive activity in lung cancer cells. Importantly, knockdown of ERK3 or SRC-3 inhibited the ability of lung cancer cells to invade and form tumors in the lung in a xenograft mouse model. In addition, ERK3 was found to be highly upregulated in human lung carcinomas. Our study identifies a previously unknown role for ERK3 in promoting lung cancer cell invasiveness by phosphorylating SRC-3 and regulating SRC-3 proinvasive activity by site-specific phosphorylation. As such, ERK3 protein kinase may be an attractive target for therapeutic treatment of invasive lung cancer. PMID:22505454

  1. Brain microvascular endothelium induced-annexin A1 secretion contributes to small cell lung cancer brain metastasis.

    PubMed

    Liu, Yi; Liu, Yong-Shuo; Wu, Peng-Fei; Li, Qiang; Dai, Wu-Min; Yuan, Shuai; Xu, Zhi-Hua; Liu, Ting-Ting; Miao, Zi-Wei; Fang, Wen-Gang; Chen, Yu-Hua; Li, Bo

    2015-09-01

    Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. PET-Adjusted Intensity Modulated Radiation Therapy and Combination Chemotherapy in Treating Patients With Stage II-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-05-24

    Metastatic Malignant Neoplasm in the Brain; Recurrent Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  3. Docetaxel With Either Cetuximab or Bortezomib as First-Line Therapy in Treating Patients With Stage III or Stage IV Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-06-03

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Large Cell Lung Cancer; Malignant Pleural Effusion; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  4. Prognostic impact of EGFR mutation in non-small-cell lung cancer patients with family history of lung cancer.

    PubMed

    Kim, Jung Soo; Cho, Min Seong; Nam, Jong Hyeon; Kim, Hyun-Jung; Choi, Kyeng-Won; Ryu, Jeong-Seon

    2017-01-01

    A family history can be a valuable tool in the era of precision medicine. Although a few studies have described an association of family history of lung cancer with EGFR activating mutation, their impact on survival of lung cancer patients is unclear. The study included consecutive 829 non-small-cell lung cancer patients who received analysis of EGFR mutation in a prospective lung cancer cohort. Family history of lung cancer was obtained by face-to-face interviews at the time of diagnosis. An association of EGFR activating mutation with a family history of lung cancer in first-degree relatives was evaluated with multivariate logistic regression analysis, and its association with survival was estimated with Cox's proportional hazards model. Seventy five (9.0%) patients had family history of lung cancer. The EGFR mutation was commonly observed in patients with positive family history compared to those with no family history (46.7% v 31.3%, χ2 p = 0.007). The family history was significantly associated with the EGFR mutation (aOR and 95% CI: 2.01 and 1.18-3.60, p = 0.011). Patients with the positive family history survived longer compared to those without (MST, 17.9 v 13.0 months, log-rank p = 0.037). The presence of the EGFR mutation was associated with better survival in patients without the family history (aHR and 95% CI: 0.72 and 0.57-0.90, p = 0.005). However, this prognostic impact was not observed in patients with the positive family history (aHR and 95% CI: 1.01 and 0.50-2.36, p = 0.832). In comparison to patients without the family history, EGFR activating mutation was common, and it did not affect prognosis in patients with positive family history.

  5. Fludeoxyglucose F-18-PET in Planning Lung Cancer Radiation Therapy

    ClinicalTrials.gov

    2018-04-19

    Stage I Lung Cancer; Stage I Non-Small Cell Lung Cancer AJCC v7; Stage IA Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Lung Cancer; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7

  6. CD22 antigen is broadly expressed on lung cancer cells and is a target for antibody-based therapy.

    PubMed

    Tuscano, Joseph M; Kato, Jason; Pearson, David; Xiong, Chengyi; Newell, Laura; Ma, Yunpeng; Gandara, David R; O'Donnell, Robert T

    2012-11-01

    Most patients with lung cancer still die from their disease, necessitating additional options to improve treatment. Here, we provide evidence for targeting CD22, a cell adhesion protein known to influence B-cell survival that we found is also widely expressed in lung cancer cells. In characterizing the antitumor activity of an established anti-CD22 monoclonal antibody (mAb), HB22.7, we showed CD22 expression by multiple approaches in various lung cancer subtypes, including 7 of 8 cell lines and a panel of primary patient specimens. HB22.7 displayed in vitro and in vivo cytotoxicity against CD22-positive human lung cancer cells and tumor xenografts. In a model of metastatic lung cancer, HB22.7 inhibited the development of pulmonary metastasis and extended overall survival. The finding that CD22 is expressed on lung cancer cells is significant in revealing a heretofore unknown mechanism of tumorigenesis and metastasis. Our work suggests that anti-CD22 mAbs may be useful for targeted therapy of lung cancer, a malignancy that has few tumor-specific targets. ©2012 AACR.

  7. Genetic predictors of MEK dependence in non-small cell lung cancer.

    PubMed

    Pratilas, Christine A; Hanrahan, Aphrothiti J; Halilovic, Ensar; Persaud, Yogindra; Soh, Junichi; Chitale, Dhananjay; Shigematsu, Hisayuki; Yamamoto, Hiromasa; Sawai, Ayana; Janakiraman, Manickam; Taylor, Barry S; Pao, William; Toyooka, Shinichi; Ladanyi, Marc; Gazdar, Adi; Rosen, Neal; Solit, David B

    2008-11-15

    Hyperactivated extracellular signal-regulated kinase (ERK) signaling is common in human cancer and is often the result of activating mutations in BRAF, RAS, and upstream receptor tyrosine kinases. To characterize the mitogen-activated protein kinase/ERK kinase (MEK)/ERK dependence of lung cancers harboring BRAF kinase domain mutations, we screened a large panel of human lung cancer cell lines (n = 87) and tumors (n = 916) for BRAF mutations. We found that non-small cell lung cancers (NSCLC) cells with both V600E and non-V600E BRAF mutations were selectively sensitive to MEK inhibition compared with those harboring mutations in epidermal growth factor receptor (EGFR), KRAS, or ALK and ROS kinase fusions. Supporting its classification as a "driver" mutation in the cells in which it is expressed, MEK inhibition in (V600E)BRAF NSCLC cells led to substantial induction of apoptosis, comparable with that seen with EGFR kinase inhibition in EGFR mutant NSCLC models. Despite high basal ERK phosphorylation, EGFR mutant cells were uniformly resistant to MEK inhibition. Conversely, BRAF mutant cell lines were resistant to EGFR inhibition. These data, together with the nonoverlapping pattern of EGFR and BRAF mutations in human lung cancer, suggest that these lesions define distinct clinical entities whose treatment should be guided by prospective real-time genotyping. To facilitate such an effort, we developed a mass spectrometry-based genotyping method for the detection of hotspot mutations in BRAF, KRAS, and EGFR. Using this assay, we confirmed that BRAF mutations can be identified in a minority of NSCLC tumors and that patients whose tumors harbor BRAF mutations have a distinct clinical profile compared with those whose tumors harbor kinase domain mutations in EGFR.

  8. Regulatory mechanisms of betacellulin in CXCL8 production from lung cancer cells

    PubMed Central

    2014-01-01

    Background Betacellulin (BTC), a member of the epidermal growth factor (EGF) family, binds and activates ErbB1 and ErbB4 homodimers. BTC was expressed in tumors and involved in tumor growth progression. CXCL8 (interleukin-8) was involved in tumor cell proliferation via the transactivation of the epidermal growth factor receptor (EGFR). Materials and methods The present study was designed to investigate the possible interrelation between BTC and CXCL8 in human lung cancer cells (A549) and demonstrated the mechanisms of intracellular signals in the regulation of both functions. Bio-behaviors of A549 were assessed using Cell-IQ Alive Image Monitoring System. Results We found that BTC significantly increased the production of CXCL8 through the activation of the EGFR-PI3K/Akt-Erk signal pathway. BTC induced the resistance of human lung cancer cells to TNF-α/CHX-induced apoptosis. Treatments with PI3K inhibitors, Erk1/2 inhibitor, or Erlotinib significantly inhibited BTC-induced CXCL8 production and cell proliferation and movement. Conclusion Our data indicated that CXCL8 production from lung cancer cells could be initiated by an autocrine mechanism or external sources of BTC through the EGFR–PI3K–Akt–Erk pathway to the formation of inflammatory microenvironment. BTC may act as a potential target to monitor and improve the development of lung cancer inflammation. PMID:24629040

  9. Genetic Contribution to Non-Squamous, Non-Small Cell Lung Cancer in Non-Smokers.

    PubMed

    Carr, Shamus R; Akerley, Wallace; Cannon-Albright, Lisa

    2018-04-04

    Lung carcinogenesis is strongly influenced by environmental and heritable factors. The genetic contribution to the different histologies is unknown. A population-based computerized genealogy resource linked to a statewide cancer registry of lung cancer cases (n=5408) was analyzed to evaluate the heritable contribution to lung cancer histology in smoking (n=1751) and non-smoking cases (n=818). Statistical methods were used to test for significant excess relatedness of lung cancer cases. Significant excess distant relatedness was observed for all lung cancer histology subgroups analyzed except the small cell lung cancer subset (p=0.213). When smoking and non-smoking histologic subsets of lung cancer were considered, excess relatedness was observed only in non-smoking NSCLC (n=653; p=0.026) and, particularly, in those non-smokers with non-squamous histology (n=561; p=0.036). Sixty one pedigrees were identified which demonstrated a significant excess risk of non-smoking, non-squamous lung cancer cases; and an excess of female cases was observed among the cases in these high-risk pedigrees. This analysis supports a genetic predisposition to lung cancer carcinogenesis in non-smoking, non-squamous NSCLC cases. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  10. Tumor heterogeneity and resistance to EGFR-targeted therapy in advanced nonsmall cell lung cancer: challenges and perspectives

    PubMed Central

    Cheng, Xinghua; Chen, Haiquan

    2014-01-01

    Lung cancer, mostly nonsmall cell lung cancer, continues to be the leading cause of cancer-related death worldwide. With the development of tyrosine kinase inhibitors that selectively target lung cancer-related epidermal growth factor receptor mutations, management of advanced nonsmall cell lung cancer has been greatly transformed. Improvements in progression-free survival and life quality of the patients were observed in numerous clinical studies. However, overall survival is not prolonged because of later-acquired drug resistance. Recent studies reveal a heterogeneous subclonal architecture of lung cancer, so it is speculated that the tumor may rapidly adapt to environmental changes via a Darwinian selection mechanism. In this review, we aim to provide an overview of both spatial and temporal tumor heterogeneity as potential mechanisms underlying epidermal growth factor receptor tyrosine kinase inhibitor resistance in nonsmall cell lung cancer and summarize the possible origins of tumor heterogeneity covering theories of cancer stem cells and clonal evolution, as well as genomic instability and epigenetic aberrations in lung cancer. Moreover, investigational measures that overcome heterogeneity-associated drug resistance and new assays to improve tumor assessment are also discussed. PMID:25285017

  11. The Cell-CT 3D Cell Imaging Technology Platform Enables the Detection of Lung Cancer Using the Non-Invasive LuCED Sputum Test

    PubMed Central

    Meyer, Michael G.; Hayenga, Jon; Neumann, Thomas; Katdare, Rahul; Presley, Chris; Steinhauer, David; Bell, Timothy; Lancaster, Christy; Nelson, Alan C.

    2015-01-01

    The war against cancer has yielded important advances in the early diagnosis and treatment of certain cancer types, but the poor detection rate and 5-year survival rate for lung cancer remains little changed over the past 40 years. Early detection through emerging lung cancer screening programs promises the most reliable means of improving mortality. Sputum cytology has been tried without success because sputum contains few malignant cells that are difficult for cytologists to detect. However, research has shown that sputum contains diagnostic malignant cells and could serve as a means of lung cancer detection if those cells could be detected and correctly characterized. Recently, the National Lung Cancer Screening Trial reported that screening by three consecutive low-dose X-ray CT scans provides a 20% reduction in lung cancer mortality compared to chest X-ray. This reduction in mortality, however, comes with an unacceptable false positive rate that increases patient risks and the overall cost of lung cancer screening. This article reviews the LuCED® test for detecting early lung cancer. LuCED is based on patient sputum that is enriched for bronchial epithelial cells. The enriched sample is then processed on the Cell-CT®, which images cells in three dimensions with sub-micron resolution. Algorithms are applied to the 3D cell images to extract morphometric features that drive a classifier to identify cells that have abnormal characteristics. The final status of these candidate abnormal cells is established by the pathologist's manual review. LuCED promotes accurate cell classification which could enable cost effective detection of lung cancer. PMID:26148817

  12. Oncogenic drivers, targeted therapies, and acquired resistance in non-small-cell lung cancer.

    PubMed

    Gower, Arjan; Wang, Yisong; Giaccone, Giuseppe

    2014-07-01

    In the past decade, a shift toward targeted therapies in non-small-cell lung cancer following molecular profiling has dramatically changed the way advanced adenocarcinoma is treated. However, tumor cells inevitably acquire resistance to such therapies, circumventing any sustained clinical benefit. As the genomic classification of lung cancer continues to evolve and as the mechanisms of acquired resistance to targeted therapies become elucidated and more improved target-specific drugs come into sight, the future will see more promising results from the clinic through the development of new therapeutic strategies to overcome, or prevent the development of, resistance for lung cancer patients.

  13. Ginsenoside metabolite compound K enhances the efficacy of cisplatin in lung cancer cells.

    PubMed

    Li, Yang; Zhou, Tong; Ma, Chengyuan; Song, Weiwei; Zhang, Jian; Yu, Zhenxiang

    2015-03-01

    To evaluate the potential of ginsenoside metabolite compound K (CK) in enhancing the anti-tumor effects of cisplatin against lung cancer cells, including cell proliferation and apoptosis, and the underlying mechanism. Western blotting and p53 reporter assay were used to assess p53 expression and activity. MTT assay and TUNEL staining were employed to investigate the drug effects on cell growth and apoptosis, respectively. Combination index (CI) was calculated to determine synergism. We found that CK could significantly enhance cisplatin-induced p53 expression and activity in two lung cancer cell lines, H460 and A549. Consequently, synergistic inhibition of cell growth was observed when the cells were co-treated with CK and cisplatin compared to single treatment. In addition, the ability of cisplatin in apoptosis induction was similarly synergized by CK. Furthermore, by using p53-null lung cancer cells, we demonstrate that the synergy was p53 dependent. Conventional chemotherapies are often accompanied by development of drug resistance and severe side effects. Novel discoveries of low toxicity compounds to improve the outcome or enhance the efficacy of chemotherapies are of great interest. In the present study, our data provide the first evidence that CK could be potentially used as an agent to synergize the efficacy of cisplatin in lung cancer.

  14. [Current treatment concepts of lung cancer].

    PubMed

    Kaiser, F; Engelhardt, M; Rawluk, J; Mertelsmann, R; Passlick, B; Wäsch, R

    2011-09-01

    Lung cancer occurs with a median age of 69 years. The main cause is cigarette smoking. For both genders lung cancer is the third-most frequent tumor in Germany. While in an operable tumor stage 30-80% of the patients can reach long-term survival, the prognosis in the metastasised stage is unfavourable with a 5-year overall survival rate of 6% for small cell lung cancer (SCLC) and 18% for non-small cell lung cancer (NSCLC). Lung cancer is subject of intense research to improve the outcome. This article gives an overview of current treatment options. © Georg Thieme Verlag KG Stuttgart · New York.

  15. A Novel Model for Squamous Cell Carcinoma of the Lung | Center for Cancer Research

    Cancer.gov

    In the U.S. lung cancer remains the most deadly cancer type with less than one in five patients alive five years after diagnosis. The majority of lung cancer deaths are due to tobacco smoke, and the squamous cell carcinoma (SCC) subtype of lung cancer is strongly associated with smoking. Researchers have identified a number of mutations in lung SCC tumors but have failed to generate an animal model of lung SCC, which is critical for understanding the biology of the disease and for identifying novel therapeutic targets.

  16. Establishment of adoptive cell therapy with tumor infiltrating lymphocytes for non-small cell lung cancer patients.

    PubMed

    Ben-Avi, Ronny; Farhi, Ronit; Ben-Nun, Alon; Gorodner, Marina; Greenberg, Eyal; Markel, Gal; Schachter, Jacob; Itzhaki, Orit; Besser, Michal J

    2018-05-29

    Adoptive cell therapy (ACT) of tumor infiltration lymphocytes (TIL) yields promising clinical results in metastatic melanoma patients, who failed standard treatments. Due to the fact that metastatic lung cancer has proven to be susceptible to immunotherapy and possesses a high mutation burden, which makes it responsive to T cell attack, we explored the feasibility of TIL ACT in non-small cell lung cancer (NSCLC) patients. Multiple TIL cultures were isolated from tumor specimens of five NSCLC patients undergoing thoracic surgery. We were able to successfully establish TIL cultures by various methods from all patients within an average of 14 days. Fifteen lung TIL cultures were further expanded to treatment levels under good manufacturing practice conditions and functionally and phenotypically characterized. Lung TIL expanded equally well as 103 melanoma TIL obtained from melanoma patients previously treated at our center, and had a similar phenotype regarding PD1, CD28, and 4-1BB expressions, but contained a higher percent of CD4 T cells. Lung carcinoma cell lines were established from three patients of which two possessed TIL cultures with specific in vitro anti-tumor reactivity. Here, we report the successful pre-clinical production of TIL for immunotherapy in the lung cancer setting, which may provide a new treatment modality for patients with metastatic NSCLC. The initiation of a clinical trial is planned for the near future.

  17. Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH.

    PubMed

    Urosevic, Jelena; Garcia-Albéniz, Xabier; Planet, Evarist; Real, Sebastián; Céspedes, María Virtudes; Guiu, Marc; Fernandez, Esther; Bellmunt, Anna; Gawrzak, Sylwia; Pavlovic, Milica; Mangues, Ramon; Dolado, Ignacio; Barriga, Francisco M; Nadal, Cristina; Kemeny, Nancy; Batlle, Eduard; Nebreda, Angel R; Gomis, Roger R

    2014-07-01

    The mechanisms that allow colon cancer cells to form liver and lung metastases, and whether KRAS mutation influences where and when metastasis occurs, are unknown. We provide clinical and molecular evidence showing that different MAPK signalling pathways are implicated in this process. Whereas ERK2 activation provides colon cancer cells with the ability to seed and colonize the liver, reduced p38 MAPK signalling endows cancer cells with the ability to form lung metastasis from previously established liver lesions. Downregulation of p38 MAPK signalling results in increased expression of the cytokine PTHLH, which contributes to colon cancer cell extravasation to the lung by inducing caspase-independent death in endothelial cells of the lung microvasculature. The concerted acquisition of metastatic traits in the colon cancer cells together with the sequential colonization of liver and lung highlights the importance of metastatic lesions as a platform for further dissemination.

  18. Peptide hormones and lung cancer.

    PubMed

    Moody, T W

    2006-03-01

    Several peptide hormones have been identified which alter the proliferation of lung cancer. Small cell lung cancer (SCLC), which is a neuroendocrine cancer, produces and secretes gastrin releasing peptide (GRP), neurotensin (NT) and adrenomedullin (AM) as autocrine growth factors. GRP, NT and AM bind to G-protein coupled receptors causing phosphatidylinositol turnover or elevated cAMP in SCLC cells. Addition of GRP, NT or AM to SCLC cells causes altered expression of nuclear oncogenes, such as c-fos, and stimulation of growth. Antagonists have been developed for GRP, NT and AM receptors which function as cytostatic agents and inhibit SCLC growth. Growth factor antagonists, such as the NT1 receptor antagonist SR48692, facilitate the ability of chemotherapeutic drugs to kill lung cancer cells. It remains to be determined if GRP, NT and AM receptors will served as molecular targets, for development of new therapies for the treatment of SCLC patients. Non-small cell lung cancer (NSCLC) cells also have a high density of GRP, NT, AM and epidermal growth factor (EGF) receptors. Several NSCLC patients with EGF receptor mutations respond to gefitinib, a tyrosine kinase inhibitor. Gefitinib relieves NSCLC symptoms, maintaining stable disease in patients who are not eligible for systemic chemotherapy. It is important to develop new therapeutic approaches using translational research techniques for the treatment of lung cancer patients.

  19. Teroxirone motivates apoptotic death in tumorspheres of human lung cancer cells.

    PubMed

    Ni, Yu-Ling; Hsieh, Chang-Heng; Wang, Jing-Ping; Fang, Kang

    2018-06-13

    Therapy by targeting cancer stem cells (CSCs) is an eligible method to eradicate malignant human tumors. A synthetic triepoxide derivative, teroxirone, was reported effective against growth of human lung cancer cells by injuring cellular mitochondria functions. And yet it remains unclear if the residual but malicious CSCs can be effectively dissipated as a result of treatment. The current study further affirmed that teroxirone inhibited propagation of CSCs as enriched from NSCLC cells by inducing p53 that lead to ultimate apoptosis. More evidence supported that the reduced stemness of the spheroids was associated with apoptotic death. The results consolidate the notion that teroxirone is a viable and effective therapeutic agent for eradicating human lung cancer. Copyright © 2018. Published by Elsevier B.V.

  20. Bortezomib in Treating Patients With Stage IIIB or Stage IV Lung Cancer

    ClinicalTrials.gov

    2014-08-04

    Adenocarcinoma of the Lung; Bronchoalveolar Cell Lung Cancer; Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  1. [Overexpression of liver kinase B1 inhibits the proliferation of lung cancer cells].

    PubMed

    Li, Yang; Zhang, Libin; Wang, Ping

    2017-01-01

    Objective To explore the effect of overexpressed liver kinase B1(LKB1) on the proliferation of lung cancer cell lines. Methods The expression levels of LKB1 and PTEN in A549, NCI-H23, NCI-H157, XWLC-05, NCI-H446 lung cancer cells were detected by immunocytochemistry (ICC) and Western blotting. Plasmid pcDNA3.1 + -LKB1 and empty vector pcDNA3.1 + -null were separately transfected into the above five cell lines, and then the expression of LKB1 mRNA and protein were determined by quantitative real-time PCR and Western blotting, respectively. Finally, CCK-8 assay was used to analyze the proliferation ability of the transfected cells. Results LKB1 and PTEN were positive in NCI-H23 cells; LKB1 was negative while PTEN was positive in A549 and NCI-H446 cells; both LKB1 and PTEN were negative in NCI-H157 and XWLC-05 cells. Quantitative real-time PCR and Western blotting showed that the expression level of LKB1 significantly increased in the above cell lines transfected with plasmid pcDNA3.1 + -LKB1 compared with the ones with empty vector pcDNA3.1 + -null. Besides, CCK-8 assay showed that the overexpression of LKB1 in the lung cancer cells transfected with pcDNA3.1 + -LKB1 had an obvious inhibitory effect on cell proliferation. Conclusion The expression of LKB1 is down-regulated in most of the lung cell lines to different extent and the over-expression of LKB1 can remarkably inhibit the proliferation ability of lung cancer cell lines.

  2. SEOM guidelines for the management of non-small-cell lung cancer (NSCLC).

    PubMed

    Felip, E; Garrido, P; Trigo, J M; López-Brea, M; Paz-Ares, L; Provencio, M; Isla, D

    2009-05-01

    Lung cancer is currently the most common malignancy and also the leading cause of mortality related to cancer in the world [1]. The crude incidence of lung cancer in the EU is 52.5/100,000/year, while the mortality 48.7/100,000/year. Among men the rates are 82.5 and 77.0/100,000/year, and among women 23.9 and 22.3/100,000/year, respectively. Non-small-cell lung cancer (NSCLC) accounts for 80% of all cases. In Spain, there were 16,879 deaths in men, with a mean age of 68 years, and 2634 deaths in women, with a mean age of 66 years. The incidence of lung cancer in Spain was 68.3/100,000 among men and 13.8/100,000 among women, according to the latest data published in the year 2006 by the Instituto Nacional de Estadística. About 90% of lung cancer mortality among men (and 80% among women) is attributable to smoking.

  3. Enhanced Quitline Intervention in Smoking Cessation for Patients With Non-Metastatic Lung Cancer

    ClinicalTrials.gov

    2017-05-25

    Limited Stage Small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Tobacco Use Disorder

  4. Enterolactone induces G1-phase cell cycle arrest in non-small cell lung cancer cells by down-regulating cyclins and cyclin-dependent kinases

    PubMed Central

    Chikara, Shireen; Lindsey, Kaitlin; Dhillon, Harsharan; Mamidi, Sujan; Kittilson, Jeffrey; Christofidou-Solomidou, Melpo; Reindl, Katie M.

    2017-01-01

    Flaxseed is a rich source of the plant lignan secoisolariciresinol diglucoside (SDG) which is metabolized into mammalian lignans enterodiol (ED) and enterolactone (EL) in the digestive tract. The anti-cancer properties of these lignans have been demonstrated for various cancer types, but have not been studied for lung cancer. In this study we investigated the anti-cancer effects of EL for several non-small cell lung cancer (NSCLC) cell lines of various genetic backgrounds. EL inhibited the growth of A549, H441, and H520 lung cancer cells in concentration- and time-dependent manners. The anti-proliferative effects of EL for lung cancer cells were not due to enhanced cell death, but rather due to G1-phase cell cycle arrest. Molecular studies revealed that EL- decreased mRNA or protein expression levels of the G1-phase promoters cyclin D1, cyclin E, cyclin-dependent kinases (CDK)-2, -4, and -6, and p-cdc25A; decreased phosphorylated retinoblastoma (p-pRb) protein levels; and simultaneously increased levels of p21WAF1/CIP1, a negative regulator of the G1-phase. The results suggest that EL inhibits the growth of NSCLC cell lines by down-regulating G1-phase cyclins and CDKs, and up-regulating p21WAF1/CIP1, which leads to G1-phase cell cycle arrest. Therefore, EL may hold promise as an adjuvant treatment for lung cancer therapy. PMID:28323486

  5. GAB2 Amplification in Squamous Cell Lung Cancer of Non-Smokers

    PubMed Central

    2017-01-01

    Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015. Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11q14.1) was significantly amplified in non-smokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers. PMID:28960030

  6. Evaluation of role of Notch3 signaling pathway in human lung cancer cells.

    PubMed

    Hassan, Wael Abdo; Yoshida, Ryoji; Kudoh, Shinji; Motooka, Yamato; Ito, Takaaki

    2016-05-01

    There is still a debate on the extent to which Notch3 signaling is involved in lung carcinogenesis and whether such function is dependent on cancer type or not. To evaluate Notch3 expression in different types of human lung cancer cells. Notch3 was detected in human lung cancer cell lines and in tissues. Then, small interfering RNA (siRNA) was used to down-regulate the expression of Notch3 in H69AR small cell lung carcinoma (SCLC) cells; two non-small cell lung carcinoma (NSCLC) cells; A549 adenocarcinoma (ADC); and H2170 squamous cell carcinoma (SCC). In addition, Notch3 intracellular domain (N3ICD) plasmid was transfected into H1688 human SCLC cells. We observed the effect of deregulating Notch3 signaling on the following cell properties: Notch-related proteins, cell morphology, adhesion, epithelial-mesenchymal transition (EMT), motility, proliferation and neuroendocrine (NE) features of SCLC. Notch3 is mainly expressed in NSCLC, and the expression of Notch1, Hes1 and Jagged1 is affected by Notch3. Notch3 has opposite functions in SCLC and NSCLC, being a tumor suppressor in the former and tumor promoting in the latter, in the context of cell adhesion, EMT and motility. Regarding cell proliferation, we found that inhibiting Notch3 in NSCLC decreases cell proliferation and induces apoptosis in NSCLC. Notch3 has no effect on cell proliferation or NE features of SCLC. Notch3 signaling in lung carcinoma is dependent on cell type. In SCLC, Notch3 behaves as a tumor suppressor pathway, while in NSCLC it acts as a tumor-promoting pathway.

  7. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression.

    PubMed

    Ji, Xiangming; Qian, Jun; Rahman, S M Jamshedur; Siska, Peter J; Zou, Yong; Harris, Bradford K; Hoeksema, Megan D; Trenary, Irina A; Heidi, Chen; Eisenberg, Rosana; Rathmell, Jeffrey C; Young, Jamey D; Massion, Pierre P

    2018-05-23

    Many tumors increase uptake and dependence on glucose, cystine or glutamine. These basic observations on cancer cell metabolism have opened multiple new diagnostic and therapeutic avenues in cancer research. Recent studies demonstrated that smoking could induce the expression of xCT (SLC7A11) in oral cancer cells, suggesting that overexpression of xCT may support lung tumor progression. We hypothesized that overexpression of xCT occurs in lung cancer cells to satisfy the metabolic requirements for growth and survival. Our results demonstrated that 1) xCT was highly expressed at the cytoplasmic membrane in non-small cell lung cancer (NSCLC), 2) the expression of xCT was correlated with advanced stage and predicted a worse 5-year survival, 3) targeting xCT transport activity in xCT overexpressing NSCLC cells with sulfasalazine decreased cell proliferation and invasion in vitro and in vivo and 4) increased dependence on glutamine was observed in xCT overexpressed normal airway epithelial cells. These results suggested that xCT regulate metabolic requirements during lung cancer progression and be a potential therapeutic target in NSCLC.

  8. Nivolumab and Plinabulin in Treating Patients With Stage IIIB-IV, Recurrent, or Metastatic Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2017-08-29

    ALK Gene Translocation; EGFR Activating Mutation; Recurrent Non-Small Cell Lung Carcinoma; ROS1 Gene Translocation; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  9. Physical activity, white blood cell count, and lung cancer risk in a prospective cohort study

    PubMed Central

    Sprague, Brian L.; Trentham-Dietz, Amy; Klein, Barbara E.K.; Klein, Ronald; Cruickshanks, Karen J.; Lee, Kristine E.; Hampton, John M.

    2009-01-01

    Previous studies have suggested that physical activity may lower lung cancer risk. The association of physical activity with reduced chronic inflammation provides a potential mechanism, yet few studies have directly related inflammatory markers to cancer incidence. The relation between physical activity, inflammation, and lung cancer risk was evaluated in a prospective cohort of 4,831 subjects, 43–86 years of age, in Beaver Dam, Wisconsin. A total physical activity index was created by summing kilocalories per week from sweat-inducing physical activities, city blocks walked, and flights of stairs climbed. Two inflammatory markers, white blood cell count and serum albumin, were measured at the baseline examination. During an average of 12.8 years of follow-up, 134 incident cases of lung cancer were diagnosed. After multivariable adjustment, participants in the highest tertile of total physical activity index had a 45% reduction in lung cancer risk compared to those in the lowest tertile (OR=0.55; 95% CI: 0.35–0.86). Participants with white blood cell counts in the upper tertile (≥8×103/μL) were 2.81 (95% CI: 1.58–5.01) times as likely to develop lung cancer as those with counts in the lowest tertile (<6.4×103/μL). Serum albumin was not related to lung cancer risk. There was no evidence that inflammation mediated the association between physical activity and lung cancer risk, as the physical activity risk estimates were essentially unchanged after adjustment for white blood cell count. While the potential for residual confounding by smoking could not be eliminated, these data suggest that physical activity and white blood cell count are independent risk factors for lung cancer. PMID:18843014

  10. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer

    PubMed Central

    Davidson, Shawn M.; Papagiannakopoulos, Thales; Olenchock, Benjamin A.; Heyman, Julia E.; Keibler, Mark A.; Luengo, Alba; Bauer, Matthew R.; Jha, Abhishek K.; O’Brien, James P.; Pierce, Kerry A.; Gui, Dan Y.; Sullivan, Lucas B.; Wasylenko, Thomas M.; Subbaraj, Lakshmipriya; Chin, Christopher R.; Stephanopolous, Gregory; Mott, Bryan T.; Jacks, Tyler; Clish, Clary B.; Vander Heiden, Matthew G.

    2016-01-01

    SUMMARY Cultured cells convert glucose to lactate and glutamine is the major source of tricarboxylic acid (TCA) cycle carbon, but whether the same metabolic phenotype is found in tumors is less studied. We infused mice with lung cancers with isotope-labeled glucose or glutamine and compared the fate of these nutrients in tumor and normal tissue. As expected, lung tumors exhibit increased lactate production from glucose. However, glutamine utilization by both lung tumors and normal lung was minimal, with lung tumors showing increased glucose contribution to the TCA cycle relative to normal lung tissue. Deletion of enzymes involved in glucose oxidation demonstrates that glucose carbon contribution to the TCA cycle is required for tumor formation. These data suggest that understanding nutrient utilization by tumors can predict metabolic dependencies of cancers in vivo. Furthermore, these data argue that the in vivo environment is an important determinant of the metabolic phenotype of cancer cells. PMID:26853747

  11. Octamer-binding protein 4 affects the cell biology and phenotypic transition of lung cancer cells involving β-catenin/E-cadherin complex degradation.

    PubMed

    Chen, Zhong-Shu; Ling, Dong-Jin; Zhang, Yang-De; Feng, Jian-Xiong; Zhang, Xue-Yu; Shi, Tian-Sheng

    2015-03-01

    Clinical studies have reported evidence for the involvement of octamer‑binding protein 4 (Oct4) in the tumorigenicity and progression of lung cancer; however, the role of Oct4 in lung cancer cell biology in vitro and its mechanism of action remain to be elucidated. Mortality among lung cancer patients is more frequently due to metastasis rather than their primary tumors. Epithelial‑mesenchymal transition (EMT) is a prominent biological event for the induction of epithelial cancer metastasis. The aim of the present study was to investigate whether Oct4 had the capacity to induce lung cancer cell metastasis via the promoting the EMT in vitro. Moreover, the effect of Oct4 on the β‑catenin/E‑cadherin complex, associated with EMT, was examined using immunofluorescence and immunoprecipitation assays as well as western blot analysis. The results demonstrated that Oct4 enhanced cell invasion and adhesion accompanied by the downregulation of epithelial marker cytokeratin, and upregulation of the mesenchymal markers vimentin and N‑cadherin. Furthermore, Oct4 induced EMT of lung cancer cells by promoting β‑catenin/E‑cadherin complex degradation and regulating nuclear localization of β‑catenin. In conclusion, the present study indicated that Oct4 affected the cell biology of lung cancer cells in vitro through promoting lung cancer cell metastasis via EMT; in addition, the results suggested that the association and degradation of the β‑catenin/E‑cadherin complex was regulated by Oct4 during the process of EMT.

  12. Drug development for breast, colorectal, and non-small cell lung cancers from 1979 to 2014.

    PubMed

    Nixon, Nancy A; Khan, Omar F; Imam, Hasiba; Tang, Patricia A; Monzon, Jose; Li, Haocheng; Sun, Gavin; Ezeife, Doreen; Parimi, Sunil; Dowden, Scot; Tam, Vincent C

    2017-12-01

    Understanding the drug development pathway is critical for streamlining the development of effective cancer treatments. The objective of the current study was to delineate the drug development timeline and attrition rate of different drug classes for common cancer disease sites. Drugs entering clinical trials for breast, colorectal, and non-small cell lung cancer were identified using a pharmaceutical business intelligence database. Data regarding drug characteristics, clinical trials, and approval dates were obtained from the database, clinical trial registries, PubMed, and regulatory Web sites. A total of 411 drugs met the inclusion criteria for breast cancer, 246 drugs met the inclusion criteria for colorectal cancer, and 315 drugs met the inclusion criteria for non-small cell lung cancer. Attrition rates were 83.9% for breast cancer, 87.0% for colorectal cancer, and 92.0% for non-small cell lung cancer drugs. In the case of non-small cell lung cancer, there was a trend toward higher attrition rates for targeted monoclonal antibodies compared with other agents. No tumor site-specific differences were noted with regard to cytotoxic chemotherapy, immunomodulatory, or small molecule kinase inhibitor drugs. Drugs classified as "others" in breast cancer had lower attrition rates, primarily due to the higher success of hormonal medications. Mean drug development times were 8.9 years for breast cancer, 6.7 years for colorectal cancer, and 6.6 years for non-small cell lung cancer. Overall oncologic drug attrition rates remain high, and drugs are more likely to fail in later-stage clinical trials. The refinement of early-phase trial design may permit the selection of drugs that are more likely to succeed in the phase 3 setting. Cancer 2017;123:4672-4679. © 2017 American Cancer Society. © 2017 American Cancer Society.

  13. miR-96 promotes invasion and metastasis by targeting GPC3 in non-small cell lung cancer cells

    PubMed Central

    Fei, Xiubin; Zhang, Jingang; Zhao, Yunwei; Sun, Meijia; Zhao, Haifeng; Li, Shuang

    2018-01-01

    Lung cancer is a major cause of death worldwide, and non-small cell lung cancer (NSCLC) is the most common type of lung cancer. The aim of this study was to investigate whether miR-96 mediated the invasion and metastasis of NSCLC by targeting glypican-3 (GPC3). Reverse transcription-quantitative PCR (RT-qPCR) was employed to detect the level of miR-96 and GPC3 mRNA. We applied western blot analysis to measure the protein expression level of GPC3 gene. The luciferase reporter assay was employed to confirm that GPC3 was a target gene of miR-96. The Transwell assay was used to detect migration and invasion. The results revealed that miR-96 was upregulated in NSCLC tissues and lung cancer cells (A549 and H460) compared with corresponding paracancerous tissues and normal epidermic MRC-5 cells. Overexpression of miR-96 promoted invasion and migration in A549 cells. GPC3 was a direct target of miR-96 and regulated by miR-96. GPC3 could reverse partial fuction of miR-96 on proliferation. In conclusion, miR-96 was able to promote the migration and invasion of lung cancer cells by targeting GPC3 gene. The newly identified miR-96/GPC3 axis may provide a therapeutic method for the treatment of NSCLC. PMID:29805640

  14. Gene expression analysis of microtubule affinity-regulating kinase 2 in non-small cell lung cancer.

    PubMed

    Marshall, Erin A; Ng, Kevin W; Anderson, Christine; Hubaux, Roland; Thu, Kelsie L; Lam, Wan L; Martinez, Victor D

    2015-12-01

    Lung cancer is the leading cause of cancer death worldwide, and has a five-year survival rate of 18% [1]. MARK2 is a serine/threonine-protein kinase, and is a key component in the phosphorylation of microtubule-associated proteins [2], [3]. A recent study published by Hubaux et al. found that microtubule affinity-regulating kinase 2 (MARK2) showed highly frequent DNA and RNA level disruption in lung cancer cell lines and independent non-small cell lung cancer (NSCLC) cohorts [4]. These alterations result in the acquisition of oncogenic properties in cell lines, such as increased viability and anchorage-independent growth. Furthermore, a microarray-based transcriptome analysis of three short hairpin RNA (shRNA)-mediated MARK2 knockdown lung adenocarcinoma cell lines (GEO#: GSE57966) revealed an association between MARK2 gene expression and cell cycle activation and DNA damage response. Here, we present a detailed description of transcriptome analysis to support the described role of MARK2 in promoting a malignant phenotype.

  15. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link.

    PubMed

    Bozinovski, Steven; Vlahos, Ross; Anthony, Desiree; McQualter, Jonathan; Anderson, Gary; Irving, Louis; Steinfort, Daniel

    2016-02-01

    Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap. © 2015 The British Pharmacological Society.

  16. Detection of circulating tumor cells using oHSV1-hTERT-GFP in lung cancer.

    PubMed

    Gao, Hongjun; Liu, Wenjing; Yang, Shaoxing; Zhang, Wen; Li, Xiaoyan; Qin, Haifeng; Wang, Weixia; Zhao, Changyun

    2018-01-01

    This study was conducted to evaluate the clinical utility of the oHSV1-hTERT-GFP circulating tumor cell (CTC) detection method in the peripheral blood of patients with lung cancer by comparing its sensitivity to the CellSearch CTC detection method. The oHSV1-hTERT-GFP and CellSearch CTC detection methods were compared using peripheral blood samples of patients pathologically diagnosed with lung cancer. A total of 240 patients with lung cancer were recruited, including 89 patients who were newly diagnosed and 151 patients who had previously received treatment. Sixty-six newly diagnosed patients were evaluated using both methods. The CTC detection rates were 71.2% and 33.3% using the oHSV1-hTERT-GFP and CellSearch methods, respectively; this difference was statistically significant (P = 0.000). Among the entire cohort (n = 240), the CTC detection rate using the oHSV1-hTERT-GFP method was 76.3%, with a CTC count of 0-81. The CTC detection rates were 76.7%, 68.9%, and 76.3% in patients with squamous cell carcinoma, adenocarcinoma, and small cell lung cancer, respectively. There was no statistically significant difference in the CTC detection rates between these different pathological subtypes (P = 0.738). The CTC detection rates of 79.8% and 74.4% in patients with stage I-III and IV lung cancer, respectively, were not significantly different (P = 0.427). The oHSV1-hTERT-GFP method is highly effective for detecting CTCs in patients with lung cancer, independent of pathological type and disease stage, and is ideal for large-scale clinical applications. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  17. The Impact of the Cancer Genome Atlas on Lung Cancer

    PubMed Central

    Chang, Jeremy Tzu-Huai; Lee, Yee-Ming; Huang, R. Stephanie

    2015-01-01

    The Cancer Genome Atlas (TCGA) has profiled over 10,000 samples derived from 33 types of cancer to date, with the goal of improving our understanding of the molecular basis of cancer and advancing our ability to diagnose, treat, and prevent cancer. This review focuses on lung cancer as it is the leading cause of cancer-related mortality worldwide in both men and women. Particularly, non-small cell lung cancers (including lung adenocarcinoma and lung squamous cell carcinoma) were evaluated. Our goal is to demonstrate the impact of TCGA on lung cancer research under four themes: namely, diagnostic markers, disease progression markers, novel therapeutic targets, and novel tools. Examples were given related to DNA mutation, copy number variation, mRNA, and microRNA expression along with methylation profiling. PMID:26318634

  18. Vaccine Therapy in Treating Patients With Colon, Pancreatic, or Lung Cancer

    ClinicalTrials.gov

    2015-04-27

    Recurrent Colon Cancer; Extensive Stage Small Cell Lung Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Stage III Non-small Cell Lung Cancer; Stage I Pancreatic Cancer; Stage II Non-small Cell Lung Cancer; Stage IVB Pancreatic Cancer; Stage II Pancreatic Cancer; Stage III Colon Cancer; Stage IVA Pancreatic Cancer

  19. Ursolic acid exerts anti-cancer activity by suppressing vaccinia-related kinase 1-mediated damage repair in lung cancer cells.

    PubMed

    Kim, Seong-Hoon; Ryu, Hye Guk; Lee, Juhyun; Shin, Joon; Harikishore, Amaravadhi; Jung, Hoe-Yune; Jung, Hoe-Youn; Kim, Ye Seul; Lyu, Ha-Na; Oh, Eunji; Baek, Nam-In; Choi, Kwan-Yong; Yoon, Ho Sup; Kim, Kyong-Tai

    2015-09-28

    Many mitotic kinases have been targeted for the development of anti-cancer drugs, and inhibitors of these kinases have been expected to perform well for cancer therapy. Efforts focused on selecting good targets and finding specific drugs to target are especially needed, largely due to the increased frequency of anti-cancer drugs used in the treatment of lung cancer. Vaccinia-related kinase 1 (VRK1) is a master regulator in lung adenocarcinoma and is considered a key molecule in the adaptive pathway, which mainly controls cell survival. We found that ursolic acid (UA) inhibits the catalytic activity of VRK1 via direct binding to the catalytic domain of VRK1. UA weakens surveillance mechanisms by blocking 53BP1 foci formation induced by VRK1 in lung cancer cells, and possesses synergistic anti-cancer effects with DNA damaging drugs. Taken together, UA can be a good anti-cancer agent for targeted therapy or combination therapy with DNA damaging drugs for lung cancer patients.

  20. Epigenetics in non-small cell lung cancer: from basics to therapeutics.

    PubMed

    Ansari, Junaid; Shackelford, Rodney E; El-Osta, Hazem

    2016-04-01

    Lung cancer remains the number one cause of cancer-related deaths worldwide with 221,200 estimated new cases and 158,040 estimated deaths in 2015. Approximately 80% of cases are non-small cell lung cancer (NSCLC). The diagnosis is usually made at an advanced stage where the prognosis is poor and therapeutic options are limited. The evolution of lung cancer is a multistep process involving genetic, epigenetic, and environmental factor interactions that result in the dysregulation of key oncogenes and tumor suppressor genes, culminating in activation of cancer-related signaling pathways. The past decade has witnessed the discovery of multiple molecular aberrations that drive lung cancer growth, among which are epidermal growth factor receptor (EGFR) mutations and translocations involving the anaplastic lymphoma kinase (ALK) gene. This has translated into therapeutic agent developments that target these molecular alterations. The absence of targetable mutations in 50% of NSCLC cases and targeted therapy resistance development underscores the importance for developing alternative therapeutic strategies for treating lung cancer. Among these strategies, pharmacologic modulation of the epigenome has been used to treat lung cancer. Epigenetics approaches may circumvent the problem of tumor heterogeneity by affecting the expression of multiple tumor suppression genes (TSGs), halting tumor growth and survival. Moreover, it may be effective for tumors that are not driven by currently recognized druggable mutations. This review summarizes the molecular pathology of lung cancer epigenetic aberrations and discusses current efforts to target the epigenome with different pharmacological approaches. Our main focus will be on hypomethylating agents, histone deacetylase (HDAC) inhibitors, microRNA modulations, and the role of novel epigenetic biomarkers. Last, we will address the challenges that face this old-new strategy in treating lung cancer.

  1. Stability of the cancer target DDIAS is regulated by the CHIP/HSP70 pathway in lung cancer cells

    PubMed Central

    Won, Kyoung-Jae; Im, Joo-Young; Kim, Bo-Kyung; Ban, Hyun Seung; Jung, Young-Jin; Jung, Kyeong Eun; Won, Misun

    2017-01-01

    DNA damage-induced apoptosis suppressor (DDIAS) rescues lung cancer cells from apoptosis in response to DNA damage. DDIAS is transcriptionally activated by NFATc1 and EGF-mediated ERK5/MEF2B, leading to cisplatin resistance and cell invasion. Therefore, DDIAS is suggested as a therapeutic target for lung cancer. Here, we report that DDIAS stability is regulated by E3 U-box ubiquitin ligase carboxyl terminus of HSP70-interacting protein (CHIP)-mediated proteasomal degradation. We first isolated CHIP as an interacting partner of DDIAS by yeast two-hybrid screening. CHIP physically associated with both the N- and C-terminal regions of DDIAS, targeting it for proteasomal degradation and reducing the DDIAS half-life. CHIP overexpression analyses indicated that the tetratrico peptide repeat (TPR) domain and the U-box are required for DDIAS ubiquitination. It is likely that HSP70-bound DDIAS is recruited to the CHIP E3 ligase via the TPR domain, suggesting DDIAS as a client protein of HSP70. In addition, CHIP overexpression in lung cancer cells expressing high DDIAS levels induced significant growth inhibition by enhancing DDIAS degradation. Furthermore, simultaneous CHIP overexpression and DNA damage agent treatment caused a substantial increase in the apoptosis of lung cancer cells. Taken together, these findings indicate that the stability of the DDIAS protein is regulated by CHIP/HSP70-mediated proteasomal degradation and that CHIP overexpression stimulates the apoptosis of lung cancer cells in response to DNA-damaging agents. PMID:28079882

  2. Stability of the cancer target DDIAS is regulated by the CHIP/HSP70 pathway in lung cancer cells.

    PubMed

    Won, Kyoung-Jae; Im, Joo-Young; Kim, Bo-Kyung; Ban, Hyun Seung; Jung, Young-Jin; Jung, Kyeong Eun; Won, Misun

    2017-01-12

    DNA damage-induced apoptosis suppressor (DDIAS) rescues lung cancer cells from apoptosis in response to DNA damage. DDIAS is transcriptionally activated by NFATc1 and EGF-mediated ERK5/MEF2B, leading to cisplatin resistance and cell invasion. Therefore, DDIAS is suggested as a therapeutic target for lung cancer. Here, we report that DDIAS stability is regulated by E3 U-box ubiquitin ligase carboxyl terminus of HSP70-interacting protein (CHIP)-mediated proteasomal degradation. We first isolated CHIP as an interacting partner of DDIAS by yeast two-hybrid screening. CHIP physically associated with both the N- and C-terminal regions of DDIAS, targeting it for proteasomal degradation and reducing the DDIAS half-life. CHIP overexpression analyses indicated that the tetratrico peptide repeat (TPR) domain and the U-box are required for DDIAS ubiquitination. It is likely that HSP70-bound DDIAS is recruited to the CHIP E3 ligase via the TPR domain, suggesting DDIAS as a client protein of HSP70. In addition, CHIP overexpression in lung cancer cells expressing high DDIAS levels induced significant growth inhibition by enhancing DDIAS degradation. Furthermore, simultaneous CHIP overexpression and DNA damage agent treatment caused a substantial increase in the apoptosis of lung cancer cells. Taken together, these findings indicate that the stability of the DDIAS protein is regulated by CHIP/HSP70-mediated proteasomal degradation and that CHIP overexpression stimulates the apoptosis of lung cancer cells in response to DNA-damaging agents.

  3. Lung cancer: biology and treatment options

    PubMed Central

    Hassan, Omer; Yang, Yi-Wei; Buchanan, Petra

    2015-01-01

    Lung cancer remains the leading cause of cancer mortality in men and women in the U.S. and worldwide. About 90% of lung cancer cases are caused by smoking and the use of tobacco products. However, other factors such as radon gas, asbestos, air pollution exposures, and chronic infections can contribute to lung carcinogenesis. In addition, multiple inherited and acquired mechanisms of susceptibility to lung cancer have been proposed. Lung cancer is divided into two broad histologic classes, which grow and spread differently: small-cell lung carcinomas (SCLC) and non-small cell lung carcinomas (NSCLC). Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, and targeted therapy. Therapeutic-modalities recommendations depend on several factors, including the type and stage of cancer. Despite the improvements in diagnosis and therapy made during the past 25 years, the prognosis for patients with lung cancer is still unsatisfactory. The responses to current standard therapies are poor except for the most localized cancers. However, a better understanding of the biology pertinent to these challenging malignancies, might lead to the development of more efficacious and perhaps more specific drugs. The purpose of this review is to summarize the recent developments in lung cancer biology and its therapeutic strategies, and discuss the latest treatment advances including therapies currently under clinical investigation. PMID:26297204

  4. GAB2 Amplification in Squamous Cell Lung Cancer of Non-Smokers.

    PubMed

    Park, Yu Rang; Bae, Soo Hyeon; Ji, Wonjun; Seo, Eul Ju; Lee, Jae Cheol; Kim, Hyeong Ryul; Jang, Se Jin; Choi, Chang Min

    2017-11-01

    Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015. Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11q14.1) was significantly amplified in non-smokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers. © 2017 The Korean Academy of Medical Sciences.

  5. Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway.

    PubMed

    Su, Jin; Yan, Yan; Qu, Jingkun; Xue, Xuewen; Liu, Zi; Cai, Hui

    2017-03-01

    Emodin is a phytochemical with potent anticancer activities against various human malignant cancer types, including lung cancer; however, the molecular mechanisms underlying the effects of emodin remain unclear. In the present study, the A549 and H1299 human non-small lung cancer cell lines were treated with emodin and the induced molecular effects were investigated. Changes in cell viability were evaluated by MTT assay, Hoechst staining was used to indicate the apoptotic cells, and western blotting was utilized to assess endoplasmic reticulum (ER) stress and signaling changes. RNA interference was also employed to further examine the role of tribbles homolog 3 (TRIB3) in the emodin-induced apoptosis of lung cancer cells. Emodin was found to reduce the viability of lung cancer cells and induce apoptosis in a concentration-dependent manner. Emodin-induced apoptosis was impaired by inhibition of ER stress using 4-phenylbutyrate (4-PBA). ER stress and TRIB3/nuclear factor-κB signaling was activated in emodin-treated lung cancer cells. Emodin-induced apoptosis was reduced by TRIB3 knockdown in A549 cells, whereas ER stress was not reduced. In vivo assays verified the significance of these results, revealing that emodin inhibited lung cancer growth and that the inhibitory effects were reduced by inhibition of ER stress with 4-PBA. In conclusion, the results suggest that TRIB3 signaling is associated with emodin-induced ER stress-mediated apoptosis in lung cancer cells.

  6. β-Cryptoxanthin Reduced Lung Tumor Multiplicity and Inhibited Lung Cancer Cell Motility by Downregulating Nicotinic Acetylcholine Receptor α7 Signaling.

    PubMed

    Iskandar, Anita R; Miao, Benchun; Li, Xinli; Hu, Kang-Quan; Liu, Chun; Wang, Xiang-Dong

    2016-11-01

    Despite the consistent association between a higher intake of the provitamin A carotenoid β-cryptoxanthin (BCX) and a lower risk of lung cancer among smokers, potential mechanisms supporting BCX as a chemopreventive agent are needed. We first examined the effects of BCX on 4-[methyl nitrosamino]-1-[3-pyridyl]-1-butanone (NNK)-induced lung tumorigenesis in A/J mice. BCX supplementation was given daily to the mice starting 2 weeks prior to the injection of NNK and continued 16 weeks after NNK injection. BCX supplementation resulted in a dose-dependent increase of BCX concentration in both serum and lungs of the mice without a significant alteration of vitamin A (retinol and retinyl palmitate) concentration. BCX significantly reduced the multiplicity of the NNK-induced lung tumor by 52% to 63% compared with the NNK-treated mice without BCX supplementation. The protective effect of BCX in the lungs was associated with reductions of both mRNA and protein of the homopentameric neuronal nicotinic acetylcholine receptor α7 (α7-nAChR), which has been implicated in lung tumorigenesis. We then conducted an in vitro cell culture study and found that BCX treatment suppressed α7-nAChR expression and inhibited the migration and invasion of α7-nAChR-positive lung cancer cells but not in cells lacking α7-nAChR. The activities of BCX were significantly attenuated by activators of α7-nAChR/PI3K signaling or by overexpression of constitutively active PI3K. Collectively, the results suggest that BCX inhibits lung tumorigenesis and cancer cell motility through the downregulation of α7-nAChR/PI3K signaling, independent of its provitamin A activity. Therefore, BCX can be used as a chemopreventive agent or a chemotherapeutic compound against lung cancer. Cancer Prev Res; 9(11); 875-86. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Non-small cell lung cancer therapy in the elderly.

    PubMed

    Gridelli, Cesare; Rossi, Antonio; Maione, Paolo; Schettino, Clorinda; Bareschino, Maria Anna; Palazzolo, Giovanni; Zeppa, Rosario; Ambrosio, Rita; Barbato, Valentina; Sacco, Paola Claudia

    2011-05-01

    To date, lung cancer is still the leading cause of cancer-related mortality worldwide, with the majority of lung cancers arising in the elderly. As a consequence, we can expect an increase in the number of older lung cancer patients considered suitable for chemotherapy in the near future. Elderly patients often have comorbid conditions and progressive physiologic reduction of organ function, which can make the selection of proper treatment daunting. Some patients will be able to tolerate chemotherapy as well as their younger counterparts, whereas others will experience severe toxicity and require treatment modifications. Thus, a major issue is effectively selecting patients suitable for standard or attenuated therapy. A comprehensive geriatric assessment performed at baseline is a useful tool that can help select the best treatment regimen to be administered to elderly patients. Until now, few trials have specifically focused on elderly patients affected by non-small cell lung cancer (NSCLC), particularly those with advanced disease; prospective elderly-specific studies in early stages are still lacking. High priority should be given to evaluating the role of new targeted therapies. Unfortunately, to date, clinical trials that include functional status and comorbidity as part of the geriatric assessment are rare. Future trials, specifically in the elderly population, should include these kinds of evaluations. The most recent therapies for the treatment of elderly patients with NSCLC will be discussed here.

  8. Irisin suppresses the migration, proliferation, and invasion of lung cancer cells via inhibition of epithelial-to-mesenchymal transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lei; Jinan Central Hospital Affiliated to Shandong University, Jinan, 250012; Li, Huanjie

    Irisin is involved in promoting metabolism, immune regulation, and affects chronic inflammation in many systemic diseases, including gastric cancer. However, the role of irisin in lung cancer is not well characterized. To determine whether irisin has a protective effect against lung cancer, we cultured A549 and NCI-H446 lung cancer cells and treated them with irisin. We detected the proliferation by MTT assay, and assessed the migration and invasion of the cells by scratch wound healing assay and Tran-swell assay. The expression levels of epithelial-to-mesenchymal transition (EMT) markers and the related signaling pathways were detected by western blot analysis. Meanwhile, anmore » inhibitor of PI3K was used to investigate the effect of irsin. Finally, the expression of Snail was detected. We demonstrated that irisin inhibits the proliferation, migration, and invasion of lung cancer cells, and has a novel role in mediating the PI3K/AKT pathway in the cells. Irisin can reverse the activity of EMT and inhibit the expression of Snail via mediating the PI3K/AKT pathway, which is a key regulator of Snail. These results revealed that irisin inhibited EMT and reduced the invasion of lung cancer cells via the PI3K/AKT/Snail pathway. - Highlights: • Irisin inhibits the proliferation of lung cancer cells. • Irisin inhibits the migration and invasion of lung cancer cells. • Irisin affects the expression of EMT markers via inhibiting the PI3K/AKT pathway in lung cancer cells. • Irisin induces Snail downregulation via PI3K/AKT pathway activation.« less

  9. [Effect of cisplatin on the expression of Pokemon gene: experiment with different human lung cancer cells].

    PubMed

    Zhao, Zhi-Hong; Wang, Sheng-Fa; Yu, Liang; Wang, Ju; Cong, De-Gang; Chang, Hao; Wang, Xue-Feng; Zhang, Tie-Wa; Zhang, Jian; Fu, Kai; Jiang, Jiu-Yang

    2008-04-29

    To investigate the correlation between Pokemon gene and cisplatin mechanism. Human lung adenocarcinoma cells of the lines A549 and AGZY83-a, human lung squamous carcinoma cells of the line HE-99, and human giant cell lung cancer cells of the line 95D were cultured and cisplatin was added into the medium. Other lung cancer cells of the above mentioned lines were cultured in the medium without cisplatin and were used as control groups. RT-PCR and Western blotting were used to detect the mRNA and protein expression of Pokemon. Pokemon mRNA and protein were expressed highly in all the 4 cell lines. The Pokemon gene expression did not changed significantly after cisplatin treatment groups. There were not significant differences in the mRNA and protein expression of Pokemon among the 4 experiment groups and the control groups (all P > 0.05). Cisplatin has no effect on the Pokemon gene expression of the human lung cancer cells.

  10. MiR-26a enhances invasive capacity by suppressing GSK3β in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Gaoyang; Liu, Boning; Meng, Zhaowei

    Lung cancer is the common cause of death from cancer, and most lung cancer patients die of metastasis. MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors, playing crucial role not only in tumorigenesis, but also in tumor invasion and metastasis. There are several studies showed that miR-26a is involved in carcinogenesis, however, its role in tumor metastasis need to be elucidated. In this study, we showed that ectopic expression of miR-26a enhanced migration and invasion of lung cancer cells. Glycogen synthase kinase-3β (GSK3β) was identified as a direct target of miR-26a. GSK3β expression negatively correlated with miR-26a expression inmore » lung cancer tissues. Silencing of GSK3β achieved similar effect as miR-26a over-expression; over-expression of GSK3β reversed the enhanced effect of miR-26a on lung cancer cell migration and invasion. Further study indicated that miR-26a increased β-catenin expression and nuclear translocation. C-myc and cyclin D1, the downstream genes of β-catenin, were also up-regulated by miR-26a. Furthermore, xenograft study showed that miR-26a promoted lung cancer cell growth in vivo, and suppressed GSK3β expression. Collectively, our results demonstrated that miR-26a enhanced metastatic potential of lung cancer cells via activation of β-catenin pathway by targeting GSK3β, suggesting the potential applicability of miR-26a as a target for cancer treatment. - Highlights: • miR-26a enhances migration and invasion of lung cancer cells. • GSK3β is identified as a direct target of miR-26a. • miR-26a activates β-catenin pathway by targeting GSK3β. • miR-26a promotes lung cancer cell growth in vivo.« less

  11. Study of Ponatinib in Patients With Lung Cancer Preselected Using Different Candidate Predictive Biomarkers

    ClinicalTrials.gov

    2018-01-17

    Adenocarcinoma of the Lung; Extensive Stage Small Cell Lung Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  12. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment.

    PubMed

    Wada, M; Canals, D; Adada, M; Coant, N; Salama, M F; Helke, K L; Arthur, J S; Shroyer, K R; Kitatani, K; Obeid, L M; Hannun, Y A

    2017-11-23

    The protein p38 mitogen-activated protein kinase (MAPK) delta isoform (p38δ) is a poorly studied member of the MAPK family. Data analysis from The Cancer Genome Atlas database revealed that p38δ is highly expressed in all types of human breast cancers. Using a human breast cancer tissue array, we confirmed elevation in cancer tissue. The breast cancer mouse model, MMTV-PyMT (PyMT), developed breast tumors with lung metastasis; however, mice deleted in p38δ (PyMT/p38δ -/- ) exhibited delayed primary tumor formation and highly reduced lung metastatic burden. At the cellular level, we demonstrate that targeting of p38δ in breast cancer cells, MCF-7 and MDA-MB-231 resulted in a reduced rate of cell proliferation. In addition, cells lacking p38δ also displayed an increased cell-matrix adhesion and reduced cell detachment. This effect on cell adhesion was molecularly supported by the regulation of the focal adhesion kinase by p38δ in the human breast cell lines. These studies define a previously unappreciated role for p38δ in breast cancer development and evolution by regulating tumor growth and altering metastatic properties. This study proposes MAPK p38δ protein as a key factor in breast cancer. Lack of p38δ resulted in reduced primary tumor size and blocked the metastatic potential to the lungs.

  13. Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells.

    PubMed

    Wu, Chao-Yan; Ke, Yuan; Zeng, Yi-Fei; Zhang, Ying-Wen; Yu, Hai-Jun

    2017-01-01

    We have reported that Chinese herbs Astragalus polysaccharide (APS) can inhibit nuclear factor kappaB (NF-κB) activity during the development of diabetic nephropathy in mice. NF-κB plays important roles in genesis, growth, development and metastasis of cancer. NF-κB is also involved in the development of treatment resistance in tumors. Here we investigated the antitumor activity of APS in human non-small cell lung cells (A549 and NCI-H358) and the related mechanisms of action. The dose-effect and time-effect of antitumor of APS were determined in human lung cancer cell line A549 and NCI-H358. The inhibition effect of APS on the P65 mRNA and protein was detected by reverse transcriptase-PCR (RT-PCR) and Western blot in A549 cells respectively. The inhibition effect of APS on the p50, CyclinD1 and Bcl-xL protein was detected by Western blot in A549 cells respectively. The effect of APS on NF-κB transcription activity was measured with NF-κB luciferase detection. Finally, the nude mice A549 xenograft was introduced to confirm the antitumor activity of APS in vivo. Cell viability detection results indicated that APS can inhibit the proliferation of human lung cancer cell line A549 and NCI-H358 in the concentration of 20 and 40 mg/mL. NF-κB activator Phorbol 12-myristate13-acetate (PMA) can attenuate the antitumor activity of APS in both cell lines, but NF-κB inhibitor BAY 11-7082 (Bay) can enhance the effect of APS in both cell lines. In vivo APS can delay the growth of A549 xenograft in BALB/C nude mice. APS can down-regulate the expression of P65 mRNA and protein of A549 cells and decrease the expression of p50, CyclinD1 and Bcl-xL protein. The luciferase detection showed that the APS could reduce the P65 transcription activity in A549 cells. PMA can partially alleviate the inhibition activity of P65 transcription activity of APS in A549 cells, and Bay can enhance the down-regulation of the P65 transcription activity induced by APS in A549 cells. APS has a

  14. Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma

    PubMed Central

    Hassan, Khaled A.; Wang, Luo; Korkaya, Hasan; Chen, Guoan; Maillard, Ivan; Beer, David G.; Kalemkerian, Gregory P.; Wicha, Max S.

    2013-01-01

    Purpose The cancer stem cell theory postulates that tumors contain a subset of cells with stem cell properties of self-renewal, differentiation and tumor-initiation. The purpose of this study is to determine the role of Notch activity in identifying lung cancer stem cells. Experimental Design We investigated the role of Notch activity in lung adenocarcinoma utilizing a Notch GFP-reporter construct and a gamma-secretase inhibitor (GSI), which inhibits Notch pathway activity. Results Transduction of lung cancer cells with Notch GFP-reporter construct identified a subset of cells with high Notch activity (GFP-bright). GFP-bright cells had the ability to form more tumor spheres in serum-free media, and were able to generate both GFP-bright and GFP-dim (lower Notch activity) cell populations. GFP-bright cells were resistant to chemotherapy and were tumorigenic in serial xenotransplantation assays. Tumor xenografts of mice treated with GSI had decreased expression of downstream effectors of Notch pathway and failed to regenerate tumors upon reimplantation in NOD/SCID mice. Using multivariate analysis, we detected a statistically significant correlation between poor clinical outcome and Notch activity (reflected in increased Notch ligand expression or decreased expression of the negative modulators), in a group of 441 lung adenocarcinoma patients. This correlation was further confirmed in an independent group of 89 adenocarcinoma patients where Hes-1 overexpression correlated with poor overall survival. Conclusions Notch activity can identify lung cancer stem cell-like population and its inhibition may be an appropriate target for treating lung adenocarcinoma. PMID:23444212

  15. Exposure to secondhand tobacco smoke and lung cancer by histological type: a pooled analysis of the International Lung Cancer Consortium (ILCCO)

    PubMed Central

    Kim, Claire H; Lee, Yuan-Chin Amy; Hung, Rayjean J; McNallan, Sheila R; Cote, Michele L; Lim, Wei-Yen; Chang, Shen-Chih; Kim, Jin Hee; Ugolini, Donatella; Chen, Ying; Liloglou, Triantafillos; Andrew, Angeline S; Onega, Tracy; Duell, Eric J; Field, John K; Lazarus, Philip; Le Marchand, Loic; Neri, Monica; Vineis, Paolo; Kiyohara, Chikako; Hong, Yun-Chul; Morgenstern, Hal; Matsuo, Keitaro; Tajima, Kazuo; Christiani, David C; McLaughlin, John R; Bencko, Vladimir; Holcatova, Ivana; Boffetta, Paolo; Brennan, Paul; Fabianova, Eleonora; Foretova, Lenka; Janout, Vladimir; Lissowska, Jolanta; Mates, Dana; Rudnai, Peter; Szeszenia-Dabrowska, Neonila; Mukeria, Anush; Zaridze, David; Seow, Adeline; Schwartz, Ann G; Yang, Ping; Zhang, Zuo-Feng

    2014-01-01

    While the association between exposure to secondhand smoke and lung cancer risk is well established, few studies with sufficient power have examined the association by histological type. In this study, we evaluated the secondhand smoke-lung cancer relationship by histological type based on pooled data from 18 case-control studies in the International Lung Cancer Consortium (ILCCO), including 2,504 cases and 7,276 controls who were never smokers and 10,184 cases and 7,176 controls who were ever smokers. We used multivariable logistic regression, adjusting for age, sex, race/ethnicity, smoking status, pack-years of smoking, and study. Among never smokers, the odds ratios (OR) comparing those ever exposed to secondhand smoke with those never exposed were 1.31 (95% CI: 1.17–1.45) for all histological types combined, 1.26 (95% CI: 1.10–1.44) for adenocarcinoma, 1.41 (95% CI: 0.99–1.99) for squamous cell carcinoma, 1.48 (95% CI: 0.89–2.45) for large cell lung cancer, and 3.09 (95% CI: 1.62–5.89) for small cell lung cancer. The estimated association with secondhand smoke exposure was greater for small cell lung cancer than for non-small cell lung cancers (OR=2.11, 95% CI: 1.11–4.04). This analysis is the largest to date investigating the relation between exposure to secondhand smoke and lung cancer. Our study provides more precise estimates of the impact of secondhand smoke on the major histological types of lung cancer, indicates the association with secondhand smoke is stronger for small cell lung cancer than for the other histological types, and suggests the importance of intervention against exposure to secondhand smoke in lung cancer prevention. PMID:24615328

  16. Mint3 in bone marrow-derived cells promotes lung metastasis in breast cancer model mice.

    PubMed

    Hara, Toshiro; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2017-08-26

    Breast cancer is one of the most common cancers in women in the world. Although breast cancer is well treatable at the early stage, patients with distant metastases show a poor prognosis. Data from recent studies using transplantation models indicate that Mint3/APBA3 might promote breast cancer malignancy. However, whether Mint3 indeed contributes to tumor development, progression, or metastasis in vivo remains unclear. To address this, here we examined whether Mint3 depletion affects tumor malignancy in MMTV-PyMT breast cancer model mice. In MMTV-PyMT mice, Mint3 depletion did not affect tumor onset and tumor growth, but attenuated lung metastases. Experimental lung metastasis of breast cancer Met-1 cells derived from MMTV-PyMT mice also decreased in Mint3-depleted mice, indicating that host Mint3 expression affected lung metastasis of MMTV-PyMT-derived breast cancer cells. Further bone marrow transplant experiments revealed that Mint3 in bone marrow-derived cells promoted lung metastasis in MMTV-PyMT mice. Thus, targeting Mint3 in bone marrow-derived cells might be a good strategy for preventing metastasis and improving the prognosis of breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Palliative Care Intervention in Improving Symptom Control and Quality of Life in Patients With Stage II-IV Non-small Cell Lung Cancer and Their Family Caregivers

    ClinicalTrials.gov

    2017-10-16

    Caregiver; Psychological Impact of Cancer and Its Treatment; Recurrent Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  18. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulatedmore » in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.« less

  19. Effects of direct current electric fields on lung cancer cell electrotaxis in a PMMA-based microfluidic device.

    PubMed

    Li, Yaping; Xu, Tao; Chen, Xiaomei; Lin, Shin; Cho, Michael; Sun, Dong; Yang, Mengsu

    2017-03-01

    Tumor metastasis is the primary cause of cancer death. Numerous studies have demonstrated the electrotactic responses of various cancer cell types, and suggested its potential implications in metastasis. In this study, we used a microfluidic device to emulate endogenous direct current electric field (dcEF) environment, and studied the electrotactic migration of non-small cell lung cancer cell lines (H460, HCC827, H1299, and H1975) and the underlying mechanisms. These cell lines exhibited greatly different response in applied dcEFs (2-6 V/cm). While H460 cells (large cell carcinoma) showed slight migration toward cathode, H1299 cells (large cell carcinoma) showed increased motility and dcEF-dependent anodal migration with cell reorientation. H1975 cells (adenocarcinoma) showed dcEF-dependent cathodal migration with increased motility, and HCC827 cells (adenocarcinoma) responded positively in migration speed and reorientation but minimally in migrating directions to dcEF. Activation of MAPK and PI3K signaling pathways was found to be associated with the realignment and directed migration of lung cancer cells. In addition, both Ca 2+ influx through activated stretch-activated calcium channels (SACCs) (but not voltage-gated calcium channels, VGCCs) and Ca 2+ release from intracellular storage were involved in lung cancer cell electrotactic responses. The results demonstrated that the microfluidic device provided a stable and controllable microenvironment for cell electrotaxis study, and revealed that the electrotactic responses of lung cancer cells were heterogeneous and cell-type dependent, and multiple signals contributed to lung cancer cells electrotaxis.

  20. New insights in non-small-cell lung cancer: circulating tumor cells and cell-free DNA

    PubMed Central

    Duréndez-Sáez, Elena; Azkárate, Aitor; Meri, Marina; Calabuig-Fariñas, Silvia; Aguilar-Gallardo, Cristóbal; Blasco, Ana

    2017-01-01

    Lung cancer is the second most frequent tumor and the leading cause of death by cancer in both men and women. Increasing knowledge about the cancer genome and tumor environment has led to a new setting in which morphological and molecular characterization is needed to treat patients in the most personalized way in order to achieve better outcomes. Since tumor products can be detected in body fluids, the liquid biopsy, particularly, peripheral blood, has emerged as a new source for lung cancer biomarker’s analysis. A variety of tumor components can be used for this purpose. Among them, circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) should be especially considered. Different detection methods for both CTCs and ctDNA have been and are being developed to improve the sensitivity and specificity of these tests. This would lead to better characterization and would solve some clinical doubts at different disease evolution times, e.g., intratumoral or temporal heterogeneity, difficulty in the obtaining a tumor sample, etc., and would also avoid the side effects of very expensive and complicated tumor obtaining interventions. CTCs and ctDNA are useful in different lung cancer settings. Their value has been shown for the early diagnosis, prognosis, prediction of treatment efficacy, monitoring responses and early detection of lung cancer relapse. CTCs have still not been validated for use in clinical settings in non-small-cell lung cancer (NSCLC), while ctDNA has been approved by the Food and Drug Administration (FDA) and European Medical Association (EMA), and the main clinical guidelines used for detect different epidermal growth factor receptor (EGFR) mutations and the monitoring and treatment choice of mutated patients with tyrosine kinase inhibitors (TKIs). This review, describes how ctDNA seem to be winning the race against CTCs from the laboratory bench to clinical practice due to easier obtaining methods, manipulation and its implementation into

  1. Venom present in sea anemone (Heteractis magnifica) induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria-mediated pathway.

    PubMed

    Ramezanpour, Mahnaz; da Silva, Karen Burke; Sanderson, Barbara J S

    2014-03-01

    Lung cancer is a major cause of cancer deaths throughout the world and the complexity of apoptosis resistance in lung cancer is apparent. Venom from Heteractis magnifica caused dose-dependent decreases in survival of the human non-small-cell lung cancer cell line, as determined by the MTT and Crystal Violet assays. The H. magnifica venom induced cell cycle arrest and induced apoptosis of A549 cells, as confirmed by annexin V/propidium iodide staining. The venom-induced apoptosis in A549 cells was characterized by cleavage of caspase-3 and a reduction in the mitochondrial membrane potential. Interestingly, crude extracts from H. magnifica had less effect on the survival of non-cancer cell lines. In the non-cancer cells, the mechanism via which cell death occurred was through necrosis not apoptosis. These findings are important for future work using H. magnifica venom for pharmaceutical development to treat human lung cancer.

  2. Benzyl isothiocyanate induces protective autophagy in human lung cancer cells through an endoplasmic reticulum stress-mediated mechanism

    PubMed Central

    Zhang, Qi-cheng; Pan, Zhen-hua; Liu, Bo-ning; Meng, Zhao-wei; Wu, Xiang; Zhou, Qing-hua; Xu, Ke

    2017-01-01

    Isothiocyanates, such as allyl isothiocya¬nate (AITC), benzyl isothiocyanate (BITC), phenethyl isothio¬cyanate (PEITC) and sulforaphane (SFN), are natural compounds abundant in cruciferous vegetables, which have substantial chemopreventive activities against various human malignancies. However, the mechanisms underlying the inhibition of tumor cell growth by isothiocyanates are not fully understood. Since autophagy has dual functions in cancer, in the present study we investigated the effects of BITC on autophagy induction in human lung cancer cells in vitro and in vivo. BITC (1–100 μmol/L) dose-dependently inhibited the growth of 3 different human lung cancer cell lines A549 (adenocarcinoma), H661 (large cell carcinoma) and SK-MES-1 (squamous cell carcinoma) with IC50 values of 30.7±0.14, 15.9±0.22 and 23.4±0.11 μmol/L, respectively. BITC (10–40 μmol/L) induced autophagy in the lung cancer cells, evidenced by the formation of acidic vesicular organelles (AVOs), the accumulation of LC3-II, the punctate pattern of LC3, and the expression of Atg5. Pretreatment with the autophagy inhibitor 3-MA (5 mmol/L) significantly enhanced the BITC-caused growth inhibition in the lung cancer cells. Furthermore, BITC (20–40 μmol/L) activated ER stress, as shown by the increased cytosolic Ca2+ level and the phosphorylation of the ER stress marker proteins PERK and eIF2α in the lung cancer cells. Pretreatment with the ER stress inhibitor 4-PBA (5 mmol/L) attenuated the autophagy induction and potentiated the BITC-induced cell growth inhibition. In nude mice bearing A549 xenografts, administration of BITC (100 mg·kg-1·d-1, ip) for 8 weeks markedly suppressed the lung tumor growth, and significantly enhanced both autophagy and ER stress in the tumor tissues. Our results demonstrate that BITC inhibits human lung cancer cell growth in vitro and in vivo. In addition, BITC induces autophagy in the lung cancer cells, which protects the cancer cells against the inhibitory

  3. Procoagulant effects of lung cancer chemotherapy: impact on microparticles and cell-free DNA.

    PubMed

    Lysov, Zakhar; Dwivedi, Dhruva J; Gould, Travis J; Liaw, Patricia C

    2017-01-01

    Lung cancer is the second leading type of cancer, with venous thromboembolism being the second leading cause of death. Studies have shown increased levels of microparticles and cell-free DNA (CFDNA) in cancer patients, which can activate coagulation through extrinsic and intrinsic pathways, respectively. However, the impact of lung cancer chemotherapy on microparticle and/or CFDNA generation is not completely understood. The aim of the study was to study the effects of platinum-based chemotherapeutic agents on generation of procoagulant microparticles and CFDNA in vitro and in vivo. Microparticles were isolated from chemotherapy-treated monocytes, human umbilical vein endothelial cells, or cancer cells. Tissue factor (TF) and phosphatidylserine levels were characterized and thrombin/factor Xa generation assays were used to determine microparticle procoagulant activity. CFDNA levels were isolated from cell supernatants and plasma. A murine xenograft model of human lung carcinoma was used to study the procoagulant effects of TF microparticles and CFDNA in vivo. In vitro, platinum-based chemotherapy induced TF/phosphatidylserine microparticle shedding from A549 and A427 lung cancers cells, which enhanced thrombin generation in plasma in a FVII-dependent manner. CFDNA levels were increased in supernatants of chemotherapy-treated neutrophils and plasma of chemotherapy-treated mice. TF microparticles were elevated in plasma of chemotherapy-treated tumour-bearing mice. Plasma CFDNA levels are increased in chemotherapy-treated tumour-free mice and correlate with increased thrombin generation. In tumour-bearing mice, chemotherapy increases plasma levels of CFDNA and TF/phosphatidylserine microparticles. Platinum-based chemotherapy induces the shedding of TF/phosphatidylserine microparticles from tumour cells and the release of CFDNA from host neutrophils.

  4. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong

    2015-08-07

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screeningmore » techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer.« less

  5. Umbelliprenin is cytotoxic against QU-DB large cell lung cancer cell line but anti-proliferative against A549 adenocarcinoma cells

    PubMed Central

    2012-01-01

    Background Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins. Recently, umbelliprenin has attracted the researchers' attention for its antitumor activities against skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer. Methods The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT) assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells), and propidium iodide (for necrotic cells) dyes were employed. Results Data from three independent MTT experiments in triplicate revealed that IC50 values for QU-DB and A549 were 47 ± 5.3 μM and 52 ± 1.97 μM, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells, but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 μM and less concentrations of umbelliprenin, no suppressive effect was observed. Conclusions We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines. PMID:23351548

  6. Synergistic effect of phenformin in non-small cell lung cancer (NSCLC) ionizing radiation treatment.

    PubMed

    Wang, Jia; Xia, Shi'an; Zhu, Zhizhen

    2015-03-01

    Biguanides, used for anti-diabetic drugs, bring more attention in cancer research for their beneficial effects. Phenformin is more potent than metformin. However its potential application as a anti-cancer regent is far behind metformin. In order to investigate any beneficial effect of combination of Phenformin and radiotherapy, non-small cell lung cancer cell lines A549 and H1299 were exposure under different dose of ionizing radiation with or without Phenformin. Results indicated Phenformin showed synergistic effect and could induce more cancer cell apoptosis and inhibition of tumor growth compared with ionizing radiation alone. Furthermore, this synergistic effect may be through different pathway according to cancer cell genotype background. Our results showed Phenformin induced AMPK activation in A549 but not H1299. However, Phenformin activated eIF2α in both cell lines. Our findings implicated Phenformin may be used as radiosensitizer for non-small cell lung cancer therapy.

  7. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells.

    PubMed

    Qin, Yuan; Zhang, Qiang; Lee, Shan; Zhong, Wei-Long; Liu, Yan-Rong; Liu, Hui-Juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-Shuang; Wang, Jing; Sun, Bo; Dai, Ting-Ting; Yang, Cheng; Sun, Tao; Zhou, Hong-Gang

    2015-12-01

    The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients.

  8. The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells

    PubMed Central

    Trötzmüller, Martin; Hinteregger, Barbara; Leko, Petra; Wieser, Beatrix I.; Grasmann, Gabriele; Bertsch, Alexandra L.; Züllig, Thomas; Stacher, Elvira; Valli, Alessandro; Prassl, Ruth; Olschewski, Andrea; Harris, Adrian L.; Köfeler, Harald C.; Olschewski, Horst; Hrzenjak, Andelko

    2018-01-01

    Cancer cells are reprogrammed to consume large amounts of glucose to support anabolic biosynthetic pathways. However, blood perfusion and consequently the supply with glucose are frequently inadequate in solid cancers. PEPCK-M (PCK2), the mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK), has been shown by us and others to be functionally expressed and to mediate gluconeogenesis, the reverse pathway of glycolysis, in different cancer cells. Serine and ribose synthesis have been identified as downstream pathways fed by PEPCK in cancer cells. Here, we report that PEPCK-M–dependent glycerol phosphate formation from noncarbohydrate precursors (glyceroneogenesis) occurs in starved lung cancer cells and supports de novo glycerophospholipid synthesis. Using stable isotope-labeled glutamine and lactate, we show that PEPCK-M generates phosphoenolpyruvate and 3-phosphoglycerate, which are at least partially converted to glycerol phosphate and incorporated into glycerophospholipids (GPL) under glucose and serum starvation. This pathway is required to maintain levels of GPL, especially phosphatidylethanolamine (PE), as shown by stable shRNA-mediated silencing of PEPCK-M in H23 lung cancer cells. PEPCK-M shRNA led to reduced colony formation after starvation, and the effect was partially reversed by the addition of dioleyl-PE. Furthermore, PEPCK-M silencing abrogated cancer growth in a lung cancer cell xenograft model. In conclusion, glycerol phosphate formation for de novo GPL synthesis via glyceroneogenesis is a newly characterized anabolic pathway in cancer cells mediated by PEPCK-M under conditions of severe nutrient deprivation. PMID:29844165

  9. HOXA11 hypermethylation is associated with progression of non-small cell lung cancer

    PubMed Central

    Hwang, Jung-Ah; Lee, Bo Bin; Kim, Yujin; Park, Seong-Eun; Heo, Kyun; Hong, Seung-Hyun; Kim, Young-Ho; Han, Joungho; Shim, Young Mog; Lee, Yeon-Su; Kim, Duk-Hwan

    2013-01-01

    This study was aimed at understanding the functional significance of HOXA11 hypermethylation in non-small cell lung cancer (NSCLC). HOXA11 hypermethylation was characterized in six lung cancer cell lines, and its clinical significance was analyzed using formalin-fixed paraffin-embedded tissues from 317 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA11 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA11 into H23 lung cancer cells resulted in the inhibition of cell migration and proliferation. HOXA11 hypermethylation was found in 218 (69%) of 317 primary NSCLCs. HOXA11 hypermethylation was found at a higher prevalence in squamous cell carcinoma than in adenocarcinoma (74% vs. 63%, respectively). HOXA11 hypermethylation was associated with Ki-67 proliferation index (P = 0.03) and pT stage (P = 0.002), but not with patient survival. Patients with pT2 and pT3 stages were 1.85 times (95% confidence interval [CI] = 1.04-3.29; P = 0.04) and 5.47 times (95% CI = 1.18-25.50; P = 0.01), respectively, more likely to show HOXA11 hypermethylation than those with pT1 stage, after adjusting for age, sex, and histology. In conclusion, the present study suggests that HOXA11 hypermethylation may contribute to the progression of NSCLC by promoting cell proliferation or migration. PMID:24259349

  10. Anti-cancer Effects of Polyphenolic Compounds in Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor-resistant Non-small Cell Lung Cancer

    PubMed Central

    Jeong, Hyungmin; Phan, Ai N. H.; Choi, Jong-Whan

    2017-01-01

    Background: Polyphenolic phytochemicals are natural compounds, easily found in fruits and vegetables. Importantly, polyphenols have been intensively studied as excellent antioxidant activity which contributes to anticancer function of the natural compounds. Lung cancer has been reported to mainly account for cancer-related deaths in the world. Moreover, epidermal growth factor receptor tyrosine kinase inhibitor (TKI) resistance is one of the biggest issues in cancer treatment, especially in nonsmall cell lung cancer (NSCLC). Even though several studies both in preclinical and clinical trials have showed promising therapeutic effects of polyphenolic compounds in anticancer therapy, the function of the natural compounds in TKI-resistant (TKIR) lung cancer remains poorly studied. Objective: The aim of this study is to screen polyphenolic compounds as potential anticancer adjuvants which suppress TKIR lung cancer. Materials and Methods: Colony formation and thiazolyl blue tetrazolium blue assay were performed in the pair-matched TKI-sensitive (TKIS) versus TKIR tumor cell lines to investigate the therapeutic effect of polyphenolic compounds in TKIR NSCLC. Results: Our data show that equol, kaempferol, resveratrol, and ellagic acid exhibit strong anticancer effect in HCC827 panel. Moreover, the inhibitory effect of most of tested polyphenolic compounds was highly selective for TKIR lung cancer cell line H1993 while sparing the TKIS one H2073. Conclusion: This study provides an important screening of potential polyphenolic compounds for drug development to overcome TKI resistance in advanced lung cancer. SUMMARY The study provides an important screening of potential polyphenolic compounds for drug development to overcome tyrosine kinase inhibitor (TKI) resistance in advance lung cancerEquol, kaempferol, resveratrol, and ellagic acid show strong anticancer effect in HCC827 panel, including TKI-sensitive (TKIS) and TKI-resistant clonesThe inhibitory effect of polyphenolic

  11. Erlotinib Hydrochloride With or Without Carboplatin and Paclitaxel in Treating Patients With Stage III-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-06-01

    Adenosquamous Lung Carcinoma; Lung Adenocarcinoma; Malignant Pericardial Effusion; Malignant Pleural Effusion; Minimally Invasive Lung Adenocarcinoma; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  12. MicroRNA-140-3p inhibits proliferation, migration and invasion of lung cancer cells by targeting ATP6AP2.

    PubMed

    Kong, Xiao-Mei; Zhang, Ge-Hong; Huo, Yun-Kui; Zhao, Xiao-Hong; Cao, Da-Wei; Guo, Shu-Fang; Li, Ai-Min; Zhang, Xin-Ri

    2015-01-01

    MicroRNAs are small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and lung cancer development and metastasis. The aim of present study was to explore the function of miR-140-3p in the development and metastasis of lung cancer cell. Using real-time PCR, we detected the miR-140-3p expression of lung cancer tissues and its pared non-lung cancer tissue. Then, we evaluated the role of miR-140-3p in cell proliferation, invasion and migration using MTT, colony formation assay, Transwell invasion and Transwell migration assay in lung cancer cell lines. As a result, miR-140-3p expression level was lower in lung cancer tissues compared to adjacent normal lung cancer tissue. After miR-140-3p was upregulated in A549 or H1299 cells, cell proliferation, invasion and migration was notably attenuated. Furthermore, we identified ATP6AP2, which is associated with adenosine triphosphatases (ATPases), was a directly target of miR-140-3p in lung cancer cells. In conclusion, our data suggest miR-140-3p/ATP6AP2 axis might act as a potential therapeutic biomarker for lung cancer.

  13. MicroRNA-140-3p inhibits proliferation, migration and invasion of lung cancer cells by targeting ATP6AP2

    PubMed Central

    Kong, Xiao-Mei; Zhang, Ge-Hong; Huo, Yun-Kui; Zhao, Xiao-Hong; Cao, Da-Wei; Guo, Shu-Fang; Li, Ai-Min; Zhang, Xin-Ri

    2015-01-01

    MicroRNAs are small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and lung cancer development and metastasis. The aim of present study was to explore the function of miR-140-3p in the development and metastasis of lung cancer cell. Using real-time PCR, we detected the miR-140-3p expression of lung cancer tissues and its pared non-lung cancer tissue. Then, we evaluated the role of miR-140-3p in cell proliferation, invasion and migration using MTT, colony formation assay, Transwell invasion and Transwell migration assay in lung cancer cell lines. As a result, miR-140-3p expression level was lower in lung cancer tissues compared to adjacent normal lung cancer tissue. After miR-140-3p was upregulated in A549 or H1299 cells, cell proliferation, invasion and migration was notably attenuated. Furthermore, we identified ATP6AP2, which is associated with adenosine triphosphatases (ATPases), was a directly target of miR-140-3p in lung cancer cells. In conclusion, our data suggest miR-140-3p/ATP6AP2 axis might act as a potential therapeutic biomarker for lung cancer. PMID:26722475

  14. MicroRNA-451 sensitizes lung cancer cells to cisplatin through regulation of Mcl-1.

    PubMed

    Cheng, Dezhi; Xu, Yi; Sun, Changzheng; He, Zhifeng

    2016-12-01

    As one of the most widely used chemotherapy drugs for lung cancer, chemoresistance of cisplatin (DPP) is one of the major hindrances in treatment of this malignancy. The microRNAs (miRNAs) have been identified to mediate chemotherapy drug resistance. MiR-451 as a tumor suppressor has been evaluated its potential effect on the sensitivity of cancer cells to DDP. However, the role of miR-451 in regulatory mechanism of chemosensitivity in lung cancer cells is still largely unknown. In this study, we first constructed a cisplatin-resistant A549 cell line (A549/DPP) accompanied with a decreased expression of miR-451 and an increased expression of Mcl-1in the drug resistant cells compared with the parental cells. Exogenous expression of miR-451 level in A549/DPP was found to sensitize their reaction to the treatment of cisplatin, which coincides with reduced expression of Mcl-1. Interestingly, Mcl-1 knockdown in A549/DPP cells increased the chemosensitivity to DPP, suggesting the dependence of Mcl-1 regulation in miR-451 activity. Moreover, miR-451 can restore cisplatin treatment response in cisplatin-resistant xenografts in vivo, while Mcl-1 protein levels were decreased. Thus, these findings provided that in lung cancer cells, tumor suppressor miR-451 enhanced DPP sensitivity via regulation of Mcl-1 expression, which could be served as a novel therapeutic target for the treatment of chemotherapy resistant in lung cancer.

  15. The matricellular protein CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and suppressing anoikis.

    PubMed

    Huang, Yu-Ting; Lan, Qiang; Lorusso, Girieca; Duffey, Nathalie; Rüegg, Curzio

    2017-02-07

    Matricellular proteins play multiple roles in primary tumor growth, local invasion and tumor angiogenesis. However, their contribution to metastasis and the putative mechanisms involved are less well characterized. In ER-negative human breast cancer, elevated expression levels of the matricellular protein Cysteine-rich angiogenic inducer 61 (CYR61) are associated with more aggressive progression. Here, we investigated the role of CYR61 in breast cancer lung metastasis using the triple negative human breast cancer cell lines MDA-MB-231 and SUM159. Silencing of CYR61 significantly decreased lung metastasis from tumors orthotopically implanted in pre-irradiated or naive mammary tissue and upon tail vein injection. Constitutive CYR61 silencing impaired cancer cell extravasation to the lung during the first 24 hours after tail vein injection. In contrast, CYR61 inducible silencing starting 24 hours after cancer cell injection had no impact on lung metastasis formation. In vitro experiments revealed that CYR61 silencing decreased cancer cell transendothelial migration and motility, reduced CYR61 levels present at the cell surface and sensitized cancer cells to anoikis. Furthermore, we demonstrate that CYR61-dependent cell survival under non-adhesive conditions relied, at least partially, on β1 integrin ligation and AMPKα signaling while it was independent of AKT, FAK and ERK1/2 activation. Our data provide the first evidence that CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and protecting from anoikis during initial seeding to the lung. The uncovered CYR61-β1 integrin-AMPKα axis may serve as a potential therapeutic target to prevent breast cancer metastasis to the lung.

  16. miR-138 suppresses the proliferation, metastasis and autophagy of non-small cell lung cancer by targeting Sirt1.

    PubMed

    Ye, Zaiting; Fang, Bingmu; Pan, Jiongwei; Zhang, Ning; Huang, Jinwei; Xie, Congying; Lou, Tianzheng; Cao, Zhuo

    2017-06-01

    The present study determined the role and mechanism of miR-138 in non-small cell lung cancer (NSCLC). In total, 45 freshly resected clinical NSCLC tissues were collected. The expression of miR-138 in tissues and cell lines were determined by real-time quantitative PCR. miR-138 mimics were transfected into A549 and Calu-3 cells in vitro, and then the effects of miR-138 on lung cancer cell proliferation, cell cycle, invasion and metastasis were investigated by CCK-8 assay, Transwell and flow cytometry, respectively. The protein expression of the potential target gene Sirt1 in lung cancer cells were determined by western blot analysis. Dual-luciferase reporter assay was performed to further confirm whether Sirt1 was the target gene of miR-138. The expression of miR-138 was significantly lower in lung cancer tissues and was negatively correlated to the differentiation degree and lymph node metastasis of lung cancer. In vitro experiment results showed that miR-138 inhibited lung cancer cell proliferation, invasion and migration. It was verified that miR-138 could downregulate Sirt1 protein expression, inhibit epithelial-mesenchymal transition (EMT), decrease the activity of AMPK signaling pathway and elevate mTOR phosphorylation level. Dual-luciferase reporter assay demonstrated that miR-138 could directly regulate Sirt1. Downregulation of Sirt1 alone can also cause the same molecular and biological function changes. Western blot analysis and confocal microscopy results indicated that overexpression of miR-138 or interference of Sirt1 expression could inhibit lung cancer cell autophagy activity possibly through AMPK-mTOR signaling pathway. miR-138 plays a tumor suppressor function in lung cancer. It may inhibit the proliferation, invasion and migration of lung cancer through downregulation of Sirt1 expression and activation of cell autophagy. The downregulation of miR-138 is closely related to the development of lung cancer.

  17. [The mechanism of docetaxel-induced apoptosis in human lung cancer cells].

    PubMed

    Li, Y; Shi, T; Zhao, W

    2000-05-01

    To study the mechanism of docetaxel-induced apoptosis. Morphological study, DNA gel electrophoresis, flow cytometry and fluorescin labeled Annexin V to detect apoptosis, RT-PCR to detect the gene related with apoptosis. Human lung cancer A549 cells treated with docetaxel induced cell cycle arrest at G2M phase, leading to apoptosis. The morphology of A549 showed nuclear chromatine condensation and fragmentation. Typical ladder pattern of DNA fragmentation was observed. Sub-G1 peak was found by flow cytometry. Transcription of Fas gene was enhanced, while no change in c-myc and bcl-2 genes. Annexin labeling results revealed the co-existence of cell apoptosis and necrosis in docetaxel-treated A549 cells. Docetaxel induces apoptosis and necrosis of human lung cancer. The induction of apoptosis may be related to expression of Fas.

  18. Nivolumab After Surgery and Chemotherapy in Treating Patients With Stage IB-IIIA Non-small Cell Lung Cancer (An ALCHEMIST Treatment Trial)

    ClinicalTrials.gov

    2018-06-28

    Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  19. The safety and efficacy of carboplatin plus nanoparticle albumin-bound paclitaxel in the treatment of non-small cell lung cancer patients with interstitial lung disease.

    PubMed

    Yasuda, Yuichiro; Hattori, Yoshihiro; Tohnai, Rie; Ito, Shoichi; Kawa, Yoshitaka; Kono, Yuko; Urata, Yoshiko; Nogami, Munenobu; Takenaka, Daisuke; Negoro, Shunichi; Satouchi, Miyako

    2018-01-01

    The optimal chemotherapy regimen for non-small cell lung cancer patients with interstitial lung disease is unclear. We therefore investigated the safety and efficacy of carboplatin plus nab-paclitaxel as a first-line regimen for non-small cell lung cancer in patients with interstitial lung disease. We retrospectively reviewed advanced non-small cell lung cancer patients with interstitial lung disease who received carboplatin plus nab-paclitaxel as a first-line chemotherapy regimen at Hyogo Cancer Center between February 2013 and August 2016. interstitial lung disease was diagnosed according to the findings of pretreatment chest high-resolution computed tomography. Twelve patients were included (male, n = 11; female, n = 1). The overall response rate was 67% and the disease control rate was 100%. The median progression free survival was 5.1 months (95% CI: 2.9-8.3 months) and the median overall survival was 14.9 months (95% CI: 4.8-not reached). A chemotherapy-related acute exacerbation of interstitial lung disease was observed in one patient; the extent of this event was Grade 2. There were no treatment-related deaths. Carboplatin plus nab-paclitaxel, as a first-line chemotherapy regimen for non-small cell lung cancer, showed favorable efficacy and safety in patients with preexisting interstitial lung disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  20. Role of long non-coding RNA in drug resistance in non-small cell lung cancer.

    PubMed

    Wang, Leirong; Ma, Leina; Xu, Fei; Zhai, Wenxin; Dong, Shenghua; Yin, Ling; Liu, Jia; Yu, Zhuang

    2018-05-03

    Lung cancer is the leading cause of cancer-associated death, and non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases. Many drugs have been used to treat NSCLC in order to improve patient prognosis. Platinum-based chemotherapy is the first-line treatment for locally advanced or metastatic patients. For patients with activating EGFR mutations, tyrosine kinase inhibitors are the best treatment choice. NSCLC initially exhibits an excellent response to treatment; however, acquired resistance has been observed in many patients, leading to ineffective treatment. Clinical resistance is an impediment in the treatment of patients with advanced NSCLC. Many sequencing technologies have shown that long non-coding RNA (lncRNA) is expressed differently between drug-resistant and drug-sensitive lung cancer cells. We review the literature on lncRNA in drug resistance of NSCLC. The aim of this review is to gain insight into the molecular mechanisms of drug resistance, mainly focusing on the role of lncRNA in NSCLC. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  1. Novel synthetic chalcones induce apoptosis in the A549 non-small cell lung cancer cells harboring a KRAS mutation.

    PubMed

    Wang, Yiqiang; Hedblom, Andreas; Koerner, Steffi K; Li, Mailin; Jernigan, Finith E; Wegiel, Barbara; Sun, Lijun

    2016-12-01

    A series of novel chalcones were synthesized by the Claisen-Schmidt condensation reaction of tetralones and 5-/6-indolecarboxaldehydes. Treatment of human lung cancer cell line harboring KRAS mutation (A549) with the chalcones induced dose-dependent apoptosis. Cell cycle analyses and Western blotting suggested the critical role of the chalcones in interrupting G2/M transition of cell cycle. SAR study demonstrated that substituent on the indole N atom significantly affects the anticancer activity of the chalcones, with methyl and ethyl providing the more active compounds (EC 50 : 110-200nM), Compound 1g was found to be >4-fold more active in the A549 cells (EC 50 : 110nM) than in prostate (PC3) or pancreatic cancer (CLR2119, PAN02) cells. Furthermore, compound 1l selectively induced apoptosis of lung cancer cells A549 (EC 50 : 0.55μM) but did not show measurable toxicity in the normal lung bronchial epithelial cells (hBEC) at doses as high as 10μM, indicating specificity towards cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Clinical applications of The Cancer Genome Atlas project (TCGA) for squamous cell lung carcinoma.

    PubMed

    Devarakonda, Siddhartha; Morgensztern, Daniel; Govindan, Ramaswamy

    2013-09-01

    Very little progress has been made in the treatment of patients with metastatic squamous cell lung cancer over the past 2 decades. Identification of novel molecular alterations for targeted therapies is necessary to improve outcomes. Advances in genomic technology have now made it possible to analyze the genomic landscape of tumor tissues comprehensively. We summarize here key findings from the comprehensive analysis of squamous cell lung cancer by The Cancer Genome Atlas group and discuss the clinical implications of these findings.

  3. Vaccine Therapy and Sargramostim With or Without Docetaxel in Treating Patients With Metastatic Lung Cancer or Metastatic Colorectal Cancer

    ClinicalTrials.gov

    2014-03-28

    Extensive Stage Small Cell Lung Cancer; Recurrent Colon Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Rectal Cancer; Recurrent Small Cell Lung Cancer; Stage IV Colon Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Rectal Cancer

  4. Cyclophosphamide or Denileukin Diftitox Followed By Expanding a Patient's Own T Cells in the Laboratory in Treating Patients With HER-2/Neu Overexpressing Metastatic Breast Cancer, Ovarian Cancer, or Non-Small Cell Lung Cancer Previously Treated With HER-2/Neu Vaccine

    ClinicalTrials.gov

    2014-11-07

    HER2-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Stage IV Breast Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor

  5. The impact of coexisting lung diseases on outcomes in patients with pathological Stage I non-small-cell lung cancer.

    PubMed

    Tao, Hiroyuki; Onoda, Hideko; Okabe, Kazunori; Matsumoto, Tsuneo

    2018-06-01

    Cigarette smoking is a well-known cause of interstitial lung disease (ILD), pulmonary emphysema and lung cancer. Coexisting pulmonary disease can affect prognosis in patients with lung cancer. The aim of this study was to determine the influence of pulmonary disease on outcomes in patients with a smoking history who had undergone surgery for pathological Stage I non-small-cell lung cancer. Medical records of 257 patients with a smoking history who underwent surgery for pathological Stage I non-small-cell lung cancer between June 2009 and December 2014 were reviewed. Coexisting ILDs were evaluated using high-resolution computed tomography. The degree of pulmonary emphysema was determined using image analysis software according to the Goddard classification. The impact of clinicopathological factors on outcome was evaluated. Among the 257 patients, ILDs were detected via high-resolution computed tomography in 60 (23.3%) patients; of these, usual interstitial pneumonia (UIP) patterns and non-UIP patterns were seen in 25 (9.7%) and 35 (13.6%) patients, respectively. The degree of pulmonary emphysema was classified as none, mild and moderate and included 50 (19.5%), 162 (63.0%) and 45 (17.5%) patients, respectively. The 5-year overall survival, cancer-specific survival and relapse-free survival were 80.7%, 88.0% and 74.9%, respectively, during a median follow-up period of 50.5 months. In multivariate analysis, the presence of a UIP pattern was shown to be an independent risk factor for poor outcome. The presence of a UIP-pattern ILD on high-resolution computed tomography images was shown to be a risk factor for poor outcome in patients with a smoking history who had undergone surgery for pathological Stage I non-small-cell lung cancer.

  6. Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization.

    PubMed

    Driffort, Virginie; Gillet, Ludovic; Bon, Emeline; Marionneau-Lambot, Séverine; Oullier, Thibauld; Joulin, Virginie; Collin, Christine; Pagès, Jean-Christophe; Jourdan, Marie-Lise; Chevalier, Stéphan; Bougnoux, Philippe; Le Guennec, Jean-Yves; Besson, Pierre; Roger, Sébastien

    2014-12-11

    Na(V)1.5 voltage-gated sodium channels are abnormally expressed in breast tumours and their expression level is associated with metastatic occurrence and patients' death. In breast cancer cells, Na(V)1.5 activity promotes the proteolytic degradation of the extracellular matrix and enhances cell invasiveness. In this study, we showed that the extinction of Na(V)1.5 expression in human breast cancer cells almost completely abrogated lung colonisation in immunodepressed mice (NMRI nude). Furthermore, we demonstrated that ranolazine (50 μM) inhibited Na(V)1.5 currents in breast cancer cells and reduced Na(V)1.5-related cancer cell invasiveness in vitro. In vivo, the injection of ranolazine (50 mg/kg/day) significantly reduced lung colonisation by Na(V)1.5-expressing human breast cancer cells. Taken together, our results demonstrate the importance of Na(V)1.5 in the metastatic colonisation of organs by breast cancer cells and indicate that small molecules interfering with Na(V) activity, such as ranolazine, may represent powerful pharmacological tools to inhibit metastatic development and improve cancer treatments.

  7. Metabolic Signaling and Therapy of Lung Cancer

    DTIC Science & Technology

    2013-09-01

    this grant is to decipher molecular mechanisms by which glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) promotes lung cancer cell metabolism and...PGAM1 in regulation of lung cancer metabolism; molecular mechanisms underlying PGAM1 activation in lung cancer; PGAM1 inhibitor as novel therapy to...leukemia cells from human patients with minimal toxicity. Therefore, the current funded proposal focuses to decipher molecular mechanisms by which

  8. Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population.

    PubMed

    Li, Yafang; Xiao, Xiangjun; Han, Younghun; Gorlova, Olga; Qian, David; Leighl, Natasha; Johansen, Jakob S; Barnett, Matt; Chen, Chu; Goodman, Gary; Cox, Angela; Taylor, Fiona; Woll, Penella; Wichmann, H-Erich; Manz, Judith; Muley, Thomas; Risch, Angela; Rosenberger, Albert; Arnold, Susanne M; Haura, Eric B; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J; Butler, Lesley M; Houlston, Richard; Soler Artigas, María; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A; Marcus, Michael W; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Liu, Geoffrey; Bojesen, Stig E; Wu, Xifeng; Marchand, Loic Le; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C; Bush, William S; Tardon, Adonina; Rennert, Gad; Teare, M Dawn; Field, John K; Kiemeney, Lambertus A; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B; Andrew, Angeline S; Bertazzi, Pier Alberto; Pesatori, Angela C; Christiani, David C; Caporaso, Neil; Johansson, Mattias; McKay, James D; Brennan, Paul; Hung, Rayjean J; Amos, Christopher I

    2018-03-08

    Non-small cell lung cancer is the most common type of lung cancer. Both environmental and genetic risk factors contribute to lung carcinogenesis. We conducted a genome-wide interaction analysis between single nucleotide polymorphisms (SNPs) and smoking status (never- versus ever-smokers) in a European-descent population. We adopted a two-step analysis strategy in the discovery stage: we first conducted a case-only interaction analysis to assess the relationship between SNPs and smoking behavior using 13336 non-small cell lung cancer cases. Candidate SNPs with P-value <0.001 were further analyzed using a standard case-control interaction analysis including 13970 controls. The significant SNPs with P-value <3.5 × 10-5 (correcting for multiple tests) from the case-control analysis in the discovery stage were further validated using an independent replication dataset comprising 5377 controls and 3054 non-small cell lung cancer cases. We further stratified the analysis by histological subtypes. Two novel SNPs, rs6441286 and rs17723637, were identified for overall lung cancer risk. The interaction odds ratio and meta-analysis P-value for these two SNPs were 1.24 with 6.96 × 10-7 and 1.37 with 3.49 × 10-7, respectively. In addition, interaction of smoking with rs4751674 was identified in squamous cell lung carcinoma with an odds ratio of 0.58 and P-value of 8.12 × 10-7. This study is by far the largest genome-wide SNP-smoking interaction analysis reported for lung cancer. The three identified novel SNPs provide potential candidate biomarkers for lung cancer risk screening and intervention. The results from our study reinforce that gene-smoking interactions play important roles in the etiology of lung cancer and account for part of the missing heritability of this disease.

  9. Combination therapy for non-small cell lung cancer studied in new clinical trial | Center for Cancer Research

    Cancer.gov

    Non-small cell lung cancer (NSCLC), the most common type of lung cancer, is slow growing and can affect smokers and non-smokers alike. David S. Schrump, M.D., Surgical Chief of the Thoracic and Gastrointestinal Oncology Branch, is leading the NCI’s participation in a multicenter trial of a combination drug therapy in patients with NSCLC. Read more...

  10. The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells.

    PubMed

    Leithner, Katharina; Triebl, Alexander; Trötzmüller, Martin; Hinteregger, Barbara; Leko, Petra; Wieser, Beatrix I; Grasmann, Gabriele; Bertsch, Alexandra L; Züllig, Thomas; Stacher, Elvira; Valli, Alessandro; Prassl, Ruth; Olschewski, Andrea; Harris, Adrian L; Köfeler, Harald C; Olschewski, Horst; Hrzenjak, Andelko

    2018-06-12

    Cancer cells are reprogrammed to consume large amounts of glucose to support anabolic biosynthetic pathways. However, blood perfusion and consequently the supply with glucose are frequently inadequate in solid cancers. PEPCK-M ( PCK2 ), the mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK), has been shown by us and others to be functionally expressed and to mediate gluconeogenesis, the reverse pathway of glycolysis, in different cancer cells. Serine and ribose synthesis have been identified as downstream pathways fed by PEPCK in cancer cells. Here, we report that PEPCK-M-dependent glycerol phosphate formation from noncarbohydrate precursors (glyceroneogenesis) occurs in starved lung cancer cells and supports de novo glycerophospholipid synthesis. Using stable isotope-labeled glutamine and lactate, we show that PEPCK-M generates phosphoenolpyruvate and 3-phosphoglycerate, which are at least partially converted to glycerol phosphate and incorporated into glycerophospholipids (GPL) under glucose and serum starvation. This pathway is required to maintain levels of GPL, especially phosphatidylethanolamine (PE), as shown by stable shRNA-mediated silencing of PEPCK-M in H23 lung cancer cells. PEPCK-M shRNA led to reduced colony formation after starvation, and the effect was partially reversed by the addition of dioleyl-PE. Furthermore, PEPCK-M silencing abrogated cancer growth in a lung cancer cell xenograft model. In conclusion, glycerol phosphate formation for de novo GPL synthesis via glyceroneogenesis is a newly characterized anabolic pathway in cancer cells mediated by PEPCK-M under conditions of severe nutrient deprivation. Copyright © 2018 the Author(s). Published by PNAS.

  11. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line.

    PubMed

    Zhou, Zhongping; Tang, Miaomiao; Liu, Yi; Zhang, Zhuyi; Lu, Rongzhu; Lu, Jian

    2017-04-01

    Apigenin (APG), a widely distributed flavonoid in vegetables and fruits, with low toxicity, and a nonmutagenic characteristic, has been reported to have many targets. Evidence indicates that APG can inhibit the proliferation, migration, invasion, and metastasis of some tumor cells, but the mechanism, specifically in lung cancer, is unclear. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway regulates a diverse set of cellular functions relevant to the growth and progression of lung cancer, including proliferation, survival, migration, and invasion. Our results showed that APG exerted anti-proliferation, anti-migration, and anti-invasion effects in A549 human lung cancer cells by targeting the PI3K/Akt signaling pathway. 3-(4, 5-dimethylthiszol-2-yl)-2, 5-diphenytetrazolium bromide assay and colony formation assay showed that APG suppressed cell proliferation in a dose-dependent and time-dependent manner. Cell motility and invasiveness were assayed using a wound healing and Transwell assay, suggesting that APG inhibited the migration and invasion of A549 cells. Western blot analyses were carried out to examine the Akt signaling pathways. The results confirmed that APG decreased Akt expression and its activation. Then, cells were transfected with Akt-active and Akt-DN plasmids separately. The migration and invasion of A549 cells were significantly changed, constitutively activating Akt or knocking down Akt, indicating that APG can suppress the migration and invasion of lung cancer cells by modulating the PI3K/Akt signaling pathway. Furthermore, the results indicated that APG not only suppressed phosphorylation of Akt, thereby preventing its activation, but also inhibited its downstream gene expression of matrix metalloproteinases-9, glycogen synthase kinase-3β, and HEF1. Together, APG is a new inhibitor of Akt in lung cancer and a potential natural compound for cancer chemoprevention.

  12. Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer

    PubMed Central

    Young, Jonathan H.; Peyton, Michael; Seok Kim, Hyun; McMillan, Elizabeth; Minna, John D.; White, Michael A.; Marcotte, Edward M.

    2016-01-01

    Motivation: Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Results: Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. Availability and implementation: The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper. Contact: marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26755624

  13. Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer.

    PubMed

    Young, Jonathan H; Peyton, Michael; Seok Kim, Hyun; McMillan, Elizabeth; Minna, John D; White, Michael A; Marcotte, Edward M

    2016-05-01

    Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  14. TMPRSS4 induces cancer stem cell-like properties in lung cancer cells and correlates with ALDH expression in NSCLC patients.

    PubMed

    de Aberasturi, Arrate L; Redrado, Miriam; Villalba, Maria; Larzabal, Leyre; Pajares, Maria J; Garcia, Javier; Evans, Stephanie R; Garcia-Ros, David; Bodegas, Maria Elena; Lopez, Lissett; Montuenga, Luis; Calvo, Alfonso

    2016-01-28

    Metastasis involves a series of changes in cancer cells that promote their escape from the primary tumor and colonization to a new organ. This process is related to the transition from an epithelial to a mesenchymal phenotype (EMT). Recently, some authors have shown that migratory cells with an EMT phenotype share properties of cancer stem cells (CSCs), which allow them to form a new tumor mass. The type II transmembrane serine protease TMPRSS4 is highly expressed in some solid tumors, promotes metastasis and confers EMT features to cancer cells. We hypothesized that TMPRSS4 could also provide CSC properties. Overexpression of TMPRSS4 reduces E-cadherin and induces N-cadherin and vimentin in A549 lung cancer cells, supporting an EMT phenotype. These changes are accompanied by enhanced migration, invasion and tumorigenicity in vivo. TMPRSS4 expression was highly increased in a panel of lung cancer cells cultured as tumorspheres (a typical assay to enrich for CSCs). H358 and H441 cells with knocked-down TMPRSS4 levels were significantly less able to form primary and secondary tumorspheres than control cells. Moreover, they showed a lower proportion of ALDH+ cells (examined by FACS analysis) and lower expression of some CSC markers than controls. A549 cells overexpressing TMPRSS4 conferred the opposite phenotype and were also more sensitive to the CSC-targeted drug salinomycin than control cells, but were more resistant to regular chemotherapeutic drugs (cisplatin, gemcitabine and 5-fluorouracil). Analysis of 70 NSCLC samples from patients revealed a very significant correlation between TMPRSS4 expression and CSC markers ALDH (p = 0.0018) and OCT4 (p = 0.0004), suggesting that TMPRSS4 is associated with a CSC phenotype in patients' tumors. These results show that TMPRSS4, in addition to inducing EMT, can also promote CSC features in lung cancer; therefore, CSC-targeting drugs could be an appropriate treatment for TMPRSS4+ tumors. Copyright © 2015 Elsevier

  15. Lung cancer exosomes as drivers of epithelial mesenchymal transition

    PubMed Central

    Rahman, Mohammad A.; Barger, Jennifer F.; Lovat, Francesca; Gao, Min; Otterson, Gregory A.; Nana-Sinkam, Patrick

    2016-01-01

    Exosomes, a subgroup of extracellular vesicles (EVs), have been shown to serve as a conduit for the exchange of genetic information between cells. Exosomes are released from all types of cells but in abundance from cancer cells. The contents of exosomes consist of proteins and genetic material (mRNA, DNA and miRNA) from the cell of origin. In this study, we examined the effects of exosomes derived from human lung cancer serum and both highly metastatic and non-metastatic cells on recipient human bronchial epithelial cells (HBECs). We found that exosomes derived from highly metastatic lung cancer cells and human late stage lung cancer serum induced vimentin expression, and epithelial to mesenchymal transition (EMT) in HBECs. Exosomes derived from highly metastatic cancer cells as well as late stage lung cancer serum induce migration, invasion and proliferation in non-cancerous recipient cells. Our results suggest that cancer derived exosomes could be a potential mediator of EMT in the recipient cells. PMID:27363026

  16. Lung cancer exosomes as drivers of epithelial mesenchymal transition.

    PubMed

    Rahman, Mohammad A; Barger, Jennifer F; Lovat, Francesca; Gao, Min; Otterson, Gregory A; Nana-Sinkam, Patrick

    2016-08-23

    Exosomes, a subgroup of extracellular vesicles (EVs), have been shown to serve as a conduit for the exchange of genetic information between cells. Exosomes are released from all types of cells but in abundance from cancer cells. The contents of exosomes consist of proteins and genetic material (mRNA, DNA and miRNA) from the cell of origin. In this study, we examined the effects of exosomes derived from human lung cancer serum and both highly metastatic and non-metastatic cells on recipient human bronchial epithelial cells (HBECs). We found that exosomes derived from highly metastatic lung cancer cells and human late stage lung cancer serum induced vimentin expression, and epithelial to mesenchymal transition (EMT) in HBECs. Exosomes derived from highly metastatic cancer cells as well as late stage lung cancer serum induce migration, invasion and proliferation in non-cancerous recipient cells. Our results suggest that cancer derived exosomes could be a potential mediator of EMT in the recipient cells.

  17. Pellino-1 confers chemoresistance in lung cancer cells by upregulating cIAP2 through Lys63-mediated polyubiquitination

    PubMed Central

    Koh, Jaemoon; Chung, Doo Hyun

    2016-01-01

    Pellino-1 is an E3 ubiquitin ligase that mediates immune receptor signaling pathways. The role of Pellino-1 in oncogenesis of lung cancer was investigated in this study. Pellino-1 expression was increased in human lung cancer cell lines compared with non-neoplastic lung cell lines. Pellino-1 overexpression in human lung cancer cells, A549 and H1299 cells, increased the survival and colony forming ability. Pellino-1 overexpression in these cells also conferred resistance to cisplatin- or paclitaxel-induced apoptosis. In contrast, depletion of Pellino-1 decreased the survival of A549 and H1299 cells and sensitized these cells to cisplatin- and paclitaxel-induced apoptosis. Pellino-1 overexpression in A549 and H1299 cells upregulated the expression of inhibitor of apoptosis (IAP) proteins, including cIAP1 and cIAP2, while Pellino-1 depletion downregulated these molecules. Notably, Pellino-1 directly interacted with cIAP2 and stabilized cIAP2 through lysine63-mediated polyubiquitination via its E3 ligase activity. Pellino-1-mediated chemoresistance in lung cancer cells was dependent on the induction of cIAP2. Moreover, a strong positive correlation between Pellino-1 and the cIAP2 expression was observed in human lung adenocarcinoma tissues. Taken together, these results demonstrate that Pellino-1 contributes to lung oncogenesis through the overexpression of cIAP2 and promotion of cell survival and chemoresistance. Pellino-1 might be a novel oncogene and potential therapeutic target in lung cancer. PMID:27248820

  18. Trametinib, Combination Chemotherapy, and Radiation Therapy in Treating Patients With Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-05-23

    KRAS Activating Mutation; Recurrent Non-Small Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7

  19. Cancer Stem Cell Radioresistance and Enrichment: Where Frontline Radiation Therapy May Fail in Lung and Esophageal Cancers

    PubMed Central

    Nguyen, Giang Huong; Murph, Mandi M.; Chang, Joe Y.

    2011-01-01

    Many studies have highlighted the role cancer stem cells (CSC) play in the development and progression of various types of cancer including lung and esophageal cancer. More recently, it has been proposed that the presence of CSCs affects treatment efficacy and patient prognosis. In reviewing this new area of cancer biology, we will give an overview of the current literature regarding lung and esophageal CSCs and radioresistance of CSC, and discuss the potential therapeutic applications of these findings. PMID:21603589

  20. Veliparib With or Without Radiation Therapy, Carboplatin, and Paclitaxel in Patients With Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-06-01

    Large Cell Lung Carcinoma; Lung Adenocarcinoma; Lung Adenocarcinoma, Mixed Subtype; Minimally Invasive Lung Adenocarcinoma; Squamous Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7

  1. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells.

    PubMed

    Moreb, Jan S; Baker, Henry V; Chang, Lung-Ji; Amaya, Maria; Lopez, M Cecilia; Ostmark, Blanca; Chou, Wayne

    2008-11-24

    Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied. We have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA. We confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by > or = 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways. These molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer.

  2. Immune checkpoint inhibitors for nonsmall cell lung cancer treatment.

    PubMed

    Chen, Yuh-Min

    2017-01-01

    Immune checkpoint inhibition with blocking antibodies that target cytotoxic T-lymphocyte antigen-4 (CTLA-4) and the programmed cell death protein 1 (PD-1) pathway [PD-1/programmed death-ligand 1 (PD-L1)] have demonstrated promise in a variety of malignancies. While ipilimumab has been approved as a CTLA-4 blocking antibody by the US Food and Drug Administration for the treatment of advanced melanoma, it is still not approved for lung cancer treatment. In contrast, nivolumab and pembrolizumab, both PD-1 blocking antibodies, have been approved for second-line treatment of nonsmall cell lung cancer in 2015 because of their high potency and long-lasting effects in some patient subgroups. Other PD-1 and PD-L1 monoclonal antibodies are also in active development phase. Treatment with such immune checkpoint inhibitors is associated with a unique pattern of immune-related adverse events or side effects. Combination approaches involving CTLA-4 and PD-1/PD-L1 blockade or checkpoint inhibitors with chemotherapy or radiotherapy are being investigated to determine whether they may enhance the efficacy of treatment. Despite many challenges ahead, immunotherapy with checkpoint inhibitors has already become a new and important treatment modality for lung cancer in the last decade following the discovery of targeted therapy. Copyright © 2016. Published by Elsevier Taiwan LLC.

  3. UPregulated single-stranded DNA-binding protein 1 induces cell chemoresistance to cisplatin in lung cancer cell lines.

    PubMed

    Zhao, Xiang; He, Rong; Liu, Yu; Wu, Yongkai; Kang, Leitao

    2017-07-01

    Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.

  4. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells

    PubMed Central

    Liu, Yan-rong; Liu, Hui-juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-shuang; Wang, Jing; Sun, Bo; Dai, Ting-ting; Yang, Cheng; Sun, Tao; Zhou, Hong-gang

    2015-01-01

    The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients. PMID:26512779

  5. Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction

    PubMed Central

    Poerschke, Robyn L.; Moos, Philip J.

    2010-01-01

    Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction. PMID:20920480

  6. Lung Cancer: One Disease or Many.

    PubMed

    O'Brien, Timothy D; Jia, Peilin; Aldrich, Melinda C; Zhao, Zhongming

    2018-06-05

    Lung cancer is classified as a single entity comprised of multiple histological subtypes. But how similar are these subtypes on a genetic level? This paper aims to address this question through a concise overview of germline and somatic differences between small cell lung cancer, lung adenocarcinoma, and lung squamous cell carcinoma. We reveal the weak overlap found between these 3 lung cancer subtypes using published data from one of the largest germline genetic studies on lung cancer to date and somatic mutation data from Catalogue of Somatic Mutations in Cancer (COSMIC). These data indicate that these 3 subtypes share very little with each other at the genetic level. At the germline SNP level, only 24 independent SNPs from 2 chromosomes were shared across all 3 subtypes. We also demonstrate that only 30 unique cancer-specific mutations overlap the 3 subtypes from COSMIC, and that this is fewer than overlapping mutations chosen at random. Finally, we show that only 3 somatic mutational signatures are shared between these 3 subtypes. This paper highlights that these 3 lung cancer subtypes may be distinct diseases at the genetic level. In the era of precision medicine, we feel that these genomic differences will be of utmost importance in the choice of lung cancer therapy in the future. © 2018 S. Karger AG, Basel.

  7. Lung cancer survival in England: trends in non-small-cell lung cancer survival over the duration of the National Lung Cancer Audit

    PubMed Central

    Khakwani, A; Rich, A L; Powell, H A; Tata, L J; Stanley, R A; Baldwin, D R; Duffy, J P; Hubbard, R B

    2013-01-01

    Background: In comparison with other European and North American countries, England has poor survival figures for lung cancer. Our aim was to evaluate the changes in survival since the introduction of the National Lung Cancer Audit (NLCA). Methods: We used data from the NLCA to identify people with non-small-cell lung cancer (NSCLC) and stratified people according to their performance status (PS) and clinical stage. Using Cox regression, we calculated hazard ratios (HRs) for death according to the year of diagnosis from 2004/2005 to 2010; adjusted for patient features including age, sex and co-morbidity. We also assessed whether any changes in survival were explained by the changes in surgical resection rates or histological subtype. Results: In this cohort of 120 745 patients, the overall median survival did not change; but there was a 1% annual improvement in survival over the study period (adjusted HR 0.99, 95% confidence interval (CI) 0.98–0.99). Survival improvement was only seen in patients with good PS and early stage (adjusted HR 0.97, 95% CI 0.95–0.99) and this was partly accounted for by changes in resection rates. Conclusion: Survival has only improved for a limited group of people with NSCLC and increasing surgical resection rates appeared to explain some of this improvement. PMID:24052044

  8. A study on volatile organic compounds emitted by in-vitro lung cancer cultured cells using gas sensor array and SPME-GCMS.

    PubMed

    Thriumani, Reena; Zakaria, Ammar; Hashim, Yumi Zuhanis Has-Yun; Jeffree, Amanina Iymia; Helmy, Khaled Mohamed; Kamarudin, Latifah Munirah; Omar, Mohammad Iqbal; Shakaff, Ali Yeon Md; Adom, Abdul Hamid; Persaud, Krishna C

    2018-04-02

    Volatile organic compounds (VOCs) emitted from exhaled breath from human bodies have been proven to be a useful source of information for early lung cancer diagnosis. To date, there are still arguable information on the production and origin of significant VOCs of cancer cells. Thus, this study aims to conduct in-vitro experiments involving related cell lines to verify the capability of VOCs in providing information of the cells. The performances of e-nose technology with different statistical methods to determine the best classifier were conducted and discussed. The gas sensor study has been complemented using solid phase micro-extraction-gas chromatography mass spectrometry. For this purpose, the lung cancer cells (A549 and Calu-3) and control cell lines, breast cancer cell (MCF7) and non-cancerous lung cell (WI38VA13) were cultured in growth medium. This study successfully provided a list of possible volatile organic compounds that can be specific biomarkers for lung cancer, even at the 24th hour of cell growth. Also, the Linear Discriminant Analysis-based One versus All-Support Vector Machine classifier, is able to produce high performance in distinguishing lung cancer from breast cancer cells and normal lung cells. The findings in this work conclude that the specific VOC released from the cancer cells can act as the odour signature and potentially to be used as non-invasive screening of lung cancer using gas array sensor devices.

  9. Potential targets for lung squamous cell carcinoma

    Cancer.gov

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  10. Small cell lung cancer transformation from EGFR-mutated lung adenocarcinoma: A case report and literatures review.

    PubMed

    Liu, Yangyang

    2018-06-03

    Epithelial growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have markedly improved the response of non-small cell lung cancer (NSCLC) with EGFR-mutant patients. However, these patients inevitably come cross acquired resistance to EGFR-TKIs. The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) following treatment with EGFR-TKIs is rare, which leads to resistance to EGFR-TKIs. The present case concerns a case of a 38-year-old man presenting with cough and dyspnea. Radical resection was performed and confirmed an EGFR exon 21 L858R lung adenocarcinoma. However, the patient suffered pleural metastasis after successful treatment with surgery and adjuvant treatment. So, erlotinib was administered with 18 months. Because of enlarged pleural nodule, repeat biopsy identified an SCLC and chemotherapy was started. However, despite the brief success of chemotherapy, our patient suffered brain metastasis. Our case emaphsizes both the profile of transformation from NSCLC to SCLC and the importance of repeat biopsy dealing with drug resistance. We also summarize the clinical characteristics, mechanisms, predictors of SCLC transformation, treatment after transformation and other types of transformation to SCLC.

  11. A unique cell-surface protein phenotype distinguishes human small-cell from non-small-cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baylin, S.B.; Gazdar, A.F.; Minna, J.D.

    1982-08-01

    Radioiodination (/sup 125/I) and two-dimensional polyacrylamide gel electrophoresis was used to determine that small-(oat) cell lung carcinoma (SCC)-a tumor with neuroedocrine features-possesses a surface protein pattern distinct from the other types of lung cancer cells (squamous, adeno-, and large-cell undifferentiated carcinoma). Twelve distinguishing proteins, 40 to 70 kilodaltons (kDal), characterized four separate lines of SCC; three of these, designated E (60 kDal; pI = 7.3), S (30 kDal; pI = 6.0), and U 57 kDal; pI = 5.6), may be unique SCC gene products and were identified only in (/sup 35/S)methionine labeling of SCC and not in non-SCC or humanmore » fibroblasts. Two lines of adeno-, one of squamous, and one of undifferentiated large-cell lung carcinoma exhibited similar surface protein patterns to one another. Nine distinguishing proteins (40 to 100 kDal) and at least five large proteins (>100 kDal) were unique to these lines. The surface protein phenotypes for SCC and non-SCC were distinct from those for human lymphoblastoid cells and fibroblasts. However, the neuroendocrine features of SCC were further substantiated because 6 of the 12 distinguishing SCC surface proteins, including E and U, were identified on human neuroblastoma cells. The proteins identified should (i) help define differentiation steps for normal and neoplastic bronchial epithelial cells, (ii) prove useful in better classifying lung cancers, and (iii) be instrumental in tracing formation of neuroendocrine cells.« less

  12. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuexia; Li, Xiaohui; Liu, Gang

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo.more » We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.« less

  13. Overexpression of PHRF1 attenuates the proliferation and tumorigenicity of non-small cell lung cancer cells.

    PubMed

    Wang, Yadong; Wang, Haiyu; Pan, Teng; Li, Li; Li, Jiangmin; Yang, Haiyan

    2016-09-27

    The aim of this study was to investigate the potential role of PHRF1 in lung tumorigenesis. Western blot analysis was used to detect the expression of proteins. Quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, soft agar assay and tumor formation assay in nude mice were applied. Cell cycle distribution was analyzed by flow cytometry. The lower level of PHRF1 mRNA was observed in human lung cancer tissues than that in paracancerous tissues. The decreased expression of PHRF1 protein was observed in H1299 and H1650 cell lines than that in 16HBE and BEAS-2B cell lines. The decreased expression of PHRF1 protein was observed in malignant 16HBE cells compared to control cells. The reduced expression of PHRF1 protein was observed in mice lung tissues treated with BaP than that in control group. Overexpression of PHRF1 inhibited H1299 cell proliferation, colony formation in vitro and growth of tumor xenograft in vivo, and arrested cell cycle in G1 phase. The decreased expression of TGIF and c-Myc proteins and the increased expression of p21 protein were observed in H1299-PHRF1 cells compared with H1299-pvoid cells. In conclusion, our findings suggest that overexpression of PHRF1 attenuated the proliferation and tumorigenicity of non-small cell lung cancer cell line of H1299.

  14. Expressions of topoisomerase IIα and BCRP in metastatic cells are associated with overall survival in small cell lung cancer patients.

    PubMed

    Rijavec, Matija; Silar, Mira; Triller, Nadja; Kern, Izidor; Cegovnik, Urška; Košnik, Mitja; Korošec, Peter

    2011-09-01

    The aim of this study was to investigate the mRNA expression levels of multidrug resistance-associated proteins in chemo-naïve metastatic lung cancer cells and to determine the correlation with response to chemotherapy and overall survival. Metastatic cells were obtained by transbronchial fine needle aspiration biopsy of enlarged mediastinal lymph nodes in 14 patients with small cell lung cancer (SCLC) and 7 patients with non-small cell lung cancer (NSCLC). After cytological confirmation of lung cancer type, total RNA was extracted from biopsy samples and reverse transcribed to cDNA, and real-time PCR for the genes of interest [P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), breast cancer resistance protein (BCRP), lung resistance protein (LRP) and topoisomerase IIα (TOPIIα)], was performed. We observed significantly decreased expression of BCRP and significantly increased expression of TOPIIα in metastatic SCLC cells compared to NSCLC. Furthermore, in SCLC high topoisomerase IIα and low BCRP expression levels positively correlated with longer overall survival. Our results showed higher expression levels of BCRP as well as lower levels of topoisomerase IIα in chemo-naïve metastatic cells in NSCLC than in SCLC. These results correlate with previous observations that metastatic SCLC cells at the beginning of chemotherapy are potentially more sensitive to chemotherapeutic agents while in metastatic NSCLC cells resistance is usually inherent. We also showed that altered levels of topoisomerase IIα and BCRP in SCLC are important factors that contribute to resistance to chemotherapeutics that interfere with the enzyme and/or DNA and are highly associated with overall survival.

  15. Cysts mark the early stage of metastatic tumor development in non-small cell lung cancer

    PubMed Central

    Thakur, Chitra; Rapp, Ulf R.; Rudel, Thomas

    2018-01-01

    Identifying metastatic tumor growth at an early stage has been one of the biggest challenges in the treatment of lung cancer. By genetic lineage tracing approach in a conditional model of Non-Small Cell Lung Cancer (NSCLC) in mice, we demonstrate that cystic lesions represent an early stage of metastatic invasion. We generated a mouse model for NSCLC which incorporated a heritable DsRed fluorescent tag driven by the ubiquitous CAG promoter in the alveolar type II cells of the lung. We found early cystic lesions in a secondary organ (liver) that lacked the expression of bona fide lung makers namely Scgb1a1 and surfactant protein C Sftpc and were DsRed positive hence identifying lung as their source of origin. This demonstrates the significant potential of alveolar type II cells in orchestrating the process of metastasis, rendering it as one of the target cell types of the lung of therapeutic importance in human NSCLC. PMID:29464089

  16. Gamma Irradiation Upregulates B-cell Translocation Gene 2 to Attenuate Cell Proliferation of Lung Cancer Cells Through the JNK and NF-κB Pathways.

    PubMed

    Wang, Peihe; Cai, Yuanyuan; Lin, Dongju; Jiang, Yingxiao

    2017-08-07

    Gamma ray can promote cancer cell apoptosis and cell cycle arrest. It is often used in the clinical treatment of tumors, including lung cancer. In this study, we aimed to explore the role of gamma ray treatment and its correlation with BTG2 in cell proliferation, apoptosis, and cell cycle arrest regulation in a lung cancer cell line. A549 cell viability, apoptosis rate, and cell cycle were investigated after gamma ray treatment. We then used siRNA for BTG2 to detect the effect of BTG2 knockdown on the progress of gamma ray-treated lung cancer cells. Finally, we investigated the signaling pathway by which gamma ray might regulate BTG2. We found that gamma ray inhibited A549 cell viability and promoted apoptosis and cell cycle arrest, while BTG2 knockdown could relieve the effect caused by gamma ray on A549 cells. Moreover, we confirmed that the effect of BTG2 partly depends on p53 expression and gamma ray-promoting BTG2 expression through the JNK/NF-κB signaling pathway. Our study assessed the possible mechanism of gamma ray in tumor treatment and also investigated the role of BTG2 in gamma ray therapy. All these findings might give a deep understanding of the effect of gamma ray on the progression of lung cancer involving BTG2.

  17. Nivolumab, Cisplatin, and Pemetrexed Disodium or Gemcitabine Hydrochloride in Treating Patients With Stage I-IIIA Non-small Cell Lung Cancer That Can Be Removed by Surgery

    ClinicalTrials.gov

    2018-03-02

    Non-Squamous Non-Small Cell Lung Carcinoma; Stage I Non-Small Cell Lung Cancer; Stage IA Non-Small Cell Lung Carcinoma; Stage IB Non-Small Cell Lung Carcinoma; Stage II Non-Small Cell Lung Cancer; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer

  18. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer

    PubMed Central

    Liu, Guangbo; Pei, Fen; Yang, Fengqing; Li, Lingxiao; Amin, Amit Dipak; Liu, Songnian; Buchan, J. Ross; Cho, William C.

    2017-01-01

    Non-small-cell lung cancer (NSCLC) constitutes 85% of all lung cancers, and is the leading cause of cancer-related death worldwide. The poor prognosis and resistance to both radiation and chemotherapy warrant further investigation into the molecular mechanisms of NSCLC and the development of new, more efficacious therapeutics. The processes of autophagy and apoptosis, which induce degradation of proteins and organelles or cell death upon cellular stress, are crucial in the pathophysiology of NSCLC. The close interplay between autophagy and apoptosis through shared signaling pathways complicates our understanding of how NSCLC pathophysiology is regulated. The apoptotic effect of autophagy is controversial as both inhibitory and stimulatory effects have been reported in NSCLC. In addition, crosstalk of proteins regulating both autophagy and apoptosis exists. Here, we review the recent advances of the relationship between autophagy and apoptosis in NSCLC, aiming to provide few insights into the discovery of novel pathogenic factors and the development of new cancer therapeutics. PMID:28208579

  19. Clinical utility of circulating tumour cell detection in non-small-cell lung cancer.

    PubMed

    Fusi, Alberto; Metcalf, Robert; Krebs, Matthew; Dive, Caroline; Blackhall, Fiona

    2013-12-01

    Recent years have witnessed increased interest in the detection of circulating tumour cells (CTCs) for diagnosis, monitoring, and treatment decision making in patients with cancer. Factors that have led to accelerated research in this field include advances in technologies for examination of intact CTCs, personalised medicine with treatment selection according to molecular characteristics, and continued lack of understanding of the biology of treatment resistance and metastasis. CTCs offer promise as a surrogate for tissue where there is insufficient tissue for molecular analysis and where there is a requirement to serially monitor molecular changes in cancer cells through treatment or on progression. In patients with either small cell or non-small cell lung cancer (NSCLC), there is evidence that CTC number is prognostic and that CTCs counted before and after treatment mirror treatment response. In patients with molecularly defined subtypes of NSCLC, CTCs demonstrate the same molecular changes as the cancer cells of the tumour. However, CTCs are not quite ready for "primetime" in the lung cancer clinic. There are still more questions than answers with respect to the optimal technologies for their detection and analysis, their biological significance, and their clinical utility. Despite this the current pace of progress in CTC technology development seems set to make "liquid biopsies" a clinical reality within the next decade. For the everyday clinician and clinical trialist, it will be important to maintain knowledge of the strengths and weaknesses of the technologies and evolving evidence base for CTCs as a routinely used diagnostic tool.

  20. Cancer-specific production of N-acetylaspartate via NAT8L overexpression in non-small cell lung cancer and its potential as a circulating biomarker

    PubMed Central

    Lou, Tzu-Fang; Sethuraman, Deepa; Dospoy, Patrick; Srivastva, Pallevi; Kim, Hyun Seok; Kim, Joongsoo; Ma, Xiaotu; Chen, Pei-Hsuan; Huffman, Kenneth E.; Frink, Robin E.; Larsen, Jill E.; Lewis, Cheryl; Um, Sang-Won; Kim, Duk-Hwan; Ahn, Jung-Mo; DeBerardinis, Ralph J.; White, Michael A.; Minna, John D.; Yoo, Hyuntae

    2015-01-01

    In order to identify new cancer-associated metabolites that may be useful for early detection of lung cancer, we performed a global metabolite profiling of a non-small cell lung cancer (NSCLC) line and immortalized normal lung epithelial cells from the same patient. Among several metabolites with significant cancer/normal differences, we identified a unique metabolic compound, N-acetylaspartate (NAA) in cancer cells — undetectable in normal lung epithelium. NAA’s cancer-specific detection was validated in additional cancer and control lung cells as well as selected NSCLC patient tumors and control tissues. NAA’s cancer-specificity was further supported in our analysis of NAA synthetase (gene symbol: NAT8L) gene expression levels in The Cancer Genome Atlas: elevated NAT8L expression in approximately 40% of adenocarcinoma and squamous cell carcinoma cases (N=577), with minimal expression in all non-malignant lung tissues (N=74). We then showed that NAT8L is functionally involved in NAA production of NSCLC cells through siRNA-mediated suppression of NAT8L, which caused selective reduction of intracellular and secreted NAA. Our cell culture experiments also indicated that NAA biosynthesis in NSCLC cells depends on glutamine availability. For preliminary evaluation of NAA’s clinical potential as a circulating biomarker, we developed a sensitive NAA blood assay and found that NAA blood levels were elevated in 46% of NSCLC patients (N=13) in comparison with age-matched healthy controls (N=21) among individuals aged 55 years or younger. Taken together, these results indicate that NAA is produced specifically in NSCLC tumors through NAT8L overexpression and its extracellular secretion can be detected in blood. PMID:26511490

  1. TRIM28, a new molecular marker predicting metastasis and survival in early-stage non-small cell lung cancer.

    PubMed

    Liu, Lei; Zhao, Enhong; Li, Chunhui; Huang, Liang; Xiao, Lijun; Cheng, Luyang; Huang, Xu; Song, Youxin; Xu, Dawei

    2013-02-01

    TRIM28 is a universal corepressor for Kruppel-associated box zinc finger proteins. In this study, we demonstrated the expression of TRIM28 gene was significantly higher in cancerous tissues than in noncancerous tissues (P < 0.001). TRIM28 knockdown resulted in a decrease in cell proliferation in liquid media as well as in soft agar. The proliferation rate was impaired and the cell cycle progression was inhibited after knockdown of TRIM28 in non-small cell lung cancer cell lines PAa and SK-MES-1. We used real-time polymerase chain reaction to detect circulating cancer cells in 138 non-small cell lung cancer patients. The overall positive detection rate was 30.4% (42 of 138) in peripheral blood of NSCLC patients and was 29.9% (29 of 97) in early-stage patients. In a 70-month follow-up study, 20 of 29 patients (69.0%) in TRIM28 positive group had recurrence and/or metastasis, significantly higher (P = 0.004) than in the TRIM28 negative group (25 of 68, 36.8%). In addition, non-small cell lung cancer patients whose circulating cancer cells expressed TRIM28 suffered shorter tumor-specific survival compared with those with absent TRIM28 expression (P < 0.001). Results of our study showed that TRIM28 provides a survival advantage to lung cancer cells and may be a new marker to predict metastasis and prognosis in early-stage non-small cell lung cancer patients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Molecular pathways and therapeutic targets in lung cancer

    PubMed Central

    Shtivelman, Emma; Hensing, Thomas; Simon, George R.; Dennis, Phillip A.; Otterson, Gregory A.; Bueno, Raphael; Salgia, Ravi

    2014-01-01

    Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review. PMID:24722523

  3. Testing lung cancer drugs and therapies in mice

    Cancer.gov

    National Cancer Institute (NCI) investigators have designed a genetically engineered mouse for use in the study of human lung squamous cell carcinoma (SCC). SCC is a type of non-small cell lung carcinoma, one of the most common types of lung cancer, with

  4. Non-Small Cell Lung Cancer Treatment (PDQ®)—Patient Version

    Cancer.gov

    Non-small cell lung cancer (NSCLC) treatment options include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Laser therapy, photodynamic therapy, cryosurgery, and electrocautery may be used. Learn more about NSCLC in this expert-reviewed summary.

  5. PGE2 contributes to TGF-β induced T regulatory cell function in human non-small cell lung cancer

    PubMed Central

    Baratelli, Felicita; Lee, Jay M; Hazra, Saswati; Lin, Ying; Walser, Tonya C; Schaue, Dorthe; Pak, Peter S; Elashoff, David; Reckamp, Karen; Zhang, Ling; Fishbein, Michael C; Sharma, Sherven; Dubinett, Steven M

    2010-01-01

    CD4+CD25bright regulatory T cells (Treg) play an important role in cancer-mediated immunosuppression. We and others have previously shown that prostaglandin E2 (PGE2) and transforming growth factor beta (TGF-β) induce CD4+CD25brightFOXP3+Treg. Based on these studies, we investigated the requirement for PGE2 in Treg induction by TGF-β. TGF-β stimulation of human CD4+ T cells induced COX-2-dependent production of PGE2. PGE2-neutralizing antibody treatment significantly reduced the suppressive function of TGF-β-induced Treg (TGF-β-Treg) in vitro. TGF-β concentration measured in the plasma of non-small cell lung cancer (NSCLC) patients directly correlated with the frequency of circulating CD4+CD25brightFOXP3+T cells. Flow cytometry analysis showed increased FOXP3 expression in circulating CD4+CD25+HLA-DR- cells of lung cancer patients compared to control subjects. Immunohistochemical analysis revealed co-expression of TGF-β, COX-2, and FOXP3 in serial sections from resected lung tumor tissues. All together these observations suggest interplay between TGF-β and COX-2 in the induction of Treg activities. Interrupting TGF-β and PGE2 signaling may be important in therapeutic interventions that aim to limit Tregfunction in lung cancer. PMID:20733946

  6. Cell-free microRNAs as diagnostic, prognostic, and predictive biomarkers for lung cancer.

    PubMed

    Zandberga, Elīna; Kozirovskis, Viktors; Ābols, Artūrs; Andrējeva, Diāna; Purkalne, Gunta; Linē, Aija

    2013-04-01

    Lung cancer is the most common cancer worldwide, accounting for over 1.37 million deaths annually. The clinical outcome and management of lung cancer patients could be substantially improved by the implementation of non-invasive biomarker assays for the early detection, prognosis as well as prediction and monitoring of treatment response. MicroRNAs (miRNAs) have been implicated in the regulation of virtually all signaling circuits within a cell and their dysregulation has been shown to play an essential role in the development and progression of cancer. Recently, miRNAs were found to be released into the circulation and to exist there in a remarkably stable form. Furthermore, various cancers were shown to leave specific miRNA fingerprints in the blood of patients suggesting that cell-free miRNAs could serve as non-invasive biomarkers for the detection or monitoring of cancer and putative therapeutic targets. Since that, a considerable effort has been devoted to decode the information carried by circulating miRNAs. In the current review, we give an insight into the mechanisms of miRNA release into the bloodstream, their putative functional significance and systematically review the studies focused on the identification of cell-free miRNAs with the diagnostic, prognostic, and predictive significance in lung cancer and discuss their potential clinical utility. Copyright © 2012 Wiley Periodicals, Inc.

  7. Lung Cancer and Lung Injury: The Dual Role of Ceramide

    PubMed Central

    Goldkorn, Tzipora; Chung, Samuel; Filosto, Simone

    2015-01-01

    Sphingolipids play key roles in cancer, yet our current understanding of sphingolipid function in lung cancer is limited to a few key players. The best characterized of these are sphingosine-1-phoshate and ceramide which are described for their opposing roles in cell fate. However, because sphingolipids as a whole are readily interconverted by a complex enzymatic machinery, no single sphingolipid appears to have exactly one role. Instead, the roles of specific sphingolipids appear to be context specific as demonstrated by findings that ceramide-1-phosphate has both proliferative and apoptotic effects depending on its concentration. Therefore, we present herein several years of research on ceramide, a sphingolipid linked to apoptotic signaling, that is emerging in cancer research for its potential roles in proliferation and cell-to-cell communication via exosomes. Ceramide is a well-studied sphingolipid in both normal and pathological conditions ranging from skin development to lung cancer. Interestingly, several groups have previously reported its increased levels in emphysema patients who are smokers, a patient subpopulation greatly susceptible to lung cancer. However, the molecular mechanisms through which cigarette smoke (CS) and ceramide accumulation lead to lung cancer, non-small cell lung cancer (NSCLC) specifically, are unknown. Interestingly, recent studies clearly establish that two signaling pathways are activated during CS exposure in the lung airway. One centers on the activation of neutral sphingomyelinase2 (nSMase2), an enzyme that hydrolyzes sphingomyelin to ceramide. The other pathway focuses on the oncogenic EGF receptor (EGFR), which becomes aberrantly activated but not degraded, leading to prolonged proliferative signaling. Recent studies show that these two signaling pathways may actually converge and integrate. Specifically, Goldkorn et al. demonstrated that during CS exposure, EGFR is favorably co-localized in ceramide-enriched regions of the

  8. Increased lipoprotein lipase activity in non-small cell lung cancer tissue predicts shorter patient survival.

    PubMed

    Trost, Zoran; Sok, Miha; Marc, Janja; Cerne, Darko

    2009-07-01

    Cumulative evidence suggests the involvement of lipoprotein lipase (LPL) in tumor progression. We tested the hypothesis that increased LPL activity in resectable non-small cell lung cancer (NSCLC) tissue and the increased LPL gene expression in the surrounding non-cancer lung tissue found in our previous study are predictors of patient survival. Forty two consecutive patients with resected NSCLC were enrolled in the study. Paired samples of lung cancer tissue and adjacent non-cancer lung tissue were collected from resected specimens for baseline LPL activity and gene expression estimation. During a 4-year follow-up, 21 patients died due to tumor progression. One patient died due to a non-cancer reason and was not included in Cox regression analysis. High LPL activity in cancer tissue (relative to the adjacent non-cancer lung tissue) predicted shorter survival, independently of standard prognostic factors (p=0.003). High gene expression in the non-cancer lung tissue surrounding the tumor had no predictive value. Our study further underlines the involvement of cancer tissue LPL activity in tumor progression.

  9. Mutational analysis of multiple lung cancers: Discrimination between primary and metastatic lung cancers by genomic profile.

    PubMed

    Goto, Taichiro; Hirotsu, Yosuke; Mochizuki, Hitoshi; Nakagomi, Takahiro; Shikata, Daichi; Yokoyama, Yujiro; Oyama, Toshio; Amemiya, Kenji; Okimoto, Kenichiro; Omata, Masao

    2017-05-09

    In cases of multiple lung cancers, individual tumors may represent either a primary lung cancer or both primary and metastatic lung cancers. Treatment selection varies depending on such features, and this discrimination is critically important in predicting prognosis. The present study was undertaken to determine the efficacy and validity of mutation analysis as a means of determining whether multiple lung cancers are primary or metastatic in nature. The study involved 12 patients who underwent surgery in our department for multiple lung cancers between July 2014 and March 2016. Tumor cells were collected from formalin-fixed paraffin-embedded tissues of the primary lesions by using laser capture microdissection, and targeted sequencing of 53 lung cancer-related genes was performed. In surgically treated patients with multiple lung cancers, the driver mutation profile differed among the individual tumors. Meanwhile, in a case of a solitary lung tumor that appeared after surgery for double primary lung cancers, gene mutation analysis using a bronchoscopic biopsy sample revealed a gene mutation profile consistent with the surgically resected specimen, thus demonstrating that the tumor in this case was metastatic. In cases of multiple lung cancers, the comparison of driver mutation profiles clarifies the clonal origin of the tumors and enables discrimination between primary and metastatic tumors.

  10. Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients.

    PubMed

    Yagi, Satomi; Koh, Yasuhiro; Akamatsu, Hiroaki; Kanai, Kuninobu; Hayata, Atsushi; Tokudome, Nahomi; Akamatsu, Keiichiro; Endo, Katsuya; Nakamura, Seita; Higuchi, Masayuki; Kanbara, Hisashige; Nakanishi, Masanori; Ueda, Hiroki; Yamamoto, Nobuyuki

    2017-01-01

    Circulating tumor cells (CTCs), defined as tumor cells circulating in the peripheral blood of patients with solid tumors, are relatively rare. Diagnosis using CTCs is expected to help in the decision-making for precision cancer medicine. We have developed an automated microcavity array (MCA) system to detect CTCs based on the differences in size and deformability between tumor cells and normal blood cells. Herein, we evaluated the system using blood samples from non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) patients. To evaluate the recovery of CTCs, preclinical experiments were performed by spiking NSCLC cell lines (NCI-H820, A549, NCI-H23 and NCI-H441) into peripheral whole blood samples from healthy volunteers. The recovery rates were 70% or more in all cell lines. For clinical evaluation, 6 mL of peripheral blood was collected from 50 patients with advanced lung cancer and from 10 healthy donors. Cells recovered on the filter were stained. We defined CTCs as DAPI-positive, cytokeratin-positive, and CD45-negative cells under the fluorescence microscope. The 50 lung cancer patients had a median age of 72 years (range, 48-85 years); 76% had NSCLC and 20% had SCLC, and 14% were at stage III disease whereas 86% were at stage IV. One or more CTCs were detected in 80% of the lung cancer patients (median 2.5). A comparison of the CellSearch system with our MCA system, using the samples from NSCLC patients, confirmed the superiority of our system (median CTC count, 0 versus 11 for CellSearch versus MCA; p = 0.0001, n = 17). The study results suggest that our MCA system has good clinical potential for diagnosing CTCs in lung cancer.

  11. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling

    PubMed Central

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-01-01

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model. Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells. PMID:26396176

  12. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling.

    PubMed

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-09-29

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model.Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells.

  13. USP1 regulates AKT phosphorylation by modulating the stability of PHLPP1 in lung cancer cells.

    PubMed

    Zhiqiang, Zhang; Qinghui, Yang; Yongqiang, Zhang; Jian, Zhang; Xin, Zhao; Haiying, Ma; Yuepeng, Guo

    2012-07-01

    Hyperactivation of phosphatidylinositol 3-kinase/Akt signaling is commonly associated with human tumors including lung cancers. PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1), which terminates Akt signaling by directly dephosphorylating and inactivating Akt, has been identified as a tumor suppressor. The protein level of PHLPP1 is regulated by E3 ligase beta-TRCP, however, the deubiquitinase for PHLPP1 is still not known. The mRNA levels of USP1 and PHLPP1 in lung cancer cells and tissues were determined by real-time PCR. The half-life of PHLPP1 was detected by CHX assay. The interaction between USP1 and PHLPP1 was examined by immunoprecipitation and GST pull-down assay. Both USP1 and PHLPP1 are low expressed in lung cancer cells and tissues and silencing of USP1 by RNA interference significantly decreased the half-life of PHLPP1, which in turn amplified Akt1 phosphorylation. Our data identified a novel USP1-PHLPP1-Akt signaling axis, and decreased USP1 level in lung cancer cells may play an important role in lung cancer progress.

  14. Methylenetetrahydrofolate reductase gene C677T and A1298C polymorphisms in patients with small cell and non-small cell lung cancer.

    PubMed

    Siemianowicz, Krzysztof; Gminski, Jan; Garczorz, Wojciech; Slabiak, Natalia; Goss, Malgorzata; Machalski, Marek; Magiera-Molendowska, Helena

    2003-01-01

    Two mutations of methylenetetrahydrofolate reductase (MTHFR) gene (C677T and A1298C) may lead to a decreased activity of the enzyme. These mutations may change a risk of some cancers. We evaluated these two polymorphisms of MTHFR in patients with small cell lung cancer (SCLC) and non-small cell lung cancer (NCSCL). All lung cancer patients had statistically significantly higher percentage of MTHFR 677TT genotype in comparison with non-cancer controls. There were no statistically significant differences in the distribution of MTHFR 1298 genotypes. Neither of the polymorphisms presented any statistically significant differences between SCLC and NSCLC.

  15. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre

  16. The potential for crizotinib in non-small cell lung cancer: a perspective review

    PubMed Central

    Bang, Yung-Jue

    2011-01-01

    Tyrosine kinases have a crucial role as key regulators of signaling pathways that influence cell differentiation and growth. Dysregulation of tyrosine kinase-mediated signaling is understood to be an important oncogenic driver. Genetic rearrangements involving the tyrosine kinase anaplastic lymphoma kinase (ALK) gene occur in non-small cell lung cancer (NSCLC), anaplastic large cell lymphomoas, inflammatory myofibroblastic tumors, and other cancers. Cells with abnormal ALK signaling are sensitive to ALK inhibitors such as crizotinib. This review will highlight the discovery of the fusion between echinoderm microtubule-associated protein-like 4 (EML4) and ALK as an oncogenic driver, recognition of other ALK gene rearrangements in NSCLC, and the confirmation that crizotinib is an effective treatment for patients with ALK-positive NSCLC. Work is underway to further define the role for crizotinib in the treatment of ALK-positive lung cancer and other cancers and to investigate the molecular mechanisms for resistance to ALK inhibition with crizotinib. PMID:22084642

  17. Refining the treatment of advanced nonsmall cell lung cancer

    PubMed Central

    Ogita, Shin; Wozniak, Antoinette J

    2010-01-01

    Metastatic nonsmall cell lung cancer (NSCLC) is a debilitating and deadly disease with virtually no chance for long-term survival. Chemotherapy has improved both survival and quality of life for patients with advanced disease. Overall survival of patients with metastatic NSCLC has gradually increased from 8 to 12 months over the past three decades with the introduction of new chemotherapeutic drugs and agents directed at novel targets in the cancer cell. Epidermal growth factor receptor and vascular endothelial growth factor are two such targets. Recent developments also include treatment based on histology and the use of maintenance therapy. It has been recognized that lung cancer is a very complex disease. It is common practice to include a number of scientific correlative studies in the design of clinical trials in order to determine predictive markers of benefit from treatment. This article will review the current approach to the treatment of advanced NSCLC including the use of chemotherapy and molecularly targeted agents. Future directions including the use of potentially predictive biomarkers and innovative clinical trials aimed at a more individualized approach to treatment will also be discussed. PMID:28210103

  18. Diagnosing lung cancer using coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Yang, Yaliang; Xing, Jiong; Thrall, Michael J.; Wang, Zhiyong; Li, Fuhai; Luo, Pengfei; Wong, Kelvin K.; Zhao, Hong; Wong, Stephen T. C.

    2011-03-01

    Lung carcinoma is the most prevalent type of cancer in the world, and it is responsible for more deaths than other types of cancer. During diagnosis, a pathologist primarily aims to differentiate small cell carcinoma from non-small cell carcinoma on biopsy and cytology specimens, which is time consuming due to the time required for tissue processing and staining. To speed up the diagnostic process, we investigated the feasibility of using coherent anti-Stokes Raman scattering (CARS) microscopy as a label-free strategy to image lung lesions and differentiate subtypes of lung cancers. Different mouse lung cancer models were developed by injecting human lung cancer cell lines, including adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, into lungs of the nude mice. CARS images were acquired from normal lung tissues and different subtypes of cancer lesions ex vivo using intrinsic contrasts from symmetric CH2 bonds. These images showed good correlation with the hematoxylin and eosin (H&E) stained sections from the same tissue samples with regard to cell size, density, and cell-cell distance. These features are routinely used in diagnosing lung lesions. Our results showed that the CARS technique is capable of providing a visualizable platform to differentiate different kinds of lung cancers using the same pathological features without histological staining and thus has the potential to serve as a more efficient examination tool for diagnostic pathology. In addition, incorporating with suitable fiber-optic probes would render the CARS technique as a promising approach for in vivo diagnosis of lung cancer.

  19. Identification of Alternative Splicing and Fusion Transcripts in Non-Small Cell Lung Cancer by RNA Sequencing.

    PubMed

    Hong, Yoonki; Kim, Woo Jin; Bang, Chi Young; Lee, Jae Cheol; Oh, Yeon-Mok

    2016-04-01

    Lung cancer is the most common cause of cancer related death. Alterations in gene sequence, structure, and expression have an important role in the pathogenesis of lung cancer. Fusion genes and alternative splicing of cancer-related genes have the potential to be oncogenic. In the current study, we performed RNA-sequencing (RNA-seq) to investigate potential fusion genes and alternative splicing in non-small cell lung cancer. RNA was isolated from lung tissues obtained from 86 subjects with lung cancer. The RNA samples from lung cancer and normal tissues were processed with RNA-seq using the HiSeq 2000 system. Fusion genes were evaluated using Defuse and ChimeraScan. Candidate fusion transcripts were validated by Sanger sequencing. Alternative splicing was analyzed using multivariate analysis of transcript sequencing and validated using quantitative real time polymerase chain reaction. RNA-seq data identified oncogenic fusion genes EML4-ALK and SLC34A2-ROS1 in three of 86 normal-cancer paired samples. Nine distinct fusion transcripts were selected using DeFuse and ChimeraScan; of which, four fusion transcripts were validated by Sanger sequencing. In 33 squamous cell carcinoma, 29 tumor specific skipped exon events and six mutually exclusive exon events were identified. ITGB4 and PYCR1 were top genes that showed significant tumor specific splice variants. In conclusion, RNA-seq data identified novel potential fusion transcripts and splice variants. Further evaluation of their functional significance in the pathogenesis of lung cancer is required.

  20. Small cell lung cancer with metastasis to the thyroid in a patient with toxic multinodular goiter.

    PubMed

    Ozgu, Eylem Sercan; Gen, Ramazan; Ilvan, Ahmet; Ozge, Cengiz; Polat, Ayşe; Vayisoglu, Yusuf

    2012-11-01

    Thyroid metastasis of lung cancer is rarely observed in clinical practice. The primary cancers which metastasize to the thyroid gland are mostly renal cell carcinoma, lung cancer, and breast cancer. Transient destructive thyrotoxicosis is caused by massive metastasis of extrathyroid tumors. We herein present a case report of a patient with small cell carcinoma of lung with metastasis to the thyroid and thyrotoxicosis due to toxic multinodular goiter. A 66-year-old man complained of swelling around the right side of the neck, dyspnea, progressive weight loss, and palpitation starting since 3 months before his admission. The patient was diagnosed with small cell carcinoma of lung with metastasis to the thyroid and thyrotoxicosis due to toxic multinodular goiter. The case report presented here illustrates the challenge of making a definitive and adequate diagnosis, particularly if the patient presents with 2 potential causes of thyrotoxicosis. Thyroid scintigraphy is an important tool for differential diagnosis of thyrotoxicosis.

  1. Bevacizumab-induced chronic interstitial pneumonia during maintenance therapy in non-small cell lung cancer.

    PubMed

    Sekimoto, Yasuhito; Kato, Motoyasu; Shukuya, Takehiko; Koyama, Ryo; Nagaoka, Tetsutaro; Takahashi, Kazuhisa

    2016-04-01

    Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor and a key drug for advanced non-small cell lung cancer. There are few reports describing bevacizumab-induced chronic interstitial pneumonia. A 62-year-old man with advanced non-small cell lung cancer was admitted to our hospital with dyspnea. He previously received four courses of carboplatin plus paclitaxel with bevacizumab combination therapy and thereafter received four courses of maintenance bevacizumab monotherapy. A chest-computed tomography scan on admission revealed diffuse ground glass opacity. He had not received any other drugs and did not have pneumonia. Thus, he was diagnosed with bevacizumab-induced chronic interstitial pneumonia and was treated with a high dose of corticosteroids. After steroid treatment, his dyspnea and radiological findings improved. This case report is the first description of bevacizumab-induced chronic interstitial pneumonia during maintenance therapy in a patient with non-small cell lung cancer.

  2. Effectiveness of local therapy for stage I non-small-cell lung cancer in nonagenarians.

    PubMed

    Arnold, Brian N; Thomas, Daniel C; Rosen, Joshua E; Salazar, Michelle C; Detterbeck, Frank C; Blasberg, Justin D; Boffa, Daniel J; Kim, Anthony W

    2017-09-01

    Stage I non-small-cell lung cancer is potentially curable, yet older patients undergo treatment at lower rates than younger patients. This analysis sought to describe the treatment outcomes of nonagenarians with stage I non-small-cell lung cancer to better guide treatment decisions in this population. The National Cancer DataBase was queried for patients age ≥90 years old with stage I non-small-cell lung cancer (tumors ≤4 cm). Patients were divided into 3 groups: local therapy, other therapy, or no treatment. The primary outcomes were 5-year overall and relative survival. Of the 616 patients identified, 33% (202) were treated with local therapy, 34% (207) were treated with other therapy, and 34% (207) underwent no treatment. Compared with local therapy, overall mortality was significantly higher with no treatment (hazard ratio 2.50, 95% confidence interval, 1.95-3.21) and other therapy (hazard ratio 1.43, 95% confidence interval, 1.11-1.83). The 5-year relative survival was 81% for local therapy, 49% for other therapy, and 32% for no treatment (P < .0001). Nonagenarians managed with local therapy for stage I non-small-cell lung cancer (tumors ≤4 cm) have better overall survival than those receiving other therapy or no treatment and should be considered for treatment with either operation or stereotactic body radiation therapy if able to tolerate treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Expression of microRNA-133 inhibits epithelial-mesenchymal transition in lung cancer cells by directly targeting FOXQ1.

    PubMed

    Xiao, Bo; Liu, Huazhen; Gu, Zeyun; Ji, Cheng

    2016-10-01

    MicroRNA (miR) was implicated in the tumorigenesis of many types of cancer, but no study was conducted on the exact role of miR-133 in lung cancer. We have identified miR-133 as a putative regulator of FOXQ1 expression, and investigated the potential involvement of miR-133 in the migration and invasion of lung cancer cells, as well as the underlying molecular mechanism. MiR-133 directly targeted and down-regulated FOXQ1 expression, which in turn reduced TGF-β level. MiR-133 was down-regulated in lung cancer cell lines A549 and HCC827, and its re-expression significantly inhibited the migration and invasion of the lung cancer cells. Further investigation revealed that this inhibition was caused by reversing the epithelial-mesenchymal transition, evidenced by miR-133 induced elevation of epithelial marker E-cadherin, and reduction of mesenchymal marker Vimentin. Our study is the first to identify miR-133 as a biomarker for lung cancer. It functions to down-regulate FOXQ1, and inhibit epithelial-mesenchymal transition, which antagonizes lung cancer tumorigenesis. Therefore our data support the role of miR-133 as a potential molecular therapeutic tool in treating lung cancer. Copyright © 2015 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. MHC class II expression in lung cancer.

    PubMed

    He, Yayi; Rozeboom, Leslie; Rivard, Christopher J; Ellison, Kim; Dziadziuszko, Rafal; Yu, Hui; Zhou, Caicun; Hirsch, Fred R

    2017-10-01

    Immunotherapy is an exciting development in lung cancer research. In this study we described major histocompatibility complex (MHC) Class II protein expression in lung cancer cell lines and patient tissues. We studied MHC Class II (DP, DQ, DR) (CR3/43, Abcam) protein expression in 55 non-small cell lung cancer (NSCLC) cell lines, 42 small cell lung cancer (SCLC) cell lines and 278 lung cancer patient tissues by immunohistochemistry (IHC). Seven (12.7%) NSCLC cell lines were positive for MHC Class II. No SCLC cell lines were found to be MHC Class II positive. We assessed 139 lung cancer samples available in the Hirsch Lab for MHC Class II. There was no positive MHC Class II staining on SCLC tumor cells. MHC Class II expression on TILs in SCLC was significantly lower than that on TILs in NSCLC (P<0.001). MHC Class II was also assessed in an additional 139 NSCLC tumor tissues from Medical University of Gdansk, Poland. Patients with positive staining of MHC Class II on TILs had longer regression-free survival (RFS) and overall survival (OS) than those whose TILs were MHC Class II negative (2.980 years, 95% CI 1.628-4.332 vs. 1.050 years, 95% CI 0.556-1.554, P=0.028) (3.230 years, 95% CI 2.617-3.843 vs. 1.390 years, 95% CI 0.629-2.151, P=0.014). MHC Class II was expressed both in NSCLC cell lines and tissues. However, MHC Class II was not detected in SCLC cell lines or tissue tumor cells. MHC Class II expression was lower on SCLC TILs than on NSCLC TILs. Loss of expression of MHC Class II on SCLC tumor cells and reduced expression on SCLC TILs may be a means of escaping anti-cancer immunity. Higher MHC Class II expression on TILs was correlated with better prognosis in patients with NSCLC. Copyright © 2017. Published by Elsevier B.V.

  5. E phage gene transfection associated to chemotherapeutic agents increases apoptosis in lung and colon cancer cells.

    PubMed

    Rama, Ana R; Prados, Jose; Melguizo, Consolacion; Alvarez, Pablo J; Ortiz, Raúl; Madeddu, Roberto; Aranega, Antonia

    2011-01-01

    The limited ability of conventional therapies to achieve the long-term survival of metastatic lung and colon cancer patients suggests the need for new treatment options. In this respect, genes encoding cytotoxic proteins have been proposed as a new strategy to enhance the activity of drugs, and combined therapies involving such genes and classical antitumoral drugs have been studied intensively. The E gene from phiX174 encodes a membrane protein with a toxic domain that leads to a decrease in tumour cell growth rates. Therefore, in order to improve the anti-tumour effects of currently used chemotherapeutic drugs on cancer cells, we investigated the association of the E suicide gene with these antineoplastic drugs. The E gene has antitumoral effects in both lung and colon cancer cells. In addition, expression of this gene induces ultrastructural changes in lung cancer transfected cells (A-549), although the significance of these changes remains unknown. The effect of combined therapy (gene and cytotoxic therapy) enhances the inhibition of tumour cell proliferation in comparison to single treatments. Indeed, our in vitro results indicate that an experimental therapeutic strategy based on this combination of E gene therapy and cytotoxic drugs may result in a new treatment strategy for patients with advanced lung and colon cancer.

  6. Non-small cell lung cancer in never smokers: a clinical entity to be identified.

    PubMed

    Santoro, Ilka Lopes; Ramos, Roberta Pulcheri; Franceschini, Juliana; Jamnik, Sergio; Fernandes, Ana Luisa Godoy

    2011-01-01

    It has been recognized that patients with non-small cell lung cancer who are lifelong never-smokers constitute a distinct clinical entity. The aim of this study was to assess clinical risk factors for survival among never-smokers with non-small cell lung cancer. All consecutive non-small cell lung cancer patients diagnosed (n = 285) between May 2005 and May 2009 were included. The clinical characteristics of never-smokers and ever-smokers (former and current) were compared using chi-squared or Student's t tests. Survival curves were calculated using the Kaplan-Meier method, and log-rank tests were used for survival comparisons. A Cox proportional hazards regression analysis was evaluated by adjusting for age (continuous variable), gender (female vs. male), smoking status (never- vs. ever-smoker), the Karnofsky Performance Status Scale (continuous variable), histological type (adenocarcinoma vs. non-adenocarcinoma), AJCC staging (early vs. advanced staging), and treatment (chemotherapy and/or radiotherapy vs. the best treatment support). Of the 285 non-small cell lung cancer patients, 56 patients were never-smokers. Univariate analyses indicated that the never-smoker patients were more likely to be female (68% vs. 32%) and have adenocarcinoma (70% vs. 51%). Overall median survival was 15.7 months (95% CI: 13.2 to 18.2). The never-smoker patients had a better survival rate than their counterpart, the ever-smokers. Never-smoker status, higher Karnofsky Performance Status, early staging, and treatment were independent and favorable prognostic factors for survival after adjusting for age, gender, and adenocarcinoma in multivariate analysis. Epidemiological differences exist between never- and ever-smokers with lung cancer. Overall survival among never-smokers was found to be higher and independent of gender and histological type.

  7. In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells

    NASA Astrophysics Data System (ADS)

    Tabish, Tanveer A.; Pranjol, Md Zahidul I.; Hayat, Hasan; Rahat, Alma A. M.; Abdullah, Trefa M.; Whatmore, Jacqueline L.; Zhang, Shaowei

    2017-12-01

    The intriguing properties of reduced graphene oxide (rGO) have paved the way for a number of potential biomedical applications such as drug delivery, tissue engineering, gene delivery and bio-sensing. Over the last decade, there have been escalating concerns regarding the possible toxic effects, behaviour and fate of rGO in living systems and environments. This paper reports on integrative chemical-biological interactions of rGO with lung cancer cells, i.e. A549 and SKMES-1, to determine its potential toxicological impacts on them, as a function of its concentration. Cell viability, early and late apoptosis and necrosis were measured to determine oxidative stress potential, and induction of apoptosis for the first time by comparing two lung cancer cells. We also showed the general trend between cell death rates and concentrations for different cell types using a Gaussian process regression model. At low concentrations, rGO was shown to significantly produce late apoptosis and necrosis rather than early apoptotic events, suggesting that it was able to disintegrate the cellular membranes in a dose dependent manner. For the toxicity exposures undertaken, late apoptosis and necrosis occurred, which was most likely resultant from limited bioavailability of unmodified rGO in lung cancer cells.

  8. Chitosan-hyaluronan based 3D co-culture platform for studying the crosstalk of lung cancer cells and mesenchymal stem cells.

    PubMed

    Han, Hao-Wei; Hsu, Shan-Hui

    2016-09-15

    The controversial roles of mesenchymal stem cells (MSCs) in lung cancer development are not yet resolved because of the lack of an extracellular environment that mimics the tumor microenvironment. Three-dimensional (3D) culture system is an emerging research tool for biomedical applications such as drug screening. In this study, MSCs and human non-small cell lung carcinoma cells (A549) were co-cultured on a thin biomaterial-based substratum (hyaluronan-grafted chitosan, CS-HA; ∼2μm), and they were self-organized into the 3D tumor co-spheroids with core-shell structure. The gene expression levels of tumorigenicity markers in cancer cells associated with cancer stemness, epithelial-mesenchymal transition (EMT) property, and cell mobility were up-regulated for more than twofold in the MSC-tumor co-spheroids, through the promoted expression of certain tumor enhancers and the direct cell-cell interaction. To verify the different extents of tumorigenicity, A549 cells or those co-cultured with MSCs were transplanted into zebrafish embryos for evaluation in vivo. The tumorigenicity obtained from the zebrafish xenotransplantation model was consistent with that observed in vitro. These evidences suggest that the CS-HA substrate-based 3D co-culture platform for cancer cells and MSCs may be a convenient tool for studying the cell-cell interaction in a tumor-like microenvironment and potentially for cancer drug testing. Mesenchymal stem cells (MSCs) have been found in several types of tumor tissues. However, the controversial roles of MSCs in cancer development are still unsolved. Chitosan and hyaluronan are commonly used materials in the biomedical field. In the current study, we co-cultured lung cancer cells and MSCs on the planar hyaluronan-grafted chitosan (CS-HA) hybrid substrates, and discovered that lung cancer cells and MSCs were rapidly self-assembled into 3D tumor spheroids with core-shell structure on the substrates after only two days in culture. Therefore, CS

  9. Combination Chemotherapy, Radiation Therapy, and Bevacizumab in Treating Patients With Newly Diagnosed Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-03-22

    Adenosquamous Lung Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Minimally Invasive Lung Adenocarcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7

  10. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells.

    PubMed

    Kim, Kyu-Tae; Lee, Hye Won; Lee, Hae-Ock; Kim, Sang Cheol; Seo, Yun Jee; Chung, Woosung; Eum, Hye Hyeon; Nam, Do-Hyun; Kim, Junhyong; Joo, Kyeung Min; Park, Woong-Yang

    2015-06-19

    Intra-tumoral genetic and functional heterogeneity correlates with cancer clinical prognoses. However, the mechanisms by which intra-tumoral heterogeneity impacts therapeutic outcome remain poorly understood. RNA sequencing (RNA-seq) of single tumor cells can provide comprehensive information about gene expression and single-nucleotide variations in individual tumor cells, which may allow for the translation of heterogeneous tumor cell functional responses into customized anti-cancer treatments. We isolated 34 patient-derived xenograft (PDX) tumor cells from a lung adenocarcinoma patient tumor xenograft. Individual tumor cells were subjected to single cell RNA-seq for gene expression profiling and expressed mutation profiling. Fifty tumor-specific single-nucleotide variations, including KRAS(G12D), were observed to be heterogeneous in individual PDX cells. Semi-supervised clustering, based on KRAS(G12D) mutant expression and a risk score representing expression of 69 lung adenocarcinoma-prognostic genes, classified PDX cells into four groups. PDX cells that survived in vitro anti-cancer drug treatment displayed transcriptome signatures consistent with the group characterized by KRAS(G12D) and low risk score. Single-cell RNA-seq on viable PDX cells identified a candidate tumor cell subgroup associated with anti-cancer drug resistance. Thus, single-cell RNA-seq is a powerful approach for identifying unique tumor cell-specific gene expression profiles which could facilitate the development of optimized clinical anti-cancer strategies.

  11. Non-Small Cell Lung Cancer Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Non-small cell lung cancer (NSCLC) treatment options include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Get detailed information about newly diagnosed and recurrent NSCLC in this summary for clinicians.

  12. Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone.

    PubMed

    Xu, Menglin; Wang, Xiangdong

    2017-08-01

    Lung cancer is the leading cause of death from cancer. Mucins are glycoproteins with high molecular weight, responsible for cell growth, differentiation, and signaling, and were proposed to be correlated with gene heterogeneity of lung cancer. Here, we report aberrant expression of mucin genes and tumor necrosis factor receptors in lung adenocarcinoma tissues compared with normal tissues in GEO datasets. Mucin-1 (MUC1) gene was selected and considered as the target gene; furthermore, the expression pattern of adenocarcinomic cells (A549, H1650, or H1299 cells) was validated under the stimulation with tumor necrosis factor-alpha (TNFα) or dexamethasone (DEX), separately. MUC1 gene interference was done to A549 cells to show its role in sensitivity of lung cancer cells to TNFα and DEX. Results of our experiments indicate that MUC1 may regulate the influence of inflammatory mediators in effects of glucocorticoids (GCs), as a regulatory target to improve therapeutics. It shows the potential effect of MUC1 and GCs in lung adenocarcinoma (LADC), which may help in LADC treatment in the future.

  13. Surgical and survival outcomes of lung cancer patients with intratumoral lung abscesses.

    PubMed

    Yamanashi, Keiji; Okumura, Norihito; Takahashi, Ayuko; Nakashima, Takashi; Matsuoka, Tomoaki

    2017-05-26

    Intratumoral lung abscess is a secondary lung abscess that is considered to be fatal. Therefore, surgical procedures, although high-risk, have sometimes been performed for intratumoral lung abscesses. However, no studies have examined the surgical outcomes of non-small cell lung cancer patients with intratumoral lung abscesses. The aim of this study was to investigate the surgical and survival outcomes of non-small cell lung cancer patients with intratumoral lung abscesses. Eleven consecutive non-small cell lung cancer patients with intratumoral lung abscesses, who had undergone pulmonary resection at our institution between January 2007 and December 2015, were retrospectively analysed. The post-operative prognoses were investigated and prognostic factors were evaluated. Ten of 11 patients were male and one patient was female. The median age was 64 (range, 52-80) years. Histopathologically, 4 patients had Stage IIA, 2 patients had Stage IIB, 2 patients had Stage IIIA, and 3 patients had Stage IV tumors. The median operative time was 346 min and the median amount of bleeding was 1327 mL. The post-operative morbidity and mortality rates were 63.6% and 0.0%, respectively. Recurrence of respiratory infections, including lung abscesses, was not observed in all patients. The median post-operative observation period was 16.1 (range, 1.3-114.5) months. The 5-year overall survival rate was 43.3%. No pre-operative, intra-operative, or post-operative prognostic factors were identified in the univariate analyses. Surgical procedures for advanced-stage non-small cell lung cancer patients with intratumoral lung abscesses, although high-risk, led to satisfactory post-operative mortality rates and acceptable prognoses.

  14. MicroRNA-dependent regulation of transcription in non-small cell lung cancer.

    PubMed

    Molina-Pinelo, Sonia; Gutiérrez, Gabriel; Pastor, Maria Dolores; Hergueta, Marta; Moreno-Bueno, Gema; García-Carbonero, Rocío; Nogal, Ana; Suárez, Rocío; Salinas, Ana; Pozo-Rodríguez, Francisco; Lopez-Rios, Fernando; Agulló-Ortuño, Maria Teresa; Ferrer, Irene; Perpiñá, Asunción; Palacios, José; Carnero, Amancio; Paz-Ares, Luis

    2014-01-01

    Squamous cell lung cancer (SCC) and adenocarcinoma are the most common histological subtypes of non-small cell lung cancer (NSCLC), and have been traditionally managed in the clinic as a single entity. Increasing evidence, however, illustrates the biological diversity of these two histological subgroups of lung cancer, and supports the need to improve our understanding of the molecular basis beyond the different phenotypes if we aim to develop more specific and individualized targeted therapy. The purpose of this study was to identify microRNA (miRNA)-dependent transcriptional regulation differences between SCC and adenocarcinoma histological lung cancer subtypes. In this work, paired miRNA (667 miRNAs by TaqMan Low Density Arrays (TLDA)) and mRNA profiling (Whole Genome 44 K array G112A, Agilent) was performed in tumor samples of 44 NSCLC patients. Nine miRNAs and 56 mRNAs were found to be differentially expressed in SCC versus adenocarcinoma samples. Eleven of these 56 mRNA were predicted as targets of the miRNAs identified to be differently expressed in these two histological conditions. Of them, 6 miRNAs (miR-149, miR-205, miR-375, miR-378, miR-422a and miR-708) and 9 target genes (CEACAM6, CGN, CLDN3, ABCC3, MLPH, ACSL5, TMEM45B, MUC1) were validated by quantitative PCR in an independent cohort of 41 lung cancer patients. Furthermore, the inverse correlation between mRNAs and microRNAs expression was also validated. These results suggest miRNA-dependent transcriptional regulation differences play an important role in determining key hallmarks of NSCLC, and may provide new biomarkers for personalized treatment strategies.

  15. Upregulation of microRNA-137 expression by Slug promotes tumor invasion and metastasis of non-small cell lung cancer cells through suppression of TFAP2C.

    PubMed

    Chang, Tzu-Hua; Tsai, Meng-Feng; Gow, Chien-Hung; Wu, Shang-Gin; Liu, Yi-Nan; Chang, Yih-Leong; Yu, Sung-Liang; Tsai, Hsing-Chen; Lin, Shih-Wen; Chen, Yen-Wei; Kuo, Po-Yen; Yang, Pan-Chyr; Shih, Jin-Yuan

    2017-08-28

    The epithelial-mesenchymal transition (EMT) regulator, Slug, plays multifaceted roles in controlling lung cancer progression, but its downstream targets and mechanisms in promoting lung cancer progression have not been well defined. In particular, the miRNAs downstream of Slug in non-small cell lung cancer (NSCLC) remain undetermined. Here, we report that miR-137 is downstream of the EMT regulator, Slug, in lung cancer cells. Slug binds directly to the E-box of the miR-137 promoter and up-regulates its expression in lung cancer cells. Knockdown of miR-137 abolished Slug-induced cancer invasion and migration, whereas upregulation of miR-137 was found to trigger lung cancer cell invasion and progression by direct suppressing TFAP2C (transcription factor AP-2 gamma). Clinical data showed that lung adenocarcinoma patients with low-level expression of Slug and miR-137 but high-level expression of TFAP2C experienced significantly better survival. miR-137 is a Slug-induced miRNA that relays the pro-metastatic effects of Slug by targeting TFAP2C. Our findings add new components to the Slug-mediated regulatory network in lung cancer, and suggest that Slug, miR-137, and TFAP2C may be useful prognostic markers in lung adenocarcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Image-Guided Hypofractionated Radiation Therapy With Stereotactic Body Radiation Therapy Boost and Combination Chemotherapy in Treating Patients With Stage II-III Non-Small Cell Lung Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2017-06-12

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  17. Small cell lung cancer presenting as unilateral rhinorrhoea.

    PubMed

    Haymes, Adam; Mahalingam, Sridhayan; Choudhury, Natasha

    2017-08-03

    The metastatic spread of infraclavicular malignancies to the nasal cavity is rare. We describe the case of a 58-year-old man who presented with a 4-month history of right-sided rhinorrhoea, maxillary hypoesthesia, hyposmia and hypogeusia. Clinical examination revealed an irregular mass within the right nasal cavity. Immunohistochemical analyses of biopsies were consistent with small cell carcinoma of indeterminate origin. A positron emission tomography scan demonstrated extensive mediastinal lymphadenopathy with collapse-consolidation of the right lung's middle lobe and no other sites of metastasis. Following discussion at the lung multidisciplinary team meeting, a diagnosis of metastatic small cell lung cancer (SCLC) was made; the patient was staged with N3, M1b disease and palliative chemo-radiotherapy was started. To the best of our knowledge, this report represents the first documented case of a solitary nasal cavity metastasis arising from a SCLC. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger

    2016-06-01

    Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity.

  19. Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer.

    PubMed

    Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger

    2016-06-09

    Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity.

  20. Stem cell-like ALDHbright cellular states in EGFR-mutant non-small cell lung cancer

    PubMed Central

    Corominas-Faja, Bruna; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; Segura-Carretero, Antonio; Joven, Jorge; Martin-Castillo, Begoña; Barrajón-Catalán, Enrique; Micol, Vicente; Bosch-Barrera, Joaquim; Menendez, Javier A

    2013-01-01

    The enrichment of cancer stem cell (CSC)-like cellular states has not previously been considered to be a causative mechanism in the generalized progression of EGFR-mutant non-small cell lung carcinomas (NSCLC) after an initial response to the EGFR tyrosine kinase inhibitor erlotinib. To explore this possibility, we utilized a pre-clinical model of acquired erlotinib resistance established by growing NSCLC cells containing a TKI-sensitizing EGFR exon 19 deletion (ΔE746-A750) in the continuous presence of high doses of erlotinib. Genome-wide analyses using Agilent 44K Whole Human Genome Arrays were evaluated via bioinformatics analyses through GSEA-based screening of the KEGG pathway database to identify the molecular circuitries that were over-represented in the transcriptomic signatures of erlotinib-refractory cells. The genomic spaces related to erlotinib resistance included a preponderance of cell cycle genes (E2F1, -2, CDC2, -6) and DNA replication-related genes (MCM4, -5, -6, -7), most of which are associated with early lung development and poor prognosis. In addition, metabolic genes such as ALDH1A3 (a candidate marker for lung cancer cells with CSC-like properties) were identified. Thus, we measured the proportion of erlotinib-resistant cells expressing very high levels of aldehyde dehydrogenase (ALDH) activity attributed to ALDH1/3 isoforms. Using flow cytometry and the ALDEFLUOR® reagent, we confirmed that erlotinib-refractory cell populations contained drastically higher percentages (>4500%) of ALDHbright cells than the parental erlotinib-responsive cells. Notably, strong decreases in the percentages of ALDHbright cells were observed following incubation with silibinin, a bioactive flavonolignan that can circumvent erlotinib resistance in vivo. The number of lung cancer spheres was drastically suppressed by silibinin in a dose-dependent manner, thus confirming the ability of this agent to inhibit the self-renewal of erlotinib-refractory CSC-like cells

  1. TOPK (T-LAK cell-originated protein kinase) inhibitor exhibits growth suppressive effect on small cell lung cancer.

    PubMed

    Park, Jae-Hyun; Inoue, Hiroyuki; Kato, Taigo; Zewde, Makda; Miyamoto, Takashi; Matsuo, Yo; Salgia, Ravi; Nakamura, Yusuke

    2017-03-01

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) plays critical roles in cancer cell proliferation as well as maintenance of cancer stem cells (CSC). Small cell lung cancer (SCLC) has highly aggressive phenotype, reveals early spread to distant sites, and results in dismal prognosis with little effective treatment. In this study, we demonstrate that TOPK expression was highly upregulated in both SCLC cell lines and primary tumors. Similar to siRNA-mediated TOPK knockdown effects, treatment with a potent TOPK inhibitor, OTS514, effectively suppressed growth of SCLC cell lines (IC 50 ; 0.4-42.6 nM) and led to their apoptotic cell death. TOPK inhibition caused cell morphologic changes in SCLC cells, elongation of intercellular bridges caused by cytokinesis defects or neuronal protrusions induced by neuronal differentiation in a subset of CSC-like SCLC cells. Treatment with OTS514 suppressed forkhead box protein M1 (FOXM1) activity, which was involved in stemness of CSC. Furthermore, OTS514 treatment reduced CD90-positive SCLC cells and showed higher cytotoxic effect against lung sphere-derived CSC-like SCLC cells. Collectively, our results suggest that targeting TOPK is a promising approach for SCLC therapy. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. Risk factors for disseminated intravascular coagulation in patients with lung cancer.

    PubMed

    Nakano, Kentaro; Sugiyama, Kumiya; Satoh, Hideyuki; Shiromori, Sadaaki; Sugitate, Kei; Arifuku, Hajime; Yoshida, Naruo; Watanabe, Hiroyoshi; Tokita, Shingo; Wakayama, Tomoshige; Tatewaki, Masamitsu; Souma, Ryosuke; Koyama, Kenya; Hirata, Hirokuni; Fukushima, Yasutsugu

    2018-05-31

    The mortality rate from disseminated intravascular coagulation (DIC) is higher in patients with lung cancer than in non-lung cancer patients. Moreover, the prevalence of DIC varies among the pathologic types of lung cancer. This study analyzed the relationship between coagulation factors and the pathologic types of lung cancer. Twenty-six patients with progressive, inoperable stage IIB or higher lung cancer (20 men, 6 women; mean age 71 years; 11 Adeno, 10 squamous cell carcinoma, and 5 small cell carcinoma) and five healthy volunteers without respiratory disease (3 men, 2 women; mean age 72 years) were enrolled in the study. Blood samples were collected at lung cancer diagnosis, before treatment. White blood cell count, platelet count, serum C-reactive protein, fibrin/fibrinogen degradation products, fibrinogen, thrombin-antithrombin complex, and D-dimer levels differed significantly between lung cancer patients and the control group, but not among the pathologic types of lung cancer. Thrombomodulin levels were significantly higher in patients with Adeno and squamous cell carcinoma than in those with small cell carcinoma (P < 0.05 and P < 0.01, respectively). Antithrombin levels were significantly lower in patients with squamous cell carcinoma than in those with Adeno (P < 0.05). Coagulation disorders may develop secondary to chronic inflammation in patients with progressive lung cancer. DIC in lung cancer may be attributed to changes in anticoagulation factors, such as thrombomodulin and antithrombin, but not in other coagulation factors. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  3. Cancer stem cell marker Musashi-1 rs2522137 genotype is associated with an increased risk of lung cancer.

    PubMed

    Wang, Xu; Hu, Ji-Fan; Tan, Yehui; Cui, Jiuwei; Wang, Guanjun; Mrsny, Randall J; Li, Wei

    2014-01-01

    Gene single nucleotide polymorphisms (SNPs) have been extensively studied in association with development and prognosis of various malignancies. However, the potential role of genetic polymorphisms of cancer stem cell (CSC) marker genes with respect to cancer risk has not been examined. We conducted a case-control study involving a total of 1000 subjects (500 lung cancer patients and 500 age-matched cancer-free controls) from northeastern China. Lung cancer risk was analyzed in a logistic regression model in association with genotypes of four lung CSC marker genes (CD133, ALDH1, Musashi-1, and EpCAM). Using univariate analysis, the Musashi-1 rs2522137 GG genotype was found to be associated with a higher incidence of lung cancer compared with the TT genotype. No significant associations were observed for gene variants of CD133, ALDH1, or EpCAM. In multivariate analysis, Musashi-1 rs2522137 was still significantly associated with lung cancer when environmental and lifestyle factors were incorporated in the model, including lower BMI; family history of cancer; prior diagnosis of chronic obstructive pulmonary disease, pneumonia, or pulmonary tuberculosis; occupational exposure to pesticide; occupational exposure to gasoline or diesel fuel; heavier smoking; and exposure to heavy cooking emissions. The value of the area under the receiver-operating characteristic (ROC) curve (AUC) was 0.7686. To our knowledge, this is the first report to show an association between a Musashi-1 genotype and lung cancer risk. Further, the prediction model in this study may be useful in determining individuals with high risk of lung cancer.

  4. A novel miRNA-mediated STOP sign in lung cancer: miR-340 inhibits the proliferation of lung cancer cells through p27KIP1

    PubMed Central

    Fernandez, Serena; Risolino, Maurizio; Verde, Pasquale

    2015-01-01

    Oncosuppressor miRNAs inhibit cancer cell proliferation by targeting key components of the cell cycle machinery. In our recent report we showed that miR-340 is a novel tumor suppressor in non-small cell lung cancer. miR-340 inhibits neoplastic cell proliferation and induces p27KIP1 by targeting multiple translational and post-translational regulators of this cyclin-dependent kinase inhibitor. PMID:27308439

  5. EGFR blockade enriches for lung cancer stem-like cells through Notch3-dependent signaling

    PubMed Central

    Arasada, Rajeswara Rao; Amann, Joseph M.; Rahman, Mohammad A; Huppert, Stacey S.; Carbone, David P.

    2014-01-01

    Mutations in the epidermal growth factor receptor (EGFR) are the most common actionable genetic abnormalities yet discovered in lung cancer. However, targeting these mutations with kinase inhibitors is not curative in advanced disease and has yet to demonstrate an impact on potentially curable, early-stage disease, with some data suggesting adverse outcomes. Here, we report that treatment of EGFR-mutated lung cancer cell lines with erlotinib, while showing robust cell death, enriches the ALDH+ stem-like cells through EGFR-dependent activation of Notch3. Additionally, we demonstrate that erlotinib treatment increases the clonogenicity of lung cancer cells in a sphere-forming assay, suggesting increased stem-like cell potential. We demonstrate that inhibition of EGFR kinase activity leads to activation of Notch transcriptional targets in a gamma secretase inhibitor sensitive manner and causes Notch activation. leading to an increase in ALDH high+ cells. We also find a kinase-dependent physical association between the Notch3 and EGFR receptors and tyrosine phosphorylation of Notch3. This could explain the worsened survival observed in some studies of erlotinib treatment at early-stage disease, and suggests that specific dual targeting might overcome this adverse effect. PMID:25125655

  6. Outcomes in Lung Cancer: 9-Year Experience From a Tertiary Cancer Center in India

    PubMed Central

    Murali, Aditya Navile; Ganesan, Trivadi S.; Rajendranath, Rejiv; Ganesan, Prasanth; Selvaluxmy, Ganesarajah; Swaminathan, Rajaraman; Sundersingh, Shirley; Krishnamurthy, Arvind; Sagar, Tenali Gnana

    2017-01-01

    Purpose Lung cancer is the most common cause of cancer mortality in the world. There are limited studies on survival outcomes of lung cancer in developing countries such as India. This study analyzed the outcomes of patients with lung cancer who underwent treatment at Cancer Institute (WIA), Chennai, India, between 2006 and 2015 to determine survival outcomes and identify prognostic factors. Patients and Methods In all, 678 patients with lung cancer underwent treatment. Median age was 58 years, and 91% of patients had non–small-cell lung cancer (NSCLC). Testing for epidermal growth factor receptor mutation was performed in 132 of 347 patients and 61 (46%) were positive. Results Median progression-free survival was 6.9 months and overall survival (OS) was 7.6 months for patients with NSCLC. Median progression-free survival was 6 months and OS was 7.2 months for patients with small-cell lung cancer. On multivariable analysis, the factors found to be significantly associated with inferior OS in NSCLC included nonadenocarcinoma histology, performance status more than 2, and stage. In small-cell lung cancer, younger age and earlier stage at presentation showed significantly better survival. Conclusion Our study highlights the challenges faced in treating lung cancer in India. Although median survival in advanced-stage lung cancer is still poor, strategies such as personalized medicine and use of second-line and maintenance chemotherapy may significantly improve the survival in patients with advanced-stage lung cancer in developing countries. PMID:29094084

  7. Small bowel perforation secondary to metastatic non-small cell lung cancer. A rare entity with a dismal prognosis.

    PubMed

    Salemis, Nikolaos S; Nikou, Efstathios; Liatsos, Christos; Gakis, Christos; Karagkiouzis, Grigorios; Gourgiotis, Stavros

    2012-09-01

    The incidence of gastrointestinal metastases from lung cancer is higher than previously thought as they have been reported in 2-14% of the cases in autopsy studies. However, clinically significant metastases are rare. Small bowel perforation secondary to metastatic non-small cell lung cancer is a very rare clinical entity. The aim of this study is to describe a case of ileal perforation in a patient with intestinal metastases of a non-small cell lung cancer, along with a review of the literature. A 57-year-old male with a history of non-small cell lung cancer was referred to our emergency department with signs and symptoms of acute surgical abdomen. A computed tomography scan demonstrated dilated small bowel loops, liver deposits, and signs of perforation of an intra-abdominal hollow viscus. Emergency exploratory laparotomy revealed diffuse purulent peritonitis and a perforated ileal tumor. A segmental small bowel resection and primary anastomosis were performed. Histological and immunohistochemical findings were consistent with a metastatic non-small cell lung carcinoma. Additional evaluation revealed widespread metastatic disease. Unfortunately, despite adjuvant treatment, the patient died of progressive disease 2 months after surgery. Small bowel perforation due to metastatic non-small cell lung cancer is a very rare clinical entity. The possibility of small bowel metastases should be kept in mind in patients with lung cancer presenting with an acute abdomen. Intestinal perforation occurs in advanced stages and is usually a sign of widespread disease. Aggressive surgery can provide effective palliation and may improve short-term survival. The prognosis is however dismal.

  8. A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qiaoyuan; Xu, Enwu; Dai, Jiabin

    2015-06-01

    Lung cancer is the most common form of cancer throughout the world. The specific targeting of long noncoding RNAs (lncRNAs) by resveratrol opened a new avenue for cancer chemoprevention. In this study, we found that 21 lncRNAs were upregulated and 19 lncRNAs were downregulated in lung cancer A549 cells with 25 μmol/L resveratrol treatment determined by microarray analysis. AK001796, the lncRNA with the most clearly altered expression, was overexpressed in lung cancer tissues and cell lines, but its expression was downregulated in resveratrol-treated lung cancer cells. By monitoring cell proliferation and growth in vitro and tumor growth in vivo, wemore » observed a significant reduction in cell viability in lung cancer cells and a slow growth in the tumorigenesis following AK001796 knockdown. We also found that AK001796 knockdown caused a cell-cycle arrest, with significant increases in the percentage of cells in G{sub 0}/G{sub 1} in lung cancer cells. By using cell cycle pathway-specific PCR arrays, we detected changes in a number of cell cycle-related genes related to lncRNA AK001796 knockdown. We further investigated whether AK001796 participated in the anticancer effect of resveratrol and the results showed that reduced lncRNA AK001796 level potentially impaired the inhibitory effect of resveratrol on cell proliferation. To our knowledge, this is the first study to report the changes in an lncRNA expression profile induced by resveratrol in lung cancer. - Highlights: • LncRNA AK001796 played an oncogenic role in lung carcinogenesis. • LncRNA AK001796 was downregulated in resveratrol-treated lung cancer cells. • LncRNA AK001796 was involved in the inhibition of cell growth by resveratrol.« less

  9. Epithelial-Mesenchymal Transition in Non Small-cell Lung Cancer.

    PubMed

    Tsoukalas, Nikolaos; Aravantinou-Fatorou, Eleni; Tolia, Maria; Giaginis, Constantinos; Galanopoulos, Michail; Kiakou, Maria; Kostakis, Ioannis D; Dana, Eugene; Vamvakaris, Ioannis; Korogiannos, Athanasios; Tsiambas, Evangelos; Salemis, Nikolaos; Kyrgias, George; Karameris, Andreas; Theocharis, Stamatios

    2017-04-01

    Lung cancer is the first cause of cancer related deaths in both males and females. Epithelial-mesenchymal transition (EMT) is a reversible process by which epithelial cells transform to mesenchymal stem cells by losing their cell polarity and cell-to-cell adhesion, gaining migratory and invasive properties. High levels of E-cadherin are expressed in epithelial cells, whereas mesenchymal cells express high levels of N-cadherin, fibronectin and vimentin. The aim of this study was to evaluate the correlation between E-cadherin and vimentin expression and their clinical significance in non-small cell lung cancer (NSCLC). The immunohistochemical expression of E-cadherin, vimentin and Ki-67 was performed on tissue microarrays from NSCLC specimens obtained from 112 newly- diagnosed cases and were studied using classical pathological evaluation. Associations between E-cadherin, vimentin and Ki-67 expression, clinicopathological variables and survival were analyzed. In all cases, a value of p≤0.05 was considered significant. Low E-cadherin expression was significantly correlated with tumor necrosis (p=0.019). Moreover, there was a trend for correlation between high E-cadherin expression and better overall survival (hazard ratio=1.02, and 95% confidence interval=0.45-1.87, p=0.091). There was also a significant negative correlation between vimentin expression and overall survival (hazard ratio=1.13, and 95% confidence interval=0.78-1.65, p=0.026). Additionally, there was a significant negative correlation between vimentin expression and grade I tumors (p=0.031). Finally, a positive correlation trend between vimentin expression and Ki-67 was found (p=0.073). High E-cadherin and low vimentin expression correlate with better prognosis and overall survival. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Effects of SASH1 on lung cancer cell proliferation, apoptosis, and invasion in vitro.

    PubMed

    Chen, En-guo; Chen, Yanfan; Dong, Liang-liang; Zhang, Ji-song

    2012-10-01

    The purposes of this study were to investigate the effects of the SASH1 gene on the growth, proliferation, apoptosis, invasiveness, and metastatic potential of lung cancer cells and explore the potential use of SASH1 for the treatment of human lung cancer. The SASH1 gene was cloned into the pcDNA3.1 eukaryotic expression vector, and SASH1 shRNA were designed and constructed. The resulting constructs were transfected into A549 human lung cancer cells, and the changes in the relevant biological characteristics of the cells overexpressing SASH1 and cells with downregulated expression of SASH1 were analyzed using the MTT assay, transwell invasion assay, and flow cytometry. The effects of the SASH1 gene on the expression of cyclin D1, Bcl-2, and MMP-2/9 were also concurrently examined. In the A549 cells from the pcDNA3.1-SASH1 transfected group, cell viability, proliferation, and migration were significantly reduced compared to the control cells (p = 0.039, p = 0.013), and a cell cycle arrest in G1 was observed. The A549 cells transfected with the SASH1 shRNA demonstrated significantly higher cell viabilities, proliferation, and migration compared to the control cells (p = 0.012, p = 0.045). Additionally, the percentage of A549 cells undergoing apoptosis was significantly higher in the pcDNA3.1-SASH1 transfected cells and significantly lower in the SASH1 shRNA transfected cells compared to the control cells (p = 0.010, p = 0.000). The cyclin D1, Bcl-2, and MMP-9/2 protein expression levels were significantly lower in the pcDNA3.1-SASH1-transfected cells and were significantly higher in the SASH1 shRNA-transfected cells than that in the control cells. The SASH1 gene may inhibit A549 cell growth and proliferation as well as promote cellular apoptosis. The overexpression of the SASH1 gene may also be related to the decreased migration of A549 human lung cancer cells.

  11. Paraneoplastic syndromes associated with lung cancer

    PubMed Central

    Kanaji, Nobuhiro; Watanabe, Naoki; Kita, Nobuyuki; Bandoh, Shuji; Tadokoro, Akira; Ishii, Tomoya; Dobashi, Hiroaki; Matsunaga, Takuya

    2014-01-01

    Paraneoplastic syndromes are signs or symptoms that occur as a result of organ or tissue damage at locations remote from the site of the primary tumor or metastases. Paraneoplastic syndromes associated with lung cancer can impair various organ functions and include neurologic, endocrine, dermatologic, rheumatologic, hematologic, and ophthalmological syndromes, as well as glomerulopathy and coagulopathy (Trousseau’s syndrome). The histological type of lung cancer is generally dependent on the associated syndrome, the two most common of which are humoral hypercalcemia of malignancy in squamous cell carcinoma and the syndrome of inappropriate antidiuretic hormone secretion in small cell lung cancer. The symptoms often precede the diagnosis of the associated lung cancer, especially when the symptoms are neurologic or dermatologic. The proposed mechanisms of paraneoplastic processes include the aberrant release of humoral mediators, such as hormones and hormone-like peptides, cytokines, and antibodies. Treating the underlying cancer is generally the most effective therapy for paraneoplastic syndromes, and treatment soon after symptom onset appears to offer the best potential for symptom improvement. In this article, we review the diagnosis, potential mechanisms, and treatments of a wide variety of paraneoplastic syndromes associated with lung cancer. PMID:25114839

  12. TUSC2 downregulates PD-L1 expression in non-small cell lung cancer (NSCLC).

    PubMed

    Cao, Xiaobo; Zhao, Yang; Wang, Jing; Dai, Bingbing; Gentile, Emanuela; Lin, Jing; Pu, Xingxiang; Ji, Lin; Wu, Shuhong; Meraz, Ismail; Majidi, Mourad; Roth, Jack A

    2017-12-08

    Expression of the TUSC2 tumor-suppressor gene in TUSC2-deficient NSCLC cells decreased PD-L1 expression and inhibited mTOR activity. Overexpressing TUSC2 or treatment with rapamycin resulted in similar inhibition of PD-L1 expression. Both TUSC2 and rapamycin decreased p70 and SK6 phosphorylation, suggesting that TUSC2 and rapamycin share the same mTOR target. Microarray mRNA expression analysis using TUSC2-inducible H1299 showed that genes that negatively regulate the mTOR pathway were significantly upregulated by TUSC2 compared with control. The presence of IFN-γ significantly increased PD-L1 expression in lung cancer cell lines, but overexpressing TUSC2 in these cell lines prevented PD-L1 from increasing in the presence of IFN-γ. Taken together, these findings show that TUSC2 can decrease PD-L1 expression in lung cancer cells. This ability to modify the tumor microenvironment suggests that TUSC2 could be added to checkpoint inhibitors to improve the treatment of lung cancer.

  13. TUSC2 downregulates PD-L1 expression in non-small cell lung cancer (NSCLC)

    PubMed Central

    Cao, Xiaobo; Zhao, Yang; Wang, Jing; Dai, Bingbing; Gentile, Emanuela; Lin, Jing; Pu, Xingxiang; Ji, Lin; Wu, Shuhong; Meraz, Ismail; Majidi, Mourad; Roth, Jack A.

    2017-01-01

    Expression of the TUSC2 tumor-suppressor gene in TUSC2-deficient NSCLC cells decreased PD-L1 expression and inhibited mTOR activity. Overexpressing TUSC2 or treatment with rapamycin resulted in similar inhibition of PD-L1 expression. Both TUSC2 and rapamycin decreased p70 and SK6 phosphorylation, suggesting that TUSC2 and rapamycin share the same mTOR target. Microarray mRNA expression analysis using TUSC2-inducible H1299 showed that genes that negatively regulate the mTOR pathway were significantly upregulated by TUSC2 compared with control. The presence of IFN-γ significantly increased PD-L1 expression in lung cancer cell lines, but overexpressing TUSC2 in these cell lines prevented PD-L1 from increasing in the presence of IFN-γ. Taken together, these findings show that TUSC2 can decrease PD-L1 expression in lung cancer cells. This ability to modify the tumor microenvironment suggests that TUSC2 could be added to checkpoint inhibitors to improve the treatment of lung cancer. PMID:29296193

  14. Potential Combinational Anti-Cancer Therapy in Non-Small Cell Lung Cancer with Traditional Chinese Medicine Sun-Bai-Pi Extract and Cisplatin

    PubMed Central

    Wang, Jhih-Syuan; Chung, Meng-Chi; Chang, Jing-Fen; Chao, Ming-Wei

    2016-01-01

    Traditional lung cancer treatments involve chemical or radiation therapies after surgical tumor removal; however, these procedures often kill normal cells as well. Recent studies indicate that chemotherapies, when combined with Traditional Chinese Medicines, may offer a new way to treat cancer. In vitro tests measuring the induction of autophagy and/or apoptosis were used to examine the cytotoxicity of SBPE, commonly used for lung inflammation on A549 cell line. The results indicated that intercellular levels of p62 and Atg12 were increased, LC3-I was cleaved into LC3-II, and autophagy was induced with SBPE only. After 24 hours, the apoptotic mechanism was induced. If the Cisplatin was added after cells reached the autophagy state, we observed synergistic effects of the two could achieve sufficient death of lung cancer cells. Therefore, the Cisplatin dosage used to induce apoptosis could be reduced by half, and the amount of time needed to achieve the inhibitory concentration of 50% was also half that of the original. In addition to inducing autophagy within a shortened period of time, the SBPE and chemotherapy drug combination therapy was able to achieve the objective of rapid low-dosage cancer cell elimination. Besides, SBPE was applied with Gemcitabine or Paclitaxel, and found that the combination treatment indeed achieve improved lung cancer cell killing effects. However, SBPE may also be less toxic to normal cells. PMID:27171432

  15. Epigenetic therapy potential of suberoylanilide hydroxamic acid on invasive human non-small cell lung cancer cells.

    PubMed

    Zhang, Shirong; Wu, Kan; Feng, Jianguo; Wu, Zhibing; Deng, Qinghua; Guo, Chao; Xia, Bing; Zhang, Jing; Huang, Haixiu; Zhu, Lucheng; Zhang, Ke; Shen, Binghui; Chen, Xufeng; Ma, Shenglin

    2016-10-18

    Metastasis is the reason for most cancer death, and a crucial primary step for cancer metastasis is invasion of the surrounding tissue, which may be initiated by some rare tumor cells that escape the heterogeneous primary tumor. In this study, we isolated invasive subpopulations of cancer cells from human non-small cell lung cancer (NSCLC) H460 and H1299 cell lines, and determined the gene expression profiles and the responses of these invasive cancer cells to treatments of ionizing radiation and chemotherapeutic agents. The subpopulation of highly invasive NSCLC cells showed epigenetic signatures of epithelial-mesenchymal transition, cancer cell stemness, increased DNA damage repair and cell survival signaling. We also investigated the epigenetic therapy potential of suberoylanilide hydroxamic acid (SAHA) on invasive cancer cells, and found that SAHA suppresses cancer cell invasiveness and sensitizes cancer cells to treatments of IR and chemotherapeutic agents. Our results provide guidelines for identification of metastatic predictors and for clinical management of NSCLC. This study also suggests a beneficial clinical potential of SAHA as a chemotherapeutic agent for NSCLC patients.

  16. TGFβ1-induced down-regulation of microRNA-138 contributes to epithelial-mesenchymal transition in primary lung cancer cells.

    PubMed

    Zhang, Fang; Li, Tiepeng; Han, Lu; Qin, Peng; Wu, Zhao; Xu, Benling; Gao, Quanli; Song, Yongping

    2018-02-19

    The existence of cancer stem cells within the tumor could lead to cancer therapy resistance. TGFβ1 is considered as one of the most powerful players in the generation of CSCs through induction of epithelial-mesenchymal transition in different types of cancer including lung cancer, however, the detailed mechanisms by which TGFβ1 contribute to EMT induction and CSC maintenance remains unclear. Here, we showed primary lung cancer cells treated by TGFβ1 exhibit mesenchymal features, including morphology and expression of mesenchymal marker in a time-dependent manner. We also observed long-term TGFβ1 exposure leads to an enrichment of a sub-population of CD44 + CD90 + cells which represent CSCs in lung cancer cells. Moreover, the differential expression microRNAs between CSCs and non-CSCs were identified using next-generation sequencing to screen key miRNAs which might contribute to TGFβ1-induced EMT and CSCs generation. Among those differentially expressed miRNAs, the expression of microRNA-138 was time-dependently down-regulated by TGFβ1 treatment. We further demonstrated primary lung cancer cells, in which we knockdown the expression of miR-138, exhibit mesenchymal phenotypes and stem cell properties. Taken together, these findings indicate TGFβ1-induced down-regulation of microRNA-138 contributes to EMT in primary lung cancer cells, and suggest that miR-138 might serve as a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Lung cancer: diagnosis, treatment principles, and screening.

    PubMed

    Latimer, Kelly M; Mott, Timothy F

    2015-02-15

    Lung cancer is classified histologically into small cell and non-small cell lung cancers. The most common symptoms of lung cancer are cough, dyspnea, hemoptysis, and systemic symptoms such as weight loss and anorexia. High-risk patients who present with symptoms should undergo chest radiography. If a likely alternative diagnosis is not identified, computed tomography and possibly positron emission tomography should be performed. If suspicion for lung cancer is high, a diagnostic evaluation is warranted. The diagnostic evaluation has three simultaneous steps (tissue diagnosis, staging, and functional evaluation), all of which affect treatment planning and determination of prognosis. The least invasive method possible should be used. The diagnostic evaluation and treatment of a patient with lung cancer require a team of specialists, including a pulmonologist, medical oncologist, radiation oncologist, pathologist, radiologist, and thoracic surgeon. Non-small cell lung cancer specimens are tested for various mutations, which, if present, can be treated with new targeted molecular therapies. The family physician should remain involved in the patient's care to ensure that the values and wishes of the patient and family are considered and, if necessary, to coordinate end-of-life care. Early palliative care improves quality of life and may prolong survival. Family physicians should concentrate on early recognition of lung cancer, as well as prevention by encouraging tobacco cessation at every visit. The U.S. Preventive Services Task Force recommends lung cancer screening using low-dose computed tomography in high-risk patients. However, the American Academy of Family Physicians concludes that the evidence is insufficient to recommend for or against screening. Whether to screen high-risk patients should be a shared decision between the physician and patient.

  18. Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells.

    PubMed

    Tsurutani, Junji; Castillo, S Sianna; Brognard, John; Granville, Courtney A; Zhang, Chunyu; Gills, Joell J; Sayyah, Jacqueline; Dennis, Phillip A

    2005-07-01

    Retrospective studies have shown that patients with tobacco-related cancers who continue to smoke after their diagnoses have lower response rates and shorter median survival compared with patients who stop smoking. To provide insight into the biologic basis for these clinical observations, we tested whether two tobacco components, nicotine or the tobacco-specific carcinogen, 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), could activate the Akt pathway and increase lung cancer cell proliferation and survival. Nicotine or NNK, rapidly and potently, activated Akt in non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) cells. Nicotinic activation of Akt increased phosphorylation of multiple downstream substrates of Akt in a time-dependent manner, including GSK-3, FKHR, tuberin, mTOR and S6K1. Since nicotine or NNK bind to cell surface nicotinic acetylcholine receptors (nAchR), we used RT-PCR to assess expression of nine alpha and three beta nAchR subunits in five NSCLC cell lines and two types of primary lung epithelial cells. NSCLC cells express multiple nAchR subunits in a cell line-specific manner. Agonists of alpha3/alpha4 or alpha7 subunits activated Akt in a time-dependent manner, suggesting that tobacco components utilize these subunits to activate Akt. Cellular outcomes after nicotine or NNK administration were also assessed. Nicotine or NNK increased proliferation of NSCLC cells in an Akt-dependent manner that was closely linked with changes in cyclin D1 expression. Despite similar induction of proliferation, only nicotine decreased apoptosis caused by serum deprivation and/or chemotherapy. Protection conferred by nicotine was NFkappaB-dependent. Collectively, these results identify tobacco component-induced, Akt-dependent proliferation and NFkappaB-dependent survival as cellular processes that could underlie the detrimental effects of smoking in cancer patients.

  19. A reevaluation of CD22 expression in human lung cancer.

    PubMed

    Pop, Laurentiu M; Barman, Stephen; Shao, Chunli; Poe, Jonathan C; Venturi, Guglielmo M; Shelton, John M; Pop, Iliodora V; Gerber, David E; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I; Richardson, James A; Minna, John D; Tedder, Thomas F; Vitetta, Ellen S

    2014-01-01

    CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B-cell receptor and its coreceptor CD19. Recent reports indicate that most human lung cancer cells and cell lines express CD22, making it an important new therapeutic target for lung cancer. The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by quantitative real-time PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200 to 60,000-fold lower than those observed in the human CD22(+) Burkitt lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by either CD22 antibodies or our highly potent anti-CD22 immunotoxin. In contrast, CD22(+) Daudi cells expressed high levels of CD22 mRNA and protein, and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from more than 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells, and that these cells cannot be killed by anti-CD22 immunotoxins.

  20. GLI pathogenesis-related 1 functions as a tumor-suppressor in lung cancer.

    PubMed

    Sheng, Xiumei; Bowen, Nathan; Wang, Zhengxin

    2016-03-18

    GLI pathogenesis-related 1 (GLIPR1) was originally identified in glioblastomas and its expression was also found to be down-regulated in prostate cancer. Functional studies revealed both growth suppression and proapoptotic activities for GLIPR1 in multiple cancer cell lines. GLIPR1's role in lung cancer has not been investigated. Protein arginine methyltransferase 5 (PRMT5) is a protein arginine methyltransferase and forms a stoichiometric complex with the WD repeat domain 77 (WDR77) protein. Both PRMT5 and WDR77 are essential for growth of lung epithelial and cancer cells. But additional gene products that interact genetically or biochemichally with PRMT5 and WDR77 in the control of lung cancer cell growth are not characterized. DNA microarray and immunostaining were used to detect GLIPR1 expression during lung development and lung tumorigenesis. GLIPR1 expression was also analyzed in the TCGA lung cancer cohort. The consequence of GLIPR1 on growth of lung cancer cells in the tissue culture and lung tumor xenografts in the nude mice was observed. We found that GLIPR1 expression is negatively associated with PRMT5/WDR77. GLIPR1 is absent in growing epithelial cells at the early stages of mouse lung development and highly expressed in the adult lung. Expression of GLIPR1 was down-regulated during lung tumorigenesis and its expression suppressed growth of lung cancer cells in the tissue culture and lung tumor xenografts in mice. GLIPR1 regulates lung cancer growth through the V-Erb-B avian erythroblastic leukemia viral oncogene homolog 3 (ErbB3). This study reveals a novel pathway that PRMT5/WDR77 regulates GLIPR1 expression to control lung cancer cell growth and GLIPR1 as a potential therapeutic agent for lung cancer.

  1. Overexpression of adhesion molecules and barrier molecules is associated with differential infiltration of immune cells in non-small cell lung cancer.

    PubMed

    Chae, Young Kwang; Choi, Wooyoung M; Bae, William H; Anker, Jonathan; Davis, Andrew A; Agte, Sarita; Iams, Wade T; Cruz, Marcelo; Matsangou, Maria; Giles, Francis J

    2018-01-18

    Immunotherapy is emerging as a promising option for lung cancer treatment. Various endothelial adhesion molecules, such as integrin and selectin, as well as various cellular barrier molecules such as desmosome and tight junctions, regulate T-cell infiltration in the tumor microenvironment. However, little is known regarding how these molecules affect immune cells in patients with lung cancer. We demonstrated for the first time that overexpression of endothelial adhesion molecules and cellular barrier molecule genes was linked to differential infiltration of particular immune cells in non-small cell lung cancer. Overexpression of endothelial adhesion molecule genes is associated with significantly lower infiltration of activated CD4 and CD8 T-cells, but higher infiltration of activated B-cells and regulatory T-cells. In contrast, overexpression of desmosome genes was correlated with significantly higher infiltration of activated CD4 and CD8 T-cells, but lower infiltration of activated B-cells and regulatory T-cells in lung adenocarcinoma. This inverse relation of immune cells aligns with previous studies of tumor-infiltrating B-cells inhibiting T-cell activation. Although overexpression of endothelial adhesion molecule or cellular barrier molecule genes alone was not predictive of overall survival in our sample, these genetic signatures may serve as biomarkers of immune exclusion, or resistance to T-cell mediated immunotherapy.

  2. Survival improvement in patients with non-small cell lung cancer between 1983 and 2012: Analysis of the Surveillance, Epidemiology, and End Results database.

    PubMed

    Wang, Shuncong; Sun, Tiantian; Sun, Huanhuan; Li, Xiaobo; Li, Jie; Zheng, Xiaobin; Mallampati, Saradhi; Sun, Hongliu; Zhou, Xiuling; Zhou, Cuiling; Zhang, Hongyu; Cheng, Zhibin; Ma, Haiqing

    2017-05-01

    Non-small cell lung cancer is the most common malignancy in males; it constitutes the majority of lung cancer cases and requires massive medical resources. Despite improvements in managing non-small cell lung cancer, long-term survival remains very low. This study evaluated survival improvement in patients with non-small cell lung cancer in each decade between 1983 and 2012 to determine the impact of race, sex, age, and socioeconomic status on the survival rates in these patients. We extracted data on non-small cell lung cancer cases in each decade between 1983 and 2012 from the Surveillance, Epidemiology, and End Results registries. In total, 573,987 patients with non-small cell lung cancer were identified in 18 Surveillance, Epidemiology, and End Results registry regions during this period. The 12-month relative survival rates improved slightly across three decades, from 39.7% to 40.9% to 45.5%, with larger improvement in the last two decades. However, the 5-year-relative survival rates were very low, with 14.3%, 15.5%, and 18.4%, respectively, in three decades, indicating the urgency for novel comprehensive cancer care. In addition, our data demonstrated superiority in survival time among non-small cell lung cancer patients of lower socioeconomic status and White race. Although survival rates of non-small cell lung cancer patients have improved across the three decades, the 5-year-relative survival rates remain very poor. In addition, widening survival disparities among the race, the sex, and various socioeconomic status groups were confirmed. This study will help in predicting future tendencies of incidence and survival of non-small cell lung cancer, will contribute to better clinical trials by balancing survival disparities, and will eventually improve the clinical management of non-small cell lung cancer.

  3. Nivolumab, Cabozantinib S-Malate, and Ipilimumab in Treating Patients With Recurrent Stage IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-06-28

    c-MET Gene Amplification; MET Exon 14 Mutation; Metastatic Non-Squamous Non-Small Cell Lung Carcinoma; Recurrent Non-Squamous Non-Small Cell Lung Carcinoma; RET/PTC Rearrangement; ROS1 Gene Rearrangement; Stage IV Non-Small Cell Lung Cancer AJCC v7

  4. Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion.

    PubMed

    Zhou, Yang; Wu, Bo; Li, Jiang-Hua; Nan, Gang; Jiang, Jian-Li; Chen, Zhi-Nan

    2017-08-01

    Rab22a is a member of the Ras-related small GTPase family, which plays a key role in regulating the recycling of cargo proteins entering cells through clathrin-independent endocytosis (CIE). Rab22a is overexpressed in different cancer types, including liver cancer, malignant melanoma, ovarian cancer and osteosarcoma. However, its oncogenic role remains unknown. In this study, we found that silencing of Rab22a suppressed the migration and invasion of lung cancer cells. Furthermore, Rab22a interacts with CD147, and knockdown of Rab22a blocks CD147 recycling and promotes CD147 degradation. Taken together, our findings indicate that Rab22a enhances recycling of CD147, which is required for lung cancer cell migration and invasion,and targeting CD147 recycling may be a rational strategy for lung cancer therapy. Copyright © 2017. Published by Elsevier Inc.

  5. Neutrophils dominate the immune cell composition in non-small cell lung cancer. | Office of Cancer Genomics

    Cancer.gov

    The response rate to immune checkpoint inhibitor therapy for non-small-cell lung cancer (NSCLC) is just 20%. To improve this figure, several early phase clinical trials combining novel immunotherapeutics with immune checkpoint blockade have been initiated. Unfortunately, these trials have been designed without a strong foundational knowledge of the immune landscape present in NSCLC. Here, we use a flow cytometry panel capable of measuring 51 immune cell populations to comprehensively identify the immune cell composition and function in NSCLC.

  6. Intermittent Fluorescence Oscillations in Lipid Droplets in a Live Normal and Lung Cancer Cell: Time-Resolved Confocal Microscopy.

    PubMed

    Chowdhury, Rajdeep; Amin, Md Asif; Bhattacharyya, Kankan

    2015-08-27

    Intermittent structural oscillation in the lipid droplets of live lung cells is monitored using time-resolved confocal microscopy. Significant differences are observed between the lung cancer cell (A549) and normal (nonmalignant) lung cell (WI38). For this study, the lipid droplets are covalently labeled with a fluorescent dye, coumarin maleimide (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin, CPM). The number of lipid droplets in the cancer cell is found to be ∼20-fold higher than that in the normal (nonmalignant) cell. The fluctuation in the fluorescence intensity of the dye (CPM) is attributed to the red-ox processes and periodic formation/rupture of the S-CPM bond. The amount of reactive oxygen species (ROS) is much higher in a cancer cell. This is manifested in faster oscillations (0.9 ± 0.3 s) in cancer cells compared to that in the normal cells (2.8 ± 0.7 s). Solvation dynamics in the lipid droplets of cancer cells is slower compared to that in the normal cell.

  7. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation.

    PubMed

    Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui

    2017-05-10

    Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.

  8. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling.

    PubMed

    Luo, Ke; Gu, Xiuhui; Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Peng, Quekun; Zhu, Li; Zhang, Kun

    2016-09-10

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Upregulation of LncRNA-HIT promotes migration and invasion of non-small cell lung cancer cells by association with ZEB1.

    PubMed

    Jia, Xiaojing; Wang, Zhicheng; Qiu, Ling; Yang, Yanming; Wang, Yunlong; Chen, Zhishen; Liu, Zhongshan; Yu, Lei

    2016-12-01

    Lung cancer is the most common solid tumor and the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung cancer cases. The main reason of lung cancer-related deaths is due to tumor metastasis. But, the mechanisms of NSCLC metastasis remains poorly understood. LncRNAs play pivotal roles in multiple biological processes. LncRNA-HIT (HOXA transcript induced by TGFβ) was recently identified. LncRNA-HIT promotes cell migration, invasion, tumor growth, and metastasis. However, the detailed role of lncRNA-HIT in NSCLC remains unknown. In this study, for the first time, we revealed a novel role of lncRNA-HIT in the migration and invasion of NSCLC cells. The expression of lncRNA-HIT was significantly upregulated in NSCLC tissues and cell lines, and the expression level of lncRNA-HIT correlates with advanced disease stage and predicts unfavorable prognosis of NSCLC patients. Functional assays demonstrated that lncRNA-HIT markedly increased the ability of NSCLC cells to migrate and invade. Furthermore, the molecular mechanism by which lncRNA-HIT affects NSCLC cells was associated with regulation of ZEB1 stability. LncRNA-HIT functions as a prometastasis oncogene by directly associating with ZEB1 to regulate NSCLC. The interaction of lncRNA-HIT and ZEB1 may be a potential target for NSCLC therapy. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  10. [The Comparison of Clinical Effect of Rh-endostar on Retreated Non-Small Cell Lung Cancer and Colorectal Cancer.].

    PubMed

    Yang, Xueqin; Wang, Dong; Zhong, Zhaoyang; Jin, Feng; Shan, Jinlu; Wang, Ge; Wang, Zhengbo; Shen, Yibo

    2009-11-20

    Antiangiogenesis has become the fourth module of cancer therapy nowadays. However, its clinical effect varies from cancer to cancer. The aim of this study is to compare the clinical efficacy of rh-endostatin (YH-16, Endostar) on retreated non-small cell lung cancer and colorectal cancer. The patients including 17 cases of retreated non-small cell lung cancer (NSCLC) and 15 cases of retreated colorectal cancer were confirmed by histopathology or cytopathology. All the cases were administrated with rh-endostatin combining chemotherapy and radiotherapy. 7.5 mg/m(2) rhendostatin solved in 500 mL of normal saline was slow intravenously dropped from day 1 to day 14. The efficacy was evaluated strictly according to RECIST criteria and the quality of life (QOL) was based on the Karnofsky performance (KPS). The response rate (RR) of 17 cases of retreated NSCLC was 11.8% (2/17), and the disease control rate (DCR) was 41.2% (7/17). However, the RR and DCR of the 15 cases of retreated colorectal cancer were up to 40% (6/15) and 86.6% (13/15). There was significant difference between these two tumors (P<0.05). Moreover, significant difference was also found on the QOL of these two tumors [The improving and stable QOL was 41.2% (7/17) and 86.6% (13/15), respectively (P<0.05)]. The clinical efficacy of rh-endostatin on retreated colorectal cancer was better than on retreated non-small cell lung cancer, which suggested that it was necessary to perform more clinical observations on the digestive tumors.

  11. Arctigenin represses TGF-β-induced epithelial mesenchymal transition in human lung cancer cells.

    PubMed

    Xu, Yanrui; Lou, Zhiyuan; Lee, Seong-Ho

    2017-11-18

    Arctigenin (ARC) is a lignan that is abundant in Asteraceae plants, which show anti-inflammatory and anti-cancer activities. The current study investigated whether ARC affects cancer progression and metastasis, focusing on EMT using invasive human non-small cell lung cancer (NSCLC) cells. No toxicity was observed in the cells treated with different doses of ARC (12-100 μM). The treatment of ARC repressed TGF-β-stimulated changes of metastatic morphology and cell invasion and migration. ARC inhibited TGF-β-induced phosphorylation and transcriptional activity of smad2/3, and expression of snail. ARC also decreased expression of N-cadherin and increased expression of E-cadherin in dose-dependent and time-dependent manners. These changes were accompanied by decreased amount of phospho-smad2/3 in nucleus and nuclear translocation of smad2/3. Moreover, ARC repressed TGF-β-induced phosphorylation of ERK and transcriptional activity of β-catenin. Our data demonstrate anti-metastatic activity of ARC in lung cancer model. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. PPARGC1A is upregulated and facilitates lung cancer metastasis.

    PubMed

    Li, Jin-Dong; Feng, Qing-Chuan; Qi, Yu; Cui, Guanghui; Zhao, Song

    2017-10-15

    Lung cancer remains a leading cause of cancer-related mortality, with metastatic progression remaining the single largest cause of lung cancer mortality. Hence it is imperative to determine reliable biomarkers for lung cancer prognosis. We performed quantitative real-time PCR (qRT-PCR) analysis to explore epithelial-mesenchymal transition (EMT) inducers that regulate EMT process in three patients with advanced lung cancer disease. Peroxisome proliferator-activated receptor gamma (PPARGC1A) was uniformly the topmost overexpressed gene in all three human non-small cell lung cancer (NSCLC) patient samples. Further evaluation in human normal lung and metastatic lung cancer cell lines revealed that the expression of PPARGC1A was upregulated in metastatic lung cancer cell lines. Metagenomic analysis revealed direct correlation among PPARGC1A, zinc-finger transcription factor snail homolog 1 (SNAI1), and metastatic lung disease. Upregulation of PPARGC1A transcript expression was independent of a differential upregulation of the upstream AMP-dependent protein kinase (AMPK) activation or steady state expression of the silent mating type information regulation 2 homolog 1 (SIRT1). Xenograft tail vein colonization assays proved that the high expression of PPARGC1A was a prerequisite for metastatic progression of lung cancer to brain. Our results indicate that PPARGC1A might be a potential biomarker for lung cancer prognosis. Copyright © 2017. Published by Elsevier Inc.

  13. Is cancer history really an exclusion criterion for clinical trial of lung cancer? Influence of gastrointestinal tract cancer history on the outcomes of lung cancer surgery.

    PubMed

    Aokage, Keiju; Okada, Morihito; Suzuki, Kenji; Nomura, Shogo; Suzuki, Shigeki; Tsubokawa, Norifumi; Mimae, Takahiro; Hattori, Aritoshi; Hishida, Tomoyuki; Yoshida, Junji; Tsuboi, Masahiro

    2017-02-15

    Exclusion of patients with a history of other cancer treatment except in situ situation has been considered to be inevitable for clinical trials investigating survival outcome. However, there have been few reports confirming these influences on surgical outcome of lung cancer patients ever. Multi-institutional, individual data from patients with non–small cell lung cancer resected between 2000 and 2013 were collected. The patients were divided into two groups: those with a history of gastrointestinal tract cancer (GI group) and those without any history (non-GI group). We compared the outcomes with well-matched groups using propensity scoring to minimize bias related to the nonrandomness. The influence of gastrointestinal tract cancer stage, disease-free interval, and treatment method for gastrointestinal tract cancer on the surgical outcome of non–small cell lung cancer was examined. We analyzed 196 patients in the GI group and 3732 in the non-GI group. In unmatched cohort, multivariate analyses showed that a history of gastrointestinal tract cancer did not affect overall survival or recurrence-free survival. Independent predictors of poor prognosis included older age, male sex, high carcinoembryonic antigen levels and advanced clinical stage of non–small cell lung cancer. The two groups in the matched cohort demonstrated equivalent overall survival and recurrence-free survival, even in patients with clinical stage I. Gastrointestinal tract cancer stage, disease-free interval and treatment method for gastrointestinal tract cancer were not associated with outcomes. History of early gastrointestinal tract cancer completely resected is not always necessary for exclusion criteria in clinical trial of lung cancer.

  14. LUNG CANCER AND PULMONARY THROMBOEMBOLISM

    PubMed Central

    Cukic, Vesna; Ustamujic, Aida

    2015-01-01

    Introduction: Malignant diseases including lung cancer are the risk for development of pulmonary thromboembolism (PTE). Objective: To show the number of PTE in patients with lung cancer treated in Clinic for pulmonary diseases and TB “Podhrastovi” in three-year period: from 2012-2014. Material and methods: This is the retrospective study in which we present the number of various types of lung cancer treated in three-year period, number and per cent of PTE in different types of lung carcinoma, number and per cent of PTE of all diagnosed PTE in lung carcinoma according to the type of carcinoma. Results: In three-year period (from 2012 to 2014) 1609 patients with lung cancer were treated in Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Centre of Sarajevo University. 42 patients: 25 men middle –aged 64.4 years and 17 women middle- aged 66.7 or 2.61% of all patients with lung cancer had diagnosed PTE. That was the 16. 7% of all patients with PTE treated in Clinic “Podhrastovi “in that three-year period. Of all 42 patients with lung cancer and diagnosed PTE 3 patients (7.14%) had planocellular cancer, 4 patients (9.53%) had squamocellular cancer, 9 (21.43%) had adenocarcinoma, 1 (2.38%) had NSCLC, 3 (7.14 %) had microcellular cancer, 1 (2.38%) had neuroendocrine cancer, 2 (4.76%) had large cell-macrocellular and 19 (45.24%) had histological non-differentiated lung carcinoma. Conclusion: Malignant diseases, including lung cancer, are the risk factor for development of PTE. It is important to consider the including anticoagulant prophylaxis in these patients and so to slow down the course of diseases in these patients. PMID:26622205

  15. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, You-Shuang; Peng, Yin-Bo; Yao, Min

    Lung cancer is the leading cause of cancer death worldwide. Small-cell lung cancer (SCLC) is an aggressive type of lung cancer that shows an overall 5-year survival rate below 10%. Although chemotherapy using cisplatin has been proven effective in SCLC treatment, conventional dose of cisplatin causes adverse side effects. Photodynamic therapy, a form of non-ionizing radiation therapy, is increasingly used alone or in combination with other therapeutics in cancer treatment. Herein, we aimed to address whether low dose cisplatin combination with PDT can effectively induce SCLC cell death by using in vitro cultured human SCLC NCI-H446 cells and in vivo tumor xenograft model.more » We found that both cisplatin and PDT showed dose-dependent cytotoxic effects in NCI-H446 cells. Importantly, co-treatment with low dose cisplatin (1 μM) and PDT (1.25 J/cm{sup 2}) synergistically inhibited cell viability and cell migration. We further showed that the combined therapy induced a higher level of intracellular ROS in cultured NCI-H446 cells. Moreover, the synergistic effect by cisplatin and PDT was recapitulated in tumor xenograft as revealed by a more robust increase in the staining of TUNEL (a marker of cell death) and decrease in tumor volume. Taken together, our findings suggest that low dose cisplatin combination with PDT can be an effective therapeutic modality in the treatment of SCLC patients.« less

  16. Adhesion molecules affected by treatment of lung cancer cells with epidermal growth factor.

    PubMed

    Fonseca, Fernando L A; Azzalis, Ligia A; Feder, David; Nogoceke, Everson; Junqueira, Virginia B C; Valenti, Vitor E; de Abreu, Luiz Carlos

    2011-10-01

    Lung cancer is one of the leading causes of death in the world. Some tumor events are attributed to an important group of molecules (cadherins and integrins). We evaluated the interactions of cell adhesion molecules in cell lines from lung cancer. Two lung cancer cell lines were nonmetastatic (H358 and H441) and two were metastatic (H1299 and H292). All cell lines were treated with epidermal growth factor (EGF), and Western blot analysis was performed to assess the interactions between these proteins. The bronchoalveolar cells H358 showed the three analyzed proteins: E-cadherin, β-catenin, and p120 catenin. The adenocarcinoma cells H441 did not present p120 catenin, and carcinoma cells did not show E-cadherin (H1299) or p120 catenin (H292). FAK (pTyr925) was dephosphorylated in adenocarcinoma cells H441, absent in carcinoma cells H1299, and upregulated in the other carcinoma cells H292. p130Cas showed no difference when the cell lines were treated with EGF for 30 min; it was absent in the metastatic carcinoma cells H1299. Paxillin was dephosphorylated in adenocarcinoma cells H441 and also absent in other metastatic carcinoma cells H292. Vinculin showed the same results, and talin was downregulated in adenocarcinoma cells H441 when the cells were treated with EGF. Rap1 was downregulated and PYK2 was upregulated in the same cell line. Our data help to comprehend the mechanism involved in cell migration to the blood and metastasis generation. In conclusion, the expression patterns of cell-cell adhesion were not affected by EGF treatment but it affected cell-extracellular matrix adhesion.

  17. [Occupational lung cancer. A comparison between humans and experimental animals].

    PubMed

    Adachi, S; Takemoto, K

    1987-09-01

    Many epidemiological and experimental studies have suggested that the respiratory tract is one of the most sensitive organs to environmental carcinogens. Nevertheless there is little evidence to determine the relationship between a specific environmental carcinogen and a cell type of lung cancer, because the cell types of lung cancer and their relative frequencies are highly complex compared with those of other organs and tissues. In the present paper, occupational lung-cancer characteristics, which are the clearest in the relation between cause and effect in human lung cancers, were reviewed in comparison with the results of animal experiments concerned with occupational lung carcinogens. Through accumulation of histopathological examinations of the lung cancer cases, the following relationships between cause and cell type were conjectured: chromium and squamous cell carcinoma; asbestos and adenocarcinoma; nickel and squamous cell carcinoma; beryllium and small cell carcinoma; bis (chloromethyl) ether and small cell carcinoma; mustard gas and squamous cell or small cell carcinoma; vinyl chloride and large cell or adenocarcinoma; radionuclides and small cell carcinoma. The relation pertaining to arsenic, benzotrichloride and tar could not be conjectured because of insufficient cases and information in the histological diagnosis. On the other hand, the carcinogenicity of these substances in occupational exposure has been confirmed by animal experiments administered intratracheally or by inhalation studies under relatively higher concentration. As a result of recent refinements of inhalation study, all-day and life-span exposure to extremely low concentrations, such as microgram/m3 orders, of certain substances has been possible. The characteristics of lung tumors occurring in these animals are rather different from those of human. For example, in mouse, almost all of the malignant lung tumors developed by carcinogens are adenocarcinomas and it is rare to find the

  18. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Ke; Gu, Xiuhui; Liu, Jing

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2more » in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. - Highlights: • Inhibition of DVL2 chemosensitizes resistant lung cancer to cisplatin. • DVL2 positively regulated the expression of BCRP, MRP4 and Survivin. • β-catenin mediated the DVL2-induced expression. • DVL2 increased the accumulation and nuclear translocation of β-catenin. • DVL2 up-regulated β-catenin via inhibiting GSK3β.« less

  19. MicroRNA-Dependent Regulation of Transcription in Non-Small Cell Lung Cancer

    PubMed Central

    Molina-Pinelo, Sonia; Gutiérrez, Gabriel; Pastor, Maria Dolores; Hergueta, Marta; Moreno-Bueno, Gema; García-Carbonero, Rocío; Nogal, Ana; Suárez, Rocío; Salinas, Ana; Pozo-Rodríguez, Francisco; Lopez-Rios, Fernando; Agulló-Ortuño, Maria Teresa; Ferrer, Irene; Perpiñá, Asunción; Palacios, José; Carnero, Amancio; Paz-Ares, Luis

    2014-01-01

    Squamous cell lung cancer (SCC) and adenocarcinoma are the most common histological subtypes of non-small cell lung cancer (NSCLC), and have been traditionally managed in the clinic as a single entity. Increasing evidence, however, illustrates the biological diversity of these two histological subgroups of lung cancer, and supports the need to improve our understanding of the molecular basis beyond the different phenotypes if we aim to develop more specific and individualized targeted therapy. The purpose of this study was to identify microRNA (miRNA)-dependent transcriptional regulation differences between SCC and adenocarcinoma histological lung cancer subtypes. In this work, paired miRNA (667 miRNAs by TaqMan Low Density Arrays (TLDA)) and mRNA profiling (Whole Genome 44 K array G112A, Agilent) was performed in tumor samples of 44 NSCLC patients. Nine miRNAs and 56 mRNAs were found to be differentially expressed in SCC versus adenocarcinoma samples. Eleven of these 56 mRNA were predicted as targets of the miRNAs identified to be differently expressed in these two histological conditions. Of them, 6 miRNAs (miR-149, miR-205, miR-375, miR-378, miR-422a and miR-708) and 9 target genes (CEACAM6, CGN, CLDN3, ABCC3, MLPH, ACSL5, TMEM45B, MUC1) were validated by quantitative PCR in an independent cohort of 41 lung cancer patients. Furthermore, the inverse correlation between mRNAs and microRNAs expression was also validated. These results suggest miRNA-dependent transcriptional regulation differences play an important role in determining key hallmarks of NSCLC, and may provide new biomarkers for personalized treatment strategies. PMID:24625834

  20. Lung cancer in younger patients.

    PubMed

    Abbasowa, Leda; Madsen, Poul Henning

    2016-07-01

    Lung cancer remains a leading cause of cancer-related death. The incidence increases with age and the occurrence in young patients is relatively low. The clinicopathological features of lung cancer in younger patients have not been fully explored previously. To assess the age differences in the clinical characteristics of lung cancer, we conducted a retrospective analysis comparing young patients ≤ 65 years of age with an elderly group > 65 years of age. Among 1,232 patients evaluated due to suspicion of lung cancer in our fast-track setting from January-December 2013, 312 newly diagnosed lung cancer patients were included. Patients ≤ 65 years had a significantly higher representation of females (p = 0.0021), more frequent familial cancer aggregation (p = 0.028) and a lower incidence of squamous cell carcinoma (p = 0.0133). When excluding pure carcinoid tumours, a significantly higher proportion of the younger patients presented with advanced stage disease (p = 0.0392). Combined modality therapy was more common in younger patients (p = 0.0009), while chemotherapy appeared less prevalent among the elderly (p = 0.0015). Lung cancer in younger patients comprises a distinct clinicopathological entity with more frequent advanced stage disease and a significantly greater proportion with a family history of cancer. Implementing genetic background assessments and considering lung cancer as a possible diagnosis in younger, symptomatic patients, is of paramount importance. none. The study was approved by the -Danish Data Protection Agency.

  1. The ALCHEMIST Lung Cancer Trials

    Cancer.gov

    A collection of material about the ALCHEMIST lung cancer trials that will examine tumor tissue from patients with certain types of early-stage, completely resected non-small cell lung cancer for gene mutations in the EGFR and ALK genes, and assign patients with these gene mutations to treatment trials testing post-surgical use of drugs targeted against these mutations.

  2. MOLECULARLY TARGETED THERAPIES IN NON-SMALL CELL LUNG CANCER ANNUAL UPDATE 2014

    PubMed Central

    Morgensztern, Daniel; Campo, Meghan J.; Dahlberg, Suzanne E.; Doebele, Robert C.; Garon, Edward; Gerber, David E.; Goldberg, Sarah B.; Hammerman, Peter S.; Heist, Rebecca; Hensing, Thomas; Horn, Leora; Ramalingam, Suresh S.; Rudin, Charles M.; Salgia, Ravi; Sequist, Lecia; Shaw, Alice T.; Simon, George R.; Somaiah, Neeta; Spigel, David R.; Wrangle, John; Johnson, David; Herbst, Roy S.; Bunn, Paul; Govindan, Ramaswamy

    2015-01-01

    There have been significant advances in the understanding of the biology and treatment of non-small cell lung cancer (NSCLC) over the past few years. A number of molecularly targeted agents are in the clinic or in development for patients with advanced NSCLC (Table 1). We are beginning to understand the mechanisms of acquired resistance following exposure to tyrosine kinase inhibitors in patients with oncogene addicted NSCLC. The advent of next generation sequencing has enabled to study comprehensively genomic alterations in lung cancer. Finally, early results from immune checkpoint inhibitors are very encouraging. This review summarizes recent advances in the area of cancer genomics, targeted therapies and immunotherapy. PMID:25535693

  3. Folate receptor-targeted nanoparticle delivery of HuR-RNAi suppresses lung cancer cell proliferation and migration.

    PubMed

    Muralidharan, Ranganayaki; Babu, Anish; Amreddy, Narsireddy; Basalingappa, Kanthesh; Mehta, Meghna; Chen, Allshine; Zhao, Yan Daniel; Kompella, Uday B; Munshi, Anupama; Ramesh, Rajagopal

    2016-06-21

    Human antigen R (HuR) is an RNA binding protein that is overexpressed in many human cancers, including lung cancer, and has been shown to regulate the expression of several oncoproteins. Further, HuR overexpression in cancer cells has been associated with poor-prognosis and therapy resistance. Therefore, we hypothesized that targeted inhibition of HuR in cancer cells should suppress several HuR-regulated oncoproteins resulting in an effective anticancer efficacy. To test our hypothesis, in the present study we investigated the efficacy of folate receptor-α (FRA)-targeted DOTAP:Cholesterol lipid nanoparticles carrying HuR siRNA (HuR-FNP) against human lung cancer cells. The therapeutic efficacy of HuR-FNP was tested in FRA overexpressing human H1299 lung cancer cell line and compared to normal lung fibroblast (CCD16) cells that had low to no FRA expression. Physico-chemical characterization studies showed HuR-FNP particle size was 303.3 nm in diameter and had a positive surface charge (+4.3 mV). Gel retardation and serum stability assays showed that the FNPs were efficiently protected siRNA from rapid degradation. FNP uptake was significantly higher in H1299 cells compared to CCD16 cells indicating a receptor-dose effect. The results of competitive inhibition studies in H1299 cells demonstrated that HuR-FNPs were efficiently internalized via FRA-mediated endocytosis. Biologic studies demonstrated HuR-FNP but not C-FNP (control siRNA) induced G1 phase cell-cycle arrest and apoptosis in H1299 cells resulting in significant growth inhibition. Further, HuR-FNP exhibited significantly higher cytotoxicity against H1299 cells than it did against CCD16 cells. The reduction in H1299 cell viability was correlated with a marked decrease in HuR mRNA and protein expression. Further, reduced expression of HuR-regulated oncoproteins (cyclin D1, cyclin E, and Bcl-2) and increased p27 tumor suppressor protein were observed in HuR-FNP-treated H1299 cells but not in C

  4. [Methylation Status of the SOCS3 Gene Promoter in H2228 Cells and 
EML4-ALK-positive Lung Cancer Tissues].

    PubMed

    Liu, Chunlai; Li, Yongwen; Dong, Yunlong; Zhang, Hongbing; Li, Ying; Liu, Hongyu; Chen, Jun

    2016-09-20

    The EML4-ALK fusion gene is a newly discovered driver gene of non-small cell lung cancer and exhibits special clinical and pathological features. The JAK-STAT signaling pathway, an important downstream signaling pathway of EML4-ALK, is aberrantly sustained and activated in EML4-ALK-positive lung cancer cells fusion gene, but the underlying reason remains unknown. The suppressor of cytokine signaling (SOCS) is a negative regulatory factor that mainly inhibits the proliferation, differentiation, and induction of apoptotic cells by inhibiting the JAK-STAT signaling pathway. The aberrant methylation of the SOCS gene leads to inactivation of tumors and abnormal activation of the JAK2-STAT signaling pathway. The aim of this study is to investigate the methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 cells and lung cancer tissues. The methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 lung cancer cells and lung cancer tissues was detected by methylation-specific PCR (MSP) analysis and verified by DNA sequencing. The expression levels of SOCS3 in H2228 cells were detected by Western blot and Real-time PCR analyses after treatment with the DNA methyltransferase inhibitor 5'-Aza-dC. MSP and DNA sequencing assay results indicated the presence of SOCS3 promoter methylation in H2228 cells as well as in three cases of seven EML4-ALK-positive lung cancer tissues. The expression level of SOCS3 significantly increased in H2228 cells after 5'-Aza-dC treatment. The aerrant methylation of the SOCS3 promoter region in EML4-ALK (+) H2228 cells and lung cancer tissues may be significantly involved in the pathogenesis of EML4-ALK-positive lung cancer.

  5. Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4.

    PubMed

    Lee, Chen-Chen; Yang, Wen-Hao; Li, Ching-Hao; Cheng, Yu-Wen; Tsai, Chi-Hao; Kang, Jaw-Jou

    2016-07-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent-activated transcriptional factor that regulates the metabolism of xenobiotic and endogenous compounds. Although AhR plays a crucial role in air toxicant-induced carcinogenesis, AhR expression was shown to negatively regulate tumorigenesis. Therefore, in the present study, we investigated the effect of AhR without ligand treatment on cancer invasion in lung cancer cell lines. Lung cancer cells expressing lower levels of AhR showed higher invasion ability (H1299 cells) compared with cells expressing higher levels of AhR (A549 cells). Overexpression of AhR in H1299 cells inhibited the invasion ability. We found that vimentin expression was inhibited in AhR-overexpressing H1299 cells. Additionally, the expression of EMT-related transcriptional factors Snail and ID-1 decreased. Interestingly, we found that Smad4 degradation was induced in AhR-overexpressing H1299 cells. Our data showed that AhR could interact with Jun-activation domain binding protein (Jab1) and Smad4, which may cause degradation of Smad4 by the proteasome. Our data suggest that AhR affects the transforming growth factor-β signaling pathway by inducing Smad4 degradation by the proteasome and suppressing tumor metastasis via epithelial to mesenchymal transition reduction in lung cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology

    NASA Astrophysics Data System (ADS)

    Wendel, Marco; Bazhenova, Lyudmila; Boshuizen, Rogier; Kolatkar, Anand; Honnatti, Meghana; Cho, Edward H.; Marrinucci, Dena; Sandhu, Ajay; Perricone, Anthony; Thistlethwaite, Patricia; Bethel, Kelly; Nieva, Jorge; van den Heuvel, Michel; Kuhn, Peter

    2012-02-01

    Circulating tumor cell (CTC) counts are an established prognostic marker in metastatic prostate, breast and colorectal cancer, and recent data suggest a similar role in late stage non-small cell lung cancer (NSCLC). However, due to sensitivity constraints in current enrichment-based CTC detection technologies, there are few published data about CTC prevalence rates and morphologic heterogeneity in early-stage NSCLC, or the correlation of CTCs with disease progression and their usability for clinical staging. We investigated CTC counts, morphology and aggregation in early stage, locally advanced and metastatic NSCLC patients by using a fluid-phase biopsy approach that identifies CTCs without relying on surface-receptor-based enrichment and presents them in sufficiently high definition (HD) to satisfy diagnostic pathology image quality requirements. HD-CTCs were analyzed in blood samples from 78 chemotherapy-naïve NSCLC patients. 73% of the total population had a positive HD-CTC count (>0 CTC in 1 mL of blood) with a median of 4.4 HD-CTCs mL-1 (range 0-515.6) and a mean of 44.7 (±95.2) HD-CTCs mL-1. No significant difference in the medians of HD-CTC counts was detected between stage IV (n = 31, range 0-178.2), stage III (n = 34, range 0-515.6) and stages I/II (n = 13, range 0-442.3). Furthermore, HD-CTCs exhibited a uniformity in terms of molecular and physical characteristics such as fluorescent cytokeratin intensity, nuclear size, frequency of apoptosis and aggregate formation across the spectrum of staging. Our results demonstrate that despite stringent morphologic inclusion criteria for the definition of HD-CTCs, the HD-CTC assay shows high sensitivity in the detection and characterization of both early- and late-stage lung cancer CTCs. Extensive studies are warranted to investigate the prognostic value of CTC profiling in early-stage lung cancer. This finding has implications for the design of extensive studies examining screening, therapy and surveillance in

  7. Circulating Tumor DNA in Predicting Outcomes in Patients With Stage IV Head and Neck Cancer or Stage III-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-01-12

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Salivary Gland Squamous Cell Carcinoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  8. DHA-mediated regulation of lung cancer cell migration is not directly associated with Gelsolin or Vimentin expression.

    PubMed

    Ali, Mehboob; Heyob, Kathryn; Rogers, Lynette K

    2016-06-15

    Deaths associated with cancer metastasis have steadily increased making the need for newer, anti-metastatic therapeutics imparative. Gelsolin and vimentin, actin binding proteins expressed in metastatic tumors, participate in actin remodelling and regulate cell migration. Docosahexaenoic acid (DHA) limits cancer cell proliferation and adhesion but the mechanisms involved in reducing metastatic phenotypes are unknown. We aimed to investigate the effects of DHA on gelsolin and vimentin expression, and ultimately cell migration and proliferation, in this context. Non-invasive lung epithelial cells (MLE12) and invasive lung cancer cells (A549) were treated with DHA (30μmol/ml) or/and 8 bromo-cyclic adenosine monophosphate (8 Br-cAMP) (300μmol/ml) for 6 or 24h either before (pre-treatment) or after (post-treatment) plating in transwells. Migration was assessed by the number of cells that progressed through the transwell. Gelsolin and vimentin expression were measured by Western blot and confocal microscopy in cells, and by immunohistochemistry in human lung cancer biopsy samples. A significant decrease in cell migration was detected for A549 cells treated with DHA verses control but this same decrease was not seen in MLE12 cells. DHA and 8 Br-cAMP altered gelsolin and vimentin expression but no clear pattern of change was observed. Immunofluorescence staining indicated slightly higher vimentin expression in human lung tissue that was malignant compared to control. Collectively, our data indicate that DHA inhibits cancer cell migration and further suggests that vimentin and gelsolin may play secondary roles in cancer cell migration and proliferation, but are not the primary regulators. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. DHA-Mediated Regulation of Lung Cancer Cell Migration Is Not Directly Associated with Gelsolin or Vimentin Expression

    PubMed Central

    Ali, Mehboob; Heyob, Kathryn; Rogers, Lynette K.

    2016-01-01

    AIMS Deaths associated with cancer metastasis have steadily increased making the need for newer, anti-metastatic therapeutics imparative. Gelsolin and vimentin, actin binding proteins expressed in metastatic tumors, participate in actin remodelling and regulate cell migration. Docosahexaenoic acid (DHA) limits cancer cell proliferation and adhesion but the mechanisms involved in reducing metastatic phenotypes are unknown. We aimed to investigate the effects of DHA on gelsolin and vimentin expression, and ultimately cell migration and proliferation, in this context. MAIN METHODS Non-invasive lung epithelial cells (MLE12) and invasive lung cancer cells (A549) were treated with DHA (30 μmol/ml) or/and 8 bromo-cyclic adenosine monophosphate (8 Br-cAMP) (300 μmol/ml) for 6 or 24 h either before (pre-treatment) or after (post-treatment) plating in transwells. Migration was assessed by the number of cells that progressed through the transwell. Gelsolin and vimentin expression were measured by western blot and confocal microscopy in cells, and by immunohistochemistry in human lung cancer biospy samples. KEY FINDINGS A significant decrease in cell migration was detected for A549 cells treated with DHA verses control but this same decrease was not seen in MLE12 cells. DHA and 8 Br-cAMP altered gelsolin and vimentin expression but no clear pattern of change was observed. Immunoflorescence staining indicated slightly higher vimentin expression in human lung tissue that was malignant compared to control. SIGNIFICANCE Collectively, our data indicate that DHA inhibits cancer cell migration and further suggests that vimentin and gelsolin may play secondary roles in cancer cell migration and proliferation, but are not the primary regulators. PMID:27157519

  10. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression

    PubMed Central

    Yeh, Yueh-Chiao; Liu, Tsun-Jui; Lai, Hui-Chin

    2015-01-01

    Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice. PMID:25737737

  11. CIGB-300, an anti-CK2 peptide, inhibits angiogenesis, tumor cell invasion and metastasis in lung cancer models.

    PubMed

    Benavent Acero, Fernando; Capobianco, Carla S; Garona, Juan; Cirigliano, Stéfano M; Perera, Yasser; Urtreger, Alejandro J; Perea, Silvio E; Alonso, Daniel F; Farina, Hernan G

    2017-05-01

    Casein kinase 2 (CK2) is overexpressed in several types of cancer. It has more than 300 substrates mainly involved in DNA reparation and replication, chromatin remodeling and cellular growth. In recent years CK2 became an interesting target for anticancer drug development. CIGB-300 is a peptidic inhibitor of CK2 activity, designed to bind to the phospho-acceptor domain of CK2 substrates, impairing the correct phosphorylation by the enzyme. The aim of this work was to explore the antitumor effects of this inhibitor in preclinical lung cancer models. Human H125 and murine 3LL Lewis lung carcinoma cell lines were used to evaluate the effect of CIGB-300 treatment in vitro. For this purpose, adhesion, migration and invasion capabilities of cancer cells were tested. Proteolytic activity of tumor cell-secreted uPA and MMP after CIGB-300 incubation was also analyzed. In vivo anticancer efficacy of the peptide was evaluated using experimental and spontaneous lung colonization assays in C57BL/6 mice. Finally, in order to test the effect of CIGB-300 on tumor cell-induced angiogenesis, a modified Matrigel plug assay was conducted. We demonstrate that treatment with low micromolar concentrations of CIGB-300 caused a drastic reduction of adhesion, migration and invasion of lung cancer cells. Reduced invasiveness after CIGB-300 incubation was associated with decreased proteolytic activity of tumor cell-conditioned medium. In vivo, intravenous administration of CIGB-300 (10mg/kg) markly decreased lung colonization and metastasis development of 3LL cells. Interestingly, after 5days of systemic treatment with CIGB-300, tumor cell-driven neovascularization was significantly reduced in comparison to control group. Altogether our data suggest an important role of CK2 in lung tumor development, suggesting a potential use of CIGB-300 as a novel therapeutic agent against lung cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. FGF1 and IGF1-conditioned 3D culture system promoted the amplification and cancer stemness of lung cancer cells.

    PubMed

    Liu, Pengpeng; Zhang, Rui; Yu, Wenwen; Ye, Yingnan; Cheng, Yanan; Han, Lei; Dong, Li; Chen, Yongzi; Wei, Xiyin; Yu, Jinpu

    2017-12-01

    Lung cancer stem cells (LCSCs) are considered as the cellular origins of metastasis and relapse of lung cancer. However, routine two-dimensional culture system (2D-culture) hardly mimics the growth and functions of LCSCs in vivo and therefore significantly decreases the stemness activity of LCSCs. In this study, we constructed a special BME-based three-dimensional culture system (3D-culture) to amplify LCSCs in human lung adenocarcinoma cell line A549 cells and found 3D-culture promoted the enrichment and amplification of LCSCs in A549 cells displaying higher proliferation potential and invasion activity, but lower apoptosis. The expression and secretion levels of FGF1 and IGF1 were dramatically elevated in 3D-culture compared to 2D-culture. After growing in FGF1 and IGF1-conditioned 3D-culture, the proportion of LCSCs with specific stemness phenotypes in A549 cells significantly increased compared to that in conventional 3D suspension culture system. Further results indicated that FGF1 and IGF1 promoted the amplification and cancer stemness of LCSCs dependent on MAPK signaling pathway. Our data firstly established a growth factors-conditioned 3D-culture for LCSCs and demonstrated the effects of FGF1 and IGF1 in promoting the enrichment and amplification of LCSCs which might provide a feasible cell model in vitro for both mechanism study and translational research on lung cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Contralateral pulmonary metastases in lung cancer

    PubMed Central

    Onuigbo, Wilson I. B.

    1974-01-01

    Onuigbo, W. I. B. (1974).Thorax, 29, 132-133. Contralateral pulmonary metastases in lung cancer. It has long been known that lung cancer may attack many organs and yet spare the opposite lung. In 100 cases of this tumour studied at necropsy, only 22 showed contralateral pulmonary spread. Contralateral deposits are generally small and may be related to damaged tissues. Although tissue unsuitability is supposed to underlie the limitation of metastases in recipient organs, this does not apply to the contralateral lung. Since lung tissue is readily accessible to bloodborne cancer cells, research should be directed towards explaining the paradoxical paucity of the metastases. PMID:4825544

  14. Cypripedin, a phenanthrenequinone from Dendrobium densiflorum, sensitizes non-small cell lung cancer H460 cells to cisplatin-mediated apoptosis.

    PubMed

    Wattanathamsan, Onsurang; Treesuwan, Surassawadee; Sritularak, Boonchoo; Pongrakhananon, Varisa

    2018-03-01

    The life-threatening potential of lung cancer has increased over the years due to its acquisition of chemotherapeutic resistance, especially to cisplatin, a first-line therapy. In response to this development, researchers have turned their attention to several compounds derived from natural origins, including cypripedin (CYP), a phenanthrenequinone substance extracted from Dendrobium densiflorum. The aim of the present study was to investigate the ability of CYP to induce apoptosis and enhance cisplatin-mediated death of human lung cancer NCI-H460 cells using cell viability and apoptosis assays. The induction of apoptosis by CYP was observed at a concentration of > 50 μM with the appearance of morphological changes, including DNA condensation and chromatin fragmentation. Together with, CYP was able to activate caspase-3 and downregulate the anti-apoptotic proteins Bcl-2 and Bcl-xL. Also, a non-cytotoxic dose of CYP synergistically potentiated the effect of cisplatin in non-small cell lung cancer line H460 cells, which clearly exhibited the apoptotic phenotype. Western blot analysis revealed that the underlying mechanism involved the downregulation of anti-apoptotic Bcl-xL, whereas the levels of other apoptotic regulatory proteins were not altered. This study provides interesting information on the potent effect of CYP as a chemotherapeutic sensitizer that could be further developed to improve the clinical outcomes of lung cancer patients.

  15. Novel 2-step synthetic indole compound 1,1,3-tri(3-indolyl)cyclohexane inhibits cancer cell growth in lung cancer cells and xenograft models.

    PubMed

    Lee, Ching-Hsiao; Yao, Ching-Fa; Huang, Sin-Ming; Ko, Shengkai; Tan, Yi-Hung; Lee-Chen, Guey-Jen; Wang, Yi-Ching

    2008-08-15

    The clinical responses to chemotherapy in lung cancer patients are unsatisfactory. Thus, the development of more effective anticancer drugs for lung cancer is urgently needed. A 2-step novel synthetic compound, referred to as 1,1,3-tri(3-indolyl)cyclohexane (3-indole), was generated in high purity and yield. 3-Indole was tested for its biologic activity in A549, H1299, H1435, CL1-1, and H1437 lung cancer cells. Animal studies were also performed. The data indicate that 3-indole induced apoptosis in various lung cancer cells. Increased cytochrome-c release from mitochondria to cytosol, decreased expression of antiapoptotic Bcl-2, and increased expression of proapoptotic Bax were observed. In addition, 3-indole stimulated caspases-3, -9, and to a lesser extent caspase-8 activities in cancer cells, suggesting that the intrinsic mitochondria pathway was the potential mechanism involved in 3-indole-induced apoptosis. 3-Indole-induced a concentration-dependent mitochondrial membrane potential dissipation and an increase in reactive oxygen species (ROS) production. Activation of c-Jun N-terminal kinase (JNK) and triggering of DNA damage were also apparent. Note that 3-indole-induced JNK activation and DNA damage can be partially suppressed by an ROS inhibitor. Apoptosis induced by 3-indole could be abrogated by ROS or JNK inhibitors, suggesting the importance of ROS and JNK stress-related pathways in 3-indole-induced apoptosis. Moreover, 3-indole showed in vivo antitumor activities against human xenografts in murine models. On the basis of its potent anticancer activity in cell and animal models, the data suggest that this 2-step synthetic 3-indole compound of high purity and yield is a potential candidate to be tested as a lead pharmaceutical compound for cancer treatment. 2008 American Cancer Society

  16. [The fundamental mechanisms of metastatic spread and chemotherapy resistance in lung cancer].

    PubMed

    Tomuleasa, Ciprian; Kacso, Gabriel; Soritau, Olga; Susman, Sergiu; Petrushev, Bobe; Aldea, Mihaela; Buiga, Rareş; Irimie, Alexandru

    2011-01-01

    Lung cancer is the leading cause of cancer-related death in the European Union and the United States, accounting for about one third of all cancer deaths. Primary lung cancer may arise from the central (bronchial) or peripheral (bronchiolo-alveolar) compartment of the lung, but the origins of the different histological types of primary lung tumours are not well understood and described in medical literature. Current investigation in the field of cancer research have focused on the "cancer stem cell" hypothesis as stem cells are belived to be crucial players in the homeostasis of all adult tissues. Even if the role of stem cells in lung carcinogenesis is not clear yet, numerous studies indicate that lung cancer is not the result of a sudden transforming event, but of a multistep process of molecular changes of the primordial stem cell niche, leading to the development of noeplasia. In the current review, we present state-of-the-art research in the field of lung stem cell biology, with a special emphasis on lung cancer emergence, development, metastasis and multidrug resistance.

  17. Lung cancer among women in north-east China.

    PubMed Central

    Wu-Williams, A. H.; Dai, X. D.; Blot, W.; Xu, Z. Y.; Sun, X. W.; Xiao, H. P.; Stone, B. J.; Yu, S. F.; Feng, Y. P.; Ershow, A. G.

    1990-01-01

    A case-control study of lung cancer involving interviews with 965 female patients and 959 controls in Shenyang and Harbin, two industrial cities which have among the highest rates of lung cancer in China, revealed that cigarette smoking is the main causal factor and accounted for about 35% of the tumours among women. Although the amount smoked was low (the cases averaged eight cigarettes per day), the percentage of smokers among women over age 50 in these cities was nearly double the national average. Air pollution from coal burning stoves was implicated, as risks of lung cancer increased in proportion to years of exposure to 'Kang' and other heating devices indigenous to the region. In addition, the number of meals cooked by deep frying and the frequency of smokiness during cooking were associated with risk of lung cancer. More cases than controls reported workplace exposures to coal dust and to smoke from burning fuel. Elevated risks were observed for smelter workers and decreased risks for textile workers. Prior chronic bronchitis/emphysema, pneumonia, and recent tuberculosis contributed significantly to lung cancer risk, as did a history of tuberculosis and lung cancer in family members. Higher intake of carotene-rich vegetables was not protective against lung cancer in this population. The findings were qualitatively similar across the major cell types of lung cancer, except that the associations with smoking and previous lung diseases were stronger for squamous/oat cell cancers than for adenocarcinoma of the lung. PMID:2257230

  18. Erlotinib Hydrochloride and Cetuximab in Treating Patients With Advanced Gastrointestinal Cancer, Head and Neck Cancer, Non-Small Cell Lung Cancer, or Colorectal Cancer

    ClinicalTrials.gov

    2015-09-28

    Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Gastrointestinal Stromal Tumor; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esophageal Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer

  19. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer

    PubMed Central

    Weiskopf, Kipp; Jahchan, Nadine S.; Schnorr, Peter J.; Ring, Aaron M.; Maute, Roy L.; Volkmer, Anne K.; Volkmer, Jens-Peter; Liu, Jie; Lim, Jing Shan; Yang, Dian; Seitz, Garrett; Nguyen, Thuyen; Wu, Di; Guerston, Heather; Trapani, Francesca; George, Julie; Poirier, John T.; Gardner, Eric E.; Miles, Linde A.; de Stanchina, Elisa; Lofgren, Shane M.; Vogel, Hannes; Winslow, Monte M.; Dive, Caroline; Thomas, Roman K.; Rudin, Charles M.; van de Rijn, Matt; Majeti, Ravindra; Garcia, K. Christopher; Weissman, Irving L.

    2016-01-01

    Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blocking immunotherapies as a potential approach for SCLC treatment. Disruption of the interaction of CD47 with SIRPα using anti-CD47 antibodies induced macrophage-mediated phagocytosis of human SCLC patient cells in culture. In a murine model, administration of CD47-blocking antibodies or targeted inactivation of the Cd47 gene markedly inhibited SCLC tumor growth. Furthermore, using comprehensive antibody arrays, we identified several possible therapeutic targets on the surface of SCLC cells. Antibodies to these targets, including CD56/neural cell adhesion molecule (NCAM), promoted phagocytosis in human SCLC cell lines that was enhanced when combined with CD47-blocking therapies. In light of recent clinical trials for CD47-blocking therapies in cancer treatment, these findings identify disruption of the CD47/SIRPα axis as a potential immunotherapeutic strategy for SCLC. This approach could enable personalized immunotherapeutic regimens in patients with SCLC and other cancers. PMID:27294525

  20. A framework for identification of actionable cancer genome dependencies in small cell lung cancer

    PubMed Central

    Sos, Martin L.; Dietlein, Felix; Peifer, Martin; Schöttle, Jakob; Balke-Want, Hyatt; Müller, Christian; Koker, Mirjam; Richters, André; Heynck, Stefanie; Malchers, Florian; Heuckmann, Johannes M.; Seidel, Danila; Eyers, Patrick A.; Ullrich, Roland T.; Antonchick, Andrey P.; Vintonyak, Viktor V.; Schneider, Peter M.; Ninomiya, Takashi; Waldmann, Herbert; Büttner, Reinhard; Rauh, Daniel; Heukamp, Lukas C.; Thomas, Roman K.

    2012-01-01

    Small cell lung cancer (SCLC) accounts for about 15% of all lung cancers. The prognosis of SCLC patients is devastating and no biologically targeted therapeutics are active in this tumor type. To develop a framework for development of specific SCLC-targeted drugs we conducted a combined genomic and pharmacological vulnerability screen in SCLC cell lines. We show that SCLC cell lines capture the genomic landscape of primary SCLC tumors and provide genetic predictors for activity of clinically relevant inhibitors by screening 267 compounds across 44 of these cell lines. We show Aurora kinase inhibitors are effective in SCLC cell lines bearing MYC amplification, which occur in 3–7% of SCLC patients. In MYC-amplified SCLC cells Aurora kinase inhibition associates with G2/M-arrest, inactivation of PI3-kinase (PI3K) signaling, and induction of apoptosis. Aurora dependency in SCLC primarily involved Aurora B, required its kinase activity, and was independent of depletion of cytoplasmic levels of MYC. Our study suggests that a fraction of SCLC patients may benefit from therapeutic inhibition of Aurora B. Thus, thorough chemical and genomic exploration of SCLC cell lines may provide starting points for further development of rational targeted therapeutic intervention in this deadly tumor type. PMID:23035247

  1. Quantitative T-cell repertoire analysis of peripheral blood mononuclear cells from lung cancer patients following long-term cancer peptide vaccination.

    PubMed

    Takeda, Kazuyoshi; Kitaura, Kazutaka; Suzuki, Ryuji; Owada, Yuki; Muto, Satoshi; Okabe, Naoyuki; Hasegawa, Takeo; Osugi, Jun; Hoshino, Mika; Tsunoda, Takuya; Okumura, Ko; Suzuki, Hiroyuki

    2018-06-01

    Therapeutic cancer peptide vaccination is an immunotherapy designed to elicit cytotoxic T-lymphocyte (CTL) responses in patients. A number of therapeutic vaccination trials have been performed, nevertheless there are only a few reports that have analyzed the T-cell receptors (TCRs) expressed on tumor antigen-specific CTLs. Here, we use next-generation sequencing (NGS) to analyze TCRs of vaccine-induced CTL clones and the TCR repertoire of bulk T cells in peripheral blood mononuclear cells (PBMCs) from two lung cancer patients over the course of long-term vaccine therapy. In both patients, vaccination with two epitope peptides derived from cancer/testis antigens (upregulated lung cancer 10 (URLC10) and cell division associated 1 (CDCA1)) induced specific CTLs expressing various TCRs. All URLC10-specific CTL clones tested showed Ca 2+ influx, IFN-γ production, and cytotoxicity when co-cultured with URLC10-pulsed tumor cells. Moreover, in CTL clones that were not stained with the URLC10/MHC-multimer, the CD3 ζ chain was not phosphorylated. NGS of the TCR repertoire of bulk PBMCs demonstrated that the frequency of vaccine peptide-specific CTL clones was near the minimum detectable threshold level. These results demonstrate that vaccination induces antigen-specific CTLs expressing various TCRs at different time points in cancer patients, and that some CTL clones are maintained in PBMCs during long-term treatment, including some with TCRs that do not bind peptide/MHC-multimer.

  2. Expression and promoter DNA methylation of MLH1 in colorectal cancer and lung cancer.

    PubMed

    Ma, Yunxia; Chen, Yuan; Petersen, Iver

    2017-04-01

    Aberrant DNA methylation is a common molecular feature in human cancer. The aims of this study were to analyze the methylation status of MLH1, one of the DNA mismatch repair (MMR) genes, in human colorectal and lung cancer and to evaluate its clinical relevance. The expression of MLH1 was analyzed in 8 colorectal cancer (CRC) and 8 lung cancer cell lines by real-time RT-PCR and western blotting. The MLH1 protein expression was evaluated by immunohistochemistry on tissue microarrays including 121 primary CRC and 90 lung cancer patient samples. In cancer cell lines, the methylation status of MLH1 promoter and exon 2 was investigated by bisulfite sequencing (BS). Methylation-specific-PCR (MSP) was used to evaluate methylation status of MLH1. The expression of MLH1 mRNA was detected in 8 CRC cell lines as well as normal colonic fibroblast cells CCD-33Co. At protein levels, MLH1 was lost in one CRC cell line HCT-116 and normal cells CCD-33Co. No methylation was found in the promoter and exon 2 of MLH1 in CRC cell lines. MLH1 was expressed in 8 lung cancer cell lines at both mRNA and protein levels. Compared to cancer cells, normal bronchial epithelial cells (HBEC) had lower expression of MLH1 protein. In primary CRC, 54.5% of cases exhibited positive staining, while 47.8% of lung tumors were positive for MLH1 protein. MSP analysis showed that 58 out of 92 (63.0%) CRC and 41 out of 73 (56.2%) lung cancer exhibited MLH1 methylation. In CRC, the MLH1 methylation was significantly associated with tumor invasion in veins (P=0.012). However, no significant links were found between MLH1 expression and promoter methylation in both tumor entities. MLH1 methylation is a frequent molecular event in CRC and lung cancer patients. In CRC, methylation of MLH1 could be linked to vascular invasiveness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    NASA Astrophysics Data System (ADS)

    Karki, Surya B.; Thapa Gupta, Tripti; Yildirim-Ayan, Eda; Eisenmann, Kathryn M.; Ayan, Halim

    2017-08-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  4. Epigenetic modulation with HDAC inhibitor CG200745 induces anti-proliferation in non-small cell lung cancer cells.

    PubMed

    Chun, Sung-Min; Lee, Ji-Young; Choi, Jene; Lee, Je-Hwan; Hwang, Jung Jin; Kim, Chung-Soo; Suh, Young-Ah; Jang, Se Jin

    2015-01-01

    Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells. Treatment with CG200745 increased the global level of histone acetylation, resulting in the inhibition of cell proliferation. ChIP-on-chip analysis with an H4K16ac antibody showed altered H4K16 acetylation on genes critical for cell growth inhibition, although decreased at the transcription start site of a subset of genes. Altered H4K16ac was associated with changes in mRNA expression of the corresponding genes, which were further validated in quantitative RT-PCR and western blotting assays. Our results demonstrated that CG200745 causes NSCLC cell growth inhibition through epigenetic modification of critical genes in cancer cell survival, providing pivotal clues as a promising chemotherapeutics against lung cancer.

  5. Epigenetic Modulation with HDAC Inhibitor CG200745 Induces Anti-Proliferation in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Chun, Sung-Min; Lee, Ji-Young; Choi, Jene; Lee, Je-Hwan; Hwang, Jung Jin; Kim, Chung-Soo; Suh, Young-Ah; Jang, Se Jin

    2015-01-01

    Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells. Treatment with CG200745 increased the global level of histone acetylation, resulting in the inhibition of cell proliferation. ChIP-on-chip analysis with an H4K16ac antibody showed altered H4K16 acetylation on genes critical for cell growth inhibition, although decreased at the transcription start site of a subset of genes. Altered H4K16ac was associated with changes in mRNA expression of the corresponding genes, which were further validated in quantitative RT-PCR and western blotting assays. Our results demonstrated that CG200745 causes NSCLC cell growth inhibition through epigenetic modification of critical genes in cancer cell survival, providing pivotal clues as a promising chemotherapeutics against lung cancer. PMID:25781604

  6. Indigenous Australians with non-small cell lung cancer or cervical cancer receive suboptimal treatment.

    PubMed

    Whop, Lisa J; Bernardes, Christina M; Kondalsamy-Chennakesavan, Srinivas; Darshan, Deepak; Chetty, Naven; Moore, Suzanne P; Garvey, Gail; Walpole, Euan; Baade, Peter; Valery, Patricia C

    2017-10-01

    Lung cancer and cervical cancer are higher in incidence for Indigenous Australians and survival is worse compared with non-Indigenous Australians. Here we aim to determine if being Indigenous and/or other factors are associated with patients receiving "suboptimal treatment" compared to "optimal treatment" according to clinical guidelines for two cancer types. Data were collected from hospital medical records for Indigenous adults diagnosed with cervical cancer and non-small cell lung cancer (NSCLC) and a frequency-matched comparison group of non-Indigenous patients in the Queensland Cancer Registry between January 1998 and December 2004. The two cancer types were analyzed separately. A total of 105 women with cervical cancer were included in the study, 56 of whom were Indigenous. Indigenous women had higher odds of not receiving optimal treatment according to clinical guidelines (unadjusted OR 7.1; 95% CI, 1.5-33.3), even after adjusting for stage (OR 5.7; 95% CI, 1.2-27.3). Of 225 patients with NSCLC, 198 patients (56% Indigenous) had sufficient information available to be analyzed. The odds of receiving suboptimal treatment were significantly higher for Indigenous compared to non-Indigenous NSCLC patients (unadjusted OR 1.9; 95% CI, 1.0-3.6) and remained significant after adjusting for stage, comorbidity and age (adjusted OR 2.1; 95% CI, 1.1-4.1). The monitoring of treatment patterns and appraisal against guidelines can provide valuable evidence of inequity in cancer treatment. We found that Indigenous people with lung cancer or cervical cancer received suboptimal treatment, reinforcing the need for urgent action to reduce the impact of these two cancer types on Indigenous people. © 2016 John Wiley & Sons Australia, Ltd.

  7. Primary lung cancer coexisting with active pulmonary tuberculosis.

    PubMed

    Varol, Y; Varol, U; Unlu, M; Kayaalp, I; Ayranci, A; Dereli, M S; Guclu, S Z

    2014-09-01

    Lung cancer and pulmonary tuberculosis (TB) comorbidity is a clinical problem that presents a challenge for the diagnosis and treatment of both diseases. To clarify the clinical and survival characteristics of cases with both lung cancer and active pulmonary TB. From 2008 to 2013, 3350 TB patients admitted to the TB Department of the Chest Diseases Hospital of Izmir, Turkey, were evaluated. In 38 (1.1%) male patients, lung cancer and TB were found to coexist. Almost all of the patients were diagnosed at Stage III (n = 14, 36.8%) or IV (n = 17, 44.7%) lung cancer, whereas four (10.6%) had Stage II and three (7.9%) had Stage I disease. Squamous cell lung cancer was the predominant histology (n = 23, 60.7%). The median overall survival among patients was 13.4 months (95%CI 8.09-18.8). One-year survival rates for patients with Stages I, II, III and IV were respectively 100%, 75%, 57% and 40%. The present study demonstrates that lung cancer combined with active pulmonary TB most frequently presents as squamous cell carcinoma, with a male predominance. The overall survival of lung cancer patients did not change even with concomitant active TB.

  8. Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner.

    PubMed

    Qin, Xiaobing; Yu, Shaorong; Zhou, Leilei; Shi, Meiqi; Hu, Yong; Xu, Xiaoyue; Shen, Bo; Liu, Siwen; Yan, Dali; Feng, Jifeng

    2017-01-01

    Exosomes derived from lung cancer cells confer cisplatin (DDP) resistance to other cancer cells. However, the underlying mechanism is still unknown. A549 resistance to DDP (A549/DDP) was established. Microarray was used to analyze microRNA (miRNA) expression profiles of A549 cells, A549/DDP cells, A549 exosomes, and A549/DDP exosomes. There was a strong correlation of miRNA profiles between exosomes and their maternal cells. A total of 11 miRNAs were significantly upregulated both in A549/DDP cells compared with A549 cells and in exosomes derived from A549/DDP cells in contrast to exosomes from A549 cells. A total of 31 downregulated miRNAs were also observed. miR-100-5p was the most prominent decreased miRNA in DDP-resistant exosomes compared with the corresponding sensitive ones. Downregulated miR-100-5p was proved to be involved in DDP resistance in A549 cells, and mammalian target of rapamycin (mTOR) expression was reverse regulated by miR-100-5p. Exosomes confer recipient cells' resistance to DDP in an exosomal miR-100-5p-dependent manner with mTOR as its potential target both in vitro and in vivo. Exosomes from DDP-resistant lung cancer cells A549 can alter other lung cancer cells' sensitivity to DDP in exosomal miR-100-5p-dependent manner. Our study provides new insights into the molecular mechanism of DDP resistance in lung cancer.

  9. Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer

    PubMed Central

    Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger

    2016-01-01

    Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity. PMID:27279498

  10. Wnt/β-catenin pathway mediates (−)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jianyun; Jiang, Ye; Yang, Xue

    Cancer stem cells (CSCs) play essential role in the progression of many tumors. Wnt/β-catenin pathway is crucial in maintaining the stemness of CSCs. (−)-Epigallocatechin-3-gallate (EGCG), the major bioactive component in green tea, has been shown to possess anti-cancer activity. To date, the interventional effect of EGCG on lung CSCs has not been elucidated yet. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We revealed that Wnt/β-catenin pathway was activated in lung CSCs, and downregulation of β-catenin, abolished lung CSCs traits. Our study further illustrated that EGCG effectively diminished lung CSCs activitymore » by inhibiting tumorsphere formation, decreasing lung CSCs markers, suppressing proliferation and inducing apoptosis. Moreover, We showed that EGCG downregulated Wnt/β-catenin activation, while upregulation of Wnt/β-catenin dampened the inhibitory effects of EGCG on lung CSCs. Taken together, these results demonstrated the role of Wnt/β-catenin pathway in regulating lung CSCs traits and EGCG intervention of lung CSCs. Findings from this study could provide new insights into the molecular mechanisms of lung CSCs intervention. - Highlights: • EGCG inhibited lung CSCs activity. • EGCG inhibited lung CSCs activity via Wnt/β-catenin pathway suppression. • EGCG may prove to be a potential therapeutic agent for lung cancer.« less

  11. Cediranib Maleate and Whole Brain Radiation Therapy in Patients With Brain Metastases From Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-03-07

    Male Breast Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Tumors Metastatic to Brain

  12. Does advanced lung inflammation index (ALI) have prognostic significance in metastatic non-small cell lung cancer?

    PubMed

    Ozyurek, Berna Akinci; Ozdemirel, Tugce Sahin; Ozden, Sertac Buyukyaylaci; Erdoğan, Yurdanur; Ozmen, Ozlem; Kaplan, Bekir; Kaplan, Tugba

    2018-01-22

    Lung cancer is the most commonly diagnosed and death-related cancer type and is more frequent in males. Non-small-cell lung cancer (NSCLC) accounts for about 85% of all case. In this study, it was aimed to research the relationship between advanced lung inflammation index (ALI) and the primary mass maximum standardized uptake value (SUVmax) and C-reactive protein (CRP) at initial diagnosis and the prognostic value of ALI in determining the survival in metastatic NSCLC. A total of 112 patients diagnosed as stage 4 non-small-lung cancer in our hospital between January 2006 and December 2013 were included in this study. ALI was calculated as body mass index (BMI) × serum albumin/neutrophil-to-lymphocyte ratio (NLR). The patients were divided into two groups as ALI < 18 (high inflammation) and ALI ≥ 18 (low inflammation). The log-rank test and Cox proportional hazard model were used to identify predictors of mortality. Evaluation was made of 94 male and 18 female patients with a mean age of 59.7 ± 9.9 years. A statistically significant negative relationship was determined between ALI and CRP values (P < .001), but no relationship was found between ALI and SUVmax values (P = .436). The median survival time in patients with ALI < 18 was 12 months and, in those with ALI ≥ 18, it was 16 months (P = .095). ALI is an easily calculated indicator of inflammation in lung cancer patients. Values <18 can be considered to predict a poor prognosis. © 2018 John Wiley & Sons Ltd.

  13. A novel PHD-finger protein 14/KIF4A complex overexpressed in lung cancer is involved in cell mitosis regulation and tumorigenesis.

    PubMed

    Zhang, Lin; Huang, Qin; Lou, Jiatao; Zou, Liangjian; Wang, Yiguo; Zhang, Peng; Yang, Guang; Zhang, Junyi; Yu, Lan; Yan, Dai; Zhang, Chenyi; Qiao, Jing; Wang, Shuting; Wang, Sai; Xu, Yongdong; Ji, Hongbin; Chen, Zhengjun; Zhang, Zhe

    2017-03-21

    The plant homeodomain (PHD) finger-containing proteins have been implicated in many human diseases including cancer. In this study, we found that PHF14, a newly identified PHD finger protein, is highly expressed in lung cancer. The high expression level of PHF14 was associated with adenocarcinoma and poor survival in lung cancer patients. Knocking down PHF14 suppressed cancer cell growth and carcinogenesis, while over-expressing PHF14 promoted cell proliferation. During cell division, PHF14 directly bound to and co-localized with KIF4A (a nuclear motor protein involved in lung carcinogenesis) to form a functional complex. Similarly to the effect of KIF4A depletion, silencing PHF14 in several cell lines caused cell mitotic defects, prolonged M phase, and inhibited cell proliferation. What's more, these two proteins had a synergistic effect on cell proliferation and were significantly co-overexpressed in lung cancer tissues. Our data provide new insights into the biological significance of PHD finger proteins and imply that PHF14 may be a potential biomarker for lung cancer.

  14. Impact of low skeletal muscle mass on non-lung cancer mortality after stereotactic body radiotherapy for patients with stage I non-small cell lung cancer.

    PubMed

    Matsuo, Yukinori; Mitsuyoshi, Takamasa; Shintani, Takashi; Iizuka, Yusuke; Mizowaki, Takashi

    2018-05-17

    The purpose of the present study was to retrospectively evaluate impact of pre-treatment skeletal muscle mass (SMM) on overall survival and non-lung cancer mortality after stereotactic body radiotherapy (SBRT) for patients with stage I non-small cell lung cancer (NSCLC). One-hundred and eighty-six patients whose abdominal CT before the treatment was available were enrolled into this study. The patients were divided into two groups of SMM according to gender-specific thresholds for unilateral psoas area. Operability was judged by the treating physician or thoracic surgeon after discussion in a multi-disciplinary tumor board. Patients with low SMM tended to be elderly and underweight in body mass index compared with the high SMM. Overall survival in patients with the low SMM tended to be worse than that in the high SMM (41.1% and 55.9% at 5 years, P = 0.115). Cumulative incidence of non-lung cancer death was significantly worse in the low SMM (31.3% at 5 years compared with 9.7% in the high SMM, P = 0.006). Multivariate analysis identified SMM and operability as significant factors for non-lung cancer mortality. Impact of SMM on lung cancer death was not significant. No difference in rate of severe treatment-related toxicity was observed between the SMM groups. Low SMM is a significant risk factor for non-lung cancer death, which might lead to worse overall survival, after SBRT for stage I NSCLC. However, the low SMM does not increase lung cancer death or severe treatment-related toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Exosomes as a liquid biopsy for lung cancer.

    PubMed

    Cui, Shaohua; Cheng, Zhuoan; Qin, Wenxin; Jiang, Liyan

    2018-02-01

    In lung cancer and other malignancies, the so-called "liquid biopsy" is quickly moving into clinical practice. Its full potential has not yet been fully identified, but the "liquid biopsy" is no longer a promise but has become a reality that allows for better treatment selection and monitoring of lung cancer. This emerging field has significant potential to make up for the limitations of the traditional tissue-derived biomaterials. Exosomes are spherical nano-sized vesicles with a diameter of 40-100 nm and a density of 1.13-1.19 g/ml. In both physiological and pathological conditions, exosomes can be released by different cell types, including immune cells, stem cells and tumor cells. These small molecules may serve as promising biomarkers in lung cancer "liquid biopsy" as they can be easily obtained from most body fluids. In addition, the lipid bilayer of exosomes allows for stable cargoes which are relatively hard to degrade. Furthermore, the composition of exosomes reflects that of their parental cells, suggesting that exosomes are potential surrogates of the original cells and, therefore, are useful for understanding cell biology. Previous studies have demonstrated that exosomes play important roles in cell-to-cell communication. Moreover, tumor-derived exosomes are evolved in tumor-specific biological process, including tumor proliferation and progression. Recently, a growing number of studies has focused on exosomal cargo and their use in lung cancer genesis and progression. In addition, their utility as lung cancer diagnostic, prognostic and predictive biomarkers have also been studied. The current review primarily summaries lung cancer-related exosomal biomarkers that have recently been identified and discusses their potential in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Circular RNA circMAN2B2 facilitates lung cancer cell proliferation and invasion via miR-1275/FOXK1 axis.

    PubMed

    Ma, Xuemei; Yang, Xiaodong; Bao, Wenhua; Li, Shumin; Liang, Shanshan; Sun, Yunhui; Zhao, Yunwei; Wang, Jing; Zhao, Chenxu

    2018-04-15

    Lung cancer remains a leading cause of cancer-related deaths worldwide. In the past years, increasing reports indicate that circular RNAs (circRNAs) exert a great important role in human cancers, including lung cancer. However, the knowledge about circRNA in lung cancer remains very little so far. In the present study, we screened out a highly expressed novel circRNA named circMAN2B2 in lung cancer tissues. We investigated the function of circMAN2B2 and found that circMAN2B2 knockdown significantly inhibited cell proliferation and invasion in both H1299 and A549 lung cancer cells. Mechanistically, we found that circMAN2B2 could sponge miR-1275 to inhibit its level. Through a series of functional experiments, we dissected the role of miR-1275 in lung cancer and proved the anti-tumor role of miR-1275. Furthermore, we found that miR-1275 exerted its role in lung cancer by regulating FOXK1 expression. In addition, we demonstrated that restoration of FOXK1 could rescue circMAN2B2 knockdown-induced repression of cell proliferation and invasion. Taken together, our study demonstrated that circMAN2B2 acts as an oncogenic role in lung cancer through promoting FOXK1 expression by sponging miR-1275. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Continuation maintenance therapy with S-1 in chemotherapy-naïve patients with advanced squamous cell lung cancer.

    PubMed

    Suzuki, Seiichiro; Karayama, Masato; Inui, Naoki; Fujisawa, Tomoyuki; Enomoto, Noriyuki; Nakamura, Yutaro; Kuroishi, Shigeki; Matsuda, Hiroyuki; Yokomura, Koshi; Koshimizu, Naoki; Toyoshima, Mikio; Imokawa, Shiro; Asada, Kazuhiro; Masuda, Masafumi; Yamada, Takashi; Watanabe, Hiroshi; Suda, Takafumi

    2016-08-01

    Objectives Maintenance therapy is a standard therapeutic strategy in non-squamous non-small-cell lung cancer. However, there is no consensus regarding the benefit of maintenance therapy for patients with squamous cell lung cancer. We assessed maintenance therapy with S-1, an oral fluoropyrimidine agent, following induction therapy with carboplatin and S-1 in patients with squamous cell lung cancer. Methods In this phase II trial, chemotherapy-naïve patients with squamous cell lung cancer were enrolled to induction therapy with four cycles of carboplatin (at an area under the curve of 5 on day 1) and S-1 (80 mg/m(2)/day on days 1-14) in a 28-day cycle. Patients who achieved disease control after induction therapy received maintenance therapy with S-1 in a 21-day cycle until disease progression or unacceptable toxicity. The primary endpoint was progression-free survival after administration of maintenance therapy. Results Fifty-one patients were enrolled in the study. The median progression-free survival from the start of maintenance therapy was 3.0 months (95 % confidence interval, 2.5-3.5). The most common toxicities associated with maintenance therapy were anemia, thrombocytopenia, and fatigue, but they were not severe. Conclusion S-1 maintenance therapy might be a feasible treatment option in patients with squamous cell lung cancer.

  18. [Criteria of the molecular pathology testing of lung cancer].

    PubMed

    Tímár, József

    2014-06-01

    From the aspect of the contemporary pathologic diagnostics of lung cancer the tissue obtained is a key issue since small biopsies and cytology still play a major role. In the non-small cell lung cancer era cytology is considered equal to biopsy however, in recent years it is unable to provide quality diagnosis and must be replaced by biopsy. Various molecular techniques can handle various different tissue samples which must be considered during molecular pathology diagnosis. Moreover, tumor cell-normal cell ratio in the obtained tissue, as well as the absolute tumor cell number have great significance, which information must be provided in the primary lung cancer diagnosis. Last but not least, for continuous sustainable molecular diagnostics of lung cancer rational algorithms, affordable technology and appropriate reimbursement are equally necessary.

  19. Minimal requirements for the molecular testing of lung cancer.

    PubMed

    Popper, Helmut H; Tímár, József; Ryska, Ales; Olszewski, Wlodzimierz

    2014-10-01

    From the aspect of the contemporary pathologic diagnostics of lung cancer, it is a key issue of the tissue obtained since small biopsies and cytology still play a major role. In the non-small cell lung cancer era, cytology considered equal to biopsy. However, in recent years it is unable to provide quality diagnosis and must be replaced by biopsy. Various molecular techniques can handle various different tissue samples which must be considered during molecular pathology diagnosis. Besides, tumor cell-normal cell ratio in the obtained tissue as well as the absolute tumor cell number have great significance whose information must be provided in the primary lung cancer diagnosis. Last but not least, for continuous sustainable molecular diagnostics of lung cancer rational algorythms, affordable technology and appropriate reimbursement are equally necessary.

  20. Non-Small-Cell Lung Cancer Molecular Signatures Recapitulate Lung Developmental Pathways

    PubMed Central

    Borczuk, Alain C.; Gorenstein, Lyall; Walter, Kristin L.; Assaad, Adel A.; Wang, Liqun; Powell, Charles A.

    2003-01-01

    Current paradigms hold that lung carcinomas arise from pleuripotent stem cells capable of differentiation into one or several histological types. These paradigms suggest lung tumor cell ontogeny is determined by consequences of gene expression that recapitulate events important in embryonic lung development. Using oligonucleotide microarrays, we acquired gene profiles from 32 microdissected non-small-cell lung tumors. We determined the 100 top-ranked marker genes for adenocarcinoma, squamous cell, large cell, and carcinoid using nearest neighbor analysis. Results were validated by immunostaining for 11 selected proteins using a tissue microarray representing 80 tumors. Gene expression data of lung development were accessed from a publicly available dataset generated with the murine Mu11k genome microarray. Self-organized mapping identified two temporally distinct clusters of murine orthologues. Supervised clustering of lung development data showed large-cell carcinoma gene orthologues were in a cluster expressed in pseudoglandular and canalicular stages whereas adenocarcinoma homologues were predominantly in a cluster expressed later in the terminal sac and alveolar stages of murine lung development. Representative large-cell genes (E2F3, MYBL2, HDAC2, CDK4, PCNA) are expressed in the nucleus and are associated with cell cycle and proliferation. In contrast, adenocarcinoma genes are associated with lung-specific transcription pathways (SFTPB, TTF-1), cell adhesion, and signal transduction. In sum, non-small-cell lung tumors histology gene profiles suggest mechanisms relevant to ontogeny and clinical course. Adenocarcinoma genes are associated with differentiation and glandular formation whereas large-cell genes are associated with proliferation and differentiation arrest. The identification of developmentally regulated pathways active in tumorigenesis provides insights into lung carcinogenesis and suggests early steps may differ according to the eventual tumor

  1. MicroRNAs – Important Molecules in Lung Cancer Research

    PubMed Central

    Leidinger, Petra; Keller, Andreas; Meese, Eckart

    2011-01-01

    MicroRNAs (miRNA) are important regulators of gene expression. They are involved in many physiological processes ensuring the cellular homeostasis of human cells. Alterations of the miRNA expression have increasingly been associated with pathophysiologic changes of cancer cells making miRNAs currently to one of the most analyzed molecules in cancer research. Here, we provide an overview of miRNAs in lung cancer. Specifically, we address biological functions of miRNAs in lung cancer cells, miRNA signatures generated from tumor tissue and from patients’ body fluids, the potential of miRNAs as diagnostic and prognostic biomarker for lung cancer, and its role as therapeutic target. PMID:22303398

  2. Wnt/β-catenin pathway mediates (-)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells.

    PubMed

    Zhu, Jianyun; Jiang, Ye; Yang, Xue; Wang, Shijia; Xie, Chunfeng; Li, Xiaoting; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhu, Mingming; Wu, Rui; Huang, Cong; Ma, Xiao; Geng, Shanshan; Wu, Jieshu; Zhong, Caiyun

    2017-01-01

    Cancer stem cells (CSCs) play essential role in the progression of many tumors. Wnt/β-catenin pathway is crucial in maintaining the stemness of CSCs. (-)-Epigallocatechin-3-gallate (EGCG), the major bioactive component in green tea, has been shown to possess anti-cancer activity. To date, the interventional effect of EGCG on lung CSCs has not been elucidated yet. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We revealed that Wnt/β-catenin pathway was activated in lung CSCs, and downregulation of β-catenin, abolished lung CSCs traits. Our study further illustrated that EGCG effectively diminished lung CSCs activity by inhibiting tumorsphere formation, decreasing lung CSCs markers, suppressing proliferation and inducing apoptosis. Moreover, We showed that EGCG downregulated Wnt/β-catenin activation, while upregulation of Wnt/β-catenin dampened the inhibitory effects of EGCG on lung CSCs. Taken together, these results demonstrated the role of Wnt/β-catenin pathway in regulating lung CSCs traits and EGCG intervention of lung CSCs. Findings from this study could provide new insights into the molecular mechanisms of lung CSCs intervention. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Antitumor effect of the integrin α4 signaling inhibitor JK273 in non-small cell lung cancer NCI-H460 cells.

    PubMed

    Lu, Thien Nhan; Ganganna, Bogonda; Pham, Thuy Trang; Vo, Anh Van; Lu, Thien Phuc; Nguyen, Huong-Giang Thi; Nguyen, My-Nuong Thi; Huynh, Phuong Nguyen; Truong, Ngoc Tuyen; Lee, Jongkook

    2017-09-16

    Lung cancer accounts for the highest death rate among cancers worldwide, with most patients being diagnosed with non-small cell lung cancer (NSCLC), urging more effective therapies. We report that JK273, a pyrrolo[2,3-d]pyrimidine analog, which inhibits α4 integrin signaling, showed a selective cytotoxic effect against HCI-H460 NSCLC cells, with an IC 50 of 0.98 ± 0.15 μM, but showed less sensitivity to fibroblasts with a selectivity index (SI) greater than 30. This effect was attributed to cell cycle arrest at S phase by JK273 treatment, resulting in the apoptosis of NCI-H460 cells, further confirmed by exposing phosphatidylserine and morphological changes. Taken together with the previous study of JK273 inhibiting cell migration, we propose that JK273 could serve as an antitumor compound to specifically target cancer cells but not non-cancerous cells by triggering programmed cell death, in addition to anti-metastatic effects in cancer therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Delicaflavone induces autophagic cell death in lung cancer via Akt/mTOR/p70S6K signaling pathway.

    PubMed

    Sui, Yuxia; Yao, Hong; Li, Shaoguang; Jin, Long; Shi, Peiying; Li, Zhijun; Wang, Gang; Lin, Shilan; Wu, Youjia; Li, Yuxiang; Huang, Liying; Liu, Qicai; Lin, Xinhua

    2017-03-01

    Searching for potential anticancer agents from natural sources is an effective strategy for developing novel chemotherapeutic agents. In this study, data supporting the in vitro and in vivo anticancer effects of delicaflavone, a rarely occurring biflavonoid from Selaginella doederleinii, were reported. Delicaflavone exhibited favorable anticancer properties, as shown by the MTT assay and xenograft model of human non-small cell lung cancer in male BALB/c nude mice without observable adverse effect. By transmission electron microscopy with acridine orange and Cyto-ID®Autophagy detection dyes, Western blot analysis, and RT-PCR assay, we confirmed that delicaflavone induces autophagic cell death by increasing the ratio of LC3-II to LC3-I, which are autophagy-related proteins, and promoting the generation of acidic vesicular organelles and autolysosomes in the cytoplasm of human lung cancer A549 and PC-9 cells in a time- and dose-dependent manner. Delicaflavone downregulated the expression of phospho-Akt, phospho-mTOR, and phospho-p70S6K in a time- and dose-dependent manner, suggesting that it induced autophagy by inhibiting the Akt/mTOR/p70S6K pathway in A549 and PC-9 cells. Delicaflavone is a potential anticancer agent that can induce autophagic cell death in human non-small cell lung cancer via the Akt/mTOR/p70S6K signaling pathway. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer.

  5. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer.

    PubMed

    Otsuka, Shannon; Bebb, Gwyn

    2008-12-01

    Chemokines are proinflammatory chemoattractant cytokines that regulate cell trafficking and adhesion. The CXCR4 chemokine receptor and its ligand, stromal cell derived factor (SDF-1), constitute a chemokine/receptor axis that has attracted great interest because of an increasing understanding of its role in cancer, including lung cancer. The CXCR4/SDF-1 complex activates several pathways that mediate chemotaxis, migration and secretion of angiopoietic factors. Neutralization of SDF-1 by anti-SDF-1 or anti-CXCR4 monoclonal antibody in preclinical in vivo studies results in a significant decrease of non-small cell lung cancer metastases. Since anti-SDF-1/CXCR4 strategies have already been developed for use in combating human immunodeficiency virus infections, it is likely that these approaches will be used in clinical trials in non-small cell lung cancer in the very near future.

  6. 5-Bromodeoxyuridine induced differentiation of a human small cell lung cancer cell line is associated with alteration of gene expression.

    PubMed

    Chen, Yuan; Pacyna-Gengelbach, Manuela; Deutschmann, Nicole; Ye, Fei; Petersen, Iver

    2007-02-16

    Small cell lung cancer (SCLC) appears to arise from neuroendocrine cells with the potential to differentiate into a variety of lung epithelial cell lineages. In order to investigate molecular events underlying the cell type transition in SCLC, we treated a SCLC cell line H526 with a differentiation inducing agent 5-bromodeoxyuridine (BrdU). The treatment led to a dramatic conversion from suspension cells to adherent cells exhibiting an epithelioid phenotype, which remarkably reduced the ability of colony formation in soft agar and suppressed the tumor growth rate in nude mice. The phenotypic transition was consistent with upregulation of surfactant protein C (SFTPC), thyroid transcription factor 1 (TTF-1), Connexin 26 (Cx26), insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1), as well as homeobox genes LAGY, PITX1, and HOXB2. Our data suggest that BrdU induced cell differentiation could be linked to the development of a less aggressively phenotype in small cell lung cancer.

  7. Apoptosis-inducing effects and growth inhibitory of a novel chalcone, in human hepatic cancer cells and lung cancer cells.

    PubMed

    Dong, Naiwei; Liu, Xin; Zhao, Tong; Wang, Lei; Li, Huimin; Zhang, Shuqian; Li, Xia; Bai, Xue; Zhang, Yong; Yang, Baofeng

    2018-05-29

    Apoptosis is an important biological phenomenon, which affects many diseases, such as cancer and Alzheimer's disease. In the present study, we observed that chalcone 9X, an aromatic ketone, induced apoptosis of human hepatic and lung cancer cells and inhibited cancer cell migration and invasion. This compound strongly suppressed the growth of tumor in a mouse model of xenograft tumors. The anticancer activity of chalcone 9X was equivalent to 5-fluorouracil (5-FU) as a positive control agent, whereas the toxic effect of chalcone 9X in non-cancer cells was weaker than 5-FU. Molecular docking results showed that chalcone 9X could act on the active sites of pro-apoptotic proteins capspases-3 and -8 to induce apoptotic death of cancer cells. Our findings suggest that chalcone 9X might be considered a candidate compound of novel anticancer drug in the future. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. A Re-evaluation of CD22 Expression by Human Lung Cancer

    PubMed Central

    Pop, Laurentiu M.; Barman, Stephen; Shao, Chunli; Poe, Jonathan C.; Venturi, Guglielmo M.; Shelton, John M.; Pop, Iliodora V.; Gerber, David E.; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I.; Richardson, James A.; Minna, John D.; Tedder, Thomas F.; Vitetta, Ellen S.

    2014-01-01

    CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B cell receptor and its co-receptor CD19. Recently it was reported that most human lung cancer cells and cell lines express CD22 making it an important new lung cancer therapeutic target (Can Res 72:5556, 2012). The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by qRT-PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200–60,000- fold lower than those observed in the human CD22+ Burkitt’s lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by CD22 antibodies or our highly potent anti-CD22 immunotoxin. By contrast, CD22+ Daudi cells expressed high levels of CD22 mRNA and protein and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from over 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells and that these cells can not be killed by anti-CD22 immunotoxins. PMID:24395821

  9. Differential KrasV12 protein levels control a switch regulating lung cancer cell morphology and motility

    PubMed Central

    Schäfer, C.; Mohan, A.; Burford, W.; Driscoll, M. K.; Ludlow, A. T.; Wright, W. E.; Shay, J. W.; Danuser, G.

    2016-01-01

    Introduction Oncogenic Kras mutations are important drivers of lung cancer development and metastasis. They are known to activate numerous cellular signaling pathways implicated in enhanced proliferation, survival, tumorigenicity and motility during malignant progression. Objectives Most previous studies of Kras in cancer have focused on the comparison of cell states in the absence or presence of oncogenic Kras mutations. Here we show that differential expression of the constitutively active mutation KrasV12 has profound effects on cell morphology and motility that drive metastatic processes. Methods The study relies on lung cancer cell transformation models, patient-derived lung cancer cell lines, and human lung tumor sections combined with molecular biology techniques, live-cell imaging and staining methods. Results Our analysis shows two cell functional states driven by KrasV12 protein levels: a non-motile state associated with high KrasV12 levels and tumorigenicity, and a motile state associated with low KrasV12 levels and cell dissemination. Conversion between the states is conferred by differential activation of a mechano-sensitive double-negative feedback between KrasV12/ERK/Myosin II and matrix-adhesion signaling. KrasV12 expression levels change upon cues such as hypoxia and integrin-mediated cell-matrix adhesion, rendering KrasV12 levels an integrator of micro-environmental signals that translate into cellular function. By live cell imaging of tumor models we observe shedding of mixed high and low KrasV12 expressers forming multi-functional collectives with potentially optimal metastatic properties composed of a highly mobile and a highly tumorigenic unit. Discussion Together these data highlight previously unappreciated roles for the quantitative effects of expression level variation of oncogenic signaling molecules in conferring fundamental alterations in cell function regulation required for cancer progression. PMID:29057096

  10. A novel imidazopyridine PI3K inhibitor with anticancer activity in non-small cell lung cancer cells.

    PubMed

    Lee, Hyunseung; Kim, Soo Jung; Jung, Kyung Hee; Son, Mi Kwon; Yan, Hong Hua; Hong, Sungwoo; Hong, Soon-Sun

    2013-08-01

    Lung cancer is the leading cause of cancer-related mortality in the world, and non-small cell lung cancer (NSCLC) accounts for approximately 85% of all cases. Since more than 60% of NSCLC cases express the epidermal growth factor receptor (EGFR), EGFR tyrosine kinase inhibitors are used to treat NSCLC. However, due to the acquired resistance associated with EGFR-targeted therapy, other strategies for the treatment of NSCLC are urgently needed. Therefore, we investigated the anticancer effects of a novel phosphatidylinositol 3-kinase α (PI3Kα) inhibitor, HS-173, in human NSCLC cell lines. HS-173 demonstrated anti-proliferative effects in NSCLC cells and effectively inhibited the PI3K signaling pathway in a dose‑dependent manner. In addition, it induced cell cycle arrest at G2/M phase as well as apoptosis. Taken together, our results demonstrate that HS-173 exhibits anticancer activities, including the induction of apoptosis, by blocking the PI3K/Akt/mTOR pathway in human NSCLC cell lines. We, therefore, suggest that this novel drug could potentially be used for targeted NSCLC therapy.

  11. Customizing chemotherapy in non-small cell lung cancer: the promise is still unmet

    PubMed Central

    2015-01-01

    A combination of cytotoxic agents with cis-platin remains the cornerstone of treatment for the vast majority of patients with non-small cell lung cancer (NSCLC). Molecular analysis of the primary may lead better prognostication and eventually in more accurate therapeutic approaches. Data from retrospective analysis of randomized trials as well as large patients’ series have suggested that chemotherapy may be customized upon molecular-genetic analysis of the tumor cells. The Spanish Lung Cancer Group (SLCG) in collaboration with French lung Cancer Group (FLCG) had conduct randomized, phase III, biomarkers-driven trial and supported simultaneously a randomized phase II trial in collaborating centers in China. Despite the evidence from the preclinical data and the results from the retrospective studies, the results of these trials published recently in Annals of Oncology were in favor of ‘standard approach’. The present commentary tries to give some explanation for the disappointing results, provide potential solution for the future trials and explain why the vision of customizing treatment is still alive. PMID:26629440

  12. Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weina, E-mail: liweina228@163.com; He, Fei, E-mail: hesili1027@163.com

    2014-07-18

    Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lungmore » cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer.« less

  13. Nintedanib Compared With Placebo in Treating Against Radiation-Induced Pneumonitis in Patients With Non-small Cell Lung Cancer That Cannot Be Removed by Surgery and Are Undergoing Chemoradiation Therapy

    ClinicalTrials.gov

    2017-07-08

    Radiation-Induced Pneumonitis; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  14. [Expression and clinical significance of Pokemon in non-small cell lung cancer].

    PubMed

    Zhao, Zhihong; Wang, Shengfa; Zhang, Tiewa

    2007-12-20

    Proto-oncogene Pokemon is the special transcription inhibitor of ARF,which can regulate cell growth and differentiation by ARF-P53 path.It may be the important monitoring target of tumor because of being upstream region of many tumor suppressor genes and proto-oncogenes.The aim of this study is to explore the clinical significance of Pokemon gene in non-small cell lung cancer(NSCLC). Immunohistochemistry was applied to detect the expression of Pokemon protein in 92 cases of NSCLC and 20 cases of paracancerous lung tissues.Correlation between abnormal expression of Pokemon with pathologic characteristics and prognosis of NSCLC was analyzed. Pokemon was not expressed in paracancerous lung tissues and was found in 66 of 92(71.7%) cases of lung cancer tissues.Expression of Pokemon was closely related to TNM stages(P=0.011).Survival rate of patients with negative Pokemon expression was significantly higher than that of those with positive Pokemon expression(P=0.0015).Pokemon expression was demonstrated as independent prognostic factor of NSCLC. Pokemon is expressed in NSCLC and it may be identified as a new diagnostic marker.High expression of Pokemon may indicate poor prognosis of patients with NSCLC.

  15. Anti-lung cancer effects of novel ginsenoside 25-OCH(3)-PPD.

    PubMed

    Wang, Wei; Rayburn, Elizabeth R; Hang, Jie; Zhao, Yuqing; Wang, Hui; Zhang, Ruiwen

    2009-09-01

    20(S)-25-methoxyl-dammarane-3beta, 12beta, 20-triol (25-OCH(3)-PPD), a newly identified natural product from Panax notoginseng, exhibits activity against a variety of cancer cells. Herein, we report the effects of this compound on human A549, H358, and H838 lung cancer cells, and compare these effects with a control lung epithelial cell line, BEAS-2B. 25-OCH(3)-PPD decreased survival, inhibited proliferation, and induced apoptosis and G1 cell cycle arrest in the lung cancer cell lines. The P. notoginseng compound also decreased the levels of proteins associated with cell proliferation and cell survival. Moreover, 25-OCH(3)-PPD inhibited the growth of A549 lung cancer xenograft tumors. 25-OCH(3)-PPD demonstrated low toxicity to non-cancer cells, and no observable toxicity was seen when the compound was administered to animals. In conclusion, our preclinical data indicate that 25-OCH(3)-PPD is a potential therapeutic agent in vitro and in vivo, and further preclinical and clinical development of this agent for lung cancer is warranted.

  16. Histologic transformation from adenocarcinoma to both small cell lung cancer and squamous cell carcinoma after treatment with gefitinib: A case report.

    PubMed

    Yao, Yufeng; Zhu, Zhouyu; Wu, Yimin; Chai, Ying

    2018-05-01

    In the past decade, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) treatment had been an important therapy for treating advanced EGFR-mutated lung cancer patients. However, a large number of these patients with EGFR-TKIs treatment always acquired resistance to these drugs in one year. The histologic transformation is an important resistance mechanism. Here we reported a 41-year-old man with EGFR-mutated lung adenocarcinoma and he showed histologic transformation to both small-cell lung cancer (SCLC) and squamous cell carcinoma (SCC) after treatment of gefitinib. A case of EGFR-mutated lung cancer. Medical thoracoscopy examination was performed and the patient was diagnosed as a EGFR-mutated lung adenocarcinoma. Then gefitinib was administered orally at a dose of 250 mg daily. The patient received treatment with chemotherapy (etoposide 0.1 g day 2-5 +  cis-platinum 30 mg day 2-4) after acquiring resistance to gefitinib. The patient died in April 2017 that survived for 32 months from lung cancer was found for the first time. To the best of our knowledge, it is the first case of EGFR-mutated lung adenocarcinoma transforming to both SCLC and SCC which was treated with and responded to gefitinib.

  17. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells.

    PubMed

    Pearce, Martin C; Gamble, John T; Kopparapu, Prasad R; O'Donnell, Edmond F; Mueller, Monica J; Jang, Hyo Sang; Greenwood, Julie A; Satterthwait, Arnold C; Tanguay, Robert L; Zhang, Xiao-Kun; Kolluri, Siva Kumar

    2018-05-25

    Resistance to chemotherapy is a major cause of treatment failure and poor overall survival in patients with lung cancer. Identification of molecular targets present in resistant cancer cells is essential for addressing therapeutic resistance and prolonging lung cancer patient survival. Members of the B-cell lymphoma 2 (Bcl-2) family of proteins are associated with chemotherapeutic resistance. In this study, we found that pro-survival protein Bcl-2 is upregulated in paclitaxel resistant cells, potentially contributing to chemotherapy resistance. To exploit the increase in Bcl-2 expression for targeting therapy resistance, we investigated the effects of a peptide derived from the nuclear receptor Nur77 that converts Bcl-2 from an anti-apoptotic protein to a pro-apoptotic protein. The Nur77 derived peptide preferentially induced apoptosis in paclitaxel-resistant cancer cells with high expression of Bcl-2. This peptide also induced apoptosis of multidrug resistant H69AR lung cancer cells that express Bcl-2 and inhibited their growth in 3D spheroids. The Nur77 peptide strongly suppressed the growth of paclitaxel-resistant lung cancer cells in a zebrafish xenograft tumor model. Taken together, our data supports a new strategy for treating lung cancers that acquire resistance to chemotherapy through overexpression of Bcl-2.

  18. Pulmonary emphysema and tumor microenvironment in primary lung cancer.

    PubMed

    Murakami, Junichi; Ueda, Kazuhiro; Sano, Fumiho; Hayashi, Masataro; Nishimoto, Arata; Hamano, Kimikazu

    2016-02-01

    To clarify the relationship between the presence of pulmonary emphysema and tumor microenvironment and their significance for the clinicopathologic aggressiveness of non-small cell lung cancer. The subjects included 48 patients with completely resected and pathologically confirmed stage I non-small cell lung cancer. Quantitative computed tomography was used to diagnose pulmonary emphysema, and immunohistochemical staining was performed to evaluate the matrix metalloproteinase (MMP) expression status in the intratumoral stromal cells as well as the microvessel density (MVD). Positive MMP-9 staining in the intratumoral stromal cells was confirmed in 17 (35%) of the 48 tumors. These 17 tumors were associated with a high MVD, frequent lymphovascular invasion, a high proliferative activity, and high postoperative recurrence rate (all, P < 0.05). The majority of the tumors (13 of 17) arose in patients with pulmonary emphysema (P = 0.02). Lung cancers arising from pulmonary emphysema were also associated with a high MVD, proliferative activity, and postoperative recurrence rate (all, P < 0.05). The MMP-9 expression in intratumoral stromal cells is associated with the clinicopathologic aggressiveness of lung cancer and is predominantly identified in tumors arising in emphysematous lungs. Further studies regarding the biological links between the intratumoral and extratumoral microenvironment will help to explain why lung cancers originating in emphysematous lung tissues are associated with a poor prognosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. LncRNA NNT-AS1 promotes the proliferation, and invasion of lung cancer cells via regulating miR-129-5p expression.

    PubMed

    Shen, Qin; Jiang, Yongjie

    2018-05-29

    Lung cancer is the leading cause of cancer related-deaths worldwide. Long non-coding RNAs (lncRNAs) are identified as important therapeutic targets in treatment of lung cancer. However, the roles of NNT-AS1 in lung cancer remain unclear. In the present study, we showed that the expression of NNT-AS1 was upregulated in non-small cell lung cancer (NSCLC) tissues and cell lines. High NNT-AS1 expression was associated with advanced tumor stage, and lymph node metastasis of NSCLC patients. In vitro function assays showed that NNT-AS1 inhibition could significantly reduce lung cancer cells proliferation and invasion ability. Then, we identified that NNT-AS1 could function as a competing endogenous RNA (ceRNA) by sponging miR-129-5p in lung cancer. In addition, we showed that alteration in cell proliferation and invasion caused by NNT-AS1 downregulation could be rescued by miR-129-5p inhibitors. Thus, our study indicated that lncRNA NNT-AS1 exerted functions in NSCLC via altering NNT-AS1/miR-129-5p axis which provided a novel therapeutic target for lung cancer treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Regular aspirin use and lung cancer risk.

    PubMed

    Moysich, Kirsten B; Menezes, Ravi J; Ronsani, Adrienne; Swede, Helen; Reid, Mary E; Cummings, K Michael; Falkner, Karen L; Loewen, Gregory M; Bepler, Gerold

    2002-11-26

    Although a large number of epidemiological studies have examined the role of aspirin in the chemoprevention of colon cancer and other solid tumors, there is a limited body of research focusing on the association between aspirin and lung cancer risk. We conducted a hospital-based case-control study to evaluate the role of regular aspirin use in lung cancer etiology. Study participants included 868 cases with primary, incident lung cancer and 935 hospital controls with non-neoplastic conditions who completed a comprehensive epidemiological questionnaire. Participants were classified as regular aspirin users if they had taken the drug at least once a week for at least one year. Results indicated that lung cancer risk was significantly lower for aspirin users compared to non-users (adjusted OR = 0.57; 95% CI 0.41-0.78). Although there was no clear evidence of a dose-response relationship, we observed risk reductions associated with greater frequency of use. Similarly, prolonged duration of use and increasing tablet years (tablets per day x years of use) was associated with reduced lung cancer risk. Risk reductions were observed in both sexes, but significant dose response relationships were only seen among male participants. When the analyses were restricted to former and current smokers, participants with the lowest cigarette exposure tended to benefit most from the potential chemopreventive effect of aspirin. After stratification by histology, regular aspirin use was significantly associated with reduced risk of small cell lung cancer and non-small cell lung cancer. Overall, results from this hospital-based case-control study suggest that regular aspirin use may be associated with reduced risk of lung cancer.

  1. Regular aspirin use and lung cancer risk

    PubMed Central

    Moysich, Kirsten B; Menezes, Ravi J; Ronsani, Adrienne; Swede, Helen; Reid, Mary E; Cummings, K Michael; Falkner, Karen L; Loewen, Gregory M; Bepler, Gerold

    2002-01-01

    Background Although a large number of epidemiological studies have examined the role of aspirin in the chemoprevention of colon cancer and other solid tumors, there is a limited body of research focusing on the association between aspirin and lung cancer risk. Methods We conducted a hospital-based case-control study to evaluate the role of regular aspirin use in lung cancer etiology. Study participants included 868 cases with primary, incident lung cancer and 935 hospital controls with non-neoplastic conditions who completed a comprehensive epidemiological questionnaire. Participants were classified as regular aspirin users if they had taken the drug at least once a week for at least one year. Results Results indicated that lung cancer risk was significantly lower for aspirin users compared to non-users (adjusted OR = 0.57; 95% CI 0.41–0.78). Although there was no clear evidence of a dose-response relationship, we observed risk reductions associated with greater frequency of use. Similarly, prolonged duration of use and increasing tablet years (tablets per day × years of use) was associated with reduced lung cancer risk. Risk reductions were observed in both sexes, but significant dose response relationships were only seen among male participants. When the analyses were restricted to former and current smokers, participants with the lowest cigarette exposure tended to benefit most from the potential chemopreventive effect of aspirin. After stratification by histology, regular aspirin use was significantly associated with reduced risk of small cell lung cancer and non-small cell lung cancer. Conclusions Overall, results from this hospital-based case-control study suggest that regular aspirin use may be associated with reduced risk of lung cancer. PMID:12453317

  2. The role of endobronchial ultrasound versus mediastinoscopy for non-small cell lung cancer.

    PubMed

    Czarnecka-Kujawa, Katarzyna; Yasufuku, Kazuhiro

    2017-03-01

    This review provides an update on the current role of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) and mediastinoscopy (Med) in assessment of patients with non-small cell lung cancer (NSCLC). Invasive mediastinal lymph node (LN) staging is the major application for both of these techniques. Up until recently, Med was the gold standard for invasive mediastinal LN staging in NSCLC. However, EBUS-TBNA has shown to be equivalent, and in some studies better than Med for invasive staging of lung cancer. EBUS-TBNA offers access to N1 LNs and development of the thin convex probe EBUS (TCP-EBUS) will expand EBUS-TBNA access from the paratracheal region and central airways to more distal parabronchial regions allowing for more extensive N1 LN assessment and sampling more distal lung tumors. EBUS-TBNA is more cost-effective than Med and it is currently recommended as the test of first choice for invasive mediastinal LN staging in lung cancer. Confirmatory Med should be performed selectively in patients with high pretest probability of metastatic disease. Addition of esophageal ultrasound fine needle aspiration (EUS-FNA) may increase diagnostic yield of EBUS-TBNA mediastinal staging. Both Med and EBUS-TBNA can be used in primary lung cancer diagnosis, restaging of the mediastinum following neoadjuvant therapy and in diagnosis of lung cancer recurrence. In the future, a combination of EBUS-TBNA with or without EUS-FNA and Med is most likely going to provide the most optimal invasive assessment of the mediastinum in patients with lung cancer. The decision on test choice and sequence should be made on a case-by-case basis and factoring in local resources and expertise.

  3. Nanostructured delivery system for Suberoylanilide hydroxamic acid against lung cancer cells.

    PubMed

    Sankar, Renu; Karthik, Selvaraju; Subramanian, Natesan; Krishnaswami, Venkateshwaran; Sonnemann, Jürgen; Ravikumar, Vilwanathan

    2015-06-01

    With the objective to provide a potential approach for the treatment of lung cancer, nanotechnology based Suberoylanilide hydroxamic acid (SAHA)-loaded Poly-d, l-lactide-co glycolide (PLGA) nanoparticles have been formulated using the nanoprecipitation technique. The acquired nanoparticles were characterized by various throughput techniques and the analyses showed the presence of smooth and spherical shaped SAHA-loaded PLGA nanoparticles, with an encapsulation efficiency of 44.8% and a particle size of 208nm. The compatibility between polymer and drug in the formulation was tested using FT-IR, Micro-Raman spectrum and DSC thermogram analyses, revealing a major interaction between the drug and polymer. The in vitro drug release from the SAHA-loaded PLGA nanoparticles was found to be biphasic with an initial burst followed by a sustained release for up to 50h. In experiments using the lung cancer cell line A549, SAHA-loaded PLGA nanoparticles demonstrated a superior antineoplastic activity over free SAHA. In conclusion, SAHA-loaded PLGA nanoparticles may be a useful novel approach for the treatment of lung cancer. Copyright © 2015. Published by Elsevier B.V.

  4. Blockade of Tumor-Expressed PD-1 promotes lung cancer growth

    PubMed Central

    Du, Shisuo; McCall, Neal; Park, Kyewon; Guan, Qing; Fontina, Paolo; Ertel, Adam; Zhan, Tingting; Dicker, Adam P.; Lu, Bo

    2018-01-01

    ABSTRACT Anti-PD-1 immunotherapy is the standard of care for treating many patients with non-small cell lung cancer (NSCLC), yet mechanisms of treatment failure are emerging. We present a case of NSCLC, who rapidly progressed during a trial (NCT02318771) combining palliative radiotherapy and pembrolizumab. Planned tumor biopsy demonstrated PD-1 expression by NSCLC cells. We validated this observation by detecting PD-1 transcript in lung cancer cells and by co-localizing PD-1 and lung cancer-specific markers in resected lung cancer tissues. We further investigated the biological role of cancer-intrinsic PD-1 in a mouse lung cancer cell line, M109. Knockout or antibody blockade of PD-1 enhanced M109 viability in-vitro, while PD-1 overexpression and exposure to recombinant PD-L1 diminished viability. PD-1 blockade accelerated growth of M109-xenograft tumors with increased proliferation and decreased apoptosis in immune-deficient mice. This represents a first-time report of NSCLC-intrinsic PD-1 expression and a potential mechanism by which PD-1 blockade may promote cancer growth. PMID:29632720

  5. Blockade of Tumor-Expressed PD-1 promotes lung cancer growth.

    PubMed

    Du, Shisuo; McCall, Neal; Park, Kyewon; Guan, Qing; Fontina, Paolo; Ertel, Adam; Zhan, Tingting; Dicker, Adam P; Lu, Bo

    2018-01-01

    Anti-PD-1 immunotherapy is the standard of care for treating many patients with non-small cell lung cancer (NSCLC), yet mechanisms of treatment failure are emerging. We present a case of NSCLC, who rapidly progressed during a trial (NCT02318771) combining palliative radiotherapy and pembrolizumab. Planned tumor biopsy demonstrated PD-1 expression by NSCLC cells. We validated this observation by detecting PD-1 transcript in lung cancer cells and by co-localizing PD-1 and lung cancer-specific markers in resected lung cancer tissues. We further investigated the biological role of cancer-intrinsic PD-1 in a mouse lung cancer cell line, M109. Knockout or antibody blockade of PD-1 enhanced M109 viability in-vitro, while PD-1 overexpression and exposure to recombinant PD-L1 diminished viability. PD-1 blockade accelerated growth of M109-xenograft tumors with increased proliferation and decreased apoptosis in immune-deficient mice. This represents a first-time report of NSCLC-intrinsic PD-1 expression and a potential mechanism by which PD-1 blockade may promote cancer growth.

  6. MiroRNA-188 Acts as Tumor Suppressor in Non-Small-Cell Lung Cancer by Targeting MAP3K3.

    PubMed

    Zhao, Lili; Ni, Xin; Zhao, Linlin; Zhang, Yao; Jin, Dan; Yin, Wei; Wang, Dandan; Zhang, Wei

    2018-04-02

    Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer. MicroRNAs have been increasingly implicated in NSCLC and may serve as novel therapeutic targets to combat cancer. Here we investigated the functional implication of miR-188 in NSCLC. We first analyzed miR-188 expression in both NSCLC clinical samples and cancer cell lines. Next we investigated its role in A549 and H2126 cells with cell proliferation, migration, and apoptosis assays. To extend the in vitro study, we employed both xenograft model and LSL- K-ras G12D lung cancer model to examine the role of miR-188 in tumorigenesis. Last we tested MAP3K3 as miR-188 target in NSCLC model. MiR-188 expression was significantly downregulated at the NSCLC tumor sites and lung cancer cells. In vitro transfection of miR-188 reduced cell proliferation and migration potential and promoted cell apoptosis. In xenograft model, miR-188 inhibited tumor growth derived from cancer cells. Intranasal miR-188 administration reduced tumor formation in NSCLC animal model. MAP3K3 was validated as direct target of miR-188. Knocking down MAP3K3 in mice also inhibited tumorigenesis in LSL- K-ras G12D model. Our results demonstrate that miR-188 and its downstream target MAP3K3 could be a potential therapeutic target for NSCLC.

  7. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cellmore » lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.« less

  8. Bisphenol A stimulates human lung cancer cell migration via upregulation of matrix metalloproteinases by GPER/EGFR/ERK1/2 signal pathway.

    PubMed

    Zhang, Kun-Shui; Chen, Hui-Qing; Chen, Yi-Shen; Qiu, Kai-Feng; Zheng, Xiao-Bin; Li, Guo-Cheng; Yang, Hai-Di; Wen, Cui-Ju

    2014-10-01

    Lung cancer is one of the leading causes of cancer deaths worldwide. Recent evidences indicated that bisphenol A (BPA), a wide contaminant with endocrine disrupting activity, could enhance the susceptibility of carcinogenesis. Although there are increasing opportunities for lung cells exposure to BPA via inhalation, there is no study concerning the effects of BPA on the development of lung cancer. The present study revealed that BPA less than 10(-4)M had limited effects on the proliferation of lung cancer A549 cells, however, BPA treatment significantly stimulated the in vitro migration and invasion of cells combing with the morphological changes and up regulation of matrix metalloproteinase-2 (MMP-2) and MMP-9. G-protein-coupled estrogen receptor (GPER), while not estrogen receptor α/β (ERα/β), mediated the BPA induced up regulation of MMPs. Further, BPA treatment induced rapid activation of ERK1/2 via GPER/EGFR. GPER/ERFR/ERK1/2 mediated the BPA induced upregulation of MMPs and in vitro migration of lung cancer A549 cells. In summary, our data presented here revealed for the first time that BPA can promote the in vitro migration and invasion of lung cancer cells via upregulation of MMPs and GPER/EGFR/ERK1/2 signals, which mediated these effects. This study suggested that more attention should be paid on the BPA and other possible environmental estrogens induced development of lung cancer. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Serum total cholesterol and triglycerides levels in patients with lung cancer.

    PubMed

    Siemianowicz, K; Gminski, J; Stajszczyk, M; Wojakowski, W; Goss, M; Machalski, M; Telega, A; Brulinski, K; Magiera-Molendowska, H

    2000-02-01

    Epidemiological studies indicate that low serum total cholesterol level may increase the risk of death due to cancer, mainly lung cancer. The aim of our study was to evaluate serum levels of total cholesterol (TC) and triglycerides (TG) in patients with squamous cell and small cell lung cancer and their dependence on the histological type and the clinical stage of the neoplasm. Lung cancer patients (n=135) and healthy controls (n=39) entered the study. All lung cancer patients had higher rate of hypocholesterolemia and lower TC and TG levels than the control group. TC concentration was lower in lung cancer patients and in both histological types in comparison with the control group, TG level was lower only in patients with squamous cell lung cancer. There were no statistically significant differences of TC and TG levels between the histological types, or between the clinical stages of each histological type.

  10. Sapanisertib and Osimertinib in Treating Patients With Stage IV EGFR Mutation Positive Non-small Cell Lung Cancer After Progression on a Previous EGFR Tyrosine Kinase Inhibitor

    ClinicalTrials.gov

    2018-04-25

    EGFR Activating Mutation; EGFR Exon 19 Deletion Mutation; EGFR NP_005219.2:p.G719X; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.L861Q; EGFR T790M Mutation Negative; Recurrent Non-Small Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  11. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good?

    PubMed

    Abbas, Hussein H K; Alhamoudi, Kheloud M H; Evans, Mark D; Jones, George D D; Foster, Steven S

    2018-04-16

    Targeted therapies are based on exploiting cancer-cell-specific genetic features or phenotypic traits to selectively kill cancer cells while leaving normal cells unaffected. Oxidative stress is a cancer hallmark phenotype. Given that free nucleotide pools are particularly vulnerable to oxidation, the nucleotide pool sanitising enzyme, MTH1, is potentially conditionally essential in cancer cells. However, findings from previous MTH1 studies have been contradictory, meaning the relevance of MTH1 in cancer is still to be determined. Here we ascertained the role of MTH1 specifically in lung cancer cell maintenance, and the potential of MTH1 inhibition as a targeted therapy strategy to improve lung cancer treatments. Using siRNA-mediated knockdown or small-molecule inhibition, we tested the genotoxic and cytotoxic effects of MTH1 deficiency on H23 (p53-mutated), H522 (p53-mutated) and A549 (wildtype p53) non-small cell lung cancer cell lines relative to normal MRC-5 lung fibroblasts. We also assessed if MTH1 inhibition augments current therapies. MTH1 knockdown increased levels of oxidatively damaged DNA and DNA damage signaling alterations in all lung cancer cell lines but not normal fibroblasts, despite no detectable differences in reactive oxygen species levels between any cell lines. Furthermore, MTH1 knockdown reduced H23 cell proliferation. However, unexpectedly, it did not induce apoptosis in any cell line or enhance the effects of gemcitabine, cisplatin or radiation in combination treatments. Contrastingly, TH287 and TH588 MTH1 inhibitors induced apoptosis in H23 and H522 cells, but only increased oxidative DNA damage levels in H23, indicating that they kill cells independently of DNA oxidation and seemingly via MTH1-distinct mechanisms. MTH1 has a NSCLC-specific p53-independent role for suppressing DNA oxidation and genomic instability, though surprisingly the basis of this may not be reactive-oxygen-species-associated oxidative stress. Despite this, overall

  12. An alternative way to initiate Notch1 signaling in non-small cell lung cancer

    PubMed Central

    Yang, Yi-Lin; Jablons, David

    2014-01-01

    Non-small cell lung cancer (NSCLC) cells activate Notch1 signaling to promote cell proliferation and facilitate their survival. It now emerges that endothelial Delta-like ligand 4 (Dll4) may mediate Notch1 activation and inhibit tumor cell growth. PMID:25806306

  13. Aromatase inhibitors in human lung cancer therapy.

    PubMed

    Weinberg, Olga K; Marquez-Garban, Diana C; Fishbein, Michael C; Goodglick, Lee; Garban, Hermes J; Dubinett, Steven M; Pietras, Richard J

    2005-12-15

    Lung cancer is the most common cancer in the world. It is a highly lethal disease in women and men, and new treatments are urgently needed. Previous studies implicated a role of estrogens and estrogen receptors in lung cancer progression, and this steroidal growth-stimulatory pathway may be promoted by tumor expression and activity of aromatase, an estrogen synthase. We found expression of aromatase transcripts and protein in human non-small cell lung cancer (NSCLC) cells using reverse transcription-PCR and Western immunoblots, respectively. Aromatase staining by immunohistochemistry was detected in 86% of archival NSCLC tumor specimens from the clinic. Further, biological activity of aromatase was determined in NSCLC tumors using radiolabeled substrate assays as well as measure of estradiol product using ELISA. Significant activity of aromatase occurred in human NSCLC tumors, with enhanced levels in tumor cells compared with that in nearby normal cells. Lung tumor aromatase activity was inhibited by anastrozole, an aromatase inhibitor, and treatment of tumor cells in vitro with anastrozole led to significant suppression of tumor cell growth. Similarly, among ovariectomized nude mice with A549 lung tumor xenografts, administration of anastrozole by p.o. gavage for 21 days elicited pronounced inhibition of tumor growth in vivo. These findings show that aromatase is present and biologically active in human NSCLCs and that tumor growth can be down-regulated by specific inhibition of aromatase. This work may lead to development of new treatment options for patients afflicted with NSCLC.

  14. 78 FR 40485 - Lung Cancer Patient-Focused Drug Development; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... patients' perspectives for the two main types of lung cancer (small-cell and non-small cell lung cancer) on..., because of lung cancer? (Examples may include sleeping through the night, climbing stairs, household...] Lung Cancer Patient-Focused Drug Development; Extension of Comment Period AGENCY: Food and Drug...

  15. O-GlcNAcylation of NF-κB Promotes Lung Metastasis of Cervical Cancer Cells via Upregulation of CXCR4 Expression.

    PubMed

    Ali, Akhtar; Kim, Sung Hwan; Kim, Min Jun; Choi, Mee Young; Kang, Sang Soo; Cho, Gyeong Jae; Kim, Yoon Sook; Choi, Jun-Young; Choi, Wan Sung

    2017-07-31

    C-X-C chemokine receptor 4 (CXCR4) stimulates cancer metastasis. NF-κB regulates CXCR4 expression in cancer cells, and O-GlcNAc modification of NF-κB promotes its transcriptional activity. Here, we determined whether CXCR4 expression is affected by O-GlcNAcylation of NF-κB in lung metastasis of cervical cancer. We found elevated levels of O-linked-N-actylglucosamine transferase (OGT) and O-GlcNAcylation in cervical cancer cells compared to those in non-malignant epithelial cells and detected increased expression of NF-κB p65 (p65) and CXCR4 in cervical cancer cells. Knockdown of OGT inhibited the O-GlcNAcylation of p65 and decreased CXCR4 expression levels in HeLa cells. Thiamet G treatment increased O-GlcNAcylated p65, which subsequently enhanced CXCR4 expression levels. Inhibition of O-GlcNAcylation by 6-Diazo-5-oxo-L-norleucine (DON) treatment decreased p65 activation, eventually inhibiting CXCR4 expression in HeLa cells. Lung tissues from mice engrafted with OGT-knockdown HeLa cells (shOGT) exhibited lower expression of Ki-67 and HPV E6 and E7 oncogenes compared to lung tissues from mice engrafted with control HeLa cells (shCTL). In addition, lung tissues from mice engrafted with shOGT cells exhibited lower p65 and CXCR4 immunoreactivity compared to tissues from mice engrafted with shCTL cells. Taken together, our data suggest that p65 O-GlcNAcylation promotes lung metastasis of cervical cancer cells by activating CXCR4 expression.

  16. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    PubMed

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. UTSW Researchers Identify Potential Therapeutic Targets for High-grade Neuroendocrine Lung Cancers | Office of Cancer Genomics

    Cancer.gov

    Neuroendocrine specific lung cancers comprise about 10% of non-small cell lung cancer (NSCLC) cases and all small cell lung cancer (SCLC) cases. Studies have previously shown that the transcription factor achaete-scute homolog 1 (ASCL1) is a cancer “lineage” factor required for the development and survival of SCLC, and is highly expressed in neuroendocrine-specific NSCLC (NE-NSCLC).

  18. Atezolizumab for the treatment of non-small cell lung cancer.

    PubMed

    Santini, Fernando C; Rudin, Charles M

    2017-09-01

    The immune system can restrain or promote cancer development and growth. Antibodies targeting immune checkpoints have revolutionized cancer treatment. Among the best responses have been in non-small cell lung cancer (NSCLC) which is largely caused by chronic exposure to carcinogens; associated with high neoantigen creation and sensitization to immune recognition. Atezolizumab was the first approved antibody that targets the PD-1 ligand (PD-L1). Areas covered: This drug profile article covers the basics of the cancer-immunity cycle and reviews some aspects of innate and adaptive immunology. We discuss the discovery of PD-L1 and PD-L2 while highlight the potential differences in targeting PD-L1 versus PD-1. In addition, we briefly summarized the available pre-clinical and clinical data of atezolizumab use in NSCLC. A special section covers the challenges of PD-L1 immunohistochemistry assay. Expert commentary: PD-1:PD-L1 blockade has taken the lead in the immunotherapeutics field and represents the backbone of developing combination immunotherapies. Atezolizumab represents a step forward in the treatment of advanced NSCLC, nonetheless PD1:PD-L1 blockade in early-stage lung cancer is still a matter of debate.

  19. Aberrant microRNA-137 promoter methylation is associated with lymph node metastasis and poor clinical outcomes in non-small cell lung cancer

    PubMed Central

    Min, Lingfeng; Wang, Fang; Hu, Suwei; Chen, Yong; Yang, Junjun; Liang, Sudong; Xu, Xingxiang

    2018-01-01

    MicroRNA-137 (miR-137) functions as a tumor suppressor and is silenced by aberrant promoter methylation. Previous studies have demonstrated that miR-137 is downregulated in lung cancer. The purpose of the present study was to investigate miR-137 promoter methylation and to assess its prognostic value in non-small cell lung cancer (NSCLC). The expression of miR-137 was analyzed inhuman lung cancer A549 and H1299 cells and normal bronchial epithelial BEAS-2B cells, 10 paired formalin-fixed paraffin-embedded lung cancer and normal tissue samples, and 56 archived paraffin-embedded lung cancer tissues. Quantitative methylation-specific polymerase chain reaction analysis was used to assess the miR-137 methylation status. The associations between miR-137 promoter methylation and the clinicopathological features and prognosis of patients with NSCLC (n=56) were analyzed using analysis of variance. miR-137 was markedly downregulated in lung cancer cells and lung cancer tissue specimens compared with expression in BEAS-2B cells and matched adjacent normal lung tissues. A significant negative correlation between miR-137 expression and miR-137 promoter methylation was observed in human lung cancer tissues (r=−0.343; P=0.01). Smoking, lymph node metastasis and advanced clinical stage were associated with significantly lower expression of miR-137 in variance analysis. High levels of miR-137 promoter methylation were associated with a significantly poorer disease-free survival rate (P=0.034), but were not associated with overall survival, in Kaplan-Meier analysis and univariate analysis. In conclusion, the results of the present study indicated that miR-137 is downregulated and that its promoter is aberrantly methylated in lung cancer, and that high levels of miR-137 promoter methylation may have prognostic value for poor disease-free survival. PMID:29740491

  20. The antiproliferative effect of C2-ceramide on lung cancer cells through apoptosis by inhibiting Akt and NFκB.

    PubMed

    Lin, I-Ling; Chou, Han-Lin; Lee, Jin-Ching; Chen, Feng-Wei; Fong, Yao; Chang, Wei-Chiao; Huang, Hurng Wern; Wu, Chang-Yi; Chang, Wen-Tsan; Wang, Hui-Min David; Chiu, Chien-Chih

    2014-01-06

    The anticancer effects of ceramide have been reported in many types of cancers but less in lung cancer. In this study, we used C2-ceramide to further investigate its possible anticancer effects and mechanisms on non-small cell lung cancer (NSCLC) H1299 cells. The result of cell proliferation in terms of trypan blue assay showed high dose of C2-ceramide inhibited cell survival after 24 h treatment. The flow cytometry-based assays indicated the effect of apoptosis, chromatin condensation, and G1 arrest in terms of Annexin V/propidium iodide (PI), DAPI, and PI stainings, respectively. Moreover, the decreased protein level of p-Akt, p-NFκB, survivin and cyclin A2 were detected by Western blot assay. Taken together, these results indicated the antiproliferative effect of C2-ceramide is majorly responsible for cell apoptosis in lung cancer H1299 cells.

  1. Gefitinib in Treating Patients With Metastatic or Unresectable Head and Neck Cancer or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-11

    Anaplastic Thyroid Cancer; Insular Thyroid Cancer; Metastatic Parathyroid Cancer; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Parathyroid Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Thyroid Cancer; Recurrent Verrucous Carcinoma of the Larynx; Stage III Follicular Thyroid Cancer; Stage III Papillary Thyroid Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Larynx; Stage IIIB Non-small Cell Lung Cancer; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVA Basal Cell Carcinoma of the Lip; Stage IVA Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Follicular Thyroid Cancer; Stage IVA Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVA Lymphoepithelioma of the Oropharynx; Stage IVA Midline Lethal Granuloma of the Paranasal Sinus

  2. Long non-coding RNA PICART1 suppresses proliferation and promotes apoptosis in lung cancer cells by inhibiting JAK2/STAT3 signaling.

    PubMed

    Zhao, J M; Cheng, W; He, X G; Liu, Y L; Wang, F F; Gao, Y F

    2018-06-26

    Lung cancer remains the most common cause of tumor-related death worldwide. Recent studies have revealed that long non-coding RNAs (lncRNAs) are involved in the development of various cancers, including lung cancer. This study aimed to investigate the effect and the molecular basis of lncRNA PICART1 on lung cancer. We first assessed the PICART1 expression in lung cancer in vitro and vivo by qRT-PCR. Then the expression of PICART1 in SPC-A-1 and NCI-H1975 cell lines was inhibited and overexpressed by transient transfections. Thereafter, cell viability, cell cycle, migration and apoptosis were respectively measured by MTT, Transwell and flow cytometry assay. Furthermore, qRT-PCR and western blot analysis were mainly performed to assess the expression levels of apoptosis- and migration-related proteins and JAK2/STAT3 pathway proteins. Tumor formation was measured by xenograft tumor model assay in vivo. PICART1 expression was down-regulated in human lung cancer tissues and cell lines. Knockdown of PICART1 increased cell viability of lung cancer cell lines. However, PICART1 overexpression inhibited cell cycle progression and promoted apoptosis in SPC-A-1 and NCI-H1975 cell lines. PICART1 overexpression also inhibited migration, as evidenced by up-regulation of E-cadherin, and down-regulation of Twist1, MMP2 and MMP9. Furthermore, we found PICART1 inhibition may regulate cell apoptosis and migration through activating JAK2/STAT3 pathway. In vivo experiments revealed that PICART1 knockdown significantly promoted tumor formation.This study demonstrates that PICART1 overexpression represents an anti-growth and anti-metastasis role in lung cancer cells. Additionally, PICART1 acts as a tumor suppressor may be via regulation of JAK2/STAT3 pathway.

  3. NRF2-regulated metabolic gene signature as a prognostic biomarker in non-small cell lung cancer

    PubMed Central

    Namani, Akhileshwar; Cui, Qin Qin; Wu, Yihe; Wang, Hongyan; Wang, Xiu Jun; Tang, Xiuwen

    2017-01-01

    Mutations in Kelch-like ECH-associated protein 1 (KEAP1) cause the aberrant activation of nuclear factor erythroid-derived 2-like 2 (NRF2), which leads to oncogenesis and drug resistance in lung cancer cells. Our study was designed to identify the genes involved in lung cancer progression targeted by NRF2. A series of microarray experiments in normal and cancer cells, as well as in animal models, have revealed regulatory genes downstream of NRF2 that are involved in wide variety of pathways. Specifically, we carried out individual and combinatorial microarray analysis of KEAP1 overexpression and NRF2 siRNA-knockdown in a KEAP1 mutant-A549 non-small cell lung cancer (NSCLC) cell line. As a result, we identified a list of genes which were mainly involved in metabolic functions in NSCLC by using functional annotation analysis. In addition, we carried out in silico analysis to characterize the antioxidant responsive element sequences in the promoter regions of known and putative NRF2-regulated metabolic genes. We further identified an NRF2-regulated metabolic gene signature (NRMGS) by correlating the microarray data with lung adenocarcinoma RNA-Seq gene expression data from The Cancer Genome Atlas followed by qRT-PCR validation, and finally showed that higher expression of the signature conferred a poor prognosis in 8 independent NSCLC cohorts. Our findings provide novel prognostic biomarkers for NSCLC. PMID:29050246

  4. Cell-type specificity of lung cancer associated with low-dose soil heavy metal contamination in Taiwan: An ecological study

    PubMed Central

    2013-01-01

    Background Numerous studies have examined the association between heavy metal contamination (including arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], nickel [Ni], lead [Pb], and zinc [Zn]) and lung cancer. However, data from previous studies on pathological cell types are limited, particularly regarding exposure to low-dose soil heavy metal contamination. The purpose of this study was to explore the association between soil heavy metal contamination and lung cancer incidence by specific cell type in Taiwan. Methods We conducted an ecological study and calculated the annual averages of eight soil heavy metals (i.e., As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) by using data from the Taiwan Environmental Protection Administration from1982 to 1986. The age-standardized incidence rates of lung cancer according to two major pathological types (adenocarcinoma [AC] and squamous cell carcinoma [SCC]) were obtained from the National Cancer Registry Program conducted in Taiwan from 2001 to 2005. A geographical information system was used to plot the maps of soil heavy metal concentration and lung cancer incidence rates. Poisson regression models were used to obtain the adjusted relative ratios (RR) and 95% confidence intervals (CI) for the lung cancer incidence associated with soil heavy metals. Results For males, the trend test for lung SCC incidence caused by exposure to Cr, Cu, Hg, Ni, and Zn showed a statistically significant dose–response relationship. However, for lung AC, only Cu and Ni had a significant dose–response relationship. As for females, those achieving a statistically significant dose–response relationship for the trend test were Cr (P = 0.02), Ni (P = 0.02), and Zn (P= 0.02) for lung SCC, and Cu (P < 0.01) and Zn (P = 0.02) for lung AC. Conclusion The current study suggests that a dose–response relationship exists between low-dose soil heavy metal concentration and lung cancer occurrence by specific cell-type; however, the relevant

  5. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Qing; Yu, Tao; Ren, Yao-Yao

    2014-11-07

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 ismore » down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.« less

  6. Targeting HER2 in the treatment of non-small cell lung cancer.

    PubMed

    Mar, Nataliya; Vredenburgh, James J; Wasser, Jeffrey S

    2015-03-01

    Oncogenic driver mutations have emerged as major treatment targets for molecular therapies in a variety of cancers. HER2 positivity has been well-studied in breast cancer, but its importance is still being explored in non-small cell lung cancer (NSCLC). Laboratory methods for assessment of HER2 positivity in NSCLC include immunohistochemistry (IHC) for protein overexpression, fluorescent in situ hybridization (FISH) for gene amplification, and next generation sequencing (NGS) for gene mutations. The prognostic and predictive significance of these tests remain to be validated, with an emerging association between HER2 gene mutations and response to HER2 targeted therapies. Despite the assay used to determine the HER2 status of lung tumors, all patients with advanced HER2 positive lung adenocarcinoma should be evaluated for treatment with targeted agents. Several clinical approaches for inclusion of these drugs into patient treatment plans exist, but there is no defined algorithm specific to NSCLC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells.

    PubMed

    Liu, Jing; Xiao, Zhijie; Wong, Sunny Kit-Man; Tin, Vicky Pui-Chi; Ho, Ka-Yan; Wang, Junwen; Sham, Mai-Har; Wong, Maria Pik

    2013-10-01

    Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.

  8. 6 Common Cancers - Lung Cancer

    MedlinePlus

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents For ... Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the next ...

  9. Neutral endopeptidase: variable expression in human lung, inactivation in lung cancer, and modulation of peptide-induced calcium flux.

    PubMed

    Cohen, A J; Bunn, P A; Franklin, W; Magill-Solc, C; Hartmann, C; Helfrich, B; Gilman, L; Folkvord, J; Helm, K; Miller, Y E

    1996-02-15

    Neutral endopeptidase (NEP; CALLA, CD10, EC 3.4.24.11) is a cell surface endopeptidase that hydrolyses bioactive peptides, including the bombesin-like peptides, as well as other neuropeptides. Bombesin-like peptides and other neuropeptides are autocrine growth factors for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Low expression of NEP has been reported in SCLC and NSCLC cell lines. NEP inhibition has been shown to increase proliferation in one cell line. To date, NEP expression has not been quantitatively evaluated in normal adult lung, SCLC or NSCLC tumors, paired uninvolved lung from the same patient, or in other pulmonary neoplasms such as mesotheliomas and carcinoids. We examined the expression of NEP in these tissues and human cell lines using immunohistochemistry, flow cytometry, enzyme activity, ELISA, Western blot, and reverse transcription (RT)-PCR. Uninvolved lung tissue from different individuals displayed considerable variation in NEP activity and protein. By immunohistochemistry, NEP expression was detectable in alveolar and airway epithelium, fibroblasts of normal lung, and in mesotheliomas, whereas it was undetectable in most SCLC, adenocarcinoma, squamous cell carcinoma, and carcinoid tumors of the lung. NEP activity and protein levels were lower in all SCLC and adenocarcinoma tumors when compared to adjacent uninvolved lung, often at levels consistent with expression derived from contaminating stroma. NEP expression and activity were reduced or undetectable in most SCLC and lung adenocarcinoma cell lines. NEP mRNA by RT-PCR was not expressed or was in low abundance in the majority of lung cancer cell lines. The majority of lung tumors did not express NEP by RT-PCR as compared with normal adjacent lung. In addition, recombinant NEP abolished, whereas an NEP inhibitor potentiated, the calcium flux generated by neuropeptides in some lung cancer cell lines, demonstrating potential physiological significance for low NEP

  10. [Clinical Advanced in Early-stage ALK-positive Non-small Cell Lung Cancer Patients].

    PubMed

    Gao, Qiongqiong; Jiang, Xiangli; Huang, Chun

    2017-02-20

    Lung cancer is the leading cause of cancer death in China. Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases, with the majority of the cases diagnosed at the advanced stage. Molecular targeted therapy is becoming the focus attention for advanced NSCLC. Echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene (EML4-ALK) is among the most common molecular targets of NSCLC; its specific small-molecule tyrosine kinase inhibitors (TKIs) are approved for use in advanced NSCLC cases of ALK-positive. However, the influence of EML4-ALK fusion gene on the outcome of early-stage NSCLC cases and the necessity of application of TKIs for early-stage ALK-positive NSCLC patients are still uncertain. In this paper, we summarized the progression of testing methods for ALK-positive NSCLC patients as well as clinicopathological implication, outcome, and necessity of application of TKIs for early-stage ALK-positive NSCLC patients.

  11. Long non-coding RNA UCA1 promotes lung cancer cell proliferation and migration via microRNA-193a/HMGB1 axis.

    PubMed

    Wu, Hongyu; Zhou, Caicun

    2018-02-05

    Lung cancer is a leading cause of death worldwide. Long non-coding RNAs have been documented aberrantly expressed and exerted crucial role in variety of cancers. Urothelial carcinoma associated 1 (UCA1) is a potential new type of biomarkers for tumor diagnosis and exerts oncogenic effect on various human cancers. However, the mechanism of oncogenic role of UCA1 in lung cancer remains unclear. In this study, we firstly confirmed the role of UCA1 in lung cancer and found that UCA1 down-regulation inhibited cell proliferation and migration in both SKMES-1 and H520 lung cancer cells. Then we demonstrated that repressed UCA1 promoted the miR-193a expression and miR-193a could bind to the predicted binding site of UCA1. We then dissected the role of miR-193a in lung cancer and proved the anti-tumor role of miR-193a. Furthermore, we found that miR-193a displayed its role in lung cancer via modulating the HMGB1 expression. In addition, we found that over-expression of HMGB1 could restore the UCA1 knockdown induced repression of cell proliferation and migration. In summary, our study demonstrated that UCA1 exerts oncogenes activity in lung cancer, acting mechanistically by upregulating HMGB1 expression through 'sponging' miR-193a. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Customizing systemic therapy in patients with advanced non-small cell lung cancer

    PubMed Central

    Sadowska, A. M.; Nowé, V.; Janssens, A.; Boeykens, E.; De Backer, W. A.; Germonpré, P. R.

    2011-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. Standard chemotherapy has been shown to improve quality of life and has a modest influence on overall survival. This modest improvement in survival is partly due to the choice of chemotherapy regimens that have been based on prognostic factors such as age, performance status and comorbidities of the patient. This underlines the importance of developing a more personalized therapy for patients with non-small cell lung cancer. Such an approach may reduce the variation in how individual patients respond to medications by tailoring therapies to their genetic profile. In this review we focus on several aspects of customized therapy, looking not only at patient characteristics but also to tumor histology and specific tumor biomarkers. PMID:21904581

  13. Customizing systemic therapy in patients with advanced non-small cell lung cancer.

    PubMed

    Sadowska, A M; Nowé, V; Janssens, A; Boeykens, E; De Backer, W A; Germonpré, P R

    2011-07-01

    Lung cancer is the leading cause of cancer deaths worldwide. Standard chemotherapy has been shown to improve quality of life and has a modest influence on overall survival. This modest improvement in survival is partly due to the choice of chemotherapy regimens that have been based on prognostic factors such as age, performance status and comorbidities of the patient. This underlines the importance of developing a more personalized therapy for patients with non-small cell lung cancer. Such an approach may reduce the variation in how individual patients respond to medications by tailoring therapies to their genetic profile. In this review we focus on several aspects of customized therapy, looking not only at patient characteristics but also to tumor histology and specific tumor biomarkers.

  14. Current and Prospective Protein Biomarkers of Lung Cancer

    PubMed Central

    Zamay, Tatiana N.; Zamay, Galina S.; Kolovskaya, Olga S.; Zukov, Ruslan A.; Petrova, Marina M.; Gargaun, Ana; Berezovski, Maxim V.

    2017-01-01

    Lung cancer is a malignant lung tumor with various histological variants that arise from different cell types, such as bronchial epithelium, bronchioles, alveoli, or bronchial mucous glands. The clinical course and treatment efficacy of lung cancer depends on the histological variant of the tumor. Therefore, accurate identification of the histological type of cancer and respective protein biomarkers is crucial for adequate therapy. Due to the great diversity in the molecular-biological features of lung cancer histological types, detection is impossible without knowledge of the nature and origin of malignant cells, which release certain protein biomarkers into the bloodstream. To date, different panels of biomarkers are used for screening. Unfortunately, a uniform serum biomarker composition capable of distinguishing lung cancer types is yet to be discovered. As such, histological analyses of tumor biopsies and immunohistochemistry are the most frequently used methods for establishing correct diagnoses. Here, we discuss the recent advances in conventional and prospective aptamer based strategies for biomarker discovery. Aptamers like artificial antibodies can serve as molecular recognition elements for isolation detection and search of novel tumor-associated markers. Here we will describe how these small synthetic single stranded oligonucleotides can be used for lung cancer biomarker discovery and utilized for accurate diagnosis and targeted therapy. Furthermore, we describe the most frequently used in-clinic and novel lung cancer biomarkers, which suggest to have the ability of differentiating between histological types of lung cancer and defining metastasis rate. PMID:29137182

  15. Benzophenone-3 increases metastasis potential in lung cancer cells via epithelial to mesenchymal transition.

    PubMed

    Phiboonchaiyanan, Preeyaporn Plaimee; Busaranon, Kesarin; Ninsontia, Chuanpit; Chanvorachote, Pithi

    2017-06-01

    Exposure to compounds with cancer-potentiating effects can contribute to the progression of cancer. Herein we have discovered for the first time that benzophenone-3 (BP-3), a chemical used as sunscreen in various cosmetic products, enhances the ability of lung cancer cells to undergo metastasis. The exposure of the lung cancer cells to BP-3 at non-toxic concentrations significantly increased the number of anoikis resistant cells in a dose-dependent manner. Also, BP-3 increased the growth rate as well as the number of colonies accessed by anchorage-independent growth assay. We found that the underlying mechanisms of such behaviors were the epithelial to mesenchymal transition (EMT) process of cancer cells, and the increase in caveolin-1 (Cav-1) expression. As both mechanistic events mediated anoikis resistance via augmentation of cellular survival signals, our results further revealed that the BP-3 treatment significantly up-regulated extracellular-signal-regulated kinase (ERK). Also, such compounds increased the cellular levels of anti-apoptotic Bcl-2 and Mcl-1 proteins. As the presence of a substantial level of BP-3 in plasma of the consumers has been reported, this finding may facilitate further investigations that lead to better understanding and evidence concerning the safety of use in cancer patients.

  16. Targeting of Cancer Stem Cells and Their Microenvironment in Early-Stage Mutant K-ras Lung Cancer

    DTIC Science & Technology

    2016-12-01

    Aldefluor reagent. (B) A549 control lung cancer cells were incubated with Alde- fluor regent and DEAB, an inhibitor of aldehyde dehydro- genase. (C...increase in liquid colony formation or in cell proliferation compared to SHH- cells. Therefore, we turned to identify aldehyde dehydrogenase (ALDH...in which a green fluorescent BODIPY moiety is linked to aminoacetaldehyde, an aldehyde dehydrogenase substrate, and thus, cells expressing ALDH

  17. Loss of PTEN causes SHP2 activation, making lung cancer cells unresponsive to IFN-γ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chia-Ling; Chiang, Tzu-Hui; Tseng, Po-Chun

    Src homology-2 domain-containing phosphatase (SHP) 2, an oncogenic phosphatase, inhibits type II immune interferon (IFN)-γ signaling by subverting signal transducers and activators of transcription 1 tyrosine phosphorylation and activation. For cancer immunoediting, this study aimed to investigate the decrease of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor protein, leading to cellular impairment of IFN-γ signaling. In comparison with human lung adenocarcinoma A549 cells, the natural PTEN loss in another human lung adenocarcinoma line, PC14PE6/AS2 cells, presents reduced responsiveness in IFN-γ-induced IFN regulatory factor 1 activation and CD54 expression. Artificially silencing PTEN expression in A549 cellsmore » also caused cells to be unresponsive to IFN-γ without affecting IFN-γ receptor expression. IFN-γ-induced inhibition of cell proliferation and cytotoxicity were demonstrated in A549 cells but were defective in PC14PE6/AS2 cells and in PTEN-deficient A549 cells. Aberrant activation of SHP2 by ROS was specifically shown in PC14PE6/AS2 cells and PTEN-deficient A549 cells. Inhibiting ROS and SHP2 rescued cellular responses to IFN-γ-induced cytotoxicity and inhibition of cell proliferation in PC14PE6/AS2 cells. These results demonstrate that a decrease in PTEN facilitates ROS/SHP2 signaling, causing lung cancer cells to become unresponsive to IFN-γ. - Highlights: • This study demonstrates that PTEN decrease causes cellular unresponsive to IFN-γ. • Lung cancer cells with PTEN deficiency show unresponsive to IFN-γ signaling. • PTEN decrease inhibits IFN-γ-induced CD54, cell proliferation inhibition, and cytotoxicity. • ROS-mediated SHP2 activation makes PTEN-deficient cells unresponsive to IFN-γ.« less

  18. Surfactant-based drug delivery systems for treating drug-resistant lung cancer.

    PubMed

    Kaur, Prabhjot; Garg, Tarun; Rath, Goutam; Murthy, R S R; Goyal, Amit K

    2016-01-01

    Among all cancers, lung cancer is the major cause of deaths. Lung cancer can be categorized into two classes for prognostic and treatment purposes: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Both categories of cancer are resistant to certain drugs. Various mechanisms behind drug resistance are over-expression of superficial membrane proteins [glycoprotein (P-gp)], lung resistance-associated proteins, aberration of the intracellular enzyme system, enhancement of the cell repair system and deregulation of cell apoptosis. Structure-performance relationships and chemical compatibility are consequently major fundamentals in surfactant-based formulations, with the intention that a great deal investigation is committed to this region. With the purpose to understand the potential of P-gp in transportation of anti-tumor drugs to cancer cells with much effectiveness and specificity, several surfactant-based delivery systems have been developed which may include microspheres, nanosized drug carriers (nanoparticles, nanoemulsions, stealth liposomes, nanogels, polymer-drug conjugates), novel powders, hydrogels and mixed micellar systems intended for systemic and/or localized delivery.

  19. Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors.

    PubMed

    Ghosh, Gargi; Lian, Xiaojun; Kron, Stephen J; Palecek, Sean P

    2012-03-20

    Epidermal growth factor receptor (EGFR) signaling plays an important role in non-small cell lung cancer (NSCLC) and therapeutics targeted against EGFR have been effective in treating a subset of patients bearing somatic EFGR mutations. However, the cancer eventually progresses during treatment with EGFR inhibitors, even in the patients who respond to these drugs initially. Recent studies have identified that the acquisition of resistance in approximately 50% of cases is due to generation of a secondary mutation (T790M) in the EGFR kinase domain. In about 20% of the cases, resistance is associated with the amplification of MET kinase. In the remaining 30-40% of the cases, the mechanism underpinning the therapeutic resistance is unknown. An erlotinib resistant subline (H1650-ER1) was generated upon continuous exposure of NSCLC cell line NCI-H1650 to erlotinib. Cancer stem cell like traits including expression of stem cell markers, enhanced ability to self-renew and differentiate, and increased tumorigenicity in vitro were assessed in erlotinib resistant H1650-ER1 cells. The erlotinib resistant subline contained a population of cells with properties similar to cancer stem cells. These cells were found to be less sensitive towards erlotinib treatment as measured by cell proliferation and generation of tumor spheres in the presence of erlotinib. Our findings suggest that in cases of NSCLC accompanied by mutant EGFR, treatment targeting inhibition of EGFR kinase activity in differentiated cancer cells may generate a population of cancer cells with stem cell properties.

  20. Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells.

    PubMed

    Wu, Tiancong; Liu, Wen; Guo, Wenjie; Zhu, Xixu

    2016-07-01

    In this study, we investigated the antitumor activity of Silymarin in a mouse model of colon cancer xenograft of Lewis lung cancer (LLC) cells. Silymarin significantly suppressed tumor growth and induced apoptosis of cells in tumor tissues at a dose of 25 and 50mg/kg. Silymarin treatment enhanced the infiltration and function of CD8(+) T cells. In the meantime, Silymarin decreased the level of IL-10 while elevated the level of IL-2 and IFN-γ in the serum of tumor-bearing mice. Finally, Silymarin reduced the proportion of myeloid-derived suppressor cells (MDSC) in the tumor tissue and also the mRNA expressions of inducible nitric oxide synthases-2 (iNOS2), arginase-1 (Arg-1) and MMP9, which indicated that the function of MDSC in tumor tissues were suppressed. Altogether, our data here showed that Silymarin inhibited the MDSC and promoted the infiltration and function of CD8(+) T cells thus suppressed the growth of LLC xenografts, which provides evidence for the possible use of Silymarin against lung cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Auranofin-mediated inhibition of PI3K/AKT/mTOR axis and anticancer activity in non-small cell lung cancer cells

    PubMed Central

    Li, Hongyu; Hu, Jing; Wu, Shuhong; Wang, Li; Cao, Xiaobo; Zhang, Xiaoshan; Dai, Bingbing; Cao, Mengru; Shao, Ruping; Zhang, Ran; Majidi, Mourad; Ji, Lin; Heymach, John V.; Wang, Michael; Pan, Shiyang; Minna, John; Mehran, Reza J.; Swisher, Stephen G.; Roth, Jack A.; Fang, Bingliang

    2016-01-01

    Auranofin, a gold complex that has been used to treat rheumatoid arthritis in clinics and has documented pharmacokinetic and safety profiles in humans, has recently been investigated for its anticancer activity in leukemia and some solid cancers. However, auranofin's single agent activity in lung cancer is not well characterized. To determine whether auranofin has single agent activity in lung cancer, we evaluated auranofin's activity in a panel of 10 non-small cell lung cancer (NSCLC) cell lines. Cell viability analysis revealed that auranofin induced growth inhibition in a subset of NSCLC cell lines with a half maximal inhibitory concentration (IC50) below 1.0 μM. Treatment with auranofin elicited apoptosis and necroptosis in auranofin-sensitive cell lines. Moreover, the susceptibility of NSCLC cells to auranofin was inversely correlated with TXNRD1 expression in the cells. Transient transfection of the TXNRD1-expressing plasmid in auranofin-sensitive Calu3 cells resulted in partial resistance, indicating that high TXNRD level is one of causal factors for resistance to auranofin. Further mechanistic characterization with proteomic analysis revealed that auranofin inhibits expression and/or phosphorylation of multiple key nodes in the PI3K/AKT/mTOR pathway, including S6, 4EBP1, Rictor, p70S6K, mTOR, TSC2, AKT and GSK3. Ectopic expression of TXNRD1 partially reversed auranofin-mediated PI3K/AKT/mTOR inhibition, suggesting that TXNRD1 may participate in the regulation of PI3K/AKT/mTOR pathway. Administration of auranofin to mice with xenograft tumors derived from NSCLC cells significantly suppressed tumor growth without inducing obvious toxic effects. Our results demonstrated feasibility of repurposing auranofin for treatment of lung cancer. PMID:26657290

  2. Molecular Modeling, Docking, Dynamics and simulation of Gefitinib and its derivatives with EGFR in Non-Small Cell Lung Cancer.

    PubMed

    Reddy, Pulakuntla Swetha; Lokhande, Kiran Bharat; Nagar, Shuchi; Reddy, Vaddi Damodara; Murthy, P Sushma; Swamy, K Venkateswara

    2018-02-27

    Gefitinib (lressa) is the most prescribed drug, highly effective to treat of non-small cell lung cancer; primarily it was considered targeted therapy is a kinase inhibitor. The non-small cell lung cancer caused by the mutation in the Epithelial Growth Factor Receptor (EGFR) gene, Iressa works by blocking the EGFR protein that helps the cancer cell growth. EGFR protein has lead to the development of anticancer therapeutics directed against EGFR inhibitor including Gefitinib for non-small cell lung cancer. To explore research on Gefitinib and its derivatives interaction with crystal structure EGFR to understand the better molecular insights interaction strategies. Molecular modeling of ligands (Gefitinib and its derivatives) was carried out by Avogadro software till atomic angle stable confirmation obtained. The partial charges for the ligands were assigned as per standard protocol for molecular docking. All docking simulations were performed with AutoDockVina. Virtual screening carried out based on binding energy and hydrogen bonding affinity. Molecular dynamics (MD) and Simulation EGFR was done using GROMACS 5.1.1 software to explore the interaction stability in a cell. The stable conformation for EGFR protein trajectories were captured at various time intervals 0-20ns. Few compounds screen based on high affinity as the inhibitor for EGFR may inhibit the cell cycle signalling in non-small cell lung cancer. These result suggested that a computer aided screening approach of a Gefitinib derivatives compounds with regard to their binding to EGFR for identifying novel drugs for the treatment of non-small cell lung cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. The Use of Apatinib in Treating Nonsmall-Cell Lung Cancer: Case Report and Review of Literature.

    PubMed

    Ding, Lin; Li, Qing-Jian; You, Kai-Yun; Jiang, Zhi-Min; Yao, He-Rui

    2016-05-01

    Apatinib is a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor-2, which has been proved to be effective and safe in treating heavily pretreated patients with gastric cancer.The aim of the study was to explore the use of apatinib in treatment of nonsmall cell lung cancer and its side effects.We report 2 patients presented with advanced nonsmall-cell lung cancer, who received apatinib after failure in the first- or third-line chemotherapy. They are treated with apatinib in daily dose of 850 mg, 28 days per cycle.Favorable oncologic outcomes were achieved in the 2 cases after the treatment of apatinib. Patient I's progression-free-survival has increased to 4.6 months after palliative therapy of apatinib, whereas Patient II nearly 6 months. The common side effects of apatinib were hypertension and hand-foot syndrome; however, the toxicity of apatinib was controllable and tolerable.Apatinib may be an option for advanced nonsmall cell lung cancer after failure of chemotherapy or other targeted therapy. But that still warrants further investigation in the prospective study.

  4. MicroRNA-128 suppresses paclitaxel-resistant lung cancer by inhibiting MUC1-C and BMI-1 in cancer stem cells.

    PubMed

    Koh, Hyebin; Park, Hyeri; Chandimali, Nisansala; Huynh, Do Luong; Zhang, Jiao Jiao; Ghosh, Mrinmoy; Gera, Meeta; Kim, Nameun; Bak, Yesol; Yoon, Do-Young; Park, Yang Ho; Kwon, Taeho; Jeong, Dong Kee

    2017-12-15

    The existence of cancer stem cells (CSCs) is the main reason for failure of cancer treatment caused by drug resistance. Therefore, eradicating cancers by targeting CSCs remains a significant challenge. In the present study, because of the important role of BMI-1 proto-oncogene, polycomb ring finger (BMI-1) and C-terminal Mucin1 (MUC1-C) in tumor growth and maintenance of CSCs, we aimed to confirm that microRNA miR-128, as an inhibitor of BMI-1 and MUC1-C, could effectively suppress paclitaxel (PTX)-resistant lung cancer stem cells. We showed that CSCs have significantly higher expression levels of BMI-1, MUC1-C, stemness proteins, signaling factors, and higher malignancy compared with normal tumor cells. After transfection with miR-128, the BMI-1 and MUC1-C levels in CSCs were suppressed. When miR-128 was stably expressed in PTX-resistant lung cancer stem cells, the cells showed decreased proliferation, metastasis, self-renewal, migration, invasive ability, clonogenicity, and tumorigenicity in vitro and in vivo and increased apoptosis compared with miR-NC (negative control) CSCs. Furthermore, miR-128 effectively decreased the levels of β-catenin and intracellular signaling pathway-related factors in CSCs. MiR-128 also decreased the luciferase activity of MUC1 reporter constructs and reduced the levels of transmembrane MUC1-C and BMI-1. These results suggested miR-128 as an attractive therapeutic strategy for PTX-resistant lung cancer via inhibition of BMI-1 and MUC1-C.

  5. Lung Cancer Screening

    MedlinePlus

    ... healthy people with a high risk of lung cancer. Lung cancer screening is recommended for older adults who ... last 15 years. What you can expect During lung cancer screening During an LDCT scan of the lungs, ...

  6. Erlotinib Hydrochloride in Treating Patients With Stage IB-IIIA Non-small Cell Lung Cancer That Has Been Completely Removed by Surgery (An ALCHEMIST Treatment Trial)

    ClinicalTrials.gov

    2018-06-29

    ALK Gene Rearrangement; EGFR Exon 19 Deletion Mutation; EGFR NP_005219.2:p.L858R; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  7. Current Treatment Algorithms for Patients with Metastatic Non-Small Cell, Non-Squamous Lung Cancer

    PubMed Central

    Melosky, Barbara

    2017-01-01

    The treatment paradigm for metastatic non-small cell, non-squamous lung cancer is continuously evolving due to new treatment options and our increasing knowledge of molecular signal pathways. As a result of treatments becoming more efficacious and more personalized, survival for selected groups of non-small cell lung cancer (NSCLC) patients is increasing. In this paper, three algorithms will be presented for treating patients with metastatic non-squamous, NSCLC. These include treatment algorithms for NSCLC patients whose tumors have EGFR mutations, ALK rearrangements, or wild-type/wild-type tumors. As the world of immunotherapy continues to evolve quickly, a future algorithm will also be presented. PMID:28373963

  8. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  9. TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways.

    PubMed

    Hu, Ying; He, Kai; Wang, Dongmei; Yuan, Xinwang; Liu, Yi; Ji, Hongbin; Song, Jianguo

    2013-08-01

    The epithelial-mesenchymal transition (EMT) has been implicated in various pathophysiological processes, including cancer cell migration and distal metastasis. Reactive oxygen species (ROS) and insulin receptor substrate-1 (IRS-1) are important in cancer progression and regulation of EMT. To explore the biological significance and regulatory mechanism of EMT, we determined the expression, the biological function and the signaling pathway of prostate transmembrane protein, androgen induced-1 (TMEPAI), during the induction of EMT and cell migration. Transforming growth factor (TGF)-β1 significantly upregulated the expression of TMEPAI during EMT in human lung adenocarcinoma. Depletion of TMEPAI abolished TGF-β1-induced downregulation of ferritin heavy chain and the subsequent generation of ROS, thus suppressing TGF-β1-induced EMT and cell migration. In addition, increased ROS production and overexpression of TMEPAI downregulated the level of IRS-1. Both the addition of H2O2 and IRS-1 small interfering RNA rescued the ability of TGF-β1 to induce EMT in TMEPAI-depleted cells. Remarkably, the levels of TMEPAI in lung tumor tissues are very high, whereas its expression in normal lung epithelium is very low. Moreover, TMEPAI expression was positively correlated with the cell mesenchymal phenotype and migration potential. Our work reveals that TMEPAI contributes to TGF-β1-induced EMT through ROS production and IRS-1 downregulation in lung cancer cells.

  10. Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation.

    PubMed

    Zhang, Yao; Jia, Yanfei; Li, Ping; Li, Huanjie; Xiao, Dongjie; Wang, Yunshan; Ma, Xiaoli

    2017-07-20

    Cigarette smoking is the top environmental risk factor for lung cancer. Nicotine, the addictive component of cigarettes, induces lung cancer cell proliferation, invasion and migration via the activation of nicotinic acetylcholine receptors (nAChRs). Genome-wide association studies (GWAS) show that CHRNA5 gene encoding α5-nAChR is especially relevant to lung cancer. However, the mechanism of this subunit in lung cancer is not clear. In the present study, we demonstrate that the expression of α5-nAChR is correlated with phosphorylated STAT3 (pSTAT3) expression, smoking history and lower survival of non-small cell lung cancer (NSCLC) samples. Nicotine increased the levels of α5-nAChR mRNA and protein in NSCLC cell lines and activated the JAK2/STAT3 signaling cascade. Nicotine-induced activation of JAK2/STAT3 signaling was inhibited by the silencing of α5-nAChR. Characterization of the CHRNA5 promoter revealed four STAT3-response elements. ChIP assays confirmed that the CHRNA5 promoter contains STAT3 binding sites. By silencing STAT3 expression, nicotine-induced upregulation of α5-nAChR was suppressed. Downregulation of α5-nAChR and/or STAT3 expression inhibited nicotine-induced lung cancer cell proliferation. These results suggest that there is a feedback loop between α5-nAChR and STAT3 that contributes to the nicotine-induced tumor cell proliferation, which indicates that α5-nAChR is an important therapeutic target involved in tobacco-associated lung carcinogenesis. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  11. [Effects of icotinib hydrochloride on the proliferation and apoptosis of human lung cancer cell lines].

    PubMed

    Ma, Li; Han, Xiao-hong; Wang, Shuai; Wang, Jian-fei; Shi, Yuan-kai

    2012-09-25

    To explore the effects of icotinib on the proliferation and apoptosis of various lung cancer cell lines. Human lung cancer cell lines HCC827, H1650, H1975, A549 and human epidermal cancer cell line A431 were treated in vitro with icotinib or gefitinib at a concentration gradient of 0 - 40 µmol/L. Their proliferation effects were analyzed by the thiazolyl blue (MTT) assay and the apoptotic effects detected by flow cytometer. The downstream signaling proteins were detected by Western blot. The median inhibitory concentrations (IC(50)) of icotinib for A431 and HCC827 cell lines were (0.04 ± 0.02) and (0.15 ± 0.06) µmol/L respectively. No significant differences existed between the inhibitions of gefitinib and icotinib on A431, HCC827, H1650, H1975 and A549 cell lines (all P > 0.05). Compared with H1650, H1975 and A549 cell lines, icotinib significantly inhibited A431 (P = 0.009, 0.005 and 0.000) and HCC827 (P = 0.001, 0.001 and 0.000) cell lines. And it lowered the expressions of p-AKT, p-ERK and survivin protein expression through the inhibited activity of p-EGFR protein. Icotinib can arrest the proliferation of lung adenocarcinoma cells with EGFR mutation or over-expression by inhibiting the signal pathways of AKT-ERK and survivin.

  12. Integrated molecular portrait of non-small cell lung cancers

    PubMed Central

    2013-01-01

    Background Non-small cell lung cancer (NSCLC), a leading cause of cancer deaths, represents a heterogeneous group of neoplasms, mostly comprising squamous cell carcinoma (SCC), adenocarcinoma (AC) and large-cell carcinoma (LCC). The objectives of this study were to utilize integrated genomic data including copy-number alteration, mRNA, microRNA expression and candidate-gene full sequencing data to characterize the molecular distinctions between AC and SCC. Methods Comparative genomic hybridization followed by mutational analysis, gene expression and miRNA microarray profiling were performed on 123 paired tumor and non-tumor tissue samples from patients with NSCLC. Results At DNA, mRNA and miRNA levels we could identify molecular markers that discriminated significantly between the various histopathological entities of NSCLC. We identified 34 genomic clusters using aCGH data; several genes exhibited a different profile of aberrations between AC and SCC, including PIK3CA, SOX2, THPO, TP63, PDGFB genes. Gene expression profiling analysis identified SPP1, CTHRC1and GREM1 as potential biomarkers for early diagnosis of the cancer, and SPINK1 and BMP7 to distinguish between AC and SCC in small biopsies or in blood samples. Using integrated genomics approach we found in recurrently altered regions a list of three potential driver genes, MRPS22, NDRG1 and RNF7, which were consistently over-expressed in amplified regions, had wide-spread correlation with an average of ~800 genes throughout the genome and highly associated with histological types. Using a network enrichment analysis, the targets of these potential drivers were seen to be involved in DNA replication, cell cycle, mismatch repair, p53 signalling pathway and other lung cancer related signalling pathways, and many immunological pathways. Furthermore, we also identified one potential driver miRNA hsa-miR-944. Conclusions Integrated molecular characterization of AC and SCC helped identify clinically relevant markers

  13. Genetic Testing in Screening Patients With Stage IB-IIIA Non-Small Cell Lung Cancer That Has Been or Will Be Removed by Surgery (The ALCHEMIST Screening Trial)

    ClinicalTrials.gov

    2018-06-29

    Large Cell Lung Carcinoma; Lung Adenocarcinoma; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Squamous Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage II Squamous Cell Lung Carcinoma AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIA Squamous Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Squamous Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Squamous Cell Lung Carcinoma AJCC v7

  14. KRAS and the Reality of Personalized Medicine in Non-Small Cell Lung Cancer

    PubMed Central

    Kilgoz, Havva O; Bender, Guzide; Scandura, Joseph M; Viale, Agnes; Taneri, Bahar

    2016-01-01

    Lung cancer is the leading cause of mortality among all cancer types worldwide. The latest available global statistics of the World Health Organization report 1.59 million casualities in 2012. Worldwide, 1 in 5 cancer deaths are caused by lung cancer. In 2016, in the United States alone, there are an estimated 224,390 new cases of lung cancer, of which 158,080 are expected to result in death, as reported by the National Cancer Institute. Non-small cell lung cancer (NSCLC), a histological subtype, comprises about 85% of all cases, which is nearly 9 out of 10 lung cancer patients. Efforts are under way to develop and improve targeted therapy strategies. Certain mutations are being clinically targeted, such as those in EGFR and ALK genes. However, one of the most frequently mutated genes in NSCLC is the Kirsten rat sarcoma viral oncogene homolog (KRAS), which is currently not targetable. Approximately 25% of all types of NSCLC tumors contain KRAS mutations, which remain as an undruggable challenge. These mutations are indicative of poor prognosis and show negative response to standard chemotherapy. Furthermore, tumors harboring KRAS mutations are unlikely to respond to currently available targeted treatments such as tyrosine kinase inhibitors. Therefore, there is a definitive, urgent need to generate new targeted therapy approaches for KRAS mutations. Current strategies have major limitations and revolve around targeting molecules upstream and downstream of KRAS. Direct targeting is not available in the clinic. Combination therapies using multiple agents are being sought. Concentrated efforts are needed to accelerate basic research and consecutive clinical trials to achieve effective targeting of KRAS. PMID:27447490

  15. Change from lung adenocarcinoma to small cell lung cancer as a mechanism of resistance to afatinib.

    PubMed

    Manca, Paolo; Russano, Marco; Pantano, Francesco; Tonini, Giuseppe; Santini, Daniele

    2017-08-29

    We report the case of a patient affected by advanced EGFR mutation-positive lung who experienced resistance to therapy during treatment with Afatinib through the occurrence of a switch of tumor histotype to small cell lung cancer (SCLC) with features of a G3 neuroendocrine carcinoma. Unexpectedly, the switch to SCLC histotype occurred in the only site not responsive to afatinib and subsequently the most responsive to chemotherapy. Our case shows that occurrence of switch to SCLC is a possible mechanism of resistance during treatment with Afatinib.

  16. p90 ribosomal S6 kinase: a potential therapeutic target in lung cancer.

    PubMed

    Poomakkoth, Noufira; Issa, Aya; Abdulrahman, Nabeel; Abdelaziz, Somaia Gamal; Mraiche, Fatima

    2016-01-14

    A global survey of cancer has shown that lung cancer is the most common cause of the new cancer cases and cancer deaths in men worldwide. The mortality from lung cancer is more than the combined mortality from breast, prostate and colorectal cancers. The two major histological types of lung cancer are non-small cell lung cancer (NSCLC) accounting for about 85 % of cases and small cell lung cancer accounting for 15 % of cases. NSCLC, the more prevalent form of lung cancer, is often diagnosed at an advanced stage and has a very poor prognosis. Many factors have been shown to contribute to the development of lung cancer in humans including tobacco smoking, exposure to environmental carcinogens (asbestos, or radon) and genetic factors. Despite the advances in treatment, lung cancer remains one of the leading causes of cancer death worldwide. Interestingly, the overall 5 year survival from lung cancer has not changed appreciably in the past 25 years. For this reason, novel and more effective treatments and strategies for NSCLC are critically needed. p90 ribosomal S6 kinase (RSK), a serine threonine kinase that lies downstream of the Ras-MAPK (mitogen activated protein kinase) cascade, has been demonstrated to be involved in the regulation of cell proliferation in various malignancies through indirect (e.g., modulation of transcription factors) or direct effects on the cell-cycle machinery. Increased expression of RSK has been demonstrated in various cancers, including lung cancer. This review focuses on the role of RSK in lung cancer and its potential therapeutic application.

  17. The role of positron emission tomography in the diagnosis, staging and response assessment of non-small cell lung cancer

    PubMed Central

    Ali, Jason M.; Tasker, Angela; Peryt, Adam; Aresu, Giuseppe; Coonar, Aman S.

    2018-01-01

    Lung cancer is a common disease and the leading cause of cancer-related mortality, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Following diagnosis of lung cancer, accurate staging is essential to guide clinical management and inform prognosis. Positron emission tomography (PET) in conjunction with computed tomography (CT)—as PET-CT has developed as an important tool in the multi-disciplinary management of lung cancer. This article will review the current evidence for the role of 18F-fluorodeoxyglucose (FDG) PET-CT in NSCLC diagnosis, staging, response assessment and follow up. PMID:29666818

  18. What Is Lung Cancer?

    MedlinePlus

    ... Shareable Graphics Infographics “African-American Men and Lung Cancer” “Lung Cancer Is the Biggest Cancer Killer in Both ... starts in the lungs, it is called lung cancer. Lung cancer begins in the lungs and may spread ...

  19. Lung dose and the potential risk of death in postoperative radiation therapy for non-small cell lung cancer: A study using the method of stratified grouping.

    PubMed

    Heo, Jaesung; Noh, O Kyu; Kim, Hwan-Ik; Chun, Mison; Cho, Oyeon; Park, Rae Woong; Yoon, Dukyong; Oh, Young-Taek

    2018-04-19

    Postoperative radiation therapy may have a detrimental effect on survival in patients with non-small cell lung cancer. We investigated the association of the lung radiation dose with the risk of death in patients treated with postoperative radiation therapy. We analyzed 178 patients with non-small cell lung cancer who received postoperative radiation therapy. The mean lung dose was calculated from dose-volume data, and we categorized patients into the high and low lung dose groups using 2 different methods; (1) simple grouping using the median lung dose of all patients, and (2) stratified grouping using the median lung dose of each subgroup sharing the same confounders. We compared clinical variables, and survival between the high and low lung dose groups. In the simple grouping, there were no significant differences in survivals between the high and low lung dose groups. After stratification, the overall survival of low lung dose group was significantly longer than that of high lung dose group (5-year survival, 60.1% vs. 35.3%, p = 0.039). On multivariable analyses, the lung dose remained a significant prognostic factor for overall survival (hazard ratio, HR = 2.08, p = 0.019). The lung dose was associated with the risk of death in patients with non-small cell lung cancer having the same confounders. Further studies evaluating the risk of death according to the lung dose will be helpful to administer more precise and individualized postoperative radiation therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. ALK‐rearrangement in non‐small‐cell lung cancer (NSCLC)

    PubMed Central

    Du, Xue; Shao, Yun; Qin, Hai‐Feng

    2018-01-01

    The ALK gene encodes a transmembrane tyrosine kinase receptor. ALK is physiologically expressed in the nervous system during embryogenesis, but its expression decreases postnatally. ALK first emerged in the field of oncology in 1994 when it was identified to fuse to NPM1 in anaplastic large‐cell lymphoma. Since then, ALK has been associated with other types of cancers, including non‐small‐cell lung cancer (NSCLC). More than 19 different ALK fusion partners have been discovered in NSCLC, including EML4, KIF5B, KLC1, and TPR. Most of these ALK fusions in NSCLC patients respond well to the ALK inhibitor, crizotinib. In this paper, we reviewed fusion partner genes with ALK, detection methods for ALK‐rearrangement (ALK‐R), and the ALK‐tyrosine kinase inhibitor, crizotinib, used in NSCLC patients. PMID:29488330